

An efficient framework for privacy-preserving computations on encrypted IoT data

by

Shruthi Ramesh

A thesis submitted to the graduate faculty

in partial fulfillment of the requirements for the degree of

MASTER OF SCIENCE

Major: Computer Engineering (Secure and Reliable Computing)

Program of Study Committee:

Manimaran Govindarasu, Major Professor

Wensheng Zhang

Neil Gong

The student author, whose presentation of the scholarship herein was approved by the

program of study committee, is solely responsible for the content of this thesis. The Graduate

College will ensure this thesis is globally accessible and will not permit alterations after a

degree is conferred.
.

Iowa State University

Ames, Iowa

2019

Copyright © Shruthi Ramesh, 2019. All rights reserved.

ii

DEDICATION

I would like to dedicate this thesis to my family – my parents, Ramesh Rengaswamy

and Vijay Ramesh who have always been the constant source of unconditional love, support

and encouragement, my brother Dr. Sridharan Ramesh, for always being there whenever I

needed moral support, motivation and guidance and to my partner Sudarsanan Krishnan, for

the cheers, support and sacrifices throughout this journey.

iii

TABLE OF CONTENTS

Page

LIST OF FIGURES ...v

LIST OF TABLES .. vii

LIST OF ALGORITHMS .. viii

NOMENCLATURE .. ix

ACKNOWLEDGMENTS ...x

ABSTRACT ... xi

CHAPTER 1. INTRODUCTION TO CLOUD BASED IoT ..1

1.1 Overview .. 1
1.1.1 Internet of Things ... 1

1.1.2 Cloud Computing ... 4
1.1.2.1 Cloud Storage .. 5
1.1.2.2 Cloud Compute .. 6

1.1.3 Internet of Things and Cloud ... 6
1.2 Research Motivation and Objective ... 7

1.3 Thesis Organization .. 8

CHAPTER 2. BACKGROUND AND LITERATURE REVIEW ..10

2.1 Conventional Encryption Schemes .. 10
2.2 Homomorphic Encryption Schemes ... 14

2.2.1 Partially Homomorphic Encryption Schemes .. 14
2.2.2 Fully Homomorphic Encryption Schemes ... 17

CHAPTER 3. PROPOSED SOLUTION-PROXY RE-CIPHERING AS A SERVICE21

3.1 Design Goals .. 22
3.2 Major Cyber Threats .. 23
3.3 System Architecture ... 25

3.4 Model Assumptions .. 27

3.5 Data Distribution Schemes ... 28

3.6 Proposed Workflow .. 32

CHAPTER 4. CASE STUDY: SMART HEALTHCARE ..46
4.1 Internet of Things in Healthcare ... 46
4.2 Smart Healthcare and Cloud ... 48
4.3 Security for Healthcare ... 49

4.4 Proxy re-ciphering as a service for Healthcare IoT .. 50
4.5 Deployment Scenarios .. 53

iv

CHAPTER 5. PERFORMANCE EVALUATION ..57

5.1 Experimental Evaluation .. 57

5.1.1 Experimental Setup .. 57
5.1.2 Performance Evaluation ... 60

5.2 Theoretical Evaluation ... 76

CHAPTER 6. CONCLUSION AND FUTURE WORK ...86
6.1 Summary .. 86

6.2 Limitations and Future work .. 88

REFERENCES ..90

v

LIST OF FIGURES

 Page

Figure 1. An example of IoT ecosystem .. 3

Figure 2. An example of computation on AES-encrypted data ... 14

Figure 3. The proposed architecture for Proxy re-ciphering as a service 27

Figure 4. High level workflow of Proxy re-ciphering as a service-Phase I-III 32

Figure 5. High level workflow of Proxy re-ciphering as a service-Phase IV 33

Figure 6. Overview of complaints regarding medical identity thefts from 2013-2017

[110] ... 50

Figure 7. An example of proxy re-ciphering as a service framework for smart

healthcare .. 53

Figure 8. Experiment setup with high-level workflow .. 59

Figure 9. Evaluation of latency to distribute Krawczyk’s shares of homomorphic

encrypted device key .. 63

Figure 10. Evaluation of latency at each proxy server for homomorphic key

reconstruction ... 64

Figure 11. Evaluation of latency to distribute Shamir’s shares of homomorphic

encrypted device key .. 66

Figure 12. Evaluation of privacy vs latency trade-off for encryption schemes 67

Figure 13. Evaluation of privacy vs latency trade-off for encryption schemes – with

offline pre-processing ... 69

Figure 14. Evaluation of latency for different ECG sampling frequencies 70

Figure 15. An example of stress-ng command line to emulate a CPU load of 40% 71

Figure 16. Evaluation of latency at a proxy server under various CPU loads 72

Figure 17. Evaluation of latency for upload, download, decrypt and delete operations 73

vi

Figure 18. Evaluation of total latency to dynamically refresh an encryption key 76

Figure 19. An example of attack scenario to define post-compromise security 84

vii

LIST OF TABLES

 Page

Table 1. Constrained node classification [2] .. 2

Table 2. Recommended key size in bits by NIST [29] .. 12

Table 3. Widely known partially homomorphic encryption schemes 15

viii

LIST OF ALGORITHMS

Page

Algorithm 1. Secure sharing of encrypted IoT device key .. 34

Algorithm 2. Secure reconstruction of encrypted IoT device key ... 35

Algorithm 3. Re-ciphering during data flow ... 39

Algorithm 4. Finding chameleon collision at gateway .. 43

Algorithm 5. Dynamic key generation at IoT device .. 44

Algorithm 6. Dynamic key generation at KMS ... 45

ix

NOMENCLATURE

IoT Internet of Things

FHE Fully Homomorphic Encryption

KMS Key Manager Server

HCO Health Care Organization

CIA Confidentiality, Integrity and Availability

AES Advanced Encryption Standard

ECC Elliptic Curve Cryptography

MPC Multi Party Computation

UDP User Datagram Protocol

NIST National Institute of Standards and Technology

HDFS Hadoop Distributed File System

CloudIoT Cloud based IoT

IETF Internet Engineering Task Force

CSP Cloud Service Providers

x

ACKNOWLEDGMENTS

This thesis would have not been possible without the help and support of many people.

First, I would like to thank my research advisor, Dr. Manimaran Govindarasu for his patience,

guidance and encouragement throughout this journey. Thank you for challenging my ideas and

allowing me to explore different domains before finding the topic of my interest. Thank you

for teaching me the basic tools of conducting a thorough research.

I would also like to thank Dr. Wensheng Zhang and Dr. Neil Gong for taking out time

to respond to my emails and for agreeing to be a part of my POS committee. Thank you, Dr.

Wensheng Zhang, for always accepting to meet me and for the valuable feedback after every

discussion.

I would also like to thank my research group for providing valuable feedback during

all the research meetings. I would like to thank my friend Ranjitha for the support and cheers

throughout this journey.

xi

ABSTRACT

There are two fundamental expectations from Cloud-IoT applications using sensitive

and personal data: data utility and user privacy. With the complex nature of cloud-IoT

ecosystem, there is a growing concern about data utility at the cost of privacy. While the current

state-of-the-art encryption schemes protect users’ privacy, they preclude meaningful

computations on encrypted data. Thus, the question remains “how to help IoT device users

benefit from cloud computing without compromising data confidentiality and user privacy”?

Cloud service providers (CSP) can leverage Fully homomorphic encryption (FHE) schemes to

deliver privacy-preserving services. However, there are limitations in directly adopting FHE-

based solutions for real-world Cloud-IoT applications. Thus, to foster real-world adoption of

FHE-based solutions, we propose a framework called Proxy re-ciphering as a service. It

leverages existing schemes such as distributed proxy servers, threshold secret sharing,

chameleon hash function and FHE to tailor a practical solution that enables long-term privacy-

preserving cloud computations for IoT ecosystem. We also encourage CSPs to store minimal

yet adequate information from processing the raw IoT device data. Furthermore, we explore a

way for IoT devices to refresh their device keys after a key-compromise. To evaluate the

framework, we first develop a testbed and measure the latencies with real-world ECG records

from TELE ECG Database. We observe that i) although the distributed framework introduces

computation and communication latencies, the security gains outweighs the latencies, ii) the

throughput of the servers providing re-ciphering service can be greatly increased with pre-

processing iii) with a key refresh scheme we can limit the upper bound on the attack window

post a key-compromise. Finally, we analyze the security properties against major threats faced

by Cloud-IoT ecosystem. We infer that Proxy re-ciphering as a service is a practical, secure,

xii

scalable and an easy-to-adopt framework for long-term privacy-preserving cloud computations

for encrypted IoT data.

1

CHAPTER 1. INTRODUCTION TO CLOUD BASED IoT

1.1 Overview

1.1.1 Internet of Things

Internet of Things (IoT) refers to a system where devices with embedded sensors and

actuators in the physical world are connected to the Internet through wired or wireless

communication channels and can be uniquely identified and addressed. IoT, a vision that was

conceived in the early 2000s, has become a reality today, allowing users to connect everything

from industrial components like gas turbines, freight goods, industrial heating and ventilation

equipment to everyday consumer devices like light bulbs, door lock, washing machines etc.,

to the Internet. The pervasive presence of the IoT devices around humans has given the devices

the ability to measure, infer and even alter the human environment. This has become possible

primarily due to several advancements in technologies like wireless networks, embedded

sensors, and cloud computing, to name a few, over the years. In a nutshell, an IoT ecosystem

offers the following benefits to users, when compared to a traditional IT infrastructure:

i) communication: the ability to collect and transfer information from various sensors

like temperature sensor, air purity monitoring sensors, heart rate monitoring sensors

etc.

ii) remote control: the ability to control the environment remotely, like turning on air

conditioners at home from the office, remotely administering insulin delivery for a

patient, unlocking home door from a car etc.

iii) correctness: the ability to avoid human errors arising from manual entries during high

precision recordings like in heart rate monitoring, supply chain logistics management

etc.

2

iv) cost: the ability to effectively minimize the cost associated with managing an

application infrastructure by means of data, like analyzing sensor data to minimize

equipment failures with a planned maintenance, reducing fuel consumption by

monitoring drive behavior etc.

Hence, it comes as no surprise that the US National Intelligence Council named IoT as

one of the six disruptive technologies that will potentially impact US interests by 2025 [1].

Since a multitude of applications take advantage of IoT, diverse classes of IoT devices have

been developed over the years, ranging from wireless sensor networks to fitness bands to smart

meters to connected vehicles. These diverse types of devices typically vary in their processing

power, cost, buffer space, size, and user interfaces, to name a few aspects. Small devices that

are limited in their power, CPU and memory are termed as constrained devices by the IETF

[2]. IETF has also roughly classified the constrained devices into three classes (𝑐𝑙𝑎𝑠𝑠 − 𝑁 for

𝑁 = 0,1,2) depending on the device capabilities [2] as shown in Table 1.

Table 1. Constrained node classification [2]

Name Data size

(KB)

Code size

(KB)

Class 0 <10 <100

Class 1 ~10 ~100

Class 2 ~50 ~250

Class 0 devices typically include sensor-like motes that are very limited in their

memory and processing power. They connect to the Internet using other computationally

powerful devices like gateways. Class 1 devices are relatively constrained in processing power

and memory and connect to the Internet using lightweight protocol stacks like Constrained

Application Protocol over UDP [3]. Class 2 devices are relatively less constrained and can

3

support protocol stacks like HTTP, although they are usually designed to use lightweight

protocols to improve efficiency and cost.

Figure 1 shows a typical IoT ecosystem where IoT devices capture information and

share it to the cloud-based servers via gateways.

Figure 1. An example of IoT ecosystem

There are two fundamental expectations from IoT applications: data security and data

utility. Data security circles around the Confidentiality-Integrity-Availability triad [4] which

in the context of IoT device data can be informally and appropriately defined as the follows:

• Confidentiality: the data generated by an IoT device is protected by allowing only users

(device owner, legitimate recipients, etc.) who can prove their identity and have

appropriate privileges to access the data

• Integrity: the data generated by an IoT device should not be altered throughout its

lifecycle by anyone, including the device owners

• Availability: the data generated by an IoT device should be readily available to the

appropriate users (device owners, legitimate recipients, etc.) upon request

4

Data utility refers to using raw data generated by the devices to make intelligent

decisions that can help the end-users. With the embedded sensors in IoT devices continuously

collecting data about the human environment, device owners are interested in more than just a

mere collection and storage of the raw device data in the cloud servers. Rather, they expect

useful services like intelligent insights with daily statistics, periodic reports, and alerts from

anomaly detection, to name a few. For example, people using fitness bands expect to see their

resting heart rate values, number of steps walked in a day, number of hours of deep sleep in a

day, the stress levels throughout the day, etc. Thus, it becomes imperative for IoT device

vendors to design a back-end infrastructure that can handle and process the device data while

meeting the above-mentioned requirements of their consumers.

1.1.2 Cloud Computing

The National Institute of Standards and Technology (NIST) has provided the following

definition for “cloud computing” capturing its essential and multi-faceted aspects: "cloud

computing is a model for enabling ubiquitous, convenient, on-demand network access to a

shared pool of configurable computing resources (e.g., networks, servers, storage,

applications and services) that can be rapidly provisioned and released with minimal

management effort or service provider interaction." [5]. Over the years, cloud computing has

enabled the realization of new computing paradigms owing to its ability to provide nearly

unlimited storage and processing capabilities, in turn hugely impacting the IT industry.

Cloud service providers are companies that leverage cloud computing and offer cloud-

based solutions such as Infrastructure as a Service (e.g. Amazon Web Service [6], Microsoft

Azure [7]), Platform as a service (e.g. Red hat OpenShift [8]) and Software as a service

(Salesforce [9]). Cloud service providers facilitate off-premise storage and processing,

5

enabling companies to offload the overhead associated with maintaining on-premise

infrastructures, managing IT personnel and expanding them as required. Furthermore, the

system of virtually distributed, powerful and always up-to-date servers hosted by the cloud

service providers can guarantee better resiliency, scalability and security compared to a

traditional computing system, while at the same time being cost-effective. These salient

features are essentially responsible for the recent transformation in the business models of

various industries ranging from transportation to manufacturing to IT companies [10]- [11].

In the following section, the current study provides a high-level functional overview of

the state-of-the-art cloud storage and processing services provided by the cloud service

providers.

1.1.2.1 Cloud Storage

A typical cloud storage model involves clients storing data (e.g. images, text files) in

the cloud server and querying it later when they want to view the data. For example, service

likes Amazon S3 [6], Azure storage [7], Google Drive [12] and Dropbox [13]. Clients typically

use a secure channel to transfer the data to the cloud to prevent an adversary from

eavesdropping on the channel. In case the information shared with the cloud servers is sensitive

(e.g. business critical data), clients can encrypt the sensitive and critical data before uploading

the data to the cloud servers. An encrypted data, by the virtue of encryption, is protected

against eavesdropping over an unsecure wireless channel (security for data in-transit) and

against data leakage after storing in the cloud servers (security for data at-rest). Clients can

also use encrypted query processing to conceal access patterns from the cloud servers [7, 8]

and decrypt the data after receiving.

6

1.1.2.2 Cloud Compute

By cloud compute, the current study refers to allowing the cloud servers to process data

in their servers. Personal assistants like Siri [14] and Alexa [15], to productivity tools like

Office Online [16] and Google Docs [12], to big data analytics tools like Hadoop [17], are all

examples of compute services provided by cloud service providers. Cloud compute services

are generally data driven in that they rely on providing services by processing huge amounts

of data shared by the clients. To protect the data during transit and storage, clients typically

encrypt the data in their local machine and then upload the data to the cloud servers. When the

data is required for computation, the authorized cloud application first decrypts the data and

then performs the necessary computation on the data [18]. To protect the result of the

computation from an adversary, the cloud application re-encrypts the result before sharing with

the clients.

The next section provides a brief overview of IoT ecosystem integration with cloud

computing.

1.1.3 Internet of Things and Cloud

 In 2011, the number of interconnected IoT devices exceeded the total number of people

[19] and by 2025 it is expected to reach a value of over 75 billion [20]. This in turn would

substantially increase the volume of data generated. It is thus evident that IoT will soon

become one of the main sources of Bigdata [21]. Industrial analysts typically describe the

nature of Bigdata using the 4V’s: volume (amount of data generated), velocity (rate of data

generation), veracity (accuracy of data) and variety (diverse nature of data originating from

varied sources) [21]. It can be inferred that a traditional infrastructure is not efficient for long-

term storage or processing of such enormous amounts of varied data generated by the IoT

7

devices. Interestingly, there exists a perfect symbiotic relation between cloud computing and

IoT. While IoT generates massive amounts of data, cloud computing can efficiently handle the

data throughout its lifecycle.

Several cloud-based IoT applications have been developed over the years that leverage

the merits of both the ecosystems. Wearables like Fitbit [22] to smart home appliances like

Nest Thermostat [23] and Ring video doorbells [24] to self-driving cars like Tesla [25], are all

examples of real-world implementations of Cloud-based IoT applications.

While outsourcing the task of storing and processing the data to the cloud servers can

improve efficiency for businesses, it can naturally introduce concerns over the loss of privacy

and data security for businesses. Encryption schemes, such as AES [26] can satisfactorily

address this concern by allowing businesses/end-users to encrypt the data before outsourcing

them to cloud. Thus, this guarantees the privacy of end-users during the storage phase.

However, the state-of-the-art encryption schemes do not provide meaningful results when

cloud servers perform any computation on the encrypted data. An alternate approach is to allow

cloud servers to decrypt the data before performing any computations and re-encrypt the data

after the computation. However, it is evident that such a scheme is not privacy-preserving.

1.2 Research Motivation and Objective

The state-of-the-art encryption schemes allow IoT device users to make use of cloud

servers to store their encrypted device data. However, it is currently not possible for cloud

servers to deliver intelligent insights to the device users while preserving their privacy

completely. Fully homomorphic encryption schemes have been proposed in the literature as a

solution to tackle this issue. When a data is encrypted under FHE schemes, it is possible for

cloud servers to perform computations on it, thereby enabling privacy preserving cloud

8

computations for encrypted IoT data. However, the FHE schemes proposed so far are

computationally intensive and are unsuitable to be employed on an IoT device.

 Recent research studies have proposed alternate solutions to assuage this limitation.

However, there are still challenges in the practical implementation of these solutions for a

resource constrained IoT ecosystem. Fostering real-world adoption of the FHE based privacy-

preserving computation schemes for IoT ecosystem requires a practical solution with a modest

overhead for all the entities, ranging from the device vendors, the device users to the cloud

service providers. Thus, this thesis attempts to answer the question: “how to help IoT device

users benefit from cloud computing without compromising data confidentiality and user

privacy?” by proposing a practical framework called Proxy re-ciphering as a service. It

leverages existing schemes such as distributed semi-trusted proxy servers and threshold secret

sharing to tailor FHE schemes for IoT applications, thereby enabling long-term privacy-

preserving cloud computations for encrypted IoT data.

1.3 Thesis Organization

The rest of the thesis work is organized as follows:

➢ Chapter 2: Background and literature review of the existing secure and privacy pre-

serving computation schemes

➢ Chapter 3: Proposal of Proxy re-ciphering as a service to enable privacy-preserving

computations for IoT devices

➢ Chapter 4: Case study of Proxy re-ciphering as a service with application to smart

healthcare ecosystem

9

➢ Chapter 5: Evaluation of the proposed framework using experimental testbeds and

theoretical analysis

➢ Chapter 6: Conclusion and future work

10

CHAPTER 2. BACKGROUND AND LITERATURE REVIEW

This chapter focuses on various encryption schemes that are proposed in the literature

along with a special emphasis on schemes that allow privacy-preserving computations on the

encrypted data. Specific attention is given to the merits and limitations of each of these

encryption schemes in the context of IoT. After analyzing each of these schemes, a suitable

encryption scheme is chosen for the current study. During this process, various works proposed

in the literature are covered that help enable cloud-based privacy-preserving computations on

the encrypted data.

