
71-26,900 

VOSS, David-Albert, 191^3-
A SPLUŒ SHOOTING TECHNIQUE FOR TWO POINT 
BOUNDARY VALUE PKOBLEMS. 

lowa State University, Ph.D., 1971 
Mathanatics 

University Miciofilms, A XHW\ Company, Ann Arbor, Michigan 

THIS DISSERTATION HAS BEEN MICROFILMED EXACTLY AS RECEIVED 



A spline shooting technique for 

two point boundary value problems 

by 

David Albert Vos s 

A Dissertation Submitted to the 

Graduate Faculty in Partial Fulfillment of 

The Requirements for the Degree of 

DOCTOR OF PHILOSOPHY 

Major Sub]ect: Applied Mathematics 

Approved; 

In Chargq^ôf Major Work 

Head éf Major "bepartment 

aduate College 

Iowa State University 
Of Science and Technology 

Ames, Iowa 

1971 

Signature was redacted for privacy.

Signature was redacted for privacy.

Signature was redacted for privacy.



ii 

TABLE OF CONTENTS 

Page 

I. INTRODUCTION 1 

II. CONSTRUCTION OF THE CUBIC SPLINE FUNCTION 8 

III. THE CONSISTENCY RELATION FOR A SPLINE 

FUNCTION 24 

IV. CONVERGENCE PROPERTIES 36 

V. EXAMPLES 50 

VI. REMARKS 57 

VII. BIBLIOGRAPHY 6? 

VIII. ACKNOWLEDGEMENT 68 



1 

I. INTRODUCTION 

In this paper we consider the two point boundary value 

problem in ordinary differential equations 

Our purpose will be to study the application of cubic spline 

functions to the numerical treatment of (1.1). That is, we 

develop a method which produces a cubic spline function• 

approximation to the analytical solution of (1.1) over the 

finite interval [a,b]. Some remarks concerning the appli­

cability of our method in solving the general two point 

boundary value problem 

will be made in Chapter VII. 

Before we consider a numerical method for solving (1.1), 

we must be assured that there exists a unique analytical 

solution. The following class of boundary value problems 

defined by Henrici [6, p.5^7] is fundasiantal to this problem. 

Definition 1.1: A boundary value problem will be said to be 

of class M if it is of the form (l.l) where 

y" = f(x,y), y(a) = A, y(b) = B. (1.1) 

y" = f(x,y,y'), y(a) = A, y(b) = B, (1.2) 
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-oo< a < b <oo, A  a n d  B  a r e  a r b i t r a r y  c o n s t a n t s ,  a n d  

the function f(x,y) satisfies the following conditions: 

(i) f(x,y) is defined and continuous in the infinite 

strip T = [(x,y) : a g x g b, - œ < y < œ}; 

(ii) f(x,y) satisfies a Lipschitz condition in y 

uniformly in x, that is, there exists a constant 

L such that for any x e [a,b] and any two 

numbers y and y*, 

|f(x,y) - f(x,y*)| S L|y - y*l; 

(iii) fy.(x,y) is continuous and nonnegative in T. 

Problems of class M are nice in the following sense: 

Theorem 1.1: A boundary value problem of class M has a 

unique solution. The proof of this theorem can be found in 

[6, p.3)47] ' In this paper we will only consider problems 

of class M so that the solution y(x) of (l.l) exists 

and is unique. 

There is an extensive literature on the numerical so­

lution of (l.l). Although existence of unique solutions 

for the two point boundary value problem has been established 

under fairly general conditions, there are no general 

methods for finding the solutions analytically. In fact 

Henrici [6, p.2] points out that even relatively innocent-

looking differential equations, such as y" = 6y^ + x, 

cannot be solved in terms of elementary functions. Further­



5 

more, even in cases where an aoo^licit solution does exist, 

the problem of finding its nuiae;srical values may be difficult 

r"" t^ as for example in the solutioi* e e dt of the 
•"o 

1 2 
equation y" = 4x^y - 2(x+l), % y(0) = 0, y(l) = g J dt. 

It is important to have practLccal methods for approximating 

the solution of (l.l) with arl>i iitrarily high accuracy. The 

advent of the high-speed digitalal computer has made the use 

of numerical methods for solvLnong (l.l) not only feasible but 

also very attractive. 

The known numerical method:Hs generally fall into two 

categories : 

(i) discrete variable metldiods vAiich produce a table 

of approximate value s s at usually equidistant 

points of the indepe^ondent variable, and 

(ii) global (continuous) anemethods vAiich produce a con­

tinuous approximating y function over the entire 

interval [a,b]. 

Concerning the first type, Qiaifloter VII in Henrici [6] con­

tains applications of such metliojods to our problem (l.l), 

along with an extensive bibliogairaphy. In particular he 

notes that it is theoretically 5 always possible to reduce the 

solution of (l.l) to the solutdo.on of a sequence of initial 

value problems. Let y(x,s) delenote the solution of the 
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initial value problem resulting from (l.l) by replaceing the 

condition for y(b) by the condition y'(a) = s, vAiere s 

is a parameter, then (l.l) is equivalent to solving the 

(in general nonlinear) equation y(b,s) = B for the so­

lution s = s*. This can be accomplished by one of the 

standard methods such as régula falsi or Newton's method, 

however, each evaluation of the function y(x,s) (and, if 

Newton's method is used, of yg(x,s)) requires the solution 

of an initial value problem. That is, one starts with an 

initial slope s^ and sees what happens at x = b by 

solving the associated initial value problem. A "better" 

slope s 2 is generated using this information and the 

process is repeated. Continuing in this fashion a sequence 

of slopes is generated with the hope that s^ -» s* 

as n -• 00. Chapter II in Keller [7 ] contains some general 

results concerning this so-called "shooting" or "drive-

through" technique wherein the associated initial value 

problems are solved using a stable discrete variable method 

of order p. 

Our interest is in using the "shooting" technique to 

construct a global or continuous approximation to the so­

lution. The approach we take leads to the subject of spline 

functions, the first mention of which was made by Schoenberg 

[10]. The following definition is due to him. 



Definition 1.2: Suppose we are given a sequence of real 

numbers 

a = < X , < 
o 1 

< = b. (1.3) 

A function S(x) is a spline function of degree m & 1 if 

it satisfies: 

(ii) S(x) e TT^ in each sub interval 

(Xi,Xi^l), i = 0,1, ...,n-l, where is the 

set of all polynomials of degree S m. The points 

(1.5) are called knots (sometimes joints or mesh 

points) of the spline S(x) and may be jump 

discontinuities of S^^^(x). 

Note that TT c S where 8 denotes the set of all mm m 

spline functions of degree m, class C™"^[a,b]. 

A recent study on the application of spline functions 

for approximating the solution of the initial value problem 

has been done by Loscalzo and Talbot [8 ]. Some of the ideas 

behind their construction of the spline function approxima­

tion will be implemented here. 

(i) S(x) e C™"^[a,b]; 

y' = f(x,y), y(a) = y^ (1.4) 
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As before, we replace (l.l) by the initial value 

problem 

y" = f(x,y), y(a) = A, y'(a) = s (1.5) 

where s is a parameter. A cubic spline function, which 

we will denote by S(x,s), is generated to approximate the 

solution y(x,s) of (1,5). We use a Taylor ejcpansion of 

order two at x = x^ and define the coefficient a^ of 

by a collocation requirement at x = x^ = x^ + h 

S"(Xi,s) = f(xj^,S(x^,s)). 

A similar Taylor expansion at x = x^ yields the first 

three coefficients of the next polynomial component of 

degree 5* and a collocation condition at x = Xg = x^ + 2h 

gives the fourth coefficient a^ and completes the defi­

nition up to the determination of s. This process is 

repeated until of spline function of degre m = 3 is de­

fined in terms of s over the entire remge of integration 

[a,b] with knots x^ = a + ih, i = 1,2, ...,n-l and 

h = (b-a)/n. For the determination of the parameter s 

we require that the spline function S(x,s) satisfy the 

boundary condition at x = b: 



S(b,s) = B. (1.6) 

•this completes the definition of S(x, s). As one might sus­

pect, the initial slope s, determined by equation (1.6), 

can be written as a function of the coefficients 

a^, i = 1,...,n. Note also that S(x,s) has two continuous 

derivatives for x e [a,b]. 

