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CHAPTER I. INTRODUCTION

Re D. Anderson(2, 3) has recently developed some very powerful methods
in the topology of the Hilbert cube which, among other things, characterize
sets of topological infinite deficiency, and give stable extensions of
homeomorphisms between certain closed subsets. He is able to apply these
methods to separable infinite-dimensional Fréchet spaces by considering
the natural imbedding of s, ths countabls infinits product of lines, in
I and by using the topological equivalence of all separable infinite-
dimensional Fréchet spaces. This latter result follows from the combined
work of Bessaga and Pelczynski, Kadec, and Anderson (see (1)).

Klee(10, 11) has previously established numerous topological
properties of Hilbert space l& through linear space methods, involving
category, convexity, and deficiency. His results include the homogeneity
of Hilbert space with respect to compact sets, the homogeneity of any
infinite-dimensional Banach space with respect to finite-dimensional
compact sets, and an extremely useful homeomorphism extension lemma for
Fré&chet spaces.

The methods presented here are of the linear space type, although
Anderson's results figure prominently in Chapter III and part of Chapter V.
The main topics of interest are the various deficiency conditions (finite,
infinite, homotopy) and homogeneity, and isotopy and stability. Certain
other results and applications appear in Chapter V. Various conditions
on the spaces, such as Hausdorff, metrizability, local convexity, norm-
ability, imer-product, completeness, and separability, are used as needed.

In Chapter II it is shown that closed & -compact (compact) subsets

of infinite-dimensional Banach (Fréchet) spaces have finite deficiency



(which is defined as a topological property). Methods due to Klee and
Cernavski are instrumental in the proof. Klee's extension lemma is used
to obtain a homogeneity result for certain ¢losed finite-dimensional
subsets of infinite-dimensional Banach spaces, and at the same time the
finite stability of such spaces is established.

The relationship of various deficiency conditions and their
connection with homogeneity, in separable infinite-dimensional Fréchet
spaces, is considered in Chapter III. In particular, it is shown that,
under rather general conditions, topological infinite deficiency implies
finite deficiency implies homotopy deficiency implies Property Z.
Anderson's fundamental theorems, derived primarily by consideration of
homeomorphisms in the Hilbert cube, establish the equivalence of Property
Z and topological infinite deficiency, and homogeneity with respect to
sets having Property Z, in separable infinite-dimensional Fréchet spaces.
These have some rather interesting consequences: the equivalence of finite
and topological infinite deficiency, the preservation of deficiency under
closed countable unions, homogeneity with respect to closed o -compact
gets, the local character of homogeneity and deficiency.

Methods of Whittaker(l5) are used in Chapter IV to show that, in
a locally convex Hausdorff linear space, every stable homeomorphism is
the préduct of two homeomorphisms each somewhere the identity. By
Alexander's technique, applied to any topological linear space, every
stable homeomorphism is isotopic to the identity. An application is
made of Wong's isotopy methods(16) for infinite product spaces to
certain separable infinite-dimensional inner-product spaces, and a

condition for stability of homeomorphisms is given.



In Chapter V, Anderson's results are applied to show that, in
separable infinite-dimensional Fréchet spaces, complements of deficient
subsets are homeomorphic to the whole space. Certain results of Klee
for infinite-dimensional normed linear spaces are noted, and an appli-
cation is made to complements of countable locally compact sets. A
non-homeomorphism theorem, dependent on the connec#edness prepertises of
complements of < -compact sets in separable metric spaces, is given.
The application is to the topological type represented by separable

infinite~dimensional Fréchet space.



CHAPTER II. FINITE DEFICIENCY IN BANACH SPACES

The following lemmas will be useful at several points. For defi-
nitions and terminology involved, see Taylor(ll).

Lemma 2.1 Let M be a finite-dimensional subspace of a locally
convex Hausdorff linear space, and let P be a closed subspace with MNP
= @ Then M has a closed complement N with NDOP.

Proof: By induction on dim M. Suppose dim M = 1. Let f be a
continuous linear functional on M + F, with f"(O) = P. By local convexity
f may be extended to a continuous linear functional F on the wholé space.
The kernel of F is a closed hyperplane N, complementary to M. Now suppose
dim M = k+l, and let M= M, ¢ M., dim M, = 1. Then M,N(M, + P) = §, and
by the inductive hypothesis M, has a closed complement N, DM, + P. By the
above argument there exists a decomposition N, = M, ¢ N into closed sub-
spaces with NOP, and M o N i3 the desired decomposition.

