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INTRODUCTION 

The study of crack propagation is of engineering im

portance because many materials fail by brittle fracture, 

frequently with serious consequences. Crack initiation alone 

does not imply brittleness since, for brittle fracture to 

occur, the crack must propagate rapidly (1). It therefore 

appears that the rate of crack propagation is the determining 

factor in the ductility or brittleness of materials. 

It has recently become possible to relate the rate of 

crack propagation to the surface energy of solids [2,3). This 

is probably the most direct method of determining the surface 

energy (4). Surface energy has great bearing on the mechan

ical and chemical properties of materials (5). Therefore a 

knowledge of the surface energy is useful in such areas as the 

development of adhesives, studies of friction and lubrication, 

and development of glass to metal seals (6). Surface energy 

must also be considered in the study of filtration, sintering, 

wetting of surfaces, and the cleaning and polishing of sur

faces. 

Because of the key role that fracture velocity plays in 

determining the ductility or brittleness of materials, it was 

the object of this study to assess the effects of atmosphere 

and temperature on the crack velocity in NaCl. A second goal 

was to relate the cleavage energy of NaCl to crack velocity 

(and thereby determine its temperature and atmosphere depend
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ence). 

NaCl was chosen for experimentation since it is particu

larly amenable to study of the cleavage process. Because of 

its transparency and simple structure, it has been used in 

numerous studies and much is already known about its behavior. 

Structures produced during cleavage are easily observed with 

optical microscopy with the aid of standard etching techniques. 

The solubility of NaCl in water also simplifies the replica

tion techniques used in electron microscopy. Large, relative

ly pure single crystals are readily available. With the 

exercise of reasonable care, these crystals can easily be 

cleaved to obtain test specimens of uniform size. 
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LITERATURE REVIEW 

A review of the literature reveals numerous methods for 

measuring the surface energy of materials. Kuznetsov (7), 

Gregg (8], and Partington (9) describe many of the methods and 

give a short historical review of the subject of surface 

energy. Duga (6) has compiled a comprehensive list of the 

surface energies of ceramic materials and the methods by which 

the results were obtained. He divided the methods of measure

ment into 2 broad categories, thermodynamic and mechanical. 

Among the thermodynamic methods are: heat of solution (10,11), 

heat of immersion (12) , rate of solubility (7), and the crit

ical surface tension for the wetting of a solid by a liquid 

(13,14,15). The mechanical methods include: measurement of 

the surface area produced by crushing (7,16,17,18), mutual 

grinding (7), and the measurement of the force required to 

balance the surface tension of a wire near its melting point 

(19). The mechanical method, cleavage and fracture of crys

tals and noncrystalline solids, which is of direct interest in 

this study, will be discussed in some detail. 

Double Cantilever Method of Surface Energy Measurement 

Obreimoff (20) is generally regarded as the first to apply 

the cleavage technique to the determination of surface energy. 

He carefully split sheets of mica with a glass wedge and was 

O 1 A  ̂/*\ /I ̂  4" m xx  ̂ <-»•• w M M « « J 1- J— — — — — —- —  ̂ — — —• ^ — WW ̂ XUi. UllC ClCXUii V X LiiC 

sheets. The amount of energy required appeared to be dependent 
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on the environment since the strength of mica was greater in 

vacuum than in air. In cases where the fresh surfaces were 

undisturbed by scratches or contamination, they could be re

joined so that a slightly smaller force was required to separ

ate them a second time. Mica has since been studied by 

several others through use of the cleavage technique (21,22). 

Oilman (4) applied the cleavage technique to materials 

of simpler crystal structure than mica and greatly extended 

its usefulness. His major modification was to sample geometry. 

He used crystals in the shape of partially cracked rectangular 

blocks as shown in Figure 1. This has since become the stand

ard geometry for the cleavage technique. Oilman found that 

the use of a wedge to cleave crystals gave poor reproducibil

ity. (This will later be discussed in more detail.) He 

developed a method by which the crystal could be pulled apart. 

The force required to cause the crack to begin to propagate 

was then measured. By treating the 2 halves of the partially 

cleaved crystals as cantilever beams. Oilman was able with the 

aid of simple elastic theory to relate the force at the 

instant of crack propagation to the deflection of the beams. 

He assumed that when the crack length was large with respect 

to the transverse crystal dimensions, deflection due to shear

ing forces and the kinetic energy associated with the sidewise 

motion of the beams were small and could be neglected. The 

surface energy was then calculated by equating the work done 



Figure 1. Typical double cantilever specimen 
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in causing an infinitesimal deflection of the beams to the 

change in the strain energy of the beams plus the energy re

quired to increase the surface by an infinitesimal amount. 

Oilman's equation is 

Y = 6F^L^/Etf^t^ 

where Y is the cleavage energy, F is the force required to 

initiate crack growth, L is the initial crack length, E is 

the elastic modulus, ¥ is the specimen width, and t is the 

height of one of the cleavage arms of the specimen. 

Oilman found that, unlike mica, most of the materials he 

tested were not strongly influenced by the environment. He 

implied that the difference in behavior of mica from that of 

other materials was caused by the nature of the electrical 

charges on freshly cleaved surfaces of mica. He also noted 

that fairly high values of surface energy were obtained in LiF 

crystals unless the tests were conducted at very low tempera

tures. This was presumably due to absorption of energy in 

such processes as temperature enhanced plastic flow at the 

crack tip. When this occurred it was necessary to denote the 

energy as "effective surface energy" to signify that cleavage 

had occurred nonreversibly. 

The Oilman cleavage technique has since been used by sev

eral workers to test the effects of environment and other fac

tors on the surface energy. Jaccodine (23) measured the sur

face energy of germanium and silicon in air and liquid nitro

gen. In air, he noted that oxidation products on the cleavage 

surfaces wedged open the crack and caused the apparent surface 
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energy to be low. Gutshall and Gross (24) measured the cleav

age energies of NaCl and MgO single crystals in liquid nitro

gen and in vacuum. They found that these environments had 

little influence on the cleavage energy and attributed this to 

the inability of contaminants to diffuse into an atomically 

sharp crack. 

Shockey and Groves [25) tested MgO single crystals in air 

and in water. Water vapor in the air did not significantly 

affect the cleavage energy, but crystals cleaved in water 

showed an apparent increase in cleavage energy of about 30%. 

In all cases the cleavage energy was greater than the revers

ible surface energy by a factor of 2 or 3. In a later study 

(26) they found that if the cleavage crack was made to propa

gate slowly, the apparent increase in cleavage energy was as 

great as 60%. This was due to the fact that water roughened 

the surfaces during cleavage so that the surface area was 

greater than that produced by cleavage in air. 

Brace and Walsh (27) determined a cleavage energy for 

quartz and orthoclase at room temperature. The cleavage 

2 energy of quartz ranged from 400 to 1000 ergs/cm , depending 

upon which crystallographic plane was cleaved. The cleavage 

2 energy of orthoclase was found to be 7800 ergs/cm . However, 

Brace and Walsh felt that this very high value for orthoclase 

might be too high by an order of magnitude. They assumed 

that it vas caused by either plasLic flow at the crack tip or 

by inhomogeneities acting as barriers to the crack. 
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Wiederhorn (28) measured the velocity of slow cracks in 

glass and sapphire in a moist atmosphere. He observed that 

crack velocity vas a complex function of the stress and the 

water vapor content of the atmosphere. Crack motion in glass 

appeared to result from a thermally activated reaction between 

the glass and the water vapor at the root of the crack. The 

data on sapphire indicated an effect similar to that occurring 

in glass. 

Gross and Gutshall (29) measured the cleavage energy of 

sodium chloride as a function of F-center concentration. 

Tests were carried out in both darkness and with optical radi

ation and in vacuum and liquid nitrogen. There appeared to be 

no discernible difference between tests in vacuum and liquid 

nitrogen or for tests in light or darkness up to F-center con
ic 3 

centrations of 10 /cm . In all cases the cleavage energy 

increased with the square root of F-center concentration. For 

greater concentrations the cleavage energy of crystals exposed 

to light was about twice that of those cleaved in darkness. 

This was attributed to bleaching of F-centers by light. 

Bleaching freed electrons trapped at anion vacancies. This 

increased the effective charge on the vacancy and increased 

strain in the area of the vacancy which hindered dislocation 

motion. 

Wiederhorn et (30) used the Oilman technique to meas

ure the cleavage energy of NaCl crystals in the annealed and 

irradiated states. The cleavage energy depended on the type 
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and extent of plastic deformation and on whether the crack 

front was straight or curved. 

Two types of plastic deformation, depending on which slip 

planes were active during cleavage, were described. Plastic 

deformation on {110} planes which intersected the cleavage 

plane parallel to the direction of cleavage was referred to as 

plane-stress deformation. This was due to the fact that the 

specimen width was small enough for stresses parallel to the 

cleavage plane to be approximately zero. Plastic deformation 

on {110} planes which intersected the cleavage plane normal to 

the direction of cleavage was called plane-strain deformation. 

This occurred in samples with great enough width for stresses 

parallel to the cleavage plane to develop so that the cleavage 

plane remained undeformed. This notation was adopted because 

of similar notation used to describe deformation in polycrys-

talline metals (31). (This notation appears to be contra

dictory to that used by Oilman (32).) 

Straight cracks caused plane-stress deformation in radia

tion hardened crystals and thin annealed crystals, but caused 

plane-strain deformation in thick annealed crystals. Curved 

cracks produced plane-stress and plane-strain deformation 

simultaneously. The fracture surface energy could be divided 

into 2 ranges depending on the mode of deformation. The frac-

2 2 ture energy ranged from 370 ergs/cm to 3000 ergs/cm for 

plane-stress deformation and straight cracks and for combined 

plane-strain-plane-stress deformation and curved cracks. When 
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only plane-strain deformation occurred in annealed crystals, 

the fracture energy ranged from only 80 ergs/cm to 300 ergs/ 

2 
cm . This low range indicated that plastic deformation may 

not always hinder crack propagation. In the case of plane-

strain in soft crystals, tensile stress fields may be formed 

at the crack tip by plastic deformation and aid crack growth. 

The Oilman cleavage technique requires that the initial 

crack be large with respect to the transverse dimensions of 

the crystal so that the effects of shear forces may be 

neglected. It is valid only when the ratio of initial crack 

length to beam height is 1.50 or greater (33). However, 

Westwood and Hitch (34) have observed that long cracks in 

materials exhibiting appreciable ductility produce anomalously 

high values of cleavage energy. Accordingly, they modified 

Oilman's equation (4) to take into account the effects of 

shear and end effects. The equation they obtained is 

Y = (6PV/EWt^)[l+(aE/4G)(t/L)2] ,  

where Y is the cleavage energy, P is the force required to 

initiate crack propagation, L is the initial crack length, E 

is the elastic modulus, is the specimen width, t is the 

height of one of the cleavage arms of the specimen, a is a 

numerical constant determined by boundary conditions at the 

crack tip, and G is the shear modulus. If all terms, except 

the number 1, in the brackets are neglected, the equation is 

identical to Gilman*s (4). 
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Westwood and Hitch (34) measured the cleavage energy of 

KCl at room temperature. They found that the "apparent" 

cleavage energy increased as the initial crack length in 

partially cleaved samples was increased. In order to deter

mine the specific surface energy they extrapolated data to 

very long initial crack lengths where they assumed the double 

cantilever equations were more accurate. The extrapolated 

value for the surface energy agreed quite well with previously 

reported theoretical estimates (35). Westwood and Hitch found 

that the apparent cleavage energy was almost doubled if tests 

were performed on samples immersed in a solution of KCl and 

water. They suggested that this was due to an increase in the 

crack tip radius caused by formation of a polycrystalline 

precipitate at the crack tip. 

Westwood and Goldheim (36) also used the same experimen

tal procedure to determine the cleavage energy of MgO at room 

temperature. The value they obtained for the specific surface 

energy agreed well with earlier experimental values (4) but 

was lower than theoretical estimates (37). 

Berry (38) observed that while Oilman's geometry works 

well for testing single crystals which cleave preferentially 

along specific planes, it must be modified for materials show

ing poor cleavage or no cleavage at all. This is because the 

tensile stress gradient at the crack tip tends to make the 

crack deviate from its original direction of propagation (39). 

This is prevented in crystals since cleavage tends to occur 
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along planes of weaker binding but is not prevented in mate

rials in which the binding is isotropic. Other workers (40-

42) overcame this handicap by applying constraints to the 

material being fractured to prevent deviation of the crack 

from its initial direction. Berry, however, simply modified 

the Oilman geometry (4) by milling thin slots on opposing 

faces of the fracture specimen so that the crack would be con

fined to the reduced cross section produced by the slots. 

With this new geometry Berry was able to determine a fracture 

energy for various glassy polymers and polystyrene. Berry's 

geometry has also been used in the determination of fracture 

energies of polycrystalline materials (43,44). 

There has been some criticism about the simple analysis 

used by Oilman in the double cantilever technique. Gillis 

(45) felt that Oilman's neglect of strain energy in the un-

cleaved portion of the sample was inaccurate. He said that 

for long initial cracks the effect of strain in the post crack 

region of the crystal would be smaller than the effect of 

bending of the crystal "beams" but would not be negligible. 

In addition to the neglect of the strain energy. Berry (38) 

also criticized Oilman's use of elementary beam theory. This 

theory requires that the uncleaved portion of the crystal be 

rigidly fixed, which is not the case experimentally. There

fore Berry developed an empirical equation in which the deflec

tion of the crystal arms is linearly proportional to the 

applied force. According to Berry, such factors as nonplan-
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arity of the crack or dissymmetry of the sample are not 

important when this equation is used. 

Dynamic Measurements of Surface Energy 

The Oilman cleavage technique and the modifications to it 

heretofore presented have all dealt with the force needed to 

make a crack in a partially cracked sample begin to propagate. 

The process of propagation itself has not been considered to 

any great extent. However, Berry has extended the quasistatic 

treatment of cleavage to a dynamic treatment (46,47). He 

assumed that the precracked fracture specimen has only poten

tial energy. The potential energy increases with applied 

force up to the force required to propagate the crack. During 

propagation the specimen contains both kinetic energy and 

potential energy. He was able to express the potential energy 

and the work done on the specimen in terms of the parameters 

of the system. He then took the kinetic energy as the differ

ence between the potential energy and work done on the system 

and derived equations for crack velocity and acceleration from 

the expression for kinetic energy. He was then able to inte

grate the velocity equation to obtain an equation of motion 

for the case of constant applied force and for constant 

deformation. For the case of constant applied force the 

equation of motion became 

C 2 
K + 5V_/2c = V^d^(3-N -2-)/7.4C^ 
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where is the acceleration of the crack, is the crack 

velocity, c is instantaneous crack length, Vg is the velocity 

of sound in the specimen, d is the height of one of the cleav

age arms of the specimen, N is a numerical factor, and is 

the initial crack length. For the case of constant deflection, 

the equation was given by 

V ^ 
A„ — = 35dV(3-No'')/48â Co , 

2aCo ' 

where a = C/C^, and all other terms remain the same. However, 

Berry was unable to obtain general solutions to either of the 

equations of motion. 

Forwood (48) used dynamical cleavage to study the effect 

of small cavities in NaCl single crystals on the fracture 

energy. He used as-received crystals with the double canti

lever geometry but formed cavities in the rear half of the 

samples by electrodiffusion of gold into the crystals. The 

crystals were cleaved with a knife attached to a pendulum and 

the progress of the crack was determined by the method devel

oped by Oilman et (49). He found that when the crack 

left the normal region of the sample and entered the treated 

region, there was a marked drop in crack speed. Large cleav

age steps were generated wherever the crack intersected a 

cavity. In samples containing large numbers of cavities, the 

fracture appeared to be non-crystallographic. 

In order to estimate the energy required for cleavage. 

Forwood (48) used the equation of motion developed by Berry 
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(46), which assumes that the force applied by the cleavage 

knife is constant. He justified the use of this equation by-

showing that the variation in crack speed with position in the 

sample was approximately the same as would be observed for a 

constant loading force. Because of uncertainty in the crack 

speed measurements, Forwood was not able to assign absolute 

values to the fracture energy. Instead he estimated the ratio 

of the fracture energy in the treated region to that in the 

normal region to the nearest order of magnitude. He found the 

ratio varied from 10 to 100, showing that cavities markedly 

increase the cleavage energy. 

The validity of the equations developed by Berry (46,47) 

has been questioned by several workers (50,51). Gillis and 

Oilman (50) stated that they are inaccurate for several rea

sons. Berry neglected the lateral inertia of the crystal arms 

and assumed that the end deflection is directly proportional 

to the applied force. Gillis and Gilman found this to be a 

"gross error" for cracks which are long and moving. They also 

stated that the bending moment at the crack tip is usually not 

constant during cleavage. 

Burns (51) made a comparison between the equations of the 

constant force model treatment of double cantilever cleavage 

(46) and the equations of the constant deflection model (2). 

He believed that the constant deflection model is more accur

ate because the constraint that the beam arms remain in con

tact with the knife is more easily verified than the constraint 
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that the loading force remain constant during cleavage. How

ever, he found that Forwood's data (48), which had been 

treated with the constant force model, agreed well with that 

model but not with the constant deflection model. 

Burns (51) explained the poor agreement by stating that 

if the rate of deflection, V^, of the ends of the cantilever 

beams is great enough, the cleavage crack may travel with 

flexure waves which travel down the cleavage specimen. In 

this case fracture growth is controlled by wave propagation 

rather than the deflection of the beam ends. Then, although 

the beam ends remain in contact with the knife, the static 

beam shapes used in the constant deflection model to determine 

the energy in the beams are not applicable. Thus the data may 

agree well with the constant force model, which applies im

proper constraints to the problem, and not agree with the 

constant deflection model, which applies the proper con

straints . 

The quasistatic equations for the double cantilever beam 

mode of crack propagation derived by Gillis and Oilman (50) 

have recently been extended to the dynamic case by Burns and 

Webb (2). A brief outline of their method of derivation is 

given here (a more detailed description may be found in the 

section on theory). Instead of treating the double cantilever 

mode of crack propagation as a problem in known forces, as is 

usually done, Burns and Webb treated it as a problem in known 

displacements. They formed a Lagrangian equation of motion 
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consisting of the kinetic energy of the outward moving arms 

of the crystal minus the strain energy of the arms and the 

reversible surface energy of the crystal. The nonreversible 

cleavage energy was taken as a dissipative energy in the equa

tions of motion. For simplicity they neglected the effects of 

shear and end rotation in the derivation. A general solution 

to the equation was not found, but Burns and Webb obtained a 

particular solution which is 

. {9EIoV2/(2W)[Y+C3/S6)phgV2] 

where L = crack length 

(t-t/j) = time subsequent to introduction of the knife into 
the crystal 

E = elastic modulus 

Ig = 21^^X2/(12^+12) » where is the moment of inertia of 

one beam arm, and similarly for I2 

V = the velocity at which the ends of the beam arms are 
being separated 

W = specimen width 

Y = the cleavage energy 

p = specimen density 

hg = [(lQ/Ij)^hj^ + (Ig/IgD^hg], where h^ is the height 

of one beam arm, and similarly for h2. 