Loscalzo and Talbot [8] discovered that any spline 

function in with equidistant knots satisfies a linear 

consistency relation vâiich is equivalent to a discrete 

multistep method if it is applied to the initial value 

problem (1.4). Similarly, we find that such a spline 

function is equivalent to a discrete multistep method if it 

is applied to the boundary value problem (l.l). 
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II. CONSTRUCTION OF THE CUBIC SPLINE FUNCTION 

Consider the boundary value problem of class M: 

y" = f(x,y) (2.1) 

y(a) = A, y(b) = B (2 .2)  

Let y(x,s) denote the solution of the initial value 

problem resulting from (2.1) and (2.2) by replacing the con­

dition for y(b) by the condition y'(a) = s, where s is 

a parameter: 

We wish to determine an initial slope s so that the 

approximate solution S(x,s), vAiich we will construct, to 

y(xjs) will also be a good approximation to the solution 

y(x,s*) of (2.1); here s* is the solution of the 

equation y(b,s) = B. 

Our construction is as follows. Let n > 5 be an 

integer, h = ̂  ~ and let S(x, s) (a g x S b) be a spline 

2 function of degree class C and having its knots at 

y" = f(x,y) (2.5) 

y(a) = A, y'(a) = s. (2.4) 
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the points x = a + h,a + 2h, ...,a + (n- l)h. Vfe define the 

first component of S(x,s) by 

S(x,s) = y(a,s) + y * (a, s) (x - a) y"(a, s) (x - a)^ 

+ ̂  ai(x-a)^ 

(2.5) 

= A + s(x - a) + ̂  f (a,A) (x- a)^ + ̂  a^(x- a)-, 

a g X g a + h 

with the last coefficient a^ and, of course, the slope s 

as yet undetermined. We now require that S(x,s) satisfy 

(2.3) for X = a + h. This gives the equation 

S"(a + h,s) = ^a + h,S(a + h,s) ). (2.6) 

More explicitly we have, 

S(a + h,s) = A + sh + ̂  f(a,A)h^ + ̂  a^^h^ 

S"(a+h,s) = f(a,A) + a^h. 

so that (2.6) becomes 
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ai = ̂ [f(a + h,A+sh + | f(a,A)h^ + ̂  a^h^) - f(a,A)] 

(2.7) 

Repeating the same steps in the interval [a + h,a+2h], 

we define 

2 

S(x,s) = ^ ̂  S^^^(a + h,s)[x-(a + h)]^ 

(2.8) 

+ ̂  agCx- (a + h)]-

and require S(x,s) to satis^ (2.5) at x = a + 2h 

S"(a + 2h,s) = f(a + 2h,S(a + 2h,s)). (2.9) 

This results in the equation 

1 T a^oh^ 
ag = ^Cf(a + 2h,A+2sh + 2f(a,A) + ̂  a^h^ + —) 

- a^h - f(a,A)] (2.10) 

= 92(s,ai,a2) 
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Continuing in this manner we obtain a cubic spline function 

S(x, s) satisJ^ing the equations 

S"(a+ih,s) = f(a + ih, S(a + ih, s) ), i = 0,1,...,n 

(2.11) 

which results in the system of n nonlinear equations in the 

n + 1 unknowns a^^,a^,...,a^, s, that is 

a^ = g^(s^^2'* * *'^i^* 

Now for the determination of the parameter s, we require 

that the spline function satisfy the boundary condition at 

X = b: 

S(b,s) = B. (2.12) 

We have the following fact concerning the solution s of 

equation (2.12). 

Theorem 2.1: If we require the cubic spline function con­

structed above to satis^ the boundary condition at x = b, 

the parameter s satisfies the equation 

i-



12 

= = - IT I (2.13) 
j=l 

where C? = [n- (j - 1) - [n- j]^. 

The proof of this theorem relies on the following 

lemma: 

Lemma 2.2: At the points x = a + ih, i = 0,1, ...,n, the 

cubic spline function S(x,s) and its first two derivatives 

satis^ the equations: 

Proof of Lemma 2.2: We will establish (2.l4)-(2.l6) by in­

duction. Clearly, by construction, (2.16) holds for i = 0, 

Assume it is true for i - 1. Now over the interval 

[a+ (i- l)h,a + ih], S(x,s) is given by 

1 

(2.15) 

(2.16) 
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S(x,s) = ^ S^^^(a+(i-l)h)Cx-(a+(i-l)h)]^ 

k=0 

(2.17) 

+ a^[x- (a+ (i - l)h]^. 

Hence S'(x,s) and S"(x,s) are given by 

S'(x,s) = S'(a+ (i- l)h,s) +S"(a+ (i- l)h,s)[x- (a+ (i- l)h)] 

+ I a^[x- (a+ (i-l)h)f (2.18) 

S"(x, s) = S"(a+(i-l)h,s)+a^[x-(a+(i-l)h)]. (2.19) 

Now since (2.16) is assumed true for i - 1, 

i-1 

S"(x,s) = f(a,A) + h ^ aj + a^[x- (a+ (i - l)h], 

j=l 

and evaluating S"(x, s) at x = a + ih we find 

i 

S"(a+ih,s) = f(a,A) +h ^ a^. 

j=l 

This proves (2.16). 



14 

To prove (2.15), we note that it is true for i = 0 by 

construction. Assume it is true for i - 1. Evaluating 

equation (2.18) at x = a + ih we find 

S ' (a + ih,s) = S ' (a + (i- l)h,s) + S"(a+ (i - l)h,s)h + ̂  h^a^ 

i-1 

= s + (i - l)hf(a,A) + h^ ̂  (i - 1- j +^)aj 

j=l 

i-1 

+ hf(a,A) + h^ ̂  aj 4- ^ h^a^ 

j=l 

i 

= s + ihf(a,A) 4- h^ Y (i-j + §")&]. 

j=l 

This proves (2.15). 

Finally, to prove (2.14), we note that it is also true 

f o r  i  =  0  b y  c o n s t r u c t i o n .  A s s u m e  i t  i s  t r u e  f o r  i - 1 .  

Evaluating equation (2.1?) at x=a+ih results in 

S(a+ ih,s) = S(a+ (i- l)h,s) + hS'(a+ (i- l)h,s) 

+ ~ S"(a+ (i- l)h,s) + ̂  a^h^ 
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= A + (i- l)hs + h^f(a,A) 

, i-1 

i =rs 
j=i 

i-1 

+ hs + (i- l)h^f (a,A) +h^ ̂  (i-l-j+^)aj 

j=l 

+ f(a,A) 

j=l 

1 a.h-

2 5 
= A + ihs + f{3L,A) 4- ̂  Y C^Sj. 

' j=i 

This establishes equation (2.14). 

Proof of Theorem 2.1: This follows directly from Lemma 2.2 

by letting i = n. We have 

S(a + nh,s) = S(b,s) = A + (b-a)s + 
- a)' 

f(a,A) 

n 

+ #7 I 
j=i 

and setting S(b,s) = B and solving for the parameter s 

establishes equation (2.15). 
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Next we concern ourselves with the questions of ex­

istence and uniqueness of the cubic spline function con­

structed above. Recall that over the interval [x^_2,x^] 

we define 

2 

S(x,s) = ^ ̂  s(^^(x^_]^,s)[x-^ *i-i^^-

k^O 

But from Theorem 2.1 we have the parameter s expressed in 

terms of the coefficients a^, i = 1,2, ...,n, and hence 

because of the spline continuity conditions we see that 

S(x, s) will be uniquely determined if the vector 

â = (a^a^, .. .ja^)"^ can be found uniquely. 

Now the coefficients a^ are to be found from the 

collocation requirement 

S (x^,s) = f(x^,S(x^,s)), i = 1, ...,n, 

which by Lemma 2.2 becomes 

i 

f(a,A) +h ^ a. = f(x^,S(x^,s)), i = 1, ,n. 

j=l ^ 

Solving for a. we find 
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i-l 

= ̂ Cf(x^,S(x^,s)) - h ̂  aj - f(a,A)] 

j=l 

= ^ff(x^,S(x^,s)) - S"(x^_2;S)] 

= ï^Cf(x^jS(x^,s)) - f(Xi_2;S(x^_^,s))] 

~ 9^(^2.'* ̂ 2'* * * * •* ^n.^' ^ ~ 1;2,(2.20) 

Hence if we denote by a the vector a = (a^,..., a^)^, and 

by g the vector g = (g^,...^g^)^, we see that the 

problem of finding the coefficients a^, i = 1, ...,n, 

results in the solution of a system of (in general nonlinear) 

equations vàiich in vector notation can be written 

i = g(i). (2.21) 

It is Toiown [9,p.l25] that if the Jacobian matrix U 

_ ,3g. (â). 
of g, U  =  ̂ — J satisfies the condition | | u j |  < 1, vAiere 

II ' II denotes the spectral norm of •, then g is a con­

traction mapping and the system (2.21) has a unique fixed 

point which may be found by iteration. 