Lemma 2.2. Let X = M ¢ N be a decomposition of a topological linear
space, with M finite-dimensional and N closed. Then the projections onto
M and N are continuous.

Proof: Since continuity of one projection implies continuity of the
other (with the appropriate inclusion maps, the sum of the projections is
the identity), it suffices to prove continuity of the projection onto M.
The quotient map Q¢ X—>X/N is continuous, and since N is closed, X/N is
Hausdorff. Let F: X/N—>M be the linear isomorphism defined by F(m + N)
= m, me M Since M is finite-dimensional, X/N is topologically isomorphic
to some Euclidean space R™, and M is topologically isomorphic to a product
T x G, where T has the trivial topology and G is Hausdorff, hence

Euclidean (9, p- L1). Then obviously the topology of R™ refines that of



T x G, and F: X/N—>M is continuous. Therefore FQ: X—>M, the projection
onto M, is continuous.

It is a consequence of the closed graph theorem that, for any
decomposition of a complete metric linear space into closed subspaces,
the projections are continuous (1, p. 242).

Iemma 2.3 In a locally convex metric linear space X the convex hull
of a prscompact set S is precompact:

Proof: Let {x| = d(x, ©), where d is an invariant metr-ic—-i.‘or X. Ist
£>0 be given. Choose §>0 such that the canvex hull of Ng(@) is contained
in Ngy(@). Choose A = {x,5e++, X C X such that SCB = Ng(A). Then the
convex hull BoC Ny, (A;)e Since Ac is compact (14, pe 134), this implies a
finite number of e-neighborhoods cover B,, hence S, Thus S, is precompact.

The following fundamental lemma is essentially due to Klee(10).

Lemma 2.4. Let A be a & -precompact subset of an infinite-dimensional
Fréchet space X Then there is a line L in X, no translate of which
intersects Ay more than once.

Proof: We may suppose A = C?Ai, A CA;,,» each A, precompact. By
the preceding lemma, A, = Q(At)c is o -precompact. By completeness, the
closure of a precompact set in X is compact, hence A,, and therefore A, - A,
is contained in a er -compact set B. Every compact set in X is nowhere
dense, since otherwise X would be locally compact and therefore finite-
dimensional (1L, p- 129). For some ue X\@, the line L = {tu: --o<t<°°}
intersects A, - A, only at 8, for if not, UnB> Un(Ag = Ac) = X, and X
would be first category. Thus no translate‘ of L can intersect A, more
than once.

Definition. Let A be a closed subset of an infinite-dimensional



topological linear space X If for each positive integer m, there is a
decomposition X = M o N with dim M = m and N closed, and a homeomorphism

h of X onto itself such that hACN, then A has finite deficiency in X.

In (10, 11), Klee shows that compact sets in infinite-dimensional
Banach spaces have finite deficiency.

Theorem 2.5. Let A be a closed o-compact (compact) subset of an
infinite-dimensional Banach (Fréchet) space X. Then A has finite
deficiency in X.

Proof: Let L = {tu! -so<t<eo} be the line (through the origin)
of Lerma 2.4. Let H be a closed complementary hyperplane (use Lemma 2.1)-
Let T: X->H be the (continuous) projection onto H. Then T/A. is 1-1.
If A is compact, T/A is a homeomorphism onto TA, which is closed in H.
The homeomorphism ('E'/A)-' defines a map m¢ TA—>(-=2, =), which can be
extended to a map M: H~>(-o0; o). Then h + tu =>h + (t = M(h))u defines
a homeomorphism of X, extending T/A- By a simple inductive argument, A
has finite deficiency.