The field of End-to-End security encompasses a variety of areas that address various

concerns related to computer/network security. Specifically, a data is called End-to-End secure

if its CIA triad is protected from the time of its generation to the time of its consumption. In

the context of an IoT ecosystem, end-to-end data security essentially means that data is

encrypted before it leaves the embedded device and it is not decrypted until it reaches the end-

user (typically an application running on the user’s smartphone/laptop). The goal of such an

implementation is to secure data against the common attacks, such as eavesdropping

(confidentiality), man-in-the-middle (integrity, availability) and denial of service (availability)

to preserve its CIA triad. Employing End-to-End encryption schemes can satisfactorily

guarantee security of a system against eavesdropping attacks.

2.1 Conventional Encryption Schemes

 Most real-world applications that aim to protect the confidentiality of their data use

conventional encryption schemes. They can be implemented either in the form of a public-key

encryption system or as a symmetric key encryption system.

11

Public key cryptography involves two different keys for encryption and decryption

purposes, named public key and private key, respectively. As the name suggests, every

participating node/user in a system is given a public key that is not a secret and a private key,

which is a secret and is known only the node/user. A sender node encrypts the data using the

public key of the recipient node before sending the data to the recipient. Upon receiving the

encrypted data, the recipient node decrypts the data using its private key. One of the main

advantages of this system is the key management and the scalability of the scheme.

 RSA [27] is one of the most widely used public key cryptographic solutions. The security

and the hard problem in this primitive are based on finding prime factors of a composite

number. The length of the key used for encryption is a measure of the security of the system.

It has been identified that to provide an equivalent level of security compared to AES

encryption [26] with 128 bits key, RSA requires 3072 bits of key [28] . This is also shown in

Table 2. In addition, it is close to 1000 times slower than the symmetric key counterparts, due

to its computational processing power requirements [29]-[30] . This makes asymmetric

encryption schemes challenging and computationally intensive for constrained IoT devices.

 Elliptic curve cryptography (ECC) [32]-[33] is another public key scheme that is based

on elliptic curves over finite fields. It requires smaller key size when compared to RSA and is

a better candidate when using public key cryptography for resource constrained IoT devices.

The security of ECC is based on the hardness of Elliptic curve discrete logarithm problem [31].

12

Table 2. Recommended key size in bits by NIST [29]

Symmetric key algorithms, on the other hand, perform encryption and decryption using

a single key that is pre-shared between a sender and a recipient. Symmetric key encryption

schemes are usually less computationally intensive compared to the asymmetric key encryption

schemes and require relatively smaller-length key to provide the same level of security

guarantees compared to asymmetric key encryption schemes [28].

Currently Advanced Encryption Standard [26] (AES) is one of the most widely

deployed symmetric-key encryption algorithm and is accepted as a standard by NIST for

government applications and industrial applications [33][34]. Authors in [35] tested and

compared the encryption performance of various symmetric key encryption schemes like AES,

CLEFIA [36], PRINCE [37], SPECK [38], Camellia [39], Midori [40] under a restricted

memory size of 1024 bytes or less of ROM and 128 bytes or less RAM. Their results show that

AES was the fastest followed by SPECK. The current work focuses on devices that typically

belong to Class 1 or Class 2 category of constrained nodes [discussed in Chapter 1 and shown

in Table 1]. These devices have around 10-50 KB RAM and 100-500 KB ROM. In most IoT

devices, the cryptographic schemes are implemented as a software component rather than a

dedicated chip[35]. Therefore, it is practical to choose an algorithm that requires less CPU

cycles and a modest amount of ROM. Since the current study requires medical IoT devices to

Symmetric key RSA key Elliptic curve key

80 1024 160

112 2048 224

128 3072 256

192 7680 384

256 15360 521

13

only perform encryption, following the results of [35], the current study uses AES encryption

scheme to encrypt IoT device data before sending to the cloud servers .

AES is by design optimized for low memory, speed and thus has been deployed across

platform ranging from 8-bit processors to super power CPU / GPUs [35]. Even x86

architectures have witnessed instruction-set extensions by Intel [33] for improving the

performance of encryption and decryption functions. AES is a block cipher that operates on

128-bit blocks of data. The number of rounds (𝑛𝑟) of processing depends on the size of the key

(128/192/256 bits) used in the schemes. As the key length increases, the security of the system

increases, along with the number of rounds of processing (𝑛𝑟=10 for AES-128, 12 for AES-

192 and 14 for AES-256). The current study uses AES-128 with 𝑛𝑟 = 10. AES provides the

following modes of operation: Electronic Code Book (ECB), Ciphertext Chain Blocking

(CBC), and Counter (CTR).

While AES is energy efficient and provides strong security guarantees, one of the main

disadvantages is that it does not provide meaningful results, when performing arithmetic or

logical operations on the ciphertext. Figure 2 shows an example of this limitation. It can be

seen that when encrypting an integer value of 2 and an integer value of 3, the sum of the

encrypted ciphertexts does not yield a value equal to encrypting an integer value of five:

𝐸𝑛𝑐(2) + 𝐸𝑛𝑐(3) ≠ 𝐸𝑛𝑐(5).

14

Figure 2. An example of computation on AES-encrypted data

2.2 Homomorphic Encryption Schemes

Homomorphic encryption schemes have been proposed to tackle the problem to

provide secure and privacy-preserving computations on encrypted data, while minimizing the

communication complexity that secure multi party computation schemes [41]–[43] usually

witness. Rivest, Adleman and Dertouzos [44] stated the following around 1978 :

 “It remains to be seen whether it is possible to have a privacy

homomorphism with a large set of operations which is highly secure”

In other words, the possibility of building an encryption scheme, that is practical and

worthwhile to perform arbitrary computations on an encrypted data, without having to decrypt

during computation, remained an open question for a long time.

2.2.1 Partially Homomorphic Encryption Schemes

Partially homomorphic encryption schemes are a class of encryption schemes that

allow arbitrary number of homomorphic additions or homomorphic multiplications on the

15

encrypted data. A scheme is additively-homomorphic if the result of an addition operation on

two ciphertexts followed by a decryption, results in the same value as the addition operation

on the two-plaintexts. Similarly, multiplicatively-homomorphic scheme is one where the result

of a multiplication operation on two ciphertexts followed by a decryption operation gives the

same value as the multiplication operation on the two-plaintexts. Table 3 presents the most-

widely used partial homomorphic encryption schemes along with their homomorphic

properties.

Table 3. Widely known partially homomorphic encryption schemes

Encryption scheme

Homomorphic nature

 Additive Multiplicative

RSA[27]
 Yes

ElGamal[45]
Yes

Paillier[46] Yes

Goldwasser-Micali[47] Yes

BGN[48] Yes Yes*

*: allows only one multiplication operation

Table 3 shows that RSA and ElGamal schemes allow multiplication operations over

the encrypted data while schemes like Galwasser-Micali (GM) and Paillier allow addition

operations over the encrypted data. Furthermore, BGN encryption scheme allows an arbitrary

number of addition operations on the encrypted data along with one multiplication operation.

GM scheme was one of the first schemes to achieve additive homomorphism with probabilistic

public key crypto system, giving the highest security guarantees. However, one of the

limitations of this scheme was that it allowed only a single bit data as its plaintext input. In

16

addition, the ciphertexts in this scheme were large, rendering the scheme impractical. Benaloh

[49] generalized the GM scheme to extend support for plaintext data of up to a bit-length 𝑘 .

However, it suffered from high cost of decryption [50]. Paillier improved the earlier schemes

by allowing encryption of plaintext data up to a bit-length 𝑘, while reducing the ciphertext

expansion during encryption and at the same time maintaining a reasonable encryption and

decryption costs.

CryptDB [51] is seminal research work that focused on access control for SQL queries

on encrypted data. The authors implemented a Paillier cryptosystem to compute arithmetic

operations like SUM over encrypted data. Authors in [52] proposed DBMask, to address the

limitations of decrypting data to weaker encryption schemes within the cloud server in

CryptDB, thus guaranteeing that the security of the data is not weakened with time. However,

both DBMask and CryptDB were designed for web applications, with a fully trusted proxy

server intercepting the communication between a client and a server to apply encryption and

decryption schemes transparent to the clients. In an IoT application, such an approach can

potentially conflict with the security and privacy requirements. In addition, it has been

identified that the solutions are computationally intensive with an overhead of 25% [50].

Authors in [50] introduced Talos, keeping IoT ecosystems in mind. Their solution does

not require a fully trusted proxy server and allowed query processing locally in the end-user

device. They improved the efficiency of Paillier encryption scheme to operate on 32-bit integer

data, by packing multiple plaintext data in a single ciphertext, thereby allowing parallel

operations on multiple plaintexts. Along these lines, Pilatus [53] was introduced to overcome

some of the limitations of Talos. Pilatus further optimized Talos to work on larger plaintext

data sizes (e.g., 64-bit integers) and introduced data sharing across multiple recipients using

17

proxy re-encryption. The authors of Pilatus demonstrated their work on data from Fitbit [22]

servers and on an anonymized data from Awawomen startup [54].

Despite its merits, partial homomorphic encryption schemes like Paillier, have a

limitation where they can only be used for algorithms that require either addition or

multiplication operation (with an exception to BGN) and not a combination of both. However,

many practical IoT-based applications may require a combination of both, for example, linear

regression, logistic regression, standard deviation, to name a few.

2.2.2 Fully Homomorphic Encryption Schemes

Gentry’s Fully homomorphic encryption (FHE) [55] is a seminal work that showed that

it is plausible and achievable to design a FHE scheme, answering the open question raised by

Rivest, Adleman and Dertouzos . However, the scheme is computationally expensive to apply

in real-life due to the bootstrapping operations. When a noise-level of a ciphertext reaches the

threshold level, any homomorphic operation performed thereafter can potentially result in

incorrect results. Gentry addressed this by bootstrapping the ciphertext to transform it into a

new ciphertext with lesser noise-levels, thereby enabling further operations on the ciphertext.

BGV [56] scheme, based on Learning With Errors, is currently one of the most widely used

FHE scheme. It is a leveled FHE scheme that allows evaluation of arithmetic circuits of level 𝐿.

It does not require bootstrapping and has been optimized to allow practical implementations

of FHE based solutions. Libraries like HElib [58]-[59] have been developed using BGV

schemes and are available for public use, making FHE accessible to researchers and

application developers.

Early works on practical applications of FHE attempted to solve real world problems

[59]-[60] , where the clients (laptop like devices) encrypted their data using FHE schemes to

allow a computationally powerful third-party server (like a cloud server) to perform

18

computations on the encrypted data. This was clearly an improvement over to traditional

encryption schemes where the cloud servers needed to decrypt data to perform computations.

However, these solutions were proposed for traditional file-based applications running on

laptop-like devices and are not suitable IoT devices. Furthermore, the computational

complexity of this scheme is high, even for traditional devices, as it requires homomorphic

encryption before every single data transfer. In addition, the communicational complexity of

the scheme is also high due to the size of the ciphertext (for example in [61], the ciphertext-

size is 𝑛 𝑙𝑜𝑔 (𝑞) , where 𝑛 = 2048 and q=2258 to allow single multiplication and a large

number of additions and the values are larger for applications that require more multiplication

operations [61]) resulting in high latencies and bandwidth requirement.

Authors in [35] proposed a possible solution to address this problem. In their scheme,

the clients can homomorphically encrypt the AES encryption key once and share it with the

server, as a part of setup phase. During the data flow phase, the client can encrypt the data

using AES encryption scheme allowing the server to homomorphically evaluate the AES

decryption function to transform AES encrypted ciphertext to a homomorphic encrypted

ciphertext. Thus, this scheme allows cloud servers to compute on data encrypted under

homomorphic scheme, while optimizing the communication complexity. This is discussed in

great detail in [62] and is available for application developers along with the HElib library.

This solution clearly relieves the client devices from performing computationally intensive

task for every single data transfer. Authors in [62] tested their solution on a 4GB RAM Intel

Core i5-3320M laptop to evaluate its feasibility and performance. However, this approach is

still not suitable for IoT devices and are computationally intensive, even if the device is

required to encrypt the AES key under homomorphic encryption scheme just once.

19

An alternate approach could be to encrypt the key under homomorphic encryption

scheme using computationally more powerful devices like a device owner’s smartphone.

However, there are a couple of limitations in the practical implement of this approach.

Although algorithms in HElib are constantly optimized and updated, the authors of [62] have

not tested the algorithms in HElib library for their feasibility and efficiency on lower

computational devices like IPhones or Android smartphones. In addition, the library is not

trivially compatible with Android like environments since they are natively written in C++ and

depend on other libraries like NTL [63] and GMP [64]. In addition, device encryption is

transparent to end users in some real-world implementations [65]-[66] where device vendors

often do not store the encryption keys in the end-user apps running on a smartphone / laptop

[67]. Rather, they rely on secure channel communication using HTTPS between a smartphone

and the cloud server to download results from cloud servers to the smartphone [65], [68].

Authors in [69]-[70][71] have proposed a novel privacy-preserving remote patient ECG

monitoring system. Their work is the first of its kind to show practical feasibility of FHE in

terms of computational complexity and the storage costs for a real-world medical application

on the cloud. However, they make a few assumptions that might always not be acceptable.

They take advantage of a cloudlet (a PC primarily provided by the hospital, in their work) to

decrypt the AES encrypted data from the IoT device and re-encrypt it using FHE scheme. This

has a few limitations since it requires hospitals to distribute additional hardware to all patients.

The other alternative solution requires patients to own a laptop. Although the latter is not a

very unreasonable assumption, this can however prevent the mobility of the patients as called

out by the authors themselves [69]. Apart from these, such a solution can quickly become a

20

single point of attack and might not be applicable to real-world implementations like the ones

discussed in [22], [65], [68].

21

CHAPTER 3. PROPOSED SOLUTION-PROXY RE-CIPHERING AS A SERVICE

CloudIoT is a recently introduced paradigm that leverages two complementary

technologies: Cloud computing and IoT [72]. Over the years, multitudes of CloudIoT

applications have been developed, aiming to improve the efficiency of the tasks and the quality

of living for the device users. From wearables like Fitbit [22] to secure smart homes appliances

like Ring [24] to self-driving cars like Tesla [25], CloudIoT now has a pervasive presence

among humans. The demand and expectations from the CloudIoT applications have also

drastically increased, resulting in a highly competitive IoT market. Yet, there are two

fundamental expectations from these applications that capture sensitive and personal

information: data utility and user privacy. In the contemporary world of IoT, with the complex

nature of data usage between multiple service providers that are typically masked away from

the end-users, there is a growing concern among device users about receiving utility at the cost

of their privacy. For example, an early work on understanding the ecosystem of Fitbit found

that the mega dumps consisting of user activity data were sent to an analytics company called

Mixpanel [68]. Although the Fitbit ecosystem has changed since then, this example illustrates

the complicated world of CloudIoT with multiple backend service providers that end-users are

necessarily not aware of. In a report released by Economist Intelligence Unit in 2018, 74% of

the surveyed consumers were concerned that small privacy invasions may eventually result in

loss of civil rights [73].

Fully homomorphic encryption schemes (FHE) can be leveraged by cloud service

providers to guarantee privacy-preserving data services to device users. Understandably,

adopting a new encryption scheme, especially a computationally-intensive and a nascent one,

can be challenging for existing CloudIoT applications and businesses. A migration from a

22

functioning workflow to a new FHE based workflow can be practically fostered, only when

the cost associated with the transition is modest for all the entities in the IoT ecosystem ranging

from the device vendors to the device users to the cloud service providers.

Solutions proposed in the literature have the following limitations when integrating

them into a real-world IoT ecosystem : 1) a fully homomorphic encryption scheme is

computationally intensive to be deployed on an IoT device 2) a fully trusted cloudlet/proxy

server to decrypt AES device data and encrypt it using a FHE data can become a single point

of attack and is not truly privacy-preserving , 3) homomorphic encryption of IoT device keys

(that are required to transform AES device data to FHE data) demands significant resources

for computational purposes from the IoT devices and 4) outsourcing heavy computations to

end-user devices like smartphones / laptops is not possible in some real-world implementations

where device vendors often do not store the device encryption keys in the end-user apps [67],

as discussed in chapter 2 .

Thus, to bridge the gap between the proposed solutions in the literature and their real-

world adoption in the IoT ecosystem, the current work proposes Proxy re-ciphering as a

service. It leverages existing schemes such as distributed semi-trusted proxy servers, threshold

secret sharing and FHE to tailor a framework that enables long-term privacy-preserving cloud

computations for encrypted IoT data.

3.1 Design Goals

This section will provide a brief overview of the high-level considerations that were

given before arriving at the proposed solution. Design goals such as the ones considered form

the salient features of the proposed solution.

23

Security: The data encrypted by an IoT device should not be decrypted by anyone

other than the end users (device owners / legitimate recipients)

Availability: The solution should be resilient to any failures (internal or external) to

ensure that the service is always available to the IoT device users

Accessibility and deployment readiness: The solution should use existing

technologies that are publicly available and easily accessible to application developers

Scalability: The solution should ensure that the storage complexity is acceptable given

the large ciphertext size of FHE schemes.

Energy efficiency and Performance: The solution should be lightweight on the IoT

devices in terms of computational, communicational and storage complexity

Back-portability: Existing devices that are already operational should be readily able

to take advantage of the solution

Transparency: The solution should be adoptable without requiring any additional

hardware, for the end-users. Any additional manual/configurational overhead to the device

users should be modest.

Practicality: The solution should closely resemble real-world implementations of

CloudIoT applications, with minimal assumptions.

3.2 Major Cyber Threats

In this section, we will briefly focus on the major threats faced by cloud-based solutions

where IoT devices generate data and end-users review the data using their device-companion

apps. In the following discussion, the proxy servers are intermediary nodes that intercept IoT

device-cloud communication and pre-process the device data before uploading it to the cloud

servers.

24

Threat 1: Cloud database/server compromise: The current study assumes a semi-

trusted cloud. This means that the server is honest and performs the algorithms correctly, but

it is not trusted with the private data. Compromising cloud servers can give an adversary access

to the encrypted data. A rogue administrator can misuse data for monetary incentives.

Threat 2: Proxy database / server compromise: The current study assumes a semi-

trusted proxy server. An adversary can be interested in attacking the proxy servers to learn

about the device encryption keys.

Threat 3: Byzantine proxy storage servers: A special attack on the proxy servers

where an adversary can maliciously control the behavior of nodes/servers in the system

resulting in the failure or corruption of data or a combination a both.

Threat 4: IoT device key compromise: An adversary can remotely launch attacks on

the resource constrained IoT device to compromise the device key. This is a critical and

relevant threat in today’s IoT ecosystem[68]-[69]. Most device manufacturers hardcode the

encryption keys [75] [65], [66], [74], [76] in the devices during the manufacturing phase. When

such a long-term device key is compromised, the post-compromise security [77] for the IoT

devices can be jeopardized.

Threat 5: Network-based attack: An adversary can attack the communication

channel between different participating nodes in the system like the medical device, gateway,

proxy servers and the cloud servers. This threat can be launched by a passive or an active

attacker. Passive attackers are generally interested in learning about data patterns by launching

eavesdropping attack and active attackers are typically interested in intercepting data to launch

a man-in-the-middle attack.

25

3.3 System Architecture

 In this section, the key components of the proposed system are discussed:

IoT device

These are embedded devices that fall under Class 1 and class 2 category of constrained

devices as defined in Chapter 1 with around 10-50 KB RAM and 100-300 KB ROM. For

example, Fitbit devices have around 250 KB flash and 32KB SRAM [74]. They support AES

encryption to securely transmit the device generated data wirelessly [65]. They typically do

not store information locally for processing and outsource the computations to cloud servers.

