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1. INTRODUCTION 

In modern civilization sample survey has come to be con­

sidered as an organized fact-finding instrument. Its im­

portance lies in the fact that it can be used to summarize, 

for the guidance of administration, facts which would be 

otherwise inaccessible owing to the remoteness and obscurity 

of the units concerned, or their numerousness. In a scien­

tifically designed sample survey, it is possible to draw 

valid conclusions from the sample with the help of the 

available probability theory and statistical inference. Thus 

it is an interesting fact that the results from a well planned 

sample survey are expected to be more accurate than those 

from a complete census, if one such is at all possible to be 

taken. The technical problems that should receive most care­

ful consideration in planning a sample survey are the manner 

of selecting the sample and the estimation of population 

characteristics along with their margin of uncertainty. 

Since with every sampling and estimation procedure is 

associated the cost of the survey and the precision of the 

estimate made, the survey statistician dealing with the 

problems in the real world must take a very practical atti­

tude in the selection of the procedure and choose a procedure 

which gives highest precision rûr a yiveii ûûât ùl ûhê SUïVey 

or the minimum cost for a specified level of precision. As 
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such it may not be worthwhile and practicable to use some of 

the theoretically refined results. In large scale surveys, 

sums and sums of squares may be the only quantities that 

could possibly be calculated,and thus an estimator with a 

larger variance but which is cheaper to handle may be 

preferred to another which requires complicated computations 

but has a slightly smaller variance. Thus the survey 

statistician must strike a balance by taking all such facts 

into consideration and make his own decision regarding the 

selection of the sampling design in a given situation. 

Let a finite population consist of N distinct units 

Ui,U2» •. •/Ujjf with associated values Y^, t = l,2,...,N,of the 

characteristic y under study, and consider the problem of 
_ 1 N 

estimating the population mean Y = ^ Z y. or the population 
N w 1 

total Y = Z Y. based on a sample of size n drawn from this 
i=l ^ 

population. When data on an ancillary characteristic, say x, 

which is highly correlated with y, are available for all the 

units of the population, and X^>0 for t = 1,2,...N, it is 

customary to use this knowledge to provide a more efficient 

estimate of Y, either by sampling with unequal probabilities 

or by using a ratio or regression method of estimation after 

equal probability sampling. 

To use the ancillary data in selecting the sample, one 

simple and straightforward way is to calculate p^ = X^/X for 
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t = 1,2,...N where X = Z X. and then select the units with 

i=l 
replacement, the probability of selecting the t-th unit being 

p^ at each draw. This method of sampling is called the 

probability proportional to size (p.p.s.) sampling with 

replacement. The customary unbiased estimator of the 

population total under this sampling procedure is 

îpps = K " y/Pi '^-1) 

with variance 

^'îpps' = H : '1-2' 

Since in the case of simple random sampling, a sample selected with 

replacement yields a less precise estimate than a sample selected 

without replacement, it is quite natural to expect similar 

gains in unequal probability sampling also by shifting to 

without replacement schemes. Even though this approach under 

certain conditions gives easily, calculated and unbiased esti­

mators of Y, it has the disadvantage that sampling itself 

may be difficult to carry out and the variances difficult to 

estimate. 

Per any given sampling design, Horvitz and Thompson (1952) 

proposed an unbiased estimator of the population total y, viz., 

= .!i PT '1-3' 



where is the probability for the i-th unit to be in the 

sample. In this dissertation, we will be mainly concerned 

with this estimator in view of its optimal properties es­

tablished in the literature. Among the several articles in 

this line mention may be made of Godambe (1955, 1960), Godambe 

and Joshi (1965), Hâjek (1959), and Hanurav (1968). 

The variance of the Horvitz-Thompson (H.T.) estimator 

is given by 

N N P 
V(î ) = I -£- + Ï Z -1^ y.YV" y" 11.4) 

t i ^rj ^ ] 

where P^j denotes the probability for the i-th and j-th units 

to be both in the sample. 

From (1.4) one can observe that V(^g^) reduces to 

zero when P^ is exactly proportional to which suggests that 

by making P^ proportional to X^, considerable reduction in the 

variance can be achieved if are approximately proportional 

to Y^. A host of authors have proposed schemes wherein the 

inclusion probability P^ in a sample is np^ which imposes 

the condition np^£l on the probabilities p^ which is not a 

severe one. Such schemes are termed in the literature as 

inclusion probability proportional to size (I.P.P.S.) schemes 

or HPS schemes or exact sampling schemes. The different pro­

cedures can be put in four dirféiéiiL categories depending 

upon the manner in which the requirement Pj^ = np^ is achieved. 



5 

In the first category are the schemes suggested by Durbin 

(1967) and Saitç)ford (1967) where the first unit is selected 

with probability p^ while the subsequent units are selected 

with unequal probabilities so as to make equal np^ for all 

i. In the second category are the schemes suggested by 

Midzuno (1952), Lahiri (1951), Narain (1951), Yates and 

Grundy (1953), Brewer and Undy (1962), and Fellegi (1963). 

These schemes are based on unit by unit selection with 

revised probabilities of selection p!, i = 1,2,..., N, ; S O  

N 
calculated that Z p! =1 and the inclusion probability P. 

i=l "• 
equals np^^ for all i. In the third category are the schemes 

suggested by Durbin (1953), Hâjek (1964), Sampford (1967), 

and Hanurav (1967) based on rejective sampling. The units 

aire selected with certain probabilities and with replace­

ment, and the sample is rejected if all the units in the 

sample are not distinct, otherwise it is accepted. In the 

fourth category are the schemes suggested by Madow (1949) and 

Goodman and Kish (1950) where the units are selected in a sys­

tematic manner. 

Another group of procedures is the pps without replace­

ment sampling procedures. Those suggested by Midzuno (1952), 

Lahiri (1951) and Horvitz and Thompson (1952) belong to this 

group. In these procedures the first unit is selected with 

probability p^ while the subsequent units are selected with 

probabilities proportional to p^ or with equal probabilities. 
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In spite of so many sampling without replacement pro­

cedures being available, none of them has received general 

acceptance from the point of view of adoption in surveys. The 

reasons are not far to seek. Most of the authors presented 

schemes for samples of size two only and have nothing to 

offer for samples of size greater than two. The methods 

often lack simplicity, and the algebraic expressions for esti­

mated variance and sometimes even for the estimator itself 

are complicated and unmanageable for sample size greater than 

two. Some of the procedures are less efficient than even 

sampling with replacement. At times, they may involve calcu­

lation of revised probabilities of selection which impose 

restrictive conditions on the initial set of probabilities, 

or the revised probabilities of selection cannot be obtained 

easily in practice. These difficulties will get multiplied 

with increasing sample size. Further, even among the existing 

schemes, practically nothing is known regarding the relative 

performance of different schemes as measured by the variances 

of the estimators proposed. 

The I.P.P.S. schemes that are applicable for sample size 

n>2 are those of Midzqno (1952), Goodman and Kish (1950), 

Sampford (1967) and Hanurav (1967) . In Chapter 2 we have 

established that the H.T. estimator corresponding to the 

Midzuno scheme has uniformly smaller variance than the custo­

mary with replacement estimator for arbitrary sample size,thus 
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generalizing the result due to Rao (1963à) , Also we have com­

pared the variances corresponding to the procedures of Goodman 

and Kish, Sampford, and Hanurav using the asymptotic ap­

proach of Hartley and Rao (1962). 

In order to avoid the mathematical complications and the 

computational difficulties involved in these procedures, Rao, 

Hartley and Cochran (1962) suggested an ingenious device of 

selecting a sample of size n with unequal probabilities and 

without replacement. However, the simplicity of their approach 

is invalidated by the fact that the estimator they propose is 

inefficient compared to the H.T. estimator corresponding to 

most of the I.P.P.S. schemes. In Chapter 3 we have dis­

cussed the inadmissibility of the Rao, Hartley and Cochran 

estimator and brought out the optimal properties of their 

scheme by suggesting alternate more efficient estimators. 

None of the procedures proposed in the literature, owing 

to the complications involved, are acceptable for use in 

large scale surveys. In this connection it is worthwhile to 

quote Durbin (1953, p. 267). He says: 

The strict application of the usual methods of 
unequal probability sampling without replacement, in­
cluding the calculation of unbiased estimates of 
sampling error, is out of the question in certain 
kinds of large-scale survey work on grounds of 
practicability. There is therefore a need for 
methods which retain the advantages of unequal 
prùbabili'cy sampling without replacsmsnt but arc 
rather easier to apply in practice and only involve 
a slight loss of exactness. 
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In Chapter 4 we have proposed an I.P.P.S. sampling proce^ 

dure for sample sizes greater than two, that is particularly use­

ful in large scale surveys, and which makes use of the Durbin's 

procedure (1967) for sample size 2 and established its ef­

ficiency in relation to the other existing schemes. We 

believe the same technique can be used with gain by using any 

other I.P.P.S. procedure for sample size 2 in place of the 

Durbin's procedure. 

For comparing the efficiencies of various estimators in un­

equal probability sampling, a super population model is made use of 

by several authors. However, the average variance is the 

same for all the I.P.P.S. schemes under this model. In Chapter 

5 we have considered a slightly different model and compared 

the efficiencies of various I.P.P.S. schemes under various 

a priori distributions of the auxiliary variable. Also we 

have proposed a new technique of using the ancillary infor­

mation at the designing stage which is particularly useful 

in the case of area sampling and cluster sampling and have 

demonstrated that the estimator proposed under this scheme 

is always more efficient than the Rao, Hartley and Cochran's 

estimator. 



2. COMPARATIVE STUDIES OF SOME I.P.P.S. SCHEMES 

2.1. Schemes for Samples of Size 2 

Several authors have proposed schemes for selecting two 

units from a population of size N, with unequal probabilities 

and without replacement, such that the overall probability of 

including the i-th unit in the sample is proportional to the 

known size of the i-th unit, i.e., P^^ = 2p^ £ 1, where 

Pj^ = X^/X, X being the total of all the x values in the 

population. In this section we will discuss the desirable 

features of some of the schemes that are existent in the 

literature. 

Theorem 2.1; 

For the scheme of selecting a sample of size two where­

in the first unit is selected with probability proportional 

to the revised sizes Xj and the second unit with probabilities 

proportional to the remaining original sizes X^ where the re­

vised sizes Xj are given by 

2p^(l-p.) 1 
Pj " " (l-2p.) ' N ' (2.1.1) 

J 1 + 1 p /(l-2p ) 
it t 

the inclusion probabilities P^^ and P^^j are given by 

P^ = 2p^ (2.1.2) 

and 
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1 1  
^ij " N * ^l-2p. l-2p.] (2.1.3) 

1 + Z p^/(l-2p^) ^ 

Proof: 

The probability of including the i-th unit in the sample 

is given by 

P^ = prob (i-th unit gets selected at the first draw) 

+ prob (i-th unit gets selected at the second draw) 

N p 

^ j (^i) I'P] 

N p; p! 

= Pi + Pi 71=57 " Tî̂ l 

2p.(l-p.) N 2p 2p. 

" ̂ (l-2p.) + Pi ' (l-2p^) " (l-2Pi)}] 

N 
1 + Z P./(l-2p ) 
it T: 

= 2pi 

Probability P^j of including the pair (i, j) of units in the 

sample is given by 

P. . = Prob (i-th unit gets selected at the first draw 
and j-th unit gets selected at the second 
draw) 

+ Prob (j-th unit gets selected at the first draw 
and i-th unit gets selected at the second 
draw) 
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= li n + 
(l-p^) (1-pj) 

2Pi" Pj 2p ..p. 

^ (l-2p^) (l-2pj)] N 
1 + Z p^/(l-2p^) 

1 

N 
1 + Z PL/(1-2P.) 

1 Q.E.D. 

We will call the sampling scheme described in Theorem 

2.1 as Scheme A. This scheme is due to Brewer (1963), and the 

expression (2.1.3) is derived by Rao (1965). 

Theorem 2.2; 

Consider the sampling scheme described as follows; two 

units are selected with replacement,one with probabilities 

proportional to the revised sizes x* and the other unit with 

probabilities proportional to the original sizes Xj» If the 

two units selected are identical, reject the selections and 

repeat the process until two different units are selected 

in the sample. The revised sizes x* are given by 

1 

For this scheme also the inclusion probabilities and 

are given by (2.1.2) and (2.1.3) respectively. 

X* p./(l-2p.) 
p. = J = jj 3_ 

E p^/(l-2p^) 

(2.1.4) 
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Proof ; 

It is easy to see that the probability of including 

the i-th unit in the sample is given by 

N N 
p| • S p. + p. • Z p? 

Pi = ^, (2.1.5) 

1 - Z P*.Pt 

while the probability P.. of including the pair (i,j) of 

units in the sample is given by 

P?P4 + Pt'Pi 
Pij = ^ (2.1.6) 

1- £ P{Pt 

Substituting the values of pt and p* in (2.1.5) and (2.1.6) 

we obtain (2.1.2) and (2.1.3). _ _ _ y * iL * u # 

We will call the sampling scheme described in Theorem 

2.2 as Scheme B. This scheme is due to J.N.K. Rao (1965). 

Theorem 2.3; 

For the scheme of sampling where the first unit is 

drawn with probabilities p^ and the second unit from the 

rest of the population units with probabilities 

Pj.i r ^ 
1 + E D. /fl-2D. ) 

2 -c - z. 

the inclusion probabilities P^ and P^j are given by Equations 
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(2.1.2) and (2.1.3) respectively. 

Proof; 

Probability Pj^ of including the i-th unit in the sample 

is given by 

N 
p. = p. + E p."p. . (2.1.8) 

i(fi) ^ 

Substituting from (2.1.7), it can be seen that 

Pi = 2Pi 

The inclusion probability P^^j is given by 

1 1 
ZPiPj'l-Zp. + l-2pj 

_ 

1 + Z p./(l-2p.) 
1 ^ ^ 

Q.E.Di 

We will call the sampling scheme described in Theorem 2.3 as 

Scheme C. The scheme and the above results are due to Durbin 

(1967). 

Theorem 2.4; 

The Horvitz-Thompson estimators, of the population 

total, Yg and Y^ corresponding to the Schemes A, B and C 

respectively are equally efficient. 
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Proof ; 

For any sampling design, the variance of the corresponding 

Horvitz-Thompson estimator is given by 

N y/ N P.. 
V(î ) = Z -3^ + I Z . Y.Y. - (2.1.9) 

H.T. 2 Pi i=i ID 

Since the expressions for P^ and P^j of each of the Schemes 

A, B and C are given by (2.1.2) and (2.1.3), it follows that 

the corresponding variances are equal,and thus the estimators 

are equally efficient. 
Q.E.D. 

Theorem 2.5; 

The Horyitz-Thompson estimator corresponding to any of 

the Schemes A, B and C is always more efficient than the 

customary estimator in the case of probability proportional 

to size with replacement,and hence the Yates and Grundy esti­

mate of variance for the Schemes A, B, and C is always non-

negative . 

Proof ; 
! . ! 

Variance of the customary probability proportional to 

size with replacement estimator Y ^ = ?^yj/Pi is given by p#p#s# 6 X X 

1 N Y 2 2 
'"fp.p.s.» = PT -

Substituting the values of Pj^ and P^j from (2.1.2) and 
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P. . 
(2.1.3) in Z Z -2^ y Y. we get 

i j(?^i) ^i^j ^ ] 

Z ^ • Y Y. = 
i j(?^i) Vj ^ ] N 

2[1+Z p^/(l-2p^)] 

(2.1.11) 

N 
Noting that 1 + Z 

1 

(2.1.9) becomes 

Pt N Pt(l-Pt) 
-4- = 2 Z -T-%—— and using (2.1.11), 

N 
1+Z p./(l-2p.) 
1 ^ ^ 

[Y 
'=4 l-2p. 

-] - Y' 

- Y^] + 
N 

l+p^/(l-2p^) 

N Y N Y. 
- Z 

l-2p. 

(2.1.12) 

Thus we have from (2.1.10) and (2.1.12), 



16 

= N ' p • 

- 13̂  

N Y .  N  Y . 2  

Now it can be easily seen that, 

N Pt<l~Pt^ ^ 
S -4-=—— =1 + 1 ^ 
1 l-2Pt 1 l-2Pt 

and 

NY N p 

 ̂r%: =  ̂  ̂izlg: -

substituting these values in (2.1.13) we get 

1+2 py(i-2p.) ^ 
it t 

N 
- Y.{Y + 2 Z Pt/(1-2P^) • Y^} 

N 2 
+ 2 Y^.V(l-2pJ] 
it r 

N Pt^ Yt 2 
[z Trfc- • iz^ - Y) ] N 1 l-2p. p. 

1+1 p^/(l-2p^) 1 t t 

> 0 

Thus the H.T. estimator corresponding to either of the 

Schemes A, B and C is always more efficient than the customary 

probability proportional to size with replacement estimator. 
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Since a necessary condition for the without replacement 

H.T. estimator Y for sample size 2 with P,. = 2p. to be ll • X • XX 

better than the customary with replacement estimator 
y 

Y -k— independently of the y.'s is 
pps 2 p^ t 

Pij 1 Vj' 

it follows from the above that the Yates and Grundy variance 

estimator of Y _ for either of the Schemes A, B and C, viz., 
xl • X • 

V(YHT ) (2.1.14) 
H.T. Pi] Pj 

is always nonnegative. 
0»E»D« 

2.2. Some Sampling Schemes for Samples 
of Size n^2 

Even though several authors have proposed schemes for 

sample size two that satisfy the condition = 2pj^ £ 1, not 

many of these are useful for generalizing to samples of size 

n>2. The reasons are not far to seek. Often the methods lack 

simplicity and the algebraic expressions for estimated variance 

and sometimes even for the estimator itself are complicated 

and unmanageable. Some of the procedures are less efficient 

than even sampling with replacement. At times, they may 

involve calculation of revised probabilities of selection 

which impose restrictive conditions on the initial set of 

probabilities or the revised probabilities of selection 
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cannot be obtained easily in practice. In this section we 

will discuss the properties of some of the schemes that are 

existent in the literature. 

2.2,1. Midzimo scheme with revised probabilities 

Midzuno (1952) has proposed the following scheme for 

samples of size n^2. 

The first unit is selected with probability proportional 

to size and the remaining (n-1) units are selected with 

equal probabilities and without replacement. 

For this scheme of sampling the expressions for and 

are given by 

Horvitz and Thompson (1952) suggested using revised proba­

bilities p* to make P^ to be exactly equal to np^. The re 

vised probabilities p* are given by the equation 

Pi = Pi + (i-Pi) • #5^ (2.2.1) 

and 

( 2 . 2 . 2 )  

nPi = Pi = P» + (1-p*) • ̂  (2.2.3) 

or 

n = -"Pi 
n-1 
N-n 

(2.2.4) 

This imposes a severe restriction on p^, viz., p^ 

since for p^ < , p| becomes negative. 
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Thus a necessary condition for the Midzuno scheme with 

revised probabilities to be applicable is 

'2-2-5) 

For samples of size two, J.N.K. Rao (1963a)has shown that the 

H.T. estimator under the Midzuno scheme with revised 

probabilities is always more efficient than the customary 

pps with replacement estimator. Here we will present a 

proof of the same for arbitrary sample size n^2. 

Theorem 2.6; 

For the Midzuno scheme with revised probabilities, for 

arbitrary sample size n, the corresponding H.T. estimator 

is always more efficient than the customary p.p.s. with 

replacement estimator. 

Proof ; 

Variance of the customary p.p.s. with replacement 

estimator is 

It ' 

For the Midzuno scheme with revised probabilities, 

= np^ (2.2.7) 

^ij = (P* + P]) + (2.2.8) 



20 

where p| is given by (2.2.4). Using these, we have 

P, . 
i2_ = . [i_ + 1 
P^Pj n(N-2) Pj (N-I)p^pj 

Thus we have 

P.. fn NY. N Y.2 

N-l 
N %t 2 

N-l 
: 5 
1 p. 

(2.2.9) 

Using (2.2.9) we have from (2.2.6) and (2.1.9) 

N Y. 

(̂«pps' - ''«H.t.'M = S : Pi'FI -  ̂+ 

.  N Y .  N  Y . 2  

-Hrô=5r-'"-

À • + i& 

N y.2 

i p i  
(2.2.10) 

= n(H-l?U-2) • ((N-l) (N-2) y2-2 (N-l) • ••? ̂  

N Y.2 NY., N Y.2 
+ 2(N-1) ' I -^ + (I -^)^ - Z -iyl 

1 Pi I Pi 1 p.2 
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N Y, N Y,^ 2 
= nlN-îxL) • + 2(N-1)- (î ^ - f) 

N Y.^ N Y. 
- (Z i - 2Y • Î — + NY^)] 

1 Pi 1 Pi 

{r. i\ N . N N 2 
= Y +  ̂Pi'i - I 'i : 

(2.2.11) 
where 

Yi 
z . = '— — Y (2.2.12) 

Pi 

Now we have from (2.2.5) 

_ ^ n-1 . 1 ^ 1 
- Pi - ~ ̂  - 2 (N-1) , for n>2. 

Thus we have 2{N-l)Pj^ ̂  1. 

Using this condition it can be seen from (2.2.11) that 

Theorem 2.7: 

The Yates and Grundy estimate of variance for the 

Midzuno scheme with revised probabilities is always 

nonnegative. 

Proof ; 

The proof is exactly the same as given by Sen (1953) 

and Desraj (1956a) for the Midzuno scheme except for replacing 

Pi "y PÎ- Q.E.D. 



22 

For the Midzuno scheme with revised probabilities, even 

if it is guaranteed that the H.T. estimator is always more 

efficient than the p.p.s. with replacement estimator and 

that the Yates and Grundy estimate of variance is always 

nonnegative, it suffers from a severe restriction that the 

n - l  1  
method is applicable only when p^^ >_ • All the 

more, since only the first unit is selected with probability 

proportional to size, the rest being selected with equal 

probabilities this method is not likely to be as efficient 

as a method wherein all the n units are selected with un­

equal probabilities and without replacement. 

2.2.2. Goodman and Kish procedure 

The procedure mentioned by Goodman and Kish (1950) is as 

follows: 

Arrange the N units in a random order and let T. = 
j 
E np., T«=0, be the cumulative totals of (np.) in that order. 

i=l ^ 
Select a random start by selecting a uniform variate d with 

0_<d<l. Then select the n units whose indices j satisfy 

T. T<d+k<T. for some k between 0 and n-l. For this pro-]-i— ] 
cedure of sampling it can be easily verified that 

= npj^ (2.2.13) 

The rr.cithcr.atical difficulties involved in evaluating the 

probabilities P.. are resolved by Hartley and Rao (1962) by ij 
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using an asymptotic theory# and the compact expressions for the 

variance and the estimate of the variance of the H.T. esti­

mator in terms of p^'s and y^'s have been provided. By 

assuming that p^ is of 0(N ) and n is small relative to N, 

Hartley and Rao derived the approximate expression for P^j 

to o(N~^) and hence for V(Y„ _ )_„ to O(N^). For the use of 
fi # i 

moderately large populations they also evaluated V(Yg ^ 

to o(N^) by evaluating to 0(N *). 

The expression for P.. of the Goodman and Kish pro-
iJ 

cedure obtained by Hartley and Rao correct to 0(N is 

Pij = n(n-l)PiPj[l+{(Pi+Pj)-ZPt^}+{2(Pi2+pj2) 

2ZPt^+2PiPj-3(Pi+Pj)-Zp^^+S(Zpt^)2}] 

and the variance correct to 0(N®) is 

(2.2.14) 

V(5h.T.>G.K = E • lîPi^i^Hn-Dïp.Vl-^ • [2î;PiV 

- 2p^^-Zp^^z^^-2-(Sp^^z^)^] (2.2.15) 

where is given by (2.2.12). 

From (2.2.15) we have that ̂ (^h.T.^GK correct to O(N^) 

in the more familiar form is given by 

^«^H.T.'G-K = 1 ÎPill-O-DPiHY./Pi-ï)^ 

(2.2.16) 
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which clearly shows the principal reduction in the variance 

by adopting the without replacement scheme instead of the 

with replacement scheme. 

2.2.3. Sampford's procedure 

In Section 2.1 we have presented three equivalent 

schemes for samples of size two that are proposed by Brewer, 

Rao and Durbin respectively,and we have discussed some of the 

desirable properties that the H.T. estimator under these 

schemes possess. So it would be a worthwhile attempt if some 

or all of these procedures could be generalized for samples 

of size n>2 in view of the simplicity and straight forward­

ness of these methods. Brewer has described the difficulties 

involved in generalizing his scheme for n>2. Rao tried to 

generalize his scheme for the case n=3, and having faced with 

the possibility of getting negative values for the revised 

probabilities he ruled out the possibility for generalizing 

the scheme for n>2. However, Sampford (1967) has generalized 

the Durbin's scheme and presented a scheme that is applicable 

for all sample sizes which is described below. 

Since the condition npu=l ensures the automatic inclusion 

of the unit in the sample, which reduces the problem to select 

(n-1) units only, we may assume without loss of generality 

that np^<l for all i. 

Let — p^/(l"np^) (2.2.17) 
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Further/ let S(m) denote a set of m different units 

i^,i2,...,i^and let be defined by 

and (2.2.18) 

L= Z X. X. ...X. , (l<m<N) 
S (in) ^1 ^2 

where the summation is taken over all possible sets of m 

units drawn from the population. The procedure consists of 

selecting the particular sample S(n), consisting of units 

i^yigf.'.i^ with probability 

n 
P{S(n)} = nK -X. X. ...X. (1- Z p. ) (2.2.19) 

" ^1 ^2 ^n u=l 

where 
n , 

K = ( 2 tL ./ri) ^ (2.2.20) 
n n-r 

The probabilities (2.2.19) can be achieved in practice in 

three different ways: 

(i) The straight forward way is to evaluate the 

respective probabilities for the set of all possible samples 

and to draw one sample from this set with the required 

probability. However, this is not practicable to adopt for 

moderately large population sizes. 

(ii) Units may be selected without replacement, with the 

probabilities evaluated at each drawing according tc the rule 

described and illustrated by Sampford (1967). 
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(iii) The third method is by selecting n units with 

replacement, the first drawing being made with probabilities 

p^ and all subsequent ones with probabilities proportional to 

p^/(l-np^) and rejecting completely any sample that does not 

contain n different units and to start afresh. 

In practice, method (iii) could be more convenient be­

cause a sample can be discarded as soon as a duplicate unit 

is drawn. However, for small samples one may take as 

a guide line in the relative preference of methods (ii) and 

(iii), the value of the expected number of samples that must 

be drawn to obtain an acceptable sample which is given by 

N 
{K_'(Z X.) }/(n-l)i. Smaller the value of this expected 

1 
number, more would be the chance of getting less number of 

rejections. 

For this scheme of sampling Sampford has shown that 

the expressions for and P^j are given by 

where is given by (2.2.20), is given by (2.2.17) and 

Pi = npi (2.2.21) 

and 

( 2 . 2 . 2 2 )  

(}). . is given by 
ij 

n-2 
Ii- ^ "0 "p 
S(n-2) ^1 ^2 
i,i/S 

SL \sr i ' r -s, i -iry 
n-2 ^ ] u=l 

— i r o  

(2.2.23) 
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Sampford has also shown that for this scheme the condition 

P\Pj-P^j>0, is satisfied which ensures the nonnegativity 

of the Yates and Grundy variance estimator. 