Suppose X is a Banach space; assume juj = 1. The geometric flavor
of the following can be imputed to Cernavski(5), who uses similar
constructions in Euclidean space. For he H\O, define the 'semicircle'
Sp = {tiblu + rh: £+ r2 =1, r30}. Let § = {8y he H\G}. Each
point of X\ L lies on exactly one semicircle in S . Assuming O¢ A, we
have AC(X\L)U@, and no semicircle intersects A more than once{otherwise
T/A, is not 1-1). For ye X\L, y = thhllu + rh is the canonical repre-
sentation of y as a point on the appropriate semicircle Sy. Define T =
{ye X\L: 1)¢V2/2J Ue. Note that [t]& V2/2 iff [t|&r iff r »¥2/2.

Lemma 2.6. There is a homeomorphism F of X such that FACT, and



for ye FANG, t =20 (r—1) as lyll—> O |

Proof: Since 4 is closed and L\© does not intersect A, there is
a map \[: (0,9°)—> (0, 1) such that {ye X\IL: r< \L/(uhu)}nA = g. Iet
€ : [0,°0)—>[12/2, 1] be a map such that £(0) =1, §(a)<1 for a>0.
Consider the collection {Q;, Qq¢ he H\O} of 'quartercircles' obtained
by bisecting the semicircles {S,§ at h. Define F/LUH = id; on each Q
(Q;;) s F maps the point y with ry = W(lhl) onto the point z with r, =
{(llh“), and is extended 'linearly' (with respect to r) on the entire
quartercircle Q; (Qﬁ). Then F is the desired homeomorphism.

Thus we may assume, in proving the theorem, that ACT, and for ye
ANG, t=>0as [yl—> 0 Let § denote the subfamily of § consisting of
those semicircles which intersect A. Define a bijection G,: 9, S; ve—
US:UG as follows: G,(6) = 6, and for Spe SA, G, /Sy, is fixed on the end-
points (in L), takes SpNA onto h = 5,NH, and is extended linearly on Sp.

Lemma 2.7. GA is a homeomorphism, and GAA is closed.

Proof: GObviously G, /A is continuous. For the continuity of both
G, and G;’ it suffices to show continuity of G,'/G,A» Suppose G.’/G,A
is not continuous. Then there exists a sequence GA(an)ﬁGA(a) s 8ps &€
A, such that no subsequence of ap converges to a. With a, = tnﬂh.nﬂu +
rphys 8 = tihju + rh, we have GA(an) = h,—>h = G,(a). Since there is
some subsequence a,: for which t,, and r,, converge, we have a,, ~—>a'e A,
hence G,(ay/ )—>G,(a'), G (a) = GA(a'), a=a'y and ays —>a, contrary to
hypothesis.

To see that G,A is closed, let G,(ap)—>he H. Then, as before, hy
—>h, there is some subsequence a such that t,, and T,s converge, thus

anpr —>a'e A G, (ap/)—>G,(a') = he G,A, and GA is closed.



The homeomorphism G;’/GAA defines a map m: GAA~‘>[-V§72, 1572],
where m(Gh(tNhHu + rh)) = t, m(6) = 0. Since G,A is closed, there is
an extension of m to M H—>(-12/2, 1572], and this extension may be
used in the obvious manner to define a homeomorphism G¢ X—>X, extending
qq- Again, a simple inductive argument completes the proof of the theorem.

The following homeomorphism extension lemma of Klee(1ll) is based
on Dugundji's theorem that locally convex Hausdorff linear spaces are
absolute extensors for the class of metrizable spaces.

Lemma 2.8. Let X = L, ¢ L, be a decomposition of a Fréchet space
into closed subspaces- Let A be a closed subset of L, and let h be a
homeomorphism of A onto a closed subset of L, Then there is a #-isotopy
7J of X onto X such that 7,= id and 7,'/A = hs (An isotopy {Ht} on X
is called a *-isotopy if its level map on k x I, defined by (x, t)—>
(Hy(x), t), is a homeomorphism, i.e., if the family {H{”} of inverse
homeomorphisms is also an isotopy).

Proof: By Dugundji's theorem, there are maps a of L, into L, and
B of L, into L, such that o/A = h and ﬁ/hA = h By completeness, the
projections of X onto L, and L, are continuous. For ye X and te (o, 1},
let {ty =y + t(a,) and Ny =y - t(Pyy )y where y = y, + ¥, with yz¢ L;.
Then 2 and N are #*-isotopies of X onto X. Now let :7t - E 2¢ for te
(0, 2] and T, = nzt_,il for te[/, 1] Then if ye &, Jy = 7,&5, =
7, + @)=y, +a -, =y -Hhy +a, =ay, so J/A=a/a
= h, and Jis the desired #-isotopy.

