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GENERAL INTRODUCTION 

Currently, petroleum based fuel products holds the largest share in the 

energy resources. In addition, 95% of the world's chemical production is based on 

petroleum and natural gas. On the other hand, the oil resen/es are limited and are 

expected to run out by the end of the next century (1). Since the natural gas 

reserves are expected to be exhausted at about the same time as those of crude 

oil, coal remains to be the only source of carbon which will be sufficient for several 

hundred years with the current demand of the petrochemical industry. 

The synthesis of hydrocarbons from coal (Fischer Tropsch synthesis) is 

known since late 20s (2, 3). The process requires the gasification of coal with air 

and steam to produce what is known as syngas, a mixture of CO and Hg, and 

reacting this mixture on group VIII metals to produce hydrocarbons and 

oxygenates. In its most classical description, the Fischer Tropsch synthesis is a 

polymerization reaction which produces various oligomers regularly distributed 

along the carbon number range (5). The chemistry of methanation and FT 

synthesis process can be described by the following set of reactions (4); 

CO + 3 Hg ^ CH4 + HgO (1) 

CO + 2 Hg ^ -CHg- + HgO (2) 

CO + HgO ^ CO2 + Hg (3) 
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2 CO +CO2 (4) 

Reactions 1-4 take place on every FT catalyst, but the selectivity of each 

catalyst detemnines the average product chain length (reaction 2), extent of coke 

deposition (reaction 4), and the extent of water-gas shift reaction (reaction 3). For 

example, Ni is a very active catalyst for reaction 1, but Co, Ru and Fe are 

selective for reaction 2. Therefore, the reaction of syngas over Ni catalyst 

produces mainly methane whereas a distribution of the hydrocarbon chain lengths 

is produced on Co, Ru or Fe catalysts. The selectivity of the catalyst towards 

reaction 3 determines whether the removal of oxygen consumes hydrogen or 

carbon monoxide, and hence shifts the equilibrium of reaction 2 towards right or 

left, respectively. The catalysts can also be modified by use of oxide supports and 

basic oxide promoters to alter the selectivity. For example, the selectivity of Co 

and Ru towards reaction 3 catalysts can be modified with the addition of potassium 

oxide: In the absence of potassium oxide, these catalysts mainly yield HjO, 

whereas, potassium promoted Co catalysts give predominantly COg (6). 

Since reaction 2 is a polymerization reaction, the extent of The FT kinetics 

is mathematically describable by the Anderson-Schultz-Flory (ASF) distribution: 

ln(—) = n Ina + ln[ ] (5) 
n a 
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where is the mass fraction of the product hydrocarbons with n carbon atoms 

and a is the chain growth probability factor which can have values between 0 and 

1 and is a direct measure of the selectivity of the catalyst towards reaction 2. 

The chain growth probability factor, a, depends on the reaction conditions, 

the nature of the oxide support, the presence of basic promoters such as alkali 

metal oxides as well as the catalyst. For example, a increases with decreasing 

values of the HJCO ratio, decreasing reaction temperature and increasing 

pressure. Values of a are higher in the presence of alkali metal oxide promoters. 

Among FT active metals, a decreases in the order Ru>Co>Fe. Furthermore, 

catalysts supported on TiOg have higher a values than those supported on AlgOg or 

SiOg. 

Despite the numerous efforts toward catalyst development and reactor 

design, present FT technology still suffers from the following limitations (4): 

1. Limited selectivity for premium products (e.g. light olefins, gasoline or diesel 

fuel); 

2. Catalyst deactivation; 

3. High capital cost; 

4. Heat removal; 

5. Less than optimum themial efficiency. 

The work presented in this dissertation is aimed at addressing the problems 

listed in items 1 and 2 by characterizing alkali promoted Ru/SiOg catalysts to bring 

about a better understanding of the role of the alkali promoters as the modifiers of 
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the metals and the supports. The engineering problems (items 3-5) are outside 

the scope of this work, but are listed for the sake of completeness. The remainder 

of this section is dedicated to providing the reader with a fundamental 

understanding of the work completed for this dissertation. Subsequent divisions 

state the objectives of the thesis research and summarize the work completed. 

Explanation of the Dissertation Format 

The research completed for this dissertation was written as six papers in a 

form suitable for publication in technical journals. Preceding the papers, a 

literature review and the research objectives are given. The general conclusions 

and recommendations for future work follows the papers. References cited in the 

general introduction and the literature review are listed following the 

recommendations for future work. The research reported in the six papers 

represents original work conducted by the author. 
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LITERATURE REVIEW 

This section will be devoted to a general review of the Fischer Tropsch 

synthesis reaction. First the interactions of CO and hydrogen with metal surfaces 

will be reviewed. Then the CO hydrogénation reaction mechanisms will be 

covered based on the evidence from single crystal studies and the supported 

metal systems. Finally the role of promoters and oxide supports on the activity 

and the selectivity of the reaction will be discussed. 

Fischer Tropsch Synthesis 

To understand the role of the modifiers on the activity and selectivity of the 

FT synthesis products, a knowledge of the FT reaction mechanism is imperative. 

Due to the complexity of the reaction, research to date has not been able to 

provide a single FT mechanism. A few of the many unanswered questions that 

challenge present FT research are: 

1. Whether CO bond scission occurs before CH bond formation; 

2. The role of the secondary reactions; 

3. The role of the oxide supports and catalyst modifiers such as alkali metal 

oxide promoters; 

4. The structure sensitivity of the reaction. 

In the following section, the literature to date will be reviewed selectively to 

give the reader an understanding of the existing theories and the experimental 

evidence about the interaction of CO with the supported metal catalysts and single 
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crystal surfaces. Subsequent sections will be devoted to the Fischer Tropsch 

reaction mechanisms and the proposed roles of the modifiers, respectively. 

CO Adsorption 

The affinity of CO toward adsorption on metals detemiines the path and the 

reaction products. For example, on Fe, Co, Ni and Ru, CO dissociation takes 

place first and this type of catalyst has high activity in hydrocarbon formation; on 

Pd and Rh, CO adsorbs molecularly and therefore these metals are selective 

toward oxygenates. The heats of adsorption of CO and dihydrogen on Ni are very 

close which explains why Ni is selective towards methane (7). Therefore, 

understanding the interaction of CO and hydrogen with metal surfaces is crucial to 

choose or design a catalyst selective for a specific FT synthesis product. 

The adsorption of CO on metal surfaces takes place via a donation of 

electrons from the metal surface to the bonding Sa orbital and a back-donation 

from 2% orbitals (31). Recent reports by extended Hûckel calculations show that 

the coordination of CO to group VIII transition metal surfaces depends on a subtle 

balance of the interaction with the CO 5a orbital, that tends to direct the CO 

molecule to the atop position, and the CO 2K orbital, that directs the molecule to 

the higher coordination sites. In the atop position, the changes in bonding to 

different surfaces of the same metal can be mainly attributed to differences in the 

interaction with the CO 5a molecular orbital. The favored dissociation path is such 

that carbon and oxygen atoms end up in high coordination sites, sharing as few 
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surface atoms as possible (32). The energetics involved in converting from the 

associative to the dissociative state involves both the heats of adsorption of the 

molecularly adsorbed states and the sum of the binding energies for adsorbed C 

and O atoms. For example, heats of adsorption of CO on Ru and Ni are 

comparable, but the sum of the binding energies of Cg and Og are not. For that 

reason, the dissociation of associatively adsorbed CO is exothermic on Ni and 

endothermic on Ru (6). 

Molecular adsorption of CO on metal surfaces results in mainly 4 different 

species (33-35, 41-42): 

0 
1 

0 
1 

0 0 
i 1 

000 
1 
c 

1 
c C C CCC 

1 A V V 
M MM M M 

linear bridging di-carbonyl multi-carbonyl 

These different CO species on the metal surfaces are attributed to the local 

structure of the catalyst such as the edge and comer sites as well as the oxidative 

state of the particles themselves. For example, the multicarbonyl groups are 

believed to form on electron deficient metal atoms that are in close proximity with 

the support surface (35). 



8 

Since tlie initial bonding of CO on the surfaces is via the carbon atom, the 

dissociation proceeds via the vibrational deformation of M-C-0 bond angle^ which 

occurs more readily for multiply bonded than linearly bonded CO (6). In the 

presence of a promoter, CO may assume an IR inactive position such as tilted 

down or horizontal or even dissociated CO. This state is capable of reacting with 

hydrogen, but can not recombine and desorb as CO. Evidence for acetates and 

formates fonned in the presence of the promoters is reported in literature, 

however; the reactivity of these species is not well established (30, 45). 

The dissociative adsorption of CO on the metals should take place through 

at least two adjacent sites. Ponec (30 and references therein) reported evidence 

supporting an ensemble requirement for CO dissociation on Ni and Ru after 

studies on corresponding Cu alloys of these metals. Studies on supported Ni, Co 

and Ru catalysts as well as the single crystal surfaces of these metals yielded 

contradictory results on the structure sensitivity of the Fischer Tropsch synthesis 

reaction (36-40). For example, Geerlings et al. (39-40) reported that longer chain 

hydrocarbon fragments are formed on a zig zag grooved Co(1120) surface 

whereas on stepped Co(1012) and close packed Co(OOOI) surfaces mainly CHx=i.3 

species are observed. In addition, the Schultz-FIory distribution of the products 

yields different chain growth probabilities on the different surfaces. The chain 

growth probability for the Co(0001), (1120) and (1012) surfaces are reported as 

^ A decrease in the vibrational frequency of the CO bond indicates an increase in 
the CO bond length. A decrease in CO vibrational frequency also means a 
decrease in the CO bond order (6). 
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0.2, 0.36 and 0.3, respectively. However, studies involving supported metal 

catalysts suggest that the differences that may appear as the effects of the metal 

particle size (i.e., structure sensitivity) may be due to the changes in the chemical 

nature of the support (4, 8, 37). 

Proposed Fischer Tropsch Synthesis Mechanisms 

Fischer and Tropsch (2, 3) suggested that CO reacts with the metal of the 

catalyst to form a bulk carbide which subsequently undergoes hydrogénation to 

form methylene groups. These species then polymerizes to form hydrocarbon 

chains, which later desorbed as saturated and unsaturated hydrocarbons. From 

this hypothesis, a number of chain growth schemes were proposed. Among these 

the most important are (5): 

1. The -CHg- insertion scheme; 

2. The CO insertion scheme; 

3. The enolic mechanism; 

4. The alkoxy mechanism. 

These four mechanisms can be grouped into two broad categories (6, 57 

and the references therein): 

1. Carbide theory: The dissociative adsorption of CO on metal surfaces yield 

surface carbides which lead to formation of macromolecules. Hydrocracking of 

these macromolecules leads to the formation of low molecular weight olefins. 
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2. Enol theory: Molecularly adsorbed CO hydrogenates to form hydroxycarbene 

or enol, M=CH(OH), which can undergo further hydrogénation to form a methylene 

group. Different intermediates were suggested for an enol mechanism such as i) 

chain growth took place by condensation of enol groups with concurrent elimination 

of water; ii) CO insertion into the metal carbon bond of an adsorbed alkyi species 

and the hydrogénation of resulting acyl group produced water and a new alkyi 

group containing an additional methylene unit; ill) the chain is initiated by methyl 

groups fomned by the stepwise hydrogénation of adsorbed hydrogen of molecularly 

adsorbed CO; iv) methyl groups might be formed by hydrogénation of surface 

carbon atoms, created by the dissociation of CO. 

Although most recent developments support nonoxygenated intermediates 

as the precursors for the hydrocarbon chains, Henrici-Olivé and Olive published a 

series of articles (8-10) suggesting that the CO insertion mechanism did not 

contradict with the data which suggested a carbidic mechanism or -CHg-

polymerization. Bell (6) and Kellner and Bell (11), on the other hand, favored the -

CHg- polymerization mechanism for the FT synthesis over Ru/AlgOg. Although 

current spectroscopic evidence is in favor of the -CHg- insertion scheme for the 

clean surfaces, in the presence of promoters the possibility of having oxide 

intemnediates have not, yet, been ruled out (45). 

Residence time studies indicate that a-olefins are the primary products of 

the FT synthesis reaction which suggests that chain termination takes place via a 

p-hydrogen abstraction (9). With increasing residence times, a-olefin/paraffin ratio 
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decreases. Based on the previous reports on the residence time studies, Iglesia et 

al. (46-49) published a series of papers providing evidence for transport enhanced 

a-olefin readsorption which leads to an increase in the chain growth probability, a, 

and in paraffin content. Komaya and Bell (50) investigated the role of olefin 

reentry in the FT reaction on Ru/TiOg. Their transient response experiments, 

coupled with a reaction model, strongly supported the reentry of ethylene in the 

chain growth process. However, they did not find any evidence for reentry of C3+ 

olefins. Similarly, Pruski et ai (51) observed via NMR spectroscopy that ethylene 

adsorbed on Ru/SiOg reacted at room temperature to yield methane and n-butane 

in addition to strongly bound hydrocarbons. 

Intermediates 

The dissociative chemisorption of CO usually takes place via the Boudoard 

disproportionation reaction where COg is released along with carbon deposition on 

the metal surface. Isolated carbon atoms deposited at temperatures below 300°C 

resemble carbidic carbons which irreversibly convert to the graphitic carbons upon 

heating. Similarly, graphitic carbon fomis when CO adsorbs on the surfaces at 

high temperatures (6). 

Duncan et al. (33) identified four forms of nonoxygenated carbon on the 

substrate after CO hydrogénation on SiOg supported and unsupported Ru, 

designated as C„, Cp^, C^g and unreactive carbon. C^ was interpreted as carbidic 

carbon atoms distributed on or below the metal surface, Cp, and Cpg were alkyi 
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groups attached to the catalyst and they were differentiated by their relative 

mobilities and interconversion to other fomns. The unreactive carbon had an NMR 

spectrum similar to turbostratic graphite. Later studies via isotopic tracer 

techniques on Ru/TiOg suggested that carbidic carbon, C„, and alkyi carbon 

chains, Cp accumulated as reaction proceeded (52). It was also reported that the 

two different Cp pools sen/ed as precursors for different length hydrocarbon chain 

lengths: Cp, was the precursor of C2+ hydrocarbon products, while Cpg consisted of 

longer alkyI chains and did not participate in the production of gas phase products. 

Temperature programmed desorption studies provided evidence for support 

stabilized methoxy (CH3O) intermediates for methanation on Ni, Pt and Pd 

supported on AlgOg (53 and references therein). The methoxy on alumina support 

hydrogenated at a faster rate than CO on Pt and Pd. But on Ni/AlgOg, CO 

hydrogénation rate was faster. By using atom superposition and electron 

delocalization molecular orbital (ASED-MO) theory, Anderson and Jen 

demonstrated that methoxy species move as an anion, OCH3', from one /kP* site to 

another, paired with a proton which moves from one O '̂ to another (54). The 

reaction of this pair to form CH4 was calculated to be energetically more favorable 

than the formation of CH3OH. In the presence of alkali promoters, formate species 

may form during CO hydrogénation (55) or may be stabilized on the metal surface 

(45). In the light of these results, it seems impossible to modify the existing 

carbidic models (6, 51) to incorporate the effects of promoters. 
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The Role of Alkali Promoters 

As indicated earlier, the FT reaction products have a distribution of the 

chain lengths described by the Anderson-Schultz-Flory distribution (Eq. 5). The 

selectivity of the reaction towards higher hydrocarbons can be enhanced by use of 

promoters such as alkali oxides or carbonates. Alkali promoters are not unique in 

their promotional effects but they are the cheapest and the most frequently used 

(29). Although their chemical state, physical location and mechanism by which 

they alter the reaction are not generally known, alkali metals have been reported to 

cause promotional effects including an increase in chain growth probability and a 

decrease in the rate of Fischer Tropsch synthesis over both Ru (14) and iron 

catalysts (15). So far, the following mechanisms have been postulated for these 

and other promotional effects induced by alkali metals: 

1. Active metal site blocking for chemisorption (9,16-18); 

2. Electron donation to or from the metal (18-20); 

3. Direct chemical interactions between adsorbate and the promoter (9, 12,21, 

22, 27); 

4. Through space interactions (e.g., electrostatic) (23-25); and 

5. Alkali induced surface reconstructions (26, 28). 

In addition, alkali promoters can chemically interact with the oxide supports 

to change its acidity (43) or form chemically distinct, highly mobile species (44). 

The promoters can also stabilize the ionic forms of the active metals, and 

protect these against reduction (Madelung stabilization) which are the active 



centers for oxygenate fondation (30). One should remember that none of the 

above mechanisms are uniquely operable under reaction conditions. A more 

realistic picture involves several of these mechanisms taking place together. 

Among all these mechanisms, Ponec (29-30) consistently rejected the 

electron donation from the alkali promoter to the metal catalyst as a mechanism for 

promotion for the following reasons: 

i) The alkali promoters are not in their electropositive metallic forms under 

reaction conditions. 

ii) Solid state theory argues against massive transfer of electrons between a 

semiconductor (promoter or the support) and a metal. The theory predicts 

that the transfer of electrons form a semiconductor to the metal is limited to 

2-3 electrons per hundred atoms at the metal semiconductor interface. 

iii) Also, the field of a charge can not penetrate deep in the metal particle. At 

distances near the metal lattice constants, the external charges will be 

screened. 

The studies on the role of alkali promoters have been conducted extensively 

on the single crystal surfaces (13, 20, 23, 27 and the references therein). 

However, the metallic form of the alkali promoters used in these systems makes 

the comparison with the supported catalysts systems difficult. In addition, the 

presence supporting oxide may have substantial effects on the selectivity of the FT 

reaction. For example, recent studies on the alumina supported and single crystal 

Co catalysts indicate that the chemical nature of the support surface may be the 
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controlling factor in determining the specific activity of supported cobalt catalysts 

(37). It was also reported that the presence of metal and/or promoters could 

influence the acidity of the supporting oxide significantly (43). 

The Role of the Oxide Supports 

The role of the supporting oxide material as an active participant in the FT 

synthesis has long been overlooked. The oxide supports may provide acidic or 

basic sites for chain initiation or dissociation. The support sites may also stabilize 

the reaction intermediates, therefore alter the reaction path (53-54). For example, 

transport enhanced olefin readsorption mechanism postulated by Iglesia and 

coworkers (46-49) involves the diffusion of the a-olefins on the support surface 

until readsorption to participate in chain growth. The nature of the support at the 

molecular level can easily alter the transport properties of the a-olefins and 

therefore the chain growth probability of the FT reaction. 