The other sampling schemes that are existent in the 

literature are the one suggested by K. Vijayan (1968) 

which is a generalization of one of the procedures suggested 

by Hanurav (1967) for sample size two and the rejective 

sampling schemes of Hajek (1964) and Hanurav (1967). The 

mathematical complications involved in these procedures would 

make their usefulness much doubtful in practice because the 

survey practitioner cares much for the simplicity involved in 

adopting a particular procedure in addition to other require­

ments like good efficiency compared to other methods. 

2.3. Evaluation of the Approximate Expression 
for of the Sampford*s Procedure 

Even though Sampford has given the exact expression 

(2.2.22) for P^j and also the computational methods to 

evaluate these probabilities, the computations become quite 

cumbersome particularly for N and/or n large. It may not be 

too difficult to carry out the computations on an electronic 

computer. However, the access to the electronic computers in 

some developing and underdeveloped countries is restricted 

and only use of the desk calculators could be made. Since 

the need of conducting sample surveys in the developing 
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countries is great, simplicity of computations is one of the 

important factors in choosing a sampling procedure. Thus 

the Sampford's scheme suffers from this drawback. In such 

cases and in cases where quick results are needed one may pre­

fer to use the approximate expressions that would be quite 

satisfactory and easy for numerical evaluation. Also one 

would like to know the relative efficiencies of two given 

schemes to use them as a guideline for their relative 

preferences. Since the procedure of Goodman and Kish 

described in Subsection 2.2.2 and the procedure of Sampf ord 

described in Subsection 2.2.3 are two competitive schemes, 

it is worthwhile to compare the efficiencies of the two 

schemes. Since Hartley and Rao derived the approximate ex­

pressions for Pj^j and the variance of the H.T. estimator for 

the procedure of Goodman and Kish using an asymptotic theory 

under some specific assumptions, it would be realistic for 

comparison purposes to derive the approximate expressions 

for P^j and the variance for the Sampford's procedure using the 

same asymptotic approach under the same assumptions. In this 

section we derive the approximate expressions for P^j for the 

Sampford's procedure. 

In order to evaluate the variance expression of the H.T. 

estimator correct to 0(N®) for the Sampford's procedure, we 

-4 
have to evaluate P^j correct to o(N ) under the assumptions 

that n is small relative to N and p^ is of o(N~^). 
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For the Sampford's procedure the exact expression for 

P^j is given by (2.2.22) viz., 

P. . = K X.X.<J). . (2.3.1) 
1] n X ]?!] 

From (2.2.17) we have 

X^Xj = p^/(l-npi) • pj/(l-npj) 

Since np^<l, expanding in Taylor series we get 

X.X. = p.p.{l+np.+n^p.^+...}{l+np.+n^p.^+...} 
x j x j  i X  J J  

-4 Retaining the terms up to 0(N ) only we get 

X^Xj = PiPj{l+n(Pi+Pj)+n^(Pi^+Pj^+PiPj)} (2.3.2) 

The leading term of X^Xj above is of 0(N ^) and thus it would 

be sufficient to evaluate K and ({». . each correct to 0(N ^) 
n 1] 

only in order to evaluate P^j correct to o(n"^). 

2.3.1. Evaluation of correct to 0(N~^) 

The expression for is given by (2.2.20) as 

n tL . , 
K_ =  ( Z  (2.3 . 3 )  

t=l n^ 

For evaluating K we first need to evaluate L correct to 
^ n m 

/*T~ 2 X 
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Consider 

(2.3.4) 

where (^) stands for the number of ways of choosing m out of 

N units and E denotes the expectation taken over the scheme 

of selecting m units out of N units with simple random 

sampling without replacement. Without loss of generality 

we can assume that the units are selected in that 
1 / m 

order. 

Now, substituting the value of X. in (2.3.4) we get 

2 2 {1+np. +n p. 
^2 ^2 

2 2 {1+np^ +n p^ +...}] (2.3.5) 

where N - N(N-1)...(N-m+1) (2.3.6) 

It can be seen that for any set of positive integers 

the contribution of 

correct to 0(n"^) would be zero if Z > (m+2). Further from 



31 

the basic properties of simple random sampling it is also 

known that 

a, a_ a 
E[Po p„ -"Po ] 

*1 ^2 m 

is the same for all the m! permutations of 

Hence from (2.3.5) it follows that the expression for 

that could contribute to 0(N ^) is given by 

12 m 12 3 m 

2 3 
+ n m-E(Pp Pp Pp ...pj ) 

^1 ^2 ^3 m 

+ • E(P. ̂ P, ^P. P. ...p. )] (2.3.7) 
z ^1 ^2 ^3 ^4 m 

Now we will prove here a lemma which will be used in the 

evaluation of L̂ . 

Lemma 2.1; 

Let be the units drawn in that order when a 
12 m 

simple random sample of size m is drawn from a population 

of N units. Under this scheme of sampling, for m^3 where m 

is small relative to N and Pj^ is of 0 (N the following 

- 2  relations are true correct to 0(N ). 
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m jn. .m-2 2 

and 

^ - (2) (^Pt) ':Pt 

+ 2- (3) .(ZPt)*"3.2p^3 

+ 3- (4) '(ZPt)*"*'(ZPt^)^ (2.3.8) 

(xn-1) (Zpt)*"2.zp^3 

(*2l)'Z(Pt)*"3.(Zp^2)2 (2.3.9) 

wherein 

(^) is to be taken as zero if n<v 

Proof : 

First we consider 

E[p^ ?£ Pj^ ] ~ EfPj^ p^ •E(p£ (2.3.12) 

where E^p^/t^fAg) denotes the conditional expectation of 

p^ given that and Ag the units selected in the 

i 
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first two draws. 

Thus we have from (2.3.12) 

1 -2 , 

= 5=2 

Proceeding similarly we get correct to 0(N 

= (2p^)^-3Zp^*Zp^^+2Sp^^ (2.3.13) 

which shows that (2.3.8) is true for the value m=3. Now 

assuming that 

+ 2. ("*3^)- (2p^)"'"^-Zp^^ 

+ 3.(*âl)'(ZPt)*"S.(zp^2)2 (2.3.14) 

we get 

N(m)'B(P& P& "'"PA ) 
12 m 

= N-(N-1)(^.1,.Etpj^-E(p,^pj^...pj^/4^)1 

= N-E[p .(N-1),^.^,-E(p p ...Pj^ /«.^)i 
1 / j m 
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+ 3.(*;i)•(ZPt-Pa^)*"^' 

= (ZPt)*-{(m-l) + (™2^)}(ZPt)*"^'ZPt^+2((™2^) + (*3^)} 

• (ZPt)™"3.Zp^3 

+ {3. (m-l) + (m-3) • (™2^) }• (SPt")' 

= (ZPt)"*- (g) (ZPt)*"^'ZPt^+2' (^)'(ZPt)*"^'ZPt^ 

+ 3.(®).(Sp^)™"^-(Zp^Z):, (2.3.15) 

correct to 0(N ^). Thus from Equations (2.3. 13)-(2.3.15) 

it follows by induction that (2.3.8) of the Lemma is true 

for all m^3. 

Now considering 

= N.B|Pa^2.(N-l)(m_i)-E(P*2P% 2 ---P*^/Al)] <2-3.16) 

From (2.3.8) we have 
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(N-1) P& '''P& All 
2 3 m 

+ 3-("^l).(EPt-p% )™"S.{Ep^2_p^^2x! (2.3, 

substituting this in (2.3.16) we get after simplifying 

and retaining terms to o(N ^), 

- (m-1) ' (Zp»)*"3' (ZPL^): 

which shows that (2.3.9) is true for all m^3. 

Considering 

•'(n)-̂ 'P.,V''3:"'V 

"•E'Pn/- '"-1) (m-1) 

we get after using (2.3.17) and simplifying 

N(m)'B 

= (ZPL)*"1'ZP^3 
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_2 correct to o(N ), 

which shows that (2.3.10) is true for all in^3. 

Now we consider 

. N.EtPt :pa Pa ...Pa /'i'' "-s-") 
1 z j 4 m 

From (2.3.9) we have 

(N-l) (m-l) 

= (ZPt-Pt^t^-Z-lzPtZ-Pa^Z) 

-(m-2) • (Sp^.-p. (ZPt^-p^^S) 

Substituting this value in (2.3.18) we get after simplifying 

and retaining terms to o(N~^), 

which shows that (2.3.11) is true for all m^3. 

Remark: 

Even though the proof of the Lemma assumes that m^3, 

the statement of the Lemma is true for the values m=û, 1 and 

2 also which can be easily verified. 
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Now using the results of Lemma 2.1, we get from (2.3.7), 
N 

after observing that Z = 1, for m^3/ 

+ nm-{Zp^^-(m-l) •Zp^^-("'2^)- (Zp^^)^} 

+ n^m-ZPt^ + '(ZPt^)^] 

= ij [l+{(^)n-(g)}•Ep^^+{(™)n^-2-(g)n+2(®)}•Zp^' 

+ {(^^n2-3.(^^n+3.(%^}(Zpt2)2] (2.3.19) 

By definition, LQ=1 (2.3.20) 

Also it can be easily verified that correct to 0(N'"̂ ) , 

= 1+nZp^^+n^Zp^^ (2.3.21) 

and 

Lg = i •[l+(2n-l)Zp^^+2n(n-l)Zp^^+n^(Zp^^)^], (2.3.22) 

From (2.3.3) we have 

1 ^ tL 
^  =  Z  — ( 2 . 3 . 2 3 )  
n t=l n^ 

Thus by using (2.3.20) and (2.3,21) we get for n=2. 

^ = (Lq+Lj^)/2 = l+Zpt^+2Zpt^ (2.3.24) 
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Similarly by substituting the values from (2.3.19) to 

(2.3.22) for the respective terms in (2.3.23) we get after 

simplifying 

cind 

|- = I '[l+3Zpt2+8ZPt3+3(EPt^)^] (2.3.25) 

[l+6Ep^2+20Zp^^+15(Zp^^)^] (2.3.26) 

Theorem 2.7: 

\ 2 For n^5, the expression for 1/K^ correct to o(N ) 

is given by 

= 1 + n 2 n(n+l) . 3 
(n-D! 2 (n-2) ! ̂^t * 3(n-2)! ^^t 

+ silpSTT <2-3-27) 

Proof : 

Using the transformation s = n-t in (2.3.23) we get 

i- = (n-s)-L / 
s=0 ® " 

= + (n-1) • Li/n""^ + (n-2) 

+ G, (2.3.28) 

wiicsi. e 
n-1 

G = Z (n-s) • L /n 
s=3 ® 
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Substituting the value of from (2.3.19) the above ex­

pression for G can be written as 

1 n-1 - n-1 
G = ̂  • [I (n-s)-T + n^'{ Z (n-s)-T , 

n'^ s=3 ® s=3 

1 ^̂ ""1 2 
- 2 • ^ (n-s)'T _2}Zp. 

^ s=3 s z t 

_ n—1 n-1 
+ n •{ Z (n-s)'T Z (n-s)-T -

s=3 s=3 

1 3 
+ 3 • Z (n-s)-T 3}Zp 
j s=3 s J t: 

4 n-1 n-1 
+ 2- •{ Z (n-s)*T_ Z (n-s)'T _ 
^ s=3 ^ ^ s=3 

+ Y *Z^(n-s).T^_.}(Zp.2)2] (2.3.29) 
* s=4 ^ ^ 

where 

Ts = §! (2.3.30) 

For any nonnegative integers let 

m 

" k-m) ° s'l 

and 
m 

Then the following results can easily be established: 
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For any m, 

m 
3!/n-s).V„= <2-3-31) 

J(0,m) - (2.3.32) 

For any ^a,m) ' il-l.m-l) (2.3.33) 

and for any 0<%gn, 

I(&+l,m+l)"I(A,m) (2.3.34) 

In view of (2.3.31), expression (2.3.29) for G reduces to 

® ^ ̂ n'[(*'I(3,n-l)"J(3,n-l)}^*^'{(*"l)I(2,n-2) 

"J(2,n-2)" ^*2^^ • I(l,n-3) ^ 1 ' (l,n-3) ̂^Pt^ 

+ n^{(n-l)I(2, n-2)"J(2, n -2)"(*"2)I( i , n_3 )  

" J(l,n-3)+ ^*3^^ I(0,n-4) " I * (0,n-4) ̂^^t^ 

+ ̂  '{(n-2)I( i  ^_2)-J( i^^^3)-(n-3)I(Q  

+ J(0,n-4)+ ̂  :(0,n-5)- Î ' "^(O^n-S) >* ̂ ^Pt') 
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Using relations (2.3.32)-(2.3.34) the above expression for G 

can be written, after suitable rearrangement of the terms, 

as 

G = ̂  •[n(Tn_i-T2) + n^-{(n-1) 
n 

- §(Tn.3-To))-:Pt^ 

+ n^-{(n-1)(T^_2-T^)-(n-l)(T^.g-Tg) 

+ f • Tn-4':Pt̂  

+ -(Tn-3-Tol- • V4 

+ I • (2.3.35) 

Substituting the values of L^, and from (2.3.20)-

(2.3.22),and the value of 6 from (2.3.35) in Equation 

(2.3.28) we get for n^5, 

1 (n-1) • (l+nZpt^+n^Zpt^) 

^n n*-l n*-l 

+ • [l+(2n-l)Sp^2+2n(n-l)Sp^^+n^(Zp^^)2] 
2n 

+ ̂  .In(T^.j^-T2)+n2-{(n-l) (T^.j-Ti) 
n 

- 5<V3-®0' IZPt 
2 
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+ I • V4'^Pt^ 

+ • (Tn_3-To)-^ • V4 

+ I • T^^s}(Zpt2)2] (2.3.36) 

Now, let 

l~ " Co+CiZpt^+CgZPt^+Cg(ZPt^)^ (2.3.37) 

Equating the coefficients of the like terms in (2.3.36) 

and (2.3.37) we get after substituting the value of 

from (2.3.30), 

^ [f*-! -2 

n" " n" " 2n" *• n*''"" ' 

C = JL_ + (n-1) + (n-2) + _1_ rn*-l _ n^j 
0 n-1 _n-l _ n-2 n-1 (n-1)! 2 

= T^TTTT ' >2.3.38) 

=1 = -W ̂ '"'fn-z'" + 
n zn n 
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n n n 

_n-3 ]n-3 

- <°-̂ '•'Tïï̂ âTT " + 15=3)%' 

= , (2.3.40) 

and 

^3 = '%-i)l - 1) - ^2(n-4*! 
zn n 

n-4 
4. — 1  
8(n-5)!^ 

= |<S^, (2.3.41) 

Hence from Equations (2.3.37)-(2.3.41) it follows that 

(2.3.27) holds. 
Q. E. D. 

Remark; 

Even though Equation (2.3.27) of Theorem 2.7 is derived 

for n^5, observation of Equations (2.3.25) and (2.3.26) 

tells us that (2.3.27) is true for the values n=3 and 4 

also. 

Thus we have for n^3, 

^ ° (i-l)! * iin-i)1 • + 3(n-2)|:Pt^ 

+ (2-3-421 
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Now from (2.3.24) we have 

Kg = l/(l+Zpt^+2ZPt^), 

which after expanding the denominator and retaining terms 

- 2  to 0(N ) gives 

Kg = l-Zp^^-2Zp^^ + (IPt^)^ (2.3.43) 

After a similar operation we get from (2.3.42) for n^3, 

Kn = &- '[1- 5^ ' :Pt^- ̂  • :Pt^ + (^^2 - 6^4 n Cq Cq t Cq t Cq t 

(2.3.44) 

2.3.2. Evaluation of correct to 0(N ^) 

The expression for (j>^j from (2.2.23) is given by 

n—2 
(j). . = n- I An An •••An {l-fPi+P̂ )- Z Pn } 

S(n-2) ^1 ^2 n-2 ^ ^ u=l u 

(2.3.45) 

Since the right hand side of (2.3.45) is not meaningful to 

consider for n=2, we derive here the approximate expression 

for (|)^j assuming that n^3. 

(2.3.45) can alternatively be written as 

n—2 
- Z Pp }] (2.5.40) 

u=l u 
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where E' denotes the expectation taken over the scheme of 

selecting (n-2) units from among the population excluding 

the ith and jth units with simple random sampling without 

replacement. Without loss of generality we can assume that 

« are the units selected in that order. 
1 z n—z 

Thus we have from (2.3.46), 

*ij ^ (n-2)! ' (N-2)(n_2)"[B'(A&^A&2'''^&n-2) 

- (Pi+P^)"E'(Xç X. ...Xg ) 
^ ] %1 *2 *n-2 

n-2 
- E'(Xç Xç ...Xg ' Z Pn )] (2.3.47) 

^1 ^2 *n-2 u=l u 

First we consider 

( N - 2 ) ( n _ 2 ) ' ' ^ A n _ 2 )  

= (n-2)'®' 

a, a- a _2 
By using the fact that E'[p. p. ...p. " ] is 

1 2 n-2 

invariant over all the permutations of (a^a2...a^_2) 

for any positive integers Og... get by re­

taining terms that contribute to o(N ^) only, 

( N - 2 ) ( n - 2 ) ' ' ^ & n _ 2 ^  

= fN—21 . 'E* fn. D. ...n. 1 
in-4, -'V^2 '*n-2' 
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+ n(n-2).(N-2)^^_2)E'[p^^ ̂ ^2^*3' ̂ *n-2^ 

+ (n-2) . (N-2) (^.g) fPji^ P&gP&g"' 

+ n^("2^) • (N-2) (n_2)"E'[P&^ " *^^n-2^ 

Now, using the Equations (2.3.8)-(2.3.11) of Lemma 2.1, for 

the population of (N-2) units excluding the ith and jth 

units and with m=n-2, we get 

( n - 2 ) '  ^ * n - 2 ^  

= [(2p^-Pi-Pj)" ̂ ~("2^)(^Pt"Pi"Pj)" *'(%Pt^"Pi^"Pj^) 

+ 2.(*;2)(ZPt-Pi-Pj)""^'(ZPt^-Pi^-P]^) 

+ 3.(*;2)(ZPt-Pi-Pj)*"*'(ZPt^-Pi^-Pj^)^] 

+ n(n-2).[(Zpt-Pi-Pj)""3(ZPt2-Pi^-Pj2) 

- (n-3)'(Zp^-p^-pj)^ *'(ZPt^-Pi^-Pj^) 

- * (%Pt"Pi"Pj)* (%Pt^"Pi^"Pj^)^] 

+ n^ (n-2) • (Zp^-p^-pj)*^ ^^(Zp^^-Pi^-Pj^) 

+ n2.fn"2\./Tn rj:n^-n.^-n.2^2 
' 2 * '-^t •-'•t: 'i " 3 ' 
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N _2 
which, by noting that I p.=l and retaining terms to 0(N ) 

1 ^ 
only reduces to 

(n-2) 

= l+{(*"2)^n+3) .zp^2 _ (n-2)(p.+p.)} 

+ {(n-2)(n-3)p^p--3(n-2)(P^^+Pj^) 

- ("-2) (n-3) (n+4) , (p.+p.).zp^2 

. (n-2)(n2+2n+12) 3 
+ g ZPt 

+ (""2) (n-3) (n^+7n+20) . (2:p^2j2jj (2.3.48) 

Using this expression we get correct to 0(N ^), 

E*[X- X- ...X- ] (Pi+Pjl'(N-2)(n. 2)'E'[X&^ 
"2 V2 

= <Pi+Pj) ' |l+(-^Sz2HS±ll -ïp^2-(n-2) (p.+pj))l 

(2.3.49) 

We now consider 

n-2 
(N—2) / [Xg XQ ..,X- • Z p. ] 

(n 2) ^2 n-2 u=l 

n-2 « ^ n-2 
= (N-2), Hp '(1+np +n'p. "'+...)}• Zp ] 

(n 2) u=l *'u u=l 
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«1 «2 ^ri-2 
By the symmetry of E'(?„ Po •••Po ) 

^2 *n-2 

in a^fag...a^_2 we get after retaining only the terms 

that contribute to 0(N , 

n-2 
(N—2) , _2\*E*[Xg X- .«.X- • E Pn ] 

(n 2) &2 n-2 u=l u 

= (n-2). (N-2) (n.2, -E-

+ n(n-2) (n-3) • (N-2) "̂ "11-2' 

+ n(n-2). (N-2) (n-2)E' 

Again by using the results of Lemma 2.1 with suitable 
N 

changes we get after noting that Z p = 1, 
1 t 

<N-2)(n-2)-E'tW*--^il^.2*u=l V 

(n-2)'[(Zpt-pi-p.)*"3'(ZPt^-Pi^-Pj^) 

- (n-3) • (Sp^-pj^-pj)^ *"(Zpt^-Pi^-Pj^) 

- .(Ept-p._p.)n-5.(ZPt^-Pi^-Pj^):] 

+ n(n-2) (n-3) • (Zp^-Pi-Pj)^ (Ep^^-p^^^-pj^) ̂ 

+  n / n — #  ( V .n —r> . —r» . \ ̂  ̂  f TT> ^ \ 
— »— — * » —i- 1 ̂  J ' * t ^ i D ' 
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= (n-2)[Zp^^-(n-3)•(P^+Pj)*2p^^-(p^^+pj^) 

+ 3Sp^^ + (n-3)^n+4) . (Zp^^)^l (2.3.50) 

correct to 0(N . 

Substituting the values from (2.3.48), (2.3.49) and 

(2.3.50) in (2.3.47) we get, for n^3, after some simplifi­

cation. 

+ { (n-1) (n-2) 'puPj-(n-2) (pu^+pj^) 

- (n-2)(n^-3) . zp^2 

^ (n-2)(n2+2n+3) 3 
3 ^Pt 

+ (n-2)(n-3)(n2+3n+4) .(Zp^2^2^j (2.3.51) 

-4 2.3.3. Evaluation of P^j correct to 0(N ) 

Case (i): n=2; 

As we mentioned earlier Sampford's procedure for sample 

size two is the same as Durbin's scheme (1967). The ex­

pression for P^j of the Durbin's scheme is 

= KoP.P^(Trfer- + Trfe-) j-j J- J J. 

substituting the value of Kg from (2.3.50) and after ex-
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panding l/(l-2pu) and l/(l-2pj) in the above expression we 

-4 get after retaining terms to 0(N ) only, 

Pij = 2p^Pj[l+{(p^+Pj)-Ep^2j+£2(pApj2)-2Ep^^ 

- (Pi+Pj)'ZPt^+(ZPt^)^}] (2.3.52) 

Case (ii) I n2.3; 

From (2.3.2) and (2.3.44) we get, after multiplying and 

retaining terms to 0(N *) 

Kn'^iXj = . [l+{n(pi+pj)-^l2pt2}+{n2(pi2+p.2+p.pj) 

-, C, ̂ C, no C, 
- + i-K - (ZPt2)2-n. ̂  (Pi+P.iZPt^}] 
Cq t Cg t Cg 1 ] c 

(2.3.53) 

Now, it can be seen that 

^ = (n-D! 
^0 

^1 _ n(n-l) 
Co " 2 

^ - n(n-l) (n+1) 
S " 3 

^3 n(n-l) (n-2) (n+1) 
^ » 

and 
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2 
^1 ^3 _ n(n-l)(n^-n+2) 
_ g 

Co 0 

Substituting these values in (2.3.58) we get 

° (n-l)!PiPj[l+(n(pi+Pj)- Sp^^} 

+ (n(n-l^(n2-n+2) (i-p^2j2 ^ 

- • EPt" + „2p.p. 

- (pi+pji'zp^z}] 

using this expression and the expression for (j)^j from 

(2.3.51) we get after simplifying, when terms to 0(N~^) 

are retained, 

P^j = n(n-l)Pj^Pj [l+{ (p^+Pj)-Ep^^}+{2(p^^+Pj^)-2Zp^^ 

- (n-2)p^pj + (n-3)•(P^+Pj)Sp^^ 

- (n-3)(Zp»2)2}] (2.3.54) 

Even though this expression is derived for the case n^3. 

Equation (2.3.52) shows that (2.3.54) is valid for the 

value n=2 , also. Thus the expression for correct to 

0(N"4) under Sampford's scheme of selection for samples of 

size n is given by (2.3.54) which is true for all n>2. 
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A check on (2.3.54) is provided by verifying that 

when all p^ are equal to which is the expression for 

correct to 0(N~^) in the case of simple random sampling 

without replacement. A more thorough check on (2.3.54) 
N 

is provided by verifying that E P^j = (n-l)P^ is 

satisfied to 0(N~^) which confirms that (2.3.54) is correct 

to 0(n"^). 

2.3.4. Evaluation of the variance expression to O(N^) 

We will first prove a theorem which is applicable for 

various without replacement schemes as we will be seeing 

later in this chapter as well as in the subsequent chapters. 

Theorem 2.8; 

Given any varying probability sampling scheme for 

selecting a sample of size n whose P^ is given by 

Pĵ  = npĵ  (2.3.55) 

and whose P^^j correct to 0(N"*) is given by 

P^j = n(n-l)p^pj [l+{ (p^+pj)-2:p^^}+{2(p^^+pj^)-2zp^^ 

+ anPiPj-tan+l) (Pi+Pj) * ̂ Pt^+< (Sp^^)^}] (2.3.56) 

for some constant a^ that does not depend on p^'s but may 

j(?«i) 
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depend on n, the variance expression correct to O(N^) of 

the corresponding H.T. estimator is given by 

V(îg^) = 

- . I2Zp.3z.2-ïp.2.i:p.2z.2-a^. (Ep.\)2] 

(2.3.57) 

where is given in (2.2.12). 

Proof ; 

Variance of the H.T. estimator is given by 

V($ ) = ZY 2/p +2 z Piz/P.Pz • Y.Y -yZ (2.3.58) 
i j (?fi) 1] 1 ^ ] 

From (2.3.55) we have 

Sy^VPi = ZYi^/npu (2.3.59) 

Also by using (2.3.55) and (2.3.56) we get 

i 3(̂ i) 

= 1 z (n-1) . [!+{ (Pj^+P.)-£P^Z}+{2(P Ap.Z) 

i j(?^i) " 

- 2Ep^^+a^p^pj - (a^+1) (Pu+Pj) Sp^^ 

+ (a +l).(Zp.2)2}].Y.Y. 
n X. 1 ] 
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= (n-1) [£{l+pj.-zp^^+2pj^^-2zp^^-(aj^+l)p£Zp^2 
n 1 

+ (a^+1) (Ep^2)2}.Yj^(Y-Y^) 

= • l{l-SPj.̂ -2Zp,.̂ +(ajj+l) (Sp̂ )̂̂ )(Ŷ -£Y,,̂ ) 

+ Y- {Ep^Y^+2Ep^^Y^- (a^+1) Zp^^- ZP^Y^} 

- ZPtYt:-2Zp,:Yt2+(an+l)ZPt:-ZPt?t= 

+ Y- Zp^Y^.-Zp^Y^^+2Y- £p^^Y^-2Sp^^ Y^^ 

+ an(ZPt%tl^-anEPt^?t^-(an+l) '^':Pt^'=:Pt^t 

+ (aj^+DSp^^-Zp^Yj.^! 