They communicate only through gateways devices, typically via Bluetooth while other

protocols like Zigbee are also supported.

Gateway devices

These are computationally powerful devices compared to the medical devices. They

typically function via the device-companion apps running on smartphones (most widely used),

laptops (supported configuration), enabling portability for the users. They have enough

resources to support full stack HTTP protocols. They pack (typically as a JSON) the data from

received from the IoT device before relaying it to cloud servers. They do not perform any other

computations on the device data.

Cloud servers

These servers provide storage and compute services for other businesses. They receive

device data from the gateway devices. They are computationally powerful and can scale their

service when required. When a data is encrypted under FHE scheme, cloud servers can perform

computation on the data and share privacy preserving insights with end-users.

26

Key Manager Server (KMS)

They are maintained by device vendors or OEMs depending on the implementation.

They are solely responsible for generating and maintaining the cryptographic keying materials

and embedding device specific keys during the manufacturing. These servers are

computationally powerful and are assumed to be very secure.

Distributed semi-trusted proxy servers

These are computationally powerful servers that act as an intermediary between

businesses and their cloud server providers. The current study employs a total of 𝑛 proxy

servers in a geographical region (across US, for example).

GUI devices

These are devices that display the results of cloud computations to the data consumers.

The proposed system currently supports laptops since the authors in [58] have tested the

performance on laptop like devices. When an optimized version of the library that is

compatible with smartphones is available, the current system can be extended to work on

relatively lower computational systems like smartphone devices.

Figure 3 shows proposed system model comprising of the above-mentioned key

components along with a brief high-level description of the proposed workflow.

27

Figure 3. The proposed architecture for Proxy re-ciphering as a service

3.4 Model Assumptions

Given the number and nature of design goals, it was necessary to make few assumptions

(listed below) which forms the basis of our system mode. Efforts were taken to ensure

that these assumptions are as modest as possible.

1. Cloud servers and proxy servers are semi-trusted. They are honest in performing the

algorithms but are not trusted with sensitive data

2. Every entity in the system has a unique and random identifier that is not publicly

known.

28

3. The system chooses 𝑚 proxy servers that are closest to the cloud servers for every

organization, to provide the service. The value of 𝑚 can differ for each business

depending on the load like:

• proxy server’s total capacity

• maximum server utilization per tenant

• throughput guaranteed as per the service level agreement

• incoming traffic load

A load balancer is assumed to take care of traffic routing between the 𝑚 proxy servers.

Since the proxy servers are essentially cloud based servers, it is assumed that the system

always has enough proxy servers to provide service.

4. The knowledge about an IoT device compromise is available to the system.

3.5 Data Distribution Schemes

The current study utilizes distributed proxy framework primarily to build a fault

resilient system against corruption and availability of data and services in the system. The

following techniques were inspected to select a scheme for distribution of data (which in the

current case is device encryption keys encrypted under homomorphic scheme).

Data Replication

 The traditional technique to guarantee a robust system is to replicate a server data

across multiple servers (let’s say, 𝑛). This provides a fault resilience [78] up to 𝑛 − 1 servers.

However, the secret in the current study is the expanded AES-128 homomorphic device key.

The size of homomorphic ciphertexts generated using widely used homomorphic libraries like

HElib [57] and SEAL [79] are typically not less than 1MB for one input [80]. Thus, when

29

considering a practical and a scalable solution, replication (across 𝑛 servers) is not be the most

efficient solution, in terms of storage complexity.

Threshold secret sharing

 An informal definition of a threshold secret sharing can be described as follows:

Definition 1: Let 𝑘 and 𝑛 be positive integers such that 𝑘 ≤ 𝑛. A (𝑘, 𝑛) Threshold

secret sharing scheme is a way to share a secret 𝑆 with 𝑛 participants such that any group of at

least 𝑘 participants can pool their shares to compute the value of 𝑆, but no group of 𝑘 −1 or

fewer should be able to do so.

Thus in a (𝑘, 𝑛) threshold secret sharing, a secret is split into 𝑛 shares by a mutual

trusted node (called dealer) and is shared among 𝑛 participating nodes (called recipients) such

that any 𝑘 or more shares are enough to reconstruct the original secret but a fewer than 𝑘 shares

cannot reproduce the secret. In this scheme, 𝑘 is called the threshold of secret sharing. In other

words, a threshold secret sharing schemes provide a fault resilience up to 𝑛 − 𝑘 shares.

Shamir’s secret sharing scheme

Of the many techniques that are available in the literature, the most widely used

threshold secret sharing technique was proposed by Shamir [81]. In this (𝑘, 𝑛) scheme a secret

message ′𝑠 ′ is being shared among 𝑛 participating nodes in the following way:

The dealer constructs a secret polynomial 𝑦 = 𝑎(𝑥) of degree 𝑘 − 1 by randomly

choosing coefficients 𝑎1, 𝑎2, . . , 𝑎𝑘−1 from a finite field 𝐹 and assigns 𝑎0 = 𝑠.

 𝑎(𝑥) = 𝑠 + 𝑎1𝑥 + 𝑎2𝑥2 + ⋯ + 𝑎𝑘−1𝑥𝑘−1

Then the dealer picks out 𝑛 random points on the polynomial, 𝑥𝑖 , 1 ≤ 𝑖 ≤ 𝑛 and creates

shares(𝑠1, 𝑠2 , . . , 𝑠𝑛) to distribute share 𝑠𝑖 to recipient 𝑟𝑖, such that

30

𝑠1 = (𝑥1, 𝑦1 = 𝑎(𝑥1)) , 𝑠2 = (𝑥2, 𝑦2 = 𝑎(𝑥2)) , . . , 𝑠𝑛 = (𝑥𝑛, 𝑦𝑛 = 𝑎(𝑥𝑛))

To reconstruct the secret, a group of 𝑘 recipients should pool their shares (𝑠1, 𝑠2, … 𝑠𝑘)

and construct Lagrange basis polynomials [82] 𝑙𝑗 (𝑥), 𝑤ℎ𝑒𝑟𝑒 1 ≤ 𝑗 ≤ 𝑘 ,such that

𝑠 = ∑ 𝑙𝑗
𝑘
𝑗=1 (𝑥)𝑦𝑗

It can be inferred that a subset of authorized participants has a k-out-of-n access

structure. Shamir’s secret sharing scheme is a perfect secret sharing scheme (PSSS) where a

subset of non-authorized participants gets no information about the secret and thus advantage

of a non-authorized subset is same as the advantage of an outsider in computing the correct

secret. Here, no information is defined in an information-theoretic sense.

Secret sharing schemes in general have one limitation in that the size of the shares are

typically at least the size of secret itself. For example, Blakely’s [83] have a share size that are

𝑘 times larger than the size of the original secret. However, Shamir’s shares have a minimal

property in that the shares are only as large as the original secret. This is not a serious limitation

in general where the secrets are typically small, like an AES-128 encryption key. However, in

the current study, shares of homomorphic encrypted AES keys are distributed to the proxy

servers. Thus Shamir’s shares with a share-size of |𝑆| for a secret 𝑆 [84], can incur a high

storage complexity.

Krawczyk’s secret sharing scheme

Krawczyk’s scheme [85] is a space efficient hybrid scheme that utilizes PSSS and

Information dispersal algorithm [86] to generate shares close to a size of
|𝑆|

𝑘
 where 𝑆 represents

the original secret. Krawczyk’s scheme relaxes the secrecy from an information-theoretic sense

to a computational sense, where an adversary has a bounded resource, making it more practical.

31

Information dispersal algorithm (IDA) proposed by Rabin introduces redundancy into

a given data 𝐷𝑎𝑡𝑎 before partitioning it into 𝑘 fragments of size
|𝐷𝑎𝑡𝑎|

𝑘
 , such that, the

interpolation of any 𝑘 fragments will result in the reconstruction of 𝐷𝑎𝑡𝑎. Unlike secret sharing

schemes, secrecy of the data is inherently not a priority in IDA. In addition, this scheme

assumes that the participants behave honestly, returning unaltered fragments for

reconstruction. Krawczyk’s scheme can be explained as follows:

Distribution scheme

1. Choose a secure private encryption scheme 𝐸𝑁𝐶 and an encryption key 𝐾𝑒𝑦.

2. Encrypt the secret 𝑆 with 𝐸𝑁𝐶 using 𝐾𝑒𝑦, let 𝐸 = 𝐸𝑁𝐶(𝑆, 𝐾𝑒𝑦)

3. Use IDA to split the encrypted data 𝐸 into 𝑛 fragments: 𝐸1, 𝐸2, . . , 𝐸𝑛

4. Use PSS to generate 𝑛 shares of 𝐾𝑒𝑦 : 𝐾𝑒𝑦1, 𝐾𝑒𝑦2, . . , 𝐾𝑒𝑦𝑛

5. Distribute shares 𝑆𝑖 , 1 ≤ 𝑖 ≤ 𝑛 to each participant 𝑃𝑖 where 𝑆𝑖 = (𝐸𝑖, 𝐾𝑒𝑦𝑖)

Reconstruction scheme

1. Collect 𝑘 shares 𝑆𝑗 = (𝐸𝑗 , 𝐾𝑒𝑦𝑗) from participants 𝑃𝑗 , 1 ≤ 𝑗 ≤ 𝑘

2. Reconstruct 𝐸 from collected 𝐸𝑗 using IDA

3. Compute 𝐾𝑒𝑦 from 𝐾𝑒𝑦𝑗 using PSSS

4. Decrypt 𝐸 with function 𝐷𝑒𝑐 using 𝐾𝑒𝑦 to recover 𝑆, 𝑆 = 𝐷𝑒𝑐 (𝐸 , 𝐾𝑒𝑦)

The size of each share received by each participating node is
|𝐷𝑎𝑡𝑎|

𝑘
+ |𝐾𝑒𝑦| . Total size of the

𝑛 shares is therefore 𝑛. (
|𝐷𝑎𝑡𝑎|

𝑘
+ |𝐾𝑒𝑦|) . Krawczyk’s technique is thus a more efficient (since

|𝐾𝑒𝑦| << |𝐷𝑎𝑡𝑎|) solution for the current study reducing the storage complexity by close to

32

1
𝑘⁄ .The current study takes advantage of the following cryptographic schemes for data

distribution:

IDA: Rabin’s IDA scheme

PSSS: Shamir’s secret sharing scheme

Private encryption scheme : ChaCha20 [87]

3.6 Proposed Workflow

A high-level rundown of Proxy re-ciphering as a service is shown in Figure 4 and Figure 5.The

workflow can be segmented into four phases and the interactions between the entities in each

phase is now explained in greater detail.

Figure 4. High level workflow of Proxy re-ciphering as a service-Phase I-III

33

Figure 5. High level workflow of Proxy re-ciphering as a service-Phase IV

Phase I: System Initialization

Values for (𝑘, 𝑛) are chosen for the entire system. A device-vendor generates a 128-bit

AES device key (let’s say 𝑘𝑑𝑒𝑣) and initializes it in the IoT device. Every user in the system is

provided with a unique homomorphic public-private key pair (𝑝𝑘𝑖, 𝑠𝑘𝑖). The context

information and the keys required for homomorphic encryption schemes are serialized and

communicated to the proxy servers and the cloud compute servers. The system chooses 𝑚

proxy servers for every participating business.

34

Phase II: Device setup

IoT device user (let's say, 𝑢𝑠𝑒𝑟𝑖) begins authenticating the account and registering the

IoT device (let’s say 𝑑𝑒𝑣𝑖𝑐𝑒𝑖𝑑) with the cloud service provider through the gateway device.

After authenticating, the proxy servers are assigned as the new endpoint to the gateway device,

by the cloud server. The gateway device now starts to share the data from 𝑑𝑒𝑣𝑖𝑐𝑒𝑖𝑑with the

cloud server through the proxy servers. During its connection with the gateway device, proxy

server requests the key manager server for the device encryption key for 𝑢𝑠𝑒𝑟𝑖 , encrypted

under homomorphic scheme, by sharing public key 𝑝𝑘𝑖 as shown in Algorithm 1.

Algorithm 1. Secure sharing of encrypted IoT device key

Algorithm 1

Secure sharing of IoT device key

Where: KMS

Input:𝑢𝑠𝑒𝑟𝑖 and 𝑝𝑘𝑖

Output: shares of device key 𝑘𝑑𝑒𝑣 encrypted under homomorphic scheme

1. Fetch AES device key 𝑘𝑑𝑒𝑣 corresponding to 𝑢𝑠𝑒𝑟𝑖

2. Encrypt AES device key 𝑘𝑑𝑒𝑣 using homomorphic encryption scheme:

 hom_𝑘𝑑𝑒𝑣 < − encryptAESkey(𝑘𝑑𝑒𝑣 , 𝑝𝑘𝑖)

3. Generate (𝑘, 𝑛) shares for hom_𝑘𝑑𝑒𝑣 using Krawczyk’s scheme:

 Encrypt hom_𝑘𝑑𝑒𝑣 using ChaCha20 with a random key 𝑠𝑠𝑘𝑒𝑦

 𝐸𝑖 = 𝐸𝑛𝑐(hom_𝑘𝑑𝑒𝑣, 𝑠𝑠𝑘𝑒𝑦)

 Generate Shamir’s shares for 𝑠𝑠𝑘𝑒𝑦

 Generate fragments for 𝐸𝑖 using Rabin’s IDA

 𝑠ℎ𝑎𝑟𝑒𝑠𝑖 = (𝐸𝑖, 𝑠𝑠𝑘𝑒𝑦𝑖)

4. Distribute 𝑠ℎ𝑎𝑟𝑒𝑠𝑖 to 𝑛 cloud proxy servers

5. Delete hom_𝑘𝑑𝑒𝑣

35

KMS runs Algorithm 1 as shown above, upon receiving a request from the proxy

server. Homomorphic encryption of 𝑘𝑑𝑒𝑣 and generation of Krawczyk’s shares were done

using libraries provided in the literature ([57] ,[88] respectively). At the end of Algorithm 1,

the KMS deletes ℎ𝑜𝑚_𝑘𝑑𝑒𝑣. This ensures that there is no additional storage-overhead for the

KMS after executing Algorithm 1. This is an important step to ensure that it is practically

possible for existing KMS infrastructures to run this algorithm with a modest computational

and storage overhead. At the end of Algorithm 1, shares of ℎ𝑜𝑚_𝑘𝑑𝑒𝑣 are distributed to 𝑛 proxy

servers.

Algorithm 2. Secure reconstruction of encrypted IoT device key

Upon receiving the encrypted key shares, the 𝑚 proxy servers providing service to

𝑢𝑠𝑒𝑟𝑖 run Algorithm 2 as shown above. To provide re-ciphering service to 𝑢𝑠𝑒𝑟𝑖, the 𝑚 servers

require ℎ𝑜𝑚_𝑘𝑑𝑒𝑣. . Hence, the 𝑚 servers wait until at least other 𝑘 − 𝑚 proxy servers provide

Algorithm 2
Secure retrieval of IoT device key

Where: ‘m’ proxy servers providing service to 𝑢𝑠𝑒𝑟𝑖
Input: key shares 𝑠ℎ𝑎𝑟𝑒𝑠𝑖=(𝐸𝑖 , 𝑠𝑠𝑘𝑒𝑦𝑖)

Output: reconstructed encrypted key hom_𝑘𝑑𝑒𝑣

1. Pool m shares : 𝑠ℎ𝑎𝑟𝑒𝑠1 , 𝑠ℎ𝑎𝑟𝑒𝑠2, … 𝑠ℎ𝑎𝑟𝑒𝑠𝑚

2. Request 𝑛 − 𝑚 servers to contribute shares

3. Wait until at least 𝑘 − 𝑚 shares (𝑠ℎ𝑎𝑟𝑒𝑠𝑚+1, 𝑠ℎ𝑎𝑟𝑒𝑠𝑚+2, … 𝑠ℎ𝑎𝑟𝑒𝑠𝑘) are received

4. Reconstruct hom_𝑘𝑑𝑒𝑣 using Krawczyk’s scheme:

 Reconstruct 𝐸 using interpolation

 Reconstruct 𝑠𝑠𝑘𝑒𝑦 using Lagrange’s interpolation

 Decrypt 𝐸 using ChaCha20 encryption with 𝑠𝑠𝑘𝑒𝑦

 hom_𝑘𝑑𝑒𝑣 = 𝐷𝑒𝑐(𝐸, 𝑠𝑠𝑘𝑒𝑦)

5. Store hom_𝑘𝑑𝑒𝑣 with 𝑢𝑠𝑒𝑟𝑖

36

their shares 𝑠ℎ𝑎𝑟𝑒𝑠𝑗 , 1 ≤ 𝑗 ≤ 𝑘 − 𝑚 . When at least 𝑘 shares are pooled, each proxy server

independently reconstructs ℎ𝑜𝑚_𝑘𝑑𝑒𝑣 with Krawczyk’s reconstruction scheme. The current

study utilize the libraries from literature ([88]) to reconstruct ℎ𝑜𝑚_𝑘𝑑𝑒𝑣. After executing

Algorithm 2, the 𝑚 proxy servers have hom_𝑘𝑑𝑒𝑣 for 𝑢𝑠𝑒𝑟𝑖.

Phase III: Data flow

At this stage 𝑑𝑒𝑣𝑖𝑐𝑒𝑖𝑑 becomes functional and is ready to use. The device begins to

record data (let’s call it 𝑑𝑎𝑡𝑎) and encrypts it using an encryption scheme (let’s say 𝐸𝑛𝑐)

and 𝑘𝑑𝑒𝑣. Upon encryption, 𝑑𝑒𝑣𝑖𝑐𝑒𝑖𝑑 transmits the encrypted data securely to the gateway

device. When a proxy server receives the encrypted IoT device data from the gateway device,

it is required to transform the ciphertext from 𝐸𝑛𝑐 scheme to FHE scheme. This is possible by

exploiting the homomorphic property of the FHE scheme. Additional details are discussed in

[62] . The following paragraphs aim to explain the implementation of this homomorphic

property for the current study.

For the sake of explanation, let us call the encrypted data transmitted by the IoT device

as 𝑑𝑎𝑡𝑎′ . Then 𝑑𝑎𝑡𝑎′ = 𝐸𝑛𝑐 (𝑑𝑎𝑡𝑎, 𝑘𝑑𝑒𝑣). According to homomorphic property of FHE, for

any function 𝑓:

𝑓 (𝐻𝐸𝑝𝑘 (𝑥), 𝐻𝐸𝑝𝑘 (𝑦)) = 𝐻𝐸𝑝𝑘((𝑓(𝑥, 𝑦))

Where, 𝐻𝐸𝑝𝑘 () represents the fully homomorphic encryption under the public

key 𝑝𝑘.