The support material was shown to stabilize intermediates such as CH3O for 

further hydrogénation to fomi methane (53). Therefore, although the individual 

reactivity of the support may not be significant, in the presence of spilled over 

intemiediates, the support may sen/e more than just a stmctural promoter. 

Johnson et al. (37), for example, reported that the CO hydrogénation on Co was 

not a structure sensitive reaction and the differences in the activity and selectivity 

with different metal loadings had to be due to the differences in the chemical 

nature of the support. Similarly Jackson et al. (56) studied the adsorption of 
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hydrocarbons on Pt supported on different oxide materials. They attributed the 

differences in the hydrocarbon adsorption characteristics to the support oxide. In 

addition, they reported evidence for the interaction between the retained 

hydrocarbons and the OH groups of the silica support. Furthemnore, the acidity 

and basicity of the support oxide can be influenced in the presence of metal ions. 

Fenyvesi et al. showed that alumina, silica and magnesia modified with metal ions 

such as Zr""", Li"^, Ca^*, Nd®"", and Ni^* showed significant differences in the number 

and strength of the total acidity and/or basicity of these oxides (43). 
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RESEARCH OBJECTIVES 

The general objective of this work completed for this dissertation was to 

elucidate the interactions between the alkali promoters and the hydrogen in the 

silica supported ruthenium catalysts. Alkali promoters are reported to enhance the 

selectivity of Fischer Tropsch synthesis reaction towards higher hydrocarbons on 

supported Ru, Fe and Co catalysts. However, the mechanism by which they 

modify the catalyst or how they alter the course of the reaction is not clearly 

understood. A significant number of studies done by vapor deposition of 

zerovalent alkali promoters on the single crystal surfaces of Ru suggested an 

interaction involving a transfer of electrons from the alkali metal to the substrate. 

Nevertheless, the results of these studies are not comparable with the supported 

metal catalyst systems for several reasons. First, the promoter is usually 

incorporated in the catalyst in the fonn of a salt which was eventually reduced or 

decomposed. The final form of the promoter is usually not zerovalent, and any 

zerovalent alkali metal formed during the reduction/decomposition stage leaves the 

catalyst surface due to their high vapor pressure in their metallic state. Second, 

the multifaceted metal surfaces involved in the supported catalysts complicates the 

interactions between the promoter and the catalyst. Finally, the promoter not only 

interacts with the catalyst, but also forms chemical compounds with the oxide 

supports. 
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The specific objectives of the research completed for this dissertation were; 

1. To identify the chemical nature of the promoter after the themial reduction in 

hydrogen. 

2. To elucidate the nature of interaction between the promoter and the metal. 

3. To characterize the silica support and monitor the changes in presence of 

the metal and the promoter. 

To achieve these objectives, the following approach was implemented. 

The promoters were incorporated in the silica support via a co-impregnation and a 

sequential impregnation technique. Metal and/or promoter impregnation was 

carried out by an incipient wetness method. The reduction temperature of the 

catalyst and the final oxidative state of the promoter was determined by 

themriogravimetric analysis. The characterization of the silica support was carried 

out via proton nuclear magnetic resonance (^H NMR) spectroscopy. The same 

technique was used to characterize the ruthenium surface by monitoring the 

interactions of the chemisorbed hydrogen on the metal. Quantitative nature of 

NMR spectroscopy enabled the author to monitor the site blocking nature of the 

alkali promoters. The electronic environment of the hydrogen was monitored via 

the changes in the Knight shifts in the hydrogen-on-metal resonances. Dynamic 

NMR studies were also conducted to elucidate the effect of the alkali promoters on 

the mobility of the chemisorbed hydrogen. 

During the NMR characterization of the supported ruthenium catalysts, a 

strongly bound state of spilled over hydrogen was also identified. The effect of the 
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spilled over hydrogen on the hydrogen adsorption kinetics was elucidated and 

quantity of the strongly bound spilled over hydrogen as a function of temperature 

and hydrogen pressure was determined. A modified volumetric hydrogen 

chemisorption technique was developed to minimize the interferences from the 

strongly bound spilled over hydrogen. 



REVIEW OF PAPERS WRITTEN 

The work completed for this dissertation has resulted In the preparation of 

six papers for publication. The remainder of this section outlines the contents of 

the papers. 

In paper 1, the role of potassium as a promoter of Ru/SiOg catalysts was 

Investigated. The catalyst preparation technique detemiined the efficiency of the 

alkali Incorporation on the metal surface. Potassium blocked more Ru sites for 

hydrogen chemisorption in the sequentially Impregnated catalysts. In co-

Impregnated catalysts, NMR evidence suggested a decrease In the metal particle 

size with increasing alkali loading. The NMR lineshift did not change significantly 

which indicated the absence of electronic interactions between the promoter and 

the metal. 

In paper 2, the results of Cs promoted catalyst characterization via proton 

NMR spectroscopy was reported. Upon hydrogen chemisorption, Cs promoter 

exhibited a unique behavior among the alkali promoters investigated (Na, K and 

Cs): even at the highest loadings of Cs, exposure of hydrogen caused elimination 

of Cs from the hydrogen chemisorption sites; The metal dispersions measured by 

strong hydrogen chemisorption were identical within the error limits of 

experimentation for all the Cs loadings. This effect was reversible upon thermal 

desorption of hydrogen. The interaction of Cs with the OH groups In the support 

created a resonance 10 ppm downfield of TMS. In the presence of spilled over 
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hydrogen, the intensities of both 3 ppm and 10 ppm resonances increased. Effect 

of Cs on the hydrogen mobility was also reported. 

The effect of Na promoters on the chemlsorbed hydrogen was reported in 

paper 3. The conclusions of this work was similar to that of the K promoted 

catalysts. The dynamic NMR studies indicated that the presence of Na promoter 

significantly restricted hydrogen mobility on the metal surface. The absence of a 

weakly bound p state hydrogen suggested that Na preferentially occupied the edge 

and comer sites. 

In paper 4, the interactions between the metal and/or the promoters and the 

silica support was reported. Three different proton populations were identified in 

the pure silica reduced and evacuated after being treated with distilled water via an 

incipient wetness technique. The overall proton density in the silica support 

decreased with the ruthenium metal loading, the alkali promoter loading and the 

catalyst reduction temperature. The affinity of the alkali promoters towards the 

exchange with the support hydroxyl groups decreased with the increasing atomic 

size (Na>K>Cs). 

In paper 5, the role of spilled hydrogen on the catalyst characterization via 

volumetric hydrogen chemisorption was investigated. A strongly bound component 

of the spilled over hydrogen was identified. The effect of the weakly and strongly 

bound spilled over hydrogen on the kinetics of the hydrogen chemisorption was 

monitored via volumetric techniques and in-situ proton NMR spectroscopy. The 

hydrogen chemisorption on metal was completed within 10 min. as observed via 
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in-situ ^NMR spectroscopy. However, hydrogen spillover took place over a time 

scale of 20+ hours. The ratio of the spilled over hydrogen to the hydrogen 

adsorbed on the metal decreased with increasing temperatures. The volumetric 

hydrogen chemisorption technique used in characterization of supported metal 

catalysts was modified to minimize the amount of the strongly bound spilled over 

hydrogen. 

In paper 6, the nature of the spilled over hydrogen was discussed based on 

the proton NMR spectroscopic evidence. The absence of a change in the Knight 

shift of the hydrogen-on-metal resonance indicated that atomic hydrogen spilled 

over on the support. However, the spilled over hydrogen did not form 0-H or Si-H 

bonds on the silica surface. Both reversibly and the irreversibly bound spilled over 

hydrogen possessed a high mobility as indicated by the decrease in the spin lattice 

relaxation times of the protons in the silanol groups. 
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ABSTRACT 

The interaction of hydrogen on potassium promoted catalysts prepared by 

both sequential and co-impregnation methods was studied by proton NMR 

spectroscopy. Potassium addition decreased the amounts of both hydrogen 

adsorbed on the metal (site blocking) and the support hydroxyl groups. No 

evidence for a ruthenium-mediated (through-metal) electronic interaction between 

potassium species and adsorbed hydrogen was found. During catalyst 

preparation, potassium was incorporated on the support by an exchange with the 

Si(OH) groups forming Si(OK) species, thereby reducing the amount of surface 

silanol protons. The sequential impregnation technique proved to be more efficient 

in depositing potassium on the metal surface. 
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INTRODUCTION 

Alkali metals are often used as catalyst promoters for reactions such as 

ammonia synthesis (1, 2) and Fischer Tropsch synthesis (2). Although their 

chemical state, physical location and mechanism by which they alter the reaction 

are not generally known, alkali promoters have been reported to increase the chain 

growth probability and decrease the rate of Fischer Tropsch synthesis over both 

Ru (3) and iron catalysts (4). So far, several mechanisms have been postulated 

for these and other promotional effects induced by alkali metals: active metal site 

blocking for chemisorption (5-8); electron donation to or from the metal (7-10): 

direct chemical interactions between adsorbate and the promoter (7,11, 12, 17); 

through space interactions (e.g., electrostatic) (13-15); and alkali Induced surface 

reconstruction (16, 18). 

It is generally accepted that for Fischer Tropsch catalysts such as rhodium 

(5, 8), ruthenium (3, 6) and iron (19), the presence of alkali promoters reduce the 

available surface sites for strong hydrogen and CO chemisorption. However, the 

existence of electronic interactions induced by the promoter is still not established. 

One major difficulty in understanding the promotional effects of alkali metals is that 

the chemical state(s) of the alkali species is not known. These states depend on 

the precursor used, catalyst pretreatment and the reaction (1). Strong electronic 

interactions of alkali with metals were suggested in extensive studies of single 

crystals (10, 20, 21 and the references therein). However, because zero valent 



alkali was used in these studies, the comparison with real catalysts is difficult. Due 

to high vapor pressures (22) and relatively low heats of adsorption of zero valent 

alkali on ruthenium surfaces (20-70 kcal/mol) (41), it does not seem possible that 

they exist on the catalyst in the metallic state at reaction temperatures. Indeed, 

Aika et al. (1 ) noted that during the decomposition of Cs(N0)3, any zero valent Cs 

species that formed evaporated immediately. Furthermore, compounds such as 

alkali carbonates are stable under the reaction conditions, reducing the possibility 

of electron donation to the metal substrate. Another fact one should observe is the 

extreme reactivity of alkali metals with all molecules containing protons (22). For 

example, upon adsorption of water on a full, dense layer of potassium on Ru(001 ), 

Thiel et al. (23) reported that water dissociated at 100 to 125 K to form adsorbed 

OH and H. It was shown that the reaction was not limited to the surface; instead, 

the dissociation products penetrated to the bulk and formed a three dimensional 

mixture of K and OH. Bonzel and Krebs (24) observed fomnation of KOH and 

KgCOg on Fe surfaces upon exposure to CO/Hg mixtures. 

It has also been suggested that the ionic character of alkali promoters 

induces an electrostatic field which may result in a significant promotional effect, at 

least on single crystal surfaces (14). Studies of supported catalysts, however, 

showed that these electrostatic fields of alkali promoters did not strongly affect the 

catalyst surface-adsorbate interactions (8,15). For example, Compton and Root 

(8) showed that the NMR lineshift of CO adsorbed on alkali promoted Rh/SiOg was 

too large to be due to solely an electrostatic effect. Oukaci et al. (15) studied the 



effect of group 1A cations on CO hydrogénation over Ru/Y-Zeolites and tested the 

postulate that the exchange of sodium ions with smaller or larger cations produces 

a change in the electrostatic field inside the zeolite, and hence a change in their 

acid strengths. They found no evidence of electronic or electrostatic interactions 

influencing the specific activity of the catalysts or the overall chain growth 

probability. 

Somorjai and Van Hove (18) recently reviewed the literature on adsorbate 

induced restructuring of surfaces and reported that vapor deposited alkali metals 

induced surface reconstructions of Ni, Ou, and Pd single crystal surfaces 

producing "missing row structures". Hayden et al. (16) observed a (1X2) 

reconstruction of a Ag(110) surface upon adsorption of small amounts of Li, K and 

Cs (O.O5<0<O.2) at 300 K. They suggested increased density of states at the 

FemnI level resulted in the reconstruction. Again these studies used zero valent 

alkali as adsorbates. 

The method of alkali incorporation in the catalyst plays an important role in 

how alkali partitions itself between the metal and the support surfaces (5, 8). 

Kesraoui et al. (5) have noted that a co-impregnation technique influenced the 

metal particle size in supported rhodium catalysts. When potassium was co-

impregnated with rhodium on silica at a Rh:K atomic ratio of 2:1, a significant 

increase in hydrogen uptake was observed relative to unpromoted catalysts. Also 

the crystallite size measured by X-ray diffraction decreased below the 4 nm 

detection limit from a value of 12.5 nm for the unpromoted catalyst. When 
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potassium promoted catalysts were prepared by a sequential impregnation 

technique, Compton and Root (8) observed differences in alkali incorporation on 

the support depending on how the Rh/SiOg substrate was prepared. For Rh/SiOg 

prepared by using amine exchange, they observed that NH/ species existed on 

the support in the form of SiONH^. This species prevented support protons from 

exchanging with potassium. In catalysts prepared by wet impregnation, however, 

potassium was able to replace some of the silanol protons. 

Proton NMR has proven to be a useful tool to quantitatively and qualitatively 

characterize supported metal catalysts (25-30). Also, the Knight shift variation of 

the hydrogen-on-metal peak can be used to estimate the extent of induced 

electronic interactions affecting the chemisorbed hydrogen (26-31). The purpose 

of the work reported here was to determine the effect of potassium promotion on 

the nature of the chemisorbed hydrogen in silica supported ruthenium catalysts. In 

addition, the partitioning of the alkali promoter between the metal and the support 

was investigated. 
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METHODS 

Catalyst Preparation 

All catalysts in this study were prepared via incipient wetness. Ruthenium 

nitrosyl nitrate, Ru(NO)(NO)g solution (1.5 wt% ruthenium, Strem Chemicals), 

ruthenium nitrosyl nitrate (26 wt% Ru, Johnson Matthey) and potassium nitrate 

(Johnson Matthey) were used as precursors. Potassium was incorporated into the 

catalysts by both sequential impregnation and co-impregnation. In sequential 

impregnation, a sufficient amount of ruthenium nitrosyl nitrate (Johnson Matthey) 

was dissolved in 2.2 ml water/g of support to yield a metal loading of 4 wt% in the 

reduced catalyst. Then a slurry was prepared by mixing an appropriate amount of 

silica (Cab-O-Sil HS-5) in the ruthenium nitrosyl nitrate solution, dried overnight at 

room temperature and then for 4 h in air at 383 K. The unpromoted catalyst was 

reduced in flowing hydrogen for two hours at 623 K. The reduced catalyst had a 

Ru dispersion of about 10% measured by strong hydrogen chemisorption (33). 

After reduction, the 4% Ru/SiOg catalyst was impregnated with the potassium 

nitrate solution of the desired composition such that 2.2 ml solution per gram of 

support resulted in the appropriate potassium loading (2, 10, 15, 20 and 40 atomic 

percent of the total metal amount). The catalysts were dried in air at room 

temperature overnight and then at 383 K for two hours. Potassium loadings were 

confirmed by atomic absorption spectroscopy. 
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For catalysts prepared by co-impregnation, potassium nitrate was mixed 

with the ruthenium nitrosyl nitrate solution (Strem Chemicals). The ruthenium 

loading was kept at 4 wt% by using 2.6 ml solution (1.5 wt% Ru) per gram of 

support. The amount of potassium nitrate was adjusted to obtain potassium 

loadings of 33.3, 50, 66.6 and 75 atomic percent of the total metals. The same 

drying procedure as above was used. After reduction, the unpromoted catalyst 

had a dispersion of approximately 18% measured by strong hydrogen 

chemisorption (33). 

Thermogravimetric Analysis (TGA) Experiments 

Thermogravimetric measurements of 20 mg catalyst samples were 

conducted in a Perkin Elmer TGA 7 analyzer interfaced with a PE-7500 computer 

for data acquisition and automatic control of the experiment. Experiments were 

done under a gas flow of 40 cc/min. Mass flow controllers were used to adjust the 

flow rate of a 10% hydrogen, 90% helium mixture. Heating rates of 1 to 10 K/min 

were used depending on the temperature response of the sample under study. 

NIUIR Sample Preparation 

About 30 mg of catalyst was placed in 5 mm O.D. NMR tubes and then 

attached to sample ports of an adsorption apparatus described elsewhere (25). 

Subsequently, 760 torr of helium was introduced in to the cell and the sample was 

heated to 423 K for 30 min, evacuated and dosed with approximately 100 torr of 
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hydrogen. After the temperature was increased to 623 K at a rate of 6 K/min, 

samples were evacuated and 760 torr of fresh hydrogen was Introduced. This 

evacuation/hydrogen replacement cycle at 623 K was repeated every 30 min. for 

2 hours. After reduction, the samples were evacuated for 4 hours at the reduction 

temperature and then allowed to cool to room temperature. Each sample was 

then dosed with hydrogen at about 100 torr, equilibrated for 1 hour and evacuated 

to 10 ® torr for 5 minutes. Finally, the samples were immersed in a water bath, 

sealed with a microtorch and weighed. The net weight of the catalyst sample was 

obtained by deducting the weight of the empty tube from the final weight of the 

sealed sample. 

NMR Experiments 

A home built spectrometer with resonance frequency of 220 MHz was used 

for NMR experiments. All proton NMR spectra of hydrogen-dosed catalysts 

consisted of two peaks; one associated with the silanol protons from the support 

and the other representing the hydrogen on the metal particles (25). At a recycle 

time of 0.2 to 0.4 s the full recovery of the metal peak was established but the 

silanol peak intensity was suppressed due to its longer spin-lattice relaxation time. 

When the full intensity of the silanol peak was investigated, the recycle time was 

set at 70 seconds to restore the equilibrium magnetization. The spin lattice 

relaxation times, T1, of hydrogen on the metal were detemiined by the null point 

method (32). 