Retaining only terms to O(N^), we get 

P . 
I I • Y.Y. = [Y^-{Y2zp^-2Y.SP Y +E.Y 2} 
i j(?^i)^i D 1 3 n t t t t 

+ {(aj^+l)Y^(Sp^2j2_2Y2j;p^3 

« —— __ 2 —— « T* 2 T* —— 2 ^ _ , m % — — _ 2 __ —— 

- 2Zp^Y^2 + a^(Ep^.Y^)2}} (2.3.60) 
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Substituting in (2.3.58) the values in (2.3.59) and (2.3.60) 

we get, after simplifying and putting in suitable form, the 

variance correct to O(N^) as 

V(Yg,) = ̂ ^ZPiZ.2-(n-l)Zpi2z.2] 

(2.3.61) 

^ n Q.E.D. 
From (2.3.61), V(Yjj^) correct to 0{N ) is given by 

= 5 

which is equal to the variance of the customary estimator 

in probability proportional to size with replacement sampling. 

V(YH.T.^ correct to O(N^) is given by 

5lïPi^i^-t"-l)£Pi^z.2l 

= ^[%{l-(n-l)Pj^}Zi^] (2.3.62) 

which clearly shows the reduction in variance compared to 

the with replacement procedure. Thus repre­

sents the principal gain of the without replacement procedure 

relative to the with replacement scheme. 

In Subsection 2.2.2 we have mentioned that Hartley and 

Rao derived the expression for of the Goodman and Kish 

0 "A 
procedure correct to 0(N ) which is given by (2.2.14). 
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We can observe that (2.2.14) is the same as (2.3.56) 

with a^=2 and thus Theorem 2.8 is applicable to the Goodman 

and Kish procedure. 

Also we observe that (2.3.54) is the same as (2.3.56) 

with a^=-(n-2). 

Thus Theorem 2.8 is also applicable to Sampford's pro­

cedure . Thus using Theorem 2.8 we can compare the ef­

ficiencies of the H.T. estimator under the procedures of 

(i) Goodman and Kish and (ii) Sampford. 

Theorem 2.9; 

When the variance is considered to O(N^), the H.T. 

estimators corresponding to Sampford's procedure and the 

Goodman and Kish procedure are equally efficient, and when 

the variance is considered to 0(N®), the H.T. estimator 

corresponding to the Sampford's procedure is always more 

efficient than the H.T. estimator corresponding to the 

Goodman and Kish procedure and the relative gain in pre­

cision will be larger for larger sample sizes. 

Proof ; 

Since Theorem 2.8 is applicable to both the schemes 

it follows from (2.3.62) that to O(N^) the H.T. estimators 

corresponding to both the schemes are equally efficient. 

From (2.3.61) we have correct to O(N^), 
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and 

- ZPT^-2PI^ZI^+(N-2) • (EP^^ZJ.)^! (2.3.63) 

'̂̂ H.T.'G.K = -[ZEp.V 

-Z^^'Z^^z^-2' (Zp^^z.)^] (2.3.64) 

Thus we get by considering the difference 

^^^H.T.^G.K'^^^H.T.^samp"^ (n-1) • (Zp^ Zj^) (2.3.65) 

> 0 

Thus the estimator corresponding to the Sampford's scheme 

is always more efficient than the estimator corresponding 

to the Goodman and Kish procedure. 

Also the percentage gain in efficiency is given 

by 

(n-l).(Zp.2z.)2 
E = — X 100 

Vf^H.T.^G.K 

Thus E would be an increasing function of the sample size 

since the numerator increases and the denominator decreases 

as the sample size increases. 
O.E.D. 



58 

Thus as a conclusion it is mentioned that one would 

gain by preferring Sampford's procedure over the Goodman 

and Kish procedure especially for larger sample sizes. 

2.3.5. Numerical illustration 

The data we consider here is that of 35 Scottish farms, 

appearing as Table 5.1 in Sampford (1962) which is re­

produced on the following page. 

In order to have an idea as to how good the approxi­

mate expressions (2.3.56) for P^j are in a real situation, 

the P^j are calculated for the population in Table 1 by 

using both the exact (2.2.22) expressions and the approximate 

expressions (2.3.56) for samples of size 3. The variance 

also is evaluated using both the sets of P^j. The set of 

probabilities p^^ (j = 2,3,...35) are tabulated in Table 

2.2 along with the corresponding approximate P.^^j (j = 2,... 

35). 

The variance calculated using the exact P.. is found 

to be 

V(Y) = 68318.56 

whereas the variance computed using the approximate P^^ 

is found to be 

V(Y) = 68341.43 



Table 2.1. Recorded acreage of crops and grass 
1957, for 35 farms in Orkney 

Farm Number 1 2 3 4 5 6 7 

Recorded 
crops + 
grass 50 50 52 58 60 60 62 

Oats 19 57 

^i 17 17 10 16 6 15 20 

Farm number 15 16 17 18 19 20 21 

*1 91 92 96 110 140 140 156 

fi 27 34 25 24 43 48 44 

Farm number 29 30 31 32 33 34 35 

^i 303 311 324 330 356 410 430 

^i 66 58 128 38 69 72 103 

for 1947 and acreage under oats in 

8 9 10 11 12 13 14 

65 65 68 71 74 78 90 

18 14 20 24 18 23 0 

22 23 24 25 26 27 28 

156 190 198 209 240 274 300 

45 60 63 70 28 62 59 
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2.2. Exact Pij's and the approximate Pij's of the 
Sampford^s procedure with n=3 for %e data in 
Table 2.1 

Exact Approximate Unit Exact Approximate 
no. j 

M
 

LJ
. 

.000439 .000439 20 .001249 . 001250 

.000456 .000457 21 .001396 • 001397 

.000510 .000510 22 .001396 • 001397 

.000527 .000528 23 .001712 • 000713 

.000527 .000528 24 .001787 • 001788 

.000545 .000546 25 .001891 . 001891 

.000572 .000572 26 .002185 • 002185 

.000572 .000572 27 .002512 • 002512 

.000599 .000599 28 .002765 . 002765 

.000625 .000626 29 .002794 • 002794 

.000652 .000653 30 .002873 • 002873 

.000688 .000688 31 .003001 • 003001 

.000796 .000796 32 .003061 • 003060 

.000804 .000805 33 .003321 • 003319 

.000813 .000814 34 .003870 003866 

.000850 .000850 35 .004077 • 004072 

.000976 .000977 

.001249 .001250 

0 ̂ 2 0^O 
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which suggests that in many practical situations the ap­

proximations will serve the purpose quite adequately. 

In Table 2.3 are presented the variances computed to 

various orders for both the schemes of (i) Sampford and 

(ii) Goodman and Kish when samples of size 4 are considered. 

Table 2.3. Approximations to V(Y„ _ ) 
» X • 

Order of Sampfords Procedure Goodman and Kish 
Approximation Procedure 

O(N^) 55852.450 55852.450 

O(N^) 49320.940 49320.940 

0(N®) 48952.190 48979.130 

2 The value computed to 0(N ) represents the true variance of 

the customary estimator in the varying probability with 

replacement scheme. Values of the successive approxima­

tions suggest that the convergence is quite satisfactory 

even though the population size, N=35, is much smaller than 

the sizes we actually come across in practice. For larger 

population sizes, the relative difference is however ex^ 

pected to be higher than it is in this example. 
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2.4. Hanurav's Procedure 

Hanurav (1967) presented an unequal probability sampling 

scheme for sample size 2 which satisfies the condition = 

2pu. vijayan (1968) has extended this procedure for sample 

size n^2. The procedure for general sample size is much 

too complicated to adopt in practice and thus we consider 

the simple case of sample size two only. The scheme is 

described as follows : 

Two units are selected with probabilities {pu}, i = 

1,2,...N, with replacement and if the two units are distinct, 

the sample is retained, otherwise this sample is rejected 

and another sample of two units is selected with probabilities 
g 

proportional to {Pj^ } and with replacement. If the two units 

selected are distinct, the sample is retained; otherwise a 

further sample of two units is selected with probabilities 

proportional to {pu*} and with replacement, and so on. 

Hanurav has shown that under some restrictions this 

procedure terminates with probability one and that the 

expressions for P^ and P^j are given by 

Pi = 2Pi (2.4.1) 

and 
CO 

(2.4.2) 
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where , 

"k = : ' (2.4.3) 
^ S(i)S(2)---S(]ç) 

and 
N gr 

S(r) = 

Since the expression for involves an infinite series it 

is not possible in practice to get the exact variance of the 

corresponding H.T. estimator. However for large values of 

N, we can derive the approximate expressions for Pj^j by 

assuming that p. is of o(N~^). From (2.4.3) and (2.4.4) 

-2^+1 it can be easily seen that each is of 0(N ) and 

-k consequently each w^ will be of o(N ). 

Thus the expression for P^j correct to o(N ^) is 

Pij = ZpiPjEl+wj+Wg] 

PiP-i Pi^P4^ 
= 2p.p.[l+ -i-J + 2 4 ] (2.4.5) 
' :Pt :Pt 'ZPt 

Equations (2.4.1) and (2.4.5) do not satisfy the conditions 

of Theorem 2.8 because P^j given in (2.4.5) is not of the 

form given in (2.3.56) and hence the theorem is not ap­

plicable here. However, substituting from (2.4.1) and 

(2.4.5) in the expression 

• • » A \ 1 
""Pi  ̂i P̂ Pj 

Pii 2 
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we get after much simplification the variance to 0(N®) of 

the H.T. estimator corresponding to the Hanurav's procedure 

as 

1 2 12 2 
= 2 ZPi=i - Z^ZPi ^i ] 

2P4 

1 4 2 (EPi 
[Zp.*z.^ ^ 4 3 (2.4.6) 

22Pt' . :Pt 

where 
Y. 

° pI ' " 

variance correct to O(N^) is 

A 1 2 12 2 (^Pi ^i^ 
V(?H.T.)H = 1 ZPiZi - ll^PiV- / 2 ] Î2.4.7) 

ZPt 

Variance correct to O(N^) of the H.T. estimator correspond­

ing to the Goodman and Kish procedure as given in (2.2.16) 

is 

From (2.4.7) and (2.4.8) we get 

- V<^H.T.'g.K = I M- i » (2-4-9) 
SPt 

showing that for large N, the H.T. estimator corresponding 

to G.K. procedure is always more efficient than the one 
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corresponding to Hantirav's procedure. However, for 

moderately large populations one has to consider the variance 

to 0(N®) and no valid conclusion can be drawn from the com­

parison of V(Y_ _ )_ to 0(N®) given in (2.4.6) with 
Xl • X • £1 

V(Y„ m )o w given in (2.2.16) for sample size two. 
n • X • w • Jiv 
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3. RAO, HARTLEY AND COCHRAN'S PROCEDURE 

3.1. Introduction 

As there are not many schemes of unequal probability 

sampling without replacement that are simple to adopt in 

practice and are applicable for sample sizes n^2, Rao, 

Hartley and Cochran suggested a simple procedure which is 

applicable for sample size n^2 and provided an unbiased esti­

mator for the population total. However, it is often com­

mented by several authors that the estimator most often 

turns out to be inefficient relative to some estimators 

under other unequal probability sampling procedures that are 

existent in the literature. In this chapter a mathematical 

proof has been given showing the inadmissibility of the Rao, 

Hartley, Cochran (R.H.C.) estimator and several other 

alternative estimators under the Rao, Hartley, Cochran 

(R.H.C.) scheme are suggested which are almost always 

more efficient than the other existing estimators under 

unequal probability sampling procedures. The efficiency 

of these proposed estimators in relation to the other 

existing estimators is illustrated numerically by considering 

several populations that are considered in the literature 

as the most suitable data for the unequal probability Scunpling 

procedures. 
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3.2. Rao, Hartley and Cochran's Procedure 

The procedure of unequal probability sampling without 

replacement proposed by Rao, Hartley and Cochran for 

selecting a sample of size n is described as follows: 

(i) split the population at random into n groups of 

sizes where N^+N2+—+N^=N and, 

(ii) select one unit with probability proportional 

to p^ from each of these n groups independently. 

The primary advantage of this scheme compared to the 

other without replacement unequal probability sampling pro­

cedures is that it does not require heavy computations for 

drawing the sample even for sample size n>2 and thus is 

very simple to operate. 

Let Z p = S^, say 
Group i 

For the above scheme of sampling Rao, Hartley and Cochran 

proposed 

n Yi 
T, = S — • S- (3.2.1) 
1 i=l Pi 

as an estimator for the population total Y, where y^ is the 

value of the unit selected in the i-th group and p^ is the 

corresponding probability. 
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Theorem 3.1; 

Under the R.H.C. scheme of sampling the estimator 

is unbiased for estimating the population total Y and 

the variance of is given by 

5r 

N which attains its minimum when N_ = N_ = ... = N = — . 
12 n n 

Proof; 

The details of the proof are given in the paper by 

Rao, Hartley and Cochran, and thus are not furnished here. 

0. E. D. 

Hereafter in this chapter we will assume for the sake 

of mathematical tractability and for the comparison pur­

poses that N is a multiple of n. Also we will make the 

choice 

= Ng = ... = Nn = n ^ (3.2.3) 

Under these assumptions (3.2.2) reduces to 

VfT^) = (1- S^).i(EYt2/Pt - Y^)r (3.2.4) 

which clearly shows the reduction in the variance as com­

pared to sampling with replacement estimator. 
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3.3. Inadmissibility of the R.H.C. 
Estimator 

For simplicity of notation let the elements of the 

population U be represented by integers 1,2...N; U = 

{1,2...N}. Let s denote a typical subset of U. Now, de­

pending on the specific sampling scheme used there could 

possibly be various ways of expressing the outcome of the 

sampling experiment. Sometimes the outcome of the experi­

ment, denoted by w, can be described as Wg = (s,y) where 

s is the subset of U that has been selected and y is the 

vector of corresponding y_values written in the same order 

as the elements of s. For example, in the case of ordinary 

systematic sampling w is described in this way. In some 

situations w could possibly be described in a more detailed 

way. For example w can be described as w = (s',y') where s' 

is the ordered subset of U that is selected, the order being 

the order in which the units are selected and y' is the 

vector of corresponding y-values that appear in s'. Thus s* 

fully describes the unit by unit sampling without replace­

ment. In some situations w can also be described as w = 

(s",y") where s" is the sequence that is selected all members 

of which belong to U and y" is the vector of corresponding 

y-values. In s" if we remove all the members that appear in 

some of the preceding places we get the ordered set s'. 
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That is if s" = (3,5,2,3,2) then the corresponding ordered 

set is given by s' = (3,5,2). Similarly if we ignore the 

ordering in s' we get a set s. For example if s' = (3,5,2) 

then the corresponding s = (2,3,5). Thus s' is an abstract 

function of s" and s is an abstract function of s' and 

consequently also an abstract function of s". Symbolically 

we can write s' = f^(s"), s = fgfs') = f2(f]^(s")) = f^fs"). 

Thus we see that depending on the Scimpling scheme adopted 

there could possibly be different ways of describing the 

outcome w of the sampling experiment. Having defined the 

outcome w, we can define an estimate t of a population 

parameter as some function of the outcome w. That is t = 

t(w), or equivalently t = t"(s",%"), t = t'(s*,y*)f t = 

t(s,y) as the case may be. Now, when the outcome la is 

described as (s",y"), the knowledge of (s",y") is enough to 

know any (z",y") such that 

fgCz") = fgCs") = s (3.3.1) 

To be specific, if (s",y") = (2,5,3,6,3; 10,14,16,7,16) 

then for z" = (3,6,5,6,2) we have (z",y") = 

(3,6,5,6,2;16,7,14,7,10). This is because we know from 

(s",y") that yg = 10, y^ = 14, y^ = 16, and y^ = 7. Thus if 

we have an estimate t" = t"(s",y") we can evaluate the esti­

mate t = t(s,y) given by 



71 

Z't"(z",y")'P(z") 
t = t(s,^) = j : * p ( z " )  (3.3.2) 

where the summation is over all z" such that (3.3.1) holds 

and p(z") is the probability of observing (z",y"). Careful 

observation of (3.3.2) tells us that t is the conditional 

mean value of t" with respect to (s,y). Thus we have from 

(3.3.2) that, E(t) = E(t") and if t" is unbiased, 

Var(t) = var(t")-E(t-t")2. 

So, as an estimate t is at least as good as t". Thus any 

estimate that is a function of (s",y") can always be im­

proved upon by using the above technique. Similarly esti­

mators that are functions of (s',y') also can be improved 

upon by using the same technique. Thus any good estimate is 

a function of (s,y). In the case of simple random sampling 

with replacement and varying probability sampling with re­

placement the customary estimators are functions of (s",y") 

ignoring the order in which the units are drawn. In the 

case of unequal probability sampling without replacement 

the estimator proposed by Desraj (1956a) is a function of 

(s',y')« In all these three cases Basu (1958) has 

shown that the 'order statistic' forms a sufficient 

statistic, and therefore any estimator which is not a func­

tion of the order statistic, can be improved by the use of 

Rao-Blackwell theorem. In fact the technique used in 
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(3.3.2) to get the estimate t(s,y) is nothing but Rao-Black-

wellisation of t"(s",y"). Thus the estimators based on 

distinct units obtained by using Rao-Blackwell theorem in 

the case of with replacement scheme, and the Basu-Murthy 

unordered estimator obtained by using Rao-Blackwell theorem 

to improve Desraj's estimator are uniformly better than the 

respective customary estimators. The technique of obtaining 

these estimators is discussed in detail by Murthy (1957), 

Basu (1958) and Pathak (1961). 

In general if a sampling scheme defines probability 

distributions P2^(u) on the outcomes weO , we can define the 

projection of P^(w) into the space of probability distribu­

tions defined on the samples s by 

P(s) = P^(wEng), 

where R ca consists of all w's which result in (s,y). 
S 

So we have 

Pl(w) = P(s)'P2(w/0g), scu. 

Now, for the purpose of estimating the population total, the 

conditional distributions P^(w/Og) are not useful which 

shows that (s,^) is sufficient for the estimation purposes. 

This is the reason why it is genuine to define a sampling 

design as a probability distribution P(s) defined on the 

space of samples s as done by Godambe, Godambe and Joshi, 
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Hâjek and others. 

In case of the Rao, Hartley and Cochran's procedure, 

the authors have implicitly defined the outcome u* of their 

procedure as 

u* — (i«/y- f G. f i_,y. ,G. ? « « « i f y j f G. ) (3.3«3) 
1 ^1 ^1 ^ ^2 ^2 " ^n ^n 

where s = (i^fig...!^^ is the subset s of 0 that is selected, 

(y. ,y. ...y. ) are the corresponding y-values and G. ,G. 
^ 1  ^ 2  ^ n  1  2 ' "  

G. are the random groups that contain the units 
n 

respectively. The estimator T^ in (3.2.1) proposed by Rao, 

Hartley and Cochran is a function of w* and not just a func­

tion of 0)- = (s,y), s being the subset of U that is selected. 
0 — 

Thus the Rao, Hartley and Cochran ' s estimator can be improved 

by using the Rao-Blackwell Theorem. This establishes the 

inadmissibility of the Rao, Hartley and Cochran's estimator. 

This has been observed first by Hâjek (1964) who also men­

tioned as a passing remark that further study is necessary 

in this direction. It seems that this point has been over 

looked by other researchers including Pathak (1961, 1964) 

who dealt in detail with the concept of sufficiency in 

sampling theory and considered several specific situations 

where it can be used. The reason for this, perhaps, could 

ka i tns»+-r«T" T r»ii+-Taa T"/!! v 1 r»r\V e Ko a 

of the subset s of U that has been selected, unlike the 
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customary estimators in the case of sampling with replace­

ment and the Desraj estimator in the case of sampling with 

unequal probabilities and without replacement. We will ^ 

deal in detail with this aspect of improving the Rao, 

Hartley and Cochran's estimator in a later section. 

Since (s,y) is a sufficient statistic any good esti­

mate belongs to the class of estimates that cure functions of 

(s,y) and this class is complete in the sense that for any 

estimator not belonging to this class there exists a corre­

sponding estimate belonging to this class which is uniformly 

better. As is well known, H.T. estimator is a member of 

this class. Also in view of the admissible property of the 

H.T. estimator in the class of all unbiased estimators proved 

by Godambe and Joshi (1965) it is interesting to investi­

gate the properties of the H.T. estimator under R.H.C. scheme. 

3.4. Horvitz-Thompson Estimator under Rao, Hartley 
and Cochran Scheme 

3.4.1. Definitions, notations and basic results pertaining 
to randomization 

In order to study the properties of the H.T. estimator 

under the R.H.C. scheme one must first solve the two prob­

lems: (i) to find the relation between the inclusion 

probabilities P,,P,...P„ and the initial probabilities, 

Pj^,P2...Pjg and (ii) to find the relation between the 

probabilities P^j (l£i^j) and the initial probabilities 
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this section we will consider these two 

problems of evaluating (i = 1,2,...N) 

and Pj^j (l_<i7^j<N) in terms of p^,p2,...pQ. Let 

V. = {O^fUg.'.UQ} denote the set of all the population units 

and let G denote a typical group of M units out of N units. 

There are in fact (^) such groups. Let Q = {Gj^,G2...G ^ } 

be the set of all such groups. 

Definition 3.1; 

An ordered n-tuple f = (G. ,G. ...GL ) is said to be a 
^1 ^2 In 

partition of the population V. if 

G^j e.'Q / ] 1/2. ..n 

and 

Gij n G^j, - ((if j j ' 

n 
K = U G. . 

j=l 

Definition 3.2; 

Two partitions = (G. ,G. ...G. ) and f' = 
1 2 n 

(G.,,G.I...G.,) of the population ̂  are said to be equiva-
^1 ^2 ^n 

lent if one is just a rearrangement of the other, i.e., 

if each G.. is some G.,, and vice versa. 
13 ij 
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Definition 3.3; 

Two partitions and ^ are said to be distinct if 

they are not equivalent. 

Theorem 3.2; 

The total number. A, of distinct partitions of the 

N ' 
population U with groups of size M each is . 

nl (M!)* 

Proof ; 

Total number of ways of selecting the first group = 

0-

Total number of ways of selecting the second group 

having selected the first group = • 

In general, total number of selecting the jth group 

having selected the first (j-1) groups = > i = 

2,3,...n. Therefore total number of possible partitions 

(Ml)" 

Therefore the total number of distinct partitions, A is given 

by 

,N. ,N-M. ,N-2M. ,2M 
^ M ' ̂ M ' * * * ^ M 

NI 

(3.4.1) 

Q.E.D. 
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Let G -{9^,9^, ..9^ denote the set of all distinct parti­

tions . 

Theorem 3.3: 

The total number^ A^, of distinct partitions of the 

population V, with groups of size M each such that a particu­

lar pair of units (U.,U.) falls in the same group is given 

by 
(n-1) 1 (M-2) I (Ml)" ̂  

Proof; 

The group that contains the pair of units {U^,Uj) can 

N—2 be formed in a total number of („ t) ways. 

Given this group, the total number of distinct parti­

tions that can be made of the rest of the units into groups 

of size M each is given by (N M)1 which follows from 
(n-1)1(M!)*"^ 

Theorem 3.2. Therefore the total number of possible dis­

tinct partitions such that the pair (U^/U^) falls in the 

same group is given by 

HTT <3.4.2) 
^ (n-1) I (M-2) ! (Ml)" 

Since this number does not depend on the particular pair 

(Ui^Uj) we are justified in denoting this number by A^. 

Q.E.D. 

Let Q. (i.i) = {•&. .9^... 9. } denote the set of all 
J. - j. z *2 

distinct partitions such that (U^,Uj) is in the same group. 
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Theorem 3.4; 

The total iwanber, of distinct partitions of the popu­

lation U with groups of size M each such that a particular 

pair of units (U^,Uj) falls in different groups is given by 

(N-2) 1 

(n-2)!{(M-l)!}2(M!)""2 

Proof : 

The two groups that contain the ith and jth units can 

be formed in (îî"?). ways. Given these two groups, M—j. i!l~X 

the total number of distinct partitions that can be made of 

the rest of the units into groups of size M each is given by 

(N-2M)1 

(n-2)!(Ml)""2 
which follows from Theorem 3.2. 

Therefore the total number of distinct partitions that can 

be made such that the pair of units (UU,Uj) fall in different 

groups is given by, 

A = /N-2..,N-M-1). (N-2M)1 
^2 - (M-l) M-1 („_2,J(M!)"-2 

= (N=21L^ (3.4.3) 
(n-2)I{(M-1)1} •(MI)" ̂  

Since this number does not depend on the particular pair 

(U.,U.) we are justified in denoting this number by A_. 
J- J * 

Q»2 D 

Let C^(i,j) = ^ denote the set of all 
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distinct partitions such that (U^^rU^) are in different 

groups. 

From the way they have been defined, the following rela­

tions among G^(i/j)f GgCifj) and G are immediate 

G^(i,j) U Cgfi,]) = G 

and 

G^fi,]) n Cgfi,]) = 4) 

An obvious check on formulas (3.4.1)-(3.4.3) is provided 

by the relation 

A^+Ag = A (3.4.4) 

Considering the R.H.C. scheme, the procedure of randomly 

dividing the population into n groups amounts to choosing 

at random a partition ̂  from G, the set of all possible 

distinct partitions. 

3.4.2. Exact expressions for and P^j under R.H.C. scheme 

Theorem 3.5; 

The probability P^ of including the ith population unit 

in the sample under R.H.C. scheme is given by 

*1 ' a ' "her* 

denotes the sum of the p^'s of all the units in the group, 

that contains the ith unit, of the partition and the 

summation is over all the partitions 9 belonging to G . 
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Proof; 

From the elementary definition of probability, we have, 

probability of including the ith unit in the sample 

= P. = Z [Prob. of selecting the partition ^. 

[Prob. of selecting the ith unit/ 
the partition ̂  ] 

E i -

1 Pi 
= Y ' Z e (3.4.5) 
^ . (^,i) 

/ Q.E.D. 

Theorem 3.6; 

The probability P^^j of including the pair of units 

(U-,U.) in the sample under R.H.C. scheme is 
^ J 

1 PiPi 
Pi4 = T ' Z s ig 

where the summation runs over all the partitions belonging 

to (^(i,i). 

Proof: 

For the inclusion probability P^j we have 
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Pij = probability of including the pair of units 

Z [Prob. of selecting the partition ^] x 
4ea 

[Prob. of selecting the pair (U^rUj)/ 

the partition &] 

= Z [Prob. of selecting the partition ^1 x 
4kGi(i,i) 

[Prob. of selecting the pair (U^,Uj)/ 

the partition ^ ] 

+ Z [Prob. of selecting the partition ^ ]x 
PeCgfi,]) 

[Prob. of selecting the pair 

(Ui^Uj)/ the partition ̂  ] 

1 PiPi 
= T - Z s Hg (3.4.6) 

Since the first term is obviously zero. 
Q.E.D. 

Having obtained the expressions for P^ and P^j we can 

talk of the H.T. estimator under R.H.C. scheme, its 

variance and the Yates-Grundy variance estimator. The ex­

pressions for P^ and P^^ are quite easy to evaluate for 

moderately làïyê vâlué» ûf n and N using ths ncv: pre­

vailing computer facilities. However, in order to be useful 
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in studying the estimator's relative performance in relation 

to some other existing strategies where by a strategy we mean 

a sampling scheme together with an estimator, we have 

derived in Subsections 3.4.3 and 3.4.4 the approximate 

expressions for and under some regularity assumptions. 

