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I. INTRODUCTION

In this paper we consider the two point boundary value

problem in ordinary differential equatidns
y" = £(x,¥), v(a) = a, y(b) = B. (1.1)

Our purpose will be to study the application of cubic spline
functions fo the numerical treatment of (1.1). That is, we
develop a method which produces a cubic spline function:
approximation to the analytical solution of (1.1) over the
finite interval [a,b]. Some remarks concerning the appli-
cability of our method in solving the general two péint

boundary value problem

_ Y" = f(X:Y:Y'): Y(a) = A, Y(b) = B, (1°2)

will be made in Chapter VII.

Before we consider a numerical method for solving (1.1),
we must be assured that there exists a unique analytical
solution. The following class of boundary value problems

defined by Henrici [6, p.347] is fundamental to this problem.

Definition 1.1: A boundary value problem will be said to be

of class M if it is of the form (1.1) where



- <a<b<w, A and B are arbitrary constants, and

 the function £(x,y) satisfies the following conditions:

(i) £(x,y) 4is defined and continuous in the infinite
strip T = {(x,y) ta=x=Db, -0 <y <o};

(ii) £(x,y) satisfies a Lipschitz condition in y
uniformly in x, that is, there exists a constant
L such that for any x ¢ [a,b] and any two
numbers y and y¥,
| £(x,¥) - £(x,¥*)| = Lly - v*|;

(iii) ﬁy(x,y) is continuous and nonnegative in T.

Problems of class M are nice in the following sense:

Thebrem l.1l: A boundary value problem of class M has a

unique solution. The proof of this theorem can be found in
[6, p.34T7]. In this paper we will only consider problems
of class M so that the solution v(x) of (1.1) exists
and is unique.

There is an extensive literature on the numerical so-
lution of (1.1). Although existence of unique solutions
for the two point boundary value problem has been established
under fairly general conditions, there are no general
methods for finding the solutions analytically. In fact
Henrici [6, p.2] points out that even rélatively innocent-
looking differential equations, such as y" = 6y2 + X,

cannot be solved in terms of elementary functions. Further-



more, even in cases where an exxplicit solution does exist,
the problem of finding its nume=zrical values may be difficult
x .2

2
as for example in the solutiom e > _[ et at of the
o

2 | 1t o2
equation y" = 4xy - 2(x+1), ry(0) =0, y(1) = < .[ e dt.
o

It is important to have practicizal methods for approximating
the soluf.ion of (1.1) with arbi-itrarily high accuracy. The .
advent of the high-speed digitagl computer has made the use
of numerical methods for solvinemg (1.1) not only feasible but
also very attractive. |

The known numerical metho-d:Bs .generally fall into two

categories:

(i) discrete variable me tichods which produce a table
of approximate values s at usually equidistant
points of the indepemondent variable, and

(ii) global (continuous) memethods which produce a con-
tinuous approximating y function over the entire

interval [a,b].

Concerning the first type, Chapfioter VII in Henrici [6] con-
tains applications of such methoiods to our problem (1.1),
along with an extensive bibliogmjraphy. In particular he
notes that it is theoretically salwavs possible to reduce the
solution of (1.1) to the solutioon of a sequence of initial

value problems. Let y(x,s) delknote the solution of the



initial value problem resulting from (l.l) by replaceing the
condition for y(b) by the condition y'(a) = s, where s
is a parameter. Then.(l.l) is equivalent to solving the
(in general nonlinear) equation y(b,s) = B for the so-
lution s = s¥*¥. This can be accomplished by one of the
standard methods such as regula falsi or Newton's method,
however, each evaluation of the function y(x,s) (and, if
Neﬁton's method is used, of ys(x,s)) requires the solution
of an initial value problem. That is, one starts with an
initial slope So and sees what happens at x =b by
solving the associated initial value problem. A "better"
slope s; is generated using this information and the
process is repeated. Continuing in this fashion a sequence
of slopes {sn} is generated with the hope that s~ s*
as n = o. Chapter II in Keller [7] contains some general
results concerning this so-called "shooting" or "drive-
through" technique wherein the associated initial value
problems are solved using a stable discrete variable method
of order p. |

Our interest is in using the "shooting" technique to
construct a global or continuous approximation to the so-
lution. The approach we take leads to the subject of spline
functions, the first mention of which was made by Schoenberg

[10]. The following definition is due to him.



Definition 1.2: Suppose we are given a sequence of real

numbers

a=x <x1<---<x = b. (1.3)

A function S(x) 1is a spline function of degree m =z 1 if
it satisfies:
(i) s(x) e ™ Ha,b];
(ii) s(x) e m, in each subinterval
(xi’xi+1)’ i=0,1,...,n-1, where 7 is the
set of all polynomials of degree = m. The points
(1.3) are called knots (sometimes joints or mesh
points) of the spline S(x) and may be jump

discontinuities of S(m)(x).

Note that Ty € sm, where §m denotes the set of all
spline functions of degree m, class Cm-l[a,b].
A recent study on the application of spline functions

for approximating the solution of the initial value problem
y' = £(x,¥), ¥(a) = v, (1.%)
has been done by Loscalzo and Talbot [8]. Some of the ideas

behind their construction of the spline function approxima-

tion will be implemented here.
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As before, we replace (1.1) by the initial value

problem

y" = £(x,¥), v(a) =4, y'(a) = s (1.5)

where s is a parameter. A cubic spline function, which
we will denote by S(x,s), 1is generated to approximate the
solution y(x,s) of (1.5). We use a Taylor expansion of

order two at x = Xq and define the coefficient al of x3

by a collocation requirement at x = x; = X, + h

S"(%y,8) = £(x,,8(x;,8)).

A similar Taylor expansion at x = Xy yields the first
three coefficients of the next polynomial component of
degree 3, and a collocation condition at x = Xy = X, + ch
gives the fourth coefficient a, and completes the defi-
nition up to the determination of s. This process is
repeated until of spline function of degre m =3 is de-
fined in terms of s over the entire range of integration
(a,b] with knots x; =2a+ ih, i =1,2,...,n~1 and

h = (b-a)/n. For the determination of the parameter s

we requi:e that the spline function S(x,s) satisfy the

boundary condition at x = b:



s(b,s) = B. | (1.6)

This completes the definition of s(x;s).-‘As one might sus-
pect, the initial slope s, determined by equation (1.6),
can be written as a function of the coefficients

a,,
derivatives for x ¢ [a,b].

i=1,...,n. Note also that S(x,s) has two continuous

Loscalzo and Talbot [8] discovered thét any spline
function in Sm with equidistant knots satisfies a linear
consistency relation which is equivalent to a discrete
multistep method if it is applied to the initial value
problem (1.4). Similarly, we find that such a spline
function is equivalent to a discrete multistep method if it

is applied to the boundary value problem (1.1).
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II. CONSTRUCTION OF THE CUBIC SPLINE FUNCTION

Consider the boundary value problem of class M:

y" = £(x,y) (2.1)

v(d) = A, y(b) =B L (2.2)

Let y(x,s) denote the solution of the initial value
problem resulting from (2.1) and (2.2) by replacing the con-
dition for y(b) by the condition y'(a) = s, where s is

Qa parameter:

£(x,y) | (2.3)

Yll

v(a) = 3, y'(a) = s. (2.%)

We wish to determine an initial'slope s 'so that the
approximate solution S(x,s), which we will construct, to
y(x,s) will also be a good approximation to the solution
v(x,s*) of (2.1); here s* is the solution of the
equation y(b,s) = B. .