Absolute Intensities were obtained by referring to a water sample doped with 

trace amounts of FeClg. The reference sample was sealed in a capillary tube of 

the length of the catalyst samples to account for field inhomogenelties in the NMR 

coil (25). All NMR measurements were perfonned at 294±1 K. 
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RESULTS 

Thermogravimetric analyses were done on potassium nitrate and the 

catalysts to help identify the chemical state of the alkali species after the 

decomposition and reduction pretreatment steps. The effect of the reducing 

environment on the decomposition of catalyst precursors is shown in Fig. 1. The 

decomposition of potassium nitrate in flowing helium resulted in a smooth weight 

loss beginning at a temperature of about 850 K (Fig. 1 .d). Switching to a flowing 

mixture of 10% hydrogen in helium resulted in a decomposition beginning 

significantly earlier (Fig. 1 .c). At about 880 K, 57% of the initial total weight was 

lost. The residual weight was assigned to KgO based on the relative fraction of 

KgO in (KN03)2 (42.6%). Further heating in the reducing atmosphere resulted in 

total loss of the material, A similar treatment on the unpromoted 4% Ru/SiOg 

indicated that reduction occurred around 445 K (Fig. 1a), whereas the promoted 

catalyst consisting of 4 wt% Ru on SiOg and a Ru:K ratio of 2:1 reduced at a 

temperature of 480 K (Fig. lb). At higher levels of promotion the reduction 

temperature of the catalyst remained constant within the error limits of 

experimentation (±2 K). The TGA of potassium promoted catalysts did not show 

any feature around 880 K where potassium nitrate decomposed. This indicated 

that the presence of ruthenium catalyzed the decomposition of potassium nitrate. 
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Figure 1. Tlie results of tfie thermogravimetric analysis of (a) 4%Ru/Si02; 
(b) 4%Ru/Si02 co-impregnated with potassium at a K:Ru atomic ratio of 
2:1 ; (c) potassium nitrate in the presence and (d) in the absence of a 
reducing atmosphere 
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The NMR spectra of strongly bound hydrogen in a series of sequentially-

Impregnated, potassium-promoted catalysts are shown in Fig. 2. The upfield peak 

(-60 ppm) in each spectrum was identified as hydrogen dissociatively chemisorbed 

on ruthenium and the downfield peak (3 ppm) was assigned to the silanol protons 

(25). The upfield peak was best fit by an exponential Gaussian function and for 

the peak at 3 ppm a superposition of one sharp Lorenzian and one broad 

Gaussian peak was used. The NMR spectra for the co-impregnated series of 

catalysts are shown in Fig. 3. In these spectra, a third peak appeared at 

approximately 20 ppm at potassium loadings of 50 atomic % and higher. 

The results presented in Figs. 2 and 3 indicated that the NMR intensity of the 

hydrogen-on-metal peak decreased significantly with potassium loading. However, 

this change of intensity was not accompanied by a meaningful shift of the 

hydrogen-on-metal resonance (Fig. 4). We, thus, assume peak at —60 ppm 

represents hydrogen on Ru only which is not in the fast exchange limit with any 

other form of hydrogen in the catalyst. Consequently, meaningful quantitative 

information can be obtained from the intensities of the hydrogen-on-metal 

resonances. The strongly bound hydrogen coverage, ©„, can be now obtained by 

measuring the integrated intensity of the NMR resonance at —60 ppm. Also, the 

potassium coverages on ruthenium can be indirectly estimated from the strongly 

bound hydrogen coverages, 0^=1-©hi (Figs. 4 and 7). A plot of NMR intensity of 

strongly bound hydrogen on Ru versus potassium-to-ruthenium molar ratio is 
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Figure 2. NIVIR spectra of sequentially impregnated K/Ru/SiOg catalysts. Each 
of the spectra shown Is obtained by averaging 1000 scans 
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Figure 3. NIVIR spectra of co-impregnated K/Ru/SiOg catalysts. Each of the 
spectra shown Is obtained by averaging 1000 scans 
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Figure 4. The change in hydrogen-on metal resonance as a function of potassium 
coverage (see text) 
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shown in Fig. 5. The dashed line on the plot indicates the amount of Ru sites 

blocked assuming that each potassium atom covers one metal atom site. The 

experimental curves follow a generally less negative slope indicating that the site 

blocking effect of potassium was not on a one-to-one basis. The co-impregnated 

catalysts exhibited a significantly smaller decrease in the number of hydrogen 

chemisorption sites compared to the sequentially impregnated catalysts. The loss 

of silanol proton intensities as a function of total potassium loading are plotted in 

Fig. 6. The results show that the silanol peak intensity diminished with increasing 

potassium loading. The co-impregnated catalyst series displayed a greater silanol 

intensity decrease upon potassium addition. 

Spin lattice relaxation times were determined for the hydrogen-on-metal 

resonance. The spin lattice relaxation time, T1, of the strongly bound hydrogen is 

plotted in Fig. 7 as a function of surface hydrogen coverage. T1s of the 

chemisorbed hydrogen on ruthenium exhibited a small increase with potassium 

metal content for both the co-impregnated and sequentially impregnated series. 

These values are consistent with the spin-lattice relaxation times of protons 

interacting with conduction electrons. 
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Figure 5. Change in NMR intensity of the hydrogen-on-metal resonance as a 
function of alkali loading. The dashed line represents the case where 
each alkali atom would have blocked one hydrogen chemisorption site 
on ruthenium particles 
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Figure 7. Spin lattice relaxation times of hydrogen on metal resonances as a 
function of surface hydrogen coverage 
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DISCUSSION 

Catalyst Reducibility 

The thermogravimetric analysis of unpromoted 4%Ru/Si02 (Fig. 1 a) 

indicated that the reduction temperature of the precursor, Ru(N0)(N03)3), (not 

shown) did not change appreciably in the presence of the silica support. The TGA 

results for KNO3 indicated a 57% weight loss by about 880 K corresponding to the 

formation of KgO. Further heating resulted in evaporation of this species. 

Although the presence of ruthenium metal may alter the nature of the 

decomposition products, TGA showed that the oxide form of potassium existed 

after the pretreatment of the catalyst. This agrees with the results of Aika et a/. (1) 

who reported the formation of CSgO, CSgOg and CsOH species upon decomposition 

of CSNO3 in the presence of Ru. Their results suggest that any Cs metal fomied 

during the disproportionation of CSgO evaporated immediately. Similarly, De Paola 

et al. (34) reported that co-adsorption of potassium and oxygen on Ru(001 ) yielded 

stable KOg and KgOg compounds. The thermogravimetric analysis of the co-

impregnated catalysts indicated an increase in the reduction temperature of the 

potassium promoted catalyst by -35 K relative to the unpromoted catalyst. A 

change in potassium loading did not cause noticeable changes in the reduction 

temperature of the catalysts. Similar increases in catalyst reduction temperatures 

have been observed for alkali promoted molybdate catalyst systems (35). It is also 
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noted here that both the metal and the promoter precursors reduced 

simultaneously suggesting a synergistic effect. 

Potassium Partitioning between Metal and Support 

The NMR measurements of surface coverage as a function of potassium 

loading strongly suggest that the adsorption sites are blocked but not on a one-to-

one basis. Hoost and Goodwin (6) reported a one-to-one blocking of hydrogen 

adsorption sites with potassium loading on a Ru/SiOg catalyst. This discrepancy 

may be due to the different catalyst preparation methods and characterization 

techniques used in our work. For example, Hoost and Goodwin (6) used a higher 

reduction temperature of 673 K and characterized their catalysts via volumetric 

hydrogen chemisorption. We have noted with NMR spectroscopy a strongly 

bound, spilled over hydrogen on the silica support which is not distinguishable in 

the volumetric experiment (33). The amount of spilled over hydrogen depended on 

factors such as reduction temperature and presence of alkali promoters. In 

addition, the higher reduction temperature used in their work may have changed 

the potassium distribution on the metal particle surfaces. For example, Compton 

and Root (36) observed a change in CO adsorption states on potassium promoted 

Rh/SiOg surfaces upon reduction at elevated temperatures. According to their 

results, higher reduction temperatures helped redistribute the promoter on the 

metal surface; a low potassium loading catalyst reduced at high temperatures 

resembled a high potassium loading catalyst reduced at high temperatures. 
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To confirm that potassium partitioned itself between the metal and the 

support, quantitative intensity measurements of the silanol protons were 

conducted. The relative change in the silanol intensity as a function of potassium 

loading given in Fig. 6 was normalized to the value obtained for an unpromoted 

catalyst. The simultaneous decrease in the intensities of the silanol and the 

hydrogen-on-metal resonances as a function of potassium loading suggests that 

the potassium species blocked the hydrogen chemisorption sites on the metal 

surface and also eliminated the silanol protons from the surface of the support. In 

addition to the intensity decrease of the silanol protons with potassium loading, an 

additional resonance at around 20 ppm in catalysts with potassium loadings 

exceeding 50 at% confimied that potassium partitioned itself onto the support (Fig. 

3). It is noted that the appearance of the resonance at 20 ppm did not affect the 

lineshift of hydrogen chemisorbed on metal particles (-60 ppm) which suggested 

the lack of a fast exchange between the two species. The resonance at around 20 

ppm was also obsen/ed in a sample consisting of potassium impregnated onto the 

silica support without ruthenium metal (not shown). This resonance was 

suggestive of KOH based on proton NMR experiments on pure KOH samples 

done in our lab. This assignment is consistent with the previously reported results 

of potassium hydroxide species on Fe and Ru single crystals (17, 23, 24). 

Furthemiore, thermodynamics dictates that in the presence of even trace amounts 

of water, KgO fonns KOH at typical reduction temperatures (44). Therefore we 
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conclude that potassium is present in these catalysts as a mixture of oxide and 

hydroxide states. 

The catalysts prepared via the co-impregnation technique exhibited a 

smaller change in hydrogen-on-metal resonance intensity and a larger change in 

support hydroxyl intensity compared to the catalysts prepared via the sequential 

impregnation. We attribute this effect to the decrease in the metal particle size 

with potassium loading upon co-impregnation. A similar effect has been observed 

previously for potassium promoted Rh catalysts (5). It is unlikely that the above 

effect results from K exchanging more readily with the support protons in the case 

of co-impregnated catalysts. The exchange efficiency of potassium with the OH 

groups of the support depends on pH. Since the isoelectronic point of silica is 

around a pH of 1 to 2, at pH values lower than 2 the surface of the support will be 

positively charged which will inhibit the cation exchange. Therefore, it is not 

expected that potassium would have a higher affinity for the support surface in the 

co-impregnation solution (pH<1) in comparison to the sequential impregnation 

technique where the potassium impregnation solution has a higher pH. 

Electronic Interactions 

A significant number of papers have reported that alkali metals adsorbed on 

Ru single crystal surfaces change the electronic stmcture of the substrate (10, 13, 

14, 21, 37). For example, Hrbek (37) reported that the work function of a Ru(OOI) 

surface exhibited a minimum as a function of alkali coverage. Addition of 
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hydrogen did not influence the work function of an alkali precovered Ru(001 ) 

surface (38) which was consistent with the results determined for hydrogen on a 

clean surface (39). 

These and similar studies have led researchers to postulate that a possible 

mechanism for alkali promotion in supported metal catalysts involves transfer of 

electron density from the alkali species to the metal particle. However, the results 

presented here argue against the suggestion of a through-metal electronic 

interaction. The hyperfine interactions of unpaired conduction electrons with the 

probe nucleus (in this case ^H) can produce large shifts of NMR lines (Knight shift) 

(40). Hence, a change in the Knight shift indicates a change in the density of the 

bonding states at the Fermi level. The results presented in Fig. 4 indicated the 

maximum variation in the shift was ±10% even at potassium loadings such that 

90% of the available ruthenium surface was blocked. This change is well within 

the range due to particle size variations for the co-Impregnated catalysts (25) and 

experimental error. Since the obsen/ed Knight shift of the hydrogen-on-metal 

resonance did not change significantly, we conclude that strong electronic 

interactions were not operable. In contrast, a large change in the Knight shift of 

chemisorbed hydrogen was noted with CI poisoning of a Ru/SiOg catalyst (27). 

This conclusion of the lack of a through-metal interaction is consistent with the 

observation that potassium is not present in the forni of a zero valent species but 

rather as the oxide (noted by TGA), or the hydroxide. Alkali metals present in 

catalysts as oxides are unlikely to donate electron density to the metal particle. 
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For example, LEED analysis of co-adsorbed Cs and 0 atoms on a Ru(0001) 

surface indicated that the bond lengths were modified in a way consistent with an 

effective transfer of electronic charge from Cs to O (45). As indicated by Ponec 

and coworkers (42, 43), the transfer of electron density is not likely to occur to an 

appreciable extent such that the catalytic properties of the metal particle can be 

altered. 
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CONCLUSIONS 

The effect of potassium promotion on hydrogen chemisorption on a series of 

Ru/SiOa catalysts was investigated by proton NMR spectroscopy. Potassium 

species were found both on the metal and on the support surfaces. Sequential 

impregnation was more efficient in incorporating potassium onto the metal surface. 

The co-impregnation technique resulted in a greater loss of hydroxyl protons on 

the support surface. The NMR results indicated no evidence of "through-

ruthenium" electronic interactions between potassium and hydrogen, at least as 

noted by the NMR Knight shift which is sensitive to the density of the bonding 

states at the Fermi surface. However, potassium species blocked the metal sites 

available for hydrogen chemisorption. NMR spectroscopy indicated the 

formation of KOH on the support surface. 
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ABSTRACT 

Cs promoted Ru/SiOg catalysts were characterized via NMR spectroscopy. 

Contrary to the results of studies using single crystals, we did not find any 

evidence of a ruthenium-mediated electronic interaction between the Cs promoter 

and adsorbed hydrogen at least as indicated by the proton Knight shifts. The site 

blocking effects of the Cs promoter diminished after exposure to hydrogen for 

extended periods of times. This effect was reversible after thermal evacuation of 

the hydrogen. In the presence of Cs, the surface of the support was also 

modified; the intensity of the diamagnetic resonance in the spectrum 

(predominantly Si-OH) decreased, and an additional resonance appeared in the 

spectra. The mobility of the hydrogen on the Ru surface and at the metal-support 

interface (spillover) was restricted in the presence of Cs. We postulate that this 

restricted mobility of hydrogen can account for the increased chain growth 

probability in the presence of alkali promoters. 
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INTRODUCTION 

The synthesis of hydrocarbons from coal (Fischer Tropsch synthesis) has 

been known since late 1920s (1-2). The process requires gasifying coal with air 

and steam to produce syngas, a mixture of CO and Hg, and reacting this mixture 

on group VIII metals to produce hydrocarbons and oxygenates. In its most 

classical description, the Fischer Tropsch synthesis is a polymerization reaction 

that produces various oligomers regularly distributed along the carbon number 

range (3). The extent of the Fischer Tropsch synthesis reaction is mathematically 

describable by the Anderson-Schultz-Flory distribution (3). The selectivity of the 

catalyst toward higher hydrocarbons depends on the reaction conditions, the 

nature of the oxide support, the presence of basic promoters such as alkali metal 

oxides, and the catalyst. For example, the selectivity towards higher hydrocarbons 

Increases with decreasing values of H/CO ratio, decreasing reaction temperature, 

and increasing pressure. Furthermore, catalysts supported on TiOg have higher 

selectivities towards higher hydrocarbons than those supported on AI2O3 or SiOg 

(4-5). The selectivity of the reaction toward higher hydrocarbons can be enhanced 

by use of promoters such as alkali oxides or carbonates. Alkali promoters are not 

unique in their promotional effects, but they are the cheapest and the most 

frequently used (6). 

Research to date has suggested several mechanisms for the role of alkali 

promoters in the Fischer Tropsch synthesis. A more general review of these 
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mechanisms can be found elsewhere (7-8). In summary, the existing theories for 

alkali promotion include active metal site blocking for chemisorption, electron 

donation to or from the metal, direct chemical interactions between adsorbate and 

promoter, through-space interactions (e.g., electrostatic), and alkali-induced 

surface reconstruction. The promoters can also stabilize the ionic fornis of the 

active metals, M"", which are the active centers for oxygenate formation (9), and 

protect these against reduction (Madelung stabilization). In addition, alkali 

promoters can chemically interact with the oxide supports to change their acidity 

(10) or forni chemically distinct, highly mobile species (11). 

The mechanisms of alkali promotion postulated in the literature focus mainly 

on the role of alkali promoters in the modification of metal surfaces. It is also 

known that basic alkalis readily form chemical compounds with many of the 

commonly used supports, such as silica, alumina, or titania. Therefore, the 

presence of the promoters influences the overall acidity or the basicity of the 

supported catalysts (12). Although the individual effect of the support is not clearly 

understood, its role in the overall performance of the catalyst is recognized. For 

example, the transport-enhanced olefin readsorption mechanism postulated by 

Iglesia and coworkers involves the diffusion of a-olefins on the support surface. 

These olefins can then readsorb on metal particles where they participate in 

subsequent chain growth (13-16). In such cases, the nature of the support at the 

molecular level can easily alter the transport properties of the a-olefins and 

therefore the chain growth probability of the Fischer Tropsch synthesis reaction. 
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Furthermore, the support material was shown to stabilize intemnediates such as 

CH3O for further hydrogénation to form methane (17). 

In addition to the alkali promotion mechanisms postulated above, we will 

investigate the effect of the alkali promoter on the adsorbate dynamics by using 

some unique capabilities of the NMR spectroscopy (18). The reason we selected 

hydrogen as an adsorbate are threefold: (i) NMR is relatively easy to perform, 

(ii) hydrogen is one of the reactants in the Fischer Tropsch synthesis and (iii) 

hydrogen is an excellent probe nucleus for investigating the surface structure and 

composition of the supported metal catalysts. 
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METHODS 

Catalyst Preparation 

All catalysts in this study were prepared via incipient wetness. First, a 

sufficient amount of ruthenium nitrosyl nitrate (Johnson Matthey) was dissolved in 

2.2 ml water/g of support to yield a metal loading of 10 wt% in the reduced 

catalyst. Then a slurry was prepared by mixing an appropriate amount of silica 

(Cab-O-Sil HS-5) in the ruthenium nitrosyl nitrate solution and dried overnight at 

room temperature and then for 4 hours in air at 383 K. The unpromoted catalyst 

was reduced in flowing hydrogen for 2 hours at 623 K. Cesium was incorporated 

into the catalyst by sequential impregnation. The reduced Ru/SiOg catalyst was 

impregnated with the cesium nitrate solution of the desired composition such that 

2.2 ml solution per gram of support resulted in the appropriate Cs loading (Cs to 

Ru atomic ratios of 0.5, 1, 2 and 3). The promoted catalysts were dried in air at 

room temperature overnight and then at 383 K for 2 hours. These catalysts will be 

designated in the text as Cs#, where # is the Cs:Ru atomic ratio of the catalyst, 

e.g. Cs3 will be the catalyst with a Cs:Ru ratio of 3:1. 