Hartley and Rao (1962) have derived approximate ex­

pressions for P^j and hence to the variance expression of 

the H.T. estimator for the randomized systematic sampling 

proposed by Goodman and Kish, using an asymptotic theory 

which is applicable for large and moderate N. Using the same 

asymptotic theory, by assuming that p^ is of 0{N ) and N is 

much larger than n, Rao (1963) has derived the variance 

expressions for the schemes of Ourbin (1953) and Yates and 

Grundy (1953) to O(N^) for sample size 2 and to O(N^) for 

sample size n>2. We use here the same technique by assuming 

that p^ is of 0(n"^), N is large and n is small relative to 

N to derive approximate expressions for P. and P.. and X 1J 
hence the variance of the H.T. estimator under the R.H.C. 

scheme. 

3.4.3. Approximate expression for P^ 

The exact expression for P^ under R.H.C. scheme from 

(3.4.5) is 
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Now, in a given partition there are (M-1) units occurring 

in a group along with the ith unit. This particular set of 

(M-1) units is one among the set of all possible combina­

tions (^~^) that is chosen from the population of the rest 

of (N-1) units excluding the ith unit. p^/S^^ is the 

same for all those partitions in which the ith unit occurs 

in a group with a particular set of (M-1) units. 

Further, among the A distinct partitions, each of the 

N—1 (^ ̂ ) sets occur equally frequently along with the ith unit, 

say a times each where a is given by 

or 

a a-M)' 

(n-1) MM!)""'-

Now, let C'(T)= {C, (T) , C«(T)...C(T) } be the set of all 

Ci' 

possible combinations of (M-1) units selected from the (N-1) 

units of the population excluding U^. Thus we have from 

(3.4.7), 
/N-lv 

p. =1. : Y ' 
^ ^ ®(^,i) ^ g=l Pi+Sg 

where S' is the sum of the D.'s of the units belonqinq to the 
9 - c -

set C (t) of C.(t). Note that for notational convenience 
9 

Sfa •\ is written in a different way as p.+S' which is equal (f,i) 1 g 
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to Sg where g denotes the group of units that contain the 

ith unit in a given partition 9 . Substituting the value 

of ̂  from (3.4.8) we get 

, Pi 

A ' 

which can alternatively be written as 

Pj 1 
Pj — E[«—1 — p. E (3.4.9) 
^ Sg 1 Sg 

where E denotes the expectation taken over the scheme of 

randomly selecting (M-1) units from out of (N-1) population 

units excluding the ith unit with simple random sampling 

without replacement and = S^-p^ is the sum of the p^'s 

of all the (M-1) units thus selected. 

Now, we can write (3.4.9) as 

Pi 1 p. = 
^ p.+(M-l).E(S') (M-l)î 

1 <3 [1+ 9 _ ] 
pu + (M-l)'E(S^) 

= NPJOI • E[ ] 
1+NY.Îg 

= npu6i'E[l+NYiÂ (3.4.10) 

S' = S'/(M-1) (3.4.11) 
9 9 



85 

S" = S' - E(S') (3.4.12) 
9 9 9 

and 

n (1- &) (1-
Y- = (1-^)8. = H ÎL_ (3.4.13) 

n-(n-l)Np-
{1 N ^ 

In order to evaluate the expectation of the expression on 

the right side of (3.4.10), by assuming that |NY^Âg|< 1, we 

can expand [l+Ny^^ïg]'^ as a power series in powers of 

However in view of the inequality 

(M-1) •E(S') 
-3— < 1, 

Pi+(M-l)-E(S^) 

it is clear that the usual assumption made in the theory of 
"K 

ratio estimation viz., |—^—| < 1, is sufficient to ensure 
E(S^) 

that jNy^Agl < 1. Since (M-1) is sufficiently large it is 

Â 
quite likely that the assumption |—^—| < 1 is valid. 

E(S') 

So by expanding [l+Ny^^Â^]"^ as a power series we get 

from (3.4.10) that 

Pi = np^e^-Ell-NYiÂg+N^Yi^Âg^-N^Yi^Âg^+...] (3.4.14) 

In order to derive the variance expression of the H.T. 

expression for correct to 0(N ^). Since p^ is assumed 
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to be of 0(N ^), in order to get correct to 0(n we 

have to evaluate 6^ and the expectation of the infinite 

series on the right hand side of (3.4.14), correct to 

0(N"^) . 

From (3.4.13) we have 

e -i n-(n-l)Np. 

a 5— 

Expanding the denominator as a power series we get after 

retaining terms to 0(N"^), 

(n-1)(1-Np.) (n-1)(1-Np.)•{n-(n-l)Np.} 

^ 
(3.4.15) 

In evaluating E[l-NYiÂg+N^Yi^Âg2-N^Yi^Zg^+...] we will be 

using a result due to David (1971) which is stated below 

without proof. 

Lemma 3.1; 

Let u^ be a variate defined over a population of 

size N, the mean value of which is assumed without loss of 

generality to be zero. If u^ denotes the sample mean of 

the variate u^ for a simple random sample without replace­

ment of size n, then we have for any positive integer r. 



87 

E(Ujj^) = 0{n if r is even 

= 0{n }, if r is odd. 

Analogous to the set up in this lemma, the population 

size in our case is N-1, sample size is (M-1) = ̂  -1; and 

the variate under consideration is p^ which is assumed to be 

of 0(N~^). So, in order to make use of the lemma we will 
N(l-p.) 

consider the variate v^ = Np^ , for t^i, which 

is of 0(N®). Then we have = 0 and since the 

sample size (M-1) is of O(N^), it follows from the above 

lemma that 

= 0{N ^}, if r is even 

= 0{N }, if r is odd 

(3.4.16) 

Now from (3.4.12) we have 

N^A f [S'-E(S•)]^ 

- (3.4.17) 

Since the leading term in is 1 it follows from (3.4.16) 

and (3,4.17) that 
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E[N^Yi^ï ̂ 1 = Yi^E[N^ÏÏ_^] = 0{N if r is even 

r = 0{N % if r is odd 

(3.4.18) 

Hence it follows that for r >5 would not 

contribute to when considered correct to 0(N~^). Thus 

we have frcm (3.4.14) that 

Pi = nPiei-E[l-NYiïg+N^Yi^âg^-N^Yi\WYi^ïg*l, 

(3.4.19) 

-3 
correct to O(N ). 

Obviously we have E[NYj^Zg] = Ny^E[Â^] = 0 (3.4.20) 

In evaluating for r = 2,3 and 4 correct to 

0(N ^), the formulae presented by Sukhatme (1944) have been 

used here. Thus using formulae 2, 5 and 10 of his article 

we have, 

_ 2 (ei-e.) 
E(A/] = (N-l)y,[ ^ ^ ] 

_ 3 (e,-3e5+2e,) 
E[A„^] = (N-1)W.[-J: S 2_] 

<ïï -1)^ 

and 
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E,%/, = 

where 
N 1-p. 

and 

Using (3.4.13) together with these equations it can be seen 

after some simplification that correct to 0(N~^), we have 

E[N^Yi^S_^l = (n-1) [ (Ip^^- ̂ ) + 

-2{n-l)(Ip^^- |)-Pi-(Pi- |)^}1 (3.4.21) 

3Ep ^ 
E[N\^^A^] = (n-1) (n-2) [Ep^^ + ̂ 1 (3.4.22) 

^ N 

and 

EEN^Yi^A 4] = 3(n-l)2'(ZPt2- |) ̂ (3.4.23) 

Using Equations (3.4.15) and (3.4.20)^(3.4.23) we get from 

(3.4.19) after some simplification. 
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?! = npu[l+(n-l)(Ep^2_p^)+(n_i){E(p^_%p^2) 

+ (n-2)(Pi^-Zp^^)-3(n-l)(p^-EPt^)•Sp^^(3.4.24) 

correct to 0(N~^). 

In the situation when all the p^'s are equal, i.e., when 

Pi = R.H.C. scheme would reduce to simple random sampling 

without replacement in which case Pi is known to be equal to 

n/N. A check on (3.4.24) is provided by verifying that 

the right hand side in fact reduces to n/N when Pi is re­

placed by 1/N. A more rigorous check on (3.4.24) is pro-
N 

vided by verifying that Z P. = n when the value of P. is 
1  1 1 

substituted from (3.4.24). 

*4 
3.4.4. Approximate expression for Pij correct to 0(N ) 

The exact expression for Pi^ under the R.H.C. scheme 

from (3.4.6) is 

1 PiP-5 
= 5 • Ï s (3.4.25) 

" * (S,j) 

In a given partition f belonging to Ggfi,]) there are 

(M-1) units occurring in a group along with the ith unit 

an/l f-hôt-ô AVA awmfhay nf /M—iir»'î+-o r»rf <n 

another group along with the jth unit. This particular 

ordered pair of groups is one among the possible number 
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îî"2 
of ordered pairs of groups (Q_^). ( ) , and the product 

p.p./ , . remains the saune for all those parti-
1^] (^»i) (#,]) 

tions f of G,(ifj) where in the ordered pair (U.,U.) is 
6 ^ J 

associated with a particular member of the set of 

m-2 N-M-1 
) ordered pairs of groups. 

Let ®(i,j)tr{D-j(i/j)» D2(i/j)»»»D(ifj) } 
1 ^ ,N-2.,N-M-1. 

iM-l'^ M-1 ' 

denote the collection of all possible ordered pairs of 

groups of sizes (M-1) from the population excluding and 

Uj. Among the A2 partitions of Cgfi,]) each of the 

( w " ? ) p o s s i b l e  o r d e r e d  p a i r s  o f  g r o u p s  o c c u r  
M—1 M—1 

equally frequently along with the ordered pair (UU,Uj), 

say, V times where v is given by 

(3.4.26) 

or 

V = (N-2M)! 

(n-2)1(Ml) 

Therefore, from (3.4.25) we have, 

P:P 
^ c Pin = â ' ^ 
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- s • PiPj':' IpT+SjnpT+SJT' (3.4.27) 

where the summation runs over all the members of A (i,i), 

and and denote the sum of the p^'s of the set of 

units that correspond to the first and second groups 

respectively of a given pair of groups of 6(T, J). 

(3.4.27) can be written as 

2̂ v , 1 
° PiP] ' Â- ' a; "z (p.+sp (p^+s-) 

which after substituting the value of v/Ag from (3.4.26) 

gives 

^ij - PiPj • Â- • (N;;2) (N-M-lj • " (p.+g.) (p.+S-) 

(3.4.28) 

In order to evaluate the variance of the H.T. estimator 

correct to O(N^), we have to get the value of P^j correct 

to 0(n"^) . 

From (3.4.1) and (3.4.3) we get, 

^ = 
which when expanded in powers of 1/N gives 

^ = (1+1 + ̂ 1 (3.4.30) 
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correct to 0(N ^). 

Since is assumed to be of 0{N it follows that 

M-i, (p.ts'Hp.ts!) evaluated correct 
^M-l'I M-1 ' ^ J 

to 0(N~^). Before evaluating this, we will prove a lemma 

which will be used also at different places in the subse­

quent portions of this dissertation. 

Lemma 3.2; 

Let p^ be a variate defined over a population of size 

N where in p^ is assumed to be of 0(N ^). Let N be a 

multiple of K where K is small relative to N. Consider 

the scheme of selecting two without replacement simple 

random samples of size -1) each from the population of 

(N-2) units excluding and Uj. Let and be the 

sum of the p^'s of the units belonging to these two samples 

respectively. Let = p^+S^ and = Pj+S^, then we have 

correct to 0(N ^), 

E[|~l = K[l+{(p.- |) + (K-1) (Zp^^-p^)} 

+ {(K-1)(K-2)p^^-{K-2)Pj^-2(K-l)p^Pj 

+ (K^+k-I)p./N-P^/N-(K2+K-I) -EP^VN 

- 3(K-l)2zpt2pi+3(K-l)Ept2.pj-(K-l)(K-2)Zpt^ 

+ 3(K-l)2(Sp^^)^}] (3.4.31) 
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E[|-l = K[l+{(p^- |) + (K-1) (Ep^2-p.)} 
s 

and 

+ {(K-1)(K-2)PJ2_(K_2)P^2-2(K-L)PIPJ 

+ (K^+K-1)PJ/N-P^/N-(K^+K-1)•ZP^^/N 

- 3(K-l)^Zp^2.Pj+3(K-l)Zp^2.p^ 

- (K-1)(K-2)Zp^^+3(K-l)^(Zp^^)^}] (3.4.32) 

E[y-^] = K^[l+{(2K-3)Zp. ̂ -(K-2) (p.+p.)-l/N} 
S r S > g  t  I D  

+ {(K^-2)(P^+Pj)/N + (K-2)(K-3)(p^^+pj^) 

- 2(K-2) (2K-3) (Pi+Pj) •Zp^^-(2K^-3) -ZP^VN 

2 r _  3 . / r _  2 , 2  - 2(K-2)^Zp^3 + (7K^-20K+15)(Zpt ) 

+ (K^-6K+6)pj^p.}] (3.4.33) 

Proof : 

Analogous to (3.4.10) we can write 

1 _ 

r P .  + (| -1)-E(S;) (S -1)I_ 
^ ^ r [1+ —^—S—z—] 

Pi+Cx -l)E(S^) 

= K-e.x • (3.4.34) 
n  m  . .  T T  

J-TWYij^r 
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and 

1 _ =  1  1  
p +(| -l).E(s;) 

J -K. s K s_ 
,N 

= K'8.q- • (3.4.35) 
J l+Ny.-A 

]i s 

where 

^iT = (1- 1)^17 (1-K/N) (1-2/N) (3.4.36) 
U-{Pj-(K-l)pj^+^(l+Pj^-p.) }] 

Y.T = (1-K/N)8.Y = K 
r i _ f n  4 .  _  

(1-K/N)(1-2/N) 

and 

[l-{Pi-(K-l)Pj+ oXl+Pj'Pi)}] 

(3.4.37) 

Aj. = S^-E(S^) (3.4.38) 

Ag = S^-E(S^) (3.4.39) 

Thus we have from (3.4.34), 

E[k = K'8.q"E[ ] 
^r l+Ny.yÂ^ 

= K'8iy'E[l+NYijAp]"l (3.4.40) 
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By assuming that < 1, we can expand [i+Ny^^^l ^ 

as a power series in powers of Here again, the 

usual assumption made in the theory of ratio estimation, 

I 
viz., 1———I < 1 is sufficient to ensure that 

E(sp 

< 1. Since -1) is sufficiently large it is quite 

likely that the assumption |ÏÏ^/E(S^)| < 1 is valid. So by 

expanding [l+Ny^^yÂ^] ^ as a power series we get 

E[|-l = K0^j-E[l-NYijîj.+N^Yiy%^ 

- +...] (3.4.41) 

From (3.4.34) we have. 

6.-1- = (1-2/N) 

[l-{pj-(K-l)p^+jj(l+p^-Pj) }] 

Expanding the denominator as a power series we get after 

retaining terms to 0(N~^), 

®ij " [l+{Pj-(K-l)Pi+(K-2)/N}+{Pj^+(K-l)^Pi^ 

-2(K-l)PiPj+ - (K-2)(2K-l)Pi/N 

+ (K-2)p^/N}] (3.4.42) 



97 

Since is of 0(N~^) and the leading term in is 1, 

E[^l/ in (3.4.41), correct to 0(N~^) is given by, 

E[§-] = K8j^y.E[l-NY^jA^+N^Yij%^-N^y.y%^ 

+ (3.4.43) 

which follows by the application of Lemma 3.1. Obviously 

we have EENy^jA^] = Ny^jE[A^] = 0 (3.4.44) 

Using formulae 2,5, and 10 of Sukhatme (1944) we get, 

2 ) 
E[A/] = (N-2)u,[ / 

r t _i,z 

2 (ë^^^G^^^eg) 
E[Ap^] = (N-2)W3[ 3^ ] 

and 

q -1) 

M (e,-7e2+12ei-6e,) 
E[Â/] = (N-2)M^[-^ 1 1 i-1 

^ (^ -1)^ 

2 2 ^ ̂®2~^®3'''®4^ 
+ \ I ,N ,,4 

'K 

where 
N l-Pi-Pi r 

(N 2)Y^ T(^I^J)<PT N-2 ) 

and 
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, # - 1) (r) 
e„ •r (N-2) 

Thus, using (3.4.36) it can be seen after some simplifi-

- 2  cation that correct to 0(N ) 

= (K-l)(Zpt^-l/N)+2K(K-l).pi/N 

- (K-l)(Pi2+pj2)_2(K_i)2zp^2.pi 

Zp 2 
+ 2(K-l)Zp^.^-p. + (K^-K-l)- - (K^+K-3)-

J « U 

(3.4.45) 

3£p ^ 
= (K-1) (K-2)- [Sp^^ ^ + ^1 

(3.4.46) 

and 

E(NSi3-%^l = 3(K-1)2-(Zp^^-l/N)^ (3.4.47) 

Using (3.4.42), and (3.4.44)-(3.4.47) we get from (3.4.43) 

that, correct to 0 (n""^ ), 

E[^l = K[l+{ (Pj-1/N) + (K-1) (Zp^^-p^) } 

+ {(K-1) (K-2)p^^-(.K-2)Pj^-2(K-l)PiPj 

+ (K^+K-1)-Pi/N-Pj/N-(K^+K-1)•Zpt^/N 

-3(K-l)"ZPt"'Pi+3(K-1)ZPt~'Pj-(K-l)(K-2)Zp^" 

+3(K-l)2(Zp^2)2}] (3.4.48) 
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By symmetry we get E[^l correct to 0(N ) by interchanging 
s 

and Pj in (3.4.48) which will yield (3.4.32). 

Now, from (3.4.34) and (3.4.35) we get, 

= K^e J-E[ ^ I 
Vs (1+NY.TAJ a+Hy.jLJ 

i j  i  J i  5  

= K^eije.j-Ell-fNYijAr+NYjjAs} 

(3.4.49) 

- 2  
correct to O(N ). 

Obviously EENy.^A +NY.TA ] = 0 (3.4.50) xj r ji s 
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From (3.4.45)-(3.4.47) by symmetry it follows that, 

-2  correct to O(N ), 

EEN^jî^îg^l = (K-1) (Sp^^-l/N) 

+2K(K-1)-Pj/N-(K-1)(P^^+Pj^) - 2(K-l)2.Zp^2.pj 

+2(K-1)Zp^Z.(K^-K-l)•Zp^^/N-(K^+k-3)•1/N^ (3.4.51) 

E[N^Yjï%^] = (K-1) (K-2) • [Ep^^-3EP^VN+2/N2] , (3.4.52) 

E[NS.T^Â/] = 3(K-l)2.(Zp.2-l/N)2 (3.4.53) 
J X S u 

From the basic properties of simple random sampling we 

have 

2 
— — 1 1 2 2 2 

E[A^.Ag] = - • 7NZ3j-[2Pt -Pi -Pj ] 

(3.4.54) 

Using this we will get after simplifying and retaining 

terms to 0(N"^), 

5 n (Pz+P^) 3 
E[N YijYjxVs^ " -[(ZPt -1/N)+(K ir^ -

- fD.2+n.2) + ED.^/N- (K-2)(p.+p^)Sp^^}3 (3.4.55) 
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Prom (3.4.45), (3.4.51) and (3.4.55) we get 

2 (Pi+Pi) 2 2 
= (2K-3) (Zp^ -l/N)+K(2K-3)—- (2K-3) (p^^+p/) 

- (K-2)(2K-3)(p.+p.)Zp 2+(2K^2K-3)'Zp.^/N 
1 ] k t 

- (2K^+2K-9) (3.4.56) 

N 

— 2  correct to 0(N ). 

Using the conditional expectation approach, it can be 

seen by symmetry that, 

3 2 '1 - 3 

i\ 

2 3Zp. 2 
= -(K-2). [Ep. ^ + %], (3.4.57) 

-2  correct to 0(N ). 

Thus from (3.4.46), (3.4.52) and (3.4.57) we get 

ElN^Y.T^Î_^+H'Y4T^Â.^+N^Y<T^Y<-ï,^V'YiTVlT^MB^l J *• J** J J— — ^ ^ — — 

9 3 3ZPt^ 2 
= 2(K-2)2. [IP/ A-- + =?], (3.4.58) 

M N 
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_2 
correct to 0(N ). 

Using the same conditional approach it can be seen that, 

= -3(K-1)•(Sp^^-l/N)^, (3.4.59) 

and 

= (K^-2K+3)-(Zp^^-l/N)^, (3.4.60) 

correct to 0(N ^). 

Thus, from (3.4.47), (3.4.53), (3.4.59) and (3.4.60) we 

get. 

+ = (7K^-20K+15) (Sp^2-1/N)^, 

(3.4.61) 

correct to 0(N~^). 

From (3.4.42) we get by symmetry correct to ©(n"^), 

6jT = [l+{Pi-(K-l)p.+ ̂4:21}+{p.2+(K_l)2p.2 

- 2(K-l)p.p + - (K-2)(2K-l).̂ i 
] N " 

P; 
+ (K-2)-jp}l (3.4.62) 
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Substituting from (3.4.42), (3.4.50), (3.4.56), (3.4.58) 

and (3.4.61) into (3.4.49), we get 

E[g^] = K^[l+{(2K-3)Ep^^-(K-2) (p^+p.)- |} 

2 2 2 
+ {(K -2) \  3 + (K-2)(K-3)(Pi +Pj ) 

2 2 
- 2(K-2)(2K-3)(Pi+Pj)'ZPt -(2X^-3)'-^:-

- 2(K-2)2sp^.^+(7K^-20K+15) (Sp^^)^ 

+ (K^-6K+6)p^Pj}l, (3.4.63) 

correct to 0(N""^). 

Thus the proof of Lemma 3.2 is completed. Q.E.D. 

Now, going back to the problem of evaluating in 

(3.4.28) correct to 0(N~^), we have observed that 

,N-2. " (Pi+S') <P.+S') 
^vi-r ( M-i ' ^ ^ ^ ® 

_2 is to be evaluated correct to 0(N ). It can be observed 

that this expression can be considered as El-^- ] where E 
r s 

denotes the expectation taken over the scheme described in 

Lemma 3.2 with K replaced by n. 

Thus, from (3.4.33) we have. 
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,d-2. i-M-lj (Pi+s;}(p.+s;) nf[i+{(2n-3)ZPt' 
(M-l' ̂ M-1 ^ ^ ^ ] s 

1, • 2 (Pi+P-)) 
- (n-2) (Pji^+P-)-jj}+{ (n -2) ^ ̂ 

+ (n-2)(n-3)(p^Z+p 2) 
] 

2 - 2(n-2)(2n-3) (p^+PjlZp^ 

2 :Pt^ 2 
- (2n^-3)-|j^ - 2(n-2)^.Sp^ 

+ (7n^-20n+15) (Zpj.^)^ 

+ (nf-6n+6)p^pj}], (3.4.64) 

correct to 0(N ^). 

Substituting from (3.4.30) and (3.4.64) in (3.4.28) we 

get after simplifying and retaining terms to 0(N~^), 

P.J = n(h-l)p.pj [l+{ (2n-3) Sp. ̂ -(n-2) (p.+p.) } 
Xj ' 1 J U i J 

+ { (n?-5n+6) (P^^+Pj^) -2 (n-;2) Zp^^ 

+ (n^-6n+6)PiPj-2(n-2)(2n-3)(Pi+Pj)Zp^^ 

2 2 2 (Pi+Pn) 
+ (7n^-20n+15). (Zpt'')''+n(n-l)—2^-3-

ZPt^ 
##** \** ^ f N ^ ^ ^ , 

M* A 
correct to 0(N ). 
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In case when all the p^'s are equal R.H.C. scheme 

reduces to simple random sampling without replacement. 

When we substitute the value ^ for i = 1,2,...N; 

(3.4.65) reduces to ̂ [ 1 +  ̂  w h i c h  i s  t h e  
N N 

value for to 0(N~^) in the case of simple random 

sampling without replacement thus providing a check on 

(3.4.65). A more thorough check on (3.4.65) is 

provided by verifying that 

N 

i(fi) 

when the terms to 0(N ^) are retained in the above 

summation, wherein the value for is as in (3.4.24). 

3.4.5. Approximate expression for the variance of the H.T. 

estimator correct to O(N^) and to O(N^) 

The variance expression for the H.T. estimator denoted 

by Tg, is given by 

N Y.2 N N P_ 
VfT,) = Z ^ + 2 Z • Y.Y - (3.4.66) 

2 i=l ^i i=l j(?^i) ^i^j ^ ] 

Substituting the value of P^ from (3.4.24) we get, 

N Y.^ N Y.2 n 2 
i=l ̂  %=1 ̂  * [l+(n-l)(EPt'-Pi) + (n-l){Rr(Pi-:Pt ) 

+ (n-2)(p.^-EPt^)-3(n-l)(p^-zpt^)'Ep^^}] 
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Expanding the expression binomially we get correct to 0(N®), 

N Y.2 , 2 2 

i=l ̂  = ' 4 " 

- ̂  ' [g ̂ ^t'- § "Pt' 

- (n-l)Zp^^-SY^^+2(n-l) (Zp^^)^-SY^Vpt3 (3.4.67) 

Using (3.4.24) and (3.4.65) we get, 

[l+{(Pi+Pj)-Ept^}+{(3n-5) (Pi+pj)lp^2 

- (n-3)(p^^+pj^)+2(n-2)zp^^ 

- 2(2n-3)(Ep^^)^-(2n-3)p^pj}], 

correct to 0(N~^). 
Substitution of this yields, 

z Z y  y .  = [Y2-{Y2zp 2-2Y.ZP Y +ZYt^} 
i=l j(j^i)PiPj 1 ] " ^ tt t 

+ {Zpt^* EY^^-2Zp^Y^^-2(n-3)YZp^^Y^ 

+ 2(3n-5)Y-Zp^^'Zp^Y^+2(n-2)Y^-Ep^^ 

- 2(2n-3)Y2'(Zp^^)2-(2n-3)•(Zp^Y^)^}], 

(3.4.68) 
correct to 0(N ). 
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Substitution from (3.4.67) and (3.4.68) in (3.4.66) yields 

0 
after retaining terms to 0(N ) only, 

y 2 y 2 
VIT;) = 

+ ïp^^+(n-2)îp^3 

Y ^ 
- 2(n-l) (Zp.^)^}'Z-^ 

V. Pt 

+ Ep^Y^^-nZp^2-SY^^+2(n-3)-y-Zp^^Yt 

- 2(3n-5)Y-Zp^^•Zp^Y^-2(n-2)Y^Sp^^ 

+ 2(2n-3)Y^(Zp^^)^+(2n-3)(Zp^y^^], (3.4.69) 

On the other hand, if terms only to O(N^) are retained, 

from (3.4.69) we find to O(N^), the simplified expression, 

y 2 y 2 

VIT;) = -ZY.ZptYt+Y^ZPt 1 

(3.4.70) 

For the special case of equal probabilities Pj^ = (3.4.69) 

reduces to the familiar variance formula for the estimator 

in simple random sampling without replacement. This pro­

vides a check for the variance expression (3.4.69) correct 

to 0(N°) . 
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3.5. Estimation of the Variance 

Yates-Grundy estimate of variance for the H.T. esti­

mator is 

n PiP^-Piz y. y^ p 
-Y-G'-'Z' = 'P7 -

From (3.4.24) and (3.4.65) we get. 

