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Total WIP and WIP Mix for a CONWIP Controlled 
Job Shop 

Abstract 

A planning procedure to set the constant level of work in process (WIP) 

for each product type in a job shop operated under CONWIP control is 

developed.  We model the job shop as a single chain multiple class closed 

queuing network.  Given a specified product mix and a total WIP, a 

nonlinear program bounds the throughput of the network and optimizes 

the WIP mix. We identify the minimum total WIP that is guaranteed to 

yield throughput near the maximum possible for the specified product mix 

and set individual WIP levels by multiplying the optimal WIP mix 

proportions by the minimum total WIP. Numerical examples illustrate 

how these individual product WIP levels achieve the goal of high 

throughput consistent with the specified product mix. 



Importance of This Paper 
 

The CONWIP control policy has been developed as an easily implementable 

alternative to pure pull policies for shop floor control.   In contrast to pure pull policies, 

for which much research has concerned the appropriate number of production 

authorizations (kanbans) to place in circulation, CONWIP research on this decision has 

been relatively scant. In addition, the development and analysis of this control policy has 

focused on flow lines or assembly systems.  Many of the benefits of CONWIP should 

accrue in job shops as well;  however, in order to implement it, one must determine the 

total amount of WIP allowed in the system, as well as the quantity for each product (the 

WIP mix).  

The designer of a pull policy for a job shop must also decide whether kanbans are 

shared among the products or whether individual WIP levels are fixed for each product.  

This issue is currently unresolved.  We believe that the latter policy has more evidence to 

support it and that it is more consistent with the reasoning underlying the development of 

CONWIP control:  that WIP levels are easy to control, while throughput (in particular, 

the production ratios for the different products) should be observed as an output variable. 

However, the allocation of a fixed total WIP to different products is a difficult 

combinatorial problem.  Our procedure to determine the total WIP and WIP mix uses a 

shared kanban model for planning purposes. For a given product mix the procedure uses 

nonlinear and linear programs to bound the system throughput and suggest the total WIP 

and the WIP mix proportions.  Individual product WIP levels are extracted from this 

solution. Numerical examples illustrate the tightness and robustness of the throughput 

bounds and show how the resulting WIP levels achieve high throughput consistent with 

the desired product mix. 



1 Introduction

By specifying the number of production authorizations (kanbans) in circulation on a manufac-

turing shop floor, pull control policies establish an upper bound for the work in process (WIP)

since a fixed number of parts is associated with each kanban. Limiting the WIP in a manufactur-

ing system potentially reduces jobs’ flow times and storage space, and permits a rapid response to

quality problems encountered on the shop floor. In addition, pull policies let demand govern the

production system.

The pure pull policy specifies the number of kanbans between each pair of adjacent work sta-

tions. A more recent variation of pull control specifies the number of kanbans circulating among a

larger set of work stations so that jobs are pulled into the set of stations and pushed among them.

This variation, known as the CONWIP control policy (Spearman et al. 1990), is a combination of

push and pull policies that, while easier to implement, provides most of the benefits of a pure pull

policy.

Research on pull policies in general and CONWIP in particular has primarily focused on flow

lines that produce one or more similar products (see, for example, Bard and Golany, 1991; Spear-

man and Zazanis, 1992; Spearman, 1992; Tayur, 1993; Gstettner and Kuhn, 1996; Dar-El et al.,

1999). However, the benefits of a WIP limit can also be expected to accrue in job shops, in which

multiple products with distinct processing requirements compete for the same set of resources.

Consistent with the increased complexity of a job shop environment, implementing a pull policy

in a job shop is significantly more complicated than in a flow shop. First, the pull system planner

must determine a total WIP level to achieve high total throughput. This problem has received

scant attention in the CONWIP literature since, in single product systems, the profitability of the

system has been shown to be relatively insensitive to the WIP level (Spearman and Zazanis 1992).
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Hence, most researchers have extended this characteristic to multiple product systems.

Second, the pull policy designer must decide whether kanbans are shared among the products

or whether a number of kanbans is dedicated to each product. Shared kanbans can be modeled

using a single chain closed queuing network as in Chevalier and Wein (1993). When a job has

completed processing, a new job is released into the system, whose type is determined probabilis-

tically according to the product mix. This release mechanism matches the individual throughput

proportions to the product mix. In this approach, the WIP mix is not controlled directly. Instead,

it varies over time in response to stochastic processing times and queuing interactions. We believe

this approach runs counter to the reasoning underlying the development of CONWIP control: that

WIP levels are easy to control, while throughput should be observed as an output variable.

When kanbans are dedicated to each product, individual product WIP levels are controlled and

the system can be modeled as a multiple chain closed queuing network. When a job has completed

processing, it is replaced by a new job of the same type as in Duenyas (1994). However, optimizing

individual WIP levels directly is not straightforward. For example, Buzacott and Shanthikumar

(1993, p. 392) have pointed out that when using separate WIP levels, the total throughput is not

guaranteed to increase with the total WIP because the throughput of one product may drop when

the WIP level for a different product is increased.

The question of single chain vs. multiple chain operation, i.e., shared vs. dedicated kanbans,

has not been fully resolved and it is not the purpose of this paper to do so. Past analytical and

simulation studies have measured performance by the WIP required to achieve individual or total

throughput targets. Considered together, they suggest that a single WIP level with shared kanbans

is better when products share similar routings, while individual WIP levels are preferred when

different products have disparate routings. For example, evidence from simulations by Duenyas
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(1994) favored multiple chain operation and he argued that its superiority was stronger when rout-

ings differed. On the other hand, simulation experiments of a multiple product serial system by

Krishnamurthy et al. (2000) indicated that shared kanbans achieve a target total throughput level

with less WIP than dedicated kanbans do when all products share the same routing. In addition,

the example of the throughput’s nonmonotonocity in Buzacott and Shanthikumar (1993) featured

two products with very similar part routings. Since job shops typically have dissimilar part rout-

ings, in this paper we assume that the system will be operated with an individual WIP level for each

product. This approach is consistent with Hopp and Roof (1998), who used shared kanbans when

multiple products shared the same routing and dedicated kanbans when routings were different.