Thermogravimetric Analysis (TGA) Experiments 

Themricgravimetric measurements of 20 mg catalyst samples were conducted 

in a Perkin Elmer TGA 7 analyzer interfaced with a PE-7500 computer for data 

acquisition and automatic control of the experiment. Experiments were done under 

a gas flow of 40 cc/min. Mass flow controllers were used to adjust the flow rate of 
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a 10% hydrogen, 90% helium mixture. Heating rates varied from 1 to 10 K/min 

depending on the temperature response of the sample under study. 

NMR Sample Preparation 

About 100 mg of catalyst was placed in 5 mm O.D. NMR tubes and then 

attached to sample ports of an adsorption apparatus described elsewhere (18). To 

eliminate the moisture in the catalyst, the samples were heated to 423 K for 30 

minutes in 760 torr of He. The samples were evacuated and dosed with 

approximately 100 torr of hydrogen and the temperature was increased to 723 K at 

a rate of 6 K/min. At this temperature, hydrogen was replenished every 30 

minutes for 2 hours. After reduction, the samples were evacuated for 4 hours at 

the reduction temperature and then allowed to cool to room temperature. Each 

sample was then exposed to hydrogen at the desired pressure for 20 minutes 

unless otherwise indicated. Finally, the samples were immersed in a water bath, 

sealed with a microtorch, and weighed. When the strongly bound hydrogen on the 

catalysts was investigated, the samples were dosed with hydrogen at 150 torr 

equilibrated for 1 hour, evacuated to 10 ® torr for 5 minutes, sealed, and weighed. 

NMR Experiments 

A home-built spectrometer with ^H resonance frequency of 220 MHz was 

used for the NMR experiments. All proton NMR spectra of hydrogen-dosed 

catalysts consisted of two peaks: one diamagnetic resonance associated with the 
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protons in the support and a second resonance representing hydrogen on the 

metal particles (18) with frequencies shifted upfield due to the Knight shift 

interaction between proton nuclear spins and metal conduction electrons. At a 

recycle time of 0.4 seconds the full recovery of the metal peak was established but 

the silanol peak intensity was suppressed because of its longer spin-lattice 

relaxation time. When the full intensity of the silanol peak was investigated, the 

recycle time was set at 50 seconds to achieve complete relaxation. The spin 

lattice relaxation times, T^, of hydrogen on the metal were determined by the null 

point method (19). Absolute intensities were obtained by referring to a water 

sample doped with trace amounts of FeClg. The reference sample was sealed in a 

capillary tube of the length of the catalyst samples to account for field 

inhomogeneities in the NMR coil (18). All NMR measurements at this frequency 

were performed at 294+1 K. 

In-situ NMR experiments were run in a home-built spectrometer operating 

at a proton resonance frequency of 250 MHz. The NMR probe, which was 

connected to a vacuum/dosing manifold, allowed temperatures up to =770 K and 

was operable in the pressure range from 4x10'® to 10® torr. Sample reduction 

and pretreatment were carried out inside the probe following the procedure used 

for preparing the sealed NMR samples. Selective inversion of a narrow frequency 

band (hole burning) within the resonance line ascribed to hydrogen on Ru was 

achieved employing the DANTE technique (24). The rf pulse train consisted of 20 
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narrow pulses (pulse width = 0.5 /us), separated by a jus delay, allowing selective 

inversion of a frequency band of 2.5 KHz width. 
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RESULTS 

The reduction temperatures of the catalysts were determined from TGA 

studies. The results of the thermogravimetric analyses are given in Table 1. In the 

presence of Cs promoters, the reduction temperature of the catalysts increased 

significantly. 

The NMR spectra of an unpromoted catalyst under different hydrogen 

pressures are shown in Fig. 1. The upfield peak (-50 ppm) in each spectrum was 

identified as hydrogen dissociatively chemisorbed on ruthenium, and the downfield 

peak at ca. 3 ppm (diamagnetic peak) was assigned to the protons in the silica 

support (18). The upfield peak was best fit by an exponential Gaussian function, 

and for the peak at 3 ppm a superposition of one sharp Lorenzian and one broad 

Gaussian peak was used. The integrated intensity of the -50 ppm resonance was 

Table 1. The effect of the Cs loading on the reduction temperature of the catalyst 

Catalyst Cs;Ru atomic ratio Trgd(K) 

RulO 0.0 433 

Cs05 0.5 668 

Csl 1.0 635 

Cs2 2.0 641 

Cs3 3.0 621 

30 wt% Cs N/A 750 
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Figure 1. The NMR spectra of unpromoted 10% Ru/SiOg catalyst under different 
hydrogen pressures 



used to obtain the H/Ru ratio as described In tlie metliods section. As the 

hydrogen pressure was elevated, the H/Ru peak intensity as well as the intensity 

of the diamagnetic peak increased. 

The NMR spectra for a Cs3 (Cs:Ru=3:1) under varying hydrogen pressures 

are shown in Fig. 2. The resonance shift of the H/Ru line was not Influenced by 

the presence of Cs (see Table 2). However, a very sharp diamagnetic resonance 

at « 3 ppm and a broad resonance at = 10 ppm was obsen/ed. The broad line at 

= 10 ppm exhibited a variation in intensity depending on pressure. Similar 

experiments were performed for the catalysts Cs05, Cs1 and Cs2. 

The amount of hydrogen chemisorbed on the metal particles obtained from 

the Integrated Intensities of the corresponding resonance lines were nomnalized 

with respect to the line Intensity originating from the strongly bound hydrogen 

adsorbed on the uhpromoted catalyst and are plotted in Fig. 3. The amount of 

strongly bound hydrogen remains constant with increasing Cs loading, as shown In 

Fig. 4. 

The hydrogen desorption Isotherm was obtained for Cs3. Four samples were 

initially reduced and evacuated as described in the previous section, and dosed 

with 150 torr of hydrogen. After 2 hours, one sample was sealed. For the other 

three samples, the hydrogen pressure was reduced to 77 torr. The second sample 

was sealed after 12 hours of equilibration and the remaining 2 samples were 

evacuated to 30 torr and allowed to equilibrate for 14 hours before sealing the third 
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Figure 2. The NMR spectra of Cs promoted, 10% Ru/SiOg catalyst under different 
hydrogen pressures. Cs:Ru atomic ratio is 3 
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Figure 3. Hydrogen adsorption as a function of Cs loading and hydrogen 
pressure. Hydrogen equilibration period was 20 minutes 
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Figure 4. The effect of Cs loading on the amount of strongly bound hydrogen. 
The samples were dosed with hydrogen at 150 torr before evacuation to 
10®torr 
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Table 2. The effect of Cs on the Knight shift and the spin-lattice relaxation times 
of the strongly bound hydrogen 

Catalyst Knight Shift T, (ms) 

RulO 52 65 

Cs05 51 82 

Csl 48 100 

Cs2 48 100 

Cs3 48 100 

sample. The hydrogen pressure of the last sample was then decreased to 5 torr 

and equilibration was allowed for 14 hours prior to sealing. The amount of 

hydrogen adsorbed on these catalysts (see Fig. 5) was detemnined from the 

integrated intensities of the NMR resonance lines at -50 ppm. The adsorption 

isotherm for the unpromoted catalyst (also shown in Fig. 5) coincides with this 

desorption isothemri. 

During the same experiment, the effect of the hydrogen exposure times on 

the diamagnetic resonances were also monitored. It was noted that prolonged 

exposures of hydrogen influenced the downfield resonances 3 and 10 ppm, 

significantly (Fig. 6). The increase in the intensity of both resonances strongly 

depended on the hydrogen pressure, hydrogen exposure period and the Cs 

loading. 
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Figure 5. Desorption isotherm of the Cs promoted catalyst with a Cs;Ru atomic 
ratio of 3:1. The solid circles correspond to the adsorption isotherm of 
the unpromoted catalyst 
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Figure 6. The effect of the spilled-over hydrogen on the downfield resonances 
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The remarkable agreement between the adsorption isotherm of the 

unpromoted catalyst and the desorption isotherm of Cs3 suggested the presence 

of a slow kinetic phenomenon in the presence of Cs promoter. The hydrogen 

adsorption isothemns of the promoted catalysts obtained after prolonged hydrogen 

exposures, at least 12 hours, (not shown) were found to agree very well with the 

adsorption isothemn of the unpromoted catalyst. All these data suggested that Cs 

no longer blocked hydrogen adsorption on the metal surface after long hydrogen 

exposures at room temperature. 

In order to show that this effect was reversible upon desorption of hydrogen, 

three spectra were obtained. First, Cs3 was reduced and evacuated as described 

in the methods section. The first spectrum (Fig. 7 (a)) was taken after the sample 

was exposed to 30 torr of hydrogen for 20 minutes. After 18 hours of exposure 

spectrum (c) was obtained with a considerable increase of intensity for the peak 

ascribed to hydrogen on the metal. Spectrum (b) was taken after the same 

sample was evacuated at 383 K for 3 hours, cooled down to room temperature 

and dosed with 30 torr of hydrogen for 20 minutes. The variation of hydrogen-on-

metal resonance with pretreatment suggested a partial recovery of the site 

blocking effect of Cs on hydrogen chemisorption. 

The results presented here so far indicated the absence of both through 

metal electronic interactions and site blocking effects of Cs on Ru/SiOg. The 

increase in the spin lattice relaxation times of adsorbed hydrogen as a function of 

Cs loading (Table 2) suggested the possibility that the hydrogen motion on alkali 
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200 100 0 -100 -200 
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Figure 7. The response of a Cs:Ru=3 catalyst to different pretreatment 
procedures. For the details see the text 
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promoted surfaces may be altered. To test this hypothesis, selective excitation 

(hole burning) measurements were performed at elevated temperatures and 

pressures. It is well known that hydrogen on unpromoted Ru catalysts is 

characterized by a high degree of mobility (18). As demonstrated in Fig. 8 it was 

possible to selectively invert a narrow frequency band within the H/Ru peak (hole-

burning experiment) for an unpromoted and evacuated Ru/SlOg catalyst at room 

temperature, which indicated that the H/Ru peak is inhomogeneously broadened 

under these conditions. Elevation of the hydrogen pressure to = 0.5 torr led to 

disappearance of the H/Ru peak, when the same excitation conditions were 

applied (Fig. 8, upper spectrum), giving evidence that the H/Ru line became 

homogeneously broadened. Hole-burning NMR experiments performed with the 

Cs3 promoted catalyst revealed a completely different behavior (Fig. 9). Even at 

high hydrogen pressures (735 torr) and elevated temperatures (533 K), as shown 

in the lower part of Fig. 9, it became evident that the H/Ru resonance line remains 

inhomogeneously broadened. 
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Figure 8. Selectively excited NMR spectra of unpromoted Ru/SiOg (Ru 
loading 4%). Bottom: evacuation conditions (5 x 10"® Torr), revealing 
inhomogeneous line-broadening as main mechanism for the H/Ru line-
shape. Top: disappearance of the H/Ru peak under selective-excitation 
at a hydrogen pressure of 0.5 ton-, Indicating homogeneous line-
broadening. The arrows indicate the position of the rf-carrier frequency. 
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Selective Inversioj 

150 100 50 0 -50 -100 -150 
Shift (ppm from TMS) 

Figure 9. Nonselectively excited (top) and selectively excited NMR spectrum 
(bottom) of a catalyst containing Cs (Cs:Ru = 3) at 533 K and a 
hydrogen pressure of 735 torr. The arrows indicate the rf carrier 
frequency. The selectively inverted Intensity in the bottom spectrum 
(marked by an arrow) within the resonance ascribed to hydrogen on the 
metal indicates that this resonance is mainly inhomogeneously 
broadened. 
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DISCUSSION 

The reduction temperatures of the catalysts increased as a function of Cs 

loading (Table 1) as indicated by the TGA studies. The same effect was also 

observed for K promoted Ru/SiOg catalysts (8). It is worth noting that both the 

metal and the promoter precursors reduced simultaneously. This result indicated 

that both precursors interacted intimately during the reduction. However, the Cs 

compound fornned after reduction (CsO^^i g) was not capable of donating electrons 

to the metal substrate. The Cs-0 coadsorption studies on Ru(0001) single crystals 

have shown that Cs transferred its charge to oxygen not to the metal surface (20). 

The absence of Knight shift changes (Table 2) is consistent with this finding. 

The hydrogen-on-metal (-50 ppm) resonance intensities were smaller for 

samples under 5 and 30 torr of hydrogen than the intensity of the same resonance 

on the sample evacuated to 10"® torr for 5 minutes after hydrogen exposure at 

150 torr. This behavior was reflected in the hydrogen adsorption isotherms (Fig. 

3). Also, the isotherms merged at a hydrogen pressure of 150 torr. After 

evacuation, all of the samples had the same strong hydrogen-to-ruthenium ratio 

irrespective of the Cs loading (Fig. 4) suggesting that Cs lost its site blocking 

character after extended exposures to hydrogen. When the hydrogen exposure 

times were increased to at least 12 hours, essentially identical adsorption 

isotherms were obtained for unpromoted and promoted catalysts (not shown). 

Similarly, the desorption isothemris for the promoted catalysts were exactly the 
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same as the adsorption isotherms of the unpromoted catalysts (Fig. 5). The 

results given in Fig. 7 indicated that the Cs promoter could again block hydrogen 

adsorption sites after themial treatment in vacuum. All these findings suggest that 

Cs behaves as if it is pushed off the metal particles by prolonged exposure to 

hydrogen and migrate back to the metal after hydrogen desorbs. However, the 

possibility that hydrogen slowly diffuses under the Cs overlayer can not be 

excluded. This is in contrast to the site blocking effect observed with other alkali 

promoters (7-8, 23). 

The NMR spectra in Figs. 1 and 2 show that the intensity and the linewidth of 

the resonance lines due to the hydrogen in the support decreased in the presence 

of Cs. The excess amount of Cs on the support surface led to a considerably 

diminished hydrogen spillover occuring during short {Vz to 1 hours) exposures. 

However, some hydrogen spillover took place on promoted catalysts during 

extended periods of hydrogen exposure as shown by increased intensities of both 

diamagnetic (3 ppm and the 10 ppm) resonances increased significantly (Fig. 6). 

Most likely CsOH or CsH species are formed in the presence of spilled over 

hydrogen. 

Cs promoters are reported to be superior to Na or K promoters on supported 

metal catalysts in ammonia and Fischer-Tropsch syntheses (5, 22). Our results 

indicated that at room temperature, Cs is pushed off the surface of the metal (or 

loses its site blocking ability) while no such effect has been observed for Na- and 

K-promoted Ru/SiOg catalysts (8, 23). Since this work for Cs, and previous work 
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for Na and K promoted Ru/SiOj catalysts (8, 23) show that the through-metal 

electronic interactions are not obsen/ed (Knight shift does not vary with the alkali 

content), and the site blocking effect is not operable for the Cs promoted catalysts, 

the question of the role of the alkali promoters arises. The first important effect 

reported here is the decrease in the amount of spilled-over hydrogen with Cs 

loading, most likely originating from restricted mobility of hydrogen at the interface 

between metal particles and the support. Secondly, the hole-burning experiments 

showed a change in the mobility of hydrogen interacting with the Ru particles in 

the case when Cs is present. The fact that the H/Ru resonance line of Cs 

promoted Ru catalysts is inhomogeneously broadened at high temperatures and 

hydrogen pressures implies that: (i) direct dipolar couplings among proton spins 

are negligible and do not account for the line broadening mechanism, and (ii) 

hydrogen motion does not lead to a homogeneous H/Ru line shape as observed 

for unpromoted Ru/SiOj catalysts. From (i) it follows, that hydrogen in the Cs 

promoted catalyst has to be regarded as mobile, otherwise dipolar couplings would 

not be averaged out and would yield increased line widths at elevated pressures 

(18d). From (ii) it can be concluded, however, that the motion of hydrogen in Cs 

promoted Ru/SiOj catalysts is different from the type of motion which hydrogen 

undergoes in non-promoted Ru/SiOg catalysts. In the latter case, the H/Ru peak 

becomes homogeneously broadened already at hydrogen pressures as low as 0.5 

torr and at room temperature, which leads to an intensity decrease or even 

disappearance of the whole resonance line under selective-excitation conditions 
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(Fig.8 top), depending on the specific parameters of the rf-pulse sequence. For the 

unpromoted Ru/SiOg catalyst the transition from an inhomogeneously broadened to 

a homogeneously broadened line can be explained by a model, which derives the 

NMR line shape under selective-excitation conditions (25). The model describes an 

exchange process of hydrogen, originating from adsorption/desorption involving 

hydrogen diffusion on the surface of Ru particles For the Cs-promoted catalyst the 

situation is more difficult to interpret, because it is not known whether the 

inhomogeneously broadened NMR line results from a superposition of narrow 

resonances originating from hydrogen adsorbed on different Ru particles, or from 

hydrogen adsorbed on various sites or regions of one Ru particle. It can be 

concluded, that the nature of hydrogen motion must be significantly different 

compared to unpromoted Ru/SiOg, although we have not identified which motional 

degrees of freedom become restricted by the presence of Cs. 

It is postulated, that the modified character of hydrogen mobility in the 

presence of the Cs promoter can explain its role in the Fischer-Tropsch synthesis. 

The chain termination in Fischer-Tropsch synthesis takes place by hydrogen ab

straction or addition to fonn olefins and paraffins, respectively. Therefore, an in

crease in the chain growth probability of the Fischer-Tropsch synthesis in the pre

sence of the alkali promoters can be attributed to the hydrogen deficiency on the 

metal surfaces. Since the amount of hydrogen on the Cs promoted catalysts does 

not change with Cs coverage, one can argue that the availability of hydrogen in 

the vicinity of the growing hydrocarbon chains depends on particle-surface diffusion 
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or the dynamics of liydrogen due to adsorption/desorption. In addition, other 

promotional effects such as higher olefin/paraffin ratios and increase in COg 

production are also consistent with this observation of modified hydrogen mobility. 
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CONCLUSIONS 

The promotional effects of Cs on Ru/SiOg catalysts were studied via NMR 

spectroscopy. There was no evidence of a ruthenium-mediated electronic 

interaction between the Cs promoter and adsorbed hydrogen at least as indicated 

by the proton Knight shifts. The site blocking effect of Cs was not as significant as 

that of Na or K promoters. After exposure to hydrogen for extended periods of 

times, the site blocking effects of the Cs promoter diminished. This effect was 

reversible after thermal evacuation of the hydrogen. In the presence of Cs, the 

surface of the support was also modified. Because of the ion exchange between 

the siianol protons in the silica support and the Cs promoter, the intensity of the 

diamagnetic resonance in the spectrum decreased. Also an additional resonance 

associated with the Cs species in the support appeared in the spectra. The 

mobility of the hydrogen on the Ru surface and at the metal-support interface 

(spillover) was restricted in the presence of Cs. The restricted mobility of 

hydrogen can qualitatively explain the promotional effects of alkali promoters on 

the Fisher Tropsch synthesis reaction. 
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ABSTRACT 

The role of Na promoters in the interaction between hydrogen chemisorbed 

on Ru/SiOa catalysts was investigated via NMR spectroscopy. No evidence 

was found for a Ru mediated electronic interactions between Na promoter and the 

chemisorbed hydrogen. Na promoter blocked available hydrogen chemisorption 

sites on the Ru surface as monitored via proton spin counting the hydrogen on the 

metal resonance. Dynamic studies performed via selective saturation NMR 

spectroscopy indicated that the mobility of hydrogen on the metal surface was 

significantly restricted in the presence of Na promoters. 
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INTRODUCTION 

Alkali metal promoted catalysts are widely used in Fischer Tropsch synthesis 

and ammonia synthesis reactions. In the Fischer Tropsch synthesis reaction, alkali 

promoters are reported to (i) enhance the rate of CO consumption, (ii) enhance the 

chain initiation and propagation, (ill) supress methane formation, and (iv) increase 

the olefin content of the reaction products (5). In the ammonia synthesis reaction, 

the catalytic activity of supported or unsupported Ru is reported to increase with a 

decrease in the ionization potential of the added alkali promoter (Cs>K>Na) (6). 