The proof of the following proposition is due to D. E. Sanderson.

Proposition 2.9. Every finite-dimensional locally compact separable

metric space A can be imbedded as a closed subset of a Euclidean space.



Proof: The one-point compactification & is metrizable (7, p. 75)
and finite-dimensional. Therefore A can be imbedded as a (closed) subset
of S" for some n, and deleting the compactifying point «w, we have A = T\w
imbedded as a closed subset of S"\w~~R™

Definition (Brown-Gluck(l)). A homeomorphism h on a space X is stable
if h can be written as a composition of finitely many homeomorphisms on X
each of which is the identity on some nonempty open set in X.

The stabls homsomorphisms form a normal subgroup of the group of all
homeomorphisms of X From the proof of (2.5) it is clear that the nomeo-
morphism constructed there can be chosen to be stable.

Klee(1l) proves the following theorem (stressing isotopy rather than
stability), for finite-dimensional compact sets in Banach spaces.

Theorem 2.10. let X be an infinite-dimensional Banach (Fréchet)
space, and let h be a homeomorphism between closed finite-dimensional
separable locally compact (compact) subsets of X. Then h can be extended
to a stable homeomorphism H of X.

Proof: Let ht A—>h(A)s Observe that AUh(A) satisfies the hypo-
theses of Theorem 2.5. Thus there exists a decomposition X = T ¢ E ¢ N,
where dim T = 1, E is a finite-~-dimensional subspace containing a closed
copy A' of A, and N is closed; and a homeomorphism F of X such that F(AU
h(A))CN. Applying (2.8) twice on E ¢ N (first extending any homsomorphism
of F(A) onto A', then extending the appropriate homeomorphism of A' onto
Fh(A)), we obtain a #=isotopy “Jof E © N, with 7, = id and such that

F/'7,F/AL = h. Define Gs X—>X as follows:
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t+ Z(e +n), 0¢t4l
G(t+e+n)s= t + (e +n), t40
t+e+n ,t3l.
Then H = F”GF is the desired stable extension of h.

Definition. A topological linear space X is finitely stable if,

for every homeomorphism f of X and every finite-dimensional subspace N,
there is a stable homeomorphism g of X with £/N = g/N.
Corollary 2.11. Every infinite-dimensional Banach space is finitely

stable.
Let {u,, uz,---} be a complete orthonormal set in the Hilbert space
2+ Let W=sp {u,, u,,---}, and for each n, let R® = sp {u,,ee+5 unje
From a consideration of Cernavski's methods(5) for finite-dimensional
spaces, whereby he shows that every homeomorphism of R® is k-stable (agrees
with a stable homeomorphism on a k-dim subspace) for k< 2/3 n-1, it seems
likely that the following conjecture and its corollary are true.

Conjecture 212« Let MDW be a linear subspace of Az, and let h

be a homeomorphism of Me Then, for each n, h agrees with a stable

homeomorphism of M on RM.

Corollary 2.13. Every separable infinite-dimensional inner-product

space is finitely stable.

Proof: Let P be such a space, and let A be a finite-dimensional
subspace, with basis {x, s+« x,l}. Let [X,seces Xpsee§ be a countable
dense subset of P. Let y, = x,. Let yg,, be the first X; which is not
in sp {y, g0y y,l} « Then the linearly independent sequence { y*} generates
the same linear subspace, hence the same closed lirear subspace P, as the

sequence {xﬁ} o Applying the Gram-Schmidt orthogonalization process to
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{yﬁ » we obtain an orthonormal set {v,, v, ,..:j generating the closed
linear subspace Py with sp {V, seee, Va} = 8p {¥, seces Yo} = 8p {X, 5000, Xu)
= Ao Since P is congruent to a dense linear subspace of n-ﬂg, we may

suppose P = MOW, v; = u; for each 1, and A = R%. The corollary follows.
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CHAPTER III. DEFICIENCY AND HOMOGENEITY IN SEPARABLE FRECHET SPACES

Notation. E"* is an (n+l)-cell, with BA(E™*) = s".