This solution predicts that the square of the crack length is 

directly proportional to elapsed time so long as the cleavage 

energy remains constant. A plot of crack length squared ver

sus time thus should yield a straight line. If the cleavage 
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energy varies continuously, the plot will yield a curve. 

Burns and Webb (3) experimentally determined the cleavage 

energy of LiF with the equation they developed. They cleaved 

long slender single crystals of LiF over a range of tempera

tures using a knife attached to a pendulum. The crack was 

photographed with a high speed motion picture camera. Cleav

age was performed in an evacuated chamber to prevent possible 

interference by the partial vacuum created by the moving crack. 

They found that absorption of energy by plastic flow occurred 

at temperatures as low as 90*K and increased rapidly with 

temperature. Plastic flow persisted at a crack velocity as 

high as 5x10^ cm/sec at room temperature. In most cases a 

plot of the square of the crack length versus time yielded one 

or more straight segments as predicted for constant cleavage 

energy or brittle-ductile transitions. However, the amount of 

plastic absorption of energy was not as dependent on velocity 

as predicted. The specific surface energy was determined by 

extrapolating the data to maximum theoretical crack velocity 

and was found to be 480 ̂  50 ergs/cm , a value differing from 

that of Gilman (4) by about 30%. 

Factors Affecting Loss of Crack Energy 

It is a well known fact that the specific surface energy 

is measured by the cleavage technique only if the material is 

completely brittle (4). In most cases the velocity of a cleav

age crack is influenced greatly by the crystal perfection and 
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energy loss by several processes in addition to the creation 

of new surfaces (52). Oilman (1,32,53), Washburn et al. (54), 

and Forty (55) have found that a slowly moving crack nucleates 

dislocation loops ahead of the crack tip. Forty (55) observed 

that in NaCl and LiF the damage is confined to narrow "deforma

tion zones" on the cleavage surface illustrating the velocity 

dependence of the plastic deformation. Plastic deformation 

is extensive wherever the crack slows down but occurs to a 

much lesser extent when the crack is moving fast. 

The crack-nucleated dislocations must lie in glide planes 

that cross the cleavage plane at an oblique angle (1). This 

is true because the maximum tensile stress at the tip of the 

crack tends to be normal to the plane of the crack, making 

shear stresses in the plane of the crack small. If the cleav

age plane in crystals of the sodium chloride structure is 

taken as the (010) plane, the (Oil), (Oil), (110), and (110) 

planes would be the active glide planes (56). Dislocations 

lying in the (Oil) and (Oil) planes intersect the cleavage 

plane parallel to the [100] direction and are able to glide 

along with the crack front. Dislocations lying in the (110) 

and (110) planes intersect the cleavage plane normal to the 

[100] direction and thus are unable to be pulled along by the 

crack front. However, they are able to expand on their own 

glide planes. Since the (101) and (101) glide planes are 

normal to the cleavage plane, no dislocations would be nucle

ated in them by the cleavage crack (1). 
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Those dislocations which are "grown in" or formed by 

deformation prior to cleavage and the cleavage steps associ

ated with them can also affect crack propagation (53,57). The 

effect is quite dependent on whether the dislocations are edge 

or screw type. Local concentrations of edge dislocations have 

little influence on propagation. However, if the concentra

tion is uniformly high, the cleavage surface develops numerous 

ragged steps. Screw dislocations appear to be much more 

effective in step formation and therefore in absorbing energy. 

Cleavage steps are probably formed by shear rather than by 

secondary cleavage so that even a step of atomic height can 

absorb appreciable energy (1). As height increases, the 

energy absorption increases rapidly. It is difficult to 

ascertain the magnitude of the shear stress producing a step, 

but even if it is fairly low, the energy absorbed in forming 

a step of typical height may easily be as large as the revers

ible surface energy. 

Oilman et al. (49) measured the velocities of cleavage 

cracks in LiF single crystals and tried to correlate the 

damage produced by the crack to the crack speed. They stated 

that if the velocity is greater than some velocity, V*, no 

dislocations are nucleated. For LiF this velocity appeared to 

be about 6x10^ cm/sec. However, Burns and Webb (3) have ob

served that dislocations in LiF interact with cracks traveling 
- A  

as tast as bxiu cm/sec. The data on the velocity of disloca

tions in LiF as a function of applied stress indicate that 
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crack-dislocation interaction may occur at crack speeds 

approaching the speed of sound (58]. 

Oilman et al.(49) also found that as the crack veloc

ity decreases below V* more and more dislocations are nucle

ated until at some point the velocity begins to oscillate. 

The oscillation is caused in the following manner. As a crack 

slows down it begins to nucleate dislocations. This process 

absorbs energy from the crack and slows it down further. The 

arms of the crystal, however, are being moved apart by the 

cleavage knife at more or less constant velocity and the force 

driving the crack forward begins to build up. At some point 

the force is great enough to cause the crack to surge ahead 

again. Once more the crack begins to slow down as disloca

tions are nucleated and the process starts over again. 

Finkel'et al. (52) found that cleavage cracks in NaCl 

could also be slowed and even stopped for short periods of 

time by slip bands formed by compressing the crystal normal 

to the direction of cleavage. The ability of the bands to 

stop the crack depended upon the width of the bands and the 

crack velocity. Cracks traveling at less than 4x10^ cm/sec 

were often stopped by a single band. Cracks traveling at 

about 7x10 cm/sec hesitated only for a short time at a single 

band, but were often stopped before entering a second band. 

A similar effect was observed by Stokes et (59) in plas

tically Jcforiued wgO. They found that cracks nucleated at the 

intersection of 2 slip bands were able to propagate rapidly 
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if adjacent slip bands were narrow and widely spaced. If the 

number of slip bands was large, the cracks were often stabil

ized. 

Finkel', Savel'ev et (60) investigated the ability of 

different types of boundaries and sub-boundaries to absorb 

energy from a moving crack in NaCl and LiF. Prior to testing, 

each crystal was partially cleaved. It was found that usually 

the crack initially halted at a twist boundary and that later 

the crack hesitated during propagation at each twist boundary, 

forming numerous cleavage steps when it passed through the 

- 6  
boundary. The period of crack stoppage was as much as 16x10 

seconds for cracks traveling at about 2x10^ cm/sec. In general 

the time of stoppage was directly related to the energy of the 

boundary. As a rule low angle tilt boundaries had little 

effect on crack velocity. 

Effects of Atmosphere on the Mechanical Properties of NaCl 

There has apparently been little systematic study of the 

effects of atmosphere on the cleavage energy of NaCl although 

it has been observed that the value of cleavage energy in 

liquid nitrogen is only slightly different from the value in 

vacuum (24). However, the literature on the interaction of 

sodium chloride with air and various gases is voluminous. 

The intimate relation between surface energy and mechanical 

properties of materials requires consideration of these 

effects whenever cleavage energy measurements are made in 
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different atmospheres. 

Sodium chloride has been shown to react with several com

ponents of the atmosphere (24,60-67), although some of the 

observations are contradictory. Gorum e^ al. (61) and Aerts 

and Dekeyser (68) reported that freshly cleaved NaCl is em

brittled by nitrogen while Machlin and Murray (63) reported 

that these gases have no effect. However Machlin and Murray 

did find that ozone, nitrous oxide, and atomic oxygen embrit

tle NaCl. 

An interesting fact that has been observed by Machlin et 

al. (63,66) is that air embrittlement of NaCl occurs chiefly 

in summer. This is probably due to increased ozone in the 

atmosphere from thunderstorm activity. They reported that 

mechanical behavior was very erratic when samples were exposed 

to air. On certain days the atmosphere embrittled samples, 

while on other days no embrittlement occurred. Some samples 

previously embrittled became ductile. 

There are several proposed mechanisms by which sodium 

chloride is embrittled in the atmosphere. The exact mechanism 

depends upon the contaminant, but in general the effect is due 

to some change in surface structure rather than a change in 

the volume. However, at high pressure, nitrogen reportedly 

diffuses into the crystal to cause dislocation pinning (68). 

Oxygen and ozone react with the crystal surface to form a 

NaClOg layer (66). This layer acts either to prevent disloca

tion egress through the surface or to cause a coherency stress 

due to differences in the sizes of the NaCl and NaClOs 
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lattices. Otterson (64) has indicated that COg may react with 

hydroxide ions in the surface of NaCl to cause embrittlement. 

The hydroxide is necessary for the process since crystals free 

from it are not embrittled by dry COg. A similar observation 

has been made by Stokes et al. (65) who reported that water 

polished crystals remain ductile for long periods of time so 

long as they are stored in desiccated air. 

In view of the fact that NaCl is often treated by surface 

dissolution to remove flaws (the well known Joffe effect (69)), 

one possible mechanism of embrittlement not specifically re

lated to the atmosphere should be mentioned. Metz and Lad 

(70) and Lad (71) have indicated that microcracks form appar

ently spontaneously on the surfaces of NaCl crystals which 

have been water polished. At room temperature microcrack for

mation may take months, but does occur whether the crystals 

are stored in vacuum or desiccated air. However, if the crys

tals are heated to 130®C or above, the process is complete 

within about an hour. The microcrack formation probably re

sults from the smaller equilibrium spacing of the surface 

layers with respect to the interior of the crystal. 

If microcracks do indeed form by this process there 

should be a noticeable decrease in ductility. From this view

point there is evidence that microcrack formation does not 

occur in this manner. Stearns e;t al. (72) tested NaCl crystals 

which had been subjected to various treatments. They found 



25 

that crystals which had been water polished and heated to 

135®C were more ductile in flexure tests than crystals which 

were water polished but not heated. 
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THEORY 

It has been shown by Oilman (4) that the force needed to 

propagate cracks in crystals can be related to the surface 

energy through elementary beam theory. The quasistatic equa

tions of Gillis and Oilman (50) have been extended to the 

dynamic case by Burns and Webb (2). In both treatments the 

effects of shear forces have been neglected, presumably for 

simplicity. 

The neglect of shear imposes the restriction on the exper

imental geometry that the crack be long with respect to the 

heights of the cantilever beams (3,4). Otherwise the treat

ments are not valid. As was stated earlier, this limitation 

poses no problems for many materials but in materials exhibit

ing appreciable ductility long cracks tend to be blunted by 

plastic flow (4,34,73). This results in values for the 

cleavage energy which can easily be many times greater than 

the reversible surface energy (34,36). The logical approach 

to the study of the more ductile materials would be to use 

shorter cracks with respect to the cross-sectional dimensions. 

This necessitates consideration of the effects of shear to 

prevent underestimation of the surface energy (34,50). 

An attempt was made in this study to include the effects 

of shear in the derivation of a Lagrangian equation of crack 

motion. The work of Gillis and Oilman (50) and work and nota

tion of Burns and Webb (2) were used to facilitate the dériva-
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tion. The coordinate system of Burns and Webb, in which the 

origin moves with the crack tip, was adopted and is shown in 

Figure 2. The crystal geometry in Figure 2 is the one used in 

this study and differs from that of Burns and Webb in that the 

transverse dimensions are much larger, with respect to the 

length. 

The equation for the deflection of one beam arm is given 

by Gillis and Oilman (50) as: 

L = crack length 

F = force acting on the free end of the beam 

E = modulus of elasticity 

I = moment of inertia 

K = a shape factor =3/2 for rectangular beams 

A = cross sectional area of the beam 

G = shear modulus 

0 = a rotational terra 

The strain energy for the beam arm is given by: 

The Deflection Equation 

(1) 

where y(x) = deflection of the beam at x 

The Strain Energy Equation 

,0 M^dx ,0 KV^dx 
•'T. 2F.T • M. 2 AG (2) 



y 

Figure 2. Modified double cantilever specimen 
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where U = strain energy 

M = bending moment = -F(L-x) 

V = shearing force = F. 

Thus 

" -^L m - y" ̂  dx (3) 

Integration of Equation 3 yields 

If the last two terms in Equation 1 are dropped, one has 

the equation of deflection used by Burns and Webb (2). How

ever, in order to determine the effects of shear, only the 

rotation term is dropped here. Thus the deflections of the 

two beams are now described by: 

3Lx^F, - F,x^ KF.x 

/iW • jqg- • 

SLx^F, - F.x^ KF-x 
''2W 

If 2Y is the height of the crack opening at x = L (i.e. 

at the free end of the crystal), then 

2Y = y^CL) + ygCL) (7) 

or 2 3 
2FtL'' F, F, 2F,L^ 

= nrr ' r (XT ' 

Allowing the crystal to pivot about the unloaded end 
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maintains equal forces across the knife edge used in cleavage. 

Therefore 

Fl = F; = F (9) 

and Equation 8 now becomes 

If we assume that the ends of the beam arms are in con

tact with the cleavage knife, then Y is determined by the 

motion of the knife. If the knife moves with constant 

velocity then we can define Y by 

Y = tan OCt-tg) = VgCt-tg) (11) 

where = velocity of the knife 

(|> = half-angle of the knife edge 

t-tg = time elapsed since introduction of the knife 

into the crystal 

Vg = velocity of the outward moving ends of the 

crystal halves. 

We now write Equation 10 as: 

„ r -here = — 

2A,A-
^0 = • 

Equation 12 is rearranged to give: 
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F = f (13) 
(oL^+gL) 

where a = ^ 
3EIo 

6 = sfîJ • 

The Kinetic Energy Equation 

The kinetic energy associated with the two beams being 

pushed apart by the knife can be found by integration of the 

squares of the local velocities over the crystal. The veloc

ity of the first beam is found by taking the time derivative 

of Equation 5. Thus 

yi(x) = (3Ll2-x3) + 5^ (6LxL) * i (Fx+FL) (14) 

where y, F, and L are the time derivatives. From Equation 13, 

F = gL) Y - YC5aL^+e)L ^ 

(aL^+gL)^ * 

The velocity of the second beam is found similarly. The 

squared velocity of the first beam arm is given by: 

[yiCx)]^ = (3Lx2-x3)2 + —(3LX ^ - X 'K6X LL) 
CGEIi) (GEI;) 

2KF ,,,,2.3, r (6LxL) (Fx+FL) 
* m%G ôEIiAjG 

y 2 • *0 Tî̂  . o 
y  i r x + f L J -  +  :  y  1 . 0 L X L J  ,  L I D J  

(A^G)^ C6EIi)^ 



32 

and similarly for the second beam arm. Then 

/Q [yiCx)]^dx = ^ + FFLC^) + F2(12L^L2)] 
U 1 (6EIĵ r 10 

3EIiAiG 

+ FFLL^ + f V L ]  (17) 

and similarly for the second beam arm. We are now ready to 

write an expression for the kinetic energy K*. 

where p = density of the beam arms 

h^,h2 = heights of the beams 

W = width of the beams. 

Substitution of Equation 17 and the similar expression 

for the second beam into Equation 18 yields: 

^ = /Q + [y2M]\mx (18) 

(19) 

where 

C 

Vi,T_A.j. T-i _ T a . 
"1'̂ "/: "ZT'l 

•] 
^1^112^2 
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C, = C-7-J I 2~1. J • 

For the moment, let 

* 7 * "i * % 
33C,L' llC.ir CLL^ 

 ̂  ̂T ' -f- 1 

and 

66C*L^ lie*!* * , 
!i= V']-

Equation 19 can be rewritten as : 

= Y^A _ 2YYLC5aL^+g)A ^ Y^L^ (3aL^+g:) ̂A ^ YYLN 

P (aL^+gL)^ (aL^+BL)^ (aL^+BL)^ (aL^+3L)^ 

- v'L^(3aL^e)N ,  yV [IZctL: + 3C*L3 .  C*L] .  (20) 
(aL^+BL)^ (oL^+BL)^ ^ ^ ^ 

The total effective surface energy required for cleavage 

is a combination of a reversible energy associated with the 

equilibrium surface energy of the material and a nonreversible 

energy. The nonreversible energy is energy dissipated in 

plastic flow. The reversible part is denoted by Burns and 

Webb (2) as 

S = 2YqWL (21) 

where Yq = reversible specific surface energy 

W = beam width 

L = crack length. 

The nonreversible part is denoted by: 
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Qf = -2YpW (22) 

where Yp = an incremental change in plastic work divided by 

the incremental increase in the fractured area. 

The Lagrangian Equation 

The Lagrangian is now written as 

jC = K* - - U2 - S (23) 

where and Ug are the strain energies associated with the 

two beams. From Equation 4 and the definitions of Iq and Aq 

in Equation 12 and the definitions of a and B in Equation 13 

"1 ' "2 = ^ 

and the Lagrangian becomes : 

= K* - F^(aL^+pL) - 2YoWL. (25) 

The equation of crack motion, the equation that remains 

to be solved, is given by: 

d (3^) _ = Q = -2Y W. (26) 
3L 3L t p 

Keeping in mind the definition of A in Equation 20, let 

* 2 1 1  *  Q  * 7 7  * 9 Q  
24C,a L^^ 114C,agL* 222C,B L' ôCLa^L* 

B = [ ±- + i + i —i 
- 35 35 35 20 

*7 * ? c * ? % 
34C_agL' 16C,g^L> * , _ CLg^L^ 

• * hi + C,o^L^ + ^ , ] (27) OA 
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* Q  * 7  * 7  * 5  * 3  
33CiaL* lôSCigL' llC.aL 33C,gir * . CLgL^ 

£ = 1̂ 5— * - —&- * —k- - «=3»̂  ' -V-]-

C28) 

Then with the aid of Equation 13 and the definitions of A, B, 

and C, Equation 25 can be written as: 

 ̂ 4 + -4̂  - f - 2Y0*L . 
(aL^+gL)^ CaL^+6L)4 (aL^+gL)^ (aL^+gL) 

(29) 

By taking the proper derivatives. Equation 26 becomes: 

• 2 
— (̂ ) - (̂ ) = —?- [C - CaL̂ +gL) M + (6aL̂ +2B)A] + 
dt 3L aL CaL^+BL)J gL 

4Y;ipB , ZY^LPB , M - 4BC3.L^*e)]-
CaL^+6L)^ (aL^+BL)^ (aL^+6L)^ 3L 

2 2 
^ *V + 2YnW = -2Y„W. (30) 
(aL^+3L)2 " P 

For compactness let: 

Term 0 = (—\ )^[C-(aL^+gL)^ + (6aL^+23)A] , 
aL +3L 3L 

Term I = ^ j , 
(oL^+GL)* 

Term II — « i — — Term I, 
(oL^+gL)* 2 

Term III = (-4 ^)^[(aL^+gL)M - 4B(3aL^+3)], 
aL^+BL 9L 



36 

Term IV = +8) , 
(aL^+3L)^ 

Then Equation 30 can be rewritten as : 

_ (^)= Y^p Term 0 + YYLp Term I + Y^Lp Term II 
dt 3L 3L 

+ Y^L^p Term III - Y^ Term IV = - 2YqW - 2YpW = -2YW. (31) 

It can easily be shown that Term 0=0. With this in mind, 

Equation 31 can be rewritten as: 

;• _ ;2/Term III, 2YL ^ 1 ^Term IV, r2YW,. 1 , 
^ (Term II ^ ' T" P ^term ^Term II^* <-^2) 

The final equation relating crack velocity, L, to surface 

energy is obtained by substituting for Y and Y in Equation 

32. Thus: 

;• _ ; 2/Term III, 2L . l/Term IV, r 2Y¥ ^ r 1 , 
L - -L (Term II FTJ" * p'lerm II^' pv^ft-t ji^Term II^' 

® " (33) 

A general solution to the equation of motion has not 

been found. An attempt was made to find a particular solu

tion with the aid of an IBM 360 computer. The computer 

program developed for searching for the solution is presented 

in APPENDIX E. The method used in the search was to guess a 

solution and substitute it into Equation 33. The right-hand 

side of the equation was subtracted from the left-hand side 

under the assumption that the difference would be 0 when a 

solution was found. This was done for many different combin
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ations of beam dimensions and crack lengths ranging from 

(h^+h2)/20 to about SCh^+hg]. In this manner it was found 

that for L ̂  (h^+hg)/? one approximate solution is: 

„ V^/2WtY + jIIj ph V^] (345 

where 

This solution is well within 1% of the numerical solution 

obtained from the computer. For (h^+h2)/4 £ L £ (h^+hgj/Z. 