The existing theories for these and other effects of alkali species include active 

metal site blocking for chemisorption, electron donation to or from the metal, direct 

chemical interactions between adsorbate and the promoter, through-space 

interactions (e.g., electrostatic), and alkali-induced surface reconstruction. The 

promoters can also stabilize the ionic forms of the active metals, which are the 

active centers for oxygenate fondation (13), and protect these against reduction 

(Madelung stabilization). In addition, alkali promoters can chemically interact with 

the oxide supports to change their acidity (14) or form chemically distinct, highly 

mobile species (15). A more general review of these mechanisms can be found 

elsewhere (1). 

In addition to these mechanisms. Laser Induced Thermal Desoprtion (LITD) 

studies on sulfur covered Ru(001 ) indicated a decrease in the hydrogen diffusion 

coefficient with increasing sulfur coverage (20). Sulfur induced decrease in the 
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diffusion coefficient of liydrogen was contained in tlie preexponential of tfie 

liydrogen surface diffusion coefficient but not in the activation barrier of diffusion. 

Since the presence of sulfur and the alkali promoters have similar effects on the 

Fischer Tropsch synthesis a similar phenomenon may prevail in the latter case as 

well. 

NMR spectroscopy has been successfully used to characterize 

unpromoted and promoted supported metal catalysts (1-3). The quantitative 

nature of the technique was used to investigate the site blocking effects of the 

alkali promoters. The electronic interactions between the alkali promoter and the 

Ru metal surface was monitored via the changes in the frequency of the hydrogen-

on-metal resonance which was due to the changes in the density of states at the 

metal Fermi level (Knight shift). The selective saturation experiments were used to 

elucidate the heterogeneity of the hydrogen environment as a function of the 

temperature and the pressure. The results were interpreted in terms of the effect 

of the Na on the mobility of the adsorbed hydrogen. 
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METHODS 

Catalyst Preparation 

All catalysts in this study were prepared via incipient wetness. The Na 

promoted catalysts were prepared via a sequential and a co-impregnation 

technique. To prepare sequentially impregnated catalysts, a sufficient amount of 

ruthenium nitrosyl nitrate (Johnson Matthey) was dissolved in 2.2 ml water/g of 

support to yield a metal loading of 4 wt% in the reduced catalyst. Then a slurry 

was prepared by mixing an appropriate amount of silica (Cab-O-Sil HS-5) in the 

ruthenium nitrosyl nitrate solution and dried ovemight at room temperature and 

then for 4 hours in air at 383 K. The unpromoted catalyst was reduced in flowing 

hydrogen for 2 hours at 623 K. The reduced Ru/SiOg catalyst was impregnated 

with the sodium nitrate (Johnson Matthey) solution of the desired composition such 

that 2.2 ml solution per gram of support resulted in the appropriate Na loading. 

The promoted catalysts were dried in air at room temperature ovemight and then 

at 383 K for 2 hours. The co-impregnation solution was prepared by dissolving an 

appropriate amount of sodium nitrate in the ruthenium nitrosyl nitrate solution 

obtained from Strem Chemicals (1.5 wt%). The support was impregnated with the 

solution and dried. An unpromoted catalyst was also prepared from the same 

precursor. All of the catalysts had a final Ru loading of 4 wt%. 

A Na promoted catalyst was also prepared from a ruthenium nitrosyl nitrate 

salt obtained from Johson Mathey. Elemental analysis by atomic absorption 
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spectroscopy indicated tliat tliis precursor contained 10.7 wt% Na wfiich 

corresponded to a Na:Ru atomic ratio of 1.75:1. An 8% and a 10 wt% Ru/SiOg 

catalyst were also prepared by incipient wetness technique from this precursor. 

NMR Sample Preparation 

About 100 mg of catalyst was placed in 5 mm O.D. NMR tubes and then 

attached to sample ports of an adsorption apparatus described elsewhere (18). To 

eliminate the moisture in the catalyst, the samples were heated to 423 K for 30 

minutes in 760 torr of He. The samples were evacuated and dosed with 

approximately 100 torr of hydrogen and the temperature was increased to 623 K at 

a rate of 6 K/min. At this temperature, hydrogen was replenished every 30 

minutes for 2 hours. After reduction, the samples were evacuated for 4 hours at 

the reduction temperature and then allowed to cool to room temperature. Each 

sample was then dosed with hydrogen and equilibrated ovemight. Finally, the 

samples were immersed in a water bath, sealed with a microtorch, and weighed. 

When the strongly bound hydrogen on the catalysts was investigated, the samples 

were dosed with hydrogen at equilibrated overnight, evacuated to 10 ® torr for 5 

minutes, sealed, and weighed. 

NMR Experiments 

A home-built spectrometer with resonance frequency of 220 MHz was 

used for the NMR experiments on the sealed samples. All proton NMR spectra of 
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hydrogen-dosed catalysts consisted of two peaks: one associated with the silanol 

protons from the support and the other representing the hydrogen on the metal 

particles (18). At a recycle time of 0.4 second, the full recovery of the metal peak 

was established but the silanol peak intensity was suppressed because of its 

longer spin-lattice relaxation time. When the full intensity of the silanol peak was 

investigated, the recycle time was set at 50 seconds to achieve complete 

relaxation. The spin lattice relaxation times, T1, of hydrogen on the metal were 

determined by the null point method (19). Absolute intensities were obtained by 

referring to a water sample. The reference sample was sealed in a capillary tube 

of the length of the catalyst samples to account for field inhomogeneities in the 

NMR coil (18). All NMR measurements were performed at 294±1 K. 

The dynamics of hydrogen was investigated in-situ in another home built 

spectrometer with a resonance frequency of 250 MHz. The catalyst reduction 

was carried out in-situ in a home built probe operating between 100-773 K which 

was attached to a glass manifold with an operating pressure range of 10 ® -10^ 

torn The same procedure used to prepare the sealed NMR samples was followed 

for the catalyst pretreatment. The in-situ measurements were carried out over a 

pressure range of 10'®-760 torr and a temperature range of 294-700 K. 
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RESULTS 

The NMR spectra of strongly bound hydrogen In a series of co-

impregnated, sodium-promoted catalysts are shown in Fig. 1. The upfield peak (-

60 ppm) in each spectrum was identified as hydrogen dissociatively chemisorbed 

on ruthenium and the downfield peak (3 ppm) was assigned to the silanol protons 

(2). The upfield peak was best fit by an exponential Gaussian function and for the 

peak at 3 ppm a superposition of one sharp Lorenzian and one broad Gaussian 

peak was used. The electronic interactions between the Na promoter and the 

chemisorbed hydrogen was monitored via the Knight shifts of the hydrogen-on-

metal resonance. As seen in Fig. 1, the shift in the hydrogen-on-metal resonance 

did not change with alkali loading. The same behavior was observed for the 

sequentially impregnated catalysts as well (not shown). 

The effect of Na promoter on the number of available hydrogen chemisorption 

sites on Ru was also monitored via spin counting of the hydrogen-on-metal 

resonance. The quantitative information was extracted by comparing the 

integrated hydrogen-on-metal resonance intensity with a water reference of known 

spin count. In Fig. 2, the change in the hydrogen-on-metal intensity was plotted 

against alkali loading for both sequentially and co-impregnated catalysts. The 

results were compared with a theoretical one-to-one site blocking case as indicated 

by a dashed line in the same figure. In addition to the intensity of the 
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Figure 1. NMR spectra of co-impregnated Na/Ru/SiOg catalysts. Each of the 
spectra shown is obtained by averaging 1000 scans 
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Figure 2. The site blocl<ing effects of the Na promoter on the Ru/SiOg catalysts 
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hydrogen-on-metal surfaces, the presence of Na also influenced the intensity of 

the hydrogen in the support resonances as well. The intensity of the 3 ppm 

resonance decreased with increasing alkali loading. The effect of Na loading and 

the preparation technique on the hydrogen-in-support resonance was plotted in 

Fig. 3. 

The presence of Na promoters decreased the amount of the weakly bound 

hydrogen states significantly. For example, the weakly bound p state present on 

unpromoted catalysts (16, 17) was not observed on the Na promoted catalysts 

(Fig. 4). The p state of hydrogen is structure sensitive, and its population depends 

very strongly on the density of the defect like sites present on the metal surface. 

Furthennore, the p state observed on unpromoted Ru/SiOg catalysts was in fast 

exchange with the mobile a and gas phase hydrogen (17), the absence of it also 

suggested that the presence of the Na promoter may have influenced the 

dynamics of chemisorbed hydrogen on the metal surface. 

The dynamics of chemisorbed hydrogen was investigated by selective 

saturation (hole burning) measurements on an unpromoted and a Na promoted 

catalyst from the co-impregnated catalyst series. Part of the (-50) ppm resonance 

was excited with a comb of 20 short pulses (19) which was followed by a kI2 

detection pulse (Fig. 5). The effect of temperature, pressure and the presence of 

Na on the dynamics of the chemisorbed hydrogen was monitored in terms of the 

parameters (area and the width) of the "hole" created in the -50 ppm resonance. 
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Figure 3. Effect of Na on the OH group intensities 



The NMR spectra obtained after a single 7t/2 excitation was shown in Fig. 6 for an 

unpromoted catalyst. The selective excitation measurements done on the same 

sample under similar conditions are shown in Fig. 7. Similar measurements done 

on a Na promoted catalyst with a Na:Ru atomic ratio of 1.75 and a Ru loading of 8 

wt% indicated that the -50 ppm resonance was heterogeneously broadened at 

higher pressures (200 torr) and higher temperatures (up to 500 K) (Figs. 8 and 9). 
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Figure 4. The effect of the Na promoter on the a and p states of the chemisorbed 
hydrogen 
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Figure 5. The pulse sequence used for the selective saturation measurements 
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Figure 6. The hydrogen-on-metal resonance of 4%Ru/Si02 as a function of 
hydrogen pressure, single excitation spectra 
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Figure 7. The hydrogen-on-metal resonance of 4%Ru/Si02 as a function of 
hydrogen pressure, -60 ppm resonance was selectively inverted 
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Figure 8. Effect of pressure on the hydrogen-on-metal resonance of Na/Ru/SiOg, 
single excitation spectra 
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Figure 9. Effect of pressure on the hydrogen-on-metai resonance of Na/Ru/SiOg, 
hydrogen-on-metal resonance was selectively inverted 
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DISCUSSION 

Electronic Interactions Between the Na Promoter and the Ru Particles 

The NMR spectra for a series of co-impregnated Na promoted catalysts are 

shown in Fig. 1. As can be seen, addition of Na did not influence the Knight shift 

of the adsorbed protons appreciably. The resonance frequencies obtained after 

deconvolution of the spectra by peakfitting were also uninfluenced from the 

presence of the Na promoter. This result is not surprising if one considers the fact 

that alkali promoters do not exist in their zerovalent state except under ultra high 

vacuum conditions. However, in the supported metal catalysts, alkali promoters 

usually exist in their oxide or hydroxide fomns (8, 9). In their oxide or hydroxide 

state, alkali promoters can not donate electrons to the metal substrate as in the 

case of their zerovalent counterparts (10). Therefore, strong electronic interactions 

between the Na promoters and the chemisorbed hydrogen can not account for 

their role as a promoter for the Fischer Tropsch or the ammonia synthesis 

reaction. 

Site Blocking Effects 

Na promoters blocked the available hydrogen chemisorption sites on Ru 

irrespective of the preparation technique. The site blocking effects of Na 

promoters were monitored via NMR spectroscopy by spin counting. The results 

presented in Fig. 2 suggests that the site blocking effect of Na promoter was more 

significant for sequentially impregnated catalysts than for the co-impregnated 
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catalysts. We believe that, this effect is both due to the difference in the 

preparation chemistry as well as due to a decrease in the metal particle size. In 

fact, for K promoted Rh/SiOg catalysts, upon co-impregnation, smaller particle 

sizes were observed via X-ray diffraction techniques (4). 

The promotional effects of Na and other alkali promoters may lie in their site 

blocking properties. The chain growth probability of a Fischer Tropsch synthesis 

catalyst, for example, depend very strongly on the hydrogénation capacity of the 

catalyst. In the presence of alkali promoters, the hydrogen chemisorption capacity 

of the catalyst decreases and the chain growth probability increases. In Fischer 

Tropsch synthesis, oxygen removal consumes hydrogen (forming water) on the 

unpromoted Co catalysts, whereas on promoted catalysts this takes place by 

carbon dioxide formation (i.e. carbon monoxide consumption) (11 ) which suggests 

that the hydrogénation capacity of the catalyst is hampered in the presence of 

alkali promoters. 

Dynamics of Adsorbed Hydrogen 

Alkali promoters not only influenced the availability of the chemisorbed 

hydrogen, but also the mobility as well. The highly mobile, weakly bound p state 

observed on an unpromoted catalyst was not present on the Na promoted Ru/SiOg 

catalysts (Fig. 4). The structure sensitivity of the p state was discussed by Bhatia 

et al. (18). For example, in the presence of Ag, the population of the p state was 

greatly diminished, suggesting the possibility that the presence of weakly bound p 
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state was correlated with the low coordinated edge and comer atoms. In the 

presence of Na promoters, the p state completely disappeared suggesting the 

possibility that the Na promoter preferentially occupied the low coordination sites. 

To date, the decreased hydrogénation capacity of the Fischer Tropsch 

catalysts in the presence of alkali promoters was explained by the lessened 

availability of hydrogen. However, the diffusion coefficient measurements of 

hydrogen on sulfur covered Ru(OOI) single crystals indicated that (i) the hydrogen 

diffusion coefficient steadily decreased with increasing sulfur coverage and (ii) this 

decrease was not accompanied by a decrease in the activation energy for diffusion 

(20). Since sulfur and alkali promoters influence the hydrogénation ability of the 

catalysts in similar ways, a decrease in the hydrogen mobility in the presence of 

alkali promoters can also be expected. 

This postulate could be tested by the selective saturation experiments done 

on the unpromoted and Na promoted catalysts. One can selectively excite part of 

an NMR resonance if the resonance is actually a superposition of a distribution of 

narrower resonances caused by a distribution of environments (heterogenous 

broadening). But when the chemical exchange is fast (with time constants shorter 

than the duration of the selective excitation pulses), the selective excitation 

process becomes ineffective (17). On unpromoted Ru/SiOg catalysts chemisorbed 

hydrogen experiences fast exchange at higher pressures, and the lines are 

homogeneously broadened (17). However, in the presence of Na promoters the 

NMR line due to the chemisorbed hydrogen were heterogeneously broadened as 



108 

indicated by tiie fact that the hydrogen-on-metal resonance could be selectively 

excited even at high pressures (200 torr) and at high temperatures (533 K). This 

result indicated that the two dimensional (surface diffusion) and/or three 

dimensional (adsorption/desorption) mobility of the chemisorbed hydrogen was 

significantly restricted in the presence of Na promoters even at high pressures and 

temperatures. This was also obsen/ed previously for the Cs promoted Ru/SiOg 

catalysts (19). 

Interaction of Na Promoter with the Support 

In addition to being deposited on the metal, Na promoters exchanged with the 

OH groups in the support as well. The proton density of the silica support 

decreased with Na loading for both sequentially and co-impregnated catalysts. 

The change in the number of OH groups as a function of alkali loading is given in 

Fig. 3. The decrease of OH proton intensity as a function of Na loading was more 

significant for the co-impregnated catalysts. Similar to the potassium promoted 

Ru/SiOg catalysts, this was probably due to a decrease in the metal particle size 

(1). 
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CONCLUSIONS 

NMR spectroscopy studies on Na promoted Ru/SiOg catalysts indicated 

that NA blocked hydrogen chemisorption sites on Ru but not on a one-to-one 

basis. There was no evidence for a through-the-metal electronic interaction 

between the chemisorbed hydrogen on the metal and the Na promoter. Na 

promoter also modified the support by exchanging with the protons of the hydroxy! 

groups. The weakly bound, structure sensitive p hydrogen population was not 

present on Na promoted catalysts, which suggested that Na could block electron 

deficient defect like sites. In the presence of Na promoters, the mobility of 

hydrogen on the Ru particles was significantly restricted. 
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ABSTRACT 

Silica support used in alkali promoted ruthenium catalysts was characterized 

via 'H NMR spectroscopy. Pure silica treated with water via incipient wetness 

technique exhibited two distinct resonances with different spin lattice relaxation 

times. These groups exhibited different reactivity towards metal and alkali 

promoters during catalyst preparation. Alkali promoters had a significant affinity 

towards exchange with OH groups in the support. Their affinity increased with 

decreasing atomic size of the alkali metal, with Na being the highest. The effect of 

catalyst reduction temperature with and without ruthenium metal indicated that the 

total silanol group intensity decreased significantly with the reduction temperature 

over the range of 623-803 K. The presence of metals had an inhibiting effect on 

the silica dehydroxilation reaction. The number of protons in the silica support also 

decreased with the metal loading. 
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INTRODUCTION 

The role of the catalyst support in the catalytic chemistry has long been 

overlooked. However, recent reports suggest that the support may play a more 

important role than just being the structural promoter (23-26). Recent experimental 

evidence (23 and the references therein) indicates the existence of a spilled over 

formate species on the alumina supported Ni, Pd and Pt catalysts. The 

methanation activity of this spilled over species is kinetically significant and is 

comparable to that from the metal surface itself. Similarly, theoretical calculations 

(24) suggests that methane formation from the spilled over CHgO species and 

spilled over hydrogen on alumina is thermodynamically more favorable than the 

formation of corresponding alcohol. Kinetic studies of Fischer Tropsch synthesis 

on supported Co catalysts indicate a change in CO hydrogénation activity as a 

function of the catalyst activation method (25, 26): vacuum activated catalysts 

show a faster deactivation rate with a systematically higher turnover frequency 

(TOP) in comparison to air activated catalysts. 