Our construction is as follows. Let n > 3 be an
integer, h = hiig, and let S(x,s) (@ =x =b) be a spline

function of degree 3, class c2 and having its knots at



the points x = a + h,a + 2h,...,a + (n-1)h. We define the

first component of S(x,s) by
- s(x,s) = y(a,s) + y'(a,s)(x-a) +.% y"(a,s)(x-a)2
+ % a, (x- a)?
(2.5)

=2+ s(x-a) +% £(a,n) (x-a)* + % al(x-a)3:

asx=a-+h

with the last coefficient a, and, of course, the slope s
as yet undetermined. We now require that S(x,s) satisfy
(2.3) for x = a +h. This gives the equation
s"(a+h,s) = : a+h,S(a+h,s)). (2.6)
More explicitly we have,
1

1 2
S(a+h,s) = A + sh + 5 f(a,A)h" + Z alh3

s"(a+h,s) = £(a,a) + ah,

so that (2.6) becomes
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a, = h[f(a+h A+ sh+—- £(a,a )h2+3 3) - £(a, A)]

(2.7)
= gl(s:al)'

Repeating the same steps in the interval [a+h,a+ 2h],

we define

2
S(x,s) = Z T S(k)(a+h s)[x- (a+h)]
k=0 (2.8)

+ 37 alx- (a+n)P°

and require S(x,s) to satisfy (2.3) at x=a + 2h

S"(a+2h;s) = f(a+2h,s(a+2h,s)). (2.9)

This results in the equation

ire 3 2 h’
S{£(a + 2h,A + 2sh + 2£(a,A) +% ah’ + 3_)

25

- a;h - £(a,a)] (2.10)

ge(saalxae)-
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Continuing in this manner we obtain a cubic spline function

S(x,s) satisfying the equations

s"(a + ih,s) = f(a+ ih,S(a + ih,s)), i =0,1,...,n
(2.11)

which results in the system of n nonlinear equations in the

n + 1 unknowns A158p5 045358, that is
a; = gi(s,al,ae,...,ai).

Now for the determination of the parameter s, we require

that the spline function satisfy the boundary condition at

x = b:

s(b,s) = B. (2.12)

We have the following fact concerning the solution s of

equation (2.12).

Theorem 2.1: If we require the cubic spline function con-
structed above to satisfy the boundary condition at x = b,

the parameter s satisfies the equation
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, |
A - -@-2—)— £(a,a) - —-_- zc;’aj] (2.13)

where c = [n- (3-1)]3 - [n-J]3

The proof of this theorem relies on the following

lemma:

Lemma 2.2: At the pbints x=a+ ih, i =0,1,...,n, the
cubic spline function §(x,s) and its first two derivatives

satisfy the equations:

i

s(a+ih,s) = A + ihs + -‘-ihgﬁf(a,z-\) + -1;— Z (2.1%)

$'(a+ih,s) = s + ihf(a,a) + h® ) (i- j+%‘)aj (2.15)
i =

s"(a+ih,s) = f(a,A) +h Zaj (2.16)

Proof of Lemma 2.2: We will establish (2.1%)-(2.16) by in-
duction. Clearly, by construction, (2.16) holds for i = 0.
Assume it is true for i - 1. Now over the interval

[a+ (i-1)h,a+ih], S(x,s) is given by
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2 .
S(x,8) = ) ¢ s()(a+ (1= 1)n)[x- (a+ (i- 1)) I*
k=0 .

(2.17)

+ 31—. a;[x-(a+(i- 1)n7°.

Hence S'(x,s) and S8"(x,s) are given by

s'(a+(i-1)h,s) +s"(a+ (i- l)h,s)[:;:-_- (a+ (i-1)h)]

S'(x,s) =
+ % a,[x-(a+ (i—fl)h)je (2.18)
s"(x,s) = s"(a+ (i-1)h,s) +a;[x- (a+ (i-1)n)J. (2.19)

Now since (2.16) is assumed true for i - 1,

i-1
s"(x,s) = £f(a,A) +h z 2, + ai[x- (a+ (i-1)n],
=1

and evaluating S"(x,s) at x =a + ih we find

i
s"(a+ ih,s) = £(a,A) + h Z ay-
j=1

This proves (2.16).
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To prove (2.15), we note that it is true for i =0 by
construction. Assume it is true for i - 1. Evaluating

equation (2.18) at x = a + ih we find

s'(a+ih,s) = s'(a+ (i-1)h,s) + s*(a+ (i-1)h,s)h +%h2ai'
i-1
; - .1
= S + (1"'1)hf(a,A) + h Z (1—1— J+-§-)aj
j=1
i-1
2 1.2 .
+hf(a,A) + h Z aj+2hai
3=1
i
- ; 2V ;i s.ly.
= s + ihf(a,A) + h z (l-'3+2)aj'
j=1

This proves (2.15).
Finally, to prove (2.14%), we note that it is also true

for i =0 by construction. Assume it is true for i - 1.

Evaluating equation (2.17) at x = a + ih results in

S(a+ ih,s) = s(a+ (i-1)h,s) + hs'(a+ (i-1)h,s)

2
h " .
+Z s"(a+ (i- l)h,s) + % aih3



> i-1
*+*6 . C5 3y
=1
i-1
+ hs + (i- l)h2f(a,A) + h Z (i- l-j+%‘-)aj
j=1
i-1
2 3
h_ h- 1 >
+ 5 £(a,a) + 3 ay +gah
J=1
o i
_ . ih h” i
= A + ihs + =55 f(a,a) + 3 'Zlcjaj.
J=

This establishes equation (2.1%4).

Proof of Theorem 2.1: This follows directly from Lemma 2.2

by letting i = n. We have

S(b,s) = A + (b-a)s + (p-2)2 £(a,A)

S(a + nh,s)

and setting S(b,s) = B and solving for the parameter s

establishes equation (2.13).
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Next we concern ourselves with the questions of ex-
istence and uniqueness of the cubic spline function con-
structed above .‘ Recall that over the interval [x;_ ,,x,]
we define

S(x,s) Z 1 k)(xl 1,s)[x x4 l] +3. ai_[x—xi_l]3.

But from Theorem 2.1 wé have the parameter s expressed in
terms of the coefficients a,, i=1,2,...,n, and hence
because of the spline continuity conditions we see that
S(x,s) will be uniquely determined if the vector
a = (al,ae, ...,an)T can be found uniquely.

Now the coefficients a, are to be found from the

collocation requirement
S"(xi,s) = f(xi,S(xi,_s)), i=1...,n,

which by Lemma 2.2 becomes

f(a,A) +h Z aj = f(xi,S(xi,s)), i=1,...,n.
j=1

Solving for a;, we find
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i-1
a. = %{f(xi,s(xi,s)) - h:z; ay - £(a,a)]
. 3m

= £0£(x,,5(%;,8)) - S"(x;_;,5)]

= %[f(xi:s(xi:s)) = f(xi_l’s.(xi-]_’s))]

g:(ajsa,,.0.5a2_), i = 1,2,...,n. (2.20)
ivt1’T2 n

Hence if we denote by a the vector a = (al,...,an)T, and
by g the vector g = (gl,...,gn)T, ‘we see that the
problem of finding the coefficients a;, i=1,...,n,
results in the solution of a system of (in general nonlinear)

equations which in vector notation can be written

a=g(a). (2.21)

It is known [9,p.125] that if the Jacobian matrix U

- 3g;(a)
of g, U= (——J———) satisfies the condition ||U] < 1, where

[-]] denotes the spectral norm of ., then g is a con-
traction mapping and the system (2.21) has a unique fixed
point which may be found by iteration.

The elements of the matrix U = (uij) are explicity
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2 e s s
_h i_4i.n
Uiy = B{fy(xi’s(xi’s))[cj Ecj]

i-1 _(i-1) .n
- fy(xi_l:s(xi_ls s) )[cj - L‘H—L Cj]}’

with C]; as previously defined except for the condition

2

1, j =1
where t.. = {

-1 -1
ij , then T =(t§_j )) where

0, 3>1

~ . .
J 1, j=1
-1 . . -1 _
t;(_j ) = -1, j=i-1, and TUT ~“ =P = (pij) where

0, otherwise

/(b-a)2fy(xi,s(xi,s))[i(-in‘—3nl], j <i

(b-a)2fy(xi,s(xi,s))[612'653”*n , j=i<n
Pis = 0 ) i=3j=n
(b-a)efy(xi,s(xi,s))[i(i;g—nl], i<j<n
(b-a)2fy(xi,s(xi,s>>[gj3-], i<j-n

Then, since U = T-lPT, we have

ck =0 if k < 4. Now if we define the matrix T = (tij)
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Il =l el = e~ HledlT) = el (2.22)

as [Tt = 7]l = 1.