Assuming, then, that separate card counts are maintained for each product, the total WIP must

be allocated to the different products. When producing multiple products, maximizing total

throughput is not a sufficient objective for meeting competing product demands. Indeed, the

highest total throughput might be achieved by producing only one of the products. To meet de-

mand for all the products, one must proportionally match production rates to the required demand

rates. The proportion of total WIP allocated to each product, the WIP mix, that optimizes the sys-

tem performance generally will not be the same as the product mix. The product mix, specified by

the proportions of the total demand on the system that correspond to each product, often is known,

whereas the WIP mix should be influenced by the products’ work contents and the capacities of

processing resources. We assume that relative demand rates are stable within the planning horizon

so that the product mix is a known parameter vector while the WIP mix is a vector of decision

variables.

Finally, the performance of a control policy depends on the sequencing rules used at each sta-

tion. For example, Chevalier and Wein developed a static preemptive priority sequence at each
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station that can increase the total throughput when kanbans are shared among the products. The

highest priority queue at each station is found by constructing a polytope whose vertices corre-

spond to the pairs of products and stations, and then finding the subset of pairs, one for each

station, whose vertices generate the simplex with highest volume-to-surface ratio. Under such a

policy the WIP levels for products receiving lower priority in the sequencing at each station will

be comparatively very high. In this paper we focus on easily implementable sequencing policies

such as first come first served or random selection, recognizing that a more information intensive

seqencing rule may improve system throughput.

In a notable extension of the CONWIP concept for a multiproduct factory, Suri (1998) proposed

the POLCA control system. POLCA, which stands for Paired-cell Overlapping Loops of Cards

with Authorization, assumes that the factory has been partitioned into non-overlapping manufac-

turing cells. POLCA maintains constant WIP between every pair of cells that experience inter-cell

part movement over a planning horizon. Part release to a cell requires an appropriate kanban card

as well as an authorization from the factory loading system. Zhou et al. (2000) used simulation to

show that both CONWIP and POLCA achieve a better tradeoff of total WIP and total throughput

than either pure push or pure pull policies.

In other multiproduct CONWIP related work, Golany et al. (1999) studied CONWIP control

for a multiproduct system in which the products have been grouped into families and the machine

groups into cells. They formulated and heuristically solved a mathematical program to determine

the optimal allocation of a fixed number of kanbans (containers) to cells. In numerical exam-

ples, lower flow times were obtained if containers migrated freely among cells. Choobineh and

Sowrirajan (1996) developed a hybrid approach. The total WIP was specified but the WIP level

for each product could vary dynamically within heuristic limits specified according to the prod-
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uct mix and the work content of each product. By simulation they showed that total throughput

would benefit from reserving some capacity for each product. Hopp and Roof (1998) developed

a procedure to dynamically adapt card counts to meet target throughput rates based on empirical

observations of throughput. Luh et al. (2000), working with an aircraft company’s job shop, for-

mulated and approximately solved an optimization model to schedule a set of jobs over a specified

time horizon to meet fixed due dates for a given total shared WIP level, assuming deterministic

processing times. Ryan et al. (2000) developed a heuristic allocation procedure to determine the

total WIP and WIP mix to satisfy a uniform service level across product types under the multiple

chain control policy. Assuming heavy demand, they modeled the job shop as a closed queuing

network and used an approximate performance evaluation to determine a WIP total and mix that

would achieve a high throughput consistent with the product mix. When tested with randomly

arriving demands following the product mix, the WIP mix did provide balanced customer service,

as measured in the approximate performance evaluation by the proportion of arriving orders that

wait to be fulfilled. Numerical examples showed that the most effective WIP mix is often quite

different from the specified product mix.

In this paper we propose a systematic procedure for identifying the total WIP and WIP mix for

a job shop operating under the CONWIP control policy. Previous methods for setting individual

product card counts have used a heuristic allocation procedure that called upon simulation, an ap-

proximate performance evaluation, or empirical observation to estimate the throughput (Duenyas,

Ryan et al., Hopp and Roof). The approximate performance evaluation methods lack any guar-

antee of accuracy, and the design of an efficient and accurate allocation heuristic is hampered by

nonseparability of the individual product throughputs and nonmonotonicity of the total throughput.

Target throughput levels that were set a priori occasionally must be adjusted for feasibility. Simi-
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larly to Ryan et al. (2000), we use a closed queuing network to model the job shop; however, here

we drop the assumption of heavy demand. Rather than approximating the throughput, we develop

mathematical programs whose optimal objective values bound the throughput of the single-chain

network from above and below. The bounding method can handle complex routings such as repeat

visits to a station with different processing rates. Since, in practice, the operational capacity of a

job shop is set to be some fraction of its nominal capacity (typically 85% to 95%), the desirable

total number of jobs for the network is identified when the lower bound on the throughput is a pro-

portion β < 1 of the upper bound. For the desired WIP mix we use the individual product average

WIP proportions that maximize the single-chain throughput for the desired total WIP. Numerical

tests with simulation in a multiple-chain model show that these derived WIP levels achieve high

throughput consistent with the specified product mix.

In the next section we introduce notation and outline the solution approach. In Section 3 we

describe in more detail the queuing network model of the job shop operating under single chain

CONWIP control and develop the mathematical programs to bound the throughput and optimize

the WIP mix. In Section 4, the bounds are explored and validated by simulation using a small

system, and the impact of sequencing rules is discussed. Our approach for setting the WIP level

and applying the WIP mix is illustrated on a larger system. We conclude with Section 5.

2 Outline of Approach

Nomenclature:

P = the number of distinct products to be manufactured.

α = the specified product mix vector, where
PP

r=1 αr = 1. If orders for product r arrive randomly

at mean rate λr, then the product mix vector can be derived by setting αr = λr/
PP

j=1 λj .
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β = a specified proportion of the maximum throughput.

N = the total number of kanbans.

θS
r (N) = the mean throughput of type r products when the system is operated as single chain (with

shared kanbans), r = 1, . . . , P .

ΘS(N) = the mean total throughput when operated in single chain mode; ΘS(N) =
PP

r=1 θ
S
r (N).

ΘS
LB(N),Θ

S
UB(N) = lower and upper bounds, respectively, on the single chain throughput.

Yr(N) = the average number of type r jobs in the system that maximizes ΘS(N), r = 1, . . . , P.

pr(N) = the proportion of type r jobs in the single chain optimal WIP mix; pr(N) = Yr(N)/N .

Kr = number of kanbans for type r products when the system is operated in multiple chain mode,

r = 1, . . . , P.

θM
r (K1, . . . ,KP ) = the mean throughput of type r products in multiple chain operation.

ΘM(K1, . . . ,KP ) = the mean total throughput in multiple chain operation, ΘM(K1, . . . ,KP ) =PP
r=1 θ

M
r (K1, . . . ,KP ).