A numerical solution of the form 

(aL^+BL): = v2/2W[Y + |̂|g- pV̂ x] (35) 
(3aL^+6) (t-tp)'^ ® 3328 e 

was found where x has dimensions of length. Values of x for 

different beam heights are plotted versus crack length in 

Figure 3. Figure 4 shows a hypothetical plot of the square 

of crack length versus time for a constant cleavage energy. 

The most striking feature of the figure is that initially, 

is not linear with time. Instead, for L < (h^+hgj/Z, L is 

approximately linear with time. The reason for this becomes 

apparent upon examination of the solution. The term g is 

dominant when the crack length is short. While x is not con

stant, the effect of it is very small so that initially the 

form of the solution is essentially 
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The equation of crack motion is an improvement over the 

equation developed by Burns and Webb (2) in that the effects 

of shear can now be taken into consideration. Whereas their 

equation is valid only for cracks with length greater than 

about SCh^+hgj/Z (50), this equation should be valid for 

cracks with length greater than about (hj^+h2)/4. 

The accuracy of the solution for short cracks is reduced 

somewhat because of neglect of strain energy in the uncleaved 

portion of the specimen (38). Elementary beam theory requires 

that the uncleaved portion of a specimen be rigidly fixed and 

therefore that the amount of stored energy be nil. Experi

mentally, however, it is found that deformation occurs in the 

post crack region. This strain energy in the post crack 

region can be important, especially for short cracks (45). 

Even for cracks which approach the specimen length in size, 

the strain energy in the post crack region is significant. 

Another limitation is the failure to account for end 

rotation. Inclusion of the end rotation term in the deflec

tion equation makes the derivation of the Lagrangian exceed

ingly complex. For this reason it was neglected. However, it 

should be noted that the end rotation is usually significant 

(50). 

It will be remembered that the assumption was made in the 
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derivation that the cleavage knife moves with constant veloc

ity. Practically, this means that if cleavage is accomplished 

by a pendulum, the kinetic energy of the pendulum must be many 

times greater than the cleavage energy of the specimen. It 

also requires that the pendulum travel a very short distance 

during the cleavage process. Only under these conditions will 

the assumption of constant velocity be valid. However, Burns 

(51) has determined upper limits to the pendulum velocity 

beyond which the theory no longer applies. The first upper 

limit is defined by 

Vg < 1.56[Y/p(hi+h2)]l/2. (37) 

If this limit is exceeded the crack will travel with flexure 

waves propagating through the crystal and the use of static 

beam shapes in the derivation of the equation of motion will 

not be valid. The second upper limit is defined by 

Vg < 2.9[Y/p(hi+h2)]l/2. (38) 

If this limit is exceeded the crack will propagate because the 

bending moment at the crack tip exceeds the critical bending 

moment for fracture. 
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EXPERIMENTAL PROCEDURE AND DESCRIPTION OF EQUIPMENT 

Sample Preparation 

Large cubes of Kyropoulous-grown NaCl and small random 

sized samples of Stockbarger NaCl were obtained from Harshaw 

Chemical Company, Cleveland, Ohio. The purity of the crystals 

was not determined but an analysis performed by Long (74) on 

similar crystals showed the major impurities to be Si (<10 

ppm], Cu (<50 ppm), A1 (<100 ppm), and Mg (<20 ppm). 

An attempt was made to reduce the crystals to the desired 

dimensions with a string saw using distilled water as a cut

ting agent. It was felt that the use of a string saw would 

minimize mechanical damage to the specimens. However, it 

proved to be very difficult to produce {100} faces on the 

samples. The misalignment of the longitudinal axes of the 

specimens from a true [100] direction was typically less than 

2®. Nevertheless, this was sufficient to cause extreme 

problems in obtaining reproducible crack speeds during cleav

age. The Kyropoulous-grown crystals also were relatively 

imperfect. They contained large numbers of subgrain bound

aries and tilt-twist boundaries, as evidenced by the large 

steps formed on the cleavage surfaces (53). For this reason 

it was decided to use only samples cleaved from the parent 

blocks of Stockbarger NaCl for velocity measurements. 

Single crystals with approximate dimensions 0.4 cm x 1.2 

cm X 2.0 cm were cleaved from the random sections. This was 
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accomplished by placing a knife edge against the crystal and 

lightly tapping it with a hammer. The crystals were placed 

in lots of 25 on platinum foil and annealed for .12 hours at 

580®C in air. They were cooled to room temperature at a maxi

mum rate of 0.5®C/min. 

After the anneal the crystals were polished on a nylon 

lap with a 30% (volume) solution of absolute methanol in de-

ionized water. This solution dissolved the surface from a 

crystal more slowly than pure water and therefore allowed 

greater control over the polishing process. Each crystal was 

then rinsed in the methanol-water solution and then in acetone 

and wiped dry with tissue paper. The crystal was immediately 

placed in a desiccator and stored for a period of several days. 

Gold was vapor deposited on one of the large faces of 

each crystal to form a series of electrically conductive 

stripes. The stripes were formed with the aid of a mask made 

of aluminum sheet 0.0051 cm in thickness. The mask contained 

slots 0.0127 + 0.0025 cm in width and separated from one. 

another by 0.147 cm. The gold stripes were approximately 

200 Â thick and varied in resistance from 200 to 4000 ohms, 

depending upon whether cleavage steps remained on the surface 

after polishing. 

The configuration of the stripes was similar to that used 

by Oilman et (49). However, the stripes were placed on one 

of the large crystal faces so that the cleavage geometry would 
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produce a crack of short length relative to the crystal height 

(36). The two stripes nearest the front of the crystal were 

connected in parallel with Dotite Type D-550 paint (Jeolco, 

U.S.A., Inc., Medford, Massachusetts) to form the "trigger". 

It was necessary to use a dual stripe trigger rather than a 

single stripe trigger due to the instability of the stripes 

when a voltage was applied to them. 

It was found that when as little as 0.03 volts DC was 

applied to a single trigger stripe, the gold tended to migrate 

from one side of the crystal to the other, causing a break in 

the stripe. This migration occurred often within 10 seconds 

of the application of voltage and seemed to be enhanced when 

the relative humidity was 50% or greater. Crystals stored for 

more than a week after vapor deposition also showed the same 

tendency. The use of a dual stripe trigger reduced the 

problem, presumably due to decreased electrical resistance. 

It was noted that none of the deflection stripes were ever 

broken in this manner. This was because the parallel resist

ance of the deflection stripes was considerably less than for 

the trigger since there were 8 to 12 deflection stripes con

nected in parallel. 

It was found necessary to place the trigger stripe approx

imately 0.2 cm away from the front of the crystal. When the 

trigger was placed exactly at the front of the crystal it was 

noted that an extremely long time (about 4Ù microseconds) often 

passed between breakage of the trigger and breakage of the 
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first deflection stripe. This was at first attributed to 

"early triggering" due to some malfunction in the electrical 

circuit. However, examination of the cleavage surface showed 

that the crack often hesitated within the first 0.2 cm of 

crack growth. In order to observe crack motion throughout the 

entire crystal length, it was necessary to use slow sweep 

rates for the oscilloscope trace. (The procedure for crack 

speed measurement is explained later.) In later stages of 

crack growth when the crack velocity was high, it was impos

sible to identify breakage of individual deflection stripes 

since the oscilloscope trace was "bunched up". To overcome 

the problem, the trigger stripe was placed beyond the region 

of slow crack growth so that faster sweep rates could be used. 

The deflection stripes were placed behind the trigger and con

nected in parallel but isolated from the trigger. 

Two small diameter wires were attached to the crystal 

(one on each side of the deflection stripes) with the Dotite 

paint and 2 other wires were attached to the trigger in a sim

ilar manner. If the crystal was to be cleaved at a tempera

ture above 100®C, the connections were reinforced with a small 

drop of Dupont silver preparation 7713 (E. I. Dupont de 

Nemours and Co., Wilmington, Delaware). The silver preparation 

provided a degree of adherence at higher temperatures which the 

Dotite paint lacked. A typical sample is shown in Figure 5. 
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The Sample Holder 

The sample holder is shown in Figure 6. It was fabri

cated from a stainless steel block with, top and bottom face 

dimensions 10.10 x 10.10 cm and side face dimensions 10.10 x 

6.00 cm. A slot 0.69 cm wide and 1.27 cm deep was milled 

across the top face for a distance of 2.54 cm, beginning at 

the center of one side. Beyond this distance the slot was 

widened to 5.10 cm with a depth of 0.69 cm for the remainder 

of the distance across the top face. The narrow part of the 

slot was covered with a 0.60 cm thick stainless steel plate 

which contained a slot 0.60 cm long and 0.3 cm wide. This 

slot allowed the cleavage knife to strike the crystal without 

ever touching the block. Two stainless steel braces were 

bolted to the block, one on each side of the wider section of 

the slot. Each brace contained a set screw for locking the 

slide (described below) in the slot and facilities for holding 

the electrical wires leading to the crystal sample. 

The slide was a stainless steel plate with dimensions 

5.08 X 5.08 X 5.08 x 0.69 cm. A small block rounded on the 

front end was fastened to the front of the slide to hold the 

crystal in place and to allow the two arms formed during cleav

age to rotate freely. Since the slide position was adjustable, 

it was possible to place each specimen precisely as desired 

even though the crystal length might vary slightly from speci

men to specimen. 
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Figure 6. The specimen holder 
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The crystal was carefully placed on the holder above the 

narrow slot with the back of the crystal toward the slide. 

The deflection wires and trigger wires were then connected to 

the crystals in the manner described earlier and also were 

connected to terminals on the holder. The slide was moved 

forward so that the pivot block rested against the back face 

of the crystal while the front face of the crystal was col-

linear with the front face of the sample holder. With the 

sample thus positioned, the slide was locked in place. 

The electrical resistance of the trigger stripes and 

deflection stripes were checked with a Hewlett Packard Model 

410B vacuum tube voltmeter (Hewlett Packard, Loveland, Colo

rado). If the stripes were conductive, the holder was placed 

in the cleavage apparatus. 

The Cleavage Apparatus 

The cleavage apparatus consisted of a small electrical 

furnace and a pendulum mounted together on a heavy steel base 

plate and enclosed in a gastight plexiglas box. The inside 

dimensions of the furnace were 20 cm x 15 cm x 10 cm. Two 

stainless steel rails running the length of the furnace were 

bolted to the bottom. A stainless steel rod was bolted trans

versely across the rails to prevent the sample holder from 

moving backward during cleavage. 

The heating element consisted of Kanthal "A" ribbon laced 

through holes drilled in the refractory lining of the furnace. 
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The heating element was isolated from the furnace interior in 

order to give more uniform radiant heating. 

Power for heating was supplied by an SCR Stepless Power 

Unit (West Instrument Company, Schiller Park, Illinois). The 

temperature was measured with a Pt/Pt-10% Rh thermocouple 

placed approximately 1 cm above the sample and connected to a 

West Model JSCR controller. The temperature indicated by the 

JSCR controller was calibrated against a chrome1-alumel 

thermocouple placed exactly at the sample position and con

nected to a millivolt potentiometer (Leeds and Northrup Co., 

Philadelphia, Pennsylvania). The calibration was done in air 

and also with nitrogen flowing over the sample position at a 

rate of 12.2 &/min. It was found that temperature stabilized 

within 60 minutes after the JSCR controller indicated that the 

desired temperature had been reached. 

The furnace wall facing the pendulum contained a 2.5 cm x 

5.5 cm access slot to allow entrance of the cleavage knife 

into the furnace. The pendulum had an arm length of 38 cm. A 

10.5 cm long rod was mounted on the bob end of the pendulum by 

a pin and set screw. This allowed adjustment of the rod so 

that the cleavage knife, which was attached to the end of the 

rod, would be exactly vertical when it struck the crystal. 

The total mass of the pendulum system was 4900 grams. The 

cleavage knife was made of steel hardened to Rockwell 55C and 

ground to a 15° chisel edge with a radius of curvature of 

1.27 cm. 



51 

The pendulum could be held at any angle up to about 40® 

from the equilibrium position by a wire. Cleavage of the 

crystal vras accomplished by cutting the wire with wire cutters. 

The pendulum velocity was calculated from the period which was 

measured approximately 500 times at drop angles ranging from 

S to 15*. The period was found to be independent of the drop 

angle to within less than 1% error. The velocity of the knife 

was then calculated to be 90 cm/sec. 

Cleavage Tests in Various Atmospheres 

Single crystal specimens with the dimensions mentioned 

earlier were cleaved in nitrogen at temperatures ranging from 

room temperature to 300®C. The upper temperature was limited 

because of damage to the bearings in the pendulum assembly by 

heat. Samples were also cleaved at room temperature in argon, 

carbon dioxide and air. Several samples were irradiated to a 
O 

dose of about 3 x 10 rads at the rate of 1.96 rads/hour (Y-

irradiation) and then cleaved in nitrogen. In an attempt to 

determine the effect of sample dimensions on crack speed 

several samples about 0.3 cm x 0.8 cm x 2.0 cm were also 

cleaved in air. The composition of the gases is given in 

Table I. 

For testing in nitrogen and argon atmospheres the gas was 

delivered from a pressurized tank by Tygon tubing (Norton 

Company, Akron, Ohio) through 4 steel drying tubes, 61 cm long 

and 3.8 cm in diameter, filled with anhydrone (J. T. Baker 



Table I. Composition of the gases 

Argon Nitrogen Carbon dioxide 

Dew point 

«2 

»2 

N2 

CH4 

COo 

-100®F 

0.0005% 

0.0001% 

0 . 0 0 2 0 %  

0.0001% 

0.0001% 

-90*F 

0.0015% 

0.0005% 

nil 

nil 

CO 0.1% 
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Chemical Co., Phillipsburg, New Jersey). The gas flow was 

then split into 2 parts and flowed through flow meters into 

the plexiglas box. A flow of 12.2 &/min went directly into 

the furnace while the other flow, also 12.2 &/min, was 

directed around the exterior of the furnace. The pressure in 

the plexiglas box was measured with a manometer filled with 

oil of known density. The rate of escape of the gas from the 

box was regulated to maintain a positive pressure of less than 

0.01 psi. The gas flow was maintained for a period of time 

sufficient to allow a volume of gas 5 times that of the box to 

flow through the system. 

The procedure used with carbon dioxide was identical to 

that outlined above except that drying tubes filled with 

silica gel, rather than anhydrone, were used. Cleavage in air 

was accomplished by leaving the system open to the atmosphere. 

In all the tests the humidity was checked with a Lab-Line 

Electro-Hygrometer (Lab-Line Instruments, Inc., Melrose Park, 

Illinois). The tests in air were conducted within the relative 

humidity range 45-54 percent. For tests in other atmospheres 

the lower limit of the electro-hygrometer, 30 percent, was 

reached within the time a volume of gas equal to that of the 

plexiglas box had passed through the system. The true amount 

of moisture in the atmosphere was not determined. However, 

since 5 volumes of gas were passed through the system before 

cleavage, it was assumed that the relative humidity was well 

below 30%. 
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Measurement of Crack Velocity 

The electrical circuit developed by Oilman et (49) 

was extensively modified for this study to accommodate stripes 

of low resistance. A diagram of the electrical circuit used 

in this series of tests is shown in Figure 7. A 30 volt-100 

milliamperè DC power supply was used to supply power to the 

deflection stripes and the trigger stripe through the circuit. 

A Tektronix 564B oscilloscope (Tektronix, Inc., Portland, 

Oregon) with a 2A63 amplifier and a 2B67 time base and a 

Tektronix 561A oscilloscope with a 3A6 amplifier and a 2B67 

time base were connected to the electrical circuit. 

Both oscilloscopes were set in the single sweep mode and 

adjusted to trigger when the trigger stripe on the crystal 

surface was broken. The trigger test in the circuit allowed 

simulation of stripe breakage to insure that the oscilloscopes 

were set properly. The Y-axis sensitivity was adjusted so 

that the oscilloscope trace would remain on the screen during 

breakage of all deflection stripes. The storage oscilloscope 

was set at a sweep rate 10 times slower than that of the other 

oscilloscope. This was done to increase the probability of 

observing the breakage of the stripes since the effect of 

atmosphere and temperature on crack velocity were unknown. 

Once the oscilloscopes were triggered by the trigger 

stripe breakage, the sweep was shifted upward as each deflec

tion stripe was broken, creating a step-like trace. By noting 
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Figure 7. The electrical circuit 
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elapsed time between steps, it was possible to determine the 

time required for the cleavage crack to travel from one point 

to another in the crystal. A typical oscilloscope trace is 

shown in Figure 8. 