Next we define the matrix R = (rij) where

1, =1
rij = - %‘-, j=mn, i=n-1 f£from which we easily see that
o, otherwise
1, j=1
-1 _ o (=1\; . (-1) _ 1 . _ L.
R '(rij ))15g1venby Iy = g J=mn i=n 1.

0, otherwise
1

Performing another transformation we get RPR = = Q. = (qij)
Y.
where
2 j(i-n . .
(b-a) fy(xi’s(xi’s))[anTl]’ j < i
2 6i%-6in+n] . _ ;
235 = { (0-2)%8, (xy,8(x;, ) )[B=GBER] 5o <n

(b-a)zfy(xiss(xi:s))[iﬁ?n)']: j>1

Note that qij =0, 1 =i, J = n since fyg 0.

For a given matrix A if we denote the spectral radius

of A by p(A) and the conjugate transpose of A by A%,

then since P = R-]'Qf R we get
) Yy
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el = nn'lofynn = ua'lnnofynnan - llog | (2.23)

as |IR7Y = IRl = 1.
By definition,

1

| ofyll = [p(o§yofy)]2 (2.24)

Observe that Qg Qe is a nonnegative matrix and so if we
Yy Y

assume fY = N, and denote by Qy the matrix resulting by

replacing fy by this upper bound in each component of the

matrix Qf s Wwe have that
Y

P(QEYny) = P(QﬁQN) = [P(QN)JQ’ (é'25)

as Qy is symmetric. On combining equation (2.2%) with

inequalities (2.22), (2.23), and (2.25) we get that

ol = p(ay)- (2.26)

Thus the system (2.21) has a unique fixed point when
p(QN) < 1. Now the matrix QO = (b-a)eN- D where

D = (dij) is given by
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j(i-n)/n3 j <i

dij = (6i2-61n4-n)/n3, j=i<n ,
i(j-n)/n’ j>i
0 i=3j=n

and so we need to analyse p(D). This was done for several
values of n by finding the eigenvalues of the matrix D
using the Power method and a computer. The results are

listed in the following table.

Table 2.1

The spectral radius of D

n p(D)

4 0.09627751
5 0.09805469
6 0.09903845
7 0.09963777
8 0.10002920
9 0.10029867
10 0.10049198
20 0.10111311
30 0.10122864
40 0.10126912
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Now the condition that p(QN) < 1 is equivalent to re-

quiring N(b-a)ep(D) < 1. We conjecture that p(D) <-!5
T

and in fact that limit p(D) = 5. Note that
T

n - o

;%-z 0.10132118 and that our results in Table 2.1 support
T
this conjecture.

Finally it is interesting to note thaf if p(D) < ;%3
T

then the condition under which system (2.21) has a unique
fixed point is N < 72/(b-a)2. This agrees very well with
a result in [1,p.31] which states that the boundary value
problem (2.1)-(2.2) has a unique solution when |
L < we/(b-a)e, and that this result is the best possible.
Here L is a Lipédhitz constant for the function £.

_Throughout the rest of this paper it will be assumed
that b - a is small enough so that p(Qg) <1 which will
guarantee existence of a unique solution to system (2.21).

In conclusion, suppose that we approximate the solution
of system (2.21) by generating a sequence qf vectors

{E(m)} through the algorithm

s(me1) _zez(®m)y noo,1,... .

Choosing 5(0) = 0 admits the following rationale:

Consider the Taylor series expansion of the exact so-
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lution y(x) = y(x,s¥) of (1.1):
' 2
y(b) = y(a+rh) = y(a) + (b-a)y'(a) + -(-b—;-"f‘-)-y"(a) Foaels

2
B=2A+ (b-a)s* +-(b%a-)- £(a,A) + ... .

Upon solving for s¥,

2
s*=b}a[3 -A—-(-bg—alf(a,A) + ]

we see that since our approximate slope s satisfies

a —a)2 3 o
s=s@ =gigs - a- B3 eea) -5 ] ol

taking 30 _ 5 results in using

s(0) = 530y - 5@) =gt s -a- ib—gilef(a,z;)]

as our initial approximation to the exact slope s*. Aalso
note that s(o) is the slope at x = a of the quadratic
polynomial p(x) passing through the points (a,a), (b,B), .

and satisfying p"(a) = f(a,a).
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III. THE CONSISTENCY RELATION FOR A SPLINE FUNCTION °

In this chapter we will prove two important results
which will be used in the next chapter in proving the con-
vergence of our constructed spline function approximation
to the solution of (l.l). These results are analogous to
those described by Loscalzo and Talbot [8] in their treatment
of the initial value problem (1.4). For completeness, we
include the following discussion by Curry and Schoenberg
[4] on their description of a basis for 8, which is ob-
tained after first considering splines defined on (=w,w®).

Let

coe <x_2 <x_l<xo<xl<x2<oo- <xi<-oo (3.1)

be a sequence of reals, such that X; “+teo as 1=+ o,
and let m be a natural number. By a spline function

S(x) of degree m having the knots (3.1), we mean a
function of class Cm-l(-m,w), such that in each interval
(xi’xi+l) it reduces to a polynomial of degree not exceed-
ing m. Next we define a particular example of such a

spline function in terms of divided differences.

Definition 3.1: Consider the subset {xo,xl,xe,...,xm+1}

of the set of points listed in (3.1). Let
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if u=zo0

0, if u<O0

w(x).= (x-xo)(x-xl)'... (x-xm+1) o (3.2)
and
m+l m .
: (m+ 1) (xi-x)
M(x;xo,xl,...,xm+l) = z: w'(xi) £, (3-3)

i=0

If we think of M(x) = M(x;xo,xl,...,xm+1) as the

divided difference of the function

M(x;t) = (m+ 1)(t-x)r_ﬂ (3,.1;)

based on the points t = XogsXys oKXy, 1o this notation
becomes consistent with Steffensen's notation [11] for di-
vided differences. From (3.3) it is easily apparent that
M(x) e 7 in each of the intervals (x;_;,%;),
i=1,...,m+1, while M(x) =0 if =x < x_ as we can
remove the subscript "+" in (3.3) and the sum then
vanishes as a divided difference of order m + 1 of a
polynomial of degree m. Moreover, by the definition of
the function u,, M(x) clearly vanishes for x > Xnp1w We

note also that M(x) ¢ Cm-l(-oo,oo) and hence M(x) is a
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spline function of degree m defined on the interval

(-°°:°"‘) .

We now state the representation theorem [4,p.80]:

Theorem 3.1: Given the knots (3.1) we consider the sequence
of spline functions

M.(x) = M(X35K:,K: 7500 05%s ), ~0o < j <o (3.5)
J 3°7I3+1 j+m+1

Every spline S(x) of degree m defined on (-w,o) with
the knots (3.1) may be uniquely represented in the form

[+

s(x) = z chj(x) (3.6)

-0

with constants cj. Conversely, every series (3.6) with
arbitrary constants cj defines such a spline function
s(x).