Uie elements of the matrix U = (u^j) are e^licity 
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"ij - " n'^j] 

with Cjj as previously defined except for the condition 

il 
= 0 if k < i. Now if we define the matrix T = (t^ 

rl, j ^ i _T /_T\ 
where t_. ̂  , then T~ = (t>T ') vàiere 'ij ~ L, 0, j > i 1] 

( 
t(jl/ = j-1, j = i - 1, and TUT~^ = P = (P^j) where 

Lo, otherwise 

(b - a)2f (x^,s(x^,s))[T(i ], 
^ n 

j < i 

(b - a)2fy(x^,s(xi,s) ~ j = i<n 

Pij = 1 = ] = n 

(b- a)^f (Xj^,S(Xj^,s))[^^"i i < j < n 

(b a) fy,(x^,s(xj^,s) i < j = n 

Then, since U = T ^T, we have 
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Hull = 1IT~^PT11 G llT'-̂ I|iip|lllTll = HP 
-1, (2.22) 

as 1IT"^1| = 11T|1 = 1. 

Next we define the matrix R = (r%j) vdiere 

r^j = j = n, i = n - 1 from vfeich we easily see that 

0, otherwise 

1, j = i 

=  ( r i s  g i v e n  b y  r ^ T ^ ^  ~  ^  ~  i  =  n  -  1 .  

otherwise 

Performing another transformation we get RPR ^ = (q^j) 
y 

where 

r(b-a)2f (Xi,S(Xi,s))[]fi'L*)], 

= 

j < i 

j (b-a)2fy(x.,S(x.,s))[^i-~^^î^], j = i < n 

^(b-a)2fy(Xj^,S(Xj^,s))[-^^^j^^], j > i 

Note that q^j g 0, 1 ë i, j ^ n since f^ ë 0. 

For a given matrix A if we denote the spectral radius 

of A by P(A) and the conjugate transpose of A by A*, 

then since P = R~^Q^ R we get 
y 
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IIPlI = |1r-1Qj R|| g ||R-l||||Qg Illicit = llQj II (2.23) 
y y y 

as ||R-1|| = llRll = 1. 

By definition, 

1 . 

= [p(Q|^Qf^)]^ (2.24) 

Observe that Q| is a nonnegative matrix and so if we 
y y 

assume f^ ^ N, and denote by the matrix resulting by 

replacing f^ by this upper bound in each component of the 

matrix Q- , we have that 
y 

(2-25) 

as Qjj is symmetric. On combining equation (2.24) with 

inequalities (2.22), (2.22), and (2.25) we get that 

WI®p(On). (2.26) 

Thus the system (2.21) has a unique fixed point vAien 

p(Qjj) < 1. Now the matrix = (b-a)^N- D where 

D = (d^j) is given by 
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^j(^- n)/n" j < i 

(6i^ - 6xn + n)/n^, j = i < n , 

i(j - n)/n^ j > i 

X = 3 = n 

and so we need to analyse p(D). lEhis was done for several 

values of n by finding the eigenvalues of the matrix D 

using the Power method and a computer. The results are 

listed in the following table. 

Table 2.1 

The spectral radius of D 

n P(D) 

4 0.09627751 

5 0.09805469 

6 0.09905845 

7 0.09965777 

8  0.10002920 

9 0.10029867 

10 0.10049198 

20 0.10111511 

50 0.10122864 

40 0.10126912 
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Now the condition that P(Qjf) < 1 is equivalent to re­

quiring N(b-a)^p(D) < 1. We conjecture that p(D) <-^ 
TT 

and in fact that limit p(D) = Note tiiat 
n -* CO IT 

« 0.10152118 and that our results in Table 2.1 support 
TT 

this conjecture. 

Finally it is interesting to note that if p(D) < 
T 

then the condition under v^ich system (2.21) has a unique 

P / o 
fixed point is N < TT /(b-a) • This agrees very well with 

a result in [l,p.51] vtoich states that the boundary value 

problem (2.l)-(2.2) has a unique solution v^en 

P / \ P 
L < TT /(b-a) , and that this result is the best possible. 

Here L is a Lipschitz constant for the function f. 

Throughout the rest of this paper it will be assumed 

that b - a is small enough so that p(Qjj) < 1 which will 

guarantee existence of a unique solution to system (2.21). 

In conclusion, suppose that we approximate the solution 

of system (2.21) by generating a sequence of vectors 

{a(™) } through the algorithm 

. g{iW), m = 0,1,... . 

Choosing = 5 admits the following rationale: 

Consider the Taylor series expansion of the exact so­
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lution y(x) s y(x,s*) of (l.l): 

y(b) = y(a+ lih) = y(a) + (b- a)y' (a) + y"(a) + ... 

or 

B = A + (b - a)s* + ~ f (a,A) + ... . 

Upon solving for s*, 

- A - + •••] 

we see that since our approximate slope s satisfies 

s = s (S) = - A - - ̂  I cjaj, 

i=l 

taking â(^) = 0 results in using 

= s(S(0)) = s(Ô) = - A - fb-a)^f(a,A)] 

as our initial approximation to the exact slope s*. Also 

note that s^^) is the slope at x = a of the quadratic 

polynomial p(x) passing through the points (a,A), (b,B), 

and satisrfying p"(a) = f(a,A). 
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III. TSF. CONSISTENCY RELATION FOR A SPLINE FUNCTION ' 

In this chapter we will prove two important results 

vdiich will be used in the next chapter in proving the con­

vergence of our constructed spline function approximation 

to the solution of (1,1). These results are analogous to 

those described by Loscalzo and Talbot [8] in their treatment 

of the initial value problem (1.4). For coirçleteness, we 

include the following discussion by Curry and Schoenberg 

[4] on their description of a basis for 8^ which is ob­

tained after first considering splines defined on (-00,00) . 

Let 

••• < x_2 < x_2 < x^ < x^ < Xg < < < (5.1) 

be a sequence of reals, such that ± <» as i ± », 

and let m be a natural number. By a spline function 

S(x) of degree m having the knots (^.1), we mean a 

function of class c'''^''^(-oo,oo), such that in each interval 

(x^,x^^^) it reduces to a polynomial of degree not exceed­

ing m. Next we define a particular example of such a 

spline function in terms of divided differences. 

Definition 3.1: Consider the subset {x^,x^,xg, '*nH-l^ 

of the set of points listed in (5.I). Let 
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pU, if u S 0 
u = { 
+ ^0, if u < 0 

ttj(x) = (X-XQ)(X-Xĵ ) ... (x- x^^) (5.2) 

and 

(m+l)(x^-x)^ 
M(x,-Xo,Xi, .. .,Xjn^l) = 2 ou'(x.) • (5-5) 

i=0 ^ 

If we think of M(x) = M(x;x^,x^, .. .,x^_i_^) as the 

divided difference of the function 

(5.4) 

based on the points t = x^,x^,this notation 

becomes consistent with Steffensen's notation [11] for di­

vided differences. From (5.3) it is easily apparent that 

M(X) e TT in each of the intervals (x. _,x. ), ^ m ^ 1—1 1 

i = 1, ...,m+l, while M(x) =0 if x < x^ as we can 

remove the subscript "+" in (5.5) and the sum then 

vanishes as a divided difference of order m + 1 of a 

polynomial of degree m. Moreover, by the definition of 

the function u^, M(x) clearly vanishes for x > x^^^. We 

note also that M(x) e C™ ^(-oo,») and hence M(x) is a 

M(x;t) = (m+l)(t-x)™ 
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spline function of degree m defined on the interval 

We now state the representation theorem C4,p.80]: 

Theorem 3.1: Given the knots (^.1) we consider the sequence 

of spline functions 

Mj(x) = - 00 < j <00 (5.5) 

Every spline S(x) of degree m defined on (-00,00) with 

the knots (3.I) may be uniquely represented in the form 

00 

S(x) = Y. CjMj(x) (2.6) 

—00 

with constants Cj. Conversely, every series (5*6) with 

arbitrary constants Cj defines such a spline function 

S(x). 