Pi = np^[1+(n-1)(Zp^^-p^)], (3.5.2) 

to 0(N~^) and 

P^j = n(n-l)PiPj[l+{(2n-3)2p^^-(n-2)(p^+pj)}], (3.5.3) 

to 0(N"^). 

Substituting (3.5.2) and(3.5.3) in (3.5.1), we get after 

simplifying and retaining terms to O(N^), 

- (n-2)zp. (-1 - i)2 + 2(n-l)* (y.-y.) (^ - ̂ ) 1, 
^ Pi Pj ^ 3 Pi Pj 

(3.5.4) 

to O(N^). 

For the special case of equal probabilities p^ = 

(3.5.4) agrees with the formula for the estimate of the 

variance in equal probability sampling without replacement, 

noting that 
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Z (y a -y a )^ = n-Z(y.-y)^ (3.5.5) 
i>j ^ ^ ^ 

By substituting the value of to 0(N and P^j to 0(N 

one can get the Y-G estimate of the variance to 0(N®) which 

could be used for smaller size populations. 

3.6. Comparison with Other Estimators 

Hartley and Rao (1962) derived the approximate variance 

formula of the H.T. estimator for the randomized systematic 

scheme proposed by Goodman and Kish (1950) by using the same 

asymptotic theory. They have shown that to O(N^), 

« Y. 2 

(3.6.1) 

From (3.2.4) we have for the R.H.C. scheme, 

2 
- y2) . - Y) 

(3.6.2) 

correct to O(N^), by considering the leading term and the 

next lower order term in N Since sampling with unequal 

probabilities is used mostly in situations wherein Y^ is 

approximately proportional to p^, a simple model that is 

relevant and has been used by many research workers in survey 

acuiipxxii^ xa 

Yt = YPt + et' (3.6.3) 
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where 

E(e^|p^) = 0, E(e^^lp^) = ap^^. a>0, g>0 (3.6.4) 

Using this model Cochran (1963) has compared the variance of 

the customary estimator in unequal probability sampling with 

replacement and the variance of the ratio estimate without 

the usual finite population correction factor. Cochran has 

shown that the estimate in unequal probability sampling with 

replacement is more precise than the ratio estimate if g>l and 

less precise if g<l. Also it is stated that, because of the 

positive correlation that usually exists between elements 

in the same cluster unit, g is likely to lie between 1 and 2. 

Hartley and Rao assuming the same model have shown that 

V(Y ) is smaller or greater than the variance of the 
fi # T « G # f\ # 

ratio estimate with the correction factor according as g is 

greater or smaller than 1. Also Rao, Hartley and Cochran as­

suming the same model have shown that V(^ ̂  )g ^ in (3.6.1) 

is smaller o:: ter than V(T^) in (3.6.2) according as g>l 

or g<l. 

Here we wx^l compare the variance expression for Tg 

derived to O(N^) with (3.6.1) and (3.6.2) assuming the 

same model. 

It can be easily seen that under the model assumptions 

(3.6.3) we have 
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eV(Ti) = |[Zp^^'^-(n-l)- ^ , (3.6.5) 

and 

EVXTg) = |[Zp^^"^-(n-l)-Zp^^.Zp^^"^] (3.6.6) 

where eV(«) denotes the average variance under model (3.6.3). 

Theorem 3.7; 

Under the model (3.6.3), variance of the H.T. estimator 

under the R.H.C. scheme is smaller than that of the R.H.C. 

estimator for all g, 0£g£2. 

Proof; 

From (3.6.5) and (3.6.6) we have 

eV(Tj^)-eV(T2) = ̂  -a-(Sp^^- ̂ ).Zp^^"^ 

2 Of for all g, 0£g£2 

2 1 because of the inequality Ep^ ^ — 

Q.E.D. 

Lemma 3.3: 
N 

For any given set of p^'s such that 0<p^£l and E p^ = 1, 

the expression Ep^^'EPt^ ^-Zp^^ as a function of g is 

monotonically decreasing to the value zero in the domain 

[0,2] . 
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Proof ; 

Let 

f(g) = = Zp^2.j;p^g-l_£p^g.j;p^ 

ZPt**^+ Z Pt^{ Z pJ"^}-Sp^'^^ 
^ t=l ^ t'(ft) ^ ^ 

N 
- Z p { Z p ?} 
t=l ^ f (^t) ^ 

= 1PtPtr'(prPt.) 

=t<t • 'Pt-Pt 'i+Pt' Pt'"^ (Pt • -Pt' > 

=jt."pt-pf ' <PtPf'"^-Pf Pt^'^" 

= E 
t<t' 

SO for any 0^g^^<g2^2 we have 

f(gi)-f(g2)= 2 PtPt'(Pt"Pt')'((&-") (^) 
^ t<t' ^ ̂  ^ t p^, Pt 
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1 2"9i 1 gi-g? 

- *2}] 

, 1 2-9l 92-9l 
= 2 p^p^i(p^-p^i)*{(r—) '(1-pv, ) 

t t «- t P4.1 t 

- ,^,'-'i,i.p/2-9l,, (3.6.7) 
P4. t-

Now, 
2-9i 1 2-g. 

Pt^Pt'"^^ ̂ p~r^ ^ ^ ^p^^ since gj±2 

Also 

^ Pt»2 since 92—91 

92~9I 92~9I 
<=> l-Pt' < 1-Pt 

Therefore 

1 2-91 95-91 1 2-g 92-9I 
• '1-Pf ) < (1-Pt ' 

Thus we have. 

(Pt-Pt. )' {(^) ̂'*1' d-pj^"^^) - (|-) (1-Pt*2"*l) } 

> 0, tfV 

Hence it follows from (3.6.7) that 
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ffgil-ffgg) 10 

Therefore we have 

f (g^^) 1 ffgg) for all 0_<gj^<g2£2 

In particular we have, for 0£g<2 

f(g) > f(2) = ZPt^'ZPt-ZPt^ = 0 

Hence f is monotone decreasing to the value zero in the 

domain [0,2]. 
Q*E*D« 

Theorem 3.8: 

Under the model (3.6.3) variance of the H.T. estimator 

under the R.H.C. scheme is smaller than the variance of the 

H.T. estimator under the Goodman and Kish procedure for all g, 

0£g<2. 

Proof; 

From (3.6.4) and (3.6.6) we have 

CV'*H.T.'G.K.-SV(T2) = a-

> 0 for all g, 0<g<2 (3.;.;, 

in view of Lemma (3.3). Q.E.D. 

The difference in the two variances (3.6.4) and (3.6.6) 

as given by (3.6.8) will be smaller for larger values of g. 

When g=2 both the estimates are equally efficient as it should 

be expected. However when g=2, one should prefer the 
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Horvitz-Thompson estimator under any scheme with = np^ 

in view of its optimum properties under the above model 

when g=2 as proved by Godambe (1955) who has established 

that H.T. estimator is the Bayes estimator under the 

a priori distribution given by (3.6.3) with g=2, when any 

scheme with P\=np^ is adopted. 

However, it is seldom known in practice whether g is 

exactly 2 or not. Thus the H.T. estimator under R.H.C. 

scheme seems to be more precise in many practical situa­

tions than the R.H.C. estimator as well as the H.T. 

estimator under the Goodman and Kish procedure. 

3.7. Horvitz-Thompson Type Estimator 
under R.H.C. Scheme 

Under the R.H.C. scheme even if it is quite feasible 

to compute the exact values of for the selected units 

from (3.4.5) to get the unbiased estimate using the 

computer facilities it may not always be worthwhile due to 

cost considerations to get the exact values as the approxi­

mate expression (3.4.24) may be quite adequate. 

As given by (3.4.24), the approximate expression for P^ 

correct to 0(N"'^) , say a^^, is 

a^ = np.[l+(n-l)(Zp^^-p^)+(n-l){^(Pj-Ep^^) 
J. J. W J. a. W 

+ (n-2) (p^^-Zp^^)-3(n-l). (Pi-j:p^2)Ep^^}] (3.7.1) 
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Let (3.7.2) 

where the leading term in R^ is of 0(NT*). Then the 

Horvitz-Thompson type estimate proposed is 

n 
Tl = Z y./a. (3.7.3) 
^  i l l  

Theorem 3.9: 

Bias of the H.T. type estimator T^f as an estimate of 

Y, is of 0(N~^) and the mean square error of T^ correct to 

O(N^) is the seune as the variamce of the H.T. estimator Tg 

correct to 0(N®). 

Proof : 

The bias of Tg is 

n y. 
B(T') = E[Z ̂ 1 - Y 

^ 1 ai 

Let 

"i = yiPi/ai 

Thus we have. 

n 
B(T1) = E[Z W./P.] - Y 

A 2 1 1 

N 
= E W.-Y 
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N  Y . R ,  ,  n  9  
= l ̂^[l-(n-l) (Ep^^-p.)-{n-l){^(p.-Sp^.^) 
1 

+ (n-2)(Pi^-2p^^)-3(n-l) (p^-Ipt^) • Ep^^ 

- (n-1)(Zp^^-p^)^}] 

Thus the leading term in the bias is of 0(N and hence 

the bias is of 0(N ^). 

Now, we have for the variance of T^r 

n y. 
V(TA) = V[2 

n W. 
- V.I 

Pi. N 
=  E ^ + S  Z  p ^ W W . - ( Z W ) ^  ( 3 . 7 . 5 )  

^i i j(?«i) Vj ̂  ] 1 ^ 

N W.^ N Y.^ N Y.2.R. 

N Y.^R. , 
Since the leading term in Z y- is of 0(N ) , we have 

1 a.2 

N W.2 N Y.^ 
E ̂  = Z ^ + 0(N"1) 
1 ^i 1 ^i 

N y/ 
= I ̂  (3.7.6) 
1 ^i 
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In a similar way it can be seen that 

i j(^i) *i*i - ijili) ̂  ^ 

P. . 
= Z 2 ^ Y Y (3.7.7) 

i j(fi) ̂ i^j ^ ] 

N 2 2 ^ ?i*i 2 N Y 
(Z W.)*^ = Y +(Z -3^)'^ + 2Y • Z 
1 1 1 1 ^i 

= Y^ + 0(N"^) (3.7.8) 

Substituting (3.7.6)-(3.7.8) in (3.7.5) we have 

N Y.^ P.. 5 , 
V(T') = Z ̂  + Z Z 5^ Y.Y. - Y^ + 0(N~1) 

^ 1 ̂ i i j(fi) ̂ i^j ^ ^ 

= VXTg) , 

correct to O(N^). 

Thus we have 

MSE(TJ) = V(T^) + B^(T^) 

N Y.R. 2 
= V(TA) + (Z -^) 

I 1 

= V(TJ) + 0(N~4) 

= V(T2) , 

correct to 0(8°). o.g.D, 
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3.8. Numerical Illustration 

We use the data given in Table 3.1 which is taken 

from Sukhatme (1953) for comparing the efficiencies 

of (Yjj T K ' ̂1 Tg for estimating the population 

total. The data gives the number of villages (X^) and the 

area under wheat (Y^) in each of the first 20 administra­

tive areas (out of the total 89) in the Hapur Subdivision of 

Meerut District (India). 

It is required to estimate the total area under wheat 

in the subdivision using an administrative area (circle) as 

the unit of sampling. 

In Table 3.2 we have presented the numerical values 

of the variance expressions of each of the estimators 

(Yg.t. )gk' and T^ correct to O(N^), O(N^) and 0(N°). 

The convergence in this example appears to be quite 

satisfactory although the population size (N=20) is much 

smaller than those usually encountered in survey work. 

This indicates that in most of the practical situations the 

variance formulae to O(N^) which is relatively simple should 

2 be quite satisfactory. The approximation to 0(N ) in each 

of the three cases represents the true variance of the 

customary estimator in the case of probability proportional 

to size with replacement estimator, the numerical value of 

which in this example is given in column 2 of Table 3.2. 



Table 3.1. Number of villages and the area under wheat in the administrative 
circles of Hapur 

Circle Number of Area under Circle Number of Area under 
No. villages wheat No. villages wheat 
(i) ^i ?i (i) ^i ?i 

1 6 1562 11 3 1027 

2 5 1003 12 4 1393 

3 4 1691 13 3 692 

4 5 271 14 1 524 

5 4 458 15 1 602 

6 2 736 16 3 1522 

7 4 1224 17 4 2087 

8 2 996 18 8 2474 

9 5 475 19 2 461 

10 1 34 20 4 846 
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Table 3.2. Approximations to the variances to O(N^), O(N^) 

and O(N^) 

Estimator O(N^) O(N^) 0(N°) 

H.T. estimator for 
the Goodman and Kish 
procedure 51272860 48664940 48523770 

under R.H.C. 
procedure 51272860 48709210 48581020 

To under R.H.C. 
procedure 51272860 46805760 46726330 

Comparing the figures in columns 2, 3, and 4 it is clear 

that (îjj ^ and all fared better relative to the 

with replacement estimator, ^ fared better than T^, 

and Tg fared better than both T^ and ^ )gg,. Concen­

trating on the column corresponding to O(N^), it seems 

that the model (3.6.3) holds good for this population 

and in particular the value of g lies in between 1 and 2. 

This particular fact that g most often lies in between 1 

and 2 was stated by several authors, as evidenced by the 

empirical studies conducted. 

In order to investigate the validity of the model and 

the relative performance of the estimators (Y^ ̂  T^ 

and Tg we have calculated the numerical values of the 

variance expressions to O(N^) for several populations and 
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presented the results in Table 3.3. The several populations 

that are considered here are taken from the literature. 

All these populations are the data from actual surveys. 

Rao and Bayless (1969) have also considered these popula­

tions for empirical studies in a different context. 

For populations 1 to 6 the relation VfTgl^VfYg ̂  )gj^< 

V(T^) holds which suggests that model (3.6.3) holds good 

with l£g£2. Populations 1, 8 and 9 have been chosen by 

Cochran as most suitable for the ratio estimate. This 

fact is stated by Cochran (1963) on page 156. This 

statement suggests that the model (3.6.3) holds with g<l 

because the ratio estimate has lesser variance than the 

varying probability estimate when g<l. In view of 

Theorems 3.7 and 3.8, our results for these three popula­

tions viz., V(T2)<V(T^)<V{yjj ̂  )g^ also show the evidence 

in the same direction. In all the 9 cases the H.T. esti­

mator under R.H.C. scheme is superior to both (Y^ ̂  )g^ 

and T^. 

3.9. Rao, Hartley, Cochran Scheme 
with Revised Probabilities 

It has already been mentioned that the variance of the 

H.T. estimator will be zero for any sampling design with 

P^aY^. Since sampling with unequal probabilities is re­

sorted to in the situations where Y^=E\ one would expect to 



Table 3.3. Table of variances to O(N^) of the estimators (Y^ ̂  ̂ GK' ^1 ^2 

No. Source 
^i Xi V(T2) 

Horv itz-Thompson 
(1952) 

pp. 563-85 

Sukhatme (1953) 
circles 1-20 
pp. 279-80 

Sukhatme (1953) 
circles 21-40 
pp. 279-80 

Sampford (1962) 
p. 61 

No. of Eye-estimated 
households no. of house­

holds 

Wheat 
acreage 

Wheat 
acreage 

Oats 
acreage 
in 1957 

No. of 
villages 

No. of 
villages 

Total acreage 
in 1947 

20 

34 

3031 3084 2988 

20 48664940 48709210 46805760 

20 26177180 26213980 25956700 

99008 100324 94773 

Sukhatme (1953) 
villages 1-34 
p. 183 

Desiaj (1965) 
Modification of 
Horvitz and 
Thompson's 
population 

No. of No. of wheat 
wheat acres acres in 1936 
in 1937 

No. of 
households 

Eye estimated 
no. of house­
holds 

34 

20 

831885 860902 778324 

8884 8963 8432 



Table 3.3 (Continued) 

No Source ^^i N V(Tj^) V(T2) 

7 Coch.ran (1963) 
cities 1-16 
p. 1)6 

No. of 
people 
1930 

in 
No. of 
people 
1920 

in 
16 55323 53557 48972 

8 Cochxan (1963) 
cities 17-32 
p. 156 

No. of 
people 
1930 

in 
No. of 
people 
1920 

in 
16 988712 932978 827495 

9 Cochran (1963) 
cities 33-48 
p. 1156 

No. of 
people 
1930 

in 
No. of 
people 
1920 

in 
16 188551 182548 145734 
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gain considerably by choosing a scheme in which 

This aspect led to the technique of revising the initial 

probabilities, for a given scheme and selecting the units 

with these revised probabilities p^* where in the p^* are 

chosen so that the condition = np^ is satisfied where n 

is the sample size. The Midzuno scheme with revised 

probabilities and the Sampford's scheme that have been 

dealt with in the previous chapter belong to this category. 

There are several other schemes in the literature that 

belong to this group. Each of these schemes has its own 

limitations and none of these is satisfactory in the survey 

practitioner's point of view. 

In this section we have considered the problem of re­

vising the probabilities p^ and adopting the Rao, Hartley, 

Cochran scheme with the revised probabilities p^* wherein 

the probabilities p^^* are chosen so that the condition = 

npj^ is satisfied. 

Under the Rao, Hartley, Cochran scheme with revised 

— 2 probabilities p^*, the expression for P^ correct to 0(N ) 

from (3.4.24) is 

Pi = npi*[l+(n-lXZPt*^-Pi*) + (n-l){a^Pi*-ZPt*^) 

. /— \ /_ *2 r»— *3* /_ n \ / * f *2\ f-. *2%i T \ii-At ;-J J j f 

(3.9.1) 
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where the p^* (like p^) is assumed to be of 0(N~^) and is 

chosen so that 

= np^ (3.9.2) 

From (3.9.1) and (3.9.2) we get to 0(N ^), 

Pi = npi*[l+(n-l)(Zp^*^-pi*)] = np^ 

Therefore 

p^* = Pi[l+(n-l)(Zpt*^-Pi*)]"^ 

= pi[l-(n-l)(zpt*2-pi*)], (3.9.3) 

to 0(N~^). 

Therefore p^*^ = p^^[1-2(n-1)(Zp^*^-Pi*) 

+ (n-l)2(Zpt*2-Pi*)2] 

Summing over all i, we get 

ZPt*^ = Zpt^f to 0(n"^) 

So from (3.9.3) we have 

Pi* = Pill-(n-l)(Sp^^-p^)], (3.9.4) 

to 0(N~^) . 

From (3.9.1) and (3.9.2) we get 
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Pi* = Pi[l-(n-l)(ZPt*2-Pi#)-(n-l){g(Pi*-ZPt*2) 

+ (n-2) (pu*2-Zpt*3)-3(n-l) (p. *-Sp^*2) Zp^*^ 

- (n-l).(Zpt*2-Pi*)2}], (3.9.5) 

to 0(N"^) . 

Substituting the value of p^* to 0(N ^) from (3.9.4) 

in the right hand side of (3.9.5) we get after simplifying 

and retaining terms to 0(N ^), 

Pi* = Pi[l-(n-l)(2pt^-pi)+ (ZPt^-Pi) 

- n(n-l)(Ep^^-Pi^)], (3.9.6) 

to 0(N~^). 

As a check it can be verified that the p.* given by 
N 

(3.9.6) satisfies the equation I p.* =1. As a more thorough 
1 ^ 

check it can be verified by substituting the value of Pi* 

—3 
from (3.9.6) in (3.9.1) and retaining terms to 0(N ), that 

PI = NP^ (3.9.7) 

Thus the R.H.C. scheme adopted with probabilities p^* given 

by (3.9.6) would ensure that Pi = nPi to 0(N ^). The pair-

wise inclusion probability Pij for the R.H.C. scheme with 

probabilities Pi* is given by (3.4.64) with Pi replaced 

by Pi*. 
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Thus 

= n(n-l)Pi*Pj*[l+{(2n-3)Zpt*^-(n-2) (Pi*+Pj*)} 

+ { (n^-Sn+S) (Pi*2+Pj*2)-2 (n-2) 

+ (n^-6n+6)p.*p.*-2(n-2)(2n-3)(p.*+p.*)Zp.*^ 
1 3 i J t 

2 2 2 

2 

+ (7nr-20n+15)(ZPt* ) +n(n-l) ^ 

Ip *' 
- 2n(n-l) -J—}] (3.9.8) 

Substituting the value of p^* from (3.9.6) we get after 

—4 retaining terms to 0(N ) only, 

Pij = n(n-l)p;pj[l+{(pi+pj)-zpt^}+{2(pi2+pj2)-2zpt^ 

-(2n-3)p^Pj+2(n-2) (Pj^+Pj)2p^^ 

-2(n-2)(Zpt2)2}], (3.9.9) 

A 
correct to 0(N ). 

(3.9.9) is the same as (2.3.56) of Theorem 2.8 in 

Chapter 2, with a^ = -(2n-3). 

Thus (3.9.7) and (3.9.9) show that the R.H.C. scheme 

with revised probabilities satisfies the conditions of Theorem 

2.8. Hence it follows from Theorem 2.8 that the variance 

A- JI» «2 ^3 A* %% 
OX L»itc XI* X • ca UXUICI WVi'X V&dlV L,CCL i^jr g f ^\ * A* # ^ # 

scheme with revised probabilities is given by. 
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VtTg) = |[Zpj^2A(n-l)Zpi^z^2] 

- • [2Zp^^Zi^-ZPt^*ZPi^z A(2n-3) (Zp^^z.)^! 

(3.9.10) 
Y. 

correct to 0(N ), where z. = (~ - Y). 
1 Pi 

As an alternative we can substitute the value of p^* 

in the variance expression (3.4.69) with Pj^ replaced by p^*, 

simplify and retain the terms to O(N^). Then also we will 

arrive at the same expression (3.9.10) which provides a check. 

In Chapter II, we have derived the variance of the H.T. 

estimator for the Sampfords procedure, correct to O(N^) 

which is given by 

'«H.T.'samp = 

+ (n-2) (Zpj^^z^)^] (3.9.11) 

correct to O(N^). 

Also we have shown that 

V<ÏH.T.)Samp 1 «« «11 n. (3.9.12) 

Now, from (3.9.10) and (3.9.11) we have 

2 
'<^H.T.)samp-"''3' = -(îp^^i)^ > 0 (3.9.13) ' 
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Thus frCHH (3.9.12) and (3.9.13) we have 

VfTg) 

for all sample sizes. 

In fact (3.9.13) together with the equation 

V (Y ) -V (Y ) 
I H.T.'OK I H.T.'samp 

(n-l).(Ep.22^)2 

as given in (2.3.65), imply that the Sampford's scheme is 

almost in the midway between the R.H.C. scheme with re­

vised probabilities and the Goodman and Kish procedure, 

in regard to its performance as measured by the variance. 

Thus it seems that for sample sizes that are large in abso­

lute terms but small relative to N, it will be advantageous 

to adopt the R.H.C. scheme with revised probabilities. Also 

the procedure is considerably simpler to adopt relative to 

the procedures of Goodman and Kish, and Sampford. Of course 

when one is confident that model (3.6.3) holds, it would 

be more advantageous to use the R.H.C. scheme with the 

original probabilities, the estimator to be used being the 

H.T. estimator. 

In section 3.3. we have given a heuristic argument and 

concluded that in the case of R.H.C. scheme the subset s 

of the population U that has been selected together with the 

3.10. The Improved R.H.C. Estimator 
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respective y values forms a sufficient statistic. Here we 

will give a more rigorous proof for the same. 

Suppose the outcome w of the sampling experiment is 

given by w = (x. ,x. ...x. ) where x. = (i., G. j = 
-J-l -3-2 -In -ij ] 1] 

1,2,...n; (ii,i^...i ) is the subset s of U that has been 
^ z n 

selected, G.• is the random group of units to which i. 
^  J  j 

belongs, j = 1,2...n. 

Now consider the subset s = (i^,i2...i^) of U that has 

been selected by the sampling experiment. From (3.4.1), the 

N i  total number of distinct partitions is given by A = — . 
n!(MIX* 

Among these there are only 

number of partitions that could possibly give rise to the 

sample (i^,i2...i^) and each of these partitions has a 

probability of ^ to materialize. 

Conditional probability of the units ..i^) to 

get selected for a given partition is given by 

Pi, Pi, Pi„ 
P(i^,i2...in I partition) = — ' g— ' 

^1 ^2 

where S.. is the sum of the p 's of the units in G.. (j = 
Xj U ij 

/ # • #n) • 

Therefore probability of selecting the sample 
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i, -i. Pi 
1 ^1 . ^2 n 

I'^^'-'^n' ~ r„ , A * S. S. '"'S, 
J" H "^2 % 12 n 

(3.10.1) 

Thus from the standard relation. 

P(x. ,x. ...X. Ii_,i_...i_) 
— 1 ,  — 1 -  — 1  ' 1 2  n  JL z n 

^ (3L: »2L; •••*4 i, ...i ) 
^1 ̂ 2 y^n' 1 ^ 

P(il'i2'"'1%) 

(3.10.2) 

we get 

P(2i ,a ...Si'  P(i ; , i  ' . . i  )  
1 z n ±6 li 

P(x. ,X. ...X. ) 
-^1 -^2 -In (3.10.3) 

because 

PlZi,'*! '• '̂ii '*<• •-iîi > 
1 2 n 12 n 

1 ^^1 ^^2 ^^n P(x. fX. ...X. ) = T ' q * g '"c (3.10.4) 
-^1 ̂ "-2 -^n ^ \ ̂ig 

Thus substituting (3.10.1) and (3.10.4) in (3.10.2) we get 

1 ... 
•1 -^2 -^n " I 

{v. . . }; 
1 

^1^2* "^n ®i,®io***®i. 

(3.10.5) 
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Using (3.10.5) we get from (3.10.3), 

1/S^ . «. S 

P(Xi ) = P(iT,i2...i )'[ — Î 
il ^2 ^n 1 ^ n J. 1 

1 / n 

(3.10.6) 

The expression in the square brackets on the right hand side 

of (3.10.6) can be calculated from the information of 

s = (i^fig'-.i^) alone. Thus from the Neyman's factoriza­

tion criterion it follows that s = (i^fig.'.iQ) together 

with its y-values forms a sufficient statistic. Hence 

any estimator that is not a function of s alone can be uni­

formly improved upon by using the Rao-Blackwell theorem. 

Thus the improved R.H.C. estimator is given by 

Ti = E[Tj^|ij^,i2...iJ, (3.10.7) 

where 
n ^i. 

T. = Z • S. . (3.10.8) 
^ j=l Pij 

Therefore we have 

Tl = Z T •P[x.,x. ...X. iT,i_...i ], (3.10.9) 
{v, . . } ̂  in 1 2 * 
^1^2* "^n 

which upon using (3.10.5) gives, 
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t s ^•s.j}.ô—i-

m I — ^ ^^ 
Ti (3.10. 

S 
{v. . . } 

i-x_•« «i S. S. «««S. 
X 2 II i^ 1 #% 1 z n 

Now, we have from (3.10.9), 

» 
E(Tp = Z 

N 
where the summation is over all possible (^) subsets of U. 