For this reason, because they provide a basis for the
class of spline functions, functions of the form (3.3), or
(3.5), will be called B-splines. Observe that if we assume
the knots in (3.1) are equidistant, say X;,9 ~ ¥; =h for

all i, then by equation (3.5) we have

Mj(x) = M(x;x_+ jh,x_+ (3 + 1l)n,.. %+ (3 +m+ 1)h),
(3.7)

-0 < j <o
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It is.clear from the geometry of the situation that these
are translates of one and the same function Qm+l(x) which

can be expressed in several equivalent ways in view of

(3.3):

Q1 (%) = M5 (x) (3-8)
mid . om+ 1
01 (®) = =5 ) (U™ xrin-0] (3.9)
™R =0 1

1 m+1 im+1 m
01 () = =5 G . )ix- (2 +i0)T®,  (3.10)

i=0

and Mj(x) = Qg (x- jh). For m = 3, (3.11)

these functions are illustrated in the figure below.
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Figure 3.1

The basis functions Mj(x) for m =3

Returning now to the class &m defined in Definition
1.2, we can determine an appropriate basis for this class.
First, if 8S(x) ¢ 8, we define x; to be a knot of
multiplicity r(0 = r =m + 1) if in a sufficiéntly small
neighborhivod of x;, S(x) ¢ c™ . Thus r = 0 means that
X is really not a knot. At the other extreme, r =m + 1
means that there are no continuity requiréments between the
two components of the spline function, below and above X5
Recall now that S(x) € 8, Wwas defined over a finite inter-
val [a,b] containing the n - 1 knots,

X., 1 =1,2,...,n=-1, satisfying

1’

a <xy <x,<--s<x _; <b. (3.12)
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We now introduce two. more krnots

X, = a, x, =b, both of multiplicity m + 1. (3.13)

Hence we really have now 2(m+ 1) + n - 1 knots, a fact

which we indicate by writing out the knots as follows:

m+ 1 - m+ 1
M—/\
PIVETPRPE ST STE RIS SURTL P PP (3.14)

A basis for the family Sm iis now formed by the following

m + n B-splines

m+ 1t
Mo(x) = M(x;‘xo,,...,xo,xl),
™=
Ml(x) = M(xilxo:o Y 0’xl’x2)’ (3'15)
: m+ 1
-/"_“"—A—-‘_\
Mz(x) = M(x;xn_l_, X > X5 - ..,xn),

where we set

t=m+n-1 (3.16)



Observe, however, that equation (3.3) is no longer valid for
multiple knots and must be replaced by the appropriate ex-
pressions for confluent divided differences.

Now let 8 < Sm denote the class of spline functions
with knots x; = a + ih, i = 1,...,n-1. Let S(x) ¢ 8.
If restricted to the interval [a,a+ (m~-1)h], S(x) depends

on (m+1) + (m-2) = 2m - 1 linear parameters. It follows

that the 2m quantities
s(a+ih), s*(a+ih), i =0,1,...,m~-1 (3.17)

cannot be linearly independent. In fact we have the follow-

ing:

Theorem 3.2: For any spline function S(x) ¢ 8, there is

a unique linear relation between the quantities (3.17) given

by
m=-1 m-1 i
Zo a:gm)s(a-b ih) = h? Z 5§m)s"(a+ ih) (3.18)
i= i=0

whose coefficients may be written as

o{® = (m-2)ilo_(i+1)-20 ,(i)+0_,(i-1)] (3-19)
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5§m) = (m-2)!Qm+1(i+ 1) | (3.20)
. m+l Cm+ 1
where Qm+1(x) = ﬁ%- /) (-l)l(mf- )(x-i)f (3.21)
i=0 .

which is a B-spline.

Proof: This is a mild extension of the proof of Theorem 2.2

appearing in [8] which was due to Schoenberg.

We first make the change of scale z = bfa(x-a) so
that without loss of generality we may taﬁe h=1 and

a =0 in equation (3.18). Next, consider the convolution

of two infinite sequences defined by

{a } » (b} = {c,]

where
=Yab .
Ch = [ 3Ppxs ~® <0 <o,
k

The following properties hold for convolution:

fa_} » {b_}

(b} * {a_}

. 3.22)
(o] * By] = {25} x {byy,] (
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We now consider the B-spline Q(x) = Qn.1(x) Qefined
by (3.21) and examine the convolution of {Q"(n)} with .

{o(n-1i)}. Applying relations (3.22), we have

(0"(n)} x [o(n-1)} = {o(n-1)1 x {0"(n)]
| (3.23)

{o(n)} * {Q"(n-1i)}

If we apply the representation Theorem 3.1 we may write the

arbitrary spline function S(x) as

N .
s(x) = [ S;Q(x-1).
i
In particular we have
S(n) = z c;Q(n- i)

i

(3.24)

S"(n) = Z c;0"(n- i).

i

Combining relations (3.23) and (3.24) finally yields

{Q"(n)} = {s(n)} = {Q@(n)} * {s"(n)]. (3.25)
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We observe from (3.21) that Q(x)‘='Qm+l(x) vanishes
outside the interval (O,m+1). Taking the element n=m
of the convolution on each side of equation (3.25) now yields

a result in the form of (3.18) with coefficients
agm) = Q‘;+l(m- i), B:(Lm) = Qm+l(m- i). (3.26)

‘But the coefficients defined in (3.19)-(3.20) differ

from these only by a constant factor of (m-2)! because B

splines have the syrmnetry properties

Qm+1(m-x) = Qm+1(x+ l)
Quia(m=x) = - Qp 4 (x+1)
Gi(@=x) = Qp 5 (x+1)

and the differentiation properties

Or;H_l(x-i- 1) = Qm(x+ 1) - Qm(x)

Qr (x+1) =@ ,(x+1) =20 .(x) + o _;(x-1).

These relations can be verified directly from (3.21), and

this completes the proof.
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For m = 3,4,5 the coefficients of the consistency

relation (3.18) are given in the following table.

Table 3.1

Coefficients of the consistency relations

m\i] 0 1 2 3 4 0 1 2 3 i
% P
1 11 911 1
4 1 -1-1 1 12 12 12 12
1 26 66 26 _1
5 1 2 -6 2 1 20 20 20 20 20

We now prove the second result which exhibits the
relation between the values of the cubic spline function
constructed in Chapter II and those of a certain multistep

method at the points x; = a + ih, i = 0,1,...,n.

Theorem 3.3: Assume that h < J%; where 1L is the
Lipschitz constant for £. Then the values S(a+ ih,s),

i=0,1,...,n obtained in Chapter II are precisely the
values furnished by the discrete multistep method described

by the recurrence relation

2

2
Z °‘£3)Yk-2+i = n° Z B?)Yﬂ-e-x-i’ k=2,...,n (3.27)

i=0 i=0
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or

2
: h
Y = 2y g Vg p = g lE A+ £ o0,
'_(3-28)

k=2’.0.’n
if the starting values
Yo = S(a,s) and ¥, = s(a+h,s) (3.29)

are used.

Proof: For h < J%; only one seqguence {yi}, i=2,...5n
satisfies (3.27) with starting.values (3.29). By the
consistency relation (3.18), however, the sequence
{s(a+ih,s)} satisfies (3.27) and obviously has starting
values (3.29). Thus fhe values S(a+ ih,s), i =2,...,n,
must coincide with the points Y; generated by the multi-

step method.
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IV. CONVERGENCE PROPERTIES

In Chapter III we found that the cubic spline function
constructed in Chapter II furnished the same discrete so-

lution S(a+kh,s), k = 0,1,...,n, as the 2-step method
h2
R IR ER R L RAL WRL WY (%.1)

provided that y_ = s(a,s) and Yy = s(a+k,s) are used
as stérting values. Except where appropriate, we will now
delete for notational convenience the dependence on the
parameter s by writing S(x) in place of S(x,s).

For S(x) ¢ 8 we now define the step function
S(m)(x) at the knots x, = a+kh, k=1,...,n-1, by the

usual arithmetic mean:

s = Hs(™ (- )+ s (s +2)]

k=1l,...,n~-1.

(4.2)

We then have the following theorem which exhibits how closely
the constructed spline function approximates the solution

v(x,s) of the initial value problem (2.3)-(2.4).
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Theorem 4.1: If f(x,y) e C° in T, then there exists a

constant XK such that for a11 h < E,

lf(x,s)-s(x)‘l <I<112; ly'(#,s)—S'(x)l < Kn®,

ly"(x,s) - s"(x)| < &2, ly"(x,s) -s“(x)] < Kn,

if x ¢ [a,b], provided S”’(xk) is given by (4.2) with

m= 3.

The proof:" of this convergence theorem depends on some
lemmas. First we note that the multistep method defined by
(4.1) is of second order accuracy provided the starting
values have third order accuracy [6,p.314]. We therefore
begin by considering the error in the starting value
Yy = S(a+h,s) noting that by construction

s(a,s) = y(a,s) = A.