Substituting 𝑓 = 𝐷𝑒𝑐, 𝑥 = 𝑑𝑎𝑡𝑎’ and 𝑦 = 𝑘𝑑𝑒𝑣 to evaluate a decryption function 𝐷𝑒𝑐

corresponding to the encryption scheme 𝐸𝑛𝑐, produces:

37

𝐿𝐻𝑆 = 𝐷𝑒𝑐 (𝐻𝐸𝑝𝑘 (𝑑𝑎𝑡𝑎′), 𝐻𝐸𝑝𝑘 (𝑘𝑑𝑒𝑣)) => 𝐷𝑒𝑐(𝐻𝐸𝑝𝑘 (𝐸𝑛𝑐(𝑑𝑎𝑡𝑎, 𝑘𝑑𝑒𝑣)), hom_𝑘𝑑𝑒𝑣)

𝑅𝐻𝑆 = 𝐻𝐸𝑝𝑘(𝐷𝑒𝑐(𝑑𝑎𝑡𝑎′, 𝑘𝑑𝑒𝑣)) => 𝐻𝐸𝑝𝑘(𝐷𝑒𝑐(𝐸𝑛𝑐 (𝑑𝑎𝑡𝑎, 𝑘𝑑𝑒𝑣), 𝑘𝑑𝑒𝑣))

The RHS equation is 𝐻𝐸𝑝𝑘(𝐷𝑒𝑐(𝐸𝑛𝑐 (𝑑𝑎𝑡𝑎, 𝑘𝑑𝑒𝑣), 𝑘𝑑𝑒𝑣)) , where the value within the

parenthesis of 𝐻𝐸𝑝𝑘 (…) 𝑖𝑠 𝐷𝑒𝑐(𝐸𝑛𝑐 (𝑑𝑎𝑡𝑎, 𝑘𝑑𝑒𝑣), 𝑘𝑑𝑒𝑣) . This is a standard decryption

function, yielding 𝑑𝑎𝑡𝑎 as the output. Thus, it can be inferred that 𝑅𝐻𝑆 = 𝐻𝐸𝑝𝑘(𝑑𝑎𝑡𝑎). Now,

equating LHS and RHS gives:

𝐷𝑒𝑐(𝐻𝐸𝑝𝑘 (𝐸𝑛𝑐(𝑑𝑎𝑡𝑎, 𝑘𝑑𝑒𝑣)), hom_𝑘𝑑𝑒𝑣) = 𝐻𝐸𝑝𝑘(𝑑𝑎𝑡𝑎)

The above equations play a vital role in the current application as it explains that in

order to transform 𝑑𝑎𝑡𝑎 encrypted by 𝑑𝑒𝑣𝑖𝑐𝑒𝑖𝑑 using 𝐸𝑛𝑐 with 𝑘𝑑𝑒𝑣 to a FHE scheme at the

proxy server, the proxy server is required to perform i) homomorphic encryption of 𝑑𝑒𝑣𝑖𝑐𝑒𝑖𝑑

generated ciphertext 𝑑𝑎𝑡𝑎’ = 𝐸𝑁𝐶(𝑑𝑎𝑡𝑎, 𝑘𝑑𝑒𝑣) with 𝑝𝑘 and a ii) homomorphic evaluation of

decryption function 𝐷𝑒𝑐 corresponding to 𝐸𝑛𝑐 with hom_𝑘𝑑𝑒𝑣.Thus the computational

overhead of proxy servers that affects the system parameters like utilization, throughput etc.,

depends on the cost of homomorphic encryption of 𝑑𝑎𝑡𝑎’ and homomorphic evaluation of

𝐷𝑒𝑐 .

AES encryption in CTR mode is used as 𝐸𝑛𝑐 scheme for the IoT device. This is chosen

after comparing the performance of homomorphic evaluation of AES encryption in block

cipher mode and stream cipher mode as explained in detail in Chapter 5.1. Although usage of

stream ciphers instead of AES encryption in the stream cipher mode might give better

performance, AES encryption is still chosen so that existing real-world implementations[65],

especially the operational devices can adopt the proposed solution without requiring major

changes.

38

Two key points to note when using AES encryption in the counter mode compared to

block cipher mode are

i) The decryption function in CTR mode involves i) an encryption the counter values to

generate a key stream and ii) a XOR operation of the keystream with the ciphertext. It

is important to make advantage of this fact, because homomorphic evaluation of

decryption function is typically slower (60% slower in [73]) than the homomorphic

evaluation of the encryption function. Hence, with AES encryption in counter mode, it

is enough to encrypt the counter values using homomorphic encryption scheme and

XOR the homomorphic ciphertext with the device generated ciphertext, to transform

the data from AES scheme to FHE scheme.

ii) The decryption function described above can be distinctly separated into two stages, a

device-data dependent stage and a device-data independent stage, owing to its inherent

construction mechanism. Typically, AES encryption is not computationally intensive

for cloud servers that have abundant resources and specialized hardware. Hence this

division is typically not mandatory. However, when performing a homomorphic

evaluation of AES, it is critical to take advantage of this feature as it greatly improves

the throughput of proxy servers, as discussed in Chapter 5.

39

Algorithm 3. Re-ciphering during data flow

When the proxy server receives AES ciphertext 𝑑𝑎𝑡𝑎’ from the gateway device, it runs

Algorithm 3 shown above to transform 𝑑𝑎𝑡𝑎’ from AES scheme to FHE scheme. As discussed

above, offline phase is the data independent phase and can be processed by the proxy servers

before receiving 𝑑𝑎𝑡𝑎’. This is possible because, in most IoT applications, the synchronization

interval between the IoT device and the servers are pre-defined [68]. During the online

processing phase, the proxy server transforms 𝑑𝑎𝑡𝑎’ from AES-CTR scheme to FHE scheme

by adding the homomorphic keystream 𝐻𝐸𝑝𝑘(𝑐𝑜𝑢𝑛𝑡𝑒𝑟) with the encoded ciphertext

Algorithm 3

Proxy re-ciphering

Where: Cloud Proxy server

Input: AES encrypted data 𝑑𝑎𝑡𝑎’ = 𝐸𝑛𝑐(𝑑𝑎𝑡𝑎, 𝑘𝑑𝑒𝑣)

Output: Homomorphic encrypted data

 Offline pre-processing:

1. Fetch homomorphic encrypted key for 𝑢𝑠𝑒𝑟𝑖 : hom_𝑘𝑑𝑒𝑣

2. Generate Homomorphic key stream using [3]:

 𝐻𝐸𝑝𝑘(𝑐𝑜𝑢𝑛𝑡𝑒𝑟) ≔ HE-𝐴𝐸𝑆 (𝑐𝑜𝑢𝑛𝑡𝑒𝑟, hom_𝑘𝑑𝑒𝑣)

 Online processing:

1. Encode AES encrypted data as homomorphic plaintext 𝑒𝑛𝑐𝑜𝑑𝑒𝑑𝑑𝑎𝑡𝑎′

2. XOR homomorphic encoded AES data with homomorphic encrypted keystream:

𝐻𝐸𝑝𝑘(𝑑𝑎𝑡𝑎) ≔𝐹𝐻𝐸𝐴𝑑𝑑𝐶𝑜𝑛𝑠𝑡𝑎𝑛𝑡(𝐻𝐸𝑝𝑘(𝑐𝑜𝑢𝑛𝑡𝑒𝑟), 𝑒𝑛𝑐𝑜𝑑𝑒𝑑𝑑𝑎𝑡𝑎′)

3. Store 𝐻𝐸𝑝𝑘(𝑑𝑎𝑡𝑎) in cloud compute DB

4. Delete 𝑑𝑎𝑡𝑎’

40

𝑒𝑛𝑐𝑜𝑑𝑒𝑑𝑑𝑎𝑡𝑎′. The operations are performed in the current study are in Galois Field 𝐺𝐹(2)

[62], [89] and hence a XOR operation is equivalent to an addition. After executing Algorithm3,

the proxy server uploads the IoT device data encrypted under homomorphic encryption scheme

𝐻𝐸𝑝𝑘(𝑑𝑎𝑡𝑎) , to the cloud servers, for secure computation. Optionally, if required, the proxy

server can upload the metadata for IoT device’s original ciphertext 𝑑𝑎𝑡𝑎’ to the cloud storage

DB server, for auditing/logging.

Understandably, transforming every raw device data into homomorphic ciphertexts at

the proxy servers can cause concerns about blow-up in the storage and bandwidth for cloud

service providers. However, sharing homomorphic ciphertexts actively discourages cloud

service providers from long-term storage of large amounts of raw device data, unnecessarily.

Instead, it prompts the application developers to a) transform the raw homomorphic ciphertexts

received from the proxy servers into a secondary useful knowledge/context that has minimal,

yet adequate information required for the application and b) delete the rest of the raw data. In

fact, studies like [110]- [111] have shown that end-user acceptance of IoT applications increase

with continuous purging of raw device data by the service providers.

Phase IV: Dynamic key refresh

This is an additional phase that is initiated when i) a device compromise is detected

where an adversary learns about the device encryption keys or ii) at a pre-defined frequency

(6 months, 1 year etc.) to regularly refresh the encryption keys used by a device.

Unlike typical client-client or client-server key exchange protocols, the keys required

for the current study are not ephemeral keys (like session keys) but are long-term secure device

41

specific encryption keys, between two known entities. Such a key refresh protocol is typically

expected to guarantee the following properties:

• Uniqueness: the encryption keys should be unique for every device – KMS pair

• Correctness: the encryption keys should be correctly synchronized between the IoT device

and KMS

• Security: the encryption keys should not be shared over the wireless channel

• Randomness: the encryption keys should have high entropy

• Post-compromise secrecy: the advantage of an adversary with a stolen key in learning about

future/newly generated data should be minimal

• Latency: the communication complexity and the computation complexity should be

minimal

 The current work explores a new way of generating synchronized symmetric

encryption keys with the help of chameleon hash functions [92]. Unlike regular hash functions

, under specific conditions, Chameleon hash functions can produce hash collisions

𝐶𝐻𝐴𝑀(𝑚1, ℎ𝑘, 𝑟1) = 𝐶𝐻𝐴𝑀(𝑚2, ℎ𝑘, 𝑟2) , for 𝑚1, 𝑚2 ∈ 𝑍𝑞
∗ , 𝑚1 ≠ 𝑚2 and 𝑟1, 𝑟2 ∈ 𝑍𝑞

∗ where

ℎ𝑘 is the hashing key,. To generate a collision, chameleon hash functions require knowledge

of a special trapdoor key 𝑥, such that manipulating the values of 𝑟1, 𝑟2 using: 𝑟2 ≔

𝑚1+𝑥.𝑟1−𝑚2

𝑥
 𝑞 can guarantee 𝐶𝐻𝐴𝑀(𝑚1, ℎ𝑘, 𝑟1) = 𝐶𝐻𝐴𝑀(𝑚2, ℎ𝑘, 𝑟2) [92].

42

 The gateway device runs Algorithm 4 when it receives a key request from the device. The

current work does not focus on implementing the logic to verify a key request. Libraries from

literature ([93]) are used to generate chameleon hashes and chameleon collisions in

Algorithms 4, 5 and 6. The gateway generates a random id (𝑟𝑎𝑛𝑑𝑖𝑑) using a computationally

secure pseudo random generator (CSPRNG).The gateway XORs 𝑑𝑒𝑣𝑖𝑐𝑒𝑖𝑑 with 𝑟𝑎𝑛𝑑𝑖𝑑 for the

IoT device to produce 𝑚1 = XOR(𝑑𝑒𝑣𝑖𝑐𝑒𝑖𝑑, 𝑟𝑎𝑛𝑑𝑖𝑑). It sets 𝑚2 = 𝐾𝑀𝑆𝑖𝑑 , where 𝐾𝑀𝑆𝑖𝑑 is

the identifier for the KMS responsible for 𝑑𝑒𝑣𝑖𝑐𝑒𝑖𝑑. Thus for 𝑚1 ≠ 𝑚2, the gateway device

finds two random and independent values 𝑟1 𝑎𝑛𝑑 𝑟2, using the following equation :

𝑟2 ≔
𝑚1 + 𝑥. 𝑟1 − 𝑚2

𝑥
 𝑞

 where 𝑥 is the trapdoor of the chameleon hash function (stored securely at the gateway) and

𝑟2 is called the chameleon-collision [92].

43

Algorithm 4. Finding chameleon collision at gateway

Algorithm 4

Finding chameleon collision at gateway

Where: IoT gateway device

Input: trapdoor key 𝑡𝑘 = 𝑥 ∈ 𝑍𝑞, 𝐾𝑀𝑆𝑖𝑑, 𝑑𝑒𝑣𝑖𝑐𝑒𝑖𝑑 , prime number 𝑞 such

that 𝑝 = 𝑘𝑞 + 1 where p is random large prime number

Output: Chameleon collision 𝑟2

1.Verify key refresh request

2. Generate a random number 𝑟𝑎𝑛𝑑𝑖𝑑 using CSPRNG

3. One time pad the 𝑑𝑒𝑣𝑖𝑐𝑒𝑖𝑑 with 𝑟𝑎𝑛𝑑𝑖𝑑 , 𝑚1 = XOR(𝑑𝑒𝑣𝑖𝑐𝑒𝑖𝑑, 𝑟𝑎𝑛𝑑𝑖𝑑)

4. Generate random number 𝑟1 for hashing 𝑚1

5. Send 𝑟1 and 𝑟𝑎𝑛𝑑𝑖𝑑 to IoT device

6. Store 𝐾𝑀𝑆𝑖𝑑 as 𝑚2

7. Find a Chameleon collision 𝑟2 using 𝑚1 + 𝑥. 𝑟1 = 𝑚2 + 𝑥. 𝑟2 𝑚𝑜𝑑 𝑞

8. Send 𝑟2 to KMS

44

Algorithm 5. Dynamic key generation at IoT device

At the end of Algorithm 4 , the gateway device shares 𝑟𝑎𝑛𝑑𝑖𝑑 and 𝑟1 with the IoT device and

𝑟2 with the KMS such that the IoT device and the KMS can run Algorithm 5 and Algorithm 6

respectively. After receiving 𝑟𝑎𝑛𝑑𝑖𝑑 , 𝑟1 from the gateway device, the IoT device runs

Algorithm 5. At the end of the algorithm, the device generates a key (let’s call it 𝑘𝑒𝑦’) where

𝑘𝑒𝑦’= 𝐶𝐻𝐴𝑀(𝑚1, ℎ𝑘, 𝑟1) = 𝑔𝑚1𝑦𝑟1 𝑚𝑜𝑑 𝑝 .

Algorithm 5

 Dynamic key generation at IoT device

Where: IoT device

Input: random prime numbers 𝑝, 𝑞 such that 𝑝 = 𝑘𝑞 + 1 ,

hash key ℎ𝑘 = 𝑦 = 𝑔 𝑥𝑚𝑜𝑑 𝑝 , random numbers 𝑟𝑎𝑛𝑑𝑖𝑑, 𝑟1

Output: Chameleon hash as encryption key

1. One-time pad of 𝑑𝑒𝑣𝑖𝑐𝑒𝑖𝑑with 𝒓𝒂𝒏𝒅_𝒊𝒅 to maintain

entropy

 𝑚1 = XOR(𝑑𝑒𝑣𝑖𝑐𝑒𝑖𝑑, 𝑟𝑎𝑛𝑑𝑖𝑑)

2. Compute Chameleon hash using [5]

 𝑘𝑒𝑦’= 𝐶𝐻𝐴𝑀(𝑚1, ℎ𝑘, 𝑟1)

3. Store 𝒌𝒆𝒚’ as encryption key

45

Algorithm 6. Dynamic key generation at KMS

After receiving 𝑟2 from gateway, KMS runs Algorithm 6 and generates a key (let’s

call it 𝑘𝑒𝑦’’)

𝑘𝑒𝑦’’= 𝐶𝐻𝐴𝑀(𝑚2, ℎ𝑘, 𝑟2) = 𝑔𝑚2𝑦𝑟2 𝑚𝑜𝑑 𝑝 .

By the property of chameleon collision[92] using trapdoor, it can be inferred that the

key generated by the IoT device(𝑘𝑒𝑦’) and the KMS (𝑘𝑒𝑦’’) are the same.

𝐶𝐻𝐴𝑀(𝑚1, ℎ𝑘, 𝑟1) = 𝐶𝐻𝐴𝑀(𝑚2, ℎ𝑘, 𝑟2)

After generating the new device key, the KMS runs Algorithm 1 once again, to the

encrypt the new device key under homomorphic scheme and distribute the key shares to the

proxy servers. This is one of the salient features of the current work as it enables the system

to continue Phase III-data flow phase, even post compromise. Chapter 5 discusses the security

properties of this phase in more detail.

Algorithm 6

 Dynamic key generation at KMS

Where: KMS

Input: random prime numbers 𝑝, 𝑞 such that 𝑝 = 𝑘𝑞 + 1 , hash

key ℎ𝑘 = 𝑦 = 𝑔𝑥𝑚𝑜𝑑 𝑝 , random numbers 𝑟2

Output: Chameleon hash as encryption key

1. Store UUID of server 𝐾𝑀𝑆𝑖𝑑 as 𝑚2

 𝑚2=𝐾𝑀𝑆𝑖𝑑

2. Compute Chameleon hash using [5]

 𝑘𝑒𝑦’’= 𝐶𝐻𝐴𝑀(𝑚2, ℎ𝑘, 𝑟2)

3.Store 𝑘𝑒𝑦’ as encryption key

 4. Run Algorithm 1

46

CHAPTER 4. CASE STUDY: SMART HEALTHCARE

This Chapter focuses on the need for secure and privacy preserving cloud computations

for a specific real-world IoT application: smart healthcare. First, the chapter discusses the

importance of IoT and cloud computing for quality medical assistance. Finally, the chapter

discusses how Proxy re-ciphering as a service can help healthcare organizations benefit from

cloud computing without compromising their patient privacy for IoT device data, with minimal

overhead.

4.1 Internet of Things in Healthcare

IoT market has been witnessing a steady increase in demand and investment for

healthcare services that prioritize improving the quality of living, by shifting focus from

diagnosis and treatment to monitoring and prevention. Smart healthcare applications, which

are an integral part of IoT-healthcare, combine embedded medical devices that record vital

signs and communicate them to the cloud servers, allowing remote medical assistance and care.

Continuous glucose monitoring [94], insulin pens [95], smart inhalers [96] and ingestible

sensors [97] are some examples of smart healthcare products that promise to improve people

all over the world. Thus, it comes as no surprise that IoT-healthcare market has a projected

value of 348 Billion USD by 2025 [98].

In June 2018, a report of a clinical trial consisting of 357 patients undergoing head and

neck cancer treatment was presented at the American Society of Clinical Oncology (ASCO)

Annual meeting. The report compared the effects of treatment and the severity of symptoms

witnessed by two groups of patients. The first group consisted of patients (169 people) that

used a Bluetooth powered weight scale and a blood pressure cuffs with a symptom tracking

app, called CYCORE, with daily updates to their physicians. The second group followed the

47

traditional way of treatment with regular weekly visits to their physician, without any

additional monitoring [99]. At the end of the trial, it was identified that the first group showed

better improvement to their treatment and experienced less severe symptoms along the way,

compared to the latter.

In 2013, it was estimated that incomplete medical histories and insufficient/lack of

patient data contributed to 400,000 deaths a year [100]. Furthermore, American Cancer Society

estimated that around 51540 new head and neck cancers will be diagnosed in 2018, with over

10000 fatalities [101]. These alarming numbers, along with the report presented at the ASCO

annual meeting compel the necessity to shift towards the digital healthcare era where medical

IoT devices can help improve the quality of assistance, even for chronic conditions. There is

also a push from Government to digitize health record to improve interoperability of patient’s

health record [102].

In a digital healthcare world, an electronic medical record (EMR) is the equivalent of

a patient’s medical record. It is maintained by a heath care provider and is updated constantly

to include all relevant and important information like name, age, address, health concerns,

administered medications and their dosages, vital signs and any laboratory reports. With Smart

healthcare, an effort towards comprehensive medical care thus includes continuous monitoring

of patients’ vital signs from medical IoT devices and recording them as a part of EMR. Such

an overarching medical data collection and processing can potentially provide new dimensions

to a patient’s overall health profile, by the virtue of the enormous and continuous data recorded

by the medical IoT devices.

However, the adoption and transition towards digital healthcare world can be

challenging and expensive for healthcare providers. Close to 25% executives from over 1800

48

hospitals associated transitioning cost as their primary concern while adapting to the digital

era [103]. Cloud computing is a promising solution that can ease this transition for the

healthcare organizations by allowing them to outsource the storage and processing of medical

data to cloud vendors like Google Cloud Healthcare [104].