Lemma 3.1, Let X = L, ¢ L, be a decomposition of a metric linear
space with L, closed and dim L, = n + 2, and let A be a closed subset of
L. Let £: E"'— X with £{S")NA = @, and let €>0 be given. Then
there exists g: E""'—> X with £/5" = g/5", d(f, g)< e, and g(E")NA = 4.

Proof: Let 7T; be the projection onto L;, and consider f = (£, , fz),
where f; = T;f, i = 1, 2. We construct g = (g,, g;) with g, = £, , g,/8" =
£, /8" d(f;5 83)< & and such that g(E™)N4 = g Let |l li be a norm on Ly,
generating the same topology as the invariant metric d. Choose ¢,, 6,>0
such that d(y, €)< 5, = |yl < ¢, =d(y, @) < e+ Since £(S*) is compact,
there exists 04646, with S"NEf7(Ng(a)) = g Thus S'/\f,-'(N‘,z(A))f\f;'(N%
(0)) =g Set C= f,'(ﬂsm(A))C E", and consider the restriction £,/C: C
—L,» If 6 £,(C); take g5 = f,+ Otherwise, since all values of f;/C are
unstable, © is unstable, and for every neighborhood U of @ there exists a
map gy C—>L, satisfying g;(x) = £3(x) if £3(x)£ U, gi(x)e U if £,(x)e Us
and 04 g4(C) (8, pp» 75-79). Take U = Ng4(@)NLse Then gz = £2/CN\£7(Ng,
(0)), and d(f;/C, gf)< 6, hence suplf (x) - gi(xW < ¢,- Define k'(x) =
£, (x) - gj(x) for xe C, k'(x) = J0“:.’:‘301' xe E'"'\f;"(N;/a(A))f'\f;'(Ns,z(O)), and
extend to ki E™'~—> L, so that ;‘;ﬁw"k(x)" {¢e+ Let gy =f, =k Then

d(f;5 g;) <€ and g = (£, , g2) is the desired map.
Definition. A closed subset A of a metric space X is homotopically

deficient if, for each n)~l and every map f£: E""/'—> X with £(S")NA = 4,
and every e 0, there exists a map g: E™/—X with £/5" = g/s", d(f, g)

< & and g(E*')NA = g
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Proposition 3¢2. Let X be an infinite-dimensional metric linear

space, and let ACX be finitely deficient. Then A is homotopically
deficient.

Proof: Let a map f, and ¢>0, be given. ILet X =L, ¢ L, be a
decomposition, with L, closed and dim L, = n + 2, and let h be a homeo-
morphism such that h(A)C L, Consider hf: E"*—X. Since hf(E"") is
compact, n” is uniformly continuous on it, and there exists &' > 0 such
that re hP(E™'), se¢ X, d(r, s)< ¢ =a(K'(r); B'(s))<e By (3:1);
there exists hg: E"’—>X with hg/S" = hf/s", d(hg, hf)< &', and hg(E™)
NhA = g Then g is the desired map.

Proposition 3.3 Let X be a complete metric space, and let LCX

be a closed countable union of homotopically deficient sets. Then L is
homotopically deficient.

Proof: Let L = \;?A-,. Let £2 B™—>X with £(S")NL = @, and let #>0
be given. Take O<e,& M/2. There exists g,: E"*'X wilh g, /s" = £/5",
4(f, g,)< ¢,> and g, (E™)NA, = g- Since g, (E””) is compact, there exists
6, 0 such that d(g, (E™*, ;’1,) »6,. Assume g, jee+, g; have been defined,
and 6, ye++, & have been chosen. Take 0< g, <min {5,/2‘.‘, 5,/2“)---,6;/2,
.U/ZN}' There exists g, E""'—X with g, /S" = g;/S"=...= £/5", d(g;,
Biy) < &iyy» and g, (E™)NA;,, = @ Choose 6;,, >0 so that d(g,,(E™), Az,)>
6ivj» The sequence {g;} thus defined converges uniformly to a continuous
map g2 E"'—>X, and since ¢;< U/Z': for each i, we have d(f, g)< /-
Coviously f/S" = g/S", and by construction g(E"")NA; = @ for each i.