For this reason, because they provide a basis for the 

class of spline functions, functions of the form (5-5)j or 

(5.5), will be called B-splines. Observe that if we assume 

the knots in (5.1) are equidistant, say = h for 

all i, then by equation (5-5) we have 

Mj(x) = M(x;x^+ jhjXQ+ (j + l)h,.. .,x^+ (j + m+ l)h), 

(3.7) 
— CO < j <00 
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It is.clear from the geometry of the situation that these 

are translates of one and the same function which 

can be expressed in several equivalent ways in view of 

(5.5): 

(3-8) 

m+1 

VlW I ^)(Xo+ ih- x); (3.9) 
m.n i=0 

m+1 ./m+l 
Gm+l(=) = -TTE I . )[*-(=0+"')^+' (3-10) 

i=0 

and Mj(x) = jh). For m = 2, (3.11) 

these functions are illustrated in the figure below. 
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-2 -1 

X X X 2 o 

Figure 5-1 

The basis functions Mj(x) for m = 5 

Returning now to the class defined in Definition 

1.2, we can determine an appropriate basis for this class. 

First, if Sfx) e S , we define x. to be a knot of 
\ ' m 1 

multiplicity r(0 g r ^ m + l) if in a sufficiently small 

neighborliood of x^, S(x) e C^~^. Thus r = 0 means that 

is really not a knot. At the other extreme, r = m + 1 

means that there are no continuity requirements between the 

two components of the spline function, below and above x^. 

Recall now that S(x) e S was defined over a finite inter-* ' m 

val [a,b] containing the n - 1 knots, 

x^, i = 1,2,...,n-l, satisfying 

a < xi < X2 < • • • < x^_^ < b. (3.12) 
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We now introduce two more knots 

= a, ~ both off multiplicity m + 1. (5*13) 

Hence we really have now 2(]ici+ l) + n - 1 knots, a fact 

which we indicate writing out the knots as follows: 

m + 1  m + 1  

''X^TX^TTTTTX^jXJ,X2». "—'^n-l^^n-'^n' * * *'^n* 

A basis for the family iis now formed by the following 

m + n B-splines 

m+ 11 

q̂(̂ ) ~ ...,̂ q3^2) ' 

im 

M^(x) = M(x;6E^. . (5.15) 

m+ 1  

M^(x) = M(x;x^_j_,-k^,x^7- . .,x^). 

where we set 

X = m +- n - 1 (3.16) 
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Observe, however, that equation (3.3) is no longer valid for 

multiple knots and must be replaced by the appropriate ex­

pressions for confluent divided differences. 

Now let 8 c denote the class of spline functions 

with knots x^ = a + ih, i = 1, ...,n- 1. Let S(x) e 

If restricted to the interval [a,a+ (m- l)h], S(x) depends 

on (m+l) + (m-2)=2m-l linear parameters. It follows 

that the 2m quantities 

S(a+ih), S"(a+ih), i = 0,1, ...,m-l (3.17) 

cannot be linearly independent. In fact we have the follow­

ing: 

Theorem 3.2; For any spline function S(x) e S, there is 

a unique linear relation between the quantities (3.17) given 

by 

m-1 m-1 ' 

£ oWs(a+ ih) = h^ J 3(®^S"(a+ih) (3.18) 

i=0 i=0 

vAiose coefficients may be written as 

a!") = (m- 1) - 1)] (3.19) 
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pW . (3.20) 

m+1 in + 1 

"here VlW = ̂  I (3-21) 
i=0 ^ 

which is a B-spline. 

Proof : This is a mild extension of the proof of Theorem 2.2 

appearing in [8] which was due to Schoenberg. 

We first make the change of scale z = ̂  " ̂(x - a) so 

that without loss of generality we may take h = 1 and 

a = 0 in equation (3.18). Next, consider the convolution 

of two infinite sequences defined by 

(^n) * f^n^ = fCn) 

where 

V 
^n = Z. ®kVk' -~ < n < 00. 

k 

The following properties hold for convolution: 

* C'n+i' 

(3.22) 
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We now consider the B-spline Q(x) = defined 

by (5.21) and examine the convolution of {Q"(n)} with 

{Q(n-i)}. Applying relations (3.22), we have 

{Q"(n)} * {Q(n-i)} = {Q(n-i)} -* {Q"(n)} 

(5.25) 

= {Q(n)} * {Q"(n- i)] 

If we apply the representation Theorem "^.1 we may write the 

arbitrary spline function S(x) as 

S(x) = 2 c^Q(x- i) 

In particular we have 

S(n) = Y c^Q(n- i) 

i 

S"(n) = Y Cj^Q"(n- i). 

i 

Combining relations (3-23) and (5-2^) finally yields 

(5.24) 

CQ"(n)} * {S(n)3 = {Q(n)} * {S"(n)}. (5.25) 
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We observe from (3.21) that Q(x) = vanishes 

outside the interval (0,m+l). Taking the element n = m 

of the convolution on each side of equation (3.25) now yields 

a result in the form of (3.I8) with coefficients 

4"' = i). eM = (3-26) 

But the coefficients defined in (3'19)~(5«20) differ 

from these only by a constant factor of (m-2) 1 because B 

splines have the symmetiy properties 

(^l(n-x) = <^i(x+l) 

("»-*) = -

and the differentiation properties 

These relations can be verified directly from (3.21), and 

this completes the proof. 
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For m = 5*4,5 the coefficients of the consistency 

relation (3.18) are given in the following table. 

Table 5•1 

Coefficients of the consistency relations 

m 

1 -2 

1 -1 -1 

2 -6 

i & A 

11 11 
12 12 12 12 

26 ^ 26 
20 20 20 20 20 

We now prove the second result which exhibits the 

relation between the values of the cubic spline function 

constructed in Chapter II and those of a certain multistep 

method at the points = a + ih, i = 0,1,...,n. 

"Dieorem 3.3: Assume that h < ̂  where L is the 

Lipschitz constant for f. Then the values S(a+ih,s), 

i = 0,1,...,n obtained in Chapter II are precisely the 

values furnished by the discrete multistep method described 

by the recurrence relation 

2 2 

Z °i^^yk-2+i ^ Z ^P^^k-2+i' ̂  ~ 2, ...,n (3.27) 
i=0 i=0 
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or 

^2 
+ yic-2 = + ̂ ^k-1 + fk-2]' 

(5.28) 

3c — 2^ » * # ̂  n 

if the starting values 

= S(a,s) and y^ = S(a + h, s) (5-29) 

are used. 

Proof: For h < ̂  only one sequence {y%}, i = 2,—,n 

satisfies (5.27) with starting values (5.29). By the 

consistency relation (5.I8), however, the sequence 

{S(a+ih,s)} satisfies (5.27) and obviously has starting 

values (5.29). Ihus the values S(a+ih,s), i = 2, ...,n, 

must coincide with the points y^ generated by the multi-

step method. 
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IV. CONVERGENCE PROPERTIES 

In Chapter III we found that the cubic spline function 

constructed in Chapter II furnished the same discrete so­

lution S(a + kh,s), k = 0,1, ...,n, as the 2-step method 

- -syk-i + yk-2 = 

provided that = S(a, s) and y^ = S(a + k,s) are used 

as stêurting values. Except where appropriate, we will now 

delete for notational convenience the dependence on the 

parameter s by writing S(x) in place of S(x,s). 

For S(x) c Sjjj we now define the step function 

(x) at the knots Xj^ = a + kh, k = 1,...,n-l, by the 

usual arithmetic meein: 

s(»)(^) =i[sW(x^-|).sW(x^.|)] 

(4.2) 

k — 1,..., n * 1. 

We then have the following theorem ^ich exhibits how closely 

the constructed spline function approximates the solution 

y(x,s) of the initial value problem (2.3)-(2.4), 
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O 
Theorem 4.1: If f(x,y) c C in T, then there exists a 

constant K such that for all h < 

|y(x,s) - S(x)1 < Kh^, Iy'(x,s) - S'(x)I < Kh^, 

ly"(x,s) - S"(x) I <101^, |y"'(x, s) - S*'(x) I < Kh, 

if X e Ca,b], provided S'"(xj^) is given by (4.2) with 

m = 3-

The proof of this convergence theorem depends on some 

lemmas. First we note that the multistep method defined by 

(4.1) is of second order accuracy provided the starting 

values have third order accuracy [6,p.314]. We therefore 

begin by considering the error in the starting value 

y^ = S(a + h,s) noting that by construction 

y© = S(a,s) = y(a,s) = A. 