γr (K1, . . . ,KP ) = θ
M
r (K1, . . . ,KP )/Θ

M(K1, . . . ,KP ) = the rth element of the multiple chain

throughput mix vector.

As stated above, we assume the system will be operated with a fixed number of kanbans ded-

icated to each product type. Our goal is to determine these fixed numbers. However, the lack

of monotonicity in the throughput as well as the combinatorial complexity of allocating WIP to

products discourage the direct optimization of kanban allocation. Instead, we use a two stage pro-

cess. In stage one, we use a single chain queuing network model for shared kanbans to discover a

total WIP and WIP mix that will achieve high total throughput consistent with the required product

mix. In stage two we use the results of stage one to determine individual product WIP levels.

In a single chain network, the total throughput does increase monotonically with the total amount
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of WIP (Suri 1985). The total WIP is held constant while the type of job released to the system

is governed probabilistically according to the product mix. For maximum applicability, we also

allow deterministic or probabilistic routing with different exponential processing time distributions

for different classes at the same station. Repeat visits to the same station may occur either for qual-

ity related rework or by ordinary routing specification, with possibly a different processing rate on

each visit. Even when processing times are limited to exponential distributions, this single chain

multiple class queuing network will not have a product form solution. Our performance evaluation

method is adapted from Kumar and Kumar (1994) and enhanced to yield tighter bounds assum-

ing first come first served or random rather than preemptive priority sequencing. The performance

evaluator, a nonlinear program (NLP), provides upper and lower bounds on the throughput to result

from a given product mix and WIP level. From the convergence of the bounds, we can identify

the smallest WIP level that guarantees some specified percentage of the maximum achievable sin-

gle chain throughput for a given product mix. We extract the optimal WIP mix from the upper

bounding solution of the nonlinear program. Figure 1 depicts the two stages of our approach.

*** Figure 1 Here ***

Specifics of the two stage process depicted in Fig. 1 are as follows:

1. Model the job shop in single chain mode and develop its NLP performance model. Vary

N and solve the NLP to bound the throughput of the system. Since the type of each job

released to the system is selected probabilistically according to α, θS
r (N) = αrΘ

S(N). Find

N 0 = min{N : ΘS
LB(N) ≥ βΘS

UB(N)}. Extract Yr(N
0) from the NLP solution that achieves

ΘS
UB(N

0) and compute pr(N
0).

2. Round the values of pr(N
0)N 0 up or down as needed to obtain integer values of Kr such thatPP

r=1Kr = N 0. In the resulting multiple chain operation, we can verify by simulation that
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γr(K1, . . . ,KP ) ∼= αr for each r while, typically, ΘM(K1, . . . ,KP ) > Θ
S(N 0).

Since the value ofN is determined by distance between the bounds, it could be larger than nec-

essary to achieve the desired throughput in operation. However, the optimal WIP mix in numerical

examples is fairly stable as N increases. In practice, the values of K1, . . . ,KP obtained by our

procedure could be used as a starting point for experimentation in the actual or simulated system

to see if card counts could be reduced without significantly lowering the individual throughputs or

altering the balance among them. The desired product mix α, the WIP mix p derived from the

model, and the resulting throughput mix γ are all nonnegative P -vectors whose elements sum to 1.

We normalize Euclidean distances between any pair by dividing by the maximum possible distance

between them (equal to
√
2). We use this metric in Section 4.2 to compare WIP mixes found with

different values of N and to examine the match between γ and α for alternative allocations of the

same N .

3 Queuing Network Model and Performance Evaluation

The following describes additional notation used in the queuing network model of the job shop.

S = the number of single server processing stations in the job shop.

I = the index of a station that is visited by all products, 1 ≤ I ≤ S.

R = the number of customer classes in the queuing network model of the job shop, R ≥ P . We

may use a probabilistic routing to model the average effect of utilizing alternative routings.

In addition, a job may visit the same station more than once, either in the normal course of

processing or for quality related rework. The first P classes correspond to the product types,

and the additional R− P classes are artifices to model repeat visits to the same station(s).

qrsjv = the probability that a class r customer, having completed processing at station s, joins the

9



queue at station v as a class j customer. Assume qrsrs = 0. If product r has a single process

plan (route), then qrsrv = 1, where v is the next station after s in product r’s routing. If

product r revisits station s, we create a new customer class j > P to model the reentrants

and set qrsjv = 1, where v is the station visited by product r immediately after the first visit

to station s.

Fr (resp. Lr) = the first (last) station visited by customer class r.

µrs =mean processing rates for class r customers at station s. Processing times are exponentially

distributed.

For a given value ofN , the job shop under single chain CONWIP control is modeled as a closed

queuing network in which the customers are the N kanbans, each of which adopts the class of the

product to which it is currently attached. (In this section, we suppress dependence on N as well

as the single chain superscript S from the notation). Upon completion of processing, a product’s

kanban is surrendered and immediately attached to a new job of type j with probability αj . Thus

for each r, qrLrjFj
= αj, for j = 1, . . . , P . This release policy ensures that θr = αrΘ for

r = 1, . . . , P . We assume an infinite supply of raw material for each product type, and unlimited

waiting space both within the shop and for finished products.

The optimal number of jobs in a closed manufacturing network has been addressed in several

papers (Vinod and Solberg, 1985; Dallery and Frein, 1988; Lee et al., 1989; Kouvelis and Kiran,

1991; Kouvelis and Lee, 1995) in combination with other aspects of designing flexible manufactur-

ing systems. These works considered a single product type. In order to implement multiproduct

CONWIP, we wish to determine a small value ofN that will yield a high throughput. However, for

a given N , an exact evaluation of the network’s performance characteristics is not possible. Be-

cause of the distinct processing time distributions for different customer classes at a station without
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processor sharing, this closed queuing network does not have a product form solution. The single

chain control policy precludes the use of approximate multiclass mean value analysis (Schweitzer

et al. 1986) as well as the decomposition approximation of Baynat and Dallery (1996). The

throughput bounds of Kerola (1986) also require a fixed population for each class. The generating

function technique of Reiser and Kobayashi (1980) allows the single chain policy, but restricts the

queue discipline to processor sharing or preemptive resume. The performance evaluator used by

Ryan et al. (2000) does not allow different processing times for repeat visits. In this paper, we use

an adaptation of the performance evaluation method of Kumar and Kumar (1994), which was also

developed independently by Bertsimas et al. (1994).