4.2 Smart Healthcare and Cloud

Cloud service providers usually operate on pay-per-use model. Thus, offloading the

storage and processing of medical records to the cloud servers can help healthcare

organizations eliminate the need to maintain expensive data centers, hardware equipment and

IT personnel. Cloud computing for healthcare is an active research topic, that aims to

modernize US healthcare system [102].

Cloud-based smart heath care solutions typically involves three phases: 1) Data

generation, where the medical data is recorded either manually by a physician/nurse or by a

medical IoT device 2) Data storage, where the data collected from the patient is uploaded to a

cloud storage service like Amazon S3, for future access 3) Data computation, where cloud

applications process the data to extract intelligence from the stored data. To provide a holistic

service, during phase 3, cloud service providers can potentially make use of data driven

services like analytics and machine learning [104] to process the medical data coming from

multiple sources (heart rate monitors, fitness bands, EMR, insulin pumps etc.) and correlate

the data points, for a patient. Such a technique can provide a comprehensive view about the

patient’s overall health. The availability of such multi-faceted medical reports can help doctors

deliver high quality medical assistance to their patients. To this end, in 2018, Fitbit acquired a

company named Twine Health and announced a collaboration with Google cloud to combine

Fitbit data with EMR aiming to accelerate innovation in digital health [105]. Twine health has

49

proven to help people manage chronic conditions like diabetes and hypertension with their

remote health coaching platform[106].

4.3 Security for Healthcare

In 2017, the healthcare industry witnessed twice as many attacks as any other industry

[107] , forcing healthcare providers to improve their cybersecurity hygiene. The Health

Insurance Portability and Accountability Act (HIPAA) has also laid down rules and regulations

to prevent Personal Health Information (PHI) from misuse. PHI almost same as EMR but are

primarily designed to be used by patients, while the latter is primarily designed to be used by

healthcare providers. PHI and EMR are valuable in the underground black market since an

identity theft from medical data gives a perpetrator the chance to receive health care through

channels like Medicare, buy pharmaceuticals and commit insurance fraud. In 2016, FBI

estimated that health information is valued close to $60-$70 on the black market while a Social

security number is valued close to $1 in the same underground market [108]. Figure 6 shows

an overview of the number of complaints due to medical identity theft issues from 2013-2017

across different states in the US [109]. It becomes imperative to make sure that PHI/EMR is

secure and protected against data breaches and leakage.

50

Figure 6. Overview of complaints regarding medical identity thefts from 2013-2017 [110]

A natural concern for healthcare organizations when outsourcing medical data to cloud

service providers is protecting patients’ privacy. In addition, consumers are concerned that

small privacy invasions by cloud service providers may eventually result in loss of civil

rights[73]. As discussed in Chapter 1, encrypting the medical data before outsourcing them to

cloud can assuage these concerns. However, as explained in Chapter 2, this precludes cloud

service providers from performing any meaningful computations on the medical data. FHE

schemes can address this concern, but as explained in Chapter 2 and Chapter 3, there are

limitations in the works so far proposed in the literature which can inhibit real-world adoption

of FHE schemes for healthcare industry.

 4.4 Proxy re-ciphering as a service for Healthcare IoT

In this section, we will consider a realistic scenario to explain the deployment of the

proposed framework in a health care service provider company. Here we will focus on a

healthcare company that provides healthcare assistance to hundreds of thousands of patients

51

across US. Consider a situation where they have been witnessing an exponential growth in the

number of remote health monitoring devices like ECG monitors, smart inhalers, defibrillators

etc., among their patients. This healthcare provider realizes that delivering a quality assistance

to patients will require them to evaluate the overall healthcare profile of each patient and this

includes in-house data about vital signs created manually by nurses and those received from

the medical IoT devices. The executive management team along with IT department personnel

at the company will have to evaluate the options they have in order to address this situation:

1. Solution A: Invest in a bigger in-house datacenter. This requires them to invest in

additional hardware equipment’s, procure land space, and hire more IT personnel to

tackle the installation and maintenance.

2. Solution B: Utilize cloud service providers to store encrypted patient data.

While solution A guarantees data security and privacy, it can quickly reach bottlenecks,

since it is not a scalable solution. While solution 2 guarantees data security and privacy, the

solution cannot provide privacy-preserving data insights that healthcare providers require, for

quality assistance.

Contoso Inc., a (fictional) third-party company, can use the proposed framework to

provide Proxy re-ciphering as a service as shown in Figure 7 . Contoso Inc. promises to act as

a secure intermediary between hospitals across US like the healthcare service provider

company considered in this scenario and their cloud service providers. Contoso guarantees that

it can securely enable health care providers to use the cutting-edge cloud technologies from

the hospital’s choice of cloud service provider with a modest overhead to the hospital and to

its patients. Under these circumstances, solution B is certainly a viable option for the healthcare

organizations to benefit from cloud computing while preserving the privacy of its patients.

52

Thus, the workflow can effectively have multifold gains for the end-users and businesses like

the health care organization considered in this scenario :

i. First, cloud service providers do not have access to raw device data, eliminating

potential sharing and secondary usage of the device data.

ii. Second, a device key compromise or revocation does not render data in the cloud

vulnerable and does not require rekeying [53] of the entire past data. This is because,

the secondary and processed homomorphic data in the cloud servers are transparent to

the encryption key used by the devices. In addition, a device key refresh operation to

protect future data does not affect the functionality of the cloud servers or the

information stored by them.

iii. Finally, with cloud servers storing the processed homomorphic context derived from

the raw device data, the storage blow-up can be minimized to an acceptable overhead.

This can in turn foster real-world adoption of FHE based solutions by the cloud service

provider thereby enabling more users and businesses.

In a nutshell, when cloud providers only store a minimally required homomorphic data

derived based on application logic from the raw device data, end-users can be comfortable

about not losing data control to the cloud service providers and can be confident that their

device data is secure throughout its lifecycle. A past raw device data is not rendered vulnerable

with a key compromise since the service providers store only the derived data encrypted under

the homomorphic scheme. In addition, by the virtue of key refresh, a newly generated device

data cannot be decrypted by an attacker with the stolen past keys. Chapter 5 discusses the

security properties of the framework in greater detail.

53

Figure 7. An example of proxy re-ciphering as a service framework for smart healthcare

4.5 Deployment Scenarios

Studies like [73] have shown that end-users are concerned about the usage of their data,

with 89% of the surveyed consumers expressing discomfort with third party service providers

accessing their information without consent and with 72% feeling that sharing their personal

information may have more demerits than benefits. The sample narrative mentioned in the

previous section considers a deployment scenario where Proxy re-ciphering as a service is

entirely managed by a third-party company named Contoso Inc. However, the service can be

hosted by different entities and this section discusses their merits and demerits. The current

study identifies four different deployment scenarios:

54

1. The KMS, the distributed proxy servers and the cloud servers are hosted by three

different companies as discussed in previous section. For example, KMS could be

hosted by Fitbit Inc., distributed proxy servers could be hosted by Contoso Inc.

(mentioned earlier), and cloud servers could be hosted by Microsoft Azure.

2. The KMS and the proxy servers are hosted by the same company while cloud servers

are hosted by a different company.

3. The distributed proxy servers and the cloud servers are hosted by the same company

while the KMS is hosted by a different company.

4. The KMS, the distributed proxy servers and the cloud servers are all hosted by the

same company.

An ideal workflow will be one where a customer does not have to trust any service

providers (KMS/ proxy server/ cloud server) with their data and yet receive privacy preserving

services. In the current work KMS manages the device encryption keys, the proxy servers store

the homomorphic device encryption keys and the public key of the recipient and the cloud

servers have access to the public key of the recipient. Thus, the following section views each

entity as a potential adversary from an end-user’s perspective and lays out the merits and

demerits of each scenario.

Scenario 1

 If the KMS, proxy servers and the cloud servers do not collude, no entity has enough

information to decrypt the device data. The bandwidth required to share device encryption key

shares from KMS to the proxy servers can be high, but this is a one-time cost. The bandwidth

required to share homomorphic data from proxy servers to cloud servers can be high depending

on the location of the servers.

55

This can be a recommended scenario since it is privacy preserving, however the

communication latency during data flow phase can be high if the proxy servers and cloud

servers are in different regions.

Scenario 2

The KMS and proxy servers can together decrypt the device data. This is because,

proxy servers receive the encrypted device data and the KMS have the access to the device

keys. The bandwidth required to share the device encryption keys can be reduced with this

configuration. The bandwidth required to share the homomorphic ciphertext from the proxy

servers to the cloud servers can be high depending on the location of the servers.

This is not a recommended scenario since this requires the end users to fully trust the company

hosting KMS and the proxy servers.

Scenario 3

If the KMS does not collude the company hosting proxy servers and cloud servers, no

entity has enough information to decrypt the device data. The bandwidth required to share

device encryption key shares from KMS to the proxy servers can be high, but this is a one-

time cost. The bandwidth required to share homomorphic data from proxy servers to cloud

servers can be reduced with this configuration. If proxy servers remain semi-honest and do not

store the device encrypted data, a device key compromise do not render device data vulnerable.

This is a recommended scenario since it protects users’ privacy with reduced latency during

data flow phase.

Scenario 4

The company hosting all the services (the KMS, the distributed proxy servers and the

cloud servers) has a complete control over the device data and thus can decrypt or store the

56

raw data, as required. The bandwidth required to share device encryption key shares from KMS

to the proxy servers can be reduced with this configuration. The bandwidth required to share

homomorphic ciphertext from the proxy servers to the cloud servers can be reduced with this

configuration.

However, this requires an end-user to completely trust the service provider and hence is not

recommended.

57

CHAPTER 5. PERFORMANCE EVALUATION

This chapter focuses on evaluating the feasibility and utility of the conceptualized

system model in the real-world by applying it to the case study performed in Chapter 4. First,

the chapter discusses the performance observed using an experimental testbed. Later, the

chapter presents the security properties of the framework theoretically.

5.1 Experimental Evaluation

5.1.1 Experimental Setup

A basic IoT testbed was developed to simulate the problem scenario explained in the

previous chapter. The testbed architecture consists of a gateway device, the distributed proxy

servers, the cloud server, the end-user device and the KMS. The following platforms were

used for the implementation: i) Android Google pixel 2 emulator with 2 GB RAM as a gateway

device ii) Dual core 8 GB Ubuntu 14.04 LTS virtual machines (VM) hosted on Microsoft

Azure as the proxy servers and the cloud compute server iii) Microsoft Azure blob storage as

a backend storage for the cloud compute server and a iv) Single core 1GB Ubuntu 14.0 LTS

VM hosted on Microsoft Azure as an end-user device and the KMS.

The current study uses ECG records from TELE ECG Database [110] and activity

records from FITBIT [111] servers as the medical IoT data source. An android app running on

the google pixel emulator acts both as a medical IoT device and as a gateway. The app fetches

the data from the databases and encrypts them using AES encryption in the counter mode

before sending it to the proxy servers. The former database consists of ECG data recorded

using TeleMedCare Health Monitor (TeleMedCare Pty. Ltd. Sydney, Australia). It consists of

300 ECG single lead-I signal recordings where 250 of them were selected randomly from 120

58

patients and 50 of them were manually selected from 168 patients to include poor quality data

in the sample population [110]. The sampling frequency for TELE database was 500 Hz with

voltages ranging from 5.556912223578890 to -5.554198887532222 mV. Each record in the

database is available as a comma separated value (CSV) file. Each line in the CSV file contains

the ECG sample value in mV, among other values. The latter data source was generated using

a Fitbit Charge 2 tracker. Fitbit APIs are available for developers and researchers to access

data collected by Fitbit devices. However, access to intraday time series values are directly

available only for personal use [111]. Among the several data points collected by the Fitbit

device, the current study uses the endpoints for heart rate time series and daily activity time

series. For example, the API request to get step values for a specific date with a 15-minute

interval value will be: 𝑚𝑎𝑘𝑒𝐴𝑝𝑖𝑅𝑒𝑞𝑢𝑒𝑠𝑡(“𝑢𝑠𝑒𝑟/−𝑎𝑐𝑡𝑖𝑣𝑖𝑡𝑖𝑒𝑠/𝑠𝑡𝑒𝑝𝑠/𝑑𝑎𝑡𝑒/” +

𝑠𝑒𝑎𝑟𝑐ℎ_𝑑𝑎𝑡𝑒 + ”/1𝑑/15𝑚𝑖𝑛. 𝑗𝑠𝑜𝑛”);

The current study uses the following libraries: HElib [57] , Archistar [88] ,

CloudCrypto [93] and default Java crypto package to execute the algorithms discussed in

chapter 3. The current study uses the default parameter values available in the libraries.

However, when implementing a cloud-based application, depending on the application logic,

the values of the parameters in the libraries should be chosen appropriately.

59

Figure 8. Experiment setup with high-level workflow

Figure 8 aims to explain the interactions between various devices/platforms (mentioned

above) within the proposed model.

Phase I- Phase III

The following steps correspond to the workflow shown in Figure 8.

1. -VM in Block-D (KMS) encrypts the AES encryption key used by the Android device

under BGV homomorphic encryption scheme using HElib library and distributes the

Krawczyk’s shares generated using Archistar library to all the VMs running in Block-A

(proxy servers)

-VMs in Block-A (proxy servers) communicate with each other to reconstruct

homomorphic encrypted Android device key from the Krawczyk’s shares using Archistar

library

60

2. Android emulator (acting as medical device) fetches data from one of the databases and

encrypts it using AES encryption in CTR mode using its device key

3. Android emulator (acting as gateway) sends the AES encrypted data to a VM in Block-A

4. -A VM in Block-A (proxy server) receiving the ciphertext (from step 3) transforms the

ciphertext from AES encryption scheme to FHE scheme by evaluating the homomorphic

decryption function with off-line pre-processing using HElib

-The VM uploads the homomorphic encrypted ciphertext to Azure blob storage (Block-B).

-A VMs in Block-B (cloud servers) performs privacy-preserving computation on the data

in blob storage <not implemented in the current study>

5. A VM in Block-C (end user) requests result of computation (performed in step 4). from the

VM in Block-B

6. -VM in Block-B shares homomorphic encrypted result to VM in Block-C

-VM in Block-C decrypts the homomorphic results using its private key and views the

plaintext result

Phase IV

The following steps are not shown in Figure 8 for simplicity.

7. Android emulator (acting as gateway) shares a random number with VM in Block-D

(KMS)

8. Android emulator (acting as medical device) and the VM in Block-D execute chameleon

hash function using CloudCrypto library to generate a dynamic encryption key.

5.1.2 Performance Evaluation

The current system uses a distributed proxy framework primarily to overcome the loss

of availability of service and loss/corruption of device keys in the proxy servers. Since the

61

system stores homomorphic encrypted shares of keys instead of the actual keys, confidentiality

of the encryption keys is guaranteed. The parameters used in the key sharing model are 𝑚, 𝑘, 𝑛 ,

where, 𝑚 is the number of proxy servers providing service to a healthcare organization, 𝑘 is

the threshold or the minimum number of proxy servers required to reconstruct the

homomorphic encryption key for every device and 𝑛 is the total number of proxy servers

available in a given geographical region. The relation between these parameters are 𝑚 < 𝑘 <

𝑛 in the system and more specifically we require that 𝑛 − 𝑚 ≥ 𝑘. This guarantees system

resiliency which is explained in Chapter 5.2. In the following experiments, all the traffic

generated by medical devices belonging to a specific healthcare organization are handled by a

single proxy server (𝑚 = 1). < 𝑘, 𝑛 > are the tunable system parameters. Hence, the important

aspects of the problem: values for < 𝑘, 𝑛 > and its impact on the performance are first studied.

The threshold sharing scheme says that, the difficulty in collapsing a system is directly

proportional to the value of 𝑛, for a given value of 𝑘. It is implied from Krawczyk’s scheme

that the size of the shares distributed to each proxy server is inversely proportional to the value

of 𝑘. Thus, it is desirable to have larger values for 𝑛, 𝑘 as they provide better security and

storage complexity. However, it is essential to analyze the impact of 𝑘, 𝑛 on the computational

and communication latency, before finalizing the values. Both these latencies are calculated

at the KMS as well as at the proxy server. The computational latency is calculated at the KMS

based on the time taken to construct the key shares and at the proxy server it is based on the

time taken to re-construct the key after receiving the shares. The communication latency at the

KMS is defined as the time taken to distribute the shares to 𝑛 proxy servers, and at a proxy

server, it is defined as the time taken to receive 𝑘 − 1 shares for reconstruction. Since the exact

impact of 𝑘, 𝑛 on the above-mentioned latencies is not clearly evident, it is analyzed using the

62

testbed. The evaluation consists of a series of experiments conducted with 10 trials. Each trial

consists of generating a 128-bit AES key and encrypting it under homomorphic scheme. The

performance of computation and communication latency is observed for values of 𝑛 =

 5,7,9,11,13,15. The reason for choosing odd values of 𝑛 is explained in Chapter 5.2. For every

value of 𝑛 , the performance is tested for different values of 𝑘, to understand the behavior of

the system. For the purpose of this experiment, the clock in all the servers were synchronized

to Central Standard Time. Any clock skews or differences in the clock synchronization is

negligible and hence is ignored for the calculation purposes.

Effect of threshold secret sharing parameters <k,n> on the total latency during key

distribution at KMS

The first evaluation comprises of analyzing the time taken at the KMS to distribute the

IoT device key encrypted under the homomorphic scheme. The total time taken at the KMS is

the sum of the computation latency and communication latency, as explained earlier. Figure 9

shows the behavior of the total time for various values of < 𝑘, 𝑛 >. It is observed that for a

given value of 𝑛, as the value of 𝑘 is increased, the computational latency increases. However,

it is also observed that as the value of 𝑘 increases, the size of each share decreases. Thus, the

communication latency decreases. Since the communication latency is much higher than the

computation latency, it is observed that as the value of 𝑘 increases, for a given value of 𝑛, the

overall time taken reduces. Along the same lines, it is observed that, for a given value of 𝑘, as

the value of 𝑛 increases, there is an overall increase in the size of the data (𝑛. (
|𝐷𝑎𝑡𝑎|

𝑘
+ |𝐾𝑒𝑦|))

that is distributed. Thus, increasing the value of 𝑛 results in an overall increase in the time

taken.

63

Figure 9. Evaluation of latency to distribute Krawczyk’s shares of homomorphic encrypted

device key

Effect of threshold secret sharing parameters <k,n> on the total latency during

reconstruction at Proxy server

Next, the total latency to reconstruct the homomorphic key at a proxy server is studied.

The total latency is the sum of communication latency and computational latency for the proxy

server. From Figure 10 it can be observed that when the value of 𝑘 increases, the

communication latency increases. This is because, a proxy server needs 𝑘 − 1 server shares to

reconstruct a device key, and thus when the value of 𝑘 increases, total amount of shares/data

required for reconstruction increases, thus increasing the communication latency. Also, from

the experiments it was observed that increasing the value of 𝑘 and 𝑛 increases the computation

0

500

1000

1500

2000

2500

3000

3500

0 2 4 6 8 10 12 14 16

Ti
m

e
(m

s)

k-threshold

Latency during distribution of homomorphic encrypted key shares

n=5

n=7

n=9

n=11

n=13

n=15

64

time to reconstruct the homomorphic key. Thus, the total latency, which is a sum of the two

latencies, increases as the values of 𝑘 and 𝑛 are increased.