Lemma 4.2: If f and f are bounded in T and X y 

|y'(x,s)| g Q for X e [a,b], then there exists a constant 

K such that 

ly(a + h,s) - S(a+ h,s) 1 <Kh^. 
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Proof; Consider the e3q)ressions 

y(a+h,s) = y(a,s) +hy'(a,s) +-^ y"(a,s) +-g-y"'(5,s), 

a < § < a + h, 

S(a + h,s) = y(a,s) +hy'(a,s) +y"(a,s) + -g- a^. 

Thus we have 

|y(a + h,s) - S(a + h,s)| = ̂ ly'"(?,s) - a^|. 

But since 

y"'(ç,s) = f^(§,y(?,s)) + fy(§,y(§,s))y'(§,s), 

Iy"'(§,s) - a^l g lfx.(5,y(5,s))l + lfy(?,y(ç,s)) I |y'(§,s) ! 

+ I a^ I • 

Letting M, = max If (x,y)|, = max If (x,y)|, we 
(x,y)eT * ^ (x,y)eT / 

get 

|y'"(5,s) - a^l s + MgO + la^l = K. 
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Hence 

y(a + h, s) - S(a + h,s) = O(h^). 

Leimna 4.3; If ly(3Cj^,s) - S(xj^) I < Kh^ and 

S"(xjç) = f (xjç,s(xj^) ), then there exists a constant K* 

such that 

|y(xj^,s) - S(x^) I < K*h^ and ly"(xj^,s) - S"(Xj^) I < K*h^. 

Proof: This is an immediate consequence of the Lipschitz 

condition. We have explicitly 

ly"(xj^^s) - S"{xj^) I = |f(Xj^,y(Xj^,s)) - f(xj^,s(xj^)) 1 

g L|y(x%,s) - S(x^) I < LKhP. 

Simply let K* = max{K,LK}. 

The next result is due to Loscalzo and Talbot [8]. 

Lemma 4.4: Let y(x,s) e C^^[a,b] and let S(x) be a 

spline function of degree m having its knots at the points 

x^, k = 1,2, ...,n-l, and such that the conditions 
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ly^^^(Xj^,s) - I = 0(h ^), r = 0,i,...,m-l; 

(4.2) 

k — 0^ ^ n "" 

|y(^)(x,s) - I = 0(h), x^ < X < ^+2.' 

(4.4) 

k — 0^1^ # # 

are satisfied. ïhen, 

ly(x,s) - S(x) I = O(h^), X e [a,b] (4.5) 

where p = min (r + p^) (4.6) 
r—0,Xj m  • • y m 

where p_ = 1 and furthermore 
•^m 

ly^"'^(x,s) - S^®^(x) I = 0(h), X e [a,b]. (4.7) 

Proof ; Let x^ < x g Esqjanding by Taylor's theorem 

and writing 00 = x - x^ S h, we obtain 
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(4.8) 

XJ^ < I < X, 

in—1 

S(x) = ^ ̂  w''s(^)(X]^) 4-^ m'"s("')(S). (4.9) 

r=0 

Note that S^^^(x) is constant for Xj^ < x < x^^^. Sub­

traction of (4.9) from (4.8) gives 

in—1 

ly(x,s)-S(x)| a J ̂ h^|y^^^(xjç,s)-s(^^(xjç)l 

r=0 

+ î^h"'ly^"'^(Ç,s)-s(®^(§)l = 0(hP) 

in view of (4.3), (4.4), and (4.6). This establishes (4.5). 

To prove (4.7) it is sufficient, in view of (4.4), to con­

sider the knots Xj^, k = 1,2,...,n- 1. By (4.2) and (4.4), 

- I) + + I)] 

= -1'®) + k +1'®)] + 0(h)' 

But, since y(x,s) e c"'"'"^[a,b]. 

m-l 
/ \ r 1 

y(x,s) = i 

r=0 



42 

Xjç - 2 < ?1 < *]c' 

y^"*^(xjç + §,s) = y^^\x^,s) + I" hy(™'^^)(§g,s), 

XJÇ, < ?2 < XJ^ + I. 

Thus we finally obtain 

s(™)(x^) = + 0(h), K= 1,2,...,n- 1. 

Ihis completes the proof. 

Lemma 4.5: If |y"(x,s) - s"(x)l < Kh^ for x e [a,b], 

then there exists a constant such that 

|y'(x,s) - S'(x)l < K^h^, (4.10) 

and in particular this holds at the points 

Tc =  O j l ^ * * « ^ n ~ l »  
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Proof ; We note that 

y'(x,s) - S'(x) = J [y"(t,s) - S"(t)]dt, 

and hence 

|y'(x,s) - S'(x)| g J ly"(t,s) - S"(t)|dt 

< (x - a)Kh^ ̂  (b - a)Kh^. 

Simply let = (b - a)K. 

Proof of Theorem 4.1: Let m = 5« We have shown that the 

cubic spline values = S(x^) are the same as the values 

generated by the multistep method (4.1) which is a second 

order method provided the starting values have third order 

accuracy. The latter we have shown to be true in Lemma 4.2. 

Therefore there exists a constant such that 

Iy^ I < I^h f Tc= 0^1^.«.,n 

and 

ly^ - S^l < K^h^, k = 0,1,...,n 
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by Lemma 4.5. islanding 

= S ' Taylor's theorem gives 

^k+l = + hy"(S.s). < I < =^+1 

Sk+l = =k + hslx). 

for any x e . Therefore, 

hly"(5,s) -S"(x)l ^ ly^-s^l + 

and hence 

S" ' (x )  = y"'(5,s) + 0(h), 

vAiich because Iç - xl < h, we may write as 

S^'Cx) = y"(x, s) + 0(h). 

Now the hypothesis of Lemma 4.4 are satisfied for 

S"(x) i^ich is a spline function of degree 1 with the 

same knots as S(x). Hence letting S"(x) assume the role 

of S(x) in that Lemma we find 
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Iy"(x,s) - S"(x) 1 = O(h^), X e [a,b], 

v^ich establishes the third inequality in Theorem 4.1. Next 

by Lemma 4.5, 

ly'(xj^,s) - S'(x^) I = O(h^) 

and finally by applying Lemma 4.4 twice, allowing S(x) and 

S'(x), successively, to assume the role of S(x) in the 

Lemma establishes the first two inequalities of theorem 4.1. 

The fourth inequality follows from equation (4.7)j since 
O h 

f e e  i n  T  i m p l i e s  y ( x )  e  C  [ a , b ]  a s  r e q u i r e d  b y  t h e  

hypothesis of Lemma 4.4. 

Finally, we are concerned with how closely S(x,s) 

approximates the solution y(x) of the boundary value 

problem (l.l) or, equivalently, the solution y(x,s*) of the 

initial value problem 

y" = f(x,y), y(a) = A, y"(a) = s*. (4.11) 

Recall that y(x,s) is the solution of the initial value 

problem 

y" = f(x,y), y(a) = A, y'(a) = s. 
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where s is the initial slope determined by the equation 

S(b, s) = B, rather than y(b, s) = B. Hence we will let 

y(b,s) = B. (4.12) 

Of course B 4= B in general but since S(b,s) = B, 

|B - B| = |S(b,s) - y(b,s)| = O(h^) (4.15) 

by Theorem 4.1. Next, consider the following concept dis­

cussed in a more general context in a paper by Gaines [5]: 

Definition 4.1; Solutions to y" = f(x,y) will be said to 

satisj^ the maximum principle on [a,b] if for any so­

lutions p(x) and t(x), Icp(x) - ̂ (x)| assumes its maxi­

mum on [a,b] at either a or b. 

Various sets of hypothesis on f(x,y) imply that so­

lutions to y" = f(x,y) satis^ the maximum principle on 

[a,b]. One such set is that f(x,y) be continuous on T, 

and f(x,y) be nondecreasing in y on T. Hence we see 

that for the type of problems under consideration, namely 

those of class M, the maximum principle applies. 