We present nonlinear and linear programs (NLP and LP) to bound the system throughput. For

fixed N , ΘS
LB(N) (resp. ΘS

UB(N)) is obtained by minimizing (maximizing) system throughput,

subject to constraints on (1) the constant system population, (2) “sampling equalities” (Jin et al.

1997), (3) non-idling, (4) stationary first moments of queue lengths, (5) stationary second moments

of queue lengths, (6) sojourn times at each station, and nonnegativity restrictions. All elements

of this model except (6) are adapted from Kumar and Kumar (1994) and Jin et al. (1997). Lower

and upper bounds on the throughput for a given N are obtained by minimizing and maximizing

the objective function, respectively. When using only constraints (1) - (5), a large gap between the

lower and upper bounds is often observed. Kumar and Kumar (1994) and Bertsimas et al. (1994)

incorporated additional constraints for preemptive priority policies to reduce the gap. However,

preemptive priority is rare in manufacturing practice. In this paper, we take a more practical

manufacturing approach to tighten the bounds. We develop constraints (6) to balance the mean

waiting time at each station under first come first served sequencing as is common in models

of CONWIP systems (see, for example, Herer and Masin (1997) for a different mathematical
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programming formulation of a serial CONWIP system). Because the nonlinear constraints (6) can

require long solution times, we also develop approximate linear versions.

The variables for the mathematical programs are defined in terms of expected values of two

families of stochastic processes:

Xrs (t) = the number of class r customers at station s (in queue or in service) at time t, and

Wrs (t) = 1 if the station s server is busy with a class r customer at time t and 0 otherwise. Let

ρrs = E [Wrs (t)], and

zrsjv = E [Wrs (t)Xjv (t)] for any t (in steady state).

These processes are defined only for pairs (r, s) and (j, v) such that class r visits station s and

class j visits station v. Let L be the number of such class-station pairs. We also define R(s) as the

set of customer classes that visit station s. In the following, the sum over classes
P

j will signifyP
j∈R(s) where not ambiguous.

The decision variables in the LP/NLP are ρrs and zrsjv. The variables ρrs can be interpreted

directly as the proportion of time station s spends serving class r customers. The interpretation of

the cross moment variables zrsjv is less straightforward. These variables are required to express

the constraints (5) below on the stationarity of the second moments of the queue lengths,Xrs (t).

3.1 A Linear Program to Bound Throughput

The throughput of class r at station s may be expressed as µrsρrs. If we select a station s = I that

is visited by all customer classes, such as a loading/unloading station for a flexible manufacturing

system, the objective function is given by:

Θ =
PX

r=1

µrIρrI

We assume a non-idling policy; that is, if any customers are present at station s, the station s server

must not be idle. Mathematically, this assumption is expressed as Xrs (t) > 0 ⇒ Wjs (t) =
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1 for some j ∈ R(s). Then Xrs (t) =
P

j Wjs (t)Xrs (t) and we can write E [Xrs (t)] =P
j E [Wjs (t)Xrs (t)] =

P
j zjsrs. Also note that the total population of type r jobs is given

by Yr =
PS

s=1

P
t

P
j zjsts, where the sum over t is over all classes t ∈ {1, . . . , R} that pertain to

job type r, including reentrants.

The first constraint stipulates that
P

r,sE [Xrs (t)] = N for all t, or
SX

s=1

RX
r=1

X
j

zjsrs = N. (1)

This constraint actually limits the average WIP, not the maximum WIP. However, since
P

(j,v)Xjv (t) =

N (not only in expected value), it follows that E[Wrs(t)
P

(j,v)Xjv (t)] = ρrsN , so that the fol-

lowing stronger constraints also hold:X
(j,v)

zrsjv −Nρrs = 0,∀(r, s). (2)

The non-idling assumption leads to another set of constraints on the z variables as in Kumar and

Kumar (1994). Since
P

j Wjv(t) ≤ 1,∀v, we haveXrs (t) =
P

j Wjs (t)Xrs (t) ≥
P

j Wjv (t)Xrs (t) .

Taking expectations on both sides of the inequality yields:X
j

zjvrs −
X

j

zjsrs ≤ 0,∀(r, s), v 6= s. (3)

Constraints on station utilization could be given as
P

r ρrs ≤ 1,∀s ; however, these are implied by

constraints (1) - (3).

The ordinary traffic equations for the closed queuing network are a result of the assumption that

the first moments of the populations at each station are stationary, i.e., that E[Xrs (t)] is constant

for all t in steady state. These may be expressed as:

− µrsρrs +
X
(j,v)

qjvrsµjvρjv = 0,∀(r, s). (4)

Let δrsjv = 1 if (r, s) = (j, v), and 0 otherwise. Assume that the buffers are lexicographically

ordered, so that (j, v) > (r, s) if either j > r or j = r and v > s. Assuming that the second mo-
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ments, E[X2
rs (t)], and cross moments, E[Xrs (t)Xjv (t)], of the class populations at each station

are stationary, and substituting equation (4) yields:X
(k,y)

qkyrsµkyzkyjv +
X
(k,y)

qkyjvµkyzkyrs − µrszrsjv − µjvzjvrs

−qrsjvµrsρrs − qjvrsµjvρjv + 2δrsjvµrsρrs = 0, (5)

∀(r, s),∀(j, v) ≥ (r, s).

Details of the derivation can be found in Kumar and Kumar (1994) or Jin et al. (1997).

3.2 Nonlinear Constraints to Tighten the Bounds

Constraints (1) - (5) concern the global operation of the system and the flow of customers between

stations. The final set of constraints deals with the competition among customer classes at each

station. Schweitzer et al. (1986) treat a closed multiple chain queuing network with a fixed pop-

ulation Kr of class r customers. Assuming first come first served sequencing, they show that for

each (r, s), the expected sojourn time spent by class r customers at station s is given by

Drs =
1

µrs

+
X

j

1

µjs

E [Xjs] + εrs,

where εrs is a correction term that arises from the disparity between the arrival-average and time-

average queue lengths. This equation simply states that an arriving customer’s sojourn time is the

sum of its own service time and the service times of customers ahead of it in the queue. Reiser and

Lavenberg (1980) showed that the relation holds for last come first served preemptive sequencing

as well. The correction term εrs = −E [Xrs] /(µrsKr) is designed to avoid “double-counting”

the service time of an arriving customer in its sojourn time. Applying Little’s Law, we can write