Figure 10. Evaluation of latency at each proxy server for homomorphic key

reconstruction

Comparison of Krawczyk’s computational secret sharing vs Shamir’s perfect secret

sharing during key distribution at KMS

Next, the study evaluates the merits and limitations of Krawczyk’s, and Shamir’s secret

sharing scheme and explains the rationale behind the choice made in the current study. Figure

11 shows the latency at the KMS when using Shamir’s scheme instead of Krawczyk’s, during

key distribution. It is observed that as the value 𝑜𝑓 𝑘 increases, the computation latency

increases. It is also observed that as the value of 𝑛 increases, the communication latency

increases. This may be because, when 𝑘 increases, the size of the secret polynomial increases

and when 𝑛 increases the number of shares (and thus the total size of data transmitted)

0

500

1000

1500

2000

2500

3000

0 2 4 6 8 10 12 14 16

Ti
m

e(
m

s)

k-threshold

Computational latency at proxy server for homomorphic key
reconstruction

n=5

n=7

n=9

n=11

n=13

n=15

65

increases. Hence, the overall latency which is a sum of the two latencies increases as the value

of 𝑘, 𝑛 are increased. Given that the frequency of key distribution operation is not high in the

current framework, the latency overhead of Shamir’s scheme compared to Krawczyk’s may

not be significant. However, in the current study, the secret that is shared is the AES device

key encrypted under the homomorphic scheme. The default parameter values in HElib library

yielded a homomorphic encrypted AES key of size close to 3MB, for a 128-bit AES device

key. Thus, when storing a homomorphic encrypted key share compared to the actual key,

Shamir’s scheme experiences a memory expansion of close to
𝑛.|𝐻𝑜𝑚−𝑘𝑒𝑦|

|𝑘𝑒𝑦|
=

 𝑛.|𝐻𝑜𝑚−𝑘𝑒𝑦|

|𝑘𝑒𝑦|
≅

𝑛.
3.2x106𝑏𝑦𝑡𝑒𝑠

16 𝑏𝑦𝑡𝑒𝑠
≅ 𝑛. 105 . Compared to this, Krawczyk’s scheme witnesses a memory expansion

of close to
𝑛.(

|𝐻𝑜𝑚−𝑘𝑒𝑦|

𝑘
+|𝑠𝑠𝑘𝑒𝑦|)

|𝑘𝑒𝑦|
= 𝑛.

 |𝐻𝑜𝑚−𝑘𝑒𝑦|

𝑘
+|𝑠𝑠𝑘𝑒𝑦|

|𝑘𝑒𝑦|
≅

3.2x106

𝑘
+16 𝑏𝑦𝑡𝑒𝑠

16 𝑏𝑦𝑡𝑒𝑠
≅

𝑛.105

𝑘
 . Thus, for higher values

of 𝑘, Krawczyk’s scheme provides better storage efficiency. This is the reason why despite

its merits regarding perfect security, Krawczyk’s scheme was chosen over Shamir’s scheme

for the threshold secret sharing scheme.

66

Figure 11. Evaluation of latency to distribute Shamir’s shares of homomorphic encrypted

device key

Trade-off between privacy and latency in encryption schemes

Next, the study evaluates the computation cost of using fully homomorphic encryption

schemes compared to the traditional schemes. To do this, the current study chooses 4

approaches that allow cloud servers to compute on the IoT data: 1) share device data without

encryption , 2)share device data encrypted under AES scheme in block cipher mode such that

it can be decrypted using AES and re-encrypted using a fully homomorphic encryption scheme

, 3) share device data encrypted under AES scheme in block cipher mode and perform

homomorphic evaluation the AES decryption 4) share data encrypted under AES scheme in

stream cipher mode and perform homomorphic evaluation the AES decryption. The total

latency measured is the sum of time taken to send a 32-byte data from the Android emulator

to the proxy server VM and the time taken at the proxy server VM to prepare the data for cloud

0

2

4

6

8

10

12

14

0 2 4 6 8 10 12 14 16

Ti
m

e
(s

)

k-shamir secret threshold

Latency to distribute homomorphic encrypted key shares
using Shamir's scheme

n=5 n=7 n=9 n=11 n=15

67

computation. Figure 12 displays the total time taken during each approach. The current study

explains the observed behavior below.

Figure 12. Evaluation of privacy vs latency trade-off for encryption schemes

The first approach is to share the data in the plaintext form, i.e. without any encryption.

This is the most naïve (although not recommended) solution for constrained IoT devices. A

communication cost of 1ms is observed to send the data. Since the data is immediately

available for computation, time taken to transform the data at the proxy server is 0ms. Thus,

the total time taken is 1ms. The second approach is to share device data encrypted under AES

scheme. A communication cost of 1ms is observed to send the data. A computation cost of 2ms

is observed for AES decryption function and a cost of 5ms is observed for homomorphic

encryption of the plaintext device data. Thus, a total cost of 8ms is observed to make the data

computation-ready. The third approach is to encrypt the device data under AES scheme in

block cipher mode. A communication cost of 1ms is observed to send the data. A computation

68

cost of 2302ms is observed to perform the homomorphic evaluation of the AES decryption

function in block cipher mode. After this, the data is computation-ready. Thus, a total time of

2303ms is observed. The last approach encrypts the device data under AES scheme using

counter mode. A total communication cost of 1ms is observed to send the data. A computation

cost of 1552ms is observed for the homomorphic evaluation of AES decryption function in the

counter mode. After this, the data is computation-ready. Thus, a total time of 1553ms is

observed. HElib library currently provides implementation for AES evaluation in block cipher

mode. The current study utilizes HElib and extends it to evaluate AES evaluation in stream

cipher mode.

The current study now analyzes the trade-offs in these schemes. Although the first

approach is the fastest, it can be noted that it is not privacy preserving and is not a good fit for

this study. The second approach is the next best approach in terms of latency. However, it

requires a fully trusted VM that stores the device key to decrypt the AES encrypted data, and

thus, is not a suitable approach for the current study. The third and fourth approaches meet the

requirement of this study. Thus, the fourth approach is chosen due to its lower latency

requirement.

Next, since the fourth approach utilizes stream cipher mode, it thus possible to separate

the homomorphic evaluation of decryption function into two stages: offline and online as

shown in Algorithm 3. This is from the inherent construction of AES encryption scheme in

stream cipher mode.

69

Figure 13. Evaluation of privacy vs latency trade-off for encryption schemes – with offline

pre-processing

Figure 13 shows the performance of the proxy server with offline pre-processing

capability. A computation cost of 1548ms is observed during the offline stage for the

homomorphic AES encryption of the counter values. During the online stage, a communication

cost of 1ms is observed for the encrypted device data to reach the proxy server and a

computation cost of 4ms is observed for the homomorphic decryption of the AES data. Thus,

a total online (after data is sent out) cost of 5ms is observed. This is a huge reduction in the

total cost, which increases the throughput from 0.66 operations/ms to 250 operations/ms for

the proxy server. Here, an operation is defined as the process of homomorphic evaluation of

AES decryption function to transform device data from AES encryption scheme to

homomorphic encryption scheme.

Effect of data size on throughput at proxy server

Next, the current study evaluates the time taken (with offline pre-processing) at the

proxy server, during a data-flow phase with the real-world data. The current study assumes

70

that the offline homomorphic AES encryption of the counter values is always pre-computed

and available. To perform this test, data from TELE ECG database is downloaded to the

Android device. The performance is evaluated for sampling frequencies 𝑓 =

100𝐻𝑧, 200 𝐻𝑧, 300 𝐻𝑧, 400𝐻𝑧, 500𝐻𝑧 , since these frequencies were identified to be most

widely used by ECG devices. Figure 14 shows the performance of the above-mentioned test.

Client-side encryption refers to the time taken at the android device to encrypt the data using

AES encryption in counter mode. The current study utilizes the standard java crypto package

for the evaluation. Transformation at proxy indicates the total time taken at a proxy server VM

to evaluate the homomorphic decryption function of the encrypted data, with offline pre-

processing. It is observed that for a sampling frequency of 500Hz (sampling frequency used

in TELE ECG database), it takes 712ms to transform the data at the proxy server. This means

that after receiving the data from the Android device, the proxy server VM can prepare the

data for computation close to 700ms. The overhead of 700ms for a long term patient monitoring

services like [99] can be acceptable, since they do not require real-time updates.

Figure 14. Evaluation of latency for different ECG sampling frequencies

71

 Effect of CPU utilization level on throughput at proxy server

The latency observed in Figure 14 can be considered ideal, since the CPU load was

under 5% throughout the experiment. However, the current study realizes that in a practical

environment, a server typically runs multiple applications and hence it is vital to study the

latencies under various CPU utilization levels. To test this, the current study uses Stress-ng

[112] tool to emulate the desired CPU loads the proxy server VM and evaluates the time taken

to transform the data from AES scheme to FHE scheme. For example, to simulate a CPU

utilization of 40% a command as shown in Figure 15 was used.

Figure 15. An example of stress-ng command line to emulate a CPU load of 40%

To test the performance, random records from TELE ECG database with a sampling

frequency of 500Hz were chosen. The first parameter used for evaluation is the summation of

the communication latency (defined as the time taken for the proxy server VM to receive the

encrypted data as a JSON from the android device) and computation latency (defined as the

time taken at the proxy server to parse the JSON data and prepare it for homomorphic

decryption). The second parameter used for evaluation is the computation latency at the proxy

server (defined as the time taken to perform homomorphic evaluation of the decryption

function). The performance of the above parameters was evaluated for 𝐶𝑃𝑈 𝑙𝑜𝑎𝑑𝑠 =

 8 %, 15%, 30%, 40%, 50%, 70% 𝑎𝑛𝑑 80%. Figure 16 shows the performance of the

evaluation parameters for difference values of CPU loads. It is observed that with higher loads

on CPU, the proxy server needed longer time to receive the JSON packet and parse it.

72

However, the time taken for the server to perform homomorphic decryption increases

modestly. This is because as mentioned earlier, with off-line preprocessing the operations

required during online processing are data encoding and XORing the encoded data with the

homomorphic encrypted key streams, which are lightweight in nature. Since the overall

throughput of a proxy server for proxy re-ciphering as a service depends on both the

parameters, it can be inferred that the throughput of the proxy server for proxy re-ciphering as

a service decreases with increased CPU loads. However, the homomorphic evaluation of the

decryption function in stream cipher mode does not require a high computational cost even

during high CPU utilization levels.

Figure 16. Evaluation of latency at a proxy server under various CPU loads

Analysis of end-to-end latency for an end-user

Next, to understand the impact of the system on the end-user, the current study

evaluates the following parameters: i) time taken to share data from proxy server to cloud

server (upload) ii) time taken for an end-user to receive the data from cloud server (download)

712 717 728 739 753 761 769

488 497 514 537 564 586 599

0

100

200

300

400

500

600

700

800

900

8.2 15 30 40 50 70 80

Ti
m

e
(m

s)

CPU load (%)

Performance of proxy server during stress test

Time taken for homomorphic evaluation of AES decryption

Time taken to receive json + extract data from json

73

iii) time taken for an end-user to decrypt the received data (decryption) iv) time taken to delete

an existing entry in the cloud server upon an end-user request (deletion). Each evaluation

parameter was tested in two chosen networks during two fixed times of the day (10 am and 4

pm) to get a holistic view of the overall latency. The values observed in Figure 17 is an average

of the 10 trials for each experiment. It is observed that deletion operation takes the least amount

of time. This operation corresponds to deleting the user requested entry from the Azure blob

storage. Next, it can be observed that upload time is lesser compared to the download time.

This is because, as discussed in Chapter 3, for every healthcare organization, the current study

chooses proxy servers that are closest (VMs are placed in same regions) to the cloud service

provider. Hence, the time taken for data to reach blob storage from VM in Block A is relatively

smaller compared to time taken to download data from the blob storage for an end-user (VM

in a different region). Finally, it can be observed that the homomorphic decryption of cloud

data requires around 730ms in a VM in Block C with 1GB RAM.

Figure 17. Evaluation of latency for upload, download, decrypt and delete operations

0

100

200

300

400

500

600

700

800

upload download decryption deletion

Ti
m

e
(m

s)

Operations

Performance of operations with cloud server data
with different network conditions

Network1-AM Network1-PM Network2-AM Network2-PM

74

To evaluate the overall usability of the framework, it is critical to evaluate the end-to-

end latency of this workflow. End-to-end latency in the current context can be expressed as a

summation of the following latencies : a) computation latency at the Android emulator to

encrypt device data b) communication latency to send the AES encrypted data to a proxy server

VM c) computation latency at the proxy server VM to transform AES encrypted device data

to homomorphic encrypted device data d) communication latency to send the homomorphic

ciphertext to the cloud compute server e) computation latency at the cloud server to perform

privacy-preserving computations on the homomorphic data as required by the application

f)communication latency to send homomorphic result of the cloud-computation to the end-

user g)computation latency at the end-user VM to decrypt the homomorphic result to view the

plaintext result. The current study does not implement the application logic at the cloud

compute server. Hence it is assumed that cloud servers take 𝑥 𝑚𝑠 to execute an FHE based

computation, based on the application. For a 32-byte of device data, the end-to-end latency

from the above-mentioned experiments is observed to be: (𝑎) 1𝑚𝑠 + (𝑏) 1𝑚𝑠 + (𝑐) 4𝑚𝑠 +

(𝑑) 130𝑚𝑠 + (𝑒) 𝑥 + (𝑓) 170𝑚𝑠 + (𝑔) 730𝑚𝑠 = 1036 + 𝑥 𝑚𝑠. If there is no cloud-

processing required and if an end-user is interested in decrypting the device data using their

private key, then 𝑥 = 0 and hence the total latency can be around 1036𝑚𝑠. Along the same

lines, for a 500 Hz device data, assuming a cloud-computation time of 𝑥 𝑚𝑠 to produce a 32-

byte computation result, the end-to-end latency from the earlier experiments is observed to be:

(𝑎) 114𝑚𝑠 + (𝑏) 488𝑚𝑠 + (𝑐) 712𝑚𝑠 + (𝑑) 13039 𝑚𝑠 + (𝑒) 𝑥 + (𝑓) 170𝑚𝑠 +

(𝑔) 730𝑚𝑠 = 15253 + 𝑥 𝑚𝑠 . It should be noted that the end-to-end latency value of close to

 15.2 + 𝑥 𝑠 is observed without any optimization in the above-mentioned latencies. However,

with solutions like, homomorphic ciphertext packing to allow SIMD operations, homomorphic

75

dimension reduction before transmission to an end-user, a reduced latency can be achieved in

practice. Also, it can be observed that the major contributor to the high latency is the upload

time of homomorphic encrypted ciphertext to the cloud server from the proxy server. However,

as explained in chapter 4, this value can be reduced based on the deployment of the service

and the location of the servers. For example, if proxy servers and the cloud servers are hosted

by the same provider and the servers are in the same region, the communication latency can be

greatly reduced.

Analysis of upper bound on the post-compromise attack window

Finally, the study evaluates the feasibility of a dynamic key refresh operation for an

IoT device. To assess this, the study calculates the time taken at the android emulator (acting

as medical device) to generate new key, the time taken at the android emulator (acting as

gateway) to generate collisions using trapdoor key and the total time taken to send random

numbers between gateway-medical device and gateway-key manager server. Figure 18 shows

that the total computation time taken at the android emulator to generate a dynamic key is

around 157𝑚𝑠. The current study did not record the time taken at the key manager server to

generate the key since it is assumed that KMS is computationally more powerful compared to

an android emulator and hence the overhead will be negligible, due to the infrequent nature of

this operation. It can be observed that finding the collision 𝑟2 at the gateway (Android device)

takes only around 5s. This is due to the lightweight nature of collision calculation, as shown in

Algorithm 6. Finally, to share 𝑟𝑎𝑛𝑑𝑖𝑑, 𝑟1, 𝑟2 over the channel, the communication cost is

around 110𝑚𝑠. Thus, it can be observed that the overall time taken to dynamically renew

encryption keys is modest and not heavy weight on the resource constrained IoT device. Thus,

76

the current scheme limits the time window between attack-detection and key-refresh to around

(157 𝑚𝑠 + 5 𝑚𝑠 + 110 𝑚𝑠 = 272 𝑚𝑠) 280𝑚𝑠, limiting the secure data exposure to an

adversary.

Figure 18. Evaluation of total latency to dynamically refresh an encryption key

5.2 Theoretical Evaluation

In this section the current study will briefly evaluate the security properties of the

system and discuss how the current study resists the threats discussed in chapter 3.

The main security goals of the current study are to ensure confidentiality of the data,

privacy of the users and availability of the service from passive and active. This study currently

does not focus on the integrity of the data, but the focus is primarily given to the confidentiality

and availability aspects of the CIA triad. Focusing on integrity of the data is deferred for the

future works.

This section analyzes the security properties of the proposed work against commonly

faced threats discussed in chapter 3.

157

5

110

0

20

40

60

80

100

120

140

160

180

Chameleon hashing Finding Collision Network latency

Ti
m

e
(m

s)

Operations required to dynamically refresh keys

Time taken for dynamic key generation for resource
constrained IoT devices

77

Threat 1: Cloud database/server compromise:

The current study does not store any device keys in the cloud servers. Instead, it stores

the homomorphic encryption public keys of the users to perform privacy-preserving

computations. The cloud servers primarily store the homomorphic encrypted device data

received from the IoT devices. The security of homomorphic encrypted data stored in the cloud

servers directly follows the security of the BGV scheme. The security of BGV homomorphic

scheme is based on Ring-Learning with Errors (RLWE) problem, which is a hard problem

related to high-dimensional lattices. RLWE guarantee a 2𝜆 security against known attacks,

where 𝜆 is a security parameter [61]. The default value of the security parameter used in HElib

library (and thus in this work as well) is 80 bits of security.

The current system assumes the cloud servers to be resilient against loss of availability

attacks, such as denial of service.

 Threat 2: Proxy server compromise

The current study does not store any device keys in the proxy servers. Instead, it stores

the shares of the device keys encrypted under homomorphic encryption scheme in 𝑛 proxy

servers and the reconstructed homomorphic device keys in 𝑚 proxy servers. The security of

the homomorphic encrypted device keys is directly derived from the security of BGV scheme,

that are based on RLWE and have a 2𝜆 security [61] against known attacks, as mentioned

above. The homomorphic encrypted device key shares are further encrypted using ChaCha20

encryption scheme as per Krawczyk’s distribution scheme. ChaCha20 is practically found to

be secure so far [115]-[116]. Upon reconstruction at the proxy servers, the security of

homomorphic device keys is once again guaranteed by the security of BGV encryption scheme.

78

The following section evaluates the performance of proxy servers against loss of

availability attacks.

 In the current study, a total of 𝑚 proxy servers provide service to every health care

organization. As discussed in Chapter 3, the system parameters 𝑚, 𝑘, 𝑛 are chosen such that

the following requirement is satisfied 𝑛 − 𝑚 ≥ 𝑘 . The requirement for this condition is

directly derived from the resiliency requirements of the system. In the current world of

healthcare industries, adversaries targeting a particular healthcare organization is a very

relevant and a critical issue [115]–[117] especially with a 13% increase in the denial of service

based attacks from the past year [118] which is also expected to grow even further. When an

adversary targets a specific healthcare organization, attacking the 𝑚 proxy servers by either

crashing the servers or corrupting the data can cause sufficient damages to the service.

However, in the current system, 𝑛 − 𝑚 ≥ 𝑘 and the homomorphic key shares of the IoT

devices are shared across 𝑛 servers. Hence by the property of threshold secret sharing, it is

possible to reconstruct the data required to provide service to the healthcare organization. If an

attacker targets the proxy servers arbitrarily, the system is resilient to loss of servers up to 𝑛 −

𝑘, by the property of threshold secret sharing. That is, if an attacker attacks 𝑝 servers, as long

as 𝑝 ≤ 𝑛 − 𝑘 , the system is resilient to the denial of service attack or corruption of data attack.