Definition (Anderson(3)). A closed subset A of X has Property Z if
for each nonempty homotopically trivial open set U in X, UNA is nonempty

homotopically trivial.
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If X is a metric space it is clear that every homotopically deficient
‘subset has Property 2.
Definitions. A closed subset of & topological linear spacs has

(strong) infinite deficiency if it is contained in a closed subspace

with an infinite-dimensional (closed) complement.
A set has iopological (strong_) infinite deficiency if there is a

space homeomorphism taking it onto a set with (strong) infinite deficiency.
The following proposition ensures the relevance of infinite deficiency
for a large class of spaces.

Prcposition 3.4. Every infinite-dimensional locally convex Hausdorff

linear space admits a decomposition X = L, ¢ L, into infinite-dimensional
subspaces, with L, closed.

Frocf: A double sequence {x‘-, fl} of points and continuous linear
functionals is a biorthogonal sequence if f;x; = 6¢J~ for all i, J. There
is a simple inductive method, used by Kiee(1l3) and others, for the con-
struction of such sequences. The Hausdorff condition and local convexity
guarantee an adequate supply of continuous linear functionals. Choose
x,s {f with £, x, = 1. Suppose X, jes-, X, and f, ,..., f, have been chosen
subject to the desired conditions. Set F, =f:‘\f£(0), L, = sp{x,seee, x,l}-
Then X = F, o L . Take x,,, & F,\6, and choose f,,, such that £0(Xp,,) =
1, f,,,,(Ln) = 0. By induction we cbtain a biorthogonal sequence {x,-_, f,;} .

Now consider the infinite-dimensional subspaces M = sp {x, ) Xy ,}
and N = sp {x,, X,5e+} - Let ve N\O. Then for soms n, £3,(v) ¥ 0,
and there is some neighborhood U of v such that f,, does not vanish on U.
Since f,, (M) = 0, we have MAU = @, and HNAN = 6. Thus X = L, o L, with

L, = ¥ and L, DN.
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Proposition 3+5. Let X be a locally convex Hausdorff linear space,

and let ACX have topological infinite deficiency. Then A has finite
deficiency.

Proof: Let X = L, ¢ L, be a decomposition with L, closed, dim L, =
o0, and let h be a homeomorphism of X such that h(A)CL,. For any positive
integer n, let Lz, be an n-dimensional subspace of Ly By (2.1), there
exists a closed complementary subspace L,.,‘l of LM’ such that L,, 2L,
Then L = L,, ¢ L, ~, h{(A)ZL,, s and A has finite deficiency.

Thus in an infinite-dimensional locally convex metric linear space,
topological infinite deficiency =>finite deficiency = homotopy deficiency
=>Property 2. The following theorems and corollary of Anderson(3) give
the converse, by establishing homogeneity with respect to subsets he_:.ving
Property Z, in separable infinite-dimensional Fréchet spaces. In what
follows X denotes any such space. The Fréchet space s is the countable
infinite product of lines, I°° the similar product of closed intervals.

Theorem 3.6. Let ACs have Property Z. Then A has topological
strong infinite deficiency.

The proof proceeds by imbedding s in I™°, establishing that the
closure of A in I™ has Property Z (in I"®), and constructing a p*-
homeomorphism of I™" which takes the closure onto a set of infinite
deficiency in I (h is B if h(s)>s, B¥ if h(s) = s).

Theorem 3.7. Each homeomorphism between two subsets of X with
Property Z can be extended to a homeomorphism of X onto itself.

Proof: Let ht A—>h(A), both A and h(A) having Property Z. Since
all separable infinite-dimensional Fréchet spaces are topologically

equivalent, there is a homeomorphism k of X onto s. Since Property Z is
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topological, k(A) and kh(A) have Property Z in s, and by (3.6) they both
have topological strong infinite deficiency. Let s =1L, o L, = M, ¢ M; be
decompositions into closed infinite-dimensional subspaces for which there
exist homeomorphisms f, g of s with fk(A)CL, and gkh(A)CM,. Let rhbea
homeomorphism of s such that @(L,) = M; and Q(L,;) = M,. Then Lfk(A)C
Mze By Klee's lemma (2.8) there is a homeomorphism ¥ of s that extends
gkhk"f"ﬁ' from pfk(A) onto gkh(A). Then k"g"rg Pfk is the desired extension
of h from A onto h(A).