Drs = E [Xrs] /(µrsρrs), so that in terms of our decision variables we haveX
j

zjsrs = ρrs + µrsρrs

X
j

1

µjs

X
k

zksjs + µrsρrsεrs.
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Since εrs < 0, and clearly εrs > −1/µrs, we arrive at two sets of nonlinear constraints:X
j

zjsrs ≤ ρrs + µrsρrs

X
j

1

µjs

X
k

zksjs,∀(r, s) (6NA)

X
j

zjsrs ≥ µrsρrs

X
j

1

µjs

X
k

zksjs,∀(r, s) (6NB)

3.3 Linear Versions of Bound-Tightening Constraints

We can also derive approximate linear constraints. Recall thatα = (α1, . . . ,αP )with
PP

r=1 αr = 1

is a vector that describes the desired apportionment of throughput to the products. The single chain

release policy, embodied in the routing probabilities qrLrjFj
= αj , guarantees that the overall

product throughputs proportionally follow the vector α. Now we make the stronger assumption

that the same throughput proportions hold at each station. For a class r > P that represents

reentrants of type k products, we set αr = αk. At station s, let αrs = αr/
P

j∈R(s) αj be this

proportion adjusted for the set of classes R (s) that visit station s. Assume that

µrsρrs = αrs

X
j∈R(s)

µjsρjs,∀(r, s).

Also, let

Mks = max
j∈R(s)

½
µjs

µks

¾
,∀(k, s).

Then, on the right hand side of inequality (6NA), we have

µrsρrs

X
j

1

µjs

X
k

zksjs =

Ã
αrs

X
j

µjsρjs

! ÃX
j

1

µjs

X
k

zksjs

!
= αrs

X
j

X
k

ρjs

µjs

µks

E [Xks]

≤ αrs

X
j

ρjs

X
k

MksE [Xks]

≤ αrs

X
k

Mks

X
j

zjsks

15



Thus we arrive at the set of linear constraints:X
j

zjsrs ≤ ρrs + αrs

X
k

Mks

X
j

zjsks,∀(r, s) (6LA)

We can also derive a linear version of inequalities (6NB) for bottleneck stations in saturated

systems. Let

mrs = min
j∈R(s)

½
µrs

µjs

¾
,∀(r, s).

Then, on the right hand side of (6NB),

µrsρrs

X
j

1

µjs

X
k

zksjs ≥ ρrsmrs

X
j

X
k

zksjs

= mrsρrs

ÃX
j

zrsjs +
X
k 6=r

X
j

zksjs

!
.

Assuming that sequencing at a bottleneck station is independent of the total number of jobs waiting,

we have P
k 6=r ρks

ρrs

=

P
k 6=r E[Wks(t)]E

hP
j Xjs(t)

i
E[Wrs(t)]E

hP
j Xjs(t)

i =

P
k 6=r

P
j zksjsP

j zrsjs
.

Substituting into (6NB), we obtainX
j

zjsrs ≥ mrs

Ã
ρrs

X
j

zrsjs +
X
k 6=r

ρks

X
j

zrsjs

!
= mrs

X
j

zrsjs, if
X

k

ρks = 1.

The final set of linear constraints, then, which are valid only for bottleneck stations in saturated

systems, are: X
j

zjsrs ≥ mrs

X
j

zrsjs,∀(r, s) with
X

k

ρks = 1. (6LB)

3.4 Summary of Mathematical Programs

This planning model differs in one important aspect from previous work. Rather than using prior-

ity sequencing at each station, we assume that sequencing at each station is independent of product

type. The throughput bounds nevertheless encapsulate simulation results obtained with a variety
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of sequencing rules, including static and dynamic priority rules. A preemptive priority policy

can provide tight throughput bounds as in Kumar and Kumar (1994), and can yield good total

throughput results as in Chevalier and Wein (1993). However, our simulation results indicate that

the impact of the scheduling policy on the total throughput diminishes as the total WIP increases.

Moreover, priority sequencing severely skews the WIP mix toward lower priority product types.

Nonpreemptive FCFS sequencing is more likely to be implemented in actual manufacturing set-

tings and more consistent with our goal of balancing the throughput across different product types.

Thus we have:

1. a nonlinear model consisting of the linear objective (0), linear constraints (1)-(5) and nonlinear

constraints (6NA&B),

2. a linear model that includes the objective (0) and linear constraints (1)-(5), (6LA&B).

There are a total of L2 + L decision variables. The nonlinear model includes L2 + 3L + S + 1

constraints, while the linear model includes L2 + 2L + S + BR + 1 constraints, where B is the

number of bottleneck stations (typically one).

3.5 Finding Total WIP and WIP Mix

The goals of developing both the nonlinear and linear models are to help choose a good value

of N , the total WIP, and to predict the WIP mix. Based on the monotonicity of the single chain

throughput in N , our approach is to choose some proportion of the upper bound on throughput,

say β = 0.95, and find the smallest N , call it N 0, for which a lower bound for the throughput

exceeds this quantity. The nonlinear model provides increasingly tight bounds on the throughput,

ΘS;NLP
LB (N) and ΘS;NLP

UB (N), as N increases but it may require long computation times for large job

shops. Also, since the nonlinear constraints are not convex, it is not guaranteed to yield global op-
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tima. The linear model is solved very quickly to optimality but its bounds,ΘS;LP
LB (N) andΘS;LP

UB (N),

are not as tight. However, the distance ΘS;LP
UB (N) − ΘS;LP

LB (N) stabilizes with increasing N . This

stability can be observed as an approximate indicator that the marginal improvement in throughput

is diminishing.

We propose the following heuristic procedure to find N 0 without excessive computation time.

This heuristic uses the solutions of the NLP as a starting solution. It uses the LP to explore the

neighborhood of the starting solution in order to improve it. Finally, the NLP is used again to

refine the solution. The steps of the heuristic are as follows:

1. Maximize and minimize the nonlinear model for some N0 both to obtain initial bounds for the

throughput and to determine which station is the bottleneck. Let β0 = Θ
S;NLP
LB (N0)/Θ

S;NLP
UB (N0).

2. Maximize and minimize the linear model, including constraint (6LB) for the bottleneck, for

several values of N above (below) N0 if β0 is below (above) β. Let N 00 be the smallest N for

which the distance ΘS;LP
UB −ΘS;LP

LB forN +1 is less than, say, 0.5 percent smaller than that forN .

3. Use the nonlinear model to explore values near N 00 until the smallest N 0 is found such that

ΘS;NLP
LB /ΘS;NLP

UB (N 0) ≥ β.