Consider now the difference 
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•|y(x,s*) - S(x,s) I g |y(x,s*)-y(x,s)( 

+ ly(x,s) - S(x,s) I, 

but 

|y(x,s*)-y(x,s)| ë max{ |A- A|, |B-B|3 

=  I B - B l  =  O ( h ^ )  

by the maximum principle and equation (4.12). Also, 

|y(x,s) - S(x,s) I = 0(hf) 

by Theorem 4.1. Hence from (4.14) we see that 

|y(x,s*) - S(x,s)I < C^h^, X e [a,b]. (4.15) 

Similarly, 

|y"(x;s*) - S"(x,s) I g |y"(x,s*)-y"(x,s)| 

+ ly"(x,s) - S"(x,s)I 

(4.16) 

But 
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ly"(x,s*) - y"(x,s) I = 1 f(x,y(x, s*) ) - f(x,y(x,s) ) 1 

g Lly(x,s*) -y(x, s)| < 

and Iy"(x,s) -S"(x,s)| = O(h^) by theorem 4.1. Hence from 

(4.16) we have 

ly"(x,s*) - S"(x,s) I < Cgh^, X e [a,b]. (4.1%) 

Also, 

|y'(x,s*)-S'(x,s)| ë |y'(x,s*)-y'(x,s)| 

(4.18) 

+ ly'(x,s) -S'(x,s)|, 

and since 

pX 
|y'(x,s*)-y'(x,s)| ë j |y"(t,s*) - y" (t,s) |dt 

< (x- a)c_h^ g (b-a)C 

and 

|y'(x,s)-S'(x,s)| = O(h^) 
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from Theorem 4.1, we get 

ly • (x,s*) - S ' (x,s) I < X e [a,b]. (4.19) 

Since by (Theorem 4.1, 

ly'*'(x,s) - S^(x,s) I < Kh 

we suggest that it may be possible to show that 

ly"(x,s*) - S'̂ (x,s) I < Cĵ h 

for some constant 
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V. EXAMPLES 

Several examples using the cubic spline approximation 

were programmed on the IBM 56O/65 computer, some of vAiich 

are listed on the following pages. The results illustrate 

the O(h^) accuracy vAiich was calculated according to the 

following formulation: 

Given two different integers n^, j = 1,2, we let 

h. = (b-a)/n. and e. = max IS--y. I, where 
J J J Oëignj ^ ^ 

S^ s S(x^,s) and y^ = y(x^,s*) are the values of the 

spline approximation and the exact solution respectively at 

the points x^ = a + ihj, i = 0,1, ...,nj, j = 1,2. Uien 

Sj = Khj, j = 1,2, (5«l) 

for some a and proportionality constant K. Hence the 

parameter a from equations (5.I) is given by 

£n - Sn 

° - to - a! ng • (5-2) 

Similarly, we have calculated the orders of accuracy a' 

and a" in approximating the first and second derivatives 

respectively of the exact solution by the cubic spline 

function at the points x^ = a + ihj, i = 0,1, ...,n, j = 1,2. 
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The first exançle 

y" = (l + x^)y, y(-l) = y(l) = 1, 

has the unique solution 

y(x) = e 

A Lipschitz constant for f(x,y) = (l + x^)y is L = 2. The 

boundary value problem 

y" = y(o) = y(i) = o, 

considered in the second exairçle, has the unique solution 

y(x) = - en 2 + 2 ^c sec|c(x - •^)/2j'J 

where c is the root of */2 = c sec(^^ which lies between 

0 and namely, c = 1.3560557 to eight figures. ïhe 

third example 

y" = ̂ (y + x+1)^, y(0) = y(l) = 0 

possesses the unique solution 
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y(x/ = 2~-^ - X - 1. 

Examples two and three appear in [2,p.425]. 

The last example 

y" = 2 y(o) " y(i) = 1 

has two solutions [2,p.l45], one of vdiich is 

and the other is in terms of elliptic functions. 

Observe that the functions f(x,y) is examples two and 

three above possess a unique solution bur do not satisfy a 

Lipschitz condition for all y as is also true for many 

other functions. However, in considering those functions 

f(x,y) for which f^(x,y) =0 in T, we may apply the 

bound : 

iy(x) 1 S M 

where M is a constant such that 
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M > [f(x,0)i, X e [a,b]. 

This is described by Bailey, Shampine, and Waltman [1, 

p. 116] . Hence the Lip,schitz constant L can be taken as 

2 
L = max|f^(x,y) | , x c [a,b] , jyj ^ M. 

In example two with f(x,y) = e^, we then can take 

L = e^"^^ and for f (x,y) = ̂ (y + x + 1)^, as in example 

three, L = 75/8. 

Example four as pointed out above, does not possess a 

unique solution and was included to see whether or not the 

method would converge to one of the solutions. 

As mentioned previously, examples two and three are 

discussed by Ciarlet, Schultz, and Varga in [2] wherein 

numerical methods are developed for solving the more general 

two-point boundary value problem: 

L[y(x)3 = f(x,y(x)), 0 < x < 1 (5.3) 

u (0) = D^u (1) = 0, D = ̂  , O^k^n-l, (5.4) 



52c 

where the linear differential operator L is defined by 

n 

L[y(x)] = y (-l)^"'"^D^[p (x)D^y(x)], n S 1. 
^ J 
j=o 

k k 
The boundary conditions D u(a) = A, D u(b) = B can be 

reduced to the case a = 0, b = 1, A=B=0 by means of 

a suitable change of the independent and dependent variables. 

Our problem (1.1) then results by taking n = 1, p^(x) =  0 ,  

and p^(x) H 1. 

Their approach to the problem is in applying the 

Rayleigh-Ritz procedure to the variational formulation of 

(5.3)-(5.4) by minimizing over subspaces of polynomial 

functions, and piecewise-polynomial functions such as 

Hermite and spline functions. In particular, for cubic 

2 spline functions, 0(h ) convergence to the solution y(x) 

of (5.3)-(5.4} is established but in a quite different 

fashion then described here. In following the construction 

of the approximating function as described by Ciarlet, 

Schultz, and Varga [2, p.397-399], we note that it is also 

necessary to solve a nonlinear system of the form: 
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Au + g(u) = Ô. 

Here A = (a. . ) is a M x M real matrix, and 
1, JC 

g ( û )  =  ( g ^ ( û ) , — i s  a  c o l u m n  v e c t o r ,  b e i n g  

determined respectively by 

1 n 

^i k ~ I { Z Pj 1 ^ i,k g M, (5.5) 

o j=o 

and 

- r' : g^(u) = J f(x, 2 u^ujj^(x) )uuj^(x)dx, 1 S k ë M, (5.5) 

o i=l 

where M is the dimension of the subspace and {wu(x)}^^^ 

are M linearly independent functions from the subspace. 

The approach we take also results in solving the non­

linear system of equations (2.21) arising from the collo­

cation requirements, however, it is far simpler compu­

tationally as it avoids evaluations of the various integrals 

as in (5.6). 



Example 1: y" = (l+xfjy, y(-l) = 

16 h= 0.1250000 Results : n = 

X 
-1.0000000 
-0.8750000 
-0.7500000 
-0.6250000 
-0.5C0000C 
-0.3750000 
-0.2500000 
-0.1250000 

0.0000000 
0.1250000 
0.2500000 
0.3750000 
0.5000000 
0.6250000 
0.7500000 
0.8750000 
1.0000000 

Errors; n = 

Errors : n = 

SIX) 
l.OOOOCOO 
0.8889915 
0.8028083 
0.7364461 
0.6862522 
0.6495904 
0.6246088 
0.6100833 
0.6053166 
0.6100824 
0.6246071 
0.6495878 
0.6862487 
0.7364415 
0.8028026 
0.8889846 
0.9999917 

Y(XI 
1.0000000 
0.8894184 
0.8035225 
0.7373537 
0.6872892 
0.6507124 
0.6257840 
0.6112877 
0.6065306 
0.6112877 
0.6257840 
0.6507124 
0.6872892 
0.7373537 
0.8035225 
0.8894184 
1.0000000 

16 h= 0.1250000 

G= 0.0012140 

64 h=0.0312500 

€ = 0.0000787 

Calculated Order of Accuracy: 

a = 1.9738460 

y(l) = 1 

SMXI Y' (XI 
-1. 0041010 -I.0000000 
-0. 7810003 -0.7782410 
-0. 6044997 -0.6026419 
-0. 4620932 -0.4608461 
-0. 3444726 -0.3436446 
-0. 2445509 -0.2440171 
-0. 1567646 -0.1564460 
-0. 0765611 -0.0764109 
-0. 0000032 0.0000000 
0. 0765546 0.0764109 
0. 1567580 0.1564460 
0. 2445439 0.2440171 
0. 3444652 0.3436446 
0. 4620851 0.4608461 
0. 6044905 0.6026419 
0. 7809898 0.7782410 
1. 0040890 1.0000000 