Corollary 3.8 Let ACX have Property 2. Then A has topological

infinite deficiency.

Proof: Let X = L, ¢ L, be a decomposition into infinite-dimensional
subspaces, with L, closed. Since L, is homeomorphic to X, it contains a
closed copy A! of A, A' has infinite deficiency and therefore Property Z,
and the homeomorphism A<>A' can be extended to a homeomorphism of X.

Obviously, Property Z implies topological strong infinite deficiency
wherever this is possible, i.e., in any separable infinite-dimensional
Fréchet space admitting a decomposition X = L, e L, into infinite-dimen-
sional subspaces, with L, and L, closeds In particular, strong infinite
deficiency is always obtainable in the Fréchet space s, and Hilbert space
£,.

Anderson's results, together with the earlier propositions, lead to
the following

Theorem 3.9. In a separable infinite-dimensional Fréchet space,
topological infinite deficiency, finite deficiency, and homotopy deficiency
are equivalent, and are preserved under closed countable unions. Further-

more, there is homogeneity with respect to deficient subsets.
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Since every compact set in an infinite-dimensional Frechet space is
finitely deficient (2.5), we have the following homogeneity result:
Corollary 3.10. Each homeomorphism between two closed o -compact

subsets of X can be extended to a space homeomorphism.

Theorem 3.9 implies that, in a separable infinite-dimensional Fréchet
space X, homogeneity and deficiency are local properties: In the following,
?Zis a class of closed subsets of X, containing all closed homeomorphs of
its members (a closed topological class).

Definitions. X is homogeneous with respect to & if each homeomorphism
f: A—B between members of |5 can be extended to a homeomorphism of X
onto itself.

X is locally homogeneous with respect to & if for each homeomorphism

f: A—B and each pe A, there is a neighborhood N(p) in A such that f£/N(p)
can be extended to a homeomorphism of X.

Clearly, X is (locally) homogeneous with respect to I iff each set
in & is (locally) deficient in X. (A closed subset A is locally deficient
if each point has a deficient neighborhood). Since a locally deficient set
is o -deficient and therefore deficient, local homogeneity with respect to

¥ implies homogeneity.
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CHAPTER IV. STABILITY AND ISOTOPY

Let X be any topological space, and H(X) the group of homeomorphisms
of X» Let e denote the identity element of H(X).

Definition (Whittaker(15)). P(X) is the set of all ge H(X)
satisfying the following condition: for each xe X, there is a finite
subset A(g,x)CX such that for each ye¢ X\ A(g,x), there exist
neighborhoods U of x and V¥ of y, and fe H(X), with f = e/U and £ = g/V-

Lemma 4.1 (whittaker). P(X) is a normal subgroup of H(X)-

Lemma 4.2. Let X be a topological linear space, and f a continuous
linear functional. Let x, ye U = £{a, b). Then there exists he H(X)
supported on U such that h(x) = y.

Proof: Immediate with the observation that the projection onto the
closed subspace £ (0) is continuous (Lemma 2.2).

Lemma L.3. Let X be a locally convex Hausdorff linear space, and
suppose ¥ ¥ x ¥ z. Then there exists a continuous linear functional f
and an interval (a, b) such that xe £(a, b) and v z}f\f"'[a, b] = @

Proof: There is a continuous linear functional f, on sp [x, Y z}
such that f,(y) # £,(x) # £,(z)s By local convexity, f, can be extended
to a continuous linear functional f on X, and the conclusion follows.

The method of proof of the feollowirc rroposition is due to Whittaker.

Proposition L.4. Let X be a locally convex Hausdorff linear space,

dim X >1. Then the normal subgroup S(X) of stable homeomorphisms of X
coincides with the subgroup P(X).