Our assumed order release mechanism guarantees that the desired product mix will be obtained

in single chain mode. The WIP mix may be observed in the maximizing solution for either the LP

or the NLP as (p1(N), . . . , pR(N)), where pr(N) ≡ Yr(N)/N is the expected proportion of jobs

in the system that are of type r. In computational experience, the nonlinear model has provided a

more stable and accurate (compared with simulation) prediction of the WIP mix for various values

of N .
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Product Routing Proc. Times
1 1, 2, 4 1, 1, 1
2 1, 3, 4 1/µ, 1/µ, 1/µ

Table 1. Routings and expected processing times for Example 1.

4 Numerical Examples

We use a small example system to explore and validate the model in stage 1 and a larger system

to illustrate its use in stage 2. Example 1, with four stations and two products, was designed to

systematically test the mathematical programs over a variety of product mixes and processing time

relationships. Example 2, with ten stations, five products, and complex routings, demonstrates

how the output of stage 1 may be used in practice for setting the individual product WIP levels

in a multiple chain release policy. For each example, the bounds obtained by the linear and

nonlinear models were compared to results obtained from simulation. The simulations, coded in

SIMAN, were initialized with a transient period after which the mean throughput was calculated

from 30 consecutive batches of 1,000 minutes each. From moving average plots of the queue

lengths at the bottleneck station, a 300,000 minute transient period was judged to be sufficient for

each example. The simulation was performed starting from an initial empty and idle condition,

with N jobs waiting at station 1. Each entering job was assigned to class r with probability αr,

r = 1, . . . , P . In the single chain simulation, when a job had completed processing, it was replaced

by a new job at station 1, of class r with probability αr.

4.1 Example 1.

The first example was studied in depth to answer: (1) How tight are the throughput bounds? (2)

How reliable is the WIP mix? and (3) What is the impact of sequencing rules on the throughput

and the WIP mix? This small example system has two products that share stations 1 and 4, while

intermediate processing is done by station 2 for product 1 and station 3 for product 3. The routings
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α1 µ ΘS;LP
LB ΘS;NLP

LB CYC FCFS LNQ RAN SPT ΘS;LP
UB = ΘS;NLP

UB ΘS;NLP
LB /ΘS;NLP

UB p1(30)
0.3 1 0.714 0.933 0.966 0.961 0.964 0.966 0.962 0.968 0.96 0.30
0.3 2 1.07 1.43 1.47 1.48 1.49 1.47 1.50 1.50 0.95 0.31
0.3 3 1.20 1.72 1.75 1.79 1.81 1.76 1.83 1.83 0.94 0.30
0.5 1 0.720 0.934 0.967 0.963 0.965 0.964 0.965 0.968 0.96 0.50
0.5 2 0.891 1.24 1.28 1.28 1.28 1.28 1.29 1.30 0.95 0.53
0.5 3 0.938 1.38 1.43 1.44 1.43 1.43 1.46 1.46 0.95 0.54
0.7 1 0.714 0.933 0.966 0.965 0.964 0.969 0.960 0.968 0.96 0.72
0.7 2 0.770 1.09 1.14 1.13 1.12 1.13 1.14 1.14 0.96 0.71
0.7 3 0.782 1.14 1.20 1.19 1.18 1.20 1.20 1.21 0.94 0.74

Table 2. Bounds on total throughput obtained from the LP and NLP compared with simulation for
N=30.

and mean processing times are shown in Table 1. The mean processing rate for product 1 at each

station is 1 time unit per job, while the mean processing rate for product 2 at each station is a

variable parameter, µ. Nine test cases are generated by having α1 take on the values of 0.3, 0.5

or 0.7 (with α2 = 1 − α1) and µ vary among 1, 2 and 3. For this example, solving either the

nonlinear or the linear model takes a few hundredths of a second using LINGO on a 200 MHz

Pentium processor.

4.1.1 Throughput Bounds

For each of the nine combinations of values of α1 and µ, the throughput bounds were compared to

results obtained from simulation. Though constraints (6) were based on a first come first served

assumption, we tested one dynamic and four static nonpreemptive sequencing rules:

� CYC: A fixed order is established for the queues at a station. Upon completing service on a

customer from a given queue, the server examines each queue starting from the next queue in

the fixed order and selects the first customer from the first nonempty queue encountered.

� FCFS: Customers are served in order of arrival, irrespective of their class.

� LNQ: Upon completing a service, the server begins service on the first customer from the

longest queue.
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� RAN: Upon completing a customer, the server randomly chooses the queue to serve next.

� SPT: Upon completing a service, the server always chooses the first customer from the queue

with smallest expected processing time, if one is available.

For all nine combinations of parameter values in Example 1, the sequencing policy of Chevalier

and Wein (1993) is a preemptive version of our SPT rule. Therefore, it is not explicitly identified

in our experiments.

In each of the nine cases, with N varying from 10 to 40, the linear and nonlinear models both

bound the simulation results for all the sequencing rules (see Table 2 for N=30). Each of the 30

simulation batches included approximately 30 completed jobs, following a warmup period of ap-

proximately 9000 completions. Fig. 2 shows the bounds obtained by the model and the simulation

means for different sequencing rules and values of N in a typical case. The bounds, as well as

the simulation results, appear increasing and concave in N as suggested by Suri (1985) and Shan-

thikumar and Yao (1988). The maximum throughputs obtained by the linear and nonlinear models

(“Max”) are identical, but the nonlinear model provides a much tighter lower bound (“NLP Min”)

than the linear program (“LP Min”). Though the station sojourn constraints, (6NA) and (6NB),

or (6LA) and (6LB), are based on a particular sequencing assumption, varying the sequencing

seems to account for much of the distance between the upper and lower bounds provided by the

nonlinear model. The decrease of this distance with N and encapsulation of different sequencing

rules indicates that the impact of the sequencing policy on the throughput diminishes as the system

population increases. From these results we conclude that the nonlinear constraints are necessary

to provide tight throughput bounds. Further, though we have no guarantee that the solver will find

the global optima, the smooth progression of values as N increases, together with the consistent

encapsulation of simulation results (for all the parameter values tested), give us much confidence
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in the validity of the bounds.

*** Figure 2 Here ***
4.1.2 WIP Mix

The inventory mix in the system is far more sensitive to sequencing rules than is the throughput.