•
 

o
 

11 w
 0041018 

e • = 0. 0002584 

S'MXI Y**(XI 
0000000 2 .0000000 
5696230 1 .5703790 
2543850 1 .2555030 
0241170 1 .0253820 
8578128 0 .8591115 
7409363 0 .7422188 
6636441 0 .6648955 
6196129 0 .6208391 
6053138 0 .6065306 
6196121 0 .6208391 
6636422 0 .6648955 
7409333 0 .7422188 
8578081 0 .8591115 
0241100 1 .0253620 
2543760 1 .2555030 
5696110 1 .5703790 
9999810 2 .0000000 

G" = 0. 0013034 

G" =0.0000883 

2 
1 
1 
1 
0 
0 
0 
0 
0 
0 
0 
0 
0 
1 
1 
1 
1 

a ' = 1.9941530 a" = 1.9416000 



Example 2: y" = y(0) = y(l) = 

Result; n = 16 h = 0,0625000 

X 
O.COOOOOO 
0.0625000 
0.1250000 
0.1875000 
C.2500000 
C.3125000 
C.3750000 
0.4375000 
0,5000000 
C.562 5000 
0.6250000 
0.6875000 
0» 7500000 
0^ 8125000 
0,«750000 
0,9375000 
1,0000000 

S(X) 
0.0000000 

-0,0270501 
-0.0502954 
-0.0698234 
-0.0857062 
-0.0980013 
-0.1067527 
-0.1119913 
-0.1137354 
-0.1119912 
-0,1067526 
-0.098001?, 
-0,0857059 
-0.0698231 
-0.0502950 
-0.0270498 
0.0000003 

Y(XI 
-0.0000005 
-0,0270433 
-0,0502810 
-Or 0698035 
-0.0856829 
-0.0979750 
-0.1067234 
-0,1119612 
-0,1137050 
-0,1119612 
-0,1067234 
-0.0979750 
-0,0856929 
-0.0698035 
-0.0502810 
-0,0270433 
-0,0000005 

Errors: n = 16 0.0625000 

€ = 0,0000305 

Errors: n= 64 h = 0.0156250 

e = 0.0000025 

Calculated Order of Accuracy: 

a- 1.8132450 

0 

S M X »  Y M X »  S''(X) Y '  M X »  
-0# 4637734 -0. 4636325 1, 0000000 0, 9999995 
-0, 4021074 -0, 4019898 0. 9733123 0, 9733191 
-0» 3419743 -0, 3418774 0« 9509482 0, 9509621 
-0. 2831147 -0. 2830368 0, 9325581 0. 9325770 
-0, 2252890 -0, 2252284 0, 9178633 0. 9178852 
-0, 1682730 -0. 1682285 0, 9066470 0. 9066716 
-0. 1118544 -0. 1118252 0. 8987472 0^ 8987743 
-0. 0558295 -0. 0558151 0, 8940513 0, 8940789 
0. 0000000 0. 0000000 0, 8924933 0, 8925212 
0, 0558296 0. 0558151 0, 8940514 0, 8940789 
0, 1118545 0. 1118252 0. 8987473 0, 8987743 
0. 1682730 0. 1682285 0. 9066472 0, 9066716 
0. 2252890 0. 2252284 0. 9178635 0, 9178852 
0. 2831146 0. 2830368 0, 9325583 0. 9325770 
0. 3419742 0. 3418774 0. 9509485 0, 9509621 
0, 4021074 0. 4019898 0. 9733126 0, 9733191 
0. 6637734 0. 4636325 1, 0000000 0, 9999995 

m
 

II
 

o
 

0001409 e "  = 0,0000279 

€'=0.0000089 e" = 0.0000024 

a' =1.9939220 a" = 1,7564050 



Example 5: y" = •|(y + x+l)5, y(0) 

16 h = 0.0625000 Result: n = 

X 
0.0000000 
0.0625000 
0.1250000 
0.1875000 
0.2500000 
0.3125000 
0.3750000 
0.4275000 
0.5000000 
0.5625000 
0.6250000 
0.6875000 
0.7500000 
0.8125000 
0.8750000 
0.9375000 
1.0000000 

Errors : n = 

Errors : n = 

S(X| 
0.0000000 

-0.0302833 
-0.0584141 
-0.0841697 
-0.1072958 
-0.1275002 
-0.1444456 
-0.1577408 
-0.1669292 
-0.1714746 
-0.1707431 
-0.1639797 
-0.1502780 
-0.1285403 
-0.0974239 
-C.0552689 
0.0000014 

Y(X) 
0.0000000 

-0.0302420 
-0.0583334 
-0.0840521 
-0.1071434 
-0.1273155 
-0.1442308 
-0.1575003 
-0.1666670 
-0.1711960 
-0.1704550 
-0.1636906 
-0.1500006 
-0.1282902 
-0.0972223 
-0.0551472 

0.0000000 

16 h= 0.0625000 

G «= 0.0002891 

64 h = 0.0156250 

e = 0.0000163 

Calculated Order of Accuracy; 

a=2.0756540 

y(i) = 0 

S'(X) Y» (X» S'MXI Y»*(XI 
0. 5006774 -0.5000000 0 .5000000 0.5000000 
0. 4678681 -0.4672217 0 .5498972 0.5499644 
0. 4317252 -0.4311112 0 .6066747 0.6068144 
0. 3917804 -0.3912010 0 .6715598 0.6717772 
0. 3474800 -0.3469388 0 .7460518 0.7463546 
0. 2981659 -0.2976680 0 .8319979 0.8323917 
0. 2430508 -0.2426036 0 .9316859 0.9321799 
0. 1811863 -0.1808000 1 .0479770 1.0485740 
0. 1114221 -0.1111112 1 .1844760 1.1851830 
0. 0323517 -0.0321361 1 .3457740 1.3465910 
0. 0577590 0.0578508 1 .5377680 1.5386900 
0. 1610681 0.1609974 1 .7681220 1.7691380 
0. 2802882 0.2799997 2 .0469200 2.0479970 
0. 4188672 0.4182825 2 .3876070 2.3886830 
0. 5812413 0.5802460 2 .8083630 2.8093270 
0. 7731954 0.7716255 3 .3341710 3.3348240 
1. 0023880 1.0000000 4 .0000050 4.0000000 

n
 

II O
 

0015699 e" = 0.0010767 
n
 

II O
 

•
 

0001394 0.0000620 

a' = 1. 7466170 a" = 2.0592300 



Example 4: y" = ^ y^, y(0) = 4, y( 

16 h=0.0625000 Result: n = 

X 
0.0000000 
0.0625000 
0.1250000 
0.1875000 
0.2500000 
0.3125000 
0.3750000 
0.4375000 
0.5000000 
0.5625000 
0.6250000 
0.6875000 
0.7500000 
0.8125000 
0.8750000 
0.9375000 
1.0000000 

Errors : n = 

S(X) 
4.0000000 
3.5423210 
3.1590290 
2.8348200 
2.5581380 
2.3201230 
2.1138890 
1.9340200 
1.7762060 
1.6369840 
1.5135480 
1.4036020 
1.3052520 
1.2169260 
1.1373120 
1.0653060 
0.*9999733 

Y(X) 
4.0000000 
3.5432510 
3.1604920 
2.8365650 
2.5599990 
2.3219940 
2.1157010 
1.9357270 
1.7777770 
1,6383990 
1.5147920 
1.4046630 
1.3061210 
1.2175970 
1.1377770 
1.0655560 
1.0000000 

16 h = 0.0625000 

e = 0.0018711 

e = 0.0001268 

Errors: n= 64 h = 0.0156250 

Calculated Order of Accuracy : 

a= 1.9414120 

S'(X) Y*(X) S'MX» Y«•(X) 
8. 0189110 -8.0000000 24. 0000000 24.0000000 
6. 6807240 -6.6696500 18. 8219900 18.8319300 
5. 6247520 -5.6186530 14. 9690800 14.9830700 
4. 7802760 -4.7773720 12. 0541600 12.0691500 
4. 0968350 -4.0959980 9. 8159480 9.8303960 
3. 5377640 -3.5382770 8. 0742930 8.0874910 
3. 0759840 -3.0773830 6. 7026360 6.7142910 
2. 6911990 -2.6931840 5. 6105050 5.6205590 
2. 3679880 -2.3703690 4. 7322280 4.7407390 
2. 0944970 -2.0971500 4. 0194650 4.0265290 
1. 8615090 -1.8643590 3. 4361530 3.4418940 
1. 6617830 -1.6647850 2. 9550770 2.9596170 
1. 4895780 -1.4927100 2. 5554710 2.5589310 
1. 3403020 -1.3435550 2. 2213330 2.2238150 
1. 2102530 -1.2136280 1. 9402C60 1.9418050 
1. 0964240 -1.0999280 1. 7023200 1.7031150 
0. 9963536 -1.0000000 1. 4999370 1.5000000 

A
 

11
 

o
 

e
 0189114 e" = 0.0149860 

e' = 0. 0011978 e" = 0.0009184 

a* = 1.9903870 a" = 2.0141840 
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VI. REMARKS 

There arises from the previous chapters at least two 

interesting questions : 

1. Can a spline of degree m > 5 be constructed 

in an analogous fashion in order to attain better 

• P than 0(h ) convergence to the boundary value 

problem (l.l)-(1.2)? 