The interaction between a catalyst and a support depends largely on the 

nature of the metal and the support as well as the chemistry on the support 

surface during the catalyst preparation. Amorphous silica has a highly crosslinked 

polymeric structure with OH groups as the terminators. Due to the crosslinking in 

the bulk, fractal dimensionality arises in the microstructure. Fractal dimensions of 

about 2.2 have been reported for aerogels measured by ^®Si NMR techniques. 



116 

whereas densified silicas had a 3D structure (3). As any other material, surface 

atoms of silica is only partially saturated and therefore possess "residual valences". 

These residual valences are filled by OH groups bonded to the silicas creating 

silanol groups on the surface (4, 6) which can be classified into three main groups: 

Isolated silanols, geminal silanols and siloxanes. 

i^ Isolated silanols. Si(Oog)30H\ These OH groups belong to a silicon atom 

which is bound to three other silicon atoms via an oxygen atom. Isolated 

silanols may form hydrogen bonding with the oxygen of the neighboring OH 

group fomning "vicinal" hydrogen populations. 

ii^ Geminal silanols. Si(Oo.5)2(OH)2: This species have two OH groups 

attached to a two coordinated silicon atom. 

iin Siloxanes. (SiOo s)^: Siloxanes form the bulk of the material and possess 

no OH groups. 

Since the interaction of the adsorbates with the silica takes place via a 

reaction with the surface silanol groups, the chemistry of the surface depends 

significantly on the nature of the different hydroxyl groups. For example, the size 

distribution of Ni particles on silica is strongly influenced by the characteristic silica 

ring structure. Silicas with a high content of 3 membered rings in their structure 

was reported to produce a bimodal nickel particle size distribution (8). 

Furthermore, the interaction of metals and metal salts with the OH groups on the 

^ Partial stoichiometry on oxygen atom indicates that oxygen is bound to two silicon 
atoms. 
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silica surface during catalyst preparation depends on several factors such as the 

acidity of the environment, the affinity of the metal towards interaction with the OH 

groups, and the presence of other cations in solution (1, 4). The importance of the 

acidity of the solution during catalyst preparation has long been recognized. Silica 

surface has its isoelectronic point at around pH=1.0-2.0. At higher values of pH, 

the surface is negatively charged, therefore silica surface can adsorb and react 

with cations effectively (4, 9). As the pH of the solution increases, on the other 

hand, silica dissolves in the fomri of silicic acid, Si(0H)4. This support dissolution 

was reported to decrease the final BET surface area of the support (9). 

The relative affinity of the metals towards interaction with support surface also 

plays an important role on how well the metals could be dispersed on silica. The 

dispersion capacity of metal oxides on the supports depend on the surface 

structure of the support and on the valance type of the metal or metal oxide (17). 

For example. Mo could be better dispersed on silica than W which can be 

explained by the fact that the extent of the chemical reaction via condensation of 

OH groups of silica and molybdate ions is much higher than between tungsten and 

silica (7). Finally, in multicomponent systems where more than one species are 

involved, the bulk mixing properties of these species and their relative interaction 

with the support play an important role in determining how each of these species 

interact with each other. For example, the metals or oxides which do not mix in 

bulk tend to interact with the support surface independently and form individual 

clusters. 
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High resolution and ^®Si NMR spectroscopy has been extensively used to 

characterize the structure of silicas (2, 5, 6, 14, 15, 16, 21). In the present paper, 

results on the characterization of the different hydroxyl sites on a Cab-O-Sil HS5 

silica in the presence of ruthenium metal and alkali promoters via NMR 

spectroscopy will be reported. The relative reactivity of these OH groups with 

ruthenium and alkali promoters will be discussed. 
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METHODS 

Cab-O-Sil HS5 with a specific surface area of 300 mVg was used as the 

catalyst support. Three series of alkali promoted Ru/SiOg catalysts were prepared 

with sodium, potassium and cesium. Incipient wetness technique was used for 

catalyst preparation. Alkali promoters were incorporated in the catalyst via a 

sequential impregnation technique. The details of the catalyst preparation, NMR 

sample preparation and the NMR experiments were given elsewhere (11, 12). In 

addition to the catalyst samples, a pure support sample was prepared by 

impregnating Cab-O-Sil with distilled water via an incipient wetness technique. 

NMR experiments were carried out in a home built spectrometer with a proton 

(^H) resonance frequency of 220 MHz. All the measurements were done at room 

temperature. Spin lattice relaxation times were measured by an inversion recovery 

pulse sequence (7i-x-ro'2). The absolute intensities of NMR peaks were obtained 

by comparing the signal intensity with a water reference sample of known spin 

count. The water sample was sealed in a capillary tube of the length of the 

catalyst samples to account for the inhomogeneities in the pulse lengths along the 

probe coil (13). All NMR measurements were done at 294±1 K. 
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RESULTS 

H NMR Spectroscopic Characterization of Pure Silica 

Single jt/2 excitation NMR spectrum of a silica sample treated with water 

via the incipient wetness technique, reduced and evacuated under the same 

conditions as the catalyst samples exhibited a single resonance centered around 3 

ppm downfield from TMS with a full width at half maximum (FWHM) of 

approximately 15 ppm (2.6 kHz) (Fig. 1). Spin lattice relaxation time of this sample 

measured via the inversion recovery technique (7c-i:-7c/2) could be best represented 

with a double exponential decay with Tl's of 1 and 4.5 s, respectively (Fig. 2). At 

a delay time, x, of 2 s, the spectrum clearly exhibited two distinct features (Fig. 3): 

a broad feature of approximately 50 ppm (10 kHz) FWHM and a sharp resonance 

with a linewidth of approximately 12 ppm. 

Effect of Reduction Temperature 

To observe the effect of reduction temperature on silanol protons two series 

of NMR samples were prepared. The first series was prepared from water treated 

silica and the second series was prepared from a 4 wt% Ru/SiOg. The samples 

were reduced in static hydrogen for two hours. Every 30 min. hydrogen was 

evacuated and replenished. The reduced samples were evacuated at 573 K for 4 

hours. After evacuation the samples were dosed with hydrogen at 100 torr, 

allowed to equilibrate for 1 hour and evacuated to 10'® torr for 5 min such that only 

strongly bound hydrogen (13) remained on the catalyst surface. 
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Figure 1. Single excitation NMR spectrum for a dehydrated, reduced and 
evacuated silica sample 
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Figure 2. Inversion recovery data of reduced and evacuated silica sample 
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Figure 3. The NMR spectrum of pure silica under the Inversion recovery pulse 
sequence after a delay time T=2 S 
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Quantitative analysis of the silanol protons via NMR spectroscopy is shown in Fig. 

4. The silanol intensity decreased as a function of reduction temperature for both 

sample series. The decrease in silanol proton intensity as a function of reduction 

temperature was smaller for the samples with Ru. The change in the linewidths of 

the spectra with the reduction temperature was not significant. 

To monitor whether any change in the particle size has occurred, the metal 

dispersions were measured using NMR spectroscopy by spin counting the strongly 

bound hydrogen on the metal. As seen in Fig. 5, the number of hydrogen 

chemisorption sites on ruthenium did not change very much with the reduction 

temperature, however, the NMR Knight shifts (Fig. 6) changed slightly in the 

direction of increased particle size (13). 

Effect of Metal Loading 

To investigate the role of the metal loading on the OH groups in the silica, a 

series of catalysts were prepared with different metal loadings via the incipient 

wetness technique. These catalysts were reduced and evacuated for 4 hours at 

723 K and overnight at room temperature. One hundred torr of hydrogen was 

dosed on these samples at room temperature. After 10 min, the samples were 

evacuated for 5 min. to a pressure of 10 ® torr and sealed. The NMR spectra were 

acquired by accumulating 30 scans. A repetition time of 50 seconds was used 

between each to restore full equilibrium magnetization. 
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Figure 4. Effect of the reduction temperature on the silanol proton intensities 
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Figure 5. Effect of the reduction temperature on metal particle dispersion 
measured by strong hydrogen chemisorption 
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Figure 6. Effect of reduction temperature on tlie NIVIR Kniglit sliift 
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The spectra were normalized with respect to the amount of the support. The 

integrated intensity of the NMR spectra of the catalysts indicated a linear decrease 

in the intensity due to the OH groups in the silica support as a function of metal 

loading (Fig. 7). However, the fractional intensity decrease with the metal loading 

was not on a one-to-one basis. 

Effect of Alkali Promoters 

Three series of alkali promoted catalysts were prepared via a sequential 

impregnation technique. Na and K promoted catalysts were prepared from a 

catalyst with a Ru loading of 4 wt%, Cs promoted catalysts had a Ru metal loading 

of 10 wt%. In addition to the promoted catalysts, each series of catalysts 

contained a sample prepared from an alkali promoter supported on the silica 

support without any Ru. All of the alkali metals showed an affinity towards 

exchange with the protons of OH groups on the support surface. The OH group 

intensity systematically decreased with the alkali loading. The intensity of the 

silanol protons were normalized with respect to the OH group intensity of the 

unpromoted catalyst and plotted against alkali loading in Fig. 8. 

The spin lattice relaxation times, T1, of the OH groups were also influenced in 

the presence of the alkali promoters. The T1 of Na and K promoted series of 

catalysts were obtained by the inversion recovery technique. The TVs are given in 

Tables 1 and 2 for Na and K promoted catalysts, respectively. 
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Figure 7. Effect of the metal loading on the silanol proton intensities 
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Figure 8. Effect of alkali loading on the silanol proton intensity 
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Table 1. The spin lattice relaxation times of two types of OH groups on the silica 
surface as a function of Na loading for the sequentially impregnated 
series 

Atomic % sodium T1 of fast relaxing T1 of slow 
species (s) relaxing species 

Error margins are ±50 ms (s) 

0 0.4 3.8 

1 0.28 4.6 

3 0.15 4.3 

7 0.16 4.7 

10 0.2 3.8 

12 0.11 3.4 

16 0.14 3.1 

20 0.23 3.1 

100 N/A 17.2 

Table 2. The spin lattice relaxation times of two types of OH groups on the silica 
surface as a function of K loading for the sequentially impregnated 
series 

Atomic % potassium T1 of fast relaxing 
species (s) 

Error margins are ±50 ms 

T1 of slow 
relaxing species 

(s) 

0 1.4 7 
2 2.9 10 

10 3.6 13 
15 4.3 11.6 
20 4.6 7.8 
40 2.5 5.3 

100 N/A 24.1 
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DISCUSSION 

The metal dispersions of the supported catalysts depend very strongly on the 

extent of interaction of the metals or oxides with the support surface during the 

catalyst preparation. The chemistry of the metal or metal oxides with the surfaces 

of the oxide supports is not very well understood due to the complexity of these 

materials and the lack of proper experimental techniques that enable the 

Investigation of the surfaces of the amorphous materials. NMR spectroscopy 

enabled us to investigate the interaction of the hydroxyl groups on the silica 

surface with ruthenium metal and various alkali promoters at several different 

levels of metal and promoter loadings and under different pretreatment 

temperatures. 

The single excitation NMR spectrum of a reduced and evacuated silica 

sample exhibited only a single resonance centered approximately 3 ppm downfield 

of TMS with a linewidth of approximately 12 ppm (3 kHz) (Fig. 1). However, 

inversion recovery data of the same sample indicated the existence of at least two 

different proton environments with different relaxation constants (1 s and 4.5 s) 

(Fig. 2). The NMR spectrum of the sample excited with an inversion recovery 

pulse sequence with a delay time of 2 s shown in Fig. 3 provided the supporting 

spectroscopic evidence for the existence of at least two different proton 

populations in the pure silica sample. After a delay time of two seconds, two 

resonances with linewidths of -15 ppm and -50 ppm were distinguishable. 
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The presence of these proton populations were noticed previously by using 

MAS NMR spectroscopy (7, 14). However, their assignments are still 

controversial. For example, the broad component of the spectrum was observed 

as spinning sidebands in the magic angle spinning (MAS) NMR spectrum and 

was attributed to the proton pairs highly coupled to each other (14). The problem, 

whether these proton pairs are the geminal silanols or coupled isolated silanols, 

has yet to be solved. 

The CP-MAS ^®Si NMR investigations of the aerosil silica (5, 14) with different 

proton densities indicated the existence of geminal silanol groups (Si(0H)2) even 

after thermal evacuation of the samples at 1273 K. A CP-MAS ^®Si NMR 

investigation on amorphous silicas at various degrees of hydration showed that the 

ratio of Si(0H)2 to Si(OH) groups was constant (1 to 4) which indicated an 

equilibrium in the distribution of the hydroxyl groups on the silica surface. The 

single excitation breadline NMR studies carried out in this work could not 

provide a strong evidence regarding the distribution of protons among various 

possible OH groups that could exist on the support surface. 

The effect of the reduction temperature did not influence the metal particle 

size as obsen/ed by the proton spin counting of the hydrogen on the metal 

resonance (Fig. 5). However, the silanol intensity decreased significantly with the 

reduction temperature. The same effect was observed with a pure silica sample in 

the absence of the metal. The decrease in the number of protons per gram of 

support was higher for the pure support. Since the contribution of the spilled over 
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hydrogen in the presence of metals on the intensity of the 3 ppm resonance is 

within 1% of the total intensity of the resonance (12), the larger number of OH 

protons in the Ru/SiO^ sample was attributed to a local dilution effect such that the 

condensation of adjacent OH groups close to the metal particles were inhibited. 

The total OH group intensity was also dependent on the metal loading. The 

results presented in Fig. 7 indicated that the number of the OH protons decreased 

with an increase in the metal loading. However, the fractional change was not on 

a one to one basis. A similar effect has been obsen/ed in the silica supported Mo 

and W catalysts (7). The decrease in the OH groups with the metal loading was 

higher for Mo than for W. Mo could be better dispersed on silica than W, which 

was explained by the fact that the extent of the chemical reaction via condensation 

of OH groups of silica and molybdate ions was much higher than between 

tungsten and silica (7). The change in the intensity of the 3 ppm resonance was 

not accompanied by a change in the linewidth (approximately 12 ppm for all 

loadings) which indicated that the local environment of the OH groups were not 

significantly influenced in the presence of the Ru metal. If the line broadening was 

due to the dipolar coupling of the protons, an increase in the average proton-

proton distance had to result in a decrease in the FWHM of the 3 ppm resonance. 

The absence of a change in the linewidth of the 3 ppm resonance indicated that 

metals existed on certain patches of the support surface such that the local proton 

density of the rest of the support surface was not influenced. 
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The number of protons in the support was also influenced in the presence of 

the alkali promoters. The relative change in the OH group intensity as a function 

of alkali loading was plotted in Fig. 8. The intensities of the 3 ppm resonances 

were normalized with respect to that of the unpromoted catalyst. The relative loss 

of OH intensity with respect to the alkali loading decreased in the increasing 

atomic number. 

The position of the equilibrium 

(-OH)n + = M(-0)n + nH (1) 

depends on the basicity of the framework and its affinity towards metal ion in 

question. In general, cation exchange equilibria are controlled by two mechanisms 

(10): 

a) coulombic interactions between the counter ions and the fixed groups of 

exchanger: 

b) ion-dipole and ion induced dipole interactions between the counter ions 

and water molecules (ionic hydration). 

When coulombic interactions are weaker than the ion dipole interactions, a 

"normal" affinity sequence is observed. That is, the ion with larger hydrated radius 

tends to become displaced by the ion of smaller hydrated radius. For alkali 

metals, this sequence goes as Cs^>K'̂ >Na'̂ >Li*. When the coulombic interactions 

predominate over the ion-dipole interactions, the selectivity becomes reversed 

(Li'̂ >Na'̂ >K'̂ >Cs*). In the present situation, the data suggest that the affinity of 
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alkali metals increase in the sequence (Na'̂ >K*>Cs*), i.e., coulombic interactions 

dominate over the ion dipole interactions. However, it has to be noted here that (i) 

part of the alkali in solution was deposited on the metal surface and (ii) the silica 

support was modified in the presence of the metal. 

In the presence of alkali promoters, in addition to the intensity changes, the 

T1 and the linewidth of the OH group resonance was also influenced. The 

linewidth of the resonance systematically decreased with the alkali loading (12 ppm 

for unpromoted catalyst, 4.5 ppm for a Cs:Ru=3 10 wt% Ru/SiOg catalyst). The 

decrease in the linewidth of the OH resonance with alkali loading indicated that the 

average proton distance increased in the presence of alkali promoted systems. 

T1 of the OH groups in the samples doped with pure alkali promoter showed 

a systematic increase with the atomic size of the dopant (Cs~2 min; K~24s; Na-17 

s; pure silica~5 s). Since the mechanism for the spin lattice relaxation of the OH 

protons is not very well understood, any comment would be highly speculative. As 

can be seen from Tables 3.1 and 3.2, the T1 of OH protons with a longer 

relaxation time went through a maximum with the alkali loading. Since the number 

of silanol protons decrease with alkali loading, the increase in T1 with alkali loading 

can be due to a simple dilution effect. The complicated nature of T1 relaxation 

processes makes it difficult to have a simple explanation for the reversal of the 

dilution phenomena after a certain alkali loading. Possible reasons for this 

phenomenon include (i) a change in the chemical nature of alkali species; (ii) a 
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clustering effect or (iii) a creation of relaxation centers at higher loadings of alkali. 

One should also note that the spin lattice relaxation times of the OH groups are 

significantly higher for the silica samples doped with alkali promoters only. 

Therefore the maxima observed in the presence of the metals can be due to the 

changes induced in the support in the presence of spilled over hydrogen. The 

comparison of the TTs of the OH groups of the alkali doped silica surfaces with (4-

7 s) and without (15 s-2 min) the metal suggests that in the presence of the metal, 

the interaction of the OH protons with the surrounding thermal lattice was more 

efficient and the alkali doped silica surface is not representative of the silica 

surface when alkali promoters and the metals coexist. 