Yo

Lemma 4.2: If fx and fy are bounded in T and

ly'(x,s)l =Q for x e [a,b], then there exists a constant

K such that

ly(a+h,s)-s(a+h,s)| < Kho .
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Proof: Consider the expressions

2
y(a+h,s) = y(a,s) + hy'(a,s) + %— y"(a,s) + %— v“(8,s), .

a<g<a+h,

2 3
S(a+h,s) = y(a,s) + hy'(a,s) + %y"(a,s) + %— a,.

Thus we have

>
ly(a+h,s) - s(a+h,s)| = Bly"(e,s) - a,l.

But since
y"(8,8) = £,(8,7(8,5)) + £,(5,¥(8,5))y"(8,5),

ly”(8,s) - a;1 = 1£,(8,v(8,8))1 + 1£,(8,7(8,8))1y"(8,s)]

+ lalI.

Letting M, = max |f (x,y)] = max |£f (x,y)l, we
1 (x,y)eT = ’ - e (x,¥)eT 'Y ’

get

ly (g,s)-a:L =M, + M0+ lall = K.
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Hence

y(a+h,s) - s(a+h,s) = O(h7).

Lemma 4.3: If |y(x.,s)-8(x)| < kP and
S"(xk) =.f(xk,s(xk)), then there exists a constant K¥*

such that

ly(xk,s)-s(xk)l < K""‘hiJ and ly“(xk,s)-s"(xk)l < k*nP,

Proof: This is an immediate consequence of the Lipschitz

condition. We have explicitly

ly*(x,,8) - 8"(x )| = [£(x,¥(x.8)) - £(x,8(x))]
s Lly(xk,s) - S(xk)l < LKhP.
Simply let K¥* = max{K,LK]}.
The next result is due to Loscalzo and Talbot [8].

Lemma 4.4: Let y(x,s) ¢ cm+l[a,b] and let S(x) be a
spline function of degree m having its knots at the points

Xps K = 1,2,...,n-1, and such that the conditions
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ly(r)(xk,s)-s(r)(xk)l = O(hpr), r=0,1i,...,m=1;

(3.3)
 k =0,1,...,n~1,
ly(m)(x,s)-s(m)(x)l = O(h), X <x < Xpp1:
(4.4)
k=0,1,...,n-1,
are satisfied. Then,
ly(x,s8) -s(x)!| = O(hp), x ¢ [a,b] (%.5)
where P = min ~ (r + pr) (4.6)
r=0,1,...,m
where Py = 1 and furthermore
19(™ (x,8) -s™(x)] = o(n), x ¢ [a,b]. (.7)

Proof: Let X <x = Xpei1® Expanding by Taylor's theorem

and writing w=x - X5 =h, we obtain
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m-1
y(x,8) = ). X wry(r)(xk,S) + 2 Py (™) (e, 5), |
r=0 | (4.8)
xk < € < x,
m-1
s(x) = Z ;l- wrs(r)(xk) +mi wms(m)(g). (%.9)
r=0

Note that S(m)(x) is constant for xk-< X <X 4, Sub-
traction of (4.9) from (4.8) gives
m-1
ly(x,8) -8(x) ] 5 ) 2 pTly(F(x,8)-s(F) ()1

r=0

+ 2 0®y(™ (g,5) - s (2)1 = o(nP)

in view of (4.3), (4.4), and (4.6). This establishes (4.5).
To prove (4.7) it is sufficient, in view of (4.4), to con-

sider the knots x., k = 1,2,...,n-1. By (4.2) and (4.4),

s () = 2[s™ (s - B) + 5™ (x, + B)]

- Hr™ix - Bos) + v (s + Bos) ] + o).

But, since y(x,s) € Cm+l[a,b],
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y(® (xk-%,s) =y (x,8) - L ny(™ (e ),
G -3 <8 < 'y
y™ (2 +8,5) = y(™ (g ,5) % ny(™) (e ,5),
X, < By <X +%
Thus we finally obtain o

S(m)(xk) = y(m)(xk,s) + 0(h), K= ;,2,...,n-i.

This completes the proof.

Lemma 4.5: If |y"(x,s) - s"(x)| < kP for x ¢ [a,b],

then there exists a constant Ko such that

ly'(x,s) - s'(x)| < K hP, (%.10)
o

and in particular this holds at the points

Xy s k=0,1,...,n=-1."



Proof: We note that

X
y'(x,8) - s'(x) = f [y"(t,s) - s"(t)]Iat,
Sl |

and hence

ly'(x,8) —= 8'(x)| = er ly"(t,s) - s"(t)ldat
a

< (x - a)kP < (b - a)rP.

Simply let K, = (b ~ a)k.

Proof of Theorem 4.1: Let m = 3. We have shown that the
cubic spline values S, = S(x,) are the same as the values
generated by the multistep method (4.1) which is a second
order method provided the starting values have third order
accuracy. The latter we have shown to be true in Lemma 4.2.

Therefore there exists a constant Kl such that
ly. - s, < Kh%, k = 0,1 n
k k Kl 3 T Vg ey e ey
and

lyp - spl < Kh®, k=0,1,...,n
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by Lemma 4.3. Expanding Vi1 = Y"(xk+1’s) and

x+1 = S (xk+l) by Taylor's theorem gives

n — " m
Yie1 = Yo T OY(858), 1 <8 < xp

n - n w A
Spy1 = Sp + hs¥(x),

for any x e (xk’xk+l)' Therefore,

hly“(8,s) = s"(x)1 = lyg-Sgl + vy - Sl

and hence
s“(x) = y“(8,s) + 0(h),

which because |€ - x| <h, we may write as
s“(x) = y"(x,s) + 0(h).

Now the hypothesis of Lemma 4.4 are satisfied for
S"(x) which is a spline function of degree 1 with the

same knots as S(x). Hence letting' S"(x) assume the role

of S(x) in that Lemma we find



45

ly"(x,s) - s"(x)| = 0(8%), x ¢ [a,b],

which establishes the third inequality in Theorem 4.1. Next
by Lemma 4.5,

ly* (%08) - 8 (x,) 1 = 0(n?)

and finally by applying Lemma 4.4 twice, allowing S(x) and
S'(x), successively, to assume the role of §(x) in the
Lemma establishes the first two inequalities of Theorem 4.1.
The fourth inequality follows from equation'(4.7), since

2

fecC® in T implies y(x) ¢ Cu[a,b] as required by the

hypothesis of Lemma 4.4.

Finally, we are concerned with how closely S(x,s)
approximateé the solution y(x) of the boundary value
problem (1.1) or, equivalently, the solution y(x,s*) of the

initial value problem

y" = f(x,y), y(a) = 4, y'(a) = s*. (%.11)

Recall that y(x,s) is the solution of the initial value

problem

y" = £(x,¥), v(a) = A, y'(a) = s,
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where s is the initial slope determined by the qu?tion

S(b,s) = B, rather than y(b,s) = B. Hence we will let
y(b,s) = B. | (%.12)
Of course B + B in general but since S(b,s) = B,
IB - Bl = IS(b,s) - y(b,s)| = 0(h%) (4.13)

by Theorem 4.1. Next, consider the following concept dis-

cussed in a more general context in a paper by Gaines [5]:

Definition 4.1: Solutions to y" = f(x,y) will be said to

satisfy the maximum principle on [a,b] if for any so-
lutions ¢(x) and ¥(x), lo(x) - ¥(x)] assumes its maxi-
mum on [a,b] at either a or b.

Various sets of hypothesis on £(x,y) imply that so-
lutions to y" = f(x,y) satisfy the maximum principle on
[a;b]. One such set is that f(x,Y) be continuous on T,
and f£(x,y) Dbe nondecreasing in y on T. Hence we see
that for the type of problems under consideration, namely

those of class M, the maximum principle applies.

Consider now the difference
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ly(x,s%) - 8(x,8)| = ly(x,s*%) - y(x,s)]
+ ly(x,s) -s(x,s)l,
but

ly(x,8%) -y(x,s)| = max{|a-a|, |B-B|}

= |B-8| = o(n®)
by the maximum principle and equation (4.13). Also,
ly(x,8) - 8(x,s)| = O(hé)
by Theorem 4.1. Hence from (4.1%4) we see that
ly(x,s%) - S(x,s)] < clha, x ¢ [a,b].