Therefore, 

'n' 

^ 1 {v. . . } ̂  ^1 ^2 ^n ^ ^ * 
V2*-*^n 

P(il,i2...i^) 

= Z Z T.'P[x. ,x. ...X. ] 
1 (v, , , } ^ -'•I -^2 -^n 

= E(Tj^) = Y 

Therefore T| is an unbiased estimate of Y. Also 

V(T;) = E(T,'^)-E^(Ti) 

•n) , , 

= I n - Ï 
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and 

V(T^) = E(T^^)-E^(T^) 

N 
(n)  n ^ 

= S Z T, 'P(x. X. ...X. ) -
1 (V. , . } ̂  -I1-I2 -^n 

^1^2* 

Therefore we have, 

'n' 
V(Tt)-V(T') = E E T 'P(x. ,X. ...X. ) 

^ ^ 1 {v. . . } ̂  ^1 ̂ 2 
H^2*--^n 

z 
1 

, . 2 .  
P(il'i2'' • V  

z 
1 {v 

^1^2* 

T 'P(x.,x ...X ) 
} ^ ^1 ^2 n 
n 

'5 
- z [ 
1 

P(Xi,Xi •2£i ) 

{v. i 
^1^2*'"^n 

J "̂ 1* pTipt̂ TTrrî  ̂'̂ (̂ i'̂ 2'"V 

<:) 
= z [Tn-

{v. 
^1^2* 

P(x.,x. X. ) 

T " ]2 
} 1 P —IN) 

^n 
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This represents the improvement of the estimator over 

the estimator T^. For general sample size, however, it 

is rather troublesome to compute the conditional probabili­

ties (3.10.5), which is needed to compute the estimator T£. 

It is relatively simple for sample size 2 to investi­

gate the properties of T^. So we will deal only with the 

case n=2. 

For sample size 2, the probability of getting the sub­

set (i^fig), Pfi^fig) is the same as the inclusion proba­

bility P. . considered in Section 3.4. 
^1^2 

Therefore from (3.10.10) we have 

3.11. Improved R.H.C. Estimator for 
the Case n=2 and N Large 

} ]  

Gj (i^,i2) 

v S. } 
^2 
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A.P(i^,i2^ Ag ±2)^12 

+ Yi Pi * ^ 2 g^] (3.11.1) 
^2 H ^2 Gil 

From (3.4.28) we have 

A 
Pdl-ij) = Pi Pi - 5^ • EIs^ • 

1 2 

where E denotes the expectation taken over the scheme con­

sidered in Lemma 3.2 with K=2. 

Thus, we have 

^2 1 1 
A-P(ii,i2) Pi^Pig E[g Ig ] 

^1 ^2 

Substituting the value of E[_ —] from Lemma 3.2 with 

il ^2 

K=2, we get after simplifying and retaining terms to 0{N®), 

A 2(p. +p. ) 

A.P(1 fi,) = 4p/p •U-(EPt^-l/N)-{ i — 

3Zp.2 2 1 
- _ ^ +  2 ( Z p t 2 )  -  2 p . ^ p . ^ } ]  

(3.11.2) 

Also, 
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Z ^ = E[^], 
: 02(il,±2) % ®ii 

and 

' "'4;' 

where E denotes the same as above. 

Thus substituting the values of E[y^] from Lemma 3.2 

^2 
we have 

h = zci+cPt"- l+Pii-Piz) 
2 S'^l'^2' ̂ 2 

Sip 2 
+ {3(ZPt )2 jjî-+ 3Zp^^p.^-p.2) 

Pil 5Pi 

correct to 0(N ^). 

Thus, from (3.11.2) and (3.11.3) we get 

^2 . _ 1 

y. 

= 25l-[l+(Pi -Pi )+2(p.-p.)(Ept2- ̂ )] 
- X ^ A A 

-1 
correct to 0(N ). 

(3.11.4) 
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By interchanging i^ and ig in the above we get 

^2 1 1 

^2 G^Xi^fig) ^ii 

Yi 
^^[l+(Pi^-PiJ+2(Pi^-Pi^) (Zpt^- |)] (3.11.5) 

2 "1 "2 "1 
1 

correct to O(N ). 

Substituting (3.11.4) and (3.11.5) in (3.11.1) we get, 

Yi Yi Yi Yi 
^)+{i+2(zp^2- i)} (Pi -Pi ) 

Xi I2 1 ^ 1% ^2 

(3.11.6) 

— 1 
correct to 0(N ). 

Variance of the estimator Ti is 

V(T[) = Z Tĵ .P(ii,i2) -

1 N 2 2 
= ? - z z T:^.P(iT,i_)-Y^ (3.11.7) 

Using the value of P(i^,i2) from (3.4.64) with n=2 and the 

expression for T! from (3.11.6) we get 
2 

, (l+£Pt^> , 
j î_[y + 2Pi -  -p^) 

- •' M 

' '̂ 2 'pi: ' '"ir -PIT" '̂ i/i2' 
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Summing this over all the combinations (i^yi^) we get 

(g) Y 2 Y 2 

correct to O(N^). 

Substituting this in (3.11.7) we get 

Y 2 
V(T|) = |(l-Zp^^)-[S ̂  - Y^] (3.11.8) 

correct to O(N^). 

To the same order, from (3.6.2) we have 

Y 2 
V(Tj^) = |(1- |) • [Z - Y^] (3.11.9) 

From (3.11.8) and (3.11.9) we have 

Y 2 

V(Ti)-V(Tl) = |(2Pt^- &)'[% 

which is always nonnegative because of the inequality 

^Pt > r 
Under the model (3.6.3) we get 

eV(T[) = Y[ZPt*"^-ZPt^'%Pt* 

which is the same as eVXTg) for n-2 as given in (3.6.6). 

This implies that the improved R.H.C. estimator is 

more efficient than the R.H.C. estimator as well as the 

H.T. estimator under the Goodman and Kish procedure under 
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model (3.6.3) for all values of g. 

Also under the model (3.6.3), the improved R.H.C. esti­

mator and the H.T. estimator for the R.H.C. scheme are 

equally efficient for all values of g. However in view of 

the other optimal properties of the H.T. estimator one 

should prefer this estimator. 
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4. SOME RANDOMIZED VARYING PROBABILITY SCHEMES 

We have mentioned already the optimal properties that 

sampling schemes satisfying the condition = np^ possess 

when the y^^ is approximately proportional to Pj^. We have 

also mentioned the scarcity of such schemes in the litera­

ture which are practically useful for samples of arbitrary 

size. Moreover the strict applicability of the existing 

methods of unequal probability sampling without replacement 

including the calculation of unbiased estimates of sampling 

error is out of question in certain kinds of large scale survey 

work on grounds of practicability. Thus there is a need for 

evolving methods which retain the advantages of unequal 

probability sampling without replacement but are rather 

easier to apply in practice and only involve a slight loss 

of exactness. In this chapter we will investigate the role 

of randomization in getting schemes, that are practically 

useful and are applicable in large scale surveys, by making 

use of the schemes that are useful for smaller sample sizes. 

4.1. An Exact Sampling Scheme 
for Sample Size 2 

In this section we will present a scheme for sample 

size 2 such that the overall probability P^ of selecting 

the ith unit in the sample is proportional to p^. The 
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scheme is described as follows: 

(i) Split the population at random into three groups of 

equal sizes, and select two groups from among these three 

such that the inclusion probability of any group is pro­

portional to the sum of the p^'s of the units belonging to 

that group. 

(ii) Select one unit each from the two selected groups 

independently with probability proportional to p^'s. 

We will denote this as scheme 4.1. 

Adopting the same notations as in Chapter 3, we get 

that for scheme 4.1, the probability of including the ith 

unit in the sample is given by 

Pj = % ' Z , (4.1.1) 
G g 

where P^^) ig the probability of including the gth primary 

stage unit (p.s.u.) which contains U^, in a given partition 

and is given by P^^) = 2S , where S is the sum of the p.'s 
y 9 T-

of the units belonging to the gth p.s.u. 

Thus from (4.1.1) we have, 

= 2p^ (4.1.2) 

The probability P^^ of including the pair (U^. ,U^) in the 

sample is 
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where is the probability of selecting the rth and sth 

p.s.u.'s together which contain respectively the ith and jth 

population units in a given partition of Ggi)« 

f r s ) 
The expression for P ' is known to be given by 

p(rfS) ̂  p(r) ^ p(s)_ip (4.1.4) 

where P^^* is the probability of including the rth p.s.u. and 

p(®) is the probability of including the sth p.s.u. and are 

given by 

and 

p(f) = 2Sj. (4.1.5) 

p(s) = 2Sg (4.1.6) 

substituting the values from (4.1.4)-(4.1.6) in (4.1.3) we 

get, 

= ^ 2sVl' 

where E denotes the operation of taking the expectation over 

the scheme of selecting two without replacement simple 

random samples of size (^ -1) each from the population 

of (N-2) units excluding and Uj. 
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From (3.4.30), since the population is divided into three 

groups, we have correct to 0(N~^), 

= ?[!+ & + (4.1.8) 
N 

Further, by using Equations (3.4.31)-(3.4.33) of Lemma 3.2 

with K=3, we get 

|-[l+{ (Pj^+Pj)-2Pt^- ̂ }+ {2(Pj^+Pj^) 

(Pi+P.) 2 
- 7pupj + 6(pu+pj)zpt 

Zp 2 
+ - 2Zp^2-6(Ep^2)2}], (4.1.9) 

correct to 0(N"^). 

Using (4.1.8) and (4.1.9) we get from (4.1.7), 

Pij = 2pipj[l+{(pi+pj)_zp^ï+{2(pi2+pj2)-2zpt^ 

- 7p^pj+6(p.+pj)zp^2-6(sp^2)2}], (4.1.10) 

-4 
correct to 0(N ). 

Thus from (4.1.2) and (4.1.10) it follows that the 

scheme under consideration satisfies the conditions of 
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Theorem 2.8 with = -7 and so we have by applying the 

theorem, 

vPa.i.) ' 

+ v.fzPi^z^):], (4.1.11) 

correct to 0(N®). 

To the same approximation the variance of the correspond 

ing H.T. estimator under the Durbin's (1967) procedure is 

given by (2.3.63) with n=2, because Sampford's procedure is 

a generalization of the Durbin's procedure for sample 

size 2. 

Thus we have, 

= i[ZPiZi2-ZPi2:i2]-l[2:p.32.2-Zp.2.Zp.2:i2] 

(4.1.12) 

0 
correct to O(N ). 

From (4.1.11) and (4.1.12) we get, 

=h^Pi\)^ to. 

which implies that the H.T. estimator under scheme 4.1 is 

always more efficient than the corresponding H.T. estimator 

under the Durbin's procedure. 
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4.2. An Alternative Exact Sampling Scheme 
Utilizing the Durbin's Procedure 

In this section we will present a scheme for sample size 

2, such that the overall probability P^ of selecting the ith 

unit in the sample is 2pu, which utilizes the Durbin's 

method of seunpling. The scheme is as follows: 

(i) Split the population at random into three groups 

of equal sizes and select one group from among the three 

groups with probability proportional to the sum of the p^'s 

of the units belonging to that group. 

(ii) Select two units utilizing the Durbin's procedure 

from the group that has been selected in step (i) utilizing 

the pt's. 

We will denote this as scheme 4.2. For scheme 4.2, the 

probability P^, of including the ith unit in the sample is 

given by 

(4.2.1) 

where P^G*, the probability of selecting the gth p.s.u. is 

Thus we have from (4.2.1) 

Pi = 2p. (4.2.2) 

The expression for P.^ of this scheme is 
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Pil = a ' E s D.(4.2.3) 
^ GU,j) ^ 

where Sg is the sum of the p^'s of the units belonging to the 

qth p.s.u., that contain the pair (UL,Uj), of a given par­

tition of G^(i»j); and is the probability of including 

the pair (U^/Uj) together under the Durbin's procedure, given 

the qth p.s.u. From (2.1.3) we have 

^ ̂  ̂  1 1 

where D' denotes the summation taken over all the units 

that belong to the qth p.s.u. From (2.3.52) we have after 

replacing p^ by P^/Sg . 

°rr 9 

2(Pj +Pj ) 3 3 
+ { 2Z'Pt//Sg3 

S q 

2 
(Pi+Pi)'E'Pt 5 2 4 
& ] ̂ ^ (2'P^.^) VSq^}] (4.2.5) 

correct to 0(N ^). 

(4.2.3) can be written as 
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h = • EtSq.D..] (4.2.6) 

where E denotes the operation of taking the expectation over 

the scheme of selecting (j - 2) units from among the (N-2) 

population units excluding and U^• Utilizing (4.2.5) we 

get after retaining terms that contribute to up to 0(N"*), 

A, 1 (Pi+P^) (Pi^+P^^) 
^ij = 2PiPj ' ïT ' s[|r + -TV- + ; 3 ^ 

g Sq Sq 

Z"pJ Z"p.2 2Z"p.3 (Z"p.2)2 

T - - • - 4  7 4 -  +  — ; Y - ' '  
®q "g =q 

(4.2.7) 

where Z" denotes the summation running over all the units 

belonging to the gth p.s.u. excepting U. and U.. 
1: ] 

For evaluating the expectations of the individual 

terms in (4.2.7) we will state a lemma the results of 

which will be used in the later sections also. 

Lemma 4.1: 

Let p^ be a variate defined over a population of size N 

where in p^ is assumed to be of 0(N~^). Let N be a multiple 

of K where K is small relative to N. Consider the scheme 

N 
of selecting a simple random sample of size ̂  - 2 from the 

population of (N-2) units excluding and U^. Let S^' be 

the sum of the p^'s of the units belonging to this sample and 
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let Sq = Pi+Pj+Sg. Then we have 

E[i-1 = K[l+(K-l){Zp̂ 2+ I - (pu+pj)} 

2 2 (Pi^Pi) 
+ (K-l){ (K-2) (p^-^+Pj )-{K-l) —\ J 

+ 2(K-I)p^pj-3(K-1)(p.+Pj)ZPt^-(K-2)Zp^^ 

Zp ^ 
+ 3(K-1) (Sp^^)^+(K-1) 

N 

- 2  
correct to 0(N ) , 

E[-^] = K^[l+(K-l){3Zp^2^. 1 _ 2(p.+pj)}], 
Sq 

correct to 0(N~^) , 

E[-^] = 

Sq Q  
correct to 0(N"), 

E"p ^ 
E[ ^1 = K^[2:p^.^-(Pi^+Pj^)-3(K-l) (p^+pj)zp^ 

Zp 2 
- 3(K-l)Sp^^+6(K-l) (Zp^^)^+(K-1) 

correct to 0(N~^), 

E[^-^] = K^ZPt^, 
Sq* 

Correct to 0(n""^), 
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3 3 E[ J-) = (4.2.13) 

- 2  
correct to 0(N ), 

and 

(Z"P.2)2 
E[ 1_] = K^. (Zp 2)2^ (4.2.14) 

Sq 

Proof of the above lemma is in the same lines as of Lemmas 

3.1 and 3.2 and hence is omitted. 

From (4.1.8) we have 

correct to 0(n"2). 

Using the results of Lemma 4.1 and Equation (4.2.15) we 

get from (4.2.7) , 

Pij = 2p.p.[l+{(p.+p.)-Zp^2j^^2(p^2^p.2)-2Zp^^ 

- IGpupj + 15(p^+pj)zp^2 i5(Zp^2)2}] (4.2.16) 

correct to 0(N~^). 

Thus from (4.2.2) and (4.2.16) it follows that the scheme 

under consideration satisfies the conditions of Theorem 2.8 

wi-hh a = -16 and so we have bv anolvina the theorem, 
n " " -
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+ 16(Ep^^z^)^3 (4.2.17) 

correct to O(N^). 

A direct comparison of expression (4.2.17) with the 

expression (4.1.11) shows that V(Yjj ̂  ) for the scheme 4.2 

is uniformly smaller than V(?g ^ ) for the scheme 4.1 and 

hence than V(Yg ^ ) corresponding to the Durbin's procedure. 

4.3. Role of Random Stratification in 
Getting Improved Estimates 

In Sections 4.1 and 4.2 we have presented two unequal 

probability schemes for sample size 2 which give better 

estimates than most of the existing schemes. The idea of 

random stratification has been utilized in both the schemes 

as in the Rao, Hartley and Cochran's procedure. In this 

section we will discuss the role of random stratification 

in getting an improved estimate for any given scheme that 

satisfy the conditions (2.3.55) and (2.3.56) of Theorem 

2.8. 

We will adopt the following procedure for selecting a 

sample of size 2n: 

of equal sizes, and select two groups from among these 



153 

three such that the inclusion probability of any group is 

proportional to the sum of the p^'s of the units belonging to 

that group. 

(ii) Select n units each from the two selected groups 

independently by adopting any I.P.P.S. (inclusion probability 

proportional to size) scheme that satisfy the conditions 

(2.3.55) and (2.3.56) of Theorem 2.8. We will call this pro­

cedure as scheme 4.3. With the same notations used in sec­

tions 4.1 and 4.2 we have for the scheme 4.3, the inclusion 

probability P^ given by 

1 

= 2np^ (4.3.1) 

and 

P. . = I E 2S 'P.!^) + ̂  Z 
^ G(i,j) ^ ^ (L(iJ) ^r ^s 

^ (4.3.2) 

where P^j^* is the probability of including the pair of 

units (ULfUj) when step (ii) is adopted in the qth group 

that contains and Uj in a given partition of G^(i,j); and 

p(r/S) the probability of including the rth and sth 

groups together when step (i) is adopted where the rth 

group contains U; and sth group contains in a given 
J 

partition of 62(1,]). 
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From (2.3.55) and (2.3.56) we have 

, <q,, 

Sq '9 

+ . !!V, Wi 

^7 ^ V 

(p.+p.)Z'p 2 Z ' p  2  

- (a+D- \ — + (a+l)-( (4.3.3) 

correct to 0(N ^), where Z' denotes the summation over all the 

units belonging to the qth group, and a^ is a constant that 

may depend on n. 

A 
S" ^ (4.3.4) 

0^(1,]) 9 1] A q 13 

where E denotes the operation of taking the expectation 

N with respect to the scheme of selecting (j - 2) units from 

among the (N-2) population units excluding Uj^ and Uj. 

Now, using (4.3.3) we get by retaining only the terms 

that contribute to 0(N ^), 

(a) 1 
E[2S^-P._>*^M = 2n(n-l)p.p.-E[|- + 

q Ij 1 ] bq Sg 

(Pj^+p^^+a_pjp^) Z"p_2 
4. J " ̂ J Hi— 
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Z"Pt^ 2Z"p+3 
- (a„+l)(pj+p^) —3 

®q ®q 

+ (a +1) ^-rr-l. (4.3.5) 

where Z" denotes the summation over all the units belonging 

to the qth group excluding and Uj. Using the results of 

Lemma 4.1 with K=3, we get from (4.3.5) after some simplifi­

cation, 

= 6n(n-l)p^Pj-[l+{(Pi+Pj)-i:Pt^+ |} 

+ J - ^ 
2(p +p.) 2Zp 2 

+ {-7 + N "TT" 2 (Pi j ) 

+ (9a^-16)p.pj+(9a^-15) (Zp^.2)2 

- 2Zp^^-(9aj^-15) (p^+pj)zp^^}] (4.3.6) 

^1 1 2 2 
Using the fact that ̂  = j[l- jj ~  —correct to 

0(N ^), and (4.3.6) we get from (4.3.4), 

T E 2S,.P.(9) = 2n(n-l)p.p.[l+{(p.+p.)-Zpt2} 
G^(irj) ^ ^ ^ 1 D r 

• f m /— 2 ,_ 2  \ m 3  , *  
T  T j j j  ;  -  ^  

- (9a^-15) (p.+p.)Zp^2 + (931^-15) (Zp^^) 2}] (4.3.7) 
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correct to 0(N~^). 

Now, the second component in (4.3.2) is 

J-.;,.,,,'"-' 

(4.3.8) 

1 (t Pj P-i 
The factor ̂  • E p * ' ' . __ . ̂  is exactly the same 

* 0 (i,j) Sg 
as the right hand side expression of the Equation (4.1.3) 

whose value correct to 0(N"*) is given by (4.1.10). 

Thus we have by substituting the value from (4.1.10), in 

(4.3.8), 

â  •  S  P  '  - g — =  2 n  p . p .  [ l + {  ( p . + p . - 2 p ^  }  
^ G,(i,i) Sf Sg 1 ] 1 ] ' t 

+ {2(pApj^)-2Sp^^-7p.Pj + 6( p^+Pj) E p^2 

- 6(Zp^2)2}] (4.3.9) 

correct to 0(N"^). 

Substituting the values from (4.3.7) and (4.3,9) into 

(4.3.2), we get after some simplification, 

Pij = 2n(2n-l)pLPj[l+{(Pi+Pj)-Ep^2}+{2(p^2+Pj2) 

- 2EPt^+bn'PiPj-(b^+l)(Pi+Pj)Sp^" 

+ (b^+1)(Zp^^)^}], (4.3.10) 
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—4 correct to 0(N ), where 

b 
(n-1) (9aj^-16)-7n 

(4.3.11) 
n (2n-l) 

Equations (4.3.1) and (4.3.11) show that this scheme again 

satisfies the conditions of Theorem 2.8. Hence it follows 

from Theorem 2.8 that instead of using any given I.P.P.S. 

scheme for sample size 2n, we will get a better estimate 

by adopting the procedure described in scheme 4.3, if the 

condition 

is satisfied. 

Illustrations ; 

(i) Goodman and Kish procedure; 

For the Goodman and Kish procedure we have 

a^ = 2, for all n. 

Substituting this value in (4.3.11) we get 

"n = 4#^ = - ^ -2. 

(ii) Sampford's procedure: 

For the Sampford * s procedure 

a^ = -(n-2) 

substituting this in (4.3.11), we get 

(4.3.12) 
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^ _ [9i;n-l) (n-2)+16{n-l)+7n] 
'"n 

from which we get 

=2n-bn = 4## > 0 

(iii) Rao, Hartley, Cochran scheme with revised 

probabilities; 

For the Rao, Hartley, Cochran scheme with revised 

probabilities 

a^ = -(2n-3) 

Substituting this in (4,3.11), we get 

_ (n-1) {9 (2n~3)+16}+7n 
°n " " (2n-l) 

from which it follows that, 

= TS&r ' Kn-l) (5n-l)+31 

^ 0 for n ̂  2 

The unequal probability schemes that are easily appli­

cable for general sample sizes are rather scarce in the 

literature owing to the complications involved. Thus the 

above mentioned procedure would be advantageous to adopt 

for getting a sample of four units by applying it to any 

given simple procedure presented for sample size 2. 

From (4.3.11) we have 
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a^-bg = a^-Sag+lO (4.3.13) 

Thus for all those schemes useful for sample size 2, we 

can adopt the above mentioned procedure advantageously if the 

condition (4.3.13) is satisfied. For example, for the pro­

cedure of Yates and Grundy (1953) and the procedure of 

Durbin (1953), the condition (4.3.13) is satisfied. 

When the Durbin's scheme (1967) is adopted in step (ii) 

of the procedure described in section 4.3 for getting a 

sample of size 4, it follows from (4.3.1) that 

Also putting n=2 in (4.3.11) we get, bj = -10, since 

a^ = 0 for the Durbin's scheme. 

Thus the P^j of the randomized Durbin's scheme for 

sample size 4 is got by substituting the value bg = -10 

and n ? 2 in (4.3.10). Thus we have. 

In section 4.3 we have illustrated that this procedure 

4.4. Randomized Three Stage Procedure 
with Durbin's Scheme 

(4.4.1) 

Pij = 12PiPj[l+{(Pi+Pj)-ZPt^}+(2(pu2+pj2)-2Zp^3 

- 10p.pj+9(p^+pj)sp^2-9(zp^2)2}] (4.4.2) 

correct to 0(N '*) 
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gives a more efficient estimator for sample size 4 which 

could be considered as a generalization of the Durbin's scheme. 

As the procedure described in section 4.3 seems to be ad­

vantageous to apply in practice it can easily be seen through 

a conditional argument that the same procedure can be adopted 

in successive stages, for any sample size of the form n = 2^, 

where m is any positive integer, which provides more ef­

ficient estimators. In this section we will describe the 

scheme utilizing the Durbin's procedure by considering a ran­

domized three stage design. This scheme is for getting a 

sample of size 8 which is an extension of the procedure 

described in Section 4.3. 

The procedure is described as follows: 

(i) Split the population of N units at random into 3 

equal groups and select 2 groups from among the three groups 

such that the inclusion probability of any group is propor­

tional to the sum of the p^'s of the units belonging to that 

group. 

(ii) Perform the following procedure independently with­

in each of the two groups that are selected in step (i). 

(ii)(a) Split the j units at random into three equal 

groups and select 2 groups from among the three groups such 

that the inclusion probability of any group is proportional 

to the sum of the p^'s of the units belonging to that group. 
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(ii)(b) Select two units by using Durbin's procedure 

independently within each of the two groups selected in 

step (ii)(a). 

Thus we get a sample of 8 units by adopting the above scheme. 

Since the selection in this procedure is made in three 

stages we will call this scheme as randomized three stage 

procedure with Durbin's scheme. 

Analogous to this, the scheme described in section 4.3 

for getting a sample of size 4 by using the Durbin's scheme 

may be called as the randomized two stage procedure with 

Durbin's scheme. The procedure of randomized three stage 

Durbin's scheme can alternatively be adopted as follows: 

Stratify the population at random into 9 equal groups. 

Without loss of generality let the first three groups consti­

tute the first primary stage unit (p.s.u.), the second 

three groups constitute the second primary stage unit and the 

last three groups constitute the third primary stage unit. 

The individual groups may be viewed as the secondary stage 

units (s.s.u.) and the units within the secondary stage units 

may be viewed as the third stage units (t.s.u.). Except at 

the ultimate stage, selection at each of the first two 

stages is very simple to adopt in practice because of the 

fact that for any scheme of selecting two units from among 

the three units such that the probability of including the 
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unit i is the pairwise inclusion probability P^j which 

is the same as the probability of selecting the sample (i,i), 

is given by the formula 

P^j = P^+Pj-l (4.4.3) 

In the ultimate stage however, we adopt the Durbin's scheme 

of selecting two units within each of the selected penulti­

mate stage units, which is again simple to operate. 

We denote the total number of distinct arrangements that 

can be made of the population of N units into three equal 

groups by Rjj(2), the total number of distinct arrangements 

that can be made of the population of N units into three equal 

groups such that a given pair of units (Uj^,Uj) belong to two 

different groups by (2,1) and the total number of distinct 

arrangements that can be made of the population of N units 

into three equal groups such that a given pair of units 

(Ui,Uj) belong to the same group by (2,2). 

It follows from Theorems 3.2, 3.3 and 3.4 that 

"S,"' ' 7̂ 773 

R«(2,l) = (NzZl! (4.4.5) 

{ ( f  
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R (2,2) = (4.4.6) 

2 { ( |  - 2 ) l } ( | l ) ^  

As a check the equation, 

Rjj(2,l) + Rjj(2;2) = R^(2) (4.4.7) 

can be easily verified. 