Examination of Fracture Surfaces 

Usually within 3 minutes after cleavage, one cleavage arm 

was removed and etched for 10 seconds in a 30 gm/& solution of 

mercuric chloride in absolute ethanol (75). It was then 

rinsed in acetone and dried in a stream of nitrogen gas. How

ever, when cleavage was performed at temperatures above 100°C, 

it was necessary to allow the sample to cool before being 

etched. Several attempts were made to etch samples while they 

were still hot. The etchant dried almost immediately upon 

contact with the surface, leaving deposits which obliterated 

most surface features. 

The etchant produced sharply defined pyramidal shaped 

pits with sides oriented in the <100> directions. As reported 

by Long (74) the subgrain boundaries appeared to be more 

heavily attacked than the interior of the subgrains. The 

cleavage surface was examined under reflected light with a 

Zeiss Ultraphot II camera microscope (Carl Zeiss, Oberkochen/ 

Wuertt., West Germany). Photographs of interesting features 

were taken. 

Due to the rapid attack of moisture in the atmosphere on 

the cleavage surface, it was found necessary to protect the 
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Figure 8. Typical oscilloscope trace 
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surface while it was being observed microscopically. A layer 
O 

of gold approximately SOA in thickness deposited on the sur

face retarded the attack but did not prevent it. However, if 

a stream of dry nitrogen was directed across the surface, 

attack could be prevented indefinitely. 

After each crystal was examined the dimensions of each 

cleavage arm were measured with a standard micrometer. The 

distance between deflection stripes was measured at the point 

of breakage with a microscope. 
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RESULTS AND DISCUSSION 

The Range of Crack Velocities 

In the crystals of regular geometry (total height = 1.2 

cm) the crack velocity averaged over the entire crystal length, 

or V^, ranged from about 0.09 Vg to 0.20 Vg. The velocity of 

sount, Vg, was taken as (C^^^/p)^/^ where C^^^ is the elastic 

modulus in the <100> directions and p is the density (49). 

The values of C^^^ p were taken from a compilation of 

values (76) obtained from many sources. The temperature de

pendence of C^^ and p were also taken from the same source. 

In the crystals with reduced height (total height = 0.8 cm) 

V^ ranged from about 0.001 Vg to about 0.16 Vg. The averages 

and ranges of V^ for samples cleaved in nitrogen are shown in 

Figure 9. The averages and ranges of V^ for samples cleaved 

in other atmospheres are shown in Table II. The values of V^ 

for individual specimens can be calculated from data in 

Appendices B and C. 

In the crystals of regular geometry, the crack velocity 

measured between 2 consecutive deflection stripes, or Vj, 

ranged from about 0.07 Vg to about 0.34 Vg. In the crystals 

with reduced height the range was from 0.00 to about 0.32 Vg. 

The fastest crack speed measured was 1.57x10^ cm/sec, which is 

0.329 Vg. This value was obtained in a crystal cleaved in 

argon. However, the fastest crack speed in relation to Vg was 

obtained in a crystal cleaved at 200°C in nitrogen. This 
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Table II 

The average and ranges of for crystals cleaved in various 
atmospheres 

Atmosphere Average Va High Va Low Va 
cm/ sec cm/sec cm/sec 

Argon 8. 95x10* 9 .66x10* 7. 74x10* 

Carbon dioxide 7. 88x10* 8 .48x10* 6. 93x10* 

Air (regular geometry) 7. 53x10* 8 .96x10* 5. 26x10* 

Air (reduced height) 3. 72x10* 7 .39x10* 0. 055x10* 

Nitrogen (y-irradiation) 8. 29x10* 9 .51x10* 7. 40x10* 

value was 1.53x10^ cm/sec, or 0.337 Vg. It is fastest in 

relation to Vg because Vg decreases with temperature due to 

the temperature dependence of 

The highest values of Vj approach the maximum theoretical 

crack velocity for NaCl very closely. The velocity limit, 

which is well below the velocity of sound, was first postu

lated by Mott (39). He obtained the relation 

Vp = BVç( 1 - (39) 

where V^ is crack velocity, B is a constant, Vg is the veloc

ity of sound, E is the elastic modulus, y is the surface 

energy, a is the applied stress, and L is crack length. 

Roberts and Wells (77) calculated the constant B and obtained 

a value of 0.38. Experimentally, B has been found to equal 

0.31 for a wide range of materials (49), but values as high as 
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0.40 have been reported (77). It is possible that the highest 

values of Vj from the current study are slightly high due to 

experimental error. The fastest crack speed is only 6% 

greater than 0.31 Vg. Nevertheless, values greater than 0.31 

Vg were obtained in 4 different crystals. 

Figure 10 shows the variation in Vj with crack length for 

sample 24. It is a typical example of the way Vj varied in 

most specimens. Forwood (48) and Oilman et al. (49) have 

observed that Vj is typically large at the front of the crys

tal, decreases in the middle of the crystal, and then increases 

again toward the back. They attribute the increase at the back 

of the crystal to enhancement of the strain field at the crack 

tip as the crack approaches a boundary. The oscillation in 

crack velocity shown in Figure 10 is apparently a common 

occurrence (48,51). Forwood (48) explains the oscillation in 

the following manner. As the knife travels at a uniform rate 

between the 2 cleavage arms of the sample, the arms lose con

tact with the knife with a resulting decrease in force exerted 

by the knife. The crack then slows down until the knife can 

again exert full force on the arms. Burns (51) says there is 

no reason for the tips on the cleavage arms to lose contact 

with the knife since they are loaded by the bent arms. He 

states that one possible cause of velocity oscillation is that 

the crack travels with flexure waves produced by the knife. 

T W Ô 4 4" 4 ^ A m 4»^ *^4^ 4**- ^ I* ^ ^ ^ ^ £ * WW W UAXW W W Vb W JL 

the knife be less than the maximum determined by Equation 37 
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Figure 10. Variation in Vj; with crack length for sample 24 
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in the section on theory. This criterion was applied to the 

data of this study and was satisfied. On this basis the influ

ence of flexure waves was ruled out as a cause of the oscilla

tion. Oilman et (49) state that oscillation can occur 

because the swiftly moving crack surges ahead until the force 

supplied by the knife is reduced. If the crack slows down 

enough it can cause numerous dislocations to be nucleated, 

slowing it down even more. However, since the arms are being 

moved apart at constant velocity, the force again builds up 

and the crack surges ahead again. This appears to be the case 

which applies to this study. However, the oscillation did not 

appear to be severe enough for the crack to slow down suffi

ciently to cause great numbers of dislocations to be nucleated. 

Reproducibility of Data 

The reproducibility of the crack speed measurements in 

this study is comparable to that reported by other workers 

using the dynamical cleavage technique (3,48,49). The ratio 

of the standard deviation of the average crack speed to the 

average crack speed for each set of crystals tested under the 

same conditions was typically less than 13% of the average 

speed. However, the ratio for samples cleaved at 250®C, the 

highest temperature at which a group of crystals was cleaved, 

was 20.8%. Samples with the regular geometry cleaved at 

room temperature in air had a ratio of 15.3%. while the 

ratio for samples with reduced height cleaved in air was 
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76%. 

Various factors which could influence data reproducibility 

are: (1) cleavage under conditions of enhanced plastic flow 

at the crack tip, (2) use of a damaged cleavage knife, (3) 

specimen misalignment, [4] lack of precision in stripe break

age, (5) atmospheric effects on NaCl, (6) lack of uniformity 

in properties from specimen to specimen. Each of these factors 

is discussed below. 

Gilman (4) has found that in quasistatic measurements of 

surface energy, the use of a wedge gives poor results. This is 

apparently true even if the wedge is very carefully made and 

lubricated. However, in dynamical cleavage, wedges have been 

employed with good success (3,48,49). Oilman's data (49) show 

that reproducibility is better when the crack speeds are 

higher than when they are low. This indicates that the quasi-

static cleavage method suffers from greater variation in 

plastic flow at the crack tip than does dynamical cleavage (4). 

It also shows that conditions producing fast cracks should 

have greater reproducibility than conditions favoring slow 

cracks because of the reduced tendency for plastic flow. The 

tendency for plastic flow should be increased by increasing 

the temperature and also by reducing the crystal height (i.e. 

making the crack long with respect to crystal height (34). 

Thus the reduced precision of measurements made at 250®C and 

on the samples with reduced height is apparently attributable 

in part to increased plastic flow at the crack tip. 
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Great care was taken to reduce experimental error due to 

any variation in the condition of the cleavage knife. Because 

the same knife was used to cleave many specimens, it was 

examined periodically under a microscope and also by running a 

fingernail across the edge to detect any nicks in the edge. 

Due to the possibility that there might still be damage which 

was undetectable, the knife was replaced periodically with a 

duplicate. A record of which knife was used for each sample 

was kept and casual observation of the data showed no discern

ible effect due to knife condition. For instance, there was 

no trend toward reduced crack speed with prolonged use of a 

single knife, nor a drastic change in speed when the knife was 

replaced. 

Misalignment of the specimen with respect to the line of 

travel of the cleavage knife could not be ruled out as a 

source of experimental error. As mentioned earlier, a tre

mendous variation in crack speed from specimen to specimen was 

noted in Kyropoulos-grown samples cut from a single parent 

block with a string saw. This was due in part to misalignment 

of the [100] direction in the crystal from the line of travel 

of the knife by about 2®. Oilman (4) has indicated that the 

number and height of cleavage steps is a measure of the degree 

of misalignment. The photomicrographs in Figures 27-29 show 

that steps on the cleavage surfaces of the Kyropoulos crystals 

were indeed very large and numerous. Many o± the cleavage 

steps can be related to imperfections such as twist boundaries. 
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Nevertheless, specimen misalignment was most likely a contrib

uting factor. Comparison with the photomicrographs of the 

cleavage surfaces of the Stockbarger crystals in Figures 21-26 

will show that the difference in step density and height is 

significant. Another indication of specimen misalignment in 

the Kyropoulos crystals was the formation of twin <110> cracks 

at the point of knife impact in about 80% of the crystals. 

(Similar cracks have also been observed by Wiederhorn (78).) 

The cracks generally ran about 2 mm into the crystal and were 

arrested by plastic flow. In several cases the <110> crack 

shifted to the <100>direction, traveling about 1 cm before 

stopping. The presence of <110> cracks in the Stockbarger 

crystals was observed only once in the test crystals. 

Failure of the knife to bisect the samples exactly did 

not appear to produce any variation in crack speed in a con

sistent manner. When the ratio of the heights of the 2 cleav

age arms of a sample was related to the speed, it was found 

that samples with equal ratios often produced crack speeds at 

opposite ends of the range of the data. (A ratio of 1.0 

represents exact bisection and an increasing ratio represents 

increasing deviation from bisection). 

Forwood (48) has stated that part of the scatter in his 

data was caused by the deflection stripes having finite width. 

It is possible that a deflection in the oscilloscope trace may 

 ̂  ̂  ̂  ̂•• — —» i  ̂ A • » T  ̂̂  A T 4" X*  ̂  ̂  ̂  ̂

width of the deflection stripes was less than 10% of the 
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distance between the stripes. For this reason it was felt 

that any error due to deflection before complete stripe break

age would be quite small. Several tests were made to see if a 

crack could be passed through a crystal without breaking the 

deflection stripes. This was done by compressing the crystal 

to hold the sides of the crack together. It was always found 

that if the crack passed under a stripe, the stripe was 

broken. It was often impossible to see the break with the 

naked eye so that the best way to detect breakage was to check 

the electrical resistance. Because of these tests it was 

assumed that a great amount of spreading apart of the cleav

age arms was not required for stripe breakage. This was a 

necessary condition for accurate measurement of crack speed. 

It was noted that the ratio of the standard deviation of 

the average to the average for the group of crystals 

cleaved in air is over twice as large as the ratios for all 

other atmospheric conditions. The one exception is the ratio 

for the irradiated crystals cleaved in nitrogen. The ratio 

for air is only about 1.85 times as large as this ratio. The 

ratio for the samples with reduced height, which were also 

cleaved in air is about 10 times as large as the others. The 

greater scatter of the air data could not be related to a 

specific cause although less control was exerted on the atmos

phere during air testing than at other times. The only control 

uscd. n'ô5 mâmccïïâîiCc Oj. ïciâtive ii.uiiii.aity in the range 45%-54%« 

Machlin and Murray (63) and Class et al. (66) have observed 
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that mechanical tests on NaCl in air during summer months may 

give erratic results and they have attributed this to varia

tions in ozone content in the atmosphere after thunderstorms. 

The samples of regular geometry were cleaved in air on 3 

separate days. It was noted that heavy rain occurred on one 

of the test days but the range of data collected on that day 

was not significantly different from the data gathered on the 

other days. The samples with reduced geometry were all 

cleaved on the same day and rain did not occur on this day. 

It therefore seems unlikely that thunderstorm activity affec

ted the reproducibility significantly. Although the exact 

cause of the scatter could not be determined, it was undoubt

edly a result of some factor present at the time of cleavage 

rather than a result of prior exposure to the atmosphere. 

This was deduced from the fact that all samples cleaved in the 

various atmospheres were unavoidably exposed to the air prior 

to being placed in the test atmosphere. 

Finally, the perfection of the single crystals was exam

ined. The cleavage surfaces showed the presence of subgrains 

2 2 ranging in number from about 1/mm to 10/mm . Most of the 

sub-boundaries appeared to be low angle tilt boundaries since 

few cleavage steps emanated from them. No correlation between 

crack speed and the density of sub-boundaries could be made. 
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Effect of Temperature and Atmosphere on Crack Velocity 

The criterion for statistically comparing the various 

groups of data was passage of the F test. If the averages of 

2 sets of data passed the Student "t" test at the a = 0.05 

level, then a significant difference was said to exist. In 

cases where the averages and variances were approximately the 

same, it was assumed that no significant difference in the 

data existed. Practically, this meant that for the difference 

between the average V^'s for 2 groups of crystals (V^ is the 

average crack velocity in a single specimen) to be important, 

the difference had to be greater than 10%. 

Crack velocity in the irradiated crystals was not signif

icantly different from that in the unirradiated crystals. 

The average for the irradiated crystals was (8.29 + 0.68) 

X 10^ cm/sec and for the unirradiated crystals cleaved in 

nitrogen was (8.21 +_ 0.53) x 10^ cm/sec. Since it is the 

premise of this study that crack velocity is directly related 

to fracture energy, these results can be compared to the re

sults of a study made by Oilman (4). Oilman found in the 

quasistatic measurement of surface energy of LiF that sub

stantial radiation caused little change in surface energy. 

He justified this by saying that although the bulk properties 

of a crystal might be changed, relatively few of the bonds at 

the cleavage plane would be affected and fracture energy is 

determined mainly by the breakage of these bonds. Wiederhorn 
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et al. (30) stated that irradiation caused an apparent in

crease in fracture energy in NaCl (which would mean slower 

crack speed in this study). This is contrary to what might be 

expected if a change were to be seen at all. They explained 

this by saying that plastic flow, which in this case enhanced 

crack movement, was reduced by the irradiation. The fracture 

energy appeared to be insensitive to radiation dose from 

6 7 
4x10 rads to 3.4x10 rads although the yield stress was 

increased by a factor of 4. Reducing the specimen width in 

soft crystals to about 0.1 cm had about the same effect as 

irradiation of wider samples. 

The average for samples cleaved in argon was (8.95 + 

0.57) X 10^ cm/sec. This was not discernibly different from 

the value obtained in nitrogen. Argon would not be expected 

to have any effect on crack propagation since it is generally 

considered to be inert (66). The similarity in the data 

therefore indicated that nitrogen also has little effect. 

Gorum et (61) have stated that nitrogen embrittles NaCl 

tested in bending. However others (63) have found no em

brittling effect of nitrogen on NaCl and have indicated that 

the findings of Gorum ejt were due to the presence of NO 

or Oj as impurities in the nitrogen gas. Both the argon and 

nitrogen gases used in this study contained small amounts of 

oxygen. The argon also contained nitrogen as an impurity. 

No attempt was made to determine if NO or 0^ were preSêiit. 

It is therefore possible that either NO or 0^ might have 
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caused embrittlement in crystals cleaved in argon and nitrogen. 

The average for crystals cleaved in COg was (7.88 +_ 

0.55) X 10^ cm/sec. This was about 12% less than the value 

for crystals cleaved in argon and therefore significantly dif

ferent. However, this was only about 4% less than the average 

for crystals cleaved in nitrogen. For this reason it was 

felt that the action of the COg atmosphere was not due to 

exclusion of NO or 0^, which might have been present in the 

argon and nitrogen. Gross and Gutshall (79) have found that 

exposure of NaCl to moist COg causes enhanced ductility during 

quasistatic measurement of surface energy. Otterson (64) 

found that crystals aged in moist COg and tested in flexure 

in air were embrittled unless the crystals were initially free 

of hydroxyl ions. Aging in dry COg and then testing in air 

produced no detectable difference from results of testing 

crystals which had been protected from exposure to COg. The 

results of aging in one atmosphere and then testing in another 

are not necessarily comparable to testing in the atmosphere 

used in aging. This is shown by the conflicting data of Gross 

and Gutshall (79) and Otterson (64). Also, the fact that 

scatter in the air data of this study is greater than for 

other atmospheres although all crystals were exposed to air 

reinforces this assumption. For this reason Otterson's re

sults cannot be considered necessarily contradictory to the 

results of this study. The manner in which COg might influ

ence crack speed is unknown. 



73 

Temperature had only a slight effect on crack velocity in 

the samples cleaved in nitrogen. As stated earlier the value 

of at room temperature (22®C) was (8.21 + 0.53) x 10* 

cm/sec. The values of at 50*C, 100®C, 150®C, 200®C, and 

250°C were (7.07 + 0.91) x 10* cm/sec, (6.86 + 0.84) x 10* 

cm/sec, (6.90 ̂  0.84) x 10* cm/sec, (7.67 +_ 0.75) x 10* 

4 
cm/sec, and (6.95 ̂  1.4) x 10 cm/sec, respectively. The 

difference between the average at room temperature and the 

values at 50*C, 100*C, and 150° was statistically significant. 

However, the value at 200*C was only 8% less than that at room 

temperature and could not be said to be discernibly different. 

The variance of the data from the samples cleaved at 250°C 

was too great to allow comparisons to be made. Neglecting 

the room temperature data, the variation in average with 

increasing temperature was so small that the differences were 

not significant. The maximum variation was only 10% and this 

was not enough to satisfy requirements of the "t" test. 

The exact effect of temperature on crack velocity is 

dependent on the crystal quality and on the experimental 

procedure. If conditions are such that plastic deformation 

is favored, the effect of temperature will be more pronounced 

than otherwise. Oilman et (49) found no effect of temper

ature on crack velocity in LiF between -200°C and 25°C. Con

versely, Burns and Webb (3) found that the crack velocity in 

LiF decreased substantially as the temperature increased 

from 25®C to 300®C. The difference in their findings may be 



74 

due to several reasons. The fact that they used different 

ranges of temperature is an obvious factor. Oilman e^ al. 