Similarly,

Iy"(x,"s*) - s"(x,s)] = ly"(x,s%)-y"(x,s)l

+ ly"(x,8) - 8"(x,8)].

(4.14)

(4.15)

(4.16)
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ly"(x,s%) -y"(x,s)| = If(x,y(x,S*))-f(xgy(x,‘S))l

s Lly(x,s*) -y(x,s)] < Cll-h2
and ly"(x,s)-8"(x,s)| = 0(h2) by Theorem 4.1. Hence from

(4.16) we have

ly"(x,s%) - s"(x,s)] < Czh‘?, x ¢ [a,b]. (%.17)

Also,

ly* (x,5%) - §'(x,8)| = ly' (%, 8%) - y* (x,8) |
(%.18)

+ ly'(x,s) -S'(x.,s)l,

and since

X

ly'(x,8%) -y'(x,s)] §f Iy"(t,s*)-y"(t;s)ldt

a

2 2
< (x-a)c;h® = (b-a)yh

and
ly' (x,s) - S'(x,8)] = 0(h?)

T—————
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from Theorem 4.1, we get
ly'(x,s*)-S‘(x,é)I < ?3h2? x ¢ [a,b]. (4.19)
Since by Theorem 4.1,
ly"(x,s) - 8“(x,s)| < Kn
we suggest that it may be possible to show thét
ly”(x,s%) -8“(x,8)] < Cyh

for some constant c4°
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V. EXAMPLES

Several examples using the cubic spline épproximation
were programmed on the IBM 360/65 computer, some of which
are listed on the following pages. The results illustrate
the 0(h2) accuracy which was calculated according to the

following formulation:

Given two different integers n.., j = 1,2, we let

5°
h. = (b-a)/n. and e. = max |S. -y, " where
J ( )/J J Oéi_s_n.l i Ylls
J
$; = s(xi,s) and y; = y(xi,s*) are the values of the

spline approximation and the exact solution respectively at
the points X; = a+ ihj, is= 0,1,...,nj, j =1,2. Then

Q .
e, = K, 3 = 1,2, (5.1)

for some o and proportionality constant XK. Hence the

parameter o from equations (5.1) is given by

a= - — = .
&znl &zn2

(5.2)

Similarly, we have calculated the orders of accuracy a'
and a" in approximating the first and second derivatives
respectively of the exact solution‘By the cubic spline

function at the points X; =a+ ihj, i=20,1,...,n, j=1,2.
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The £ irst example
%)

y' = (1+x%)y, y(-1) = y(1) = 1,

has the unique solution

y(x) = e%(,@_ Y

A Lipschitz constant for £(x,y) = (l+x2)y is L = 2. The

boundary value problem

y" =&, y(0) = y(1) =0,

considered in the second example, has the unique solution
v(x) =-m2 + 2 ﬂdzl_ci sec{c(x—%)/.?}_’

where c is the root of 42 = ¢ sec'\f-f—) which lies between

0 and %, namely, c¢ = 1.3360557 to eight figures. The

third example
” l
y" = §(y+x+l)3, y(0) = y(1) =0

possesses the unique solution
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Examples two and three appear in [2,p.425].

The last example

y* = 2¥%, v(0) = 4, y(1) = 1

has two solutions [3,p.145], one of which is

N

y(x) = (J.Tx)_e- )

and the other is in terms of elliptic functions.

Observe that the functions f({x,y) is examples two and
three above possess a unique solution but do not satisfy a
Lipschitz condition for all v as is also true for many

other functions. However, in considering those functions

1

f(x,y) <£for which fy(x,y) 0 in T, we may apply the

bound:

2
e s 2Ry

where M 1s a constant such that
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M > [f(x,0)]|, x ¢ [a,b].

This is described by Bailey, Shampine, and Waltman [1,

p.1l16]. Hence the Lipschitz constant L can be taken as

(b-a)
L= maxlfy(x,y)l, x ¢ {a,b], ly| = 5 M.
In example two with f(x,y) = ey, we then can take

L= el/8 and for f(x,vy) ='%(y+-x4-1)3, as in example
three, 1L = 75/8.

Example four as pointed out above, does not possess a
unique solution and was included to see whether or not the
method would converge to one of the solutions.

As mentioned previously, examples two and three are
discussed by Ciarlet, Schultz, and Varga ;n [2] wherein
numerical methods are developed for solving the more general

two-point boundary value problem:
Liy(x)] = £(x,y(x)), 0 < x<K1 (5.3)

0=k sn-1, (5.4)

k k d
Du(0) =Dwu(l) =0, D=2,
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where the linear differential operator L is defined by

n
Lyl = ) (0777 ddyeol, n e

.

J=o

i
—

B can be

The boundary conditions Dku(a) = A, Dku(b)
reduced to the case a =0, b=1, A =B =0 by means of
a suitable change of the independent and dependent variables.

Our problem (1.1) then results by taking n =1, po(x) =0,
and pl(x) = 1.

Their approach to the problem is in applying the
Rayleigh-Ritz procedure to the variational formulation of
(5.3)-(5.4) by minimizing over subspaces of polynomial
functions, and piecewise-polynomial functions such as
Hermite and spline functions. In particular, for cubic
spline functionms, O(hz) convergence to the solution y(x)
of (5.3)-(5.4) is established but in a quite different
fashion then described here. In following the construction
of the approximating function as described by Ciarlet,
Schultz, and Varga [2, p.397-399], we note that it is also

necessary to solve a nonlinear system of the form:
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Au + g(u) = 0.

Here A = (ai k) isa M X M real matrix, and
3
g(u) = (gl(ﬁ),...,gn(ﬁ))T is a column vector, being

determined respectively by

1 2 , ,
Qi x ~ f { Z:Pj(x)DJwi(x)Dka(x)}dx, 1 si,ks=sM, (5.5)
o j=o
and
1 M
g (@ = [ £0x, ) v, (x))y (0ax, 15k =K, (5.6)
© i=1

where M 1s the dimension of the subspace and {wi(x)}§;1
are M linearly independent functions from the subspace.
The approach we take also results in solving the non-
linear system of equations (2.21) arising from the collo-
cation requirements, however, it is far simpler compu-

tationally as it avoids evaluations of the various integrals

as in (5.6).



Example 1: y" = (1+-x2)y, y(-1)

Results: n= 16

X
-1.0000000
-0.8750000
-0.7500000
-0.6250000
-0.5C0000C
=0.3750000
-0.250G000
-0.1250009

0.0000000
0.1250000
0.2500000
0.3750000
0.5000000
0.6250000
0.7500000
0.8750000
1.0000000

Errors:

Errors:

n=16

n= 64

S(X)
1.0000C00Q
0.8889915
0.8028083
0.7364461
0.6862522
06495904
06246088
0.6100833
0.6053166
0.6100824
0.6246071
0.6495878
0.6862487
0e736441%
0.8028026
0.8889846
0.9999917

h=0.1250000

Y(X)
1.0000000
0.8894184
0.8035225
0.7373537
0.6872892
0.6507124
06257840
0.6112877
0.6065306
0.6112877
06257840
0.6507124
0.6872892
0.7373537
0.8035225
0.8894184
1.0000000

h=0.1250000

€e=0.0012140

h=C0.0312500

€= 0.0000787

Calculated Order of Accuracy:
0= 1¢9738460

S*({X)
-1.0041010
-0.7810003
-0.6044997
-0.4620932
~02444726
-0.2445509
-0.1567646
-0.0765611
-0.0000032

0.0765546
0.1567580
0.2445439
03444652
0.4620851
0.6044905
0.7809898
1.0040890

Y'(X}
-1.0000000
-0.7782410
-0.6026419
-0.4608461
-0.3436446
-0.2440171
-0.1564460
-0.0764109

0.0000000
0.0764109
01564460
0.2440171
03436446
0.4€08461
0.6026419
0.7782410
1.0000000