Proof: Since P(X)C S(X) always, we need only show that if fe H(X)
with f = ¢/U, for some nonempty open set U, then fe P(X). Let xe¢ X be
given. Take A (f,x) = {x f"(x)}- Let ye XN A(£,x). For sach ze X\
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[v> £(y)}5 let U, be a set of the form £(a, b), £ a continuous linear
functional, with ze £™(a, b) and {v, f(y)}f\f"[a, b] = @ Since X\
{vs £(y)} 1is connected, there is a chain U,,..., U, of such open sets
between x and some ue U. Put A = U,U...UT,. Then AN{y, f(y)} = f.
For 14£1i4n, let h‘-:H(X), supported on U;, be such that h(x) = h,...h,(x)
=u Set V=h"(U) and W= (XNA)NA(XNE{4))s Then V and W are
neighborhoods of x and ¥y, respectively. We have W'th = ¢/V, and h’th
= £f/W. Thus h'fh 'bridges' e and £, and f& P(X).

The restriction dim X >1 is necessary, since P(R') = {e}, while the
stable homeomorphisms of R' are the order-preserving homeomorphisms.
However, even for R’, we have the following property of stable homeo-

morphisms, given in the finite-dimensional case by Brown-Gluck(l).

Corollary L.5. Every stable homeomorphism of a locally convex

Hausdorff linear space is the product of two homeomorphisms each somewhere

the identity.

Proposition Lh.6. On a topological linear space X, every stable

homeomorphism is *~isotopic to the identity.

Proof: Let he H(X) with h = e/U. Let fe H(X) be a translation
taking © into U, and let £(U) = V. Then £”hf = ¢/V. Define G¢ X x I
—>X as followss G(x, t) = lef™hf(tx) if t # 0, G(x, 0) = x. Then {G4}
is a #=isotopy between e and f"hf, and {fth" } is a #=isotopy between
e and he The result follows, since the set I(X) of homeomorphisms #-
isotopic to the identity is a (normal) subgrcup.

Wong has shown (16) that for infinite product spaces X~ = ﬁ'x with
X satisfying a certain Property @ » every homeomorphism on X~ is isotopic

to the identity. X satisfies Property @ if the homeomorphism g on X~
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defined by g(x,; X35 X35 Xyseee) = (X35 X,5 X3, X,,e00) is isotopic to

the identity. He then shows that both I = [0, 1] and I° = (0, 1) satisfy
Property ® . Thus on the Hilbert cube I™ and on the Frechet space s =
(1°)"° (which is homeomorphic to 1; by (1)), all homeomorphisms are
isotopic to the identity. Using results proved in (2), Wong establishes,
for s, the stronger result that every homeomorphism is stable. Anderson(3)
shows that every homeomorphism on I®® is stable.

With merely an added emphasis on the norm, Wong's isotopy methods
can be applied quite naturally to certain separable infinite-dimensional
inner-product spaces. The relevant fact is that convergence in Hilbert
space is convergence of coordinates and of norms. As in Chapter II, let
WCMC X,, where W is the span sp {u, s u,,--} of a complete orthonormal
set in L;, and M is a linear subspace--any separable infinite-dimensional
inner-product space is congruent to a space of this type. We have éx‘-u‘;
£ jz iff §x;2<°0; denote £x;u; bY (X,5 Xgseee)e Let @2 M~>M denote
the identity map, and define g M—>M by g(xX,, X535 X5 Xyseee) = (X35 X,
X35 Xyseee)e An isotopy {hi} is called norm-preserving if ﬂht.—(m)ii =
||h,(“t (m)l for all me M and every t,, t;-

Lemma l.7. There exists a norm-preserving #-isotopy between e and g.

Proof: For each n, define ¢, on 8p {Ua; Un,} by @Wa(xs ¥) = (-x5 =¥),
and let {M,t}t efn-ifn, n/(mdbe a norm-preserving #-isotopy betwe~en e and
ron sp {u,s u,.,,}- Let Con, g}tbe the natural extensions to M (all
other coordinates are fixed). Let hy = &,...@, &, h, = e. Define hyy =
\_—Bftﬁn—/’ te [(n=l)/n, n/(n+l)] . Let O(xX,5 Xzsees) = (=X, Xyseee)e
Then M x I->M, defined by H/M x t = h, . if te [(n-1)/n, n/(n*1)] and

H/¥ x 1 = O, is a norm-preserving #-isotopy between e and &« Let F be
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the rotation of sp {u,, uj} counterclockwise through /4 radians, and
let F be its natural extension to Me Then g = F'o’F, and since F is norm-
preserving, there is a norm=