(49) also used a greater knife velocity than Burns and Webb 

(3) and this would make crack velocity less sensitive to 

temperature. In this study the experiment was designed to 

reduce the tendency for plastic flow. This was done by using 

a high knife velocity and using samples with height much 

greater than those used by Oilman £t al. (49) or Burns and 

Webb (3). This necessarily would have reduced the effect of 

temperature on crack velocity. 

The same conclusions that were drawn from the data for 

samples cleaved in nitrogen at 22*C could also be made for 

the data from the irradiated crystals. That is, the irradi

ated crystals tended to produce higher average crack veloci

ties than crystals cleaved at 50*C, 100®C, and 15Q®C. This 

is not surprising since crack speed in the irradiated and 

unirradiated samples was similar. This was also true of the 

data from crystals cleaved in argon. In addition, it was 

possible to say that crack velocity at 200®C tended to be 

less than for the crystals cleaved in argon. However, such 

conclusions could not be made about the crystals cleaved in 

COg. The average for these samples was not sufficiently 

different from the others to satisfy the "t" test. 
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Calculation of Cleavage Energy 

The equation of crack motion which was derived earlier 

was used to calculate the cleavage energy of the specimens. 

The computer program shown in Appendix F was used to facili

tate computation. The values for several specimens were cal

culated with the aid of the equation developed by Burns and 

Webb (3) and compared with values obtained from the newer 

equation. The former values were always less than the latter 

because of the neglect of shear effects by Burns and Webb. 

The values obtained from the two equations converged with 

increasing crack length because of the decreasing importance 

of shear. 

In a typical crystal the apparent cleavage energy de

creased with increasing crack length. This was due to the 

fact that the crack velocity either remained fairly constant 

or decreased slowly throughout most of the crystal length. 

Both the equation of Burns and Webb (2) and the present equa

tion predict that when shear can be neglected the crack 

velocity should be inversely proportional to crack length so 

long as the cleavage energy is constant. This is equivalent 

to saying that the square of the crack length plotted against 

time would yield a straight line. In the derivation of Burns 

and Webb's equation it was not necessary to assume such a 

relationship between crack length and time and so the relation

ship is not a necessary condition for applicability of the 
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equation (51). This is also true of the present equation. If 

the plot of the square of crack length versus time is a curve, 

the cleavage energy varies continuously during cleavage (2). 

In order for the equation of Burns and Webb (2) and the 

present equation to be applicable, the crack must travel 

slower than flexure waves sent down the crystal by the knife 

(51). This condition is met when Equation 37 is satisfied. 

A condition equivalent to Equation 37 is 

L 2 ^2 _ ir ,̂ 11 1/2 
= — (—) (hi+hg) (40) 

(t-tg) (t-tg) 2/3 P 

where L is crack length, (t-tg) is time subsequent to intro

duction of the cleavage knife into the crystal, X is position 

of the largest bending moment pulse produced by the knife, 

is the elastic modulus, p is the density, and (h^+h2) is 

the total crystal height. If the crack travels with a partic

ular bending moment pulse, the crack position follows the 

relationship 

hi 
1 ^ (41) 

(t-tj) (tj-tj) 

As stated earlier, the crack velocities obtained in this study 

were fairly constant (i.e. [^/(t-tg) = ^^/(ti-to) and not 

7 2 
Lj/(t-tQ) = ^^/(ti-tQ) ). Also, the crack velocity was small 

enough so that Equation 40 was satisfied. Because of this, it 

was felt that the crack motion was not strongly affected by 
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the motion of flexure waves. 

The values of cleavage energy obtained in this study are 

plotted in Figures 11-20. The fact that the cleavage energy 

varied with crack length did not allow the assignment of a 

single value of cleavage energy to a crystal. However, when 

the crack length was greater than about 1 cm, the measured 

2 cleavage energy was typically between 100 ergs/cm and 400 

2 ergs/cm . Estimations of the reversible surface energy of 

2 NaCl from atomic theory range from about 77 ergs/cm to about 

2 190 ergs/cm and experimental measurements range up to about 

2 
330 ergs/cm (4,6). Thus it can be seen that the experimental 

values of cleavage energy obtained in this study are reason

able. 

Comparison of Figures 14 and 15 shows that there was 

little difference in the cleavage energy of the irradiated 

and unirradiated crystals. This was to be expected since 

there was no significant difference in crack velocity. How

ever most points beyond a crack length of 1 cm in Figure 14 do 

lie slightly above the corresponding points in Figure 15. 

While it cannot be said that the difference is significant, 

the fact that the cleavage energies of the irradiated crystals 

are slightly higher is in agreement with the findings of Wie-

derhorn e;t a^. (30). They attributed this to the absence of 

enhanced crack growth from plastic flow, which was found in 

soft crystals. Such enhanced crack growth gave very low 



78 

1000 

800 
N 

|«0 

400 — 

200-

e 

o 

o O o 
8», 

o o o o o 

J I I 1 I L 
0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1,6 1.8 2.0 2.2 

L, cm 

Figure 11. Cleavage energy of samples of regular geometry 
nl txo'xr̂ A "îr» a n-r 



79 

1000 — 

ex 

I 

I I I 
0.0 0.2 0.4 0.6 0.8 T.O 1.2 1.4 1.6 1.8 2.0 2.2 

Figure 12. Cleavage energies of samples cleaved in CO, 



80 

E 600 

f 
40CI 

200 — 

0.2 0.4 0.6 0.8 1.0 T.2 1.4 T.6 1.8 2.0 2.2 
L, cm 

Figure 13. Cleavage energies of samples cleaved in argon 



81 

1000 — 

u 600 — 

» 
(f 

Figure 14. Cleavage energies of Y-irradi at.ed samnles 



82 

1000 — 

M 
8 600 — > 

1.0 0.2 0.4 

 ̂ 400 — 

Figure 15. Cleavage energies nf samples cleaved in nitrceen 
at 22°C 



83 

1000 -

s 

> 

% 

L, cm 
0.0 0.2 

XJ ̂  1 V A n A  ̂1 A  ̂  ̂̂ ̂ m# ̂   ̂«C  ̂*» M%#» 1 ̂  ̂  ̂̂  ̂  m ̂   ̂fv «m .k W * WJL «» CVM4J^ 4*W^ A^^WJbWgWAA» 
at 50®C 



84 

% 
8 % 

gUic 17. ClcàVàgc cûcrgies of samples cleaved in nitroeen 
at 100*C 



85 

I 



86 

1000 

CN 
i 600 — 

I 

% 

I 1 [ 

L, cm 

 ̂ 400 — 

Figure 19. Cleavage energies of samples cleaved in nitrogen 
at 200*C 



87 

2000 

1500 — 

 ̂1000 

500 — 
o o 

o o o 

o o o 
o® o o 

o 
o 

0° 
o 

oO 
o 

0*0 0.2 0.4 0.6 ôTi ïTô w t;I t.6 i.s 2.0 2.2 

L, cm 

T? 4 m 1V* A 0 f\  «?• O'mvs «-n  ̂«m m-  ̂j 4 —» 

at 250°C 



88 

cleavage energy values by the quasistatic method. Figure 21 

shows a photomicrograph of sections of the cleavage surface of 

an irradiated crystal. The density of etch pits is very much 

less than that on the surface of the unirradiated crystal 

shown in Figure 22. It thus appears that much less plastic 

flow occurred in the irradiated crystal, precluding the possi

bility of enhanced crack growth. However, the density of 

cleavage steps on the irradiated crystal surface is about the 

same as on the unirradiated crystal surface. Formation of 

these cleavage steps would have contributed significantly to 

the cleavage energy since they were probably formed by shear 

rather than by secondary cleavage (1,26). 

There appeared to be no difference in the cleavage energy 

of crystals cleaved in argon and nitrogen at room temperature. 

For crack lengths greater than about 1 cm, the cleavage energy 

of crystals cleaved in COg was noticeably greater than that of 

crystals cleaved in argon or nitrogen. The reason for the 

difference has not been determined. As mentioned earlier, 

Gross and Gutshall (79) found that the cleavage energy of NaCl 

crystals cleaved in CO2 saturated with water vapor was greater 

than that of crystals cleaved in vacuum, probably because of 

plastic blunting of the crack tip. However, in this study the 

water content of the COg was much less and Otterson (64) has 

found that dry CO^ has no effect on NaCl. 

The effect of temperature on the cleavage energy was 



Figure 21. Photomicrograph of portion of cleavage surface 
of an irradiated sample, 60X. Direction of 
cleavage is from bottom to top 

Figure 22. Photomicrograph of portion of cleavage surface of 
a crystal cleaved in CO2, 150X. Direction of 
cleavage is from bottom to top 
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negligible. The cleavage energy of crystals cleaved at 22°C 

appeared to be slightly less than for crystals cleaved at 

higher temperatures. However, there was considerable overlap 

of the data so that no changes in cleavage energy with in

creasing temperature could be detected. The scatter in the 

data obtained at 250*C was considerably greater than that 

obtained at lower temperatures, presumably due to increased 

ease of plastic flow at the crack tip. 

The small effect of temperature on the cleavage energy 

may be surprising in view of the fact that Burns and Webb (3) 

found a significant temperature dependence in LiF. The differ

ence in the results can be attributed to the different sample 

dimensions used. Burns and Webb used long slender crystals. 

However, crystals with large height were used in this study to 

reduce the tendency for plastic flow and this would have re

duced the effect of temperature. 

Examination of Fracture Surfaces 

In general, the dislocation etch pits on the (010) cleav

age surfaces of the crystals were distributed in several ways. 

Narrow bands of etch pits lying either parallel or perpendicu

lar to the [100] direction of cleavage were usually present. 

Occasionally, slip bands lying at 45* to the [100] direction 

were present. These showed the presence of slip on the {101} 

and {101} planes, which are normally considered to be inac

tive during cleavage (1). Subgrain boundaries always con-
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sîsted of very closely spaced etch pits. Finally, numerous 

etch pits were scattered over the surface without any apparent 

crystallographic pattern. 

The slip bands lying at 45® to the [100] direction were 

generally more prevalent toward the rear of the crystal. 

They appeared to be formed by compression from the small pivot 

block against which the rear of the crystal rested. Slip on 

both the {101} and {101} planes typically occurred simultane

ously. 

An attempt was made to see if compression by the knife 

could be responsible for slip band formation. It was found 

that if the crystal was compressed slightly by the knife 

parallel to the (010) cleavage plane, bands of dislocations 

lying perpendicular to the [100] cleavage direction were 

formed. The width and spacing of the bands depended upon the 

amount of compression. When the crystal was compressed in the 

direction of cleavage but an an angle other than parallel to 

the cleavage plane, slip in either the {101} or {101} planes 

was activated. Slip on one family of planes appeared to pre

clude slip on the other. The width and spacing of the bands 

formed in this manner also depended upon the amount of com

pression. Compression apparently did not cause formation of 

bands parallel to the [100] cleavage direction. 

For crack velocities greater than about 1x10^ cm/sec 

vaïiâ.tlOiiS ill velocity di,d not appear to significantly affect 

the density of dislocations. No correlation between etch pit 
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density and crack velocity could be made. The density of etch 

pits was much greater than could be accounted for by inter

action with the cleavage crack, according to the results of 

Oilman et (49) and Burns and Webb (3) . Evidence for the 

assumption that the majority of dislocations were formed by 

processes (such as compression) extraneous to cleavage was 

found in examination of the irradiated crystals. The density 

of etch pits on the cleavage surface of sample 55, an irradi-

2 ated crystal, was only about 450 etch pits/cm . However, the 

crack velocity was no greater than that for unirradiated 

crystals with much greater dislocation densities. Oilman et 

al. (49) stated that plastic deformation occurs in significant 

amounts in LiF only when the crack velocity is below the 

ductile-brittle transition velocity (about 0.03 Vg). Burns 

and Webb (3) have shown that dislocation interaction with a 

cleavage crack persists to velocities almost 10 times as fast 

as the transition velocity. However, the amount of deforma

tion decreases rapidly with increasing crack speed. They 

state that dislocations which interact with high speed cracks 

lie very close to the cleavage surface and are easily pulled 

through the surface by image stresses. 

Although most of the dislocation etch pits observed 

could not be attributed to crack nucleated dislocations, 

there was strong evidence that some nucleation of dislocations 
A 

did occur in NaCl at crack velocities well above 5x10"* cm/sec. 

Figure 23 shows part of the cleavage surface of a crystal 



Figure 23. Photomicrograph of portion of cleavage surface 
of sample number 35, 240X. Direction of cleavage 
is from bottom to top 

Figure 24. Photomicrograph of part of cleavage surface of 
sample number 70, 60X. Direction of cleavage 
is from bottom to top 
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where the crack velocity was (8.0-8.4]xl0* cm/sec, or about 

0.17 Vg. The flat bottomed pits lying along cleavage steps 

indicate that crack nucleated dislocations have glided out of 

the surface during etching. Oilman e^ al. (49) say that the 

first crack nucleated dislocations to form lie along cleavage 

steps. This is probably because stresses are higher there 

than elsewhere. In this study flat bottomed pits were common

ly observed to lie along steps, even in crystals where crack 

velocity was greater than 9x10* cm/sec. This was especially 

true for crystals cleaved at temperatures greater than room 

temperature. 

In cases where the crack velocity falls below the transi

tion velocity, dislocations are driven deeper into the crystal 

and are not as easily lost through the cleavage surface. 

Figure 24 is a photomicrograph of part of the cleavage surface 

of sample 70. The crack velocity was about 600 cm/sec (0.001 

Vg) . The dislocation density is much greater than that shown 

in Figure 22, which shows part of the surface of a crystal 

where crack velocity was about 7.8x10* cm/sec. It was also 

possible to detect points on the cleavage surfaces where the 

crack hesitated. In the crystals of regular geometry (height 

= 1.2 cm) such points of hesitation were found only at the 

front of the crystal near the point of knife impact. However 

in the crystals with reduced height (height = 0.8 cm) crack 

stoppage also occurred in the rear of the crystal. This indi

cated that the tendency for plastic deformation was greater in 
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the narrow crystals. Figure 25 shows a point of hesitation in 

a sample of regular geometry. Behind the crack front are rows 

of etch pits lying parallel to the direction of cleavage. 

This is a feature resulting from plane stress conditions at 

the crack tip (30). Figure 26 shows a point of crack stoppage 

in a crystal with reduced height. The point of hesitation is 

approximately 2/3 of the crystal length away from the front. 

The crack velocity in this region could not be determined 

since the oscilloscope trace sweep was completed before the 

next deflection stripe beyond the region was broken. A 

velocity of 640 cm/sec was taken as an upper limit. This 

value is probably too high since the dislocation etch pit 

density is even greater than that shown in Figure 24. 

Figures 27-29 show parts of the cleavage surfaces of 

several Kyropoulos crystals. They are presented mainly to 

show the great difference in perfection between the Stock-

barger crystals and the Kyropoulos crystals. This poor qual

ity of the Kyropoulos crystals was a major factor in the great 

variance in crack speeds. Figure 27 shows the cleavage sur

face of a crystal cleaved at 100 ®C in nitrogen. Figure 28 

shows some of the cleavage step patterns that were formed. 

The mechanisms of step formation have been described by sev

eral workers (53,80,81), but Gilman (53) has given a partic

ularly good explanation. The descriptions of step formation 

mentioned here are largely his. Figure Z8Â illustrates the 

effects of 2 different screw dislocation configurations on 



Figure 25. Photomicrograph of part of cleavage surface of 
a crystal cleaved in air, 150X. Direction of 
cleavage is from bottom to top 

Figure 26. Photomicrograph of part of cleavage surface of 
a crystal with reduced height cleaved in air, 
60X. Direction of cleavage is from bottom to 
top 





Figure 27A. Photomicrograph of part of cleavage surface of 
a Kyropoulos-grown NaCl crystal, 60X, reduced 
50% in reproduction. Area shown is 20.0 mm 
from front of crystal. Arrow shows direction 
of cleavage 

Figure 27B. Photomicrograph of a section of the cleavage 
surface of the same crystal, 60X, reduced 50% 
in reproduction. Area shown is 13.0 mm from 
front of crystal. Arrow shows direction of 
cleavage 

Figure 27C. Photomicrograph of a section of the cleavage 
surface of the same crystal, 60X, reduced 50% 
in reproduction. Area shown is 3.5 mm from 
front of crystal. Arrow shows direction of 
cleavage 
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Figure 28A. Photomicrograph of part of cleavage surface 
of a Kyropoulos-grown NaCl crystal cleaved in 
nitrogen, 60X, reduced 50% in reproduction. 
Arrow shows direction of cleavage 

Figure 28B. Photomicrograph of part of cleavage surface of 
a Kyropoulos-grown NaCl crystal cleaved in 
argon, 60X, reduced 50% in reproduction. 
Arrow shows direction of cleavage 

Figure 28C. Photomicrograph of part of cleavage surface of 
a Kyropoulos-grown NaCl crystal cleaved in 
nitrogen, 60X, reduced 50% in reproduction. 
Arrow shows direction of cleavage 





Figure 29A. Photomicrograph of part of cleavage surface of 
a Kyropoulos-grown NaCl crystal, unetched, 60X, 
enlarged 10% in reproduction. Arrow shows 
direction of cleavage 

Figure 29B. Photomicrograph of the same surface shown in 
Figure 29A, etched, 60X, enlarged 10% in 
reproduction 
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fracture surface morphology. In the left upper portion of 

the photograph are many vees pointing in the direction of 

crack propagation. These were formed when the crack inter

sected closely spaced pairs of right and left handed screw 

dislocations, creating pairs of steps which ran together. 

Beyond the vees is the so-called "river pattern". This was 

formed when the crack intersected a group of screw disloca

tions which were all right or left handed (twist boundary). 

Figures 28B and 28C are examples of the cleavage step 

patterns formed when a crack intersects sub-boundaries. 

Figure 28B shows a tilt and a mixed tilt-twist boundary. In 

the upper left corner of the photograph are 2 simple tilt 

boundaries. The cleavage steps emanating from the lower 

portion of the second boundary indicate that this is a tilt-

twist boundary (80). Figure 28C also shows a tilt-twist 

boundary. 