Further we have from (4.4.4)-(4.4.6) 

and 

Rn(2/2) (N_3) 

Rjj(2) ~ 3(N-1) 
(4.4.9) 

Now, considering the randomized three stage Durbin's 

scheme, let R^(3) denote the total number of arrangements 

such that within each stage the arrangements are distinct. 

Then by an extension of (4.4.4) we have 

Rjj(3) = Rjj(2).{Rjj (2)}3. (4.4.10) 

3 

With respect to any pair of units (UL,Uj) of the popula­

tion the Rjj(3) arrangements can be divided into three 

categories, viz., (i) arrangements in which the ith and jth 

units come in different primary stage units, (ii) arrange­

ments in which ith and jth units come in the same primary 

stage unit but in different second stage units, and (iii) 

arrangements in which the ith and jth units come in the 
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same primary stage unit and in the same secondary stage unit. 

We denote the number of arrangements in the categories (i), 

(ii) and (iii) above by Rjj(3,l), R^(3,2) and 11^(3,3) 

respectively. A direct extension of formulae (4.4.4)-

(4.4.6) yields the relations 

R^(3,l) = Pjj(2,l). {Rjj(2)}^ (4.4.11) 

3 

Rjj(3,2) = Rjj(2,2)-I^ (2,1). {R^(2)}2 (4.4.12) 

and 3 3 

Rjj(3,3) = R%(2,2)' (2,2). {R^(2)}^ (4.4.13) 

3 3 
As a check the relation 

Rjj(3,l) + Rj,(3,2) + Rjj(3,3) = R^(3) (4.4.14) 

can be easily verified with the help of (4.4.7). Now for 

the randomized three stage Durbin's procedure the inclusion 

probability is given by 

I 2p^ ^^^1^2 

° ̂  • V3, ^ 

where the summation runs over all the arrangements belonging 

to ^(3), the collection of all distinct arrangements, ^ 

is the sum of the p^'s of the units belonging to the ggth 

second stage unit of the g.th first stage unit and S is 
?! 

the sum of the p^'s of the units belonging to the g^th first 

stage unit. Here the ith unit is assumed to belong to the 

ggth second stage unit of the g^th first stage unit for a given 
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arrangement. From (4.4.15) we have 

Pj^ = 8pj^ (4.4.16) 

showing that the scheme is an 'Inclusion probability propor­

tional to size scheme'. 

The pairwise inclusion probability P^^ is given by 

Pii = BTTïT '[ Z C, + E C + Z C ], 
ID Kjj(3) BJ^(3,1) ^ (^(3,2) 2 Rj^(3,3) 3 

(4.4.17) 

where Cg/ and are the conditional probabilities of 

selecting the pair (U^yUj) given the arrangement corresponding 

to categories (i), (ii) and (iii) respectively. 

In a given arrangement corresponding to category (i) let 

the ith unit belong to the rgth second stage unit of the r^th 

first stage unit and the jth unit belong to the s^th second 

stage unit of the s^th first stage unit. 

Then we have, 

2Pi 2p. 2Sg 

= 32p.p. + s^- - s ' ' (4.4-18) 

from which we get 

1 . -



166 

^ 1 1 1 

N r-^ s^ r-^ s^ 

(4.4.19) 

where E denotes the expectation over the scheme of 

selecting two without replacement groups of size (j -1) 

units each from the population excluding the ith and jth 

units and attaching the ith unit to one group and the jth 

unit to the other. Observing that ^—3 

_ 2  ^1 ®1 ^1 ®1 
correct to 0(N ) is the same as the expression considered in 

Equation (4.1.9) we get, from (4.1.9) 

E[g^ + 2S ]= §[l+{(Pi+Pj)-ZPt^-
ri S]_ r^ Si 

2 2 (Pi+P^) 
+ {2(Pi^+Pj^)-7PiPj 

Zp 2 
+ 6 (p.+pj ) Ep^2+ -jjî- - 2Ep^3 

- 6(Zp^^)^}], (4.4.20) 

correct to 0(n"^). 

Further, we have from (4.4.10) and (4.4.11), 

Rj^(3,l) R^(2,l) 

Rn(3) Rjj(2) 

2N 
3(N-1) 
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= |tl+è+^], (4.4.21) 
. N 

correct to 0(N , which follows from (4.4.8). Substituting 

from (4.4.20) and (4.4.21) in (4.4.19) we get after simpli­

fying, 

=-4Tr ^ = 32p.p.[l+{(p.+p.)-Ep 2}+{2(p.2+p.2) 
R^(3,l) ^ X 3 t 13 

- 2Zpt^-7PiPj+6(Pi+Pj)ZPt^ 

- 6(Zp^2)2}], (4.4.22) 

-4 correct to 0(N ). 

In a given arrangement corresponding to category (ii), 

let the ith unit belong to the rgth second stage unit of the 

q^th first stage unit and the jth unit belong to the Sgth 

second stage unit of the q^th first stage unit. Thus we 

have 

2p^ 2p ^Gq^rg 

1 1 ^ ^ i ] (4.4.23) IGp^PjEg + g 2S S 
^1^2 SiSg 91^2 ̂ 1®2 

from which we get, 
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1 

9 (4.4.24) 

where E denotes the expectation taken over the mechanism of 

randomly splitting the population units such that an 

arrangement belonging to the category (ii) would emerge. 

In the following lemma we present a result which 

we will be using in the next section also. 

Lemma 4.2; 

Consider the sampling mechanism described below: 

N (i) Select a simple random sample of size - 2) 

units, where N is assumed to be a multiple of 3K, from the 

population excluding the ith and jth units. Let denote 

the sum of the p^'s of these -2) units and also p^ and 

(ii) Select a simple random sample of size (^ - 1) 

from the (^ -2) units that are selected in step (i). Let 

S denote the sum of the p.'s of these (^ - 1) units 
^1^2 
and also p^. 

(iii) Select a simple random sample of size (^ - 1) 

units from the remaining (^^ - 1) units. Let ^ denote 
N "1 ^ 

the sum of the p^'s of these (^ - 1) units and also Pj. 
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Assume further that is of 0(N~^), K is small relative 

to N, and N is moderately large. Under these assumptions, 

for the sampling scheme described above we have, 

1 . 1  ^ 1  1  _  3 K r n ^ r , _  2  1-E[ + s 2S S ' = -2ll+{(Pi+Pj)-EPt -
q,s« Q,r^ q-So ^1®2 V2 ̂1®2 

+ {2(p.2+Pj2)-(9K2-2)PiPj 

(Pi+Pj) . ,._2 2 
y-i-+ (9K"-3)(p.+Pj)Zpt 

2p ^ 
+ - 2Ep^^ - (9K-3) (Zp^2)2}], (4.4.25) 

correct to 0(N ^). 

Considering the Equation (4.4.24) we have from (4.4.10) 

and (4.4.12), 

ii^(3,2) _ R^(2,2) Rn/s'Z'l) 

- %(2) • vT^— 
(4.4.26) 

substituting the values from (4.4.8) and (4.4.9) we get. 

correct to 0(N ^). g 

1 1 
It can easily be seen that E[g + = ^ g J 

V2 ^1®2 V2 ̂1®2 

of (4.4.24) can be obtained from Lemma 4.2 when K=3. Thus, 

we get 
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+ {2(pu^+pj^)-79p^pj-

. _ 2. :Pt^ 

(Pj+Pj) 

N 

+ 78(Pi+Pj)Zpt + -jj-

- 2Zp^^-78(Zp^^)^}], (4.4.28) 

correct to 0(N~^). 

Now, substituting from (4.4.27) and (4.4.28) in (4.4.24) 

In a given arrangement corresponding to the category 

(iii) where in the ith and jth units come in the same first 

stage unit and in the same second stage unit, let the pair 

(Ui,Uj) belong to the ggth second stage unit of the q^th 

first stage unit. Thus we have the conditional probability 

Cg of selecting the pair of units and Uj in the sample 

is given by. 

-4 we get after simplifying and retaining terms to 0(N ) 

- 2Zp^^ - 79p.pj + 78(p^+pj)zp^2 _ 78(Zp^2)2}] 

(4.4.29) 
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. Pj [ 1 + 1 ) 

2S 
^ — X 2S (4.4.30) 

®qi "1 

Where 2' denotes the summation over all the units belonging 

to the qgth second stage unit of the q^th first stage unit. 

From (2.3.52) we get after replacing p. by p./S^ _ , 
^ t '^1^2 

8p.p. (Pi+P^) Z'Pt^ 2(p^^+p.^) 
S = ' 

9l92 ^1^2 

_ 2^ _ (Pi+P^ ̂ (4.4.31) 

^9l92 ^^1^2 ^^1^2 

correct to 0(N"^). 

1 Rn(3'3) 
R~~T5T ^ CG - 5—7"5T • EECG] (4.4.32) 
V^' RJJ(3,3) ^ 3 

where E denotes the expectation taken over the mechanism of 

randomly splitting the population units such that an arrange­

ment belonging to the category (iii) would emerge. 
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From (4.4.10) and (4.4.13) we get, 

R^(3,3) !U(2,2) R_/3(2,2] 

R^(3) = R^Î5T- • V3<2' ' 

which upon using (4.4.9) yields, 

^ (4.4.33) 

- 2  
correct to O(N ). 

From (4.4.31) we get after retaining terms that 

contribute to 0(N ^), 

EfCg] = GpuPj.Etg^ + 4^ + 3^ 
% 

E"P.2 2Z"p.3 (Z"p.2)2 
- (Pi+Py) —z —z + —5 ] (4.4.34) 

J S S s 
^1^2 9192 9192 

where Z" denotes the summation over all the units excepting 

the ith and jth units, that belong to the qgth second stage 

unit of the q^th first stage unit. 

Using the results of Lemma 4.1 with K=9, we get from 

(4.4.34), after some simplification, 

EtC^l = 72pupy[l+{(pi+pj^zpt^+ §}+{2 (p^^+pj^) 

8(Pi+P^) ^ 2 
+ - leOp^p. + 159(Pi4p.)Zp^^ 
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•3 9 2 72, 
- - 159 (Zp^ ) ^ + -^}] (4.4.35) 

N 

correct to 0(N ^). 

Substituting from (4.4.33) and (4.4.35) in (4.4.32) we 

get after simplifying 

^ C = 8p.p.[l+{(p.+p.)-Zp.2}+{2(p.2+p 2) 
51.(3,3) ^ ^ ] 1 D t: ID 

- 2zp^^-160p^pj + 159(pu+pj)Zp^2 

- 159(Ep^2)2}], (4.4.36) 

"A 
correct to 0(N ). 

Using (4.4.22), (4.4.29) and (4.4.36), we get from 

(4.4.17), 

Pij = 56pipj[l+{(p^-lpj)-zp^^}+{2(p.^+pj2)-2zp^^ 

- 4^ PiPj + (Pi+Pj):Pt= 

-^(Sp^^)^}], (4.4.37) 

4 
correct to O(N ). 

Thus for the randomized three stage Durbin's procedure 

the expression for is given by (4.4.16) and the expression 

for P^j correct to 0(N ") is given by (4.4.37). 

Hence for this scheme when the H.T. estimator is con­

sidered to estimate the population total the variance ex-
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pression can be obtained by applying Theorem 2.8 because 

the assumptions of the theorem are satisfied with the value 

for a^ being - . 

Hence the variance of the H.T. estimator correct to 

O(N^) is given by 

- 2[2Zp.3z.2-Zp.2'Zp.2z,2 + (Ip.^z.)^] (4.4.38) 
O  J . X  X  1 1 .  /  x l  

?! 
where z. Y. 

Pi 
To the same approximation, variance of the H.T. esti­

mator for the Sampford's procedure is given by 

^««H.T.'samp = 

- |[2zp^^zi^-zpj^^j:p.^z AeCSpj^^z.)^] (4.4.39) 

Thus we have 

^(^H.T.^Samp'^^^H.T.^RD ̂  ^i^ - ° 

which shows that the H.T. estimator under the randomized 

three stage procedure with the Durbin's scheme is uniformly 

more efficient than the H.T. estimator under the Sampford's 

procedure for selecting samples of size 8. 
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4.5. Randomized m-stage Procedure with 
Durbin's Scheme 

This is a procedure for selecting samples of size 2™, 

where m is any positive integer, and is a generalization of 

the procedure described in the previous section for selecting 

a sample of size 8. 

The procedure is as follows: 

(i) Split the population of N units at random into 3 

equal groups and select 2 groups from among the three groups 

such that the inclusion probability of any group is propor­

tional to the sum of the p^'s of the units belonging to that 

group. 

Within each of the above selected groups, which could be 

denoted as primary stage units, perform the following pro­

cedure independently. 

(ii) Split the units belonging to this group at random 

into 3 equal groups and select two groups from among the 

three such that the inclusion probability of any group is 

proportional to the sum of the p^'s of the units belonging to 

that group. 

Repeat the procedure described in step (ii) independently 

within each of the selected units at each stage until we select 

2^* ^ units of the (m-l)th stage. 

(iii) Within each of the (m-l)th stage units that are 

selected in step (ii), apply the Durbin's procedure inde­
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pendently for selecting a sample of size 2. 

The above procedure would yield a sample of size 2^^. 

We will call this procedure as the "Randomized m-Stage 

Procedure with Dyrbin's Scheme". In what follows, we will 

assume for mathematical convenience that N is a multiple 

of 3^-1. 

The notations we use in this section are similar to 

those adopted in the previous section. 

Rjj(m) denotes the collection of all arrangements such 

that within each stage the arrangements are distinct, and 

Rjj(m) is the cardinality of the set R^(m) . 

By the inductive argument we get 

Rjj(m) = RQ(2) • {Rjj/3(m-l) (4.5.1) 

where R^(2) from (4.4.4) is given by 

6* (^!) 

By the recursive relationship, we get from (4.5.1), 

R^(m) = ly (2) . (2), (2), ' 

(4.5.3) 

With respect to any particular pair (U^,Uj) of the population 

units, the collection, (^(m), of all arrangements is the 

union of mutually disjoint sets (m,t) (t=l,2...m) where 

(m,l) denotes the collection of all arrangements where in the 
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pair belong to different primary stage units, 

denotes the collection of all arrangements where in 

the pair (U^,Uj) belong to the same primary stage unit but 

different second stage units, ...R^(m,t), l<t<m-l, 

denotes the collection of all arrangements wherein the 

pair (U^fUj) belong to the same primary stage unit, same 

secondary stage unit...same (t-l)th stage unit, but dif­

ferent tth stage units; (^(m,m) denotes the collection of 

all arrangements wherein the pair (U^,Uj) belong to the same 

(m-l)th stage unit. 

Let Rjj(m,t) be the cardinality of the set (m,t), 

l£t_<m. As a direct extension of relations (4.4.11)-(4.4.13), 

we get, 

Rjj(m,l) = Rjj(2,l)-{Rj,/3(m-l)}^ (4.5.4) 

for 2£t£m-l, 

t 2 
Rj,(m,t) = n [R (2,2)-{R n,(ra-A+l)}^] 

&=2 N/3* ^ N/3* ^ 

• R , .(m-t+1,1) (4.5.5) 
N/3t-i 

m-1 _ 
R^(m,m) = n [R 2(2,2)-{R (m-A+l)}^].R _ J2,2) 
^ A=2 N/3* ^ N/3* ^ N/3* ̂  

(4.5.6) 

Using these formulae it can easily be verified that 
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m 
Z Rjg(inft) — Rjj(m) (4.5»7) 

Theorem 4.1; 

For the Rjj(m,t), l£t£m, the following relations hold. 

Rjj(m,t) 
I' 2<t<m-l (4.5.8) 

and 

Rjj(m,m-1) 2N 

Proof : 

From (4.5.4) emd (4.5.5) we get 

Rjj(m,2) Rj,(2,2) (m-1,1) 

RJJISMR " RJJTTTTT * R Q / g t m - i )  

From (4.5.1) and (4.5.4) we get. 

(4.5.9) 

(4.5.10) 

RN/3 _ ^/3^2,1) 

Rjj/3(m-l) ^N/3^ 
(4.5.11) 

Using (4.4.8), (4.4.9) and (4.5.11), we get from (4.5.10), 

For 2<t-l<m-l, we have from (4.5.5), 
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*N(™'t-l) R (m-t+2,1) 
N/3t-2 

which with the help of (4.5.4) yields 

7/m t-1) = — — (4.5.13) 
Rjj(in,t i; ^ _2(2,1) R . , (m-t+1) 

N/3^ ^ N/3^ ^ 

Using (4.4.8), (4.4.9) and (4.5.11), Equation (4.5.13) gives 

Rjj{m,t) ^ 
Rjj(m,t-1) = T 

From (4.5.5) and (4.5.6) we get 

(4.5.14) 

Rjj(m,m-1) ^ (2,1) 

N/3 

which on using (4.4.8) and (4.4.9) gives 

Rjj(m,m) (N-3™"1) 

Rjj(m,m-1) ~ 2N 
(4.5.15) 

Q.E.D. 

Theorem 4.2: 

For the (m,t) and R^(m), l£t<m, the following rela­

tions hold 

Rjgj (m, t) 2JJ 
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and 

(m,m) ̂  (N-3^~^) 

(N-1) 

Proof ; 

Equations (4.4.8), (4.5.1) and (4.5.4) yield, 

Rjj(m,l) Rj^(2,l) 2N 

Rjj(in) Rj^ri) " 3(N-1) 

Assume that for l<t-l<m-l. 

Rjj(m,t-1) 2N 

Rjj(m) 3^*1 (N-1) 

Then for l_<t-l<t£m-l, we have by using (4.5.14), 

_ 2N 

3t(N-l) 

Hence by induction it follows that for l£t£m-l 

_ 2N 

3^ (N-1) 

From (4.5.15) and (4.5.21) we get 

Rjj(m,m) Rjj(m,m) Rjj(m,m-1) ^ (n-3""^) 

IÇTmî " Rijdnrm-l) * R^{m) " gm-lfN-i) 

(4.5.17) 

(4.5.18) 

(4.5.19) 

(4.5.20) 

(4.5.21) 

(4.5.22) 

Q.E.D. 
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Now for the randomized m-stage procedure with the 

Drubin's scheme the inclusion probability for the ith 

population unit is, 

p L_ . Ï ; 

''N'"' (^(m) ^9l92'''9m-2 

2S 2S 
. /A'"9m-2 . 2S^ 1 (4.5.23) 

9l92'"9m-3 ^1 ^1 

where S denotes the sum of the p.'s of the units 
9l92'''9& 

belonging to the g^th 2th stage unit of the g%_^th (A-l)th 

stage unit of the ... ggth second stage unit of the g^th 

primary stage unit. 

(4.5.23) reduces to 

P, = —-— . Z 2*.Pi 

= 2™'p. 

= np^ (4.5.24) 

Probability of including the pair of units (U^fUj) together 

in the sample is given hy, 

-  -  ^  [ Z  C ,  + Z  C - + . . . + Z  C  
ij Rj,(m) o^(~,l) ^ 2 ^ 

Z C ] (4.5.25) 
R^(m,m) 
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where (l£t£in) is the conditional probability of selecting 

the pair (U^/Uj) given the arrangement belonging to the tth 

category. 

Evaluation of \ 2 C,: 

In a given arrangement of the first category let 

belong to the r^^^th (m-l)th stage unit of the r^gth 

(m-2)th stage unit of the ... rgth second stage unit of the 

r^th primary stage unit and let Uj belong to the s^^^th 

(m-l)th stage unit of the s^_2th (m-2)th stage unit of the 

... Sgth second stage unit of the s^th primary stage unit. 

The conditional probability is given by 

2S 2S 
p _ rr V2***^m-1 . ^1^2"'^m-2 
^1 ~ S ~s 

^1^2* "^m-l V2***^m-2 ^1^2* "^m-S 

'\^2"-m-l 
S ' S 
^1 ®l®2***®m-l ®l®2***®ra-2 

• • • =11.-2 
}  X  (2S_ +2S_ -1) 

^®lS2*..Sm-3 ^®1 

= 2^""^p.p. - oo" o ) (4.5.26) PiPj(g + S 2S S ^ 
ri s^ S]_ 

Thus we have 
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2S s -] (4.5.27) 
ri Si 

where E denotes the average taken over all the arrangements 

belonging to the first category. From (4.5.16) we get. 

Rm(m,l) 2 1 1 
= 4[1+ è + (4.5.28) 

N Rjj(m) 3'"' N • 

—2 
correct to 0(N ). 

It can be easily seen that E[g^ + —=—] is 
Sri '=1 

given by the right hand side expression of Equation (4.1.9) 

and thus we have. 

= §[l+((Pi+Pj)-EPt2- i}+{2(p.2+pj2)-7p^pj 

(Pi+Pj) 2 
- -W- + «(Pi+PjiîPt + -f 

- 2Zp^^-6(rp^^)^}] (4.5.29) 

-2  
correct to û(N ). 
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Hence, using (4.5.28) and (4.5.29) we get from (4.5.27) 

-4 after simplifying and retaining terms to 0(N ) only. 

4^ R^(m,l)': = 

+  { 2 ( p . 2 + p . 2 ) - 2 i : p ^ 3 _ 7 p _ p _  

+ 6(pi+p.)zpt2_6(zp^2)2}] (4.5.30) 

Evaluation of i_i • E C*. for 2<t<m-l: 
j^(m,t)"^ 

In a given typical arrangement of the tth category let 

U. belong to the r ,th (m-l)th stage unit of the r -th 
1 m-l m-z 

(m-2)th stage unit of the ... q^_^th (t-l)th stage unit of the 

... qgth 2nd stage unit of the q^th primary stage unit and 

let Uj belong to the s^_^th (m-l)th stage unit of the 

(m-2)th stage unit of the ... q^_.|^th (t--l)th stage 

unit of the ... qgth 2nd stage unit of the q^th primary 

stage unit. 

The conditional probability is given by 

2S 2S 2S 
C = {25 • ^1^2 . ^19293 ^l'^2 ' * ' ̂t-ln 

'  \  V 2  •• •  
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X { 
2Pi 

2S 
^1^2•••9t-l^t'''^m-l 

S ' S 
9l92' * '9t-l^t^t+l' ' *^m-l *^1^2* * "^m-2 

2S 
^1^2" '%'l^t^t+l 

• S 
} 

^1^2**'^t-l^t 

X { iEi 
2S 

^^1^2* • *^t-l®t®t+l* • *®m-l ^^1^2* * '^t-lSt' "\-2 

2S 
9l92'''9t-lSt t+1% 

• * * S 
^l*Ï2*"^t-l®t 

2S 

2^"^-S ^1^2*•'^t-l^t 

2S 
^ ^1^2'-'^t-l^t _ 1 ]  

9l92'''9t-l 

^qi<32 • • • St-l^t ^^1^2 * • • ̂ t-l®t 

^1^2* "^t-l 
3s 

-] (4.5.31) 
^1^2"'^t-l^t ^1^2***''t-l®t 
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Thus we have 

1 y c = 

E [^ + 1 

^^1^2''•^t-l^t ^^1^2•*•^t-l®t 

V2---gt- l  J (4.5.32) 
2S S 
^1^2***^t-l^t 'ïl^2***^t-l®t 

where E denotes the average taken over all the arrangements 

belonging to the tth category. 

From (4.5^16) we get, 

Rw (m, t) 2 11 
ïÇTitn = gt [1 + N + ̂ 2"]' (4.5.33) 

- 2  
correct to 0(N ). 

In view of the well known fact that a simple random 

sample taken from a simple random sample of a population 

would itself be a simple random sample, it can be easily 

observed that 

^^1^2•*•9t-l^t ^1^2 * * * ̂ t-l®t 
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2S S ' 
^1^2'•* 9t-l^t 9l92••* St-l^t 

can be evaluated by using Lemma 4.2 with the value of K 

being 3^""^. 

Thus using (4.4.25) with K=3^ ^ and (4.5.33) we get, 

from (4.5.32), after simplifying and retaining terms to 

0(N~4) only. 

+ {2(p.2+Pj2)-2Zp^^-(3^^-2)p^Pj+(3^^-3)(pu+PjlZPt^ 

- (3^^-3)(Sp^^)^}] (4.5.34) 

Observing (4.5.30) it can be seen that (4.5.34) is valid 

for the case t=l also. 

Thus we have for l£t<ra-l. 

Rjj(m,t) 

+ f2(D.2+D.2)_2ZD.^-(3^^-2)p,p^ 
- x - j  " t  ^  j  

k2t_i\ 2_/o2t_o\ r v n  2\2 + (3^^-3) (Pi+p.)Zpt^-(3"-3) (Sp^^)^}] (4.5.35) 
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-4 
correct to 0(N ) 

Evaluation of Z C : 

In a given arrangement of the mth category let the pair 

of units Uj^ and Uj belong to the q^^^th (m-l)th stage unit of 

the (m-2)th stage unit of the . ..qgth 2nd stage unit 

of the q^th primary stage unit. 

The conditional probability C is given by 
2S 

^ .P 
™ ij 9192'''Sm-2 

2S 2S 
^1^2*••^m-2 ^1^2 
S _ •* * S 
^1^2* • *^-3 ^1 

2S_ (4.5.36) 

(qiq,...qL_T) 
where P^j is the conditional probability of 

selecting and Uj together by the Durbin's procedure 

given the (m-l)th stage unit containing and Uj. 

Equation (4.5.36) reduces to 

Now 

1 R^(m,m) 

where E denotes the average taken over all the arrangements 

belonging to R^(m,m). From (4.5.17) we get. 
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—  5  
correct to O(N ). 

(9i92'* *^m-l^ 
The conditional probability P^j under the 

Durbin's procedure is. 

(q^qg-'-qm-i), 
^ij 

-s^ f—^ +—2Fr 1 
^1^2 * • • 9m-l ^1^2 • • • ̂m-1 1- g— 1-g ^ 

^1^2 '"Sn-1 ^1^2 • • • %i-l 

Pt 

1 + Z' JA'-qm-i 
2p 

S 
1- -t. 

9i92'''9m-l (4.5.40) 

where Z' denotes the summation taken over all the units 

belonging to the (m-l)th stage unit containing the pair 

(Ui,Uj). 

Using Equations (4.5.37) and (4.5.40) we get, 

(PJ+P.) 
E[C„1 = 2"p.p .E[^J — + 

^ ' S: 

(Pi'+Pi") :"Pt' 

Sl92'''9m-1 qiqa-'-^m-l 

+ 
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Z"p.2 2Z"p.3 

- (Pi+Pj)--3 - T 

^Sl^g '"9^-1 ^Sl^Z '"9m-l 

(E"p 2)2 
+ -=—5 ] (4.5.41) 

sf 
^1^2* "^m-l 

where Z" denotes the summation over all the units belonging 

to the (m-l)th stage unit, containing Uj^ and excepting 

and Uj. 

Since the ( ̂  — 2) units that constitute, together with 
gM-l 

the pair of units and Uj, the (m-l)th stage unit can be 

considered as a simple random sample from the population 

of (N-2) units excluding and Uj, we can use Lemma 4.1, 

with the value of K being for evaluating the right 

hand side expression of (4.5.41). 