Threat 3: Network-based attack

In the current study, medical devices encrypt data using AES-128-bit encryption in

counter mode before sending them out. Although researchers have studied attacks [119]–[122]

against AES, when implemented correctly AES is currently secure against any practical attack

79

as long as an adversary does not have access to the encryption key. This guarantees data

security during acquisition in the device.

The communication between the medical device and the gateway is done over a local

Bluetooth low energy (BTLE) link. One of the best features of BTLE, according to its

specifications is its privacy awareness [123] that allows a participating device to change its

private address to avoid tracking. However literature [68] shows that this is not used in practice.

In addition, BTLE communication channel can be protected by means of BTLE encryption,

However works like [65] have shown that the link is typically unprotected relying on device

level encryption to secure the data during transit. Thus, as long as the device encryption key is

secure, the communication between an IoT device and the gateway is protected against an

eavesdropper. The communication channels between gateway-proxy server, proxy server-

cloud server and cloud server-end user are secured with HTTPS.

Threat 4: Byzantine proxy servers

 The above discussions so far assume that all the proxy servers are honest but non-

trusted. This is indeed one of the assumptions of the current study. However, if an attacker is

successful in controlling the behavior of a few servers in the system during the key

reconstruction phase, this can result in a loss of service due to incorrect key reconstruction at

the honest servers. The security requirement of the system in the presence of such byzantine

servers are discussed now.

Let 𝑓 denote the number of byzantine proxy servers. The 𝑓 proxy servers can corrupt

their shares or can arbitrarily distribute corrupt shares to the 𝑚 proxy servers. This scenario is

different from typical PBFT considerations since each server holds a share that is unique to the

80

server. During share reconstruction phase, the 𝑚 proxy servers wait to receive shares from at

least 𝑘 − 𝑚 servers. So, it is necessary that a) 𝑓 < 𝑚 (a coalition of malicious only servers

should not be chosen to provide service to a healthcare organization), b) 𝑛 − 𝑓 ≥ 𝑘 (there

should always be enough honest servers in the system to reconstruct homomorphic keys, if

required) and c) 𝑚 < 𝑘 (a pool of proxy servers providing service to an organization should

not be able to reconstruct keys for devices from other organizations, as per the principle of

least privilege). With these relations it can be inferred that 𝟐𝒇 < 𝒏 . That is, 𝑛 should at least

be 2𝑓 + 1 . Under these circumstances, to reconstruct the homomorphic keys, there should be

at least 𝑘 honest server shares in any pool of shares, since some of them can be byzantine

shares. To reconstruct the secret shares in the presence of malicious server shares, Kwarczyk

extended his original secret sharing scheme from a computational secret sharing scheme to a

robust secret sharing [85] by adding digital fingerprints to the shares at the time of distribution.

Thus utilizing the work described in [124] can provide fault tolerance up to 𝑓 server

corruptions during key reconstruction. Krawczyk’s robust secret sharing scheme introduces a

total blow-up in the share sizes of ≅
𝑛

𝑛−𝑓
 [124].

Threat 4: IoT device compromise

This section first evaluates the security properties of the dynamic key refresh scheme

against the requirements described in Chapter 3. Then the performance of the system towards

the threat is discussed.

The expected properties of a key refresh scheme introduced in Chapter 3 are discussed now.

81

Uniqueness of encryption keys

 From the collision resistance property of the Chameleon hash function [92] the

following can be inferred:

 Given two pairs 𝑚1, 𝑟1 𝑎𝑛𝑑 𝑚2, 𝑟2, where 𝑚1 ≠ 𝑚2 𝑎𝑛𝑑 for 𝑚1, 𝑚2 ∈

𝑍𝑞
∗ and 𝑟1, 𝑟2 ∈ 𝑍𝑞

∗ , probability of 𝐶𝐻𝐴𝑀(𝑚1, ℎ𝑘, 𝑟1) = 𝐶𝐻𝐴𝑀(𝑚2, ℎ𝑘, 𝑟2) is negligible

without the knowledge of a trapdoor key, where ℎ𝑘 is the hashing key .

In the current study 𝑚 = XOR(𝑑𝑒𝑣𝑖𝑐𝑒𝑖𝑑, 𝑟𝑎𝑛𝑑𝑖𝑑).Every medical device has a unique

identifier 𝑑𝑒𝑣𝑖𝑐𝑒𝑖𝑑. Using a CSPRNG will ensure that 𝑟𝑎𝑛𝑑𝑖𝑑 generated for the devices are

unique. Thus, for two devices with 𝑑𝑒𝑣𝑖𝑐𝑒𝑖𝑑1 and 𝑑𝑒𝑣𝑖𝑐𝑒𝑖𝑑2 , 𝑚1 ≠ 𝑚2 and hence the key

generated from chameleon hash functions 𝐶𝐻𝐴𝑀(𝑚1, ℎ𝑘, 𝑟1) and 𝐶𝐻𝐴𝑀(𝑚2, ℎ𝑘, 𝑟2) are

unique.

Randomness of encryption keys

The uniformity property of Chameleon hash function states that the probability

distribution functions of the 𝐶𝐻𝐴𝑀(𝑚, ℎ𝑘, 𝑟) for all messages 𝑚 and for a random number 𝑟

chosen at random is indistinguishable [92]. The Semantic security of chameleon hash

functions which is derived from the uniformity property guarantees that the probability

distributions of the random variables 𝐶𝐻𝐴𝑀(𝑚1, ℎ𝑘, 𝑟) and 𝐶𝐻𝐴𝑀(𝑚2, ℎ𝑘, 𝑟) for messages

𝑚1 and 𝑚2 are computationally indistinguishable [125]. This also means that the conditional

entropy 𝐻(𝑚
ℎ𝑎𝑠ℎ⁄) of a message 𝑚 given its hash ℎ𝑎𝑠ℎ equals the total entropy of the

message 𝑚 , 𝐻(𝑚) [126]. Since an attacker may learn about 𝑑𝑒𝑣𝑖𝑐𝑒𝑖𝑑 during a compromise,

this can reduce the entropy of 𝑚, 𝐻(𝑚). The probability of an attacker knowing the bits of

𝑑𝑒𝑣𝑖𝑐𝑒𝑖𝑑 can be expressed as : 𝑃(𝑖𝑑𝑖 = 1) = 𝑤 , where 0 ≤ 𝑤 ≤ 1 and 0 ≤ 𝑖 ≤ |𝑑𝑒𝑣𝑖𝑐𝑒𝑖𝑑|.

Since 𝑟𝑎𝑛𝑑𝑖𝑑 used in 𝑚1 = XOR(𝑑𝑒𝑣𝑖𝑐𝑒𝑖𝑑, 𝑟𝑎𝑛𝑑𝑖𝑑) is generated using a CSPRNG, the

82

probability of an attacker knowing the bits can be expressed as P(𝑟𝑎𝑛𝑑𝑖=1)=0.5 , 0 ≤ 𝑖 ≤

|𝑑𝑒𝑣𝑖𝑐𝑒𝑖𝑑|. Thus, the probability of an attacker guessing the bits of dynamic device id

generated from 𝑚 = XOR(𝑑𝑒𝑣𝑖𝑐𝑒𝑖𝑑, 𝑟𝑎𝑛𝑑𝑖𝑑) can be expressed as follows:

 𝑃(𝑚𝑖 = 1) = 𝑃(𝑖𝑑𝑖 = 1) ∗ 𝑃(𝑟𝑎𝑛𝑑𝑖 = 0) + 𝑃(𝑖𝑑𝑖 = 0) ∗ 𝑃(𝑟𝑎𝑛𝑑𝑖 = 1)

 𝑤 ∗ 0.5 + (1 − 𝑤) ∗ 0.5

 0.5

Thus, the probability is same as guessing the bits. Thus, the XOR operation overcomes

a potential loss of entropy if 𝑚 = 𝑑𝑒𝑣𝑖𝑐𝑒𝑖𝑑 during a device-key compromise. This is the reason

the study generates a dynamic-id for the IoT device during dynamic key refresh using 𝑚 =

XOR(𝑑𝑒𝑣𝑖𝑐𝑒𝑖𝑑, 𝑟𝑎𝑛𝑑𝑖𝑑).

Correctness of encryption keys

One of the important conditions of a key refresh operation is that the new keys

generated at the IoT device end and the KMS end exactly match. This is defined as the

correctness as the key refresh scheme. The correctness of the scheme used in this study directly

follows the correctness of Chameleon hash functions.

Latency of key refresh algorithm

The computational and communicational latency associated with the proposed scheme

is discussed under the experimental evaluation section. The communication complexity is 2|𝑟|

where r is the random number (𝑟1, 𝑟2) shared by the gateway device with the medical device

and the KMS.

83

Post-compromise Secrecy of the system

A scheme that guarantees two participating nodes to communicate securely even when

the keys protecting the communication are compromised is informally termed to provide post-

compromise secrecy [77]. Authors in [127] define post-compromise security as “Full

compromise of a node at a point in time does not reveal future messages sent within the group”.

IoT devices that use static encryption keys and no session keys suffer from post-compromise

security where the advantage of an adversary possessing the knowledge of device encryption

keys is non-zero. The current study addresses a weaker notion of post-compromise security,

which it now defines with the help of Figure 19 .

Definition 2: A session under attack at time 𝑡𝑎𝑡𝑡𝑎𝑐𝑘 is post-compromise secure if there

exists an intermediate session between 𝑡𝑎𝑡𝑡𝑎𝑐𝑘 and 𝑡𝑐𝑜𝑚𝑝𝑟𝑜𝑚𝑖𝑠𝑒 (time of compromise) such

that

(i) 𝑖𝑑𝑎𝑡𝑡𝑎𝑐𝑘 ≠ 𝑖𝑑𝑐𝑜𝑚𝑝𝑟𝑜𝑚𝑖𝑠𝑒 and

(ii) 𝑖𝑑𝑎𝑡𝑡𝑎𝑐𝑘 + 𝑥. 𝑟1 = 𝑚𝑠𝑒𝑟𝑣𝑒𝑟 + 𝑥. 𝑟2 𝑚𝑜𝑑 𝑞

where,

𝑖𝑑𝑎𝑡𝑡𝑎𝑐𝑘 , 𝑖𝑑𝑐𝑜𝑚𝑝𝑟𝑜𝑚𝑖𝑠𝑒 are dynamic ids used by an IoT device to generate device

encryption keys used during time 𝑡𝑎𝑡𝑡𝑎𝑐𝑘 and 𝑡𝑐𝑜𝑚𝑝𝑟𝑜𝑚𝑖𝑠𝑒 respectively (using

𝐶𝐻𝐴𝑀(𝑖𝑑, ℎ𝑘, 𝑟1))

𝑚𝑠𝑒𝑟𝑣𝑒𝑟 is the id used by KMS to generate the synchronized device key using

𝐶𝐻𝐴𝑀(𝑚𝑠𝑒𝑟𝑣𝑒𝑟 , ℎ𝑘, 𝑟2)

𝑥 is the trapdoor for Chameleon hash function

𝑟1 is a random number used to generate chameleon collision 𝑟2 .

84

Figure 19. An example of attack scenario to define post-compromise security

The above definition is explained in greater detail now. If the dynamic-id used by an

IoT device to generate device encryption keys before 𝑡𝑐𝑜𝑚𝑝𝑟𝑜𝑚𝑖𝑠𝑒 is 𝑖𝑑𝑐𝑜𝑚𝑝𝑟𝑜𝑚𝑖𝑠𝑒 , then the

device key available to an attacker at the time of compromise can be expressed as 𝑘𝑒𝑦1 =

 𝐶𝐻𝐴𝑀(𝑖𝑑𝑐𝑜𝑚𝑝𝑟𝑜𝑚𝑖𝑠𝑒 , ℎ𝑘, 𝑟1). As per the definition, after 𝑡𝑐𝑜𝑚𝑝𝑟𝑜𝑚𝑖𝑠𝑒 let us assume that there

existed a small time window (~280 𝑚𝑠 for the current testbed) before an attack such that a) the

dynamic-id of an IoT device is updated to 𝑖𝑑𝑎𝑡𝑡𝑎𝑐𝑘 where 𝑖𝑑𝑎𝑡𝑡𝑎𝑐𝑘 ≠ 𝑖𝑑𝑐𝑜𝑚𝑝𝑟𝑜𝑚𝑖𝑠𝑒 and b) a

new collision 𝑟2′ is calculated using random variable 𝑟1′ and the trapdoor key 𝑥. Then the new

encryption keys refreshed by the IoT device after this time window can be expressed as 𝑘𝑒𝑦2 =

 𝐶𝐻𝐴𝑀(𝑖𝑑𝑎𝑡𝑡𝑎𝑐𝑘 , ℎ𝑘, 𝑟1
′), while the keys refreshed at the KMS can be expressed as 𝑘𝑒𝑦2′ =

 𝐶𝐻𝐴𝑀(𝑚𝑠𝑒𝑟𝑣𝑒𝑟 , ℎ𝑘, 𝑟2′). By the property of chameleon collision, it can be proven that

𝑘𝑒𝑦2 = 𝑘𝑒𝑦2’.

Now, to prove the post-compromise security of the framework, let us assume the

contrary. Let us assume that the system is not post-compromise secure at 𝑡𝑎𝑡𝑡𝑎𝑐𝑘 . This means

that an adversary can use 𝑘𝑒𝑦1 stolen at 𝑡𝑐𝑜𝑚𝑝𝑟𝑜𝑚𝑖𝑠𝑒 to learn about encrypted IoT device data

during 𝑡𝑎𝑡𝑡𝑎𝑐𝑘 .However, if 𝑡𝑎𝑡𝑡𝑎𝑐𝑘 > 𝑡𝑐𝑜𝑚𝑝𝑟𝑜𝑚𝑖𝑠𝑒 and if the system calculated 𝑟1
′ 𝑎𝑛𝑑 𝑟2′ using

𝑖𝑑𝑎𝑡𝑡𝑎𝑐𝑘 + 𝑥. 𝑟1′ = 𝑚𝑠𝑒𝑟𝑣𝑒𝑟 + 𝑥. 𝑟2′ 𝑚𝑜𝑑 𝑞 , then during 𝑡𝑎𝑡𝑡𝑎𝑐𝑘 the device data is encrypted

using 𝑘𝑒𝑦2. By the collision resistance property of chameleon hash function, 𝑃(𝑘𝑒𝑦1 =

𝑘𝑒𝑦2) ≅ 𝜀, where 𝜀 𝑖𝑠 𝑎 𝑛𝑒𝑔𝑖𝑙𝑖𝑏𝑙𝑒 𝑣𝑎𝑙𝑢𝑒 when 𝑖𝑑𝑎𝑡𝑡𝑎𝑐𝑘 ≠ 𝑖𝑑𝑐𝑜𝑚𝑝𝑟𝑜𝑚𝑖𝑠𝑒. Thus, this

85

invalidates the assumption that an attacker can use 𝑘𝑒𝑦1 stolen at 𝑡𝑐𝑜𝑚𝑝𝑟𝑜𝑚𝑖𝑠𝑒 to learn about

encrypted IoT device data during 𝑡𝑎𝑡𝑡𝑎𝑐𝑘 , proving that the system is post-compromise secure,

under the given conditions.

86

CHAPTER 6. CONCLUSION AND FUTURE WORK

6.1 Summary

 This thesis investigates a practical and scalable solution to enable long-term secure and

privacy preserving cloud computation for IoT devices. To this end, this thesis proposes

utilizing distributed semi-trusted proxy servers, threshold secret sharing schemes and

chameleon hash functions to provide proxy re-ciphering as a service. The proposed framework

securely transforms data encrypted by IoT devices to a fully homomorphic encrypted data,

thereby enabling secure cloud computation on the data. To evaluate the framework, testbed-

based experiments were performed, and the proposed algorithms were individually analyzed.

It was observed that although a distributed proxy server-based solution introduces additional

delays, the security guarantees gained by such a distributed system outweighs the

computational and communicational overhead. Also, it was inferred from the experiments that

homomorphic evaluation of AES in stream cipher mode provides better throughput compared

to the block cipher mode, and this can be further improved with an offline pre-processing. The

proposed framework was also tested during diverse CPU loads to emulate a practical busy

server. It was inferred that with an offline pre-processing of the counter values, the

computations required during the online processing phase are lightweight and thus the latency

increases only by a modest amount, even during high CPU loads. Furthermore, the study also

evaluates the total time taken to dynamically refresh keys between an IoT device and the key

manager server as it provides an upper bound on attack window available to an adversary after

a key compromise. Finally, the study analyzes the key security properties of the proposed

scheme and evaluates it against the critical threats discussed in Chapter 3. The salient features

of the proposed framework are:

87

i) it does not require IoT device users to use additional (fully-trusted) hardware

ii) it accounts for real-world implementations where device vendors do not store device

encryption keys in end-user (smartphone like) devices

iii) it uses libraries that are publicly available and tested for their performance by the

authors, guaranteeing reliability and accessibility for application developers

iv) it introduces a modest computational overhead for key manager servers maintained by

device vendors and a negligible computational overhead at the IoT devices, making

the framework readily adoptable and back-portable with existing solutions

v) it encourages cloud service providers to store minimal yet adequate information to

provide service to end-users, avoiding secondary data usage and privacy violations

vi) it guarantees security for past and future data for IoT devices by discouraging

unnecessary storage of raw device data and by allowing devices to dynamical refresh

keys after a compromise

vii) it studies the expansion in size with homomorphic encryption schemes and provides

an efficient storage solution using threshold secret sharing schemes that also

guarantees resilience against loss of availability of service and loss/ corruption of data

These salient features are the result of tailoring the framework to meet the requirements

of a practical solution described in Chapter 3. Thus, it can be inferred that Proxy re-ciphering

as a service is a practical, scalable and an easy-to-adopt secure framework that guarantees

long-term privacy-preserving cloud computations for encrypted IoT data.

88

6.2 Limitations and Future work

Limitations

• Knowledge about device compromise: The system assumes the knowledge of a device

compromise to initiate key refresh request. Although this can be true for active attacks, in

many real-world IoT applications, such an information may not be readily available.

• Storage: Fully homomorphic encryption scheme is a relatively new and active research

area allowing privacy preserving computations on encrypted data. It was observed from

the experiments that the cipher text size expansion compared to the underlying plaintext is

high. Thus, the storage overhead when adopting an FHE based solution can still be high.

• End-user device: The current study considers laptops like devices to receive encrypted

insights and reports from the cloud servers. When an optimized version of HElib library

which is compatible with smartphones is available, current work can be extended to include

smart phones as end-user devices.

• Default parameters: The current study uses the default parameter values for the libraries

used from the literature. For example, the system parameters used for homomorphic

evaluation of AES are the default values available in the HElib library. Depending on the

actual application logic, parameter values other than the ones used in the current study

might be required.

Future work

• Developing a fully homomorphic encryption-based solution in the cloud would be the

interesting next step. This is currently an on-going area of research where multiple real-

world applications are still unexplored.

89

• Evaluating and proposing a technique for IoT devices to securely store the refreshed encryption

keys within the device-hardware could be an interesting future work.

• During dynamic key refresh, the current study assumes a gateway device to be a fully trusted

intermediary. Another interesting problem for the future work would be to develop a robust

key refreshing scheme that addresses the assumption of device compromise-knowledge and

uses no intermediary, like a gateway device.

90

REFERENCES

[1] S. R. I. C. B. Intelligence, “Disruptive civil technologies,” Six Technol. with potential

impacts US Interes. out to, vol. 2025, 2008.

[2] A. K. C. Bormann, M. Ersue, “Terminology for Constrained-Node Networks,” 2014.

[3] C. B. Z. Shelby, K. Hartke, “The Constrained Application Protocol (CoAP),” 2014.