It was generally observed that cleavage steps were formed 

by interaction of screw dislocations with the crack. Gilman 

(53) has shown that local concentrations of edge dislocations 

usually have no effect on step formation. However, if the 

concentration is uniformly high, a characteristically ragged 

type of step is formed which has no relation to crystallo-

graphic directions. The exact reason such steps are formed is 

unknown. A possible cause may be the presence of locally high 

stresses in a strain hardened region of the crystal. Figures 
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29A, B show the steps produced by edge dislocations. Figure 

29A shows the surface prior to etching and Figure 29B shows 

the same surface after it was etched. 
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CONCLUSIONS 

Cl) The cleavage energy of NaCl in this study was typ-

2 
ically 100-400 ergs/an . 

(2) Cleavage of NaCl in a carbon dioxide atmosphere 

causes the cleavage energy to be greater than if testing is 

performed in argon or nitrogen. 

(3) Cleavage of NaCl in air can produce erratic results, 

especially if other test conditions are conducive to plastic 

flow. The scatter in data is not directly attributable to 

atmospheric humidity or to thunderstorm activity. 

(4) For crack velocities greater than about 1x10* 

cm/sec, variations in velocity do not significantly affect 

the density of dislocations produced by cleavage. 

(5) Cleavage crack-dislocation interaction in NaCl per

sists at room temperature for crack velocities at least as 

great as 9x10* cm/sec. 

(6) Large doses of Y-irradiation have only a slight 

effect on crack velocity and cleavage energy if all other 

test conditions favor high crack velocity. 

(7) Increasing the test temperature from 22®C to 250*C 

has negligible effect on cleavage energy if all other test 

conditions favor high crack velocity. 

(8) Equation 35 can be used to calculate the cleavage 

energy of double cantilevered crystals when shear contributes 

significantly to the cleavage energy. 
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APPENDIX A. DIMENSIONS OF CLEAVAGE SPECIMENS 

Sample No. Height 1 Height 2 Width Total length 

Specimens cleaved at room temperature in nitrogen 

1 0.592 cm 0.580 cm 0.290 cm 2.090 cm 
2 0.625 0.507 0.312 2.000 
3 0.674 0.538 0.277 1.940 
9 0.646 0.626 0.281 2.001 
15 0.626 0.604 0.478 1.962 

Specimens cleaved at 50*C in nitrogen 

14 0.685 cm 0.626 cm 0.476 cm 2.117 cm 
16 0.650 0.604 0.304 2.104 
18 0.672 0.628 0.315 2.060 
20 0.648 0.614 0.276 2.110 
26 0.680 0.571 0.347 2.150 
33 0.659 0.553 0.347 2.020 
77 0.663 0.610 0.508 2.090 

Specimens cleaved at 100*C in nitrogen 

4 0.696 cm 0.606 cm 0.253 cm 2.120 cm 
5 0.621 0.597 0.286 2.120 
12 0.672 0.574 0.289 1.973 
17 0.669 0.613 0.302 2.140 
19 0.689 0.601 0.436 2.126 

Specimens cleaved at 150*C in nitrogen 

27 0.684 cm 0.570 cm 0.231 cm 2.020 cm 
28 0.680 0.625 0.248 2.020 
31 0.625 0.622 0.255 2.090 
32 0.660 0.614 0.539 2.010 
34 0.622 0.604 0.328 2.180 
39 0.659 0.635 0.252 2.010 

Specimens cleaved at 200®C in nitrogen 

48 0.674 cm 0.554 cm 0.424 cm 1.920 cm 
49 0.764 0.550 0.384 1.950 
50 0.641 0.641 0.477 2.090 
52 0.721 0.609 0.478 1.990 
59 0.701 0.584 0.504 2.000 



60 
61 
6 2  
63 

78 

22 
23 
24 
25 
38 

53 
54 
55 
57 
58 

41 
42 
43 
44 
45 
46 

29 
30 
35 
37 
40 
76 
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Specimens cleaved at 250 C in nitrogen 

0.644 cm 
0.690 
0.694 
0.586 

0.606 cm 
0.659 
0.635 
0.528 

0.544 cm 
0.506 
0.551 
0.497 

1.990 cm 
2 . 0 2 0  
1.880 
1.930 

Specimen cleaved at 300°C in nitrogen 

0.700 cm 0.605 cm 0.446 cm 1.970 cm 

Specimens cleaved in carbon dioxide 

0.690 cm 
0.669 
0.659 
0.680 
0.634 

0.67 5 cm 
0 . 6 2 1  
0.591 
0.590 
0.624 

0.288 cm 
0.256 
0.227 
0.216 
0.372 

1.986 cm 
2.012 
2.140 
2.015 
2.100 

Irradiated specimens cleaved in nitrogen 

0.778 cm 
0.724 
0 . 6 6 6  
0.562 
0.669 

0.553 cm 
0.534 
0.664 
0.550 
0.649 

0.468 cm 
0.409 
0.357 
0.310 
0.413 

1.960 cm 
1.940 
1.970 
2.010 
2.150 

Specimens cleaved in argon 

0.637 cm 
0.650 
0.674 
0 . 6 6 6  
0.683 
0.756 

0.601 cm 
0.575 
0.614 
0.633 
0.564 
0.594 

0.350 cm 
0.552 
0.546 
0.574 
0.492 
0.468 

2.000 cm 
1.940 
2.040 
1.940 
1.950 
1.910 

Specimens (regular geometry) cleaved in air 

0.610 cm 0.574 cm 0.240 cm 1.990 cm 
0.656 0.565 0.212 1.960 
0.730 0.672 0.482 2.080 
0.656 0.579 0.371 2.050 
0.650 0.649 0.332 2.080 
0.652 0.648 0.304 2.090 
0.692 0.659 0.390 2.080 
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Specimens (reduced height) cleaved in air 

64 0.410 cm 0.396 cm 0.370 cm 1.910 cm 
65 0.423 0.343 0.296 1.910 
66 0.447 0.392 0.438 1.850 
67 0.365 0.348 0.391 2.090 
68 0.413 0.356 0.396 1.780 
69 0.386 0.337 0.393 2.000 
70 0.404 0.339 0.318 1.950 
71 0.398 0.331 0.317 1.950 
72 0.457 0.309 0.303 1.800 
73 0.447 0.349 0.498 1.930 
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APPENDIX B. CUMULATIVE DISTANCES BETWEEN DEFLECTION STRIPES 

Remarks Specimens cleaved at room temperature in nitrogen 

Sample 1 2 3 9 15 
No. 

Cumulative distance between deflection stripes (cm) 
Stripe 
No. 

Trigger 0.110* 0.100 0.090 0.120 0.240 
1 0.270 0.270 0.240 0.440 0.400 
2 0.430 0.420 0.400 0.600 0.550 
3 0.590 0.580 0.560 0.790 0.720 
4 0.750 0.740 0.710 1.090 0.880 
5 0.910 0.900 0.870 1.250 1.040 
6 1.070 1.060 1.030 1.410 1.200 
7 1.240 1.220 1.200 1.580 1.360 
8 1.390 1.380 1.360 1.730 1.520 
9 1.550 1.540 1.510 1.880 1.680 
10 1.720 1.700 1.670 1.830 
11 1.880 1.860 1.840 
12 2.010 

Remarks Specimens cleaved at 50*C in nitrogen 

Sample 14 16 18 20 26 33 77 
No. 

Cumulative distance between deflection stripes (cj 

Stripe 
No. 

Trigger 0.270* 0.240 0.270 0.290 0.280 0.260 0 .290 
1 0.420 0.410 0.430 0.440 0.440 0.410 0 .440 
2 0.580 0.570 0.580 0.600 0.600 0.570 0 .600 
3 0.740 0.720 0.740 0.770 0.760 0.730 0 .760 
4 0.900 0.880 0.910 0.930 0.920 0.890 0 .920 
5 1.070 1.040 1.070 1.090 1.090 1.040 1 .080 
6 1.230 1.200 1.230 1.250 1.260 1.210 1 .240 
7 1.380 1.360 1.390 1.400 1.410 1.370 1 .410 
8 1.540 1.510 1.550 1.570 1.580 1.530 1 .570 
9 1.700 1.660 1.710 1.720 1.740 1.690 1 .730 
10 1.860 1.830 1.860 1.870 1.890 1.850 1 .880 
11 2.020 1.990 2.040 2.050 2.010 2 .040 
12 

*The front of the crystal is at 0.000 cm. 
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Remarks 

Sample 
No. 

Stripe 
No. 

Trigger 
1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 

Remarks 

Sample 
No. 

Stripe 
No. 

Trigger 
1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 

Specimens cleaved at 10Q*C in nitrogen 

4 5 12 17 19 

Cumulative distance between deflection stripes (cm) 

0.090* 0.120 0.440 0.290 0.280 
0.260 0.290 0.600 0.340 0.340 
0.410 0.440 0.760 0.510 0.490 
0.570 0.600 1.080 0.670 0.650 
0.730 0.770 1.240 0.930 0.810 
0.900 0.930 1.390 1.090 0.970 
1.050 1.080 1.560 1.260 1.130 
1.220 1.250 1.710 1.410 1.300 
1.380 1.410 1.860 1.570 1.460 
1.540 1.570 1.730 1.510 
1.700 1.720 1.880 1.770 
1.850 1.870 2.040 1.930 
2.010 2.040 

Specimens cleaved at 150®C in nitrogen 

27 28 31 32 34 39 

Cumulative distance between deflection stripes (cm) 

0.340* 
0.490 
0.650 
0.810 
0.980 
1.300 
1.450 
1.610 
1.940 

0.320 
0.480 
0.630 
0 . 8 0 0  
0.960 
1.120 
1.280 
1.440 
1.600 
1.760 
1.930 

0.280 
0.430 
0.590 
0.750 
0.910 
1.070 
1.230 
1.390 
1.560 
1.710 
1.870 
2.030 

0.260 
0.320 
0.480 
0.630 
0 . 8 0 0  
0.960 
1.130 
1.280  
1.440 
1.600 
1.750 

0.340 
0.490 
0.640 
0 . 8 0 0  
0.950 
1.120 
1.280 
1.450 
1.600 
1.760 
1.920 
2.090 

0.300 
0.450 
0.620 
0.780 
0.950 
1.100 
1.270 
1.430 
1.590 
1.740 
1.900 
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Remarks Specimens cleaved at 200®C in nitrogen 

Sample 48 49 50 52 59 
No. 

Cumulative distance between deflection stripes (cm) 
Stripe 
No. 

Trigger 0.250* 0.430 0.280 0.250 0. 270 
1 0.410 0.590 0.430 0.400 0. 430 
2 0.560 0.740 0.590 0.560 0. 580 
3 0.730 0.910 0.750 0.730 0. 750 
4 0.880 1.060 0.910 0.890 0. 910 
5 1.040 1.230 1.080 1.050 1. 070 
6 1.200 1.390 1.240 1.200 1. 240 
7 1.370 1.540 1.390 1.370 1. 390 
8 1.530 1.700 1.560 1.530 1. 560 
9 1.700 1.860 1.710 1.690 1. 710 
10 1.860 1.950 1.860 1.850 1. 860 
11 1.920 2.030 
12 

Remarks Specimens cleaved at 250®C in nitrogen 

Sample 60 61 62 63 
No. 

Cumulative distance between deflection stripes (a 
Stripe 
No. 

Trigger 0.250* 0.310 0.260 0.250 
1 0.400 0.460 0.410 0.410 
2 0.570 0.620 0.570 0.570 
3 0.730 0.780 0.730 0.730 
4 0.880 0.940 0.890 0.890 
5 1.040 1.100 1.050 1.050 
6 1.200 1.270 1.220 1.210 
7 1.370 1.430 1.370 1.360 
8 1.540 1.580 1.540 1.520 
9 1.700 1.740 1.690 1.680 
10 1.850 1.890 1.840 1.850 
11 
12 
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Remarks 

Sample 
No. 

Stripe 
No. 

Trigger 
1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 

Remarks 

Sample 
No. 

Stripe 
No. 

Trigger 
1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 

Specimen cleaved at 300®C in nitrogen 

78 

Cumulative distance between deflection stripes (cm) 

0 . 2 8 0 *  
0.440 
0 . 6 0 0  
0.760 
0.920 
1.080 
1.240 
1.400 
1.560 
1.710 
1.880 

Specimens cleaved in carbon dioxide 

22 23 24 25 38 

Cumulative distance between deflection stripes (cm) 

0.290* 
0.440 
0.610 
0.770 
0.930 
1.090 
1.250 
1.410 
1.560 
1.720 
1.890 

0.330 
0.490 
0.650 
0 .810  
0.970 
1.130 
1.290 
1.440 
1 .600  
1.760 
1.930 

0 . 2 8 0  
0.430 
0.580 
0.740 
0.900 
1.060 
1.220 
1.390 
1.550 
1.700 
1.860 
2 . 0 2 0  

0.300 
0.460 
0.620 
0.770 
0.940 
1.100 
1.260 
1.420 
1.580 
1.740 
1.910 

0.250 
0.410 
0.570 
0.740 
0.900 
1 .060  
1.220 
1.380 
1.530 
1.690 
1.850 
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Remarks 

Sample 
No. 

Stripe 
No. 

Trigger 
1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 

Remarks 

Sample 
No. 

Stripe 
No. 

Trigger 
1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 

Irradiated specimens cleaved in nitrogen 

53 54 55 57 58 

Cumulative distance between deflection stripes (cm) 

0.270* 
0.430 
0.590 
0.740 
0.910 
1.070 
1.240 
1.400 
1.550 
1.710 
1.880 

0.240 
0.400 
0.560 
0.720 
0.880 
1.040 
1.210 
1.360 
1.520 
1.680 
1.850 

0.300 
0.470 
0.630 
0.790 
0.950 
1.110 
1.270 
1.420 
1.580 
1.750 
1.910 

0.250 
0.410 
0.570 
0.740 
0.900 
1.070 
1.240 
1.400 
1.560 
1.710 
1.870 

0.450 
0.620 
0.780 
0.940 
1.100 
1.260 
1.420 
1.580 
1.730 
1.890 
2.060 

Specimens cleaved in argon 

41 42 43 44 45 46 

Cumulative distance between deflection stripes 

0.290* 
0.440 
0.600 
0.760 
0.920 
1.090 
1.250 
1.410 
1.570 
1.730 
1.880 

0.260 
0.420 
0.590 
0.740 
0.910 
1.070 
1.240 
1.390 
1.550 
1.700 
1.860 

0.340 
0.500 
0.670 
0.820 
0.990 
1.150 
1.310 
1.470 
1.630 
1.780 
1.950 

0 . 2 8 0  
0.440 
0 .600  
0.760 
0.920 
1.080 
1.250 
1.400 
1.560 
1.710 
1.860 

0.250 
0.410 
0.580 
0.730 
0.900 
1.050 
1.220 
1.370 
1.530 
1.700 
1.860  

0.270 
0.420 
0.580 
0.740 
0.900 
1.060 
1.230 
1.390 
1.540 
1.690 
1.840 
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Remarks 

Sample 
No. 

Stripe 
No. 

Trigger 
1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 

Remarks 

Sample 
No. 

Stripe 
No. 

Trigger 
1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 

Specimens (regular geometry) cleaved in air 

29 30 35 36 37 40 76 

Cumulative distance between deflection stripes (cm) 

0.320* 
0.470 
0.630 
0.790 
0.950 
1.110 
1.280 
1.440 
1.590 
1.750 

0.260 
0.420 
0.580 
0.740 
0.900 
1.220 
1.380 
1.530 
1.870 

0.270 
0.430 
0.590 
0.750 
0.910 
1.070 
1.230 
1.390 
1.550 
1.710 
1.860 

0.250 
0.400 
0.550 
0.710 
0.870 
1.030 
1.200 
1.350 
1.510 
1.670 
1.830 

0.330 
0.490 
0.650 
0.810 
0.980 
1.130 
1.300 
1.450 
1.610 
1.760 
1.920 

0.230 
0.390 
0.550 
0.710 
0.870 
1.040 
1.190 
1.350 
1.510 
1.670 
1.830 

0.280 
0.440 
0.590 
0.750 
0.920 
1.080 
1.240 
1.400 
1.560 
1.720 
1.870 

Specimens (reduced height) cleaved in air 

64 65 66 67 68 69 

Cumulative distance between deflection stripes (cm) 

0.070* 
0 . 2 2 0  
0.370 
0.530 
0.680 
0.850 
1.010 
1.170 
1.330 
1.490 
1.640 
1.810 

0.060 
0.210 
0.360 
0.520 
0.670 
0.840 
1.000 
1.160 
1.320 
1.480 
1.630 
1.780 

0.090 
0.250 
0.420 
0.580 
0.730 
0.890 
1.050 
1.210 
1.380 
1.540 
1.700 
1.850 

0.120 
0 . 2 8 0  
0.440 
0.590 
0.750 
0.920 
1.080 
1.240 
1.400 
1.560 
1.720 
1.870 

0.130 
0.290 
0.450 
0.610 
0.760 
0.930 
1.090 
1.250 
1.400 
1.560 
1.720 
1.780 

0 . 1 2 0  
0 . 2 8 0  
0.440 
0.590 
0.7 50 
0.920 
1.080 
1.240 
1.400 
1.570 
1.720 
1.870 
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Remarks Specimens (reduced height) cleaved in air 

Sample 70 71 72 73 
No. 

Cumulative distance between deflection stripes (cm) 
Stripe 
No. 

Trigger 0.120* 0.100 0.140 0.120 
1 0.270 0.270 0.300 0.280 
2 0.430 0.430 0.450 0.440 
3 0.580 0.580 0.610 0.590 
4 0.740 0.740 0.770 0.750 
5 0.910 0.900 0.940 0.920 
6 1.060 1.060 1.100 1.080 
7 1.230 1.220 1.260 1.240 
8 1.380 1.390 1.410 1.400 
9 1.540 1.540 1.570 1.560 
10 1.690 1.710 1.740 1.720 
11 1.860 1.870 1.870 
12 
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APPENDIX C. CUMULATIVE TIMES FOR CRACK TRAVEL BETWEEN 

DEFLECTION STRIPES 

Remarks Specimens cleaved at room temperature in nitrogen 

Sample 1 2 3 9 15 
No. 

Cumulative time for crack travel between deflectii 
stripes 

Stripe 
No. 

Trigger 
i 
2 0.00 
3 0.00* 0.00 0.00 1.27 
4 1.84 0.00 1.41 3.68 3.43 
5 4.22 2.06 3.52 5.53 5.33 
6 6.07 5.10 5.15 7.21 7.28 
7 8.23 7.58 7.10 9.05 9.18 
8 10.39 9.80 8.89 10.90 10.75 
9 12.24 11.15 10.78 12.69 12.32 
10 13.43 13.05 12.62 14.27 
11 14.41 17.32 
12 

Remarks Specimens cleaved at 50®C in nitrogen 

Sample 14 16 18 20 26 33 77 
No. 

Cumulative time for crack travel between deflection 
stripes 

Stripe 
No. 