We can use the models to predict the mix of work in process by examining the proportion of

jobs of each type stipulated in the optimal solutions. That is, the expected proportion of jobs in

the system that are of type r is given by pr(N) =
P

s

P
j zjsrs/N . Fig. 3 shows a plot of the

proportion of type 1 jobs, p1(N), predicted by maximizing the linear and nonlinear models as well

as the averages observed during simulation using different sequencing rules. The nonlinear model

is consistent with the FCFS simulation and intermediate among the other sequencing rules, while

the prediction from the linear model varies wildly as N increases.

*** Figure 3 Here ***

A parametric analysis of the linear model helps explain the inconsistent inventory mixes pre-

dicted by the linear model. A pair of constraints,
P

s

P
j zjsrs = Npr, r = 1, 2, was added to the

model to specify the WIP mix. A parametric analysis was performed on the right hand sides with

p1 + p2 = 1 while keeping N fixed. On the vertical axis of Fig. 4 the proportions of type 1 jobs

in the system (p1) observed in simulation for α = (0.7, 0.3), µ = 2, and N = 30 are displayed

and labeled with the sequencing rule used. These values are the same as shown in Fig. 3 for

N = 30. Fig. 4 also shows ranges of values for p1 for which the optimal throughput is unchanged

for three variations of the linear model. Case 1 is the linear model including FCFS constraints

(6LA) and (6LB). The same optimal throughput can be achieved when p1 is fixed at any value

from 0.50 to 0.89. In Case 2, constraints (6LA) and (6LB) with their underlying sequencing as-

sumption were dropped. The allowable range (0.08, 0.98) for p1 is considerably wider. Case 3
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approximates the nonpreemptive SPT discipline with the addition of two preemptive priority con-

straints: z1s2s = 0, s = 1, 4. These stipulate that at stations s =1 and 4, W1s(t) = 0 whenever

X2s(t) > 0 (see Kumar and Kumar 1994). These constraints severely restrict the inventory mix so

that, as in the SPT simulation, nearly all the WIP in the system is comprised of type 1 jobs. When

these constraints are included, a vary narrow range (0.977, 0.983) for p1 is obtained, similar to the

p1 observed in simulation with nonpreemptive SPT sequencing.

*** Figure 4 Here ***

The wide ranges found in the parametric analysis of Cases 1 and 2 suggest that the linear model

alone is not a reliable predictor of the WIP mix. Put another way, unless the restrictive preemptive

SPT constraints are included, the same maximum throughput can be obtained in the linear model

for a wide variety of product mixes. The nonlinear constraints (6NA) and (6NB) therefore are

necessary to obtain precise estimates of the WIP mix.

4.2 Example 2.

The second example system illustrates how the results of the single chain planning model can be

used in a multiple chain control policy that specifically limits the WIP for each product. This

system has five products and ten stations with routings and mean processing times (in minutes) as

shown in Table 3. Note that product type 2 visits station 4 twice, with a different expected process-

ing time on each visit. This routing is modeled by using an artificial class 6 to represent class 2 from

its first visit to station 4 onward, i.e., q2467 = 1, so that P = 5 product types while R = 6 classes.

The proportion of type 2 jobs in the WIP mix is calculated as p2(N) =
P

r=2,6

P
s

P
j zjsrs/N .

4.2.1 Throughput Bounds

For the product mix vector α = (0.2, 0.2, 0.2, 0.2, 0.2), Fig. 5 displays simulation results using

FCFS sequencing with the bounds obtained by the nonlinear model for different values of N . The
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Product Routing Processing Times
1 1, 2, 4, 9, 8, 10 8.0, 6.0, 22.8, 8.0, 9.2, 4.0
2 1, 2, 4, 7, 9, 4, 6, 10 8.0, 6.0, 9.2, 12.4, 8.0, 7.6, 14.0, 4.0
3 1, 2, 7, 9, 6, 10 6.0, 4.5, 23.4, 7.2, 9.6, 3.0
4 1, 2, 3, 5, 9, 6 8.0, 6.0, 17.2, 20.4, 6.8, 26.0
5 1, 2, 4, 8, 10 8.0, 6.0, 26.4, 9.2, 4

Table 3. Routings and mean processing times for Example 2.

simulation yields mean throughputs together with their respective 90 percent confidence intervals.

For the batch means method of simulation output analysis, throughputs of 30 batches were ob-

tained after a warmup period that was three hundred times as long as each batch. Each batch

contained approximately 75 job completions. The lower bounds obtained by minimizing the NLP,

ΘS;NLP
LB (N), are labeled by their percent difference from their respective upper bounds, ΘS;NLP

UB (N).

As N becomes large, the distance between the upper and lower bounds becomes smaller than the

simulation confidence interval.

***Figure 5 Here***

The lower bound on throughput forN = 90 shown in Fig. 5 actually was obtained by averaging

corresponding values for N = 89 and N = 91. This represents the only instance in numerous

tests on many examples in which minimizing the nonlinear model appears to have resulted in a

local, not a global, optimum. However, the anomaly was detected and overcome easily by testing

for consistency with adjacent values of N .

For this example, solving the nonlinear model requires on the order of an hour using LINGO

on a 200 MHz Pentium, while solving the linear model takes from one to five minutes. These

long computation times, which we believe to result partially from subtle redundancies among con-

straints (2), (4), and (5), point to the need to use both linear and nonlinear models. An application

of the method of Section 3.5 to find Ń might proceed as follows. The ratio of lower to upper

bounds for N0 = 20 from the nonlinear model is β0 = 0.912. Since this is lower than β = 0.95,
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N WIP Mix Distance Throughput

30
NLP Min
NLP Max

Simulation

(0.215, 0.428, 0.068, 0.079, 0.210)
(0.205, 0.428, 0.079, 0.089, 0.198)
(0.207, 0.465, 0.077, 0.088, 0.163)

0.015
−
0.036

4.30
4.55
4.47

60
NLP Min
NLP Max

Simulation

(0.231, 0.462, 0.037, 0.043, 0.228)
(0.236, 0.473, 0.028, 0.032, 0.232)
(0.165, 0.550, 0.040, 0.043, 0.201)

0.014
−
0.078

4.44
4.55
4.51

90
NLP Min
NLP Max

Simulation

(0.237, 0.474, 0.025, 0.029, 0.235)
(0.242, 0.482, 0.018, 0.019, 0.239)
(0.342, 0.440, 0.030, 0.033, 0.156)

0.011
−
0.097

4.48
4.55
4.53

Table 4. Comparison of WIP mixes found by the nonlinear model with FCFS simulation results,
along with throughput in products per hour, for an equal product mix in Example 2.

we use the linear model to quickly explore bounds for N > 20. We find that increasing N from

33 to 34 reduces ΘS;LP
UB (N) − ΘS;LP

LB (N) by just 0.49 percent. Returning to the nonlinear model,

the ratio ΘS;NLP
LB (33)/ΘS;NLP

UB (33) is 0.953. Of course, further research is required to establish a

general relationship between the differences between bounds from the linear model and the ratios

of bounds from the nonlinear model.