The present results suggest that the support surface is significantly modified 

in the presence of metals and/or promoters. It is widely accepted that the acidity 

of the support materials depend on the number and nature of the OH groups. In 

the presence of metal particles, the support acidity is reported to be modified due 

to the changes in the number of the OH groups on the support surface and the 

structural changes such as modified 0-H bond angles and lengths (18, 19, 27). 

When the dispersion of a catalytic material was adjusted by changing the metal 

loading, the support surface is also modified. Johnson et al. (26) made the 

observation that the "chemical nature of the support surface appears to be the 

controlling factor in detemnining specific activity of supported Co catalysts". These 

results suggest that it is imperative to characterize the support and the metal 
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surfaces simultaneously when the structure sensitivity of the catalytic reaction 

under investigation. 
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CONCLUSIONS 

The silica support was characterized in the presence of Ru metal and Na, K 

and Cs promoters. The total number of OH groups decreased with both Ru 

loading and alkali loading. The exchange efficiency decreased in the order 

Na>K>Cs. Increasing reduction temperatures did not influence the number of the 

strongly bound hydrogen chemisorption sites on the metal, however, a significant 

decrease was observed in the total number of the OH groups with the reduction 

temperature. 
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ABSTRACT 

Direct NMR evidence was obtained for an irreversibly bound component of 

spilled over hydrogen which caused a large discrepancy between the dispersion 

values measured by NMR and volumetric techniques. The discrepancy was 

larger for longer hydrogen exposure times. Based on in-situ NMR evidence, 

optimum conditions for the volumetric chemisorption were detemiined to minimize 

the amounts of the irreversibly bound spilled over hydrogen. The values of the 

strongly bound hydrogen on ruthenium obtained from the modified volumetric 

chemisorption measurements agreed very well with the results of the NMR spin 

counting. 
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INTRODUCTION 

Hydrogen chemisorption is a widely used method to characterize the metal 

catalyst surfaces (1, 2). The relatively simpler nature of hydrogen adsorption and 

generally accepted 1:1 stoichiometry on most metals makes it the most feasible 

adsorbate for surface characterization of supported ruthenium catalysts. However, 

the volumetric chemisorption measurements involve inaccuracies due to the 

presence of an irreversibly bound spilled over hydrogen (3, 4). The amount of the 

irreversibly bound spilled over hydrogen is a strong function of the metal, the 

support, the metal dispersion, the adsorption temperatures and the hydrogen 

exposure times (3-7, 12-13). 

The volumetric hydrogen chemisorption technique currently used to 

characterize the supported metal catalysts was described in detail in the articles by 

Dalla Beta (1 ) and Goodwin (2). The volumetric hydrogen chemisorption technique 

allows one to measure the strongly bound hydrogen amounts, which was 

postulated to have 1-to-1 stoichiometry with the surface metal atoms. In the 

standard chemisorption technique, room temperature isotherms are obtained for 

the total and weakly bound hydrogen over a pressure range of Q-100 torr. In this 

pressure range, both the total and the weak hydrogen adsorption isothenns show 

a linear dependency on pressure. The strongly bound hydrogen amounts can be 

obtained by extrapolating the adsorption isotherms to zero pressure and taking the 

difference between the intercepts of the total and weakly bound hydrogen 
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isotherms. This technique does not overlook the possibility of the presence of the 

spilled over hydrogen. However, it involves an assumption that the 

spilled over hydrogen is weakly bound at room temperatures and it can be 

eliminated by evacuating at 10'® torr for 10 min. 

In this paper, we will report a direct NMR evidence for an irreversibly 

bound spilled over hydrogen on the silica support which interferes with the surface 

characterizations of supported metal catalysts. We will also report optimum 

conditions for the volumetric chemisorption experiments such that the influences 

from the strongly bound spilled over hydrogen are minimized. 
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METHODS 

Catalyst Preparation 

All of the catalysts used in this work was prepared via an incipient wetness 

technique using a ruthenium nitrosyl nitrate (26% Ru, Johnson-Matthey) salt or a 

ruthenium nitrosyl nitrate solution (Strem Chemicals, 1.5 wt% Ru) as precursors. 

A 4 wt% catalyst was prepared from the ruthenium nitrosyl nitrate salt obtained 

from Johnson-Matthey by dissolving appropriate amount of salt in 2.2 ml water/g 

support. A slurry was prepared by impregnating the support (Cab-O-Sil HS5) with 

this solution. The slurry was dried in air at 383 K for 8 hours. The final catalyst 

had a dispersion of approximately 10% measured by NMR spectroscopy. This 

catalyst will be designated as Ru/Si02(l). A second catalyst was prepared from 

ruthenium nitrosyl nitrate solution obtained from Strem chemicals. The volume of 

the solution needed to prepare a 4 wt% Ru/SiOg catalyst was 2.6 ml/g support. 

After the slurry was prepared, this catalyst was dried in air ovemight and at 383 K 

for 2 hours. The final catalyst had a dispersion of approximately 20% measured 

by NMR spectroscopy. This catalyst will be designated as Ru/Si02(ll). A third 

catalyst was prepared by the same method as Ru/Si02(l) at a Ru loading of 10%. 

This catalyst will be called as Ru/Si02(lll). 
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Volumetric Chemisorption 

Volumetric hydrogen chemisorption measurements were done by using a 

home built adsorption apparatus, described elsewhere (8). About 1 gram of 

catalyst was placed in a Pyrex cell with a coarse frit which would enable the flow 

through reduction of the catalyst. The catalyst was heated up to 423 K under 

helium flow which was maintained in the cell for about 30 min. to remove as much 

moisture as possible before reduction started. Then Hg was allowed in the 

chamber and the catalyst was heated up to 623-723 K at a heating rate of 6 

K/min. After the desirable reduction temperature was reached, reduction was 

carried out for 2 hours. The reduction was followed by evacuation to remove the 

traces of adsorbed hydrogen. Hydrogen chemisorption experiments were carried 

out at temperatures between 293-393 K. Hydrogen exposure times were varied 

between 10 minutes to several hours. The total hydrogen adsorption isotherm was 

measured in the pressure range of 0-100 torr. The reversible hydrogen adsorption 

isotherm data were collected in the same range after an evacuation to 10 ® torr 

following the total adsorption. 

NMR Experiments 

The in situ NMR experiments were carried out in a home built spectrometer 

operating at 250 MHz ^H resonance frequency and a home built probe which could 

operate between 100 and 800 K. About 100 mg of unreduced catalyst was placed 

in the sample chamber of the in-situ probe which was connected to the glass 
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manifold. The sample pre-treatment procedure for the in situ experiments was 

similar to that of volumetric chemisorption measurements. After the reduction and 

evacuation steps, hydrogen was dosed on the sample at the desired temperature 

and pressure and the NMR spectra were acquired. To study hydrogen-on-metal 

resonance, 200-1000 scans were acquired using a recycle time of 0.4 s. 

Hydrogen-on-support resonance was monitored separately by acquiring 10 scans 

with a recycle time of 50 seconds to restore full equilibrium magnetization. The 

absolute Intensities of NMR peaks were obtained by comparing the signal intensity 

with a water reference sample of known spin count. The water sample was sealed 

in a capillary tube of the length of the catalyst samples to account for the 

Inhomogenelties in the pulse lengths along the probe coil (8). 
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RESULTS AND DISCUSSION 

The irreversibly bound hydrogen on Ru (H|n/Ru) amounts obtained from NMR 

spectroscopy largely disagreed from those obtained from volumetric chemisorption 

measurements (Fig. 1). The Hj/Ru amounts obtained from the standard 

volumetric chemisorption technique showed a steady decrease as a function of 

reduction temperature, while the H^/Ru amounts obtained from spin counts of 

the hydrogen-on-metal resonance did not change appreciably over the same 

reduction temperature range. The HJRu amounts obtained from the room 

temperature volumetric hydrogen chemisorption technique approached, but was 

never equal to, the values obtained from NMR measurements with increasing 

reduction temperatures. Since no change was obsen/ed in the Hi^/Ru amounts 

obtained from NMR measurements, the decrease in the H,yRu ratios obtained 

from volumetric measurements were attributed to a decrease in the amount of the 

irreversibly bound spilled over hydrogen (Hi„.sp/Ru) amounts but not to a change in 

the particle size. The decrease in the H;^.gp/Ru amounts were correlated with a 

decrease in the support hydroxyl group resonances with the reduction temperature 

(9). 

Previously, Wu et al. (8) reported a closer agreement between the results of 

the volumetric chemisorption and NMR spin counting techniques in determining 

the Hin/Ru amounts of Ru/SiOg catalysts reduced at 723 K. In this work, we 

observed that under similar conditions, the Hj^/Ru amounts obtained 
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from NMR spin counting was approximately 30% less than the results of the 

standard volumetric chemisorption technique. The discrepancy between the two 

studies was due to a hydroxyl resonance with a FWHM of 10 kHz (9). Improved 

analytical techniques allowed us to identify and account for a broad peak under the 

3 ppm resonance (9). The closer agreement obsen/ed in the previous studies (8) 

was due to the contribution of this resonance to the intensity of the H/Ru 

resonance. 

Direct NMR Evidence for an Irreversibly Bound Spilled over Hydrogen 

The quantitative evaluation of the spilled over hydrogen via NMR 

spectroscopy was very difficult because the spilled over hydrogen has similar 

resonance frequencies of support hydroxyl groups (0-3 ppm from TMS). However, 

they constitute only 3-4% of the total intensity at that resonance. Therefore, to 

obtain direct quantitative evidence for the spilled over hydrogen, we needed to 

suppress the intensity of the hydroxyl groups by deuterium exchange. The 

deuterium exchange was carried out in-situ under DgO vapor and Dg gas. A 

reduced and evacuated catalyst sample (Ru/SiOalN)) was first exposed to 15 torr 

of DgO vapor at room temperature. The temperature was gradually increased to 

383 K while 500 torr of Dg was dosed. After fifteen min., the D^O + Dg mixture 

was replenished. This procedure was repeated twice and the gases were 

evacuated. The temperature was gradually raised to 623 K under 500 torr Dg. 

The sample was kept at this temperature for two hours. Meanwhile, Dg gas was 
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replenished every 10 min. After two hours, more than 90% of the protons in 

support hydroxyl groups were exchanged with deuterium. This sample was 

evacuated at 623 K for 1 hour and overnight at room temperature. Due to the long 

spin-lattice relaxation times of the hydrogen-in-the support resonances, NMR 

spectra were obtained by accumulating only 10 scans at a repetition time of 50 s. 

Prior to the introduction of hydrogen, the NMR spectrum of the support hydroxyl 

groups was taken. The NMR spectrum of the spilled over hydrogen was obtained 

by subtracting the intensity of the OH resonances prior to the introduction of 

hydrogen from the fully relaxed NMR spectra under hydrogen atmosphere. In Fig. 

2, the NMR spectra of the sample under 20 torr of hydrogen (spectrum A) and 

after evacuating the sample for 10 min. to a pressure of 10 ® torr (spectrum B) 

were shown. In these spectra, the upfield (-60 ppm) and downfield (3 ppm) 

resonances were due to the hydrogen chemisorbed on the metal and the spilled 

over hydrogen species, respectively. Upon introduction of hydrogen, -60 ppm 

resonance appeared and the intensity of the 3 ppm resonance increased 

simultaneously. It should be noted here that the residual intensity of the 3 ppm 

resonance was present even after evacuation to 10'® torr for 10-30 min. which was 

due to an irreversibly bound spilled over hydrogen. 

The time dependency of hydrogen chemisorption and spillover at room 

temperature was also monitored via in-situ NMR spectroscopy. The hydrogen-

on-metal and spilled over hydrogen amounts were obtained by proton 
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Figure 2. NMR spectra corresponding to a reduced sample (A) under 20 torr of 
hydrogen and, (B) with irreversibly bound hydrogen. The spectra were 
obtained by accumulating 10 scans at a repetition rate of 50 s and 
subtracting the NMR spectrum of the sample under vacuum. The 
NMR measurements were done after deuterium exchange of the support 
hydroxyl groups 
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spin counting of the -60 ppm resonance and the change in the intensity of the 

3 ppm resonance, respectively. After 30 min., the sample was evacuated and the 

time dependency of the -60 ppm and 3 ppm resonances were followed. The 

quantitative comparison of the NMR measurements with the volumetric 

chemisorption data is given in Fig. 3. The H/Ru amounts obtained from the sum of 

the hydrogen-on-ruthenium and spilled-over-hydrogen resonances normalized per 

ruthenium atom agreed very well with the H/Ru amounts obtained from the 

volumetric chemisorption measurements for both total and the strong hydrogen 

amounts. This indicated that the strong H/Ru amounts obtained from the room 

temperature volumetric chemisorption measurements were overestimated due to 

the presence of the irreversibly bound spilled over hydrogen. The desorption 

curve shown in Fig. 3 clearly indicates that evacuation for 10-30 min at room 

temperature is not sufficient to remove all of the spilled over hydrogen from the 

support surface. To eliminate the interferences from the irreversibly bound spilled 

over hydrogen, volumetric hydrogen chemisorption technique was optimized for 

hydrogen exposure time, adsorption temperatures and evacuation periods. The 

optimum conditions were obtained from in-situ NMR spectroscopy 

measurements. In the next sections, the selection of these parameters will be 

discussed. 
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Figure 3. The quantitative comparison of hydrogen chemisorption and the spillover 
process at room temperature and under 19 torr Hg on Ru/Si02(ll). The 
catalyst was reduced at 623 K 
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Optimization of the Experimental Parameters 

The kinetics of hydrogen chemisorption on the metal monitored with in situ 

proton NMR spectroscopy indicated that the hydrogen chemisorption on the metal 

reached equilibrium within 10 minutes of exposure (Fig. 3). The rate of hydrogen 

spillover was comparable to the rate of hydrogen adsorption on the metal surface 

at the beginning of the process. The hydrogen spillover continued at a slower rate 

as the adsorption progressed. The slower component of the spillover process was 

attributed to the diffusion limited motion of the spilled over hydrogen on the silica 

surface (3, 5). To minimize the errors associated with the slowly diffusing 

component of the spilled over hydrogen, the hydrogen exposure times in 

volumetric chemisorption technique was limited to 10-15 min. 

The effect of temperature on the amounts of hydrogen chemisorbed on the 

metal was also monitored via NMR spectroscopy. There was no significant 

change in the total H/Ru amounts over a temperature range of 294-350 K as 

shown in Fig. 4. Strong H/Ru amounts decreased slightly over the same 

temperature range. This decrease was partly due to decreased hydrogen 

amounts. The errors associated with the quantitative analyses of the spectra were 

lower at higher temperatures due to the narrower linewidths of both hydrogen-on-

metal and hydrogen-in-support peaks. An increase in the temperature, however, 

influenced the amount of spilled over hydrogen substantially as shown in Fig. 5. 

The decrease in the amount of spilled over hydrogen was attributed to 
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Figure 5. The temperature dependency of the spilled over hydrogen amounts 
normalized per Ru atom on Ru/Si02(ll) obtained by spin counting proton 
resonances from in situ NMR spectroscopy 
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the inhibition due to the enhanced selectivity of adsorption at higher temperatures 

(11). In addition, the removal of the spilled over hydrogen was easier at higher 

temperatures due to the higher mobility of the adsorbed species (Fig. 5). Within 

10 min., almost all of the spilled over hydrogen was removed. Therefore, at higher 

adsorption temperatures, the accuracy of the volumetric chemisorption can be 

improved with the enhanced removal of the spilled over hydrogen during the 

evacuation step prior to the measurement of the weakly bound hydrogen 

adsorption isotherm. 

The Hjr/Ru amounts for 3 different catalysts were obtained from the 

volumetric technique modified as follows: 

(i) The measurements were done at 363 ± 10 K, 

(ii) The hydrogen exposure times were limited to 10 min. for each hydrogen 

dose, 

(iii) The evacuation period between the total and the strong hydrogen adsorption 

isothenns was selected as 10 min. 

The comparison H^Ru ratios obtained from the volumetric chemisorption 

technique described above with the standard volumetric chemisorption technique 

and the NMR measurements are given in Table 1. As seen in the table, the 

NMR spin counting and the optimized chemisorption technique yield very close 

results even for the catalysts reduced at 623 K. 



161 

Table 1. The comparison between the Hj/Ru ratios obtained from NMR spin 
counting, the standard and the optimized volumetric chemisorption 
techniques. The catalysts were reduced at 623 K 

Catalyst Ru wt% Standard Optimized NMR spin 
volumetric volumetric counting 

Ru/SiOaCI) 4 0.18 0.13 0.09 

Ru/SiOgCII) 4 0.50 0.28 0.25 

Ru/SiOgCIII) 10 0.15 0.02 0.03 

Although 10 min. was selected as the period of evacuation prior to the 

determination of the weakly bound hydrogen adsorption isothemn, it must be noted 

here that the amount of hydrogen that was left on the surface depends not only 

the hydrogen-metal bond strength and the adsorbed hydrogen amounts but also 

on the conductance of the vacuum line. Therefore, caution must be exercised 

whenever the metal dispersion infonnation obtained from the volumetric 

chemisorption experiments are used to get the turnover frequencies in the catalytic 

perfonnance measurements. 
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CONCLUSIONS 

An irreversibly bound spilled over hydrogen species was identified on the 

silanol support, which clearly interfered with the accurate dispersion values 

measured via a volumetric hydrogen chemisorption technique. The amount of 

irreversibly bound spilled over hydrogen was a strong function of the catalyst 

reduction temperature, hydrogen adsorption temperature, and the exposure period. 