Trigger 
1 0. 00 0.00 
2 1. 24 0. 00 1.95 0. 00 0. 00 
3 0. 00* - 1. 84 4.66 2. 71 1. 52 0. 00 
4 4. 00 5. 89 4. 12 6.88 4. 12 4. 12 2. 50 
5 - 8. 11 6. 07 7.97 6. 56 6. 88 5. 10 
6 8. 38 10. 06 8. 39 10.13 - 9. 26 7. 16 
7 10. 44 12. 22 10. 23 12.19 11. 05 11. 32 8. 84 
8 12. 50 14. 44 12. 13 14.30 13. 21 13. 76 10. 95 
9 14. 34 17. 20 13. 59 16.30 15. 21 15. 88 12. 84 
10 16. 02 21. 10 15. 91 18.36 17. 53 14. 19 
11 18. 51 25. 30 31.66 19. 59 
12 

*Time is in microseconds. The zero time denotes the 
stripe at which time measurement began. 
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Remarks Specimens cleaved at 100*C in nitrogen 

Sample 4 5 12 17 19 
No. 

Cumulative time for crack travel between deflection 
stripes 

Stripe 
No. 

Trigger 
1 
2 0.00 
3 0.00* 0.00 0.00 1.52 
4 2.33 1.73 7.30 0.00 3.58 
5 4.61 3.79 9.57 2.06 5.75 
6 6.61 5.85 11.52 4.27 7.81 
7 8.89 8.13 13.74 6.43 10.09 
8 11.11 10.79 15.85 8.59 12.15 
9 13.33 12.47 18.50 10.65 14.04 
10 15.39 14.74 12.65 16.42 
11 17.45 19.07 16.59 17.89 
12 25.10 23.46 

Remarks Specimens cleaved at 150'C in nitrogen 

Sample 27 28 31 32 34 39 
No. 

Cumulative time for crack travel between deflection 
stripes 

Stripe 
No. 

Trigger 
1 0.00* 0.00 0.00 0.00 0.00 
2 2.44 1.90 0.00 2.33 1.84 1.89 
3 4.93 4.28 1.73 3.96 4.17 3.95 
4 10.13 6.61 4.21 6.02 6.33 6.11 
5 12.67 8.83 6.05 7.86 9.41 8.71 
6 15.11 10.94 8.38 10.30 — — 10.44 
7 18.55 12.83 10.60 12.29 14.71 11.95 
8 25.75 15.05 13.20 14.51 17.15 14.01 
9 17.37 15.42 16.29 19.31 16.88 
10 19.86 17.53 18.40 21.53 
11 23.43 25.05 
12 



Sample 
No. 

Stripe 
No. 

Trigge 
1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 

Remark 

Sample 
No. 

Stripe 
No. 

Trigge 
1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
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Specimens cleaved at 200®C in nitrogen 

48 49 50 52 59 

Cumulative time for crack travel between deflection 
stripes 

0.00 0.00 
0.00 1.24 1.89 0.00 
2.30 — — 3.89 1.68 

0.00* 4.96 4.91 5.67 4.17 
4.06 7.72 6.86 7.19 7.69 
6.34 9.35 8.86 10.12 9.26 
8.45 10.33 11.02 11.31 10.99 
10.40 12.87 13.29 13.47 12.89 
12.46 14.00 15.29 15.59 - — 

16.52 17.07 18.03 16.03 

Specimens cleaved at 250*C in nitrogen 

60 61 62 63 

Cumulative time for crack travel between deflection 
stripes 

0 . 0 0 *  
4.50 
9.26 
11.86 
14.52 
18.79 
21.99 
27.34 

0 . 0 0  
1.35 
3.08 
5.02 

9.02 
11.24 
13.08 
15.14 
17.52 

0 . 0 0  
2.54 
4.33 
6.87 
8.38 

10.66  
12.88 

0 . 0 0  
1.35 
3.19 
5.46 
7.30 
9.24 
11.13 
13.13 
15.67 
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Remarks Specimen cleaved at 300®C in nitrogen 

Sample 78 
No. 

Cumulative time for crack travel between deflection 
stripes 

Stripe 
No. 

Trigger 
1 
2 
3 
4 
5 
6 0.00* 
7 5.62 
8 8.38 
9 10.62 
10 19.43 
11 
12 

Remarks Specimens cleaved in carbon dioxide 

Sample 22 23 24 25 38 
No. 

Cumulative time for crack travel between deflection 
stripes 

Stripe 
No. 

Trigger 
1 0.00* 0.00 0.00 0.00 0.00 
2 2.00 1.63 1.73 1.68 1.62 
3 — — 3.69 3.83 3.58 3.51 
4 — — 6.10 6.34 5.46 
5 9.05 7.69 8.37 7.74 7.41 
6 11.00 9.75 11.56 9.74 9.84 
7 13.16 13.72 11.58 11.90 
8 15.32 13.38 16.04 13.42 13.63 
9 — — 15.11 18.14 15.70 15.30 
10 20.04 20.36 17.65 16.97 
11 22.96 
12 
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Remarks Irradiated specimens cleaved in nitrogen 

Sample 53 54 55 57 58 
No. 

Cumulative time for crack travel between deflect!' 
stripes 

Stripe 
No. 

Trigger 
1 0.00* 0.00 0.00 0.00 0.00 
2 1.95 1.60 1.68 1.46 1.62 
3 3.62 2.70 3.41 3.58 3.46 
4 — — 4.92 5.25 5.80 5.08 
5 7.30 6.05 7.04 8.08 7.14 
6 9.08 7.95 8.72 11.00 8.98 
7 10.97 9.79 12.24 13.98 10.87 
8 12.70 11.79 15.34 12.60 
9 14.81 — — 17.34 14.44 
10 14.49 19.72 16.39 
11 16.93 19.80 
12 

Remarks Specimens cleaved in 1 argon 

Sample 41 42 43 44 45 46 
No. 

Cumulative time for crack travel between deflection 
stripes 

Stripe 
No. 

Trigger 
1 0.00* 0.00 0.00 0.00 0.00 
2 1.20 1.46 1.08 1.52 2.16 
3 2.88 3.03 - — 2.93 3.84 
4 4.94 4.49 5.30 — — 5.57 0.00 
5 6.51 6.06 6.76 7.48 8.27 1.35 
6 8.63 7.84 8.60 8.89 2.92 
7 10.53 9.41 10.17 9.86 4.65 
8 12.43 11.03 11.74 12.02 6.49 
9 14.43 12.82 13.25 13.53 8.39 
10 15.73 15.85 15.97 10.23 
11 
12 



Sample 
No. 

Stripe 
No. 

Trigge 
1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 

Remark 

Sample 
No. 

Stripe 
No. 

Trigge 
1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
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Specimens (regular geometry) cleaved in air 

29 30 35 36 37 40 76 

Cumulative time for crack travel between deflection 
stripes 

0 . 0 0 *  
1.95 
4.11 
6.54 
9.04 

12.72 

0 . 0 0  
1.90 
4.39 
9.84 

11.63 
13.47 
27.57 

0 . 0 0  
2 . 1 6  
4.11 
6.33 
8.33 

1 0 . 2 2  
12 .06  

0 . 0 0  
2.16  
4.38 
6 . 2 8  
8.07 

10.13 
11.75 
14.89 

0 . 0 0  
1.19 
2.97 
5.19 
7.41 
9.68 

11.79 
13.79 
15.57 
17.52 

0 . 0 0  
1.62 
3.68 
5.84 
7.35 
9.13 

10.91 
12.91 
14.80 

0 . 0 0  
1.68 
3.79 
5.14 
7.14 
9.03 

10.87 
12.65 
14.43 
15.95 

Specimens (reduced height) cleaved in air 

64 65 66 67 68 69 

Cumulative time for crack travel between deflection 
stripes 

0.00 
1.73 
4.17 

0.00* 6.82 
3.08 — — 

5.62 12.77 
7.57 16.18 

10.33 17.91 
13.47 18.89 

30.19 

0 .00 
1 .35 0 .00 
3 .03 1 .79 
4 .87 3 .14 
7 .25 5 .79 
9 .57 8 .87 

12 .00 10 .66 
14 .06 13 .58 
16 .60 17 .54 

22 .64 
32 .48 

0.00 0 .00 
1.84 2 .54 
3.57 5 .24 
5.95 9 .04 
8.65 15 .90 

11.29 500 .00 
15.45 

128.45 

143.45 



Sample 
No. 

Stripe 
No. 

Trigge 
1 
2 
3  
4  
5  
6 
7  
8 
9  

10 
11 
12 

131 

Specimens (reduced height] cleaved in air 

70  71  72  73  

Cumulative time for crack travel between deflect 
stripes 

0 .00  0 .00  
372 .00  1 .57  
472 .00  4 .01  
852 .00  5 .91  0 .00  

10 .41  0 .00  2 .65  
16 .59  8 .00  8 .10  
28 .19  10 .92  10 .48  
29 .98  14 .70  11 .88  

— — 17 .46  14 .32  
— — 19 .35  

865 .98  
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APPENDIX D. CLEAVAGE ENERGY VALUES FOR INDIVIDUAL SPECIMENS 

Sample No. 1 2 3 9 15 14 

Cleavage energy value in ergs/cm2 
Stripe No. 

Trigger 
1 
2 
3 184 
4 352 264 268 291 461 
5 376 257 311 219 261 336 
6 285 330 237 184 231 295 
7 236 274 200 153 199 252 
8 213 220 169 137 162 211 
9 177 157 152 123 135 176 
10 130 130 131 124 164 
11 102 161 
12 

Sample No. 16 18 20 26 33 77 

Cleavage energy value in ergs/cm? 
Stripe No. 

Trigger 
1 
X 

2 306 715 
3 518 469 754 844 261 
4 444 446 601 396 390 529 737 
5 358 363 374 350 420 462 544 
6 305 331 323 260 338 344 441 
7 272 268 283 183 273 243 360 
8 258 226 236 168 239 208 306 
9 258 154 208 146 202 174 263 
10 262 170 185 142 224 
11 387 197 
12 286 
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Sample No. 5 12 17 19 27 28 

Cleavage energy value in ergs/cm^ 
Stripe No. 

Trigger 
1 X 
2 863 710 
3 288 701 625 
4 278 295 327 1011 537 
5 289 268 246 310 397 444 
6 272 234 212 269 344 364 
7 238 201 199 236 326 294 
8 230 181 175 205 281 254 
9 183 172 152 179 224 
10 168 136 164 197 
11 194 154 135 
12 201 

Sample No. 31 32 34 39 48 49 

Cleavage energy value in ergs/cm2 
Stripe No. 

Trigger 
1 
2 1035 555 569 
3 337 639 531 526 346 
4 407 485 455 436 385 
5 308 378 435 436 828 333 
6 278 331 319 323 430 237 
7 241 284 280 249 278 166 
8 216 247 235 216 208 156 
9 194 204 200 213 163 119 
10 167 145 189 178 
11 210 
12 
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Sample No. 50 52 59 60 61 62 63 

Cleavage energy value in ergs/cm? 
Stripe No. 

Trigger 
1 
2 279 752 332 
3 — — — 584 284 346 141 
4 309 450 379 1725 330 159 
5 264 333 484 1426 252 399 170 
6 235 364 319 859 231 230 142 
7 219 255 255 588 202 239 127 
8 194 225 203 527 179 167 108 
9 173 198 141 439 168 158 95 
10 151 182 453 146 88 
11 
12 

Sample No. 78 22 23 24 25 38 53 

Cleavage energy value in ergs/cm^ 
Stripe No. 

Trigger 
1 
2 807 465 656 507 541 749 
3 — — — 480 598 497 468 553 
4 — 529 518 412 — — — 

5 614 350 452 356 351 340 
6 487 301 454 300 329 268 
7 953 410 — — — 359 248 281 197 
8 469 359 216 306 208 237 176 
9 314 273 181 264 188 196 
10 509 227 160 164 
11 205 
12 
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Sample No. 54 55 57 58 41 42 43 
2 Cleavage energy value in ergs/cm 

Stripe No. 

Trigger 

1 
2 746 566 324 473 260 343 170 
3 425 470 351 461 298 334 328 
4 493 403 331 365 314 246 250 
5 329 336 282 337 239 207 219 
6 291 275 269 286 225 178 181 
7 240 330 256 247 196 155 152 
8 218 193 208 171 133 132 
9 — — — 167 185 152 121 
10 141 148 164 127 127 
11 130 167 
12 

Sample No. 44 45 46 29 30 35 36 

Cleavage energy value in ergs/cm2 
Stripe No. 

Trigger 
1 
2 472 792 126 658 
3 351 566 118 694 
4 — — — 399 118 — — — 

5 379 425 119 178 297 389 380 
6 274 116 159 241 302 311 
7 204 108 159 207 278 263 
8 189 178 375 236 213 
9 162 200 188 
10 158 177 155 
11 164 
12 



67 

148 
80 
87 
93 
70 
66 
68 
75 

108 

73 

125 
261 
167 
103 
83 
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37 40 76 64 65 66 

Cleavage energy value in ergs/cmZ 

217 670 208 
271 401 640 189 197 
283 421 391 219 180 
283 368 347 182 169 
249 288 295 175 — — — 147 
225 240 250 123 144 128 
193 203 212 84 131 102 
167 180 181 77 98 91 
145 158 155 75 72 

129 

68 69 70 71 72 

Cleavage energy value in ergs/cm^ 

301 514 >1x10° 205 
200 415 >1x10° 253 
193 392 >1x10° 173 
165 488 226 
141 243,161 285 91 
148 457 90 
6494 300 95 

— — — — 86 
3464 — 68 

74,655 
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APPENDIX E. COMPUTER PROGRAM FOR SOLVING LAGRANGIAN 

EQUATION OF CRACK MOTION 



c 
c 
c PROGRAM-SLEM 
C 
C 
C PURPOSE-SOLUTION TO A LAGRANGIAN EQUATION OF MOTION FOR CRACK 
C PROPAGATION IN A SPECIMEN WITH THE DOUBLE CANTILEVEREO BEAM 
C CONFIGURATION 
C 
C 
C DESCRIPTION OF PARAMETERS 
C 
C ALPHA-INVERSE OF THE BENDING STIFFNESS OF THE BEAMS 
C AK-A GEOMETRY CONSTANT FOR BEAMS, AK=3/2 FOR BEAMS OF RECTANGULAR 
C CROSS-SECTION 
C BETA-INVERSE OF THE SHEARING RESISTANCE OF THE BEAMS 
C CHANGE-INCREMENTAL FRACTION USED TO CHANGE CO 
C CO-VARIANT NUMBER USED AS THE EQUIVALENT OF HO IN CONS IN 
C SOLVING THE EQUATION 
C CONS-THE CONSTANT USED IN THIS FORM OF THE SOLUTION 
C DIFF-THE DIFFERENCE BETWEEN THE 2 CALCULATED ACCELERATIONS (XI,X2) 
C DUFF-STORED VALUE FROM PREVIOUS CALCULATION OF DIFF 
C ELAST-YOUNGS MODULUS 
C GAM-SPECIFIC CLEAVAGE ENERGY OF THE CRYSTAL, INCLUDES THE WORK 
C DONE IN PLASTIC FLOW 
C GSHEAR-SHEAR MODULUS 
C HEIGTl-HEIGHT OF ONE BEAM 
C HEIGT2-HEIGHT OF SECOND BEAM 
C HO-A MATHEMATICAL EXPRESSION FOR THE TOTAL HEIGHT OF BOTH BEAMS 
C DEPENDING ON THE MOMENTS OF INERTIA OF THE INDIVIDUAL BEAMS 
C L-LENGTH OF CRACK 
C LDOT-CRACK VELOCITY 
C RHO-DENSITY OF THE CRYSTAL 
C SHRBM-THE RATIO OF THE SHEAR TERM TO THE BENDING MOMENT TERM 
C SPEED-OUTWARD VELOCITY OF THE LOADED ENDS OF THE BEAMS 
C TTO-ELAPSED TIME OF CLEAVAGE 
C WIDTH-WIDTH OF BEAMS (CRYSTAL HALVES) 



c Xl-ACCELERATION OF THE CRACK AS DERIVED FROM THE EQUATION OF 
C MOTION 
C X2-ACCELERATI0N OF THE CRACK AS DERIVED FROM A TRIAL SOLUTION 
C 
C 
C REMARKS-ALL CALCULATIONS ARE IN DOUBLE PRECISION WITH ACCURACY SET 
C BY INTEGER K AT 11 DECIMAL PLACE. THIS VALUE FOR K IS SOMEWHAT 
C ARBITRARY IN DETERMINING WHEN THE 2 ACCELERATIONS ARE EQUAL. 
C 
C 
C METHOD- THE HORNIER METHOD WAS USED. THIS INVOLVES DIVIDING THE 
C SOLUTION SET INTO 10 EQUAL PARTS AND CHECKING THE DIFFERENCE 
C BETWEEN THE CALCULATED ACCELERATIONS FOR A SIGN CHANGE AND 
C INCREMENTING AT 1/10 THE PREVIOUS STEP SIZE. 
C 

c 
IMPLICIT REAL*8(A-H,L,M,0-ZI 
DO 22 JM=1,10 

C THE NUMBER 10 IN THE PRECEDING STATEMENT IS THE NUMBER OF SETS OF 
C INPUT DATA. 

READ(5,311 BLAST,GSHEAR,AK,WIDTH,HEIGT1,HEIGT2,GAM,RHO,SPEED,CONS 
31 F0RMAT(8E10.4) 

WRITE(6,52)WIDTH,HEIGT1,HEIGT2,GAM,RHO,SPEED 
52 FORMATCO* ,8E14.7I 

IJ=HEIGT1+16.5 
C THE NUMBER HEIGTl+16.5 IN THE PRECEDING STATEMENT IS THE MAXIMUM 
C CRACK LENGTH FOR WHICH A SOLUTION WILL BE ATTEMPTED. 