Thus we have, 

E[C^] = K-2"'p.pj[l+{(p.+Pj)-Zpt^+ 

2  2  ( p i + p n )  

+ {2(p^^+p.2)+(K-l) 3 

- 2(K2-l)PiPj+(2K2-3)(p.+pj)zp^2 

- 2Sp^^-(2k2-3)(Ep^2)2 

- (K-1). !f|- + K(K-l)}] (4.5.42) 
N 
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correct to 0(N ^), where K = 3™ 

Substituting from (4.5.39) and (4.5.42) into (4.5.38) 

-4 we get after simplifying and retaining terms to 0(N ) only, 

N 

+ {2(Pi^+Pj2)-2Sp^^ 

- (2.3^®"^-2)p.pj 

+ (2.32^-2-3)(p.+pj)zpt2 

- (2.32m-2_3)(Zp^2)2}] (4.5.43) 

Substituting from (4.5.35) and (4.5.43) in (4.5.25), we 

get 

P = ( E 22m-t).p p [i+{(p +p )_zp 2} 
t=l 1 J • t 

+ {2(pu2+pj2)-2zp^^+2p^pj 

- 3(p^+Pj)Zp^2+3(Zp^2)2}] 

+ (*Z^ 2^"^ ^.3^^ + 2"k+1.32m-2).pip.[(pi+p.)zp 2 
t=l X ] 1 3 t 

- PiPj-(ZPt^)^] (4.5.44) 

-4 
correct to 0(N ). 

Observing that 
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Z = 2"^(2™-l), 
t=l 

and 

Z 22M-t.22t ̂  9.2™+1(9™~^-2™"^) , 
t=l ' 

we can write (4.5.44) as 

P^j = 2*(2m_i)p^pj[l+{(p^+pj)-zp^2}+{2(pi2+pj2) 

- 22Pt^+B^-PiPj-(B^+l)(Pi+Pj)ZPt^ 

+ (Bj^+1) (2p^2)2}] (4.5.45) 

-4 correct to 0(N ), where 

B™ = 1 [23.2™-32.9*"l-14] (4.5.46) 
^ 7(2*-l) 

Thus for the randomized m-stage procedure with the Durbin's 

scheme, the expression for is given by (4.5.24) and the 

expression for Pj^j correct to 0(N~^) is given by (4.5.46). 

Since the conditions of Theorem 2.8 are satisfied, the 

variance of the H.T. estimator correct to O(N^) for this pro­

cedure is 

V<?H.T.)RD = " [ÎPi^i'-(2"'-l) 25^23.2, 

(2™-l) 3_ 2 2 2_ 2 „ 2_ ,2, 
gm --fi 'i' ' 

(4.5.47) 
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Y; 
where — Y and is given by (4.5.46). 

Randomized m-stage procedure with the Durbin's scheme 

is an alternative to the Séunpford's procedure as a general­

ization of the Durbin's scheme for samples of size n>2. 

Since the simplicity of this randomized procedure to adopt 

in large scale surveys is evident relative to the procedure 

of Sampford, it will be interesting to study the relative 

performance of the two methods. 

Theorem 4.3: 

When the variance of the corresponding Horvitz-

0 
Thompson estimator is considered correct to 0(N ), variance 

corresponding to the randomized m-stage procedure with the 

Durbin's scheme for sample size 2™ is uniformly smaller 

than the variance corresponding to the Sampford's pro­

cedure for sample size 2™ and the difference between the 

two variances would be larger for larger values of m. 

Proof ; 

Variance of the Horvitz-Thompson estimator correct to 

O(N^) for the Sampford's procedure with sample size 2^ as 

given by <2.3.63) is 
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-(^•[2Ip,3z,2-Ip.2.Ip.2..2 

+ (2™-2) (4.5.48) 

corresponding expression for the randomized m-stage 

procedure with the Durbin's scheme is given by (4.5.47). 

From (4.5.47) and (4.5.48) we get, 

where 

Dm = ' (32.9™"l-7.4™-2**l) (4.5.50) 

It follows from (4.5.50) that 

and 

Dg = 42 > 0 (4.5.51) 

1 (32*9^-7.4^*^-2**2) 
m+1 2^+1 

> ^ (32 •9"'" ̂-7. ̂2"'*^) 
gM+l 

= Y for all m (4.5.52) 

(4.5.51) and (4.5.52) together imply that D^ is non-

negative and monotone increasing. 

Hence it follows from (4.5.49) that V(Yg ^ ̂ Samp" 

V(YH T.^RD nonnegative and is larger for larger values 
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Remark: 

The fact that Isamp-VIYg.?.lag is a monotone in-

creasing function of m implies that the relative efficiency of 

the randomized m-stage procedure adopted with the Durbin's 

scheme compared to the Sampford's procedure increases as the 

sample size increases. 

In Chapter 3 we have proposed the Rao, Hartley and 

Cochran's procedure with revised probabilities which en­

sures the condition P^=np^. Since the Rao, Hartley and 

Cochran's procedure is also practically convenient to adopt in 

large scale surveys for any sample size it would be of 

interest to compare the relative performance of the random­

ized m-stage procedure using the Durbin's scheme with 

respect to the Rao, Hartley and Cochran's procedure with the 

revised probabilities. 

Theorem 4.4; 

Variance of the Horvitz-Thompson estimator correct to 

O(N^) for the randomized m-stage procedure using the 

Durbin's scheme is uniformly smaller than the corresponding 

expression in the case of the Rao, Hartley and Cochran's 

procedure with the revised probabilities and the difference 

between the two variances would be larger for larger values 

of m. 
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Proof ; 

Variance of the Horvi tz-Thompson estimator correct to 

0(N®) for the Rao, Hartley and Cochran's scheme with the 

revised probabilities for selecting a sample of size 2™, 

as given by (3.9.10) is 

^'«H.T.'RHC-RP = V' 

(2™-l) 3 2 „ 2 _ 2 2 
^m - [2Zp^ z^ -ZPi "ZPi z^ 

+ (2**1-3)(Epi^Zil^] (4.5.53) 

Thus from (4.5.47) and (4.5.53) we get, 

^(^H.T. ̂ RHC-RP"^^^H.T. ̂RD " T * "^m* ̂ ^^i ^i^ (4.5.54) 

where 

J_ = ^--(32.9™"l-56.4™"l+12.2™-7) (4.5.55) 
2 

It follows from (4.5.55) that 

Jg = ̂  > 0 (4.5.56) 

and 

> ^(56.9"'-l+ 2) 

U If. 3.3// 
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(4.5.56) and (4.5.57) together imply that is nonnegative 

and monotone increasing. Hence it follows from (4.5.54) that 

^"H.T.'BHC-RP'"^H.T.>ia) " nonnegative and is 

larger for larger values of m. 
Q. E. D. 

Remark; 

As with the case of Sampford's procedure here also it 

follows that the relative efficiency of the randomized 

m-stage procedure adopted with the Durbin's scheme compared 

to the Rao, Hartley, and Cochran's procedure with revised 

probabilities increases as the sample size increases. 

Theorems 4.3 and 4.4 suggest that the gains would be 

substantial when we adopt the randomized m-stage procedure 

using the Durbin's scheme in large scale surveys. 

Instaed of the Durbin's scheme one can use any efficient 

scheme at the (m-l)th stage of the randomized m-stage pro­

cedure where in the gains are expected to be substantial. 

The formulae for and hence the variance of the 

corresponding H.T. estimator, could be derived using 

exactly the same technique. Applicability of these random­

ized varying probability schemes in large scale surveys is 

quite evident compared to the complicated procedures that are 

existent in the literature whose applicability is doubtful 

in large scale surveys. 
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5. MISCELLANEOUS TOPICS IN UNEQUAL 

PROBABILITY SAMPLING 

5.1. Model Comparisons of Some 
Existing Schemes 

In order to study the relative performance of different 

I.P.P.S. schemes as measured by the variance of the 

corresponding H.T. estimator, it is convenient to assume 

some knowledge regarding the relationship between the 

variate y and the auxiliary characteristic x. Since unequal 

probability sampling is resorted to in the situations where 

y is approximately proportional to x it is reasonable to 

assume the model 

yj^ = a+gx^+e^ (5.1.1) 

where a and g are unknown constants and e^ is a random 

variable such that E(e.lx.) = 0, E(e.^|x.) = aX.^, a>0, 1  <  1  1 , 1  1  —  

g^O; and E(e^ejlx^,Xj) = 0. 

Theorem 5.1; 

Average variance of the corresponding H.T. estimator 

for any I.P.P.S. scheme under the model (5.1.1) is 

(5.1.2) 
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Proof ; 

Taking the expectation of V(Yg ^ ) under the model 

(5.1.1) we get 

N ax.^+(a+ex. )^ 
V*(^H.t.)=E[v(YH.T.)1 = I ̂  pT^ 

P. . 
+ Z S . (a+6X.)(a+ex.) 

i j(fi) ^i^j ^ ^ 

- (Na+6X)2-aZX.9 

P . 
= ot2[E^ + Z Z - N^] 

^i ij(?«i)Vj 

X • p 
+ a6[2Z^ + Z Z =ii-(X.+X.)-2NX] 

^i i j(j«i) Vj ^ ] 
2 p 

+ g^[Z ̂  + z z pii- X.X.-X^] 
^i i j(?^i) Vj ^ ] 
X.9 

+ a[Z ̂  - ZX^S], 

Which upon using the relations P.=np. and Z P..=(n-l)P. 
1  1  j I D  1  

reduces to (5.1.2). 
0. E. D. 

Thus from (5.1.2) it follows that when a=0, the 

average variance of the corresponding H.T. estimator will 

be the same for all the I.P.P.S. schemes. However, if a^O, 

it can be observed from (5.1.2) that among all the I.P.P.S. 
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schemes/ the H.T. estimator corresponding to the scheme for 

which the value of E E _ * is least will have the least 

average variance. Thus a reasonable investigation will be 

to rank the various I.P.P.S. schemes according to the value 
Pii 

of 2 I 5—5— ( = C, say). For this investigation we 
i j (?^i) ^i D 

will confine to the case n=2 only. 

For the schemes of Durbin (1967), Yates and Grundy 

(1953), Durbin (1953), Goodman and Kish (1950) and Hanurav 

(1967) the approximate expressions for P^j correct to 0(N ) 

are respectively given by 

Pij(l) = 2p.pj[l+{(p.+pj)-zpt2}+{2(p.2+pj2)-2zpt3 

- (Pi+Pj)EPt^+(SPt^)^}] (5.1.3) 

=  2 p . p . l l + { ( p . + p . ) - Z p ^ 2 } + { 2 ( p . 2 + p j 2 ) _ 2 Z p ^ 3  +  3  p . p .  

- J(Pi+Pj)2Pt^ + (5.1.4) 

= 2p.p.[l+{(pi+pj)-zpt2}+{2(p.2+pj2)_2zpt3+p.pj 

- 2(p^+p.)Sp^^ + 2(29,^2)2}] (5.1.5) 

Pij(*) = 2p.p.[l+{(p.+Pj)-Ep^2}+{2(p.2+p^^)-2Ep^^+2piP. 

- 3(p.+Pj)Ep^^ + 3(Ep^2)2jj (5.1.6) 
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3 3 
(5) PiPn Pi P-Î 

= 2PiPi[l+ + -3^ jl (5.1.7) 
" ^ ^ EPtT Ep^Z-Zp 4 

Expressions (5.1.3), (5.1.6) and (5.1.7) are from 

Chapter 2 and expressions (5.1.4) and (5.1.5) are from 

Rao (1963b). 

Using Equations (5.1.3)-(5.1.7) and the relation 
P . 

P^=2p., the value of E E p p correct to 0(N®) for the 
^ i j(?^i)^i D 
above five schemes is respectively given by 

Ci = i[N2+N(l-NZp^2)+{3I,j;p^2^jj2^j,p^2j2_2N2j:p^3^2}] (5.1.8) 

Cg = |IN^+N(I-nj:P^^)+{|NEP^^+ |N^(2:P^^)^-2N^EP^^- |}] 

(5.1.9) 

C3 = |lN^+N(l-NEp^^)+{NZp^^+2N^(Ep^^)^-2N^Sp^^-l ]} (5.1.10) 

C4 = •|lN^+N(l-NEp^^)-{NEp^^-3N2(Ep^^)^Wsp^^}] (5.1.11) 

and 

C. = i[N^+ -^(l-NZp^)+{ ' T - 1}) (5.1.12) 
® V 'SPt'-SPt 

It can be easily verified from (5.1.8)-(5.1.11) that 

C1IC2IC3IC4 (5.1.13) 

This is also a direct consequence of the comparisons made 

by Rao (1963b,1965) of the above four schemes without any 

model assumptions. 
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From (5.1.11) and (5.1.12) we get 

Cg-C, = ' _ SmflEp 2)2 

EPt ZPt ':Pt 

+ NZp^^+2N^2:p^^-l}] (5.1.14) 

Now, assuming p^,p2...pQ to be having a specific distribu­

tion A, with moments we can replace Zp^^ in (5.1.14) 

by Ny^ because we have from Khintclûne's law of large 

numbers 

plim m' = plim ^ Zp.^ = \i' (5.1.15) 
N->-oo ^ N+* 

In view of the relation Zp.=l, we however should have 
^ \ 

Mi = (5.1.16) 

In the following we will investigate the relative 

efficiency of the Hanurav's procedure in relation to the 

other procedures considered above under different distribu­

tions of p^. 

2 Case (i) - y distribution; 

1 2 
When the p^'s are distributed as —x where 

2 
X is the chi-square variate with v degrees of freedom, 

from the relation 

ZPt^ = Ny^ (5.1.17) 
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we get 

^ (5.1.18) 

J 3 , (v+2)(v+4) (5.1.19) 

^ vV 
and 

J 4 ^ (v+2)(v+4)(v+6) (5.1.20) 

Substituting these values in (5.1.14) we get 

<=5-4 = ^ 

+  2( V+2)( V+4) _ 1}] 

V  

which after simplification reduces to 

VC4 = ̂  ^ 

Case (ii) - g distribution: 

When the p^'s follow a beta distribution of the first 

kind with parameters (a^-l^ttj) where and «g ^re related 

by the equation 

y. = = I 
•^1 «i+Og+l N 

or 

a. = (N-l)a.-l (5.1.22) 
^ ± 
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we get after substituting Ny^ for 

n Ot +1 

- (a.+l)(a+2) 

^^t " (Na^+l)(Na^+2r (5.1.24) 

and 

4  (a^+l)(ai+2)(a^+S) 

^Pt ~ (Nttj^+l) (Naj^+2) (Na^+S) 
(5.1.25) 

Substituting from (5.1.23)-(5.1.25) in (5.1.14) we get 

C.-C.= 5 [Na^(N^+2N^-7N+4) 
^ ^ 2(ai+l)(ai+3)(N^^l)2(Nai+2) 

+ a^^(3N^+4N^-22N^+14N+l) 

+ aj^(12N^-33N^+18N+3)-6(N-l)] (5.1.26) 

Now, 

N^+2N^-7N+4 = N(N^-l)+2N(N-3)+4 

> 0 for N^3 (5.1.27) 

3NV4N^-22N^+14N+1 = (3N-7)+11N^ (N-2)+14N+1 

> 0 for N>3 (5.1.28) 

and 

(12N^-33N^+18N+3) -6 (N-1) 

=  ( 0^-1)[3N'(4N-11)+3(6N+1)]+3N-(4N-11)+3(4N+3) 

> 0 for N>3, (5.1.29) 
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because 

a^>l 

(5.1.26)-{5.1.28) imply that 

C5-C4 > 0 (5.1.30) 

Case (iii) - uniform distribution; 

When the p^'s follow a uniform distribution over the 

2 r 
interval (0, , we get from Sp^ 

%Pt^ = & 

'"t' - 7 

and 

4 16 zp 
^ 5N^ 

substitution of these values in (5.1.14) gives, 

C5-C4 = > 0 (5.1.31) 

In view of Equations (5.1.13), (5.1.21), (5.1.30) and (5.1.31) 

it follows that when the variance is considered to O(N^), 

Hanurav's strategy would be inferior to those of Durbin 

(1967), Yates and Grundy (1953), Durbin (1953), and 

Goodman and Kish (1950) when the p^'s follow chi-square, 

beta or uniform distributions. 
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5.2. Alternative Use of Ancillary 
Information 

In this section we consider an alternative way of using 

the ancillary information in providing a better estimate 

for the population total than the Rao, Hartley and Cochran's 

estimator. 

Suppose the ith unit having the size is con­

sidered as made up of X^^ sub-units having the same value 

Yi/Xi, which means that the jth sub-unit of the ith unit is 

taken as having the value Z^j = Y^/X^, j = 1,2,...fX^. Then 

the process of selecting one sub-unit with single random 
N 

sampling from the population of X(=Z X•) sub-units and con-
1 1 

sidering the unit to which it belongs as selected is equiva­

lent to selecting a unit with probability proportional to 

size because the probability of selecting any unit is pro­

portional to the number of sub-units in it. Thus the 

equal probability estimator based on a selected sub-unit is 

the same as the probability proportional to size estimator. 

If we denote the jth sub-unit of the ith unit as , 

we can arrange the X sub-units as U, , U, ...U, ; U_ ,U_ .. 
•^1 ^2 ^X^ ^1 ^2 

2 ^ ^ 
Redesignating these sub-units preserving the order as 

the «et of nnb-units as 

V = {V^,V2,...,Vjj} (5.2.1) 
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It can be observed that each of the sub-units 

has the same y-value Y^/X^; each of the sub-units 

+1' +2'''^Xi+X the same y-value Yg/Xg and in 

general each of the sub-units Vj_^ ^j-1 

Z X.+l, I X.+2 
it ^ z 

V. has the same y-value Y/X. (j=l,2...N). Now since 

each j is some and each is some j, if we 

denote the y-value corresponding to v^ as we get 

Z = Z . . = Y./X. ( 5•2•2) 
a 1] 1 1 

Assuming the number of sub-units X to be a multiple of 

Nf we define a new sampling frame U', by defining a new set 

of units Ug.'.UQ, wherein, the first X(=X/N) sub-units 

constitute the subsequent X sub-units constitute and 

in general the sub-units j-l)X+2-*'^jX 

constitute Uj (j=l,2...N). Thus we get the new population 

frame 

U* = {Uj, U^...U^} (5.2.3) 

Denoting the y-value corresponding to Uj by YÎ we can ob­

serve that Yj will be the sum of the y-values corresponding 

to the sub-units constituting Uî and thus we have 
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YA = Z Za _ 
J a=(j-l)X+l 

(j = 1,2...N) (5.2.4) 

If Y' and Y denote the column vectors 

Y' = 
^2 

and Y = 

N 

the nature of relationship between Y' and Y can best be 

visualized with the help of a simple example. 

Let us consider the population of size 4 and with 

(Y^fX^) = (15,3); (YgfXg) = (22,4); (Y3/X3) = (19,4) and 

= (24,5). Here 

has 3 sub-units with = 15/3 (j = 1,2,3); 

Ug has 4 sub-units with Z^j ~ 22/4 (j = 1,2,3,4); 

Ug has 4 sub-units with Z^j = 19/4 (j = 1,2,3,4); and 

has 5 sub-units with Z^^ = 24/5 (j = 1,2,...5). 

From (5.2.4) we get 

and 

Y[ = 15/3 + 15/3 + 15/3 + 22/4 = l-Y^ + ̂  « Y^ 

YJ = 22/4 + 22/4 + 22/4 + 19/4 = §-Y^ + 

Y^ = 19/4 + 19/4 + 19/4 + 24/5 = ^ -Y^ + ^-Y^ 

Y^ = 24/5 + 24/5 + 24/5 + 24/5 = |-Y^ 

These equations can be written in a matrix form as 

(5.2.5) 
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Y' = A'Y 

where the transformation matrix A is given as 

1 1/4 0 0 

A = 0 3/4 1/4 0 

0 0 3/4 1/5 

0 0 0 4/5. 

Thus, in general the relationship between Y* and Y can 

be written as 

Y' = AY (5.2.6) 

where 

A = 
"11 

®21 

'12 • 

^22 • 

N, 

N 

N 

N, 
N 

(5.2.7) 

The elements a^j of the matrix are given by 

aij = a.-Aj (5.2.8) 

where satisfy the conditions. 

(i) > 0 

N 
(ii) Z a.. = X., for j = 1,2...N 

i=l ] 

N _ 
(iii) I a.. = X, for i = 1,2 ...N 

j=i 

(5.2.9) 

(5.2.10) 

(5.2.11) 
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Now we recall the definition of a stochastic matrix. 

Definition 5.1: 

An NXN matrix P = (puj) is called a stochastic matrix 

if 

(i) Pij 1 0 

and 
N 

(ii) E p.. =1, i = 1,2...N 
j=i 

Lemma 5.1; 

Every NXN stochastic matrix P = (puj) satisfies the 

equation P.l = ̂  where 1 denotes the Nxl column vector of I's. 

Proof is immediate from the definition. 

Now, since each Xj>0 we get from (5.2.8)-{5.2.10) that 

a.^ > 0 (5.2.12) 
1] — 

and 
N 
Z a.. = 1 (5.2.13) 
i=l 

Using (5.2.12) and (5.2.13), we get from Definition 5.1 

and Lemma 5.1 that: 

T 
The transpose A of the matrix A of (5.2.7) is a 

stochastic matrix and hence satisfies the Equation 

A*̂ .! = 1. 

Hence from (5.2.6) we oet 
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N N • 
Y' = Z Y! = Y'T'l = Y^A^-1 = Y^.l = Z Y. = Y (5.2.14) 

i=l ^ i=l 1 

Thus, in order to estimate the population total Y, we can 

use the sampling frame U'. Now, we consider the procedure 

of selecting a simple random sample without replacement of 

size n from the population U'. We will call this procedure 

as 'Modified Simple Random Sampling' (M.S.R.S.), since we 

are adopting the simple random sampling procedure after 

modifying the sampling frame. The estimator of the population 

total proposed is 

W = *i <5-2-") 

As is well known, 

^ (5.2-16) 
1—JL 

Theorem 5.2; 

As an estimator of the population total Y, Y^g^g 

has uniformly smaller variance than the Rao, Hartley and 

Cochran's estimator. 

Proof ; 

Variance of the Rao, Hartley and Cochran's esti­

mator is 

Y. ̂ 
(5.2-17) 
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From (5.2.16) and (5.2.17) we get 

n(N-l) Np^ 
N 2 
Z Y!^) 

i=l ^ 

|{|=ff(YV-fAV) 

ÏÏtI  ̂ 'I'CY (5.2.18) 

where 

D = 

d ^  0  0  . . .  0  

0  d g  0  . . .  0  

0 0 

(5.2.19) 

with 

= N#T = #T 

and 

T C = D-A A 

Now, let 

B = (buj) = A^A 

Then, 

(5.2.20) 

(5.2.21) 

(5.2.22) 

(5.2.23) 

Thus, we get 

N 
Z 

i=l 
Y-CY = I (d.-b..)Y.--2 E b..Y.Y. 

1  X X  J .  1 ]  X  ]  
( 5 . 2 . 2 4 )  
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If we define 
N 

0. . = Z «V "w > 0 (5.2.25) 
13 K=1 ^i ~ 

we get by using Equations (5.2.10) and (5.2.11), 

N N N _ N 
g. = Z 6.. = S ( Z a ) = X* Z a 

j=l K=1 1 j=l 3 K=1 1 

= X*X^ = X^^'di (5.2.26) 

By symmetry of we get 

N N _ p 
B . = Z g.. = Z 3.. = 0. = X-X. = x/-d. (5.2.27) 
'J i=l i=l ] 3 3 J 

Also from (5.2.8) we get 

N o  2 ^ 2  2  
B.. = Z a_ ^ = x/ Z ay = x/-b.. (5.2.28) 

K=1 ^i ^ K=1 ^i ^ 

Equation (5.2.24) can be written as 

„ N 2 Yi Y. 

N 2 Y. Y 2 
= xf ' 

Y.^ Y.2 
— Z B. . ( <y + ^M) (5.2.29) 
i<j X.^ X.^ 

Now using (5.2.26)-(5.2.28) we get 
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y 2 Y ^ 

, N Y.2 N Y.2 

= 6ii) ̂  + f/G.j- 633) ;^1 

1 ] 

N Y.2 

N 2  
= Z (di-b..)Y.^ (5.2.30) 
i=l ^ 1 

Thus, from (5.2.29) and (5.2.30) we get 

T ^4 2 Y^CY = Z 3 (^ - ̂ )^ 
- - i<j *j 

> 0 

because gj^j is nonnegative. 

Hence we get from (5.2.18) that 

Q. E. D. 

The technique of cluster sampling is widely used in 

large scale surveys in view of its operational conveniences 

and particularly due to its advantages in view of cost 

considerations. In situations where it is convenient to take 

ccrtain naturally formed groups of nnits as clusters, the 

cluster size would, in general, vary from cluster to cluster. 
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Households which are groups of persons and villages which are 

groups of households cire most often considered as clusters 

for purposes of sampling. Since in most of the practical 

situations the cluster total of the variable under study is 

likely to be positively correlated with the number of units 

in the cluster, it would be profitable to select the clusters 

with probability proportional to the number of units in the 

cluster. In particular one can adopt the Rao, Hartley and 

Cochran's procedure in view of its applicability in large 

scale surveys. Alternatively one can use the 'Modified 

Simple Random Sampling' procedure described in this section 

with advantage. Instead of assuming that all the sub-units of 

a cluster have the same y-values, which we did for theoretical 

purposes, we actually observe the corresponding y-value for 

each sub-unit that gets selected in the sample through the 

method of MSRS procedure. The results, however, are not 

expected to deviate from the theoretical studies in view of 

the approximate proportionality that usually exists between 

the study variable and the auxiliary variable. 

Numerical example: 

The relative performance of the RHC estimator and the 

MSRS estimator is studied through the help of an example. 

The data ccnsidsrsd here is the 1960 population of the 

first fifteen counties of Iowa by minor civil divisions. 
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Considering this as our population under study, our purpose is 

to estimate the total number of inhabitants in the first 

fifteen counties. The counties are considered as clusters 

and the minor civil divisions within the county are the 

elements within the cluster. Instead of presenting the 

y-values for each minor civil division, we presented in 

Table 5.1 only the y-values and the number of minor civil 

divisions for each county. We also presented the y-values 

corresponding to the modified frame which are denoted by Y|. 

The true variances of the RHC estimator as well as the 

MSRS estimator are calculated for samples of 3 clusters 

and we obtained 

V($j^C> = 1475965 x 10^ 

and 

V(Yjjsrs) ^ 1022261 X 10^ 

Relative efficiency of the MSRS estimate with respect to the 

RHC estimate is 

1475965 ̂  1 44 
1022261 



217 

Table 5.1. Table of the county totals Y., number of inhabi­
tants and the corresponding Y| 

County 
No. 

Number of inhabitants^ 
?i 

Number of minorj^ 
civil divisions 

^i 

?i' 

1 15534 27 15903 
2 10206 17 17943 
3 23538 25 33400 
4 26358 31 21307 
5 15715 18 19876 
6 36499 38 115541 
7 227737 30 162557 
8 45251 33 17034 
9 33479 24 36906 
10 33063 28 32372 
11 34457 29 37156 
12 26383 30 21696 
13 24724 31 30189 
14 37888 34 26718 
15 29031 25 31265 

^The total number of inhabitants = 619863. 

^The total number of minor civil divisions = 420, 
the average number of minor civil divisions = 28. 
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