The volumetric chemisorption experiments was optimized to minimize the presence 

of the irreversibly bound spilled over hydrogen. The optimum parameters were 

detemriined for Ru/SiOg catalysts. The volumetric chemisorption experiments 

should be carried out at 363-400 K, at low pressure ranges (10-100 torr) and 

within short equilibration periods (10 min. for each hydrogen dose). The 

evacuation period before the weak hydrogen adsorption measurements was 

detennined as 10 min. which was sufficient to remove the spilled over hydrogen 

without significantly influencing the strong H/Ru ratios. 
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ABSTRACT 

Quantitative NIVIR measurements of tlie hydrogen-on-metal and hydrogen-on-

support resonances indicated the existence of both reversibly and irreversibly 

bound hydrogen spilled over to the silica support. The irreversibly bound hydrogen 

on the support caused a large discrepancy between the dispersion values 

measured by NMR and volumetric techniques. The absence of a change in the 

Knight shift of the hydrogen-on-metal resonance indicated that atomic hydrogen 

spilled over on the support. However, the spilled over hydrogen did not fomri 0-H 

or Si-H bonds on the silica surface. Both reversibly and the irreversibly bound 

spilled over hydrogen possessed a high mobility as indicated by the decrease in 

the spin lattice relaxation times of the protons in the silanol groups. 
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INTRODUCTION 

Spillover of hydrogen has been studied over 3 decades since the phenomenon 

was first noted (1-2). Despite the numerous efforts, the process is not very well 

understood due to the difficulties in identifying the nature of the spilled over 

species and the interaction between the spilled over hydrogen and the support 

surface. The rate of the spillover process is believed to be controlled by the 

diffusion of the hydrogen on the support surface. For example, on carbon 

supported Pt, the kinetics of hydrogen adsorption on Pt was observed to be very 

fast and the slow overall kinetics was due to the diffusion of "the spilled over" 

hydrogen on carbon support (1). The diffusion coefficient of the spilled over 

hydrogen from platinum on alumina was reported to be 1*10'̂ ® cm^/s (3). This and 

similar studies indicated that the diffusion of dissociated hydrogen on surfaces 

such as carbon (1), alumina (3) and on titania (4) has energies of activation of 25-

30 kcal/mol which was too high for a mere physical migration; so that bond braking 

and fomnation had to be involved in hydrogen transfer on the surface (4). Robell 

et al. (1) noticed that the spillover was taking place more readily at the beginning 

which indicated that the support sites closer to the metal particles were saturating 

faster, and the diffusion out of these regions into the bulk of the support was slow. 

Similarly, Cavanagh and Yates (5) observed that the H-D exchange on Rh/AlgOg 

took place faster on the OH groups nearby Rh particles. 
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NMR spectroscopy has been successfully used to characterize the supported 

metal catalysts (6-8). Wu et al. (6) Identified a weakly bound spilled over hydrogen 

species on silica support by using NMR spectroscopy. Their quantitative 

measurements on hydrogen-on-metal resonance agreed well within the error limits 

of experimentation for the strongly bound hydrogen. However, quantitative 

evaluation of NMR spectra for the weakly bound species was less than that of 

obtained from chemisorption. Basing on this as well as the supporting evidence 

form the change in the spin lattice relaxation times of the support protons, they 

identified a weakly bound spilled over atomic hydrogen on the support. Lenz et al. 

(9) also used NMR spectroscopy to characterize the type of the spilled over 

hydrogen as well as the nature of the sites created on the silica surface by the 

spilled over hydrogen. Among three types of hydrogen species postulated in 

literature that could spill over, namely protonic hydrogen, hydrogen radical, H., 

and trihydrogen, (10), they supported the idea of hydrogen radical as the 

spilled over species. 

In paper V, the author reported direct spectroscopic evidence for a strongly 

bound component of the spilled over hydrogen. Here, a more detailed discussion 

for the nature of the spilled over hydrogen and its interactions with the silica 

surface will be given. 
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METHODS 

Catalyst Preparation 

The catalyst used in this work was prepared via an incipient wetness technique 

using a ruthenium nitrosyl nitrate (26% Ru, Johnson-Matthey) salt as the metal 

precursor. A 4 wt% catalyst was prepared from the ruthenium nitrosyl nitrate by 

dissolving appropriate amount of salt in 2.2 ml water/g support. A slurry was 

prepared by impregnating the support (Cab-O-Sil HS5) with this solution. The 

slurry was dried in air at 383 K for 8 hours. The final catalyst was reduced in 

flowing hydrogen at 723 K for 2 hours and washed in boiling water to remove 

impurities. 

NMR Experiments 

The in situ NMR experiments were carried out in a home built spectrometer 

and a home built probe which could operate between 100 and 800 K. About 100 

mg of catalyst was placed in the sample chamber of the in-situ probe which was 

connected to the glass manifold. First, the sample was heated up to 380 K under 

He atmosphere and evacuated to remove the moisture. The reduction was carried 

out at 623 K under hydrogen atmosphere which was replenished every 30 min. for 

a total of 2 hours. Then the sample was evacuated at the reduction temperature 

for 4 hours and at room temperature overnight. Finally, the hydrogen was dosed 

on the sample at the desired temperature and pressure and the NMR spectra were 

acquired. To study hydrogen-on-metal resonance, 200-1000 scans were acquired 
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using a recycle time of 0.2 s, which was sufficient to restore full equilibrium 

magnetization. Hydrogen-on-support resonance was monitored separately by 

acquiring 10 scans with a recycle time of 50 seconds. The absolute intensities of 

NMR peaks were obtained by comparing the signal intensity with a water reference 

sample of known spin count. The water sample was sealed in a capillary tube of 

the length of the catalyst samples to account for the inhomogeneities in the pulse 

lengths along the probe coil (6). 
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RESULTS 

In situ NMR spectroscopy was used to monitor the l<inetics of hydrogen 

chemisorption on Ru/SiOg. The quantitative measurements done after exchanging 

the support hydroxy! groups with deuterium were reported elsewhere (11). The 

NMR measurements were done by acquiring 1000 scans at a recycle time of 0.2 s 

unless otherwise noted. The NMR spectrum of the catalyst prior to hydrogen 

exposure comprised of only the resonance associated with the support protons (~3 

ppm from TMS). This spectrum was subtracted from NMR spectra of the catalyst 

sample under hydrogen atmosphere and plotted in Fig. 1 (difference spectra). The 

quantitative comparison for hydrogen chemisorption obtained from in-situ NMR 

spectroscopy to that of volumetric measurements under a pressure of 20 torr and 

at room temperature are given in Fig. 2. The curve representing H/Ru obtained 

from in situ NMR results indicated that the metal surface saturated within 10 min 

after the hydrogen was dosed. However, the volumetric measurements indicated 

that the adsorption continued slowly over extended periods of time. The difference 

NMR spectra taken during the evacuation period (Fig. 3) indicated that the 

intensity loss of the hydrogen-on-metal and hydrogen-on-support resonances 

proceeded at the same slow rate. After evacuation for 10-20 min (typical 

evacuation periods to eliminate weakly bound hydrogen) at room temperature, both 

3 ppm and 60 ppm resonances were observed in the difference spectra. The 
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Figure 1. Time dependency of hydrogen chemisorption on Ru/SiOj under 20 torr 
pressure and at room temperature 
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*2 hours at 1 20°C + 5.3 hours at 21 °C 

Figure 3. NIVIR spectra showing the time dependency of desorption at room 
temperature after hydrogen chemisorption at room temperature and 
under 20 torr hydrogen for 20 hours 
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difference spectrum of the sample taken after evacuation for 2 hours at 393 K and 

5.3 hours at room temperature had neither hydrogen-on-metal nor hydrogen-on-

support resonance. The same experiment carried out at room temperature and 

under a hydrogen pressure of 87 torr indicated a similar behavior for adsorption 

and desorption (not shown). 

The effect of temperature on hydrogen chemisorbed on Ru and spilled over 

hydrogen was also investigated by monitoring hydrogen chemisorption at 326 and 

400 K via volumetric and NMR techniques. The hydrogen on Ru amounts were 

evaluated from the spin counting the NMR intensity of the hydrogen-on-metal 

resonance and the results were compared with, the volumetric chemisorption data 

obtained at the same temperature. The results are shown in Fig. 4 (T= 326 K) and 

Fig. 5 (T=400 K). The data in Figs. 4 and 5 indicate that the H/Ru amounts did 

not change significantly with increasing temperature, however, the amount of the 

spilled over hydrogen decreased. 

The T1 measurements on the silanol protons for the pure silica sample 

indicated that the spin lattice relaxation time of 3 ppm resonance did not change 

appreciably in the presence of the gas phase hydrogen (Fig. 6). Fitting the 

inversion recovery data with a mono-exponential function resulted in a T1 of 5.5 s. 

However, the spin lattice relaxation time of silanol protons in a catalyst sample 

which was reduced and evacuated to 10 ® torr was 11.7 seconds. Upon 

introduction of 20 torr of hydrogen gas at room temperature, the spin lattice 

relaxation times of the silanol protons decreased to 5.2 s. After 
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Table 1. T1 of silanol protons at different temperatures and under different 
hydrogen pressures 

Pressure T1 at 294 K 
(s) 

T1 at 326 K 
(s) 

T1 at 400 K 
(s) 

5 10®torr 11.7 11.9 10.5 

20 torr 5.2 N/A N/A 

Strong H from 20 torr 6.1 N/A N/A 

87 torr 4.8 5.4 4.9 

Strong H from 87 torr 7.0 N/A N/A 

the removal of the weakly bound hydrogen by evacuation, the spin lattice 

relaxation time of the silanol groups increased to 7.2 s which was lower than the 

corresponding value of a sample without any spilled over hydrogen. The effect of 

the temperature and hydrogen over pressure on the spin lattice relaxation times of 

the silanol protons in the catalyst sample is given in Table 1. 
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DISCUSSION 

The kinetics of hydrogen chemisorption on the metal was monitored with in situ 

proton NMR spectroscopy (Figs. 1 and 2). The hydrogen-on-metal resonance 

reached equilibrium within 10 minutes. The desorption of weakly bound hydrogen 

from the metal surface was also very fast as shown in Fig. 3. The slow 

component of the adsorption rates observed during the volumetric experiments 

was attributed to the spillover process. A comparison of the time dependency of 

the hydrogen adsorption measured from volumetric techniques and in situ NMR 

spectroscopy shown in Fig. 2 indicated that the hydrogen spillover was a two step 

process. The kinetics of the fast component of hydrogen spillover was comparable 

to the rate of hydrogen chemisorption on the metal. The slow component of the 

spillover process is attributed to the diffusion limited motion of the spilled over 

hydrogen on the silica surface. In fact, the motion of atomic hydrogen in SiOj 

wafers was reported to be trap limited with a diffusion coefficient of 10'̂ '* cm^/s (12-

13). Similar values were obtained for the diffusion coefficient of the spilled over 

hydrogen on AI2O3 (3) and TiOg (4) surfaces. 

Although the existence of hydrogen spillover is well established (14, 15 and the 

references therein), the nature of the spilled over species is still debated (8-10). 

Among the suggested candidates such as bare proton, hydrogen radical and 

trihydrogen, we prefer to dismiss the bare proton as an alternative. Because, in 

the case of bare proton, for each spilled over hydrogen species an electron would 
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be left on the metal surface. These extra electrons on the metal surface are 

expected to change the Knight shift which was not observed. As suggested by 

Sheng and Gay (8), atomic hydrogen is more likely to be the spilled over hydrogen 

species. However, this species interact with the silica surface significantly as 

indicated from the changes in the spin lattice relaxation times. Furthermore, the 

resonance due to the spilled over hydrogen in the silica support identified 

previously (11) has similar linewidths and resonances as the support hydroxyl 

groups which also suggests closer interaictions between the spilled over hydrogen 

and the silica surface. But this interaction does not involve the fomnation of strong 

0-H or Si-H bonds as will be discussed below. 

The spin lattice relaxation times, T1, of silanol protons were strongly influenced 

from the presence and the amount of the spilled over hydrogen. In the absence of 

Ru metal, i.e. spilled over hydrogen, the spin lattice relaxation times of the silanol 

protons remained uninfluenced from the hydrogen over pressure (Fig. 6). The 

decrease in the spin lattice relaxation times suggest the presence of the local 

fluctuations created by the weak coupling of the mobile spilled over hydrogen to 

the hydroxyl groups. If the spilled over hydrogen did not interact with the silica 

surface, the paramagnetic nature of the hydrogen atom would render its resonance 

invisible to the NMR spectroscopy. But, the author was able to observe the proton 

resonance due to the spilled over hydrogen quantitatively (11) which indicated that 

the paramagnetic nature of the atomic hydrogen was not operable here. Although 

weak couplings may be present, the fondation of new OH groups in the presence 
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of the spilled over hydrogen can not be substantiated. For example, Chesters et 

al. (16) studied the hydrogen spillover process on a Pt/SiOg catalyst in the 

presence and in the absence of spilled over hydrogen via NMR spectroscopy. 

They concluded that in the presence of spilled over hydrogen, new OH groups 

were created in the silica support. The reversibility of the spillover process at 

lower temperatures observed in the author's work argues against the formation of 

new OH groups in the presence of the spilled over hydrogen. The difference 

spectra obtained during the evacuation period after hydrogen chemisorption at 

room temperature and under 20 torr hydrogen pressure (Fig. 3) had both 

hydrogen-on-metal and hydrogen-on-support resonances for short evacuation 

periods. Both of these resonances disappeared after evacuation at 393 K for 2 

hours and at room temperature for 5.3 hours which suggested the reversibility of 

the spillover process. The elimination of silica hydroxyl groups require much 

higher temperatures (17-20). Therefore, the author does not support the idea of 

formation of new OH groups. Furthermore, if new OH were fomried which were 

chemically similar to the already existing ones, the T1 of the hydroxyl groups would 

not be influenced as much as it was observed here. The drastic change in the T1 

of the support hydroxyl groups in the presence of spilled over hydrogen suggests 

chemical differences between the nature of the support hydroxy! groups and the 

spilled over hydrogen. 

Finally, adsorption kinetics data presented in Figs. 4 and 5 indicate that the 

amount of spilled over hydrogen decreases with increasing temperature while the 
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amount of hydrogen adsorbed on ruthenium does not change over the same 

temperature range. Therefore one can conclude that the spillover of hydrogen 

from ruthenium to the silica surface is more sensitive to the changes in 

temperature than the hydrogen chemisorption on metal. This was due to 

enhanced rates of the associative desorption from the support surface at higher 

temperatures. The effect of temperature on the weakly bound hydrogen (both on 

the metal and on the support) was also investigated via volumetric chemisorption 

measurements. Volumetric chemisorption experiments were carried out at different 

temperatures with a hydrogen exposure time of 10 min. for each dose and an 

evacuation period of 5 min. before the measurement of the weak hydrogen 

chemisorption amounts. The results plotted in Fig. 7 indicated a monotonous 

decrease in the total hydrogen chemisorption value as a function of temperature 

while the weakly bound hydrogen amounts increased. The decrease in the total 

hydrogen chemisorption amount with increasing temperatures can be attributed to 

the effect of the energetics of the spillover process. The increase in the weakly 

bound hydrogen amounts with temperature suggests a higher degree of mobility of 

the chemisorbed hydrogen and an enhanced recombinative desorption process. 

The reversibility of the spillover process upon thermal evacuation suggests that the 

removal of the strongly bound spilled over hydrogen is kinetically limited. At high 

temperatures, the mobility of this species within the silica framework increases, so 

does the probability of finding another hydrogen atom for recombination. 
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CONCLUSIONS 

The nature of the spilled over hydrogen was discussed within the context of 

the NMR spectroscopy evidence. The spillover process did not influence the 

proton Knight shifts which suggested that the atomic hydrogen must be spilled 

over. The atomic hydrogen weakly interacted with the silica support such that the 

NMR resonance due to the spilled over hydrogen exhibited 0-H characteristics. 

However, the reversibility of the process at temperatures lower than that was 

required for the 0-H or Si-(OH) bond breaking indicated the absence of formation 

of new hydroxyl groups on the silica surface. 
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GENERAL CONCLUSIONS 

No NMR evidence was found for a through metal electronic interaction 

between the alkali promoter and the chemlsorbed hydrogen in Ru/SiOg catalysts. 

Alkali metals exist in an oxide state after catalyst reduction in flowing hydrogen 

which are not capable of donating electrons to the metal sobstrate. Na and K 

block hydrogen chemisorption sites, however, Cs is pushed off the surface upon 

hydrogen chemisorption. The main mechanism of alkali promotion is the restriction 

of hydrogen mobility even at high temperatures and pressures. This conclusion is 

consistent with the effects of alkali promoters on the Fischer Tropsch Synthesis. 

The support surface is modified significantly in the presence of alkali metals. 

The interaction of silica support with ruthenium metal and alkali promoters result in 

a decrease in the density support hydroxyl groups. In addition to the elimination of 

the OH group protons in the support surface, another proton population with a 

NMR resonance of about 10-15 ppm downfield from TMS was created in the 

presence of alkali promoters which was assigned to an alkali hydroxide species 

present in the silica support. 

The interaction of spilled over hydrogen with the silica support monitored via 

in-situ NMR spectroscopy indicated that the adsorption of hydrogen on silica 

supported ruthenium catalysts is a very fast process. A clean Ru surface 

saturates within 10 min of the introduction of hydrogen gas. Slow kinetics 

observed in the literature is due to the hydrogen spillover process. In addition to 
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the weakly bound spilled over hydrogen, a strongly bound component of the spilled 

over hydrogen was identified in the silica support. The quantity of this hydrogen 

population increases with hydrogen pressure, the equilibration period and 

decreases with the catalyst reduction temperature. The standard volumetric 

chemisorption technique was modified to eliminate the errors associated with the 

spilled over hydrogen during the characterization of the metal surfaces. 
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RECOMMENDATIONS FOR FUTURE WORK 

The full understanding of the role of alkali promoters in the Fischer Tropsch 

synthesis requires carefully conducted mechanistic studies on well characterized 

catalysts. The significant changes observed in the nature and the densities of the 

OH groups in the silica support strongly suggests that the supporting oxide may 

play an important role in the CO hydrogénation chemistry. I recommend the 

following experiments as the starting point for continued studies: 

1. The acidity changes observed in NMR spectroscopy of the OH groups in 

the silica support should be monitored as a function of metal loading, alkali 

loading and reduction temperature via microcalorimetric techniques. 

Ammonia adsorption for the determination of acidic sites and sulfur dioxide 

adsorption for the detennination of the basic sites can be used. 

2. The role of the different hydroxyl groups in the silica support on the Fischer 

Tropsch chemistry has to be investigated. In particular, the effect of the 

number of the OH groups in the support on the transport properties of the 

reactants (CO and hydrogen), intemiediates (ethylene in particular) and the 

products should be monitored via residence time, and isotopic tracer studies. 

3. The effect of the alkali promoter in the support and on the metal on alkene 

readsorption has to be investigated via selectivity measurements of the 

Fischer Tropsch reaction. Effect of the promoter on the selectivity with an 

alkene/syn-gas co-feed should be monitored for alkali promoted catalysts. 
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The same studies should be conducted on a mechanical mixture of 

alkali/support + metal/support to elucidate the role of the alkali on the support 

on the reaction selectivity. 

4. The type of the motion restricted (adsorption/desorption or surface diffusion) 

in the presence of alkali promoters neeeds to be identified. Mechanistic 

studies on the Fischer Tropsch chemistry on the metal surfaces with the 

inclusion of the restricted hydrogen mobility information can help further 

elucidate the role of alkali promoters in this and other 

hydrogenation/dehydrogenation reactions. 
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