[4] C. Perrin, “The CIA triad,” Dostopno na http//www. techrepublic.

com/blog/security/the-cia-triad/488, 2008.

[5] P. Mell and T. Grance, “The NIST definition of cloud computing,” 2011.

[6] “Amazon Web Services (AWS)- Cloud Computing Services,” 2016. [Online].

Available: https://aws.amazon.com/.

[7] “Microsoft Azure Cloud Computing Platform & Services,” 2010. [Online]. Available:

https://azure.microsoft.com/.

[8] “Red HAT OpenShift,” 2011. [Online]. Available: https://www.openshift.com/.

[9] M. Benioff and C. Adler, Behind the cloud: the untold story of how Salesforce. com

went from idea to billion-dollar company-and revolutionized an industry. John Wiley

& Sons, 2009.

[10] A. C. F. Chan and J. Zhou, “A Secure, Intelligent Electric Vehicle Ecosystem for Safe

Integration with the Smart Grid,” IEEE Trans. Intell. Transp. Syst., vol. 16, no. 6, pp.

3367–3376, 2015.

[11] R. Smith, “Computing in the cloud,” Res. Manag., vol. 52, no. 5, pp. 65–68, 2009.

[12] “Google Drive: Free Cloud Storage for Personal Use.” [Online]. Available:

https://www.google.com/drive/.

[13] “Dropbox.” [Online]. Available: https://www.dropbox.com/.

[14] “Siri - Apple.” [Online]. Available: https://www.apple.com/siri/.

[15] “Alexa: Keyword Research, Competitive Analysis, & Website Ranking.” [Online].

Available: https://www.alexa.com/.

[16] “Office 365.” [Online]. Available: https://www.office.com/.

[17] “Apache Hadoop.” [Online]. Available: https://hadoop.apache.org/.

[18] S. Brief, “Fast, Low-Overhead Encryption for Apache Hadoop.”

91

[19] J. Gubbi, R. Buyya, S. Marusic, and M. Palaniswami, “Internet of Things (IoT): A

vision, architectural elements, and future directions,” Futur. Gener. Comput. Syst., vol.

29, no. 7, pp. 1645–1660, 2013.

[20] “Internet of Things (IoT) connected devices installed base worldwide from 2015 to 2025

(in billions).”

[21] C. Dobre and F. Xhafa, “Intelligent services for big data science,” Futur. Gener.

Comput. Syst., vol. 37, pp. 267–281, 2014.

[22] “Fitbit Inc,” 2007. [Online]. Available: https://www.fitbit.com/.

[23] “Nest | Create a Connected Home,” 2010. [Online]. Available: https://nest.com/.

[24] “Ring: Home Security Systems | Smart Home Automation,” 2012. [Online]. Available:

https://ring.com/.

[25] “Tesla: Electric Cars,” 2003. [Online]. Available: https://www.tesla.com/.

[26] “Announcing the ADVANCED ENCRYPTION STANDARD (AES),” 2001.

[27] R. L. Rivest, A. Shamir, and L. Adleman, “A method for obtaining digital signatures

and public-key cryptosystems,” Commun. ACM, vol. 21, no. 2, pp. 120–126, 1978.

[28] E. Barker, W. Barker, W. Burr, W. Polk, and M. Smid, “Recommendation for key

management part 1: General (revision 3),” NIST Spec. Publ., vol. 800, no. 57, pp. 1–

147, 2012.

[29] J. Edney and W. A. Arbaugh, Real 802.11 security: Wi-Fi protected access and 802.11

i. Addison-Wesley Professional, 2004.

[30] T. Hardjono and L. R. Dondeti, “Security in Wireless LANS and MANS (Artech House

Computer Security),” Artech House Inc, 2005.

[31] N. Koblitz, “Elliptic curve cryptosystems,” Math. Comput., vol. 48, no. 177, pp. 203–

209, 1987.

[32] V. S. Miller, “Use of elliptic curves in cryptography,” in Conference on the theory and

application of cryptographic techniques, 1985, pp. 417–426.

[33] S. Gueron, “Intel’s new AES instructions for enhanced performance and security,” in

International Workshop on Fast Software Encryption, 2009, pp. 51–66.

[34] J. J. Stephen et al., “Entitled Securing Cloud-Based Data Analytics: A Practical

Approach Head of the Departmental Graduate Program Date,” 2015.

[35] S. K. Shiho Moriai, Miyako Ohkubo, “Cryptographic Technology Guideline

(Lightweight Cryptography) Title,” 2017.

92

[36] T. Shirai, K. Shibutani, T. Akishita, S. Moriai, and T. Iwata, “The 128-bit blockcipher

CLEFIA,” in International workshop on fast software encryption, 2007, pp. 181–195.

[37] J. Borghoff et al., “Prince–a low-latency block cipher for pervasive computing

applications,” in International Conference on the Theory and Application of Cryptology

and Information Security, 2012, pp. 208–225.

[38] R. Beaulieu, S. Treatman-Clark, D. Shors, B. Weeks, J. Smith, and L. Wingers, “The

SIMON and SPECK lightweight block ciphers,” in 2015 52nd ACM/EDAC/IEEE

Design Automation Conference (DAC), 2015, pp. 1–6.

[39] M. Matsui, J. Nakajima, and S. Moriai, “A description of the Camellia encryption

algorithm,” 2004.

[40] S. Banik et al., “Midori: a block cipher for low energy,” in International Conference on

the Theory and Application of Cryptology and Information Security, 2015, pp. 411–436.

[41] V. Kolesnikov and R. Kumaresan, “Improved secure two-party computation via

information-theoretic garbled circuits,” in International Conference on Security and

Cryptography for Networks, 2012, pp. 205–221.

[42] A. C.-C. Yao, “Protocols for secure computations,” in FOCS, 1982, vol. 82, pp. 160–

164.

[43] P. Mohassel and B. Riva, “Garbled circuits checking garbled circuits: More efficient

and secure two-party computation,” in Advances in Cryptology–CRYPTO 2013,

Springer, 2013, pp. 36–53.

[44] R. L. Rivest, L. Adleman, and M. L. Dertouzos, “On data banks and privacy

homomorphisms,” Found. Secur. Comput., vol. 4, no. 11, pp. 169–180, 1978.

[45] T. ElGamal, “A public key cryptosystem and a signature scheme based on discrete

logarithms,” IEEE Trans. Inf. theory, vol. 31, no. 4, pp. 469–472, 1985.

[46] P. Paillier, “Public-key cryptosystems based on composite degree residuosity classes,”

in International Conference on the Theory and Applications of Cryptographic

Techniques, 1999, pp. 223–238.

[47] S. Goldwasser and S. Micali, “Probabilistic encryption & how to play mental poker

keeping secret all partial information,” in Proceedings of the fourteenth annual ACM

symposium on Theory of computing, 1982, pp. 365–377.

[48] D. Boneh, E.-J. Goh, and K. Nissim, “Evaluating 2-DNF formulas on ciphertexts,” in

Theory of Cryptography Conference, 2005, pp. 325–341.

[49] J. Benaloh, “Verifiable secret-ballot elections [Ph. D. Thesis],” Yale Univ., 1987.

93

[50] H. Shafagh, L. Burkhalter, and A. Hithnawi, Talos a Platform for Processing Encrypted

IoT Data: Demo Abstract. 2016.

[51] R. A. Popa, C. Redfield, N. Zeldovich, and H. Balakrishnan, “CryptDB: protecting

confidentiality with encrypted query processing,” in Proceedings of the Twenty-Third

ACM Symposium on Operating Systems Principles, 2011, pp. 85–100.

[52] M. I. Sarfraz, M. Nabeel, J. Cao, and E. Bertino, “Dbmask: Fine-grained access control

on encrypted relational databases,” in Proceedings of the 5th ACM Conference on Data

and Application Security and Privacy, 2015, pp. 1–11.

[53] H. Shafagh, A. Hithnawi, L. Burkhalter, P. Fischli, and S. Duquennoy, “Secure sharing

of partially homomorphic encrypted iot data,” in Proceedings of the 15th ACM

Conference on Embedded Network Sensor Systems, 2017, p. 29.

[54] “Ava- Fertility Tracking Bracelet,” 2014. [Online]. Available:

https://www.avawomen.com/.

[55] C. Gentry and D. Boneh, A fully homomorphic encryption scheme, vol. 20, no. 09.

Stanford University Stanford, 2009.

[56] Z. Brakerski, C. Gentry, and V. Vaikuntanathan, “(Leveled) fully homomorphic

encryption without bootstrapping,” ACM Trans. Comput. Theory, vol. 6, no. 3, p. 13,

2014.

[57] V. S. Halevi, Shai, “An Implementation of homomorphic encryption,” 2013. [Online].

Available: https://github.com/shaih/HElib.

[58] S. Halevi and V. Shoup, “Algorithms in helib,” in Annual Cryptology Conference, 2014,

pp. 554–571.

[59] H. Au and V. Beach, “CallForFire: A Mission-Critical Cloud-Based Application Built

Using the Nomad Framework,” in Financial Cryptography and Data Security: FC 2016

International Workshops, BITCOIN, VOTING, and WAHC, Christ Church, Barbados,

February 26, 2016, Revised Selected Papers, 2016, vol. 9604, p. 319.

[60] S. Ji and K. Wan, “k-Anonymously Private Search over Encrypted Data,” arXiv Prepr.

arXiv1703.08269, 2017.

[61] M. Naehrig, K. Lauter, and V. Vaikuntanathan, “Can homomorphic encryption be

practical?,” in Proceedings of the 3rd ACM workshop on Cloud computing security

workshop, 2011, pp. 113–124.

[62] C. Gentry, S. Halevi, and N. P. Smart, “Homomorphic evaluation of the AES Circuit

(Updated Implementation), 2015.” .

[63] V. Shoup, “NTL: A Library for doing Number Theory.” [Online]. Available:

https://www.shoup.net/ntl/.

94

[64] “The GNU Multiple Precision Arithmetic Library.” [Online]. Available:

http://www.gmplib.org.

[65] J. Classen, D. Wegemer, P. Patras, T. Spink, and M. Hollick, “Anatomy of a vulnerable

fitness tracking system: dissecting the fitbit cloud, App, and firmware,” Proc. ACM

Interactive, Mobile, Wearable Ubiquitous Technol., vol. 2, no. 1, p. 5, 2018.

[66] M. Schellevis, “Getting access to your own Fitbit data,” Radboud University, 2016.

[67] “Fitbit App.” [Online]. Available:

https://play.google.com/store/apps/details?id=com.fitbit.FitbitMobile&hl=en_US.

[68] B. Cyr, W. Horn, D. Miao, and M. Specter, “Security analysis of wearable fitness

devices (fitbit),” Massachusets Inst. Technol., vol. 1, 2014.

[69] A. Page, O. Kocabas, T. Soyata, M. Aktas, and J. Couderc, “Cloud‐Based Privacy‐

Preserving Remote ECG Monitoring and Surveillance,” Ann. Noninvasive

Electrocardiol., vol. 20, no. 4, pp. 328–337, 2015.

[70] O. Kocabas and T. Soyata, “Towards privacy-preserving medical cloud computing

using homomorphic encryption,” in Enabling Real-Time Mobile Cloud Computing

through Emerging Technologies, IGI Global, 2015, pp. 213–246.

[71] O. Kocabas and T. Soyata, “Utilizing homomorphic encryption to implement secure and

private medical cloud computing,” in 2015 IEEE 8th International Conference on Cloud

Computing, 2015, pp. 540–547.

[72] A. Botta, W. De Donato, V. Persico, and A. Pescapé, “Integration of cloud computing

and internet of things: a survey,” Futur. Gener. Comput. Syst., vol. 56, pp. 684–700,

2016.

[73] V. Lara, “What the Internet of Things means for consumer privacy,” 2018.

[74] H. Fereidooni et al., “Breaking fitness records without moving: Reverse engineering

and spoofing fitbit,” in International Symposium on Research in Attacks, Intrusions, and

Defenses, 2017, pp. 48–69.

[75] “TP-Link.” [Online]. Available: https://www.tp-link.com/us/.

[76] S. Khandelwal, “Millions of IoT Devices Using Same Hard-Coded CRYPTO Keys,”

2015.

[77] K. Cohn-Gordon, C. Cremers, and L. Garratt, “On post-compromise security,” in 2016

IEEE 29th Computer Security Foundations Symposium (CSF), 2016, pp. 164–178.

[78] J. Bottomley, “Converting Fault Resilience to Fault Tolerance.” [Online]. Available:

https://www.usenix.org/legacy/publications/library/proceedings/usenix04/tech/sigs/full

_papers/bottomley/bottomley_html/node22.html.

95

[79] H. Chen, K. Laine, and R. Player, “Simple encrypted arithmetic library-SEAL v2. 1,”

in International Conference on Financial Cryptography and Data Security, 2017, pp.

3–18.

[80] S. S. Sathya, P. Vepakomma, R. Raskar, R. Ramachandra, and S. Bhattacharya, “A

Review of Homomorphic Encryption Libraries for Secure Computation,” arXiv Prepr.

arXiv1812.02428, 2018.

[81] A. Shamir, “How to share a secret,” Commun. ACM, vol. 22, no. 11, pp. 612–613, 1979.

[82] E. Waring, “VII. Problems concerning interpolations,” Philos. Trans. R. Soc. London,

no. 69, pp. 59–67, 1779.

[83] G. R. Blakley, “Safeguarding cryptographic keys,” in Proceedings of the national

computer conference, 1979, vol. 48, no. 313.

[84] A. Parakh and S. Kak, “Space efficient secret sharing for implicit data security,” Inf.

Sci. (Ny)., vol. 181, no. 2, pp. 335–341, 2011.

[85] H. Krawczyk, “Secret sharing made short,” in Annual International Cryptology

Conference, 1993, pp. 136–146.

[86] M. O. Rabin, “Efficient dispersal of information for security, load balancing, and fault

tolerance,” J. ACM, vol. 36, no. 2, pp. 335–348, 1989.

[87] A. L. Nir, Y., “ChaCha20 and Poly1305 for IETF Protocols,” 2015.

[88] T. Loruenser, A. Happe, and D. Slamanig, “ARCHISTAR: towards secure and robust

cloud based data sharing,” in 2015 IEEE 7th International Conference on Cloud

Computing Technology and Science (CloudCom), 2015, pp. 371–378.

[89] L. Carlitz, “The arithmetic of polynomials in a Galois field,” Am. J. Math., vol. 54, no.

1, pp. 39–50, 1932.

[90] P. E. Naeini et al., “Privacy expectations and preferences in an IoT world,” in Thirteenth

Symposium on Usable Privacy and Security ({SOUPS} 2017), 2017, pp. 399–412.

[91] P. Klasnja, S. Consolvo, T. Choudhury, R. Beckwith, and J. Hightower, “Exploring

privacy concerns about personal sensing,” in International Conference on Pervasive

Computing, 2009, pp. 176–183.

[92] H. M. Krawczyk and T. D. Rabin, “Chameleon hashing and signatures.” Google Patents,

Aug-2000.

[93] W. Liu, “CloudCrypto.” [Online]. Available:

https://github.com/liuweiran900217/CloudCrypto.

[94] “Continuous Glucose Monitoring.”

96

[95] “Different Types of Insulin Pens.”

[96] “3M Intelligent Control Inhaler.” [Online]. Available:

https://www.3m.com/3M/en_US/drug-delivery-systems-

us/technologies/inhalation/intelligentcontrol/.

[97] “Proteus Digital Health.” [Online]. Available: https://www.proteus.com/.

[98] “Revealing the Billion-dollar Growth Opportunities in the Global Healthcare Industry

by 2025.” .

[99] K. Baldwin, “Use of Mobile and Sensor Technology Lowers Symptom Severity for

People With Head and Neck Cancer.”

[100] J. T. James, “A New, Evidence-based Estimate of Patient Harms Associated with

Hospital Care,” J. Patient Saf., vol. 9, no. 3, pp. 122–128, 2013.

[101] “American Cancer Society. Cancer Facts & Figures, 2018.” .

[102] A. Boyd, “Kushner Announces ‘Whole of Government’ Plan To Improve Health Tech.”

[103] “Hospital Executives Survey,” The Lancet, 2003. .

[104] “Google cloud Healthcare API.” .

[105] “Fitbit and Google Announce Collaboration to Accelerate Innovation in Digital Health

and Wearables,” 30-Apr-2018.

[106] “Fitbit, Inc. to Acquire Twine Health,” 2018.

[107] R. Ackerman, “The healthcare industry is in a world of cybersecurity hurt.” .

[108] B. Rossi, “Healthcare fraud: a five step plan for diagnosis and treatment,” Information

Age, 2016.

[109] J. E. Pam Dixon, “The Geography of Medical Identity Theft.”

[110] H. Khamis, R. Weiss, Y. Xie, C.-W. Chang, N. H. Lovell, and S. J. A.-A. R. C.

Redmond, “TELE ECG Database: 250 telehealth ECG records (collected using dry

metal electrodes) with annotated QRS and artifact masks, and MATLAB code for the

UNSW artifact detection and UNSW QRS detection algorithms.” Harvard Dataverse.

[111] “Fitbit Web API Basics.” .

[112] “stress-ng - a tool to load and stress a computer system.” [Online]. Available:

http://manpages.ubuntu.com/manpages/bionic/man1/stress-ng.1.html.

[113] G. Procter, “A Security Analysis of the Composition of ChaCha20 and Poly1305.,”

IACR Cryptol. ePrint Arch., vol. 2014, p. 613, 2014.

97

[114] “Security Analysis of ChaCha20-Poly1305 AEAD.”

[115] J. Spitzer, “266k LA medical center patients’ PHI compromised in ransomware attack.”

.

[116] J. K. Cohen, “Home medical equipment supplier Airway Oxygen hit with ransomware,

affects 500k.” .

[117] G. Johansson, “Cyber-attack shuts down US Regional Hospital’s online system.” .

[118] J. Davis, “Denial-of-service attacks on healthcare poised to explode.” .

[119] A. Biryukov and D. Khovratovich, “Related-key cryptanalysis of the full AES-192 and

AES-256,” in International Conference on the Theory and Application of Cryptology

and Information Security, 2009, pp. 1–18.

[120] A. Bogdanov, D. Khovratovich, and C. Rechberger, “Biclique cryptanalysis of the full

AES,” in International Conference on the Theory and Application of Cryptology and

Information Security, 2011, pp. 344–371.

[121] H. Gilbert and T. Peyrin, “Super-Sbox cryptanalysis: improved attacks for AES-like

permutations,” in International Workshop on Fast Software Encryption, 2010, pp. 365–

383.

[122] A. Biryukov, O. Dunkelman, N. Keller, D. Khovratovich, and A. Shamir, “Key recovery

attacks of practical complexity on AES-256 variants with up to 10 rounds,” in Annual

International Conference on the Theory and Applications of Cryptographic Techniques,

2010, pp. 299–319.

[123] S. Ashok and R. V Krishnaiah, “Overview and evaluation of bluetooth low energy: An

emerging low-power wireless technology,” Int. J., vol. 3, no. 9, 2013.

[124] H. Krawczyk, “Distributed fingerprints and secure information dispersal,” in

Proceedings of the twelfth annual ACM symposium on Principles of distributed

computing, 1993, pp. 207–218.

[125] G. Ateniese and B. de Medeiros, “Identity-based chameleon hash and applications,” in

International Conference on Financial Cryptography, 2004, pp. 164–180.

[126] X. Chen, F. Zhang, H. Tian, B. Wei, and K. Kim, “Discrete logarithm based chameleon

hashing and signatures without key exposure,” Comput. Electr. Eng., vol. 37, no. 4, pp.

614–623, 2011.

[127] N. Messaging, L. Security, and S. Active, “Messaging Layer Security (mls) Charter

for Working Group,” 2018.