4.2.2 WIP Mix

As in Example 1, the nonlinear model provides good estimates of the mix of work in process. Table

4 shows the WIP mix vectors predicted by minimizing and maximizing the nonlinear model com-

pared with those found in the FCFS simulation for different values ofN . The fourth column shows

the Euclidean distances of the WIP mix vectors from the nonlinear maximum, normalized so that

the maximum possible distance equals one. Also, as the distance between the NLP-maximizing

WIP mixes p (30) and p (60) is 0.100 while that between p (60) and p (90) is only 0.021, the WIP

mix is fairly stable as N increases.

The WIP mix identified by maximizing the nonlinear model is the mix of work in the sys-

tem that maximizes throughput, balanced by the single chain release policy to match the desired

product mix. This WIP mix should be used in the multiple chain CONWIP control policy. To

illustrate, consider the optimal WIP mix p(30) = (0.205, 0.428, 0.079, 0.089, 0.198) that is sug-
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Type NLP Max
6, 13, 2, 3, 6

Sim. Mix
6, 14, 2, 3, 5

From 4 to 1
7, 13, 2, 2, 6

From 4 to 2
6, 14, 2, 2, 6

From 4 to 3
6, 13, 3, 2, 6

From 4 to 5
6, 13, 2, 2, 7

Equal
6, 6, 6, 6, 6

1 0.91 (0.028) 0.90 (0.028) 0.97 (0.020) 0.83 (0.026) 0.94 (0.026) 0.82 (0.020) 1.03 (0.028)
2 0.94 (0.029) 1.00 (0.042) 0.90 (0.028) 0.94 (0.030) 0.97 (0.038) 0.87 (0.024) 0.43 (0.017)
3 0.93 (0.042) 0.95 (0.038) 1.12 (0.027) 1.16 (0.033) 1.47 (0.042) 1.14 (0.033) 1.55 (0.061)
4 1.14 (0.033) 1.15 (0.034) 0.96 (0.017) 0.98 (0.027) 0.92 (0.024) 0.97 (0.027) 1.50 (0.041)
5 0.95 (0.027) 0.79 (0.024) 0.86 (0.017) 0.85 (0.026) 0.97 (0.029) 0.97 (0.026) 1.09 (0.033)

Total 4.86 (0.084) 4.79 (0.096) 4.81 (0.063) 4.77 (0.063) 5.27 (0.069) 4.75 (0.067) 5.61 (0.111)
kγ − αk 0.028 0.040 0.030 0.039 0.062 0.036 0.114

Table 5. Mean throughput in products per hour (with standard errors) found by simulation using a
multiple chain control policy for different allocations of 30 kanbans.

gested by maximizing the NLP with N = 30. The system population limits for individual

products in the multiple chain policy are obtained by multiplying the WIP mix vector by N ,

i.e., 30(0.205, 0.428, 0.079, 0.089, 0.198) = (6, 13, 2, 3, 6). Likewise the product population limit

vector suggested by the single chain simulation is (6, 14, 2, 3, 5). Recall that these limits were

obtained with the requirement of an equal product mix of 20% for each product.

Table 5 compares means and standard errors of throughput from simulation under the multi-

ple chain control policy for these WIP limit vectors as well as others. Note that the mean total

throughput for each vector of WIP limits is higher than that found in the single chain simulation

(4.47 per hour as reported in Table 4). The normalized Euclidean distances of the throughput

mix vectors from the ideal product mix of (0.2, 0.2, 0.2, 0.2, 0.2) are shown in the last row. Since

product type 4 has the highest throughput, the columns labeled “From 4 to x” explore the effect of

reallocating one of its kanbans to each other product type. In each case, this reallocation increases

the distance from the desired product mix. Finally, the last column shows that naively equating the

WIP mix with the desired product mix yields a very inequitable distribution of throughput across

the products.

5 Conclusions

Determining individual WIP limits for separate products in a job shop environment is a difficult
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stochastic combinatorial problem. We modeled the job shop as a closed queuing network and

introduced a systematic procedure to set WIP levels for a given product mix by identifying a

total WIP guaranteed to achieve some proportion of the maximum possible throughput and a WIP

mix that matches throughput proportions to the product mix. The procedure involves a novel

application of mathematical programs that bound throughput.

When individual WIP limits derived from the WIP total and mix are applied in simulation,

the product throughputs compare favorably with those obtained from alternative allocations of the

same total WIP. In addition, our simulation experiments provided some insight into the impact of

sequencing rules on WIP mix and throughput mix. When the system is operated as a single chain

queuing network, with throughput mix matching the product mix, sequencing has a relatively small

impact on total throughput but it affects the WIP mix significantly.

The results of this work indicate the need for further analytical modeling to understand pull

and hybrid push-pull control policies in complex multi-product environments. Our pragmatic ap-

plication of single-chain analysis for multiple-chain operation highlights an open question: when

producing multiple products with limited WIP, should the policy maintain a single WIP level for

all products or individual levels for each product? Most of the existing studies rely on simulation

and the results appear to depend heavily on the system configuration and differences in product

routings. These models, along with improved search procedures for finding WIP levels, await

the development of more general and accurate performance evaluation models for kanban-type

systems.
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Figure Captions 

 

Figure 1.  The proposed two stage procedure for planning WIP total and mix using a single chain 

model and applying the results in a multiple chain operational control. 

 

Figure 2.  Throughput predicted by the model and observed in simulation for Example 1 with α 

= (0.3, 0.7) and µ = 3.   

 

Figure 3.  Proportion of type 1 jobs predicted by maximizing the linear and nonlinear models and 

observed in simulation, for Example 1 with α = (0.7, 0.3) and µ = 2.   

 

Figure 4.  Ranges of the proportion of type 1 parts that allow maximum throughput in the linear 

model to stay the same under different sequencing rules for Example 1 with α = (0.7, 0.3), µ = 2 

and N = 30. 

 

Figure 5.  NLP throughput bounds compared with simulation confidence intervals for Example 2 

with an equal product mix. 
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