€'=0.0041018

€' =0.0002584

o'=1¢9941530

S*e(X)
2.0000000
1.5696230
1.2543850
1.0241170
0.8578128
0.7409263
0.6636441
0.6196129
0.6053138
0.6196121
0.6636422
0.7409333
0.8578081
1.0241100
1.2543760
1.5696110
1.9999810

Yre(xy

2.0000000
1.5703790
1.2555030
1.0253820
0.8591115
0.7422188
0.6648955
0.6208391

0.6065306

0.6208391
0.6648955
0.7422188
0.8591115
1.0253820
1.2555030
1.5703790
2.0000000

€"=0.0013034

€" =0.0000883

a"=1.9416000

¢S



Example 2:

Result: n=

X
0.crco09000C
N.062%000C
041250000
C.1875000
C.2500000
C.3125000
Ce 2750000
044375000
c.50N0000
Ce5625000
N0s 6250000
P, 6875000
0. 7500000
€. 8125000
C.?750000
0.9375000
1,0000000

Exrrors: n=

Errors:

Calculated

n=

y" = e¥, y(0) = y(1) -

16 h=0,0625000

S(X) Y({X)

C.000000C -0,0000005
~0,0270501 ~-0,0270423
~0.0502954 =0,0502810
-De 0698234 -0,0598035
-0. 0857062 -0.0856829
-Ce CO80N12 -0.0979750
-0¢1067527 -0.1067234
=041219913 -0,1119612
=041137354 -0,1137050
-061116912 -0,1119€12
-0, 106752¢ -0,10672364
-04098001? -040979750
-LyCB57059 -0.0856829
~04 0698231 -040698035
-0.0502950 -0.0502810
=-0.0270498 -0,0270432
0.0000003 <-0,0000005
16 0.0625000

€= 0,0000305

64 h=0.0156250

€ = 0.000002¢

Order of Accuracy:
o =118132450

0

S*(X)
~0:4637734
-0, 4021074
=0, 3419743
-0.2831147
-0+2252890
~0.168273¢C
-0s1118544
~0.0558295

€. 0000000
N. 0558296
0.1118545
0.1682730
0.2252890

0s2831146

0¢ 3419742
0,4021074
06 6637734

Yrix)
=06 4626325
-0,40198¢98
-0e3418774
-0.2820368

=0e225228%

-0.1682285
-0s1118252
-0,0558151
0,0000000
0.058151
0.1118252
0.168228%
Ds 2252284
0.2832368
0.3418774
0,4019898
064636325

€'=0,0001409

¢' =0,0000089

0'=1e9939220

ST (X)
1,0000000
0.9733123
049509482
0,93225581
0.9178632
0+9066470
0.8987472
048940513
0.8924933
0.8940514
0.8987472
09066472
049178635
049325582
0+9509485
N0.9733126
1, 0000000

Yrer(ox)

0¢ 9993995

0,97331091
0¢9509621
0.9325770
009178852
0.9066716
0,8987743
0. 8940789
0,8925212
0.8940789
0. 8987743
0.9066716
0,9178852
09325770
0.9509621
0.97332191
0. 9999995

e" =0,0000279

€" = 0s0000026

0" =1, 7564050



Example 3: y" ='%(y4-x+-l)3, y(0)

Result: n=

X
0.0600000
0.0€25000
0.1250000
0.1875000
02200000
0.3125000
02750000
0.4275000
0.5000000
0.5625000
0.6250000
0.6875000
0.7500000
0.8125000
0.8750000
0.9375000
1.000C000

Errors: n=

Errors: n=

Calculated

16 h= 0.0625000

S(X)

0.0000000
-0.G302833
-C.05€4141
~0.0841697
-0.1072958
-C.1275002
=0.1444456
-0.15774C8
~0.1669292
-C.1714746
-0.17C7431
~0.1629797
-0.1502780
-0.1285403
-0.0974239
-C.0552689

0.0000014

Y(X)

0.0000000
=-0.0302420
-0.0583334
-0.0840521
-0.1071434
~0.1273155
~0.1442308
-0.1575003
~0.1666670
-0.1711960
~0.1704550
~0.1636906
-0.1500006
-0.1282902
~0.0972223
-0.0551472

C.0000000

16 h= 0.0625000

€= 0.,0002891

64 h= 0.0156250

€= 0.0000163

Order of Accuracy:
a= 20756540

=y(l) =0

St(X)
-0.5006774
-C.4678681
-0.4317252
-0.3917804
-03474800
-0.2981659
-0.2430508
-0.1811863
-0.1114221
-0.0323517

0.0577590
0.1610681
0.2802882
0.4188672
0.5812413
0.7731954
1.0023880

Ye(x)
-0.50C0000
~0.4672217
-0.4311112
-0.3912010
-0.3469388
~0.2976680
~0.2426036
~-0.1808000
-0.1111112
~0.0321361

0.0578508
0.1609974
0.2799997
0.4182825
0.5802460

0.7716255 -
1.0000000

€'=0.0015699

Q
i

0.0001394

1.7466170

St (X)
0.5000000
0.5498972

06066747

6.6715598
0.7460518
08319979
0.9316859
1.0479770
1.1844760
1.3457740
1.5377680
1.7681220

2.0469200

23876070
2.8083630
33341710
4.0000050

Yee(x)
0.5000000
0.5499644
0.6068144
0.6717772
0.7463546
0.8323917
0.9321799
1.0485740
1.1851830
1.3465910

- 15386900
1.7691380

2.0479970
2.3886830
2.8093270
3.3348240
4.0000000

€"=0.0010767

¢"=0.0000620

a" = 2.0592300

141



y" = 3 v%, v(0) = 4, y(1) = 1

h= 00625000

Y(X)
4,0000000
3.5432510
31604920
248365650
205599990
243219940
241157010
149357270
1. 7777770
1,6383990
1.5147920
1,4046630
1e¢3061210
142175970
11377770
10655560
1.0000000

h = 040625000

¢ = 0.0018711

Example 4:
Result: n=16
X S(X)

0.0000000 44 0000000
0.C€25000 3645423210
0,1250000 3641590290
01875000 268348200
02500000 25581380
04 3125000 202201230
063750000 201138890
044375000 169340200
0, 5000000 167762060
05625000 1,6369840
0,6250000 1,5135480
06875000 144036020
0. 7500000 13052520
08125000 162169260
0.8750000 11373120
069375000 1,0653060
1,0000000 009999733
Exrrors: n=16

Errors: n= 64

h=0,0156250

e = 0,0001268

Calculated Order of Accuracy:
a= 149414120

S*(X)
-800189110
~646807240
~5¢6247520
~4¢ 7802760
=44 0968350
~3e5377640
-340759840
~2¢6911990
~2¢3679880
-240944970
-1.8615090
-146617830
~144895780
-1¢3403020
-1 2102530
-140964240
=06 9963536

Y*(X)
-8,0000000
~606696500
~5¢6186530
~4¢7773720
=440959980
-345382770
~340773830
~246931840
~243703690
-2,0971500
~1.8643590
-146647850
=144927100
-1.3435550
-142136280
-140999280
=1.0000000

€' =0.0189114

€' =0,0011978

a'=1e9903870

S (X}
2440000000
188219900
1449690800
12. 0541600

908159480
840742930
607026360
5¢6105050
467322280
440194650
344361530
209550770
245554710
202213330
1¢9402C60
1.7023200
1.4999370

Yee(x)
2440000000
188319300
1409830700
12,0691500

98303960
840874910
667142910
566205590
4e¢ 7407390
400265290
3.4418940
209596170
245589310
202238150
19418050
1.7031150
1.,5000000

€" = 040149860

€" = 00009184

o' =2e0141840
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VI. REMARKS

There arises from the previous chapters at least two
interesting questions:

1. Can a spline of degree m > 3 be constructed
in an analogous fashion in order to attain better
than 0(h2) convergence to the boundary value
problem (1.1)-(1.2)?

2. Can a spline of degree m be constructed to
approximate the solution of the general two

point boundary value problem (1.3)-(1.4)?

Concerning the first question, if we denote by
f(p)(x,y(x)), pP=1,2,... the total pth derivative of
f(x,y(x)) with respect to x, we could construct a spline
function S _(x) of degree m tc the solution y(x,s) of

(2.3) in the following manner. For x ¢ [a,a+h],
Sn(%:8) = ¥(2,8) 47" (2, 8 x-2) +T£225) (x-2) 24 {2:8) (-a)3;...
+(m—i‘1)-?y(m-l) (2,8) (x-2)" Lida, (x-2)™, (6.1)
_ A+s(x—a)g(%‘:él(x—a)z%[fx(a,A)+fy(a,A)s](x-a)3+'. ..

+Taéi7Tf(m,3)(a,A)(x—a)mPl+§%al(x-a)m, (6.2)
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Continuing in the fashion outlined in Chapter II, for

X € [xj_l,xj], j=2,...,n, we define

m-1
Sm(x:s) = z %S(k)(xj_l,s)(x-xj_l)k
k=0 (6.3)
+ Hl':‘ aj(xij)m,
and require
S;(xj,s) = f(xj,s(xj,s)), j=1,2,...,0. (6.4)

Equation (6.4) gives us n equations in the n'+ 1 unknown
215855 0005358, We now require that the spline function

Sm(x,s) satisfy the boundary condition at x = b:

S,(b,s) = B. (6-5)

As before, we may hope to express the initial slope s
from equation (6.5) in terms of the n unknowns
ai,aa,...,an. From equation (6.2) we see that this may be
possible for m = 4 but, for example, if m =5 we need

to consider £"(a,A) which more explicitly becomes
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f"(a,A) = fxx(a,A) + 2f}ty(a,A)S + fy(a,A)f(a,A)‘

+ fyy(a,A)se,

so that the initial slope enters in a nonlinear fashion.

Of course, we could employ the usual shooting technique as
discussed in Chapter I wherein the exact solution s = s¥
of ¥(s) = y(b,s) - B =0 is approximated using some
.iterative scheme. For our developmént this means that we
start with some initial estimate So of the exact slope s¥
and construct a spline function Sm(x,so) of degree m to

the solution of the initial value problem

y" = f(X,Y), Y(a) = A, Y'(a) = sO’ (6'6)

Next we check how “good" Sq is by computing
8(s) = Smob,s) ~B at s =s_. The slope s, is then

corrected by some iteration scheme, for example;

S;1 = S; + e(si), i=0,1,... (6.7)

so that it is necessary to solve a sequence of initial value

problems. As mentioned previously, Keller [7] has some
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general results concerning this procedure wherein the

initial value problems are solved numerically by a discrete.

variable method.

We observe that in solving an initial value problem of

the form

y" = f(x:Y): Y(a) = A, Y'(a) = S\)’ (6°8)

where S, is fixed, using a spline function

s (=, sv) = Sm(x) of degree m generated by our con-
struction, the coefficients a,, i=1,...,n exist and are
unique under fairly general assumptions. Note that they are

determined by the conditions:

Sl't'l(xj) = f(xj,sm(xj)), j=1,2,...,0. (6.9)

Now over the interval [xj-l’xj 1, we defined

m-1
Y k k 1
Sm(x) = [/ T SISI )(xj_l) [x-xj_]_] + o aj[x-xj_l]m
k=0
] a. m
= Aj(X) + #(X-Xj-l) 9’ j = 1’2, .oa,no (6.10)

The Aj(x) are uniquely determined by the spline continuity
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relations and solving for 2y from (6.9) we get

a; = -(:I;—_g)—:{f(xj,}kj(x) + o ap®) - 2300}
= g(a;) - (6.11)
o . h® .

One Lipschitz constant for g(t) is ;R;r:jry inde-
pendent of j where L is the Lipschitz constant for f£.
Hence for h < we have that g(t) is a contraction
mapping and equation (6.1) has a unique fixed point which
may be found by iteration. Note that for such h; the
corresponding difference equation has a uniéue solution.

FPinally, we point out two iﬂteresting facts concerning
question (l). If we consider approximating the solution of
(1.1)-(1.2) using quartic spline functions (m = U4) then,
by consulting Table 3.1, we see that the corresponding

multistep method is

Ve o=V - + —ﬁrf + 11, .+ 11f +f] 6.12)
k-3 " Yk-2 T Yk-1Ft ¥k =12 k-3 k-2 x-1+ % J- (6.
This is a stable fourth order method, and so we might
expect to raise the order of convergence by constructing

such a spline function.

We now prove the following negative result.
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Theorem 6.1: The solutions Sm(x) are divergent as h = 0

for m = 5.

Proof: We will show that the multistep methods given by the

recurrence relation

m-1 ) m-1 )

(m 2T (m
Z O Yeemil+i =B L Pl Exomel+io
i=0 i=0

(6.13)

i=m-1,...,n

are unstable and hence divergent for m = 5. From Henrici
[6,p.300] we know that the multistep method is stable only

if the zeros of the "associated polynomial" ©P(z) satisfy:

(i) modulus of no zero exceeds 1.

(ii) multiplicity of zeros of modulus 1 be

a most 2.
Now
m-1
P(z) = z agm)zl
i=
where

agm) = (m-2):Mo _,(i+1) - 20 (i) +9Q ,(i-1)]
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and
m-1 ) I.n- 1
Oa(®) = mayr L (D )ex- 07
T : i=0
Hence

P(z) = (m-2)![(z-1)%0_ (1) + 2(z-1)%__,(2) + ...

+ zm-B(z- 1)2Qm_1(m- 2)]

m-2

= (m-2)!(z-l)2 Z Qm_l(i)zi-l

i=1

= (z- 1)%8(z2).
Utilizing the B-spline symmetry property
Ql:n-l(m- 1-x) = oy (x)
we see that the first two coefficients of '13'(2) are

~ (m-2)2Qm__l(m-2) = (m-2):Q 4(1) =1

and
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(m-2)!Q _,(m-3) = (m-2)tq_,(2) = 2% - (m-1).

We thus have
B(z) = 2™ 4 (2m'2-m+1) m-4 + e + 1

= (z-r3)(z-r4) e (21, _4).

The sum of the zeros of P(z) is given by

m-1 A
Z r;=m-1- 2™2, (6.1%)
i=3

Taking the moduli of both sides of (6.14) and using the

triangle inequality gives

m-1 m-1
T -
>l zl) rd=2"2-(n-1)>m-2 (6.15)
i=3 i=3
for mz5. Let |r .| = mgxlril. Then (6.15) becomes

i

(m-3)lrmaxl >m- 2,

so that |r | >1 for m = 5. This proves that the
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multistep method, and hence the corresponding spline so-
lution, is divergent.m

The above result is analogous to Theorem 2.6 in [8]
concerning the application of high order splines to the
numerical solution of the initial value problem (1l.4). There
it is pointed out that the unfortunate consequence of insta-
bilityvis due to thé strictness of the confinuity require-
ments in the spline function Sm(x) € Cm-l[a,b]. However
stable high order spline methods for numerically solving the
initial value problem (1.4) are generated by relaxing the
continuity restrictions through a mors general definition of

a spline function which allows

S(x) ¢ Ck—l[a,b], S(x) ¢ ck[a,bj, kX < m.

Analogous methods could possibly be described for the nu-
merical solution of the boundary value problem (l.l).

Concerning the second question, we consider the general

two-point boundary value problem

y" = £(x,v,¥'), ¥(a) = A, y(b) = B. (6.16)

Following our development of the spline shooting technique,

we would consider the related initial value problem
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f(X,Y,Y'), Y(a) = A, Y'(a) = S, (6017)

Yll.

where s is a parameter. Usiné the Taylbr expansion method
to construct a spline function approximation S(x,s) to

the solution y(x,s) of (6.17) again would result in terms
such as y"(a,s) = f(a,A,s);'that is, the parameter s
enters in a nonlinear fashion. As discussed above, one

could employ the usual shooting technique here also.
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