DO 2 11 = 1,1J 
IF(II-LE.25) GO TO 88 
L=(II-25)*2.0+24.0 
GO TO 92 

88 L=II 
92 L2=L*L 

L3=L$*3 
L5=L**5 
L7=L**7 



L9=L**9 
L11=L**11 
L13=L**13 

C 
C CALCULATION OF GEOMETRY COEFFICIENTS 
C 

AI=WI0TH*HEIGT1 
A2=WIDTH*HEIGT2 
AI1=(WI0TH*HEIGT1»*3)/12.0 
AI2=(WIDTH*HEIGT2**3)/12.0 
AO=(2.0*A1*A2)/(A1+A2) 
AI0=(2.0*AI1*AI2)/(AI1+AI2) 
H0=(AI0/AIi;**2*HEIGTl+(AI0/AI2)**2*HEIGT2 
ALPHA=1.0/(3.0*ELAST*AI0; 
ALPHA2=ALPHA**2 
ALPHA3=ALPHA**3 
BETA=AK/(AO*GSHEARI ^ 
BETA2=BETA**2 
BETA3=8ETA**3 ° 
C1STAR=(WIDTH/(6.0*ELAST)**2)*(HEIGT1*AI2**2+HEIGT2*AI1**2)/(AI1** 

12*AI2**2) 
C2STAR=(AK*WIDTH/(3.0*ELAST*GSHEAR);*(HEIGT1*AI2*A2+HEIGT2*AI1*A1) 

1/(AI1*A1*AI2*A2) 
C3STAR=C(AK**2)*WIDTH/GSHEAR**2j*(HEIGTl*A2**2+HEIGT2*Al**2)/(Al** 
12»A2**2I 
ALPBET=C ALPHA*L3+BETA*L) 

C 
C COEFFICIENTS OF THE 4 TERMS IN THE LAGRANGIAN EQUATION 
C 

TERM4=(3.0*ALPHA*L**2+BETA)/ALPBET**2 
TERM2=f(48.0/35.0)*ClSTAR*Lll*ALPHA2+(228.0/35.0)*C1STAR*ALPHA»BET 
lA*L9+(444.0/35.0)*ClSTAR*L7*BETA2-(0.6)*C2STAR*L9*ALPHA2-3.4*C2STA 
2R*ALPHA*BETA*L7+1.6*C2STAR*L5*BETA2+2.0*C3STAR*L7*ALPHA2+(2.0/3.0) 
3*C3STAR*L3*BETA2)/ALPBET**4 
TERM3=C C-24.0/35.0)*C1STAR*L13*ALPHA3-C174.0/35.0)*C1STAR*BETA»L11 
l*ALPHA2-(540.00/35.0)*ClSTAR*ALPHA*L9*BETA2+(660.0/35.0)*C1STAR*L7 
2*BETA3+(18.0/20.0)*C2STAR*L11*ALPHA3+7.0*C2STAR*BETA*L9*ALPHA2-(21 



34.0/20.0)*C2STAR*ALPHA*L7*BETA2+0.8*C2STAR*L5*BETA3-5.0*C3STAR*ALP 
4HA3*L9*3.0*C3STAR*ALPHA2*BETA*L7-3.0*C3STAR*ALPHA*BETA2*L5-(1.0/3. 
50)*C3STAR*BETA3*L3)/ALPBET**5 
TERM42=TERM4/TERM2 
TERM32=TERM3/TERM2 
TERM12=1.0/TERM2 
SHRBM=BETA/(AL PHA*L21 
WRITEf6f511TERM42»TERM32fTERM12,SHRBM,L,HO 

51 FORMATCO TERM42= ',E14.7,' TERM32= ',E14.7,' TERM12= ',E14.7,' SH 
lEAR/BENOlNG = *,E14.7,' L= •,E14.7/ • H0= •,E14.7) 

C 
C INITIALIZATION OF TERMS USED IN THE ITERATIVE SOLUTION 
C 

K=0 
OIFF= l.OD 00 
DEFF=1.0D 00 
CHANGE=0.9D 00 ^ 

3 CHANGE=CHANGE-1.0D 00/10.D 00**K -P* 
K=K+1 ^ 

10 IFtCHANGE.GE.l.00 00) GO TO 12 
IF(K.GE.ll) GO TO 12 

C 
C EQUALIZATION OF THE 2 EXPRESSIONS FOR ACCELERATION OF THE CRACK 
C 

DO 20 1=1,11 
CHANGE=CHANGE+I-OD 00/10.D 00**K 
A=(3.0*ALPHA*L*L+BETA) 
B=(ALPHA*L*L*L+BETA*L) 
CO=C H ANGE*10.0 •HO 
CONS=2.0*WIOTH*35.0*CO*RHO*SPEED**2/3328 
0=2.0*WIDTH*GAM+CONS 
E=1.0/(6.0*ALPHA*L/(B*B)-2.0*A*A/B**3) 
TTO=(B*B*D/(SPEED*SPEED*A))**0.5 
LD0T=(-2.0*SPEED*E/D**0.5)*(A/B**2)**1.5 
X1=-LD0T*LD0T*TERM32-2.0*L00T/TT0+10.0*TERM42/RH0-20.*GAM*WIDTH*TE 

1RM12/(SPEED*SPEED*RHO*TTO*TTO) 
X2=6.0*SPEED*SPEED*E*A*A/(8**4*0)+(2.0*SPEED*E*E/D**0.5)*(A/(B*B)) 



l**1.5*(6.0*ALPHA*LDOT/(B*B)-36.0*ALPHA*L*A*LDOT/B**3+6.O*A**3*LDOT 
2/B**4) 
IF(I-2)94,97,94 

94 IF(DEFF)98,97,97 
97 DUFF=DIFF/DABSÏDIFF) 
98 DIFF=X2-X1 

DEFF=DUFF*DIFF 
IF(DABS(CHANGE).LT.1.00-041 GO TO 20 
IF(X2)7,5,5 

5 IF(X1)7,4,4 
7 IF(DEFF)3,4,4 

C 
C PRINTOUT FOR EACH ITERATION 
C 

4 WRITE(6,401 XI,X2,0IFF,CHANGE,CO,D 
40 F0RMAT(*0»,6D21.14) 
20 CONTINUE 

C 
C PRINTOUT FOR A SOLUTION C WHEN X1=X2) 
C 

12 WRITE 16,40)XI,X2,DIFF,CHANGE,CO,L 
2 CONTINUE 
22 CONTINUE 

STOP 
END 

$ENTRY 
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APPENDIX F. COMPUTER PROGRAM FOR CALCULATING 

CLEAVAGE ENERGY OF SPECIMENS 



PROGRAM FOR CALCULATING CLEAVAGE ENERGY 

NOPT IS THE OPTION OF USING CUMULATIVE L,TOt(l) OR DELTA L AND TO,I 
GAMMA IS THE CLEAVAGE SURFACE ENERGY IN ERGS/CM**2 
C EQUALS THE DISTANCE BETWEEN THE DEFLECTION STRIPES IN CENTIMETERS 
TO IS THE TIME AFTER BREAKAGE OF THE FIRST DEFLECTION STRIPE IN 
MICROSECONDS. 
X IS THE NUMERICAL SOLUTION TO THE FINDX SUBROUTINE IN CENTIMETERS 
LA EQUALS THE INITIAL CRACK LENGTH IN CENTIMETERS. 
VE IS VELOCITY OF SEPARATION OF THE ENDS OF THE CRYSTAL 
TERM EQUALS 1/(LD0T*(2*W)**0.5) 

IMPLICIT REAL*8(A-H,L,0-Z) 
DIMENSION TO!14),GAMMA(14),AVGSPD(14} 
COMMON X<I4)fC(I4),GAM,RHO,WIDTH,AK,E,G,All,AI2,AI0,A1,A2,AO,N 
DO 21 IN=1,N 
IN IS THE NUMBER OF SPECIMENS FOR WHICH CALCULATIONS ARE TO BE 
MADE 
READ{5,2)E,G,AK,RH0,VCM,GAM,M 
E IS ELASTIC MODULUS, G IS SHEAR MODULUS, AK IS A SHAPE FACTOR, 
RHO IS SPECIMEN DENSITY, VCM IS KNIFE EDGE SPEED, GAM IS AN 
ARBITRARY GAMMA VALUE USED IN THE FINDX SUBROUTINE, AND M IS THE 
SPECIMEN IDENTIFICATION NUMBER. 

2 F0RMAT(6E10.4,12) 
READ(5,3) WIDTH, HEIGIT,HEIG2T,TL,LA,TMPB,N,N0PT 
WIDTH, HEIGIT, HEIG2T, AND TL ARE SPECIMEN DIMENSIONS. 
TMPB IS THE TEST TEMPERATURE. 
N IS THE NUMBER OF DEFLECTION STRIPES ON THE SPECIMEN. 

3 FORMAT (6F10.7, 212) 
READ(5,4)(C(II), 11=1,N) 
C(II) IS CUMULATIVE CRACK LENGTH. 

4 F0RMAT(14F5.2) 



READ (5,4) C TO(IJ), IJ=1,N) 
C TO(IJ) IS CUMULATIVE TIME. 

E=E-0.0003737*(TMPB-23.0)*1.0E 12 
G=G-0.0000525*(TMPB-23-0»*1.0E 12 

C E AND G ARE WRITTEN THIS WAY TO ACCOUNT FOR TEMPERATURE EFFECTS. 
VE=l.510172*VCM 
All = WIDTH* HEIGIT ** 3/12.0 
AI2 = WIDTH * HEIG2T *• 3/12.0 
AIO = 2.0 * All » AI2 /(All +AI2J 
A1 =WI0TH*HEIGlT 
A2 =WIDTH*HEIG2T 
A0=2.0*Al*A2/(A1+A2) 
ALPHA=1.0/(3.O*E*AIO) 
BETA=AK/(AO*G) 
N0PT=N0PT-1 
IFdN.GT. 1) GO TO 66 

C THE STATEMENT ABOVE IS USED FOR 
WRITE(6,65) 

65 F0RMAT('1',40X,' CARBON DIOXIDE 
GO TO 99 

66 IFdN.GT. 3) GO TO 95 
WRITE(6v86) 

86 F0RMAT(*1',30X,'RADIATION HARDENED CRYSTALS WITH PREPURIFIED NITRO 
IGEN PURGED > 5 VOLUMES') 
GO TO 99 

95 WRITE(6,96) 
96 FORMATCl',50X,'ARGON ATMOSPHERE PURGED > 5 VOLUMES') 
99 WRITE (6,5) E,G,AK.RHO,VE,WIDTH,HEIGIT,HEIG2T,N0PT,M,TL,TMPB 
5 FORMAT!'0',10X,'E=',E14.7,lOX,' G= •,E14.7,lOX,• K= •,E14.7,10X, 
1' DENSITY = ',E14.7//' SPEED= •,E14.7,10X,• WIDTH= ', E14.7, 
210X,' HEIGT 1= ••E14.7,10X, • HEIGT 2= ',E14.7// ' OPTION= ',12, 
318X,'CRYSTAL NC.=',12,18X,•TOTAL LENGTH=',E14.7,15X,•TEMPERATURE=' 
4,E14.7) 
WRITE(6,22)A0,AIO 

22 FORMAT!'0',40X,'A0=',E14.7,20X,•10=',E14.7) 
WRITE(6,8) 

8 FORMAT('0',5X,'STRIPE',7X,'TERM ',9X,'L/HT',7X,' L ',11X,' TIME ', 

LABELING THE COMPUTER PRINTOUT. ^ 
ft 

PURGED > 5 VOLUMES ') 



115X,' X ',17X,' GAMMA •,14X»•AVGSPO') 
VEVEE=VE 
CALL FINDX(HEIGIT,HE1G2T,VEVEE) 
FINDX IS A SUBROUTINE FOR FINDING X,A NUMBER DEPENDENT ON THE 
SPECIMEN DIMENSIONS. 
NN=0; GAMT0T=0-0; ASPD=0.0; IR=1 
DO 23 1=1,N 
IFfCtD.LE.LA) GO TO 17 
IF(TO(I).LE.O.OJ GO TO 24 
IF A DEFLECTION STRIPE IS NONCONOUCTIVE TO IS SET EQUAL TO ZERO 
SO THAT IR GOES TO 2. 
NN=NN+1 
J=I-IR 
AVGSPD(I)=(C(I)-CCJI»/((T0(I)-TO(J)»*1.0E-06) 
TERM=1.0/(AVGSPD(I)*(2.0*WIDTH)**0.5) 
IF (NOPT.EQ.l) GOTO 6 
TOT=(TO(I)-TO(J))*l.0E-06 
GO TO 14 

6 C(J)=C(M) 
TOT = TO(I)*1.OE-06 

14 GAMMA(I)=VE*VE*T0T*T0T*(3.0*ALPHA*CII)**2+BETA)*(3.0*ALPHA*C(J)»»2 
1+BETA)/(2.*WIDTH*((ALPHA*C(I)**3+BETA*C(I))*DSQRT(3.0*ALPHA*C(J)** 
22+BETA)-(ALPHA*C(J)**3+BETA*C(J))*DSQRT(3.0*ALPHA*C(I)**2+BETA))** 
32)-35.0*RH0*VE*VE*X(I)/3328 
ASPD=ASPD+AVGSPD(I) 
GAMTOT=GAMTOT+GAMMA(I) 
LF=C(11/(HEIGlT+HEIG2T) 
WRITE(6,9)I,TERM,LF,C(1),T0(I),X(I).GAMMA(I),AVGSPO(I) 

9 FORMAT!• ',7X,I2,4X,E14.7,4X,F5.2,6X,F5.2,6X,E14.7,10X,F5.2,13X,F1 
10.3,12X,F10.3) 
SIG=(C(N)-C(MI)/CTO(N)*1.0E-06) 
SIG IS AVERAGE CRACK SPEED. 
IR=1 
GO TO 23 

24 IR=IR+1 
GO TO 23 

17 M=I 



I IS STRIPE NUMBER OF STRIPE WHERE TIME MEASUREMENT BEGINS. 
23 CONTINUE 

SIGMA=ASPD/NN 
SIGMA IS MEAN SPEED. 
GAMT=GAMTOT/NN 
GAMT IS MEAN CLEAVAGE ENERGY. 
WRITE(6,77)GAMT.SIGMA»SIG 

77 FCRMAT('0',16X,'THE MEAN GAMMA='F10.3,7X,'THE MEAN SPEED»•FIO.3,7X 
1,'THE AVERAGE SPEED='F10.3) 

21 CONTINUE 
STOP; END 
SUBROUTINE FINCX(HEIGT1,HEIGT2,SPEED) 
IMPLICIT REAL*8(A-H,L,0-Z) 
COMMON X(14),C(14),GAM,RH0,WIDTH,AK,E,G,All,AI2,AI0,A1,A2,AO,N 
ELAST=E 
GSHEAR=G 
DO 2 JJ=1,N 
L=C(JJ) 

92 L2=L*L 
L3=L**3 
L5=L**5 
L7=L**7 
L9=L**9 
L11=L**11 
L13=L**13 
ALPHA=1.0/(3.0*ELAST*AI0) 
ALPHA2=ALPHA**2 
ALPHA3=ALPHA**3 
BETA=AK/(AO*GSHEAR) 
BETA2=BETA**2 
BETA3=BETA**3 
C1STAR=(WIDTH/(6.0*ELAST)**2)*(HEIGT1*AI2**2+HEIGT2*AI1**2)/(AI1** 

12*AI2**2) 
C2STAR=(AK*WIDTH/(3.0*ELAST*GSHEAR))*(HEIGT1*AI2*A2+HEIGT2*AI1*A1) 

1/(AI1*A1*AI2*A2) 
C3STAR=((AK**2)*WIDTH/GSHEAR**2)*(HEIGT1*A2**2+HEIGT2*A1**2)/(A1** 
12*A2**2) 



ALPBET=(ALPHA*L3+BETA*L) 
TERM4=(3.0*ALPHA*L**2+BETA)/ALPBET**2 
TERM2=C(48.0/35.0)»C1STAR»L11»ALPHA2+(228.0/35.0)•€1STAR»ALPHA*BET 

lA»L9+(444.0/35.0)*C1STAR*L7*BETA2-(0.6)*C2STAR*L9*ALPHA2-3.4*C2STA 
2R*ALPHA*BETA*L7+1.6*C2STAR*L5*BETA2+2.0*C3STAR*L7*ALPHA2+(2.0/3.0f 
3*C3STAR*L3*BETA2)/ALPBET**4 
TERM3=((-24.0/35.0)»ClSTAR*L13»ALPHA3-(174.0/35.0)•C1STAR»BETA*L11 
l*ALPHA2-(540.00/35.0;*ClSTAR*ALPHA*L9*BETA2+(660.0/35.0)*C1STAR*L7 
2*BETA3+(18.0/20.0)*C2STAR*L11*ALPHA3+7.0*C2STAR*BETA*L9*ALPHA2-(21 
34.0/20.0)*C2STAR*ALPHA*L7*BETA2+0.8*C2STAR*L5*BETA3-5.0*C3STAR*ALP 
4HA3*L9+3.0*C3STAR*ALPHA2*BETA*L7-3.0*C3STAR*ALPHA*BETA2*L5-(1.0/3. 
50)*C3STAR*BETA3*L3)/ALPBET**5 
TERM42=TERM4/TERM2 
TERM32=TERM3/TERM2 
TERM12=1.0/TERM2 
SHRBM=BETA/(ALPHA*L2) 
K=0 
DIFF= 1,00 00 
DEFF=1.0D 00 
CHANGE=0.9D 00 

3 CHANGE=CHANGE-1.0D 00/10.D 00**K 
K=K+1 

10 IF(CHANGE.GE.1.00 00) GO TO 12 
15 IF(K.GE.ll) GO TO 12 

DO 20 1=1,11 
CHANGE=CHANGE+1.0D 00/10.D 00**K 
C0=2.0*WIDTH*HEIGT1*70.*CHANGE 
A=(3.0*ALPHA*L*L+BETA) 
B=(ALPHA*L*L*L+BETA*L) 
D=2.0»GAM*WIDTH+C0 
E=1.0/(6.0*ALPHA*L/(B*R)-2.0*A*A/B**3) 
TT0=(B*8*D/(SPEED*SPEED*A))**0.5 
LDOT=(-2.0*SPEED*E/D**0.5)*(A/B**2)**1.5 
X1=-LDOT*LDOT»TERM32-2.0*LDOT/TTO+10.0*TERM42/RHO-20.*GAM*WIDTH*TE 
1RM12/(SPEED*SPEED*RH0*TT0*TT0) 
X2=6.0*SPEED*SPEED*E*A*A/(8**4*D)+(2.0*SPEED*E*E/D**0.5)*(A/(B*B)) 

1**1.5*(6.0*ALPHA*LDOT/(B*B)-36.0*ALPHA*L*A*LDOT/B**3+6.0*A**3*LOOT 



2/8**4) 
IF(1-2)94,97,94 

94 IF(0EFFÏ98,97,97 
97 DUFF=DÎFF/OABS(OIFF) 
98 01FF=X2-X1 

OEFF=DUFF*DIFF 
IFfOABSfCHANGE).LT.1.00-04) GO TO 20 

7 IF(DEFF)3,4,4 
4 XCJJ)=C0*3328/(70.O*WIDTH*SPEED*SPEED*RHO) 
20 CONTINUE 
12 GO TO 2 
2 CONTINUE 
RETURN; END 

SENTRY 
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