2. Can a spline of degree m be constructed to 

approximate the solution of the general. two 

point boundary value problem (l.^)-(1.4)? 

Concerning the first question, if we denote by 

f (x,y(x) ), p = 1,2,... the total p^ derivative of 

f(x,y(x)) with respect to x, we could construct a spline 

function S^(x) of degree m to the solution y(x, s) of 

(2.5) in the following manner. For x e [a,a + h], 

X, s ) = y (a, s ) +y ' ( a, sX x-a ) (x-a ) (x-a) ... 

+ (m-l) s) (x-a)™-^4^^(x-a)=', (6.I) 

= A+s(x-a)+^i|^^(x-a)^-j^[f^(a,A)+fy(a,A)s](x-a)^+... 

4^^Yy^(=^^)(a,A)(x_arl4^^(x-a)='. (6.2) 
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continuing in the fashion outlined in Chapter II, for 

X 6 [xjf^j]f i ~ 2j«««,n, we define 

m-1 

(6.5) 

and require 

SjJ(Xj,s) = f(xj,s(xj,s)), j = 1,2, ...,n. (6.4) 

Equation (6.4) gives us n equations in the n + 1 unknown 

a^,ag,...,a^,s. We now require that the spline function 

Sjjj(x,s) satisfy the boundary condition at x = b: 

Sjjj(b,s) = B. (6.5) 

As before, we may hope to express the initial slope s 

from equation (6.5) in terms of the n unknowns 

^l'®2'* * *'^n* equation (6.2) we see that this may be 

possible for m s 4 but, for example, if m = 5 we need 

to consider f"(a,A) vidiich more explicitly becomes 
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f"(a,A) = f^(a,A) + 2f^(à,A)s + fy(a,A)f (a,À) 

+ FYY(A,A)S2, 

so that the initial slope enters in a nonlinear fashion. 

Of course, we could employ the usual shooting technique as 

discussed in Chapter I v^erein the exact solution s = s* 

of $(s) = y(b,s) - B = 0 is approximated using some 

iterative scheme. For our development this means that we 

start with some initial estimate s^ of the exact slope s* 

and construct a spline function S^(x,s^) of degree m to 

the solution of the initial value problem 

y" = f(x,y)5 y(a) = a, y'(a) = SQ. (6.6) 

Next we check how "good" s^ is by conç>uting 

9(s) = S^(b,s) - B at s = s^. "Che slope s^ is then 

corrected by some iteration scheme, for example; 

= s^ + 0(s^), i = 0,1,... (6.7) 

so that it is necessary to solve a sequence of initial value 

problems. As mentioned previously, Keller [73 has some 
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general results concerning this procedure vAierein -Oae 

initial value problems eire solved numerically by a discrete 

variable method. 

We observe that in solving an initial value problem of 

the form 

where s^ is fixed, using a spline function 

S^(x, s^) = S^(x) of degree m generated by our con­

struction, the coefficients a^, i = 1,...,n exist smd are 

unique under fairly general assumptions. Note that they are 

determined by the conditions; 

y" = f(x,y), y(a) = A, y'(a) = s^. (6.8) 

J ] (6.9) 

Now over the interval [Xj_2,Xjl, we defined 

m-1 

^m(^) - Z k: ®m m: 
Tc=0 

a. 
= Aj(x) + (x — y j — 1*2, ...,n. (6.10) 

The Aj(x) are uniquely determined by the spline continuity 
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relations and solving for a^ from (6.9) we get 

ajh ) - AV(x)} 

= 9(aj) (6.11) 

One Lipschitz constant for g(t) is inde­

pendent of j where L is the Lipschitz constant for f. 

mapping and equation (6.1) has a unique fixed point Wiich 

may be found by iteration. Note that for such h, the 

corresponding difference equation has a unique solution. 

Finally, we point out two interesting facts concerning 

question (l). If we consider approximating the solution of 

(l.l)-(1.2) using quartic spline functions (m = 4) then, 

by consulting Table ^.1, we see that the corresponding 

multistep method is 

This is a stable fourth order method, and so we might 

expect to raise the order of convergence by constructing 

such a spline function. 

We now prove the following negative result. 

J. (6.12) 
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Theorem 6.1; The solutions S_ix) are divergent as h 0 
• 

for m 5 5* 

Proof; We will show that the multistep methods given by the 

recurrence relation 

are unstable and hence divergent for m ^ 5» From Henrici 

[6,p.500] we know that the multistep method is stable only 

if the zeros of the "associated polynomial" P(z) satis:^; 

(i) modulus of no zero exceeds 1. 

(ii) multiplicity of zeros of modulus 1 be 

m 

i _ 
(6.13) 

i = m — 1 

a most 2 

Now 

m-1 

P ( z) = ^ a z^ 

i=0 

where 

(m-2) :[Q^_l(i +1) -
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and 

Hence 

P(z) = (m-2): C(z - l)^Q^_j^(l) + z(z- l)^Qjjj_i(2) + ... 

+ l)^Qjn_i(ni-2)] 

m-2 

= (m-2):(z- 1)2 J 

i=l 

= (z- l)2p(z). 

Utilizing the B-spline symmetry property 

= ViW 

we see that the first two coefficients of P(z) are 

(m-2):c^_3^(m-2) = 2) = 1 

and 
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(iu-2);(^^(m-3) = = 2°"® - (m-1). 

We thus have 

P(z) = z»-5 + (2"-2-m+l) + ... + 1 

= {2-rj){2-rjj) ... (z-r„_i)-

the sum of the zeros of P(z) is given by 

m-1 

Y r^ = n- 1 - 2"-2. (6.14) 

i=5 

Taking the moduli of both sides of (6.14) and using the 

triangle inequality gives 

m-1 m-1 

Z '^i' - ' Z ^i' ~ 2"^"^ - (m-1) > m - 2 (6.I5) 

i=5 i=5 

for m 5 5. Let I^ ~ maxlr^l . Then (6.I5) becomes 

> •" - 2. 

so that Ir^.^l > 1 for m 5 5. This proves that the 
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multistep method, and hence the corresponding spline so­

lution, is divergent. 

Ihe above result is analogous to fheorem 2.6 in [8] 

concerning the application of high order splines to the 

numerical solution of the initial value problem (1.4). There 

it is pointed out that the unfortunate consequence of insta­

bility is due to the strictness of the continuity require­

ments in the spline function S^(x) e C™ ^[a,b]. However 

stable high order spline methods for numerically solving the 

initial value problem (1.4) are generated by relaxing the 

continuity restrictions through a mors general definition of 

a spline function v^hich allows 

S(x) c C^~^[a,b], S(x) t C^[a,b], k < m. 

Analogous methods could possibly be described for the nu­

merical solution of the boundary value problem (l.l). 

Concerning the second question, we consider the general 

two-point boundary value problem 

y" = f(x,y,y*), y(a) = A, y(b) = B. (6.16) 

Following our development ox the spline shooting technique, 

we would consider the related initial value problem 
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y" = f(x,y,y'), y(a) = A, y'(a) = s, (6.17) 

where s is a parameter. Using the Taylor expansion method 

to construct a spline function approximation S(x,s) to 

the solution y(x,s) of (6.17) again would result in terms 

such as y"(a,s) = f(a,A,s); that is, the parameter s 

enters in a nonlinear fashion. As discussed above, one 

could employ the usual shooting technique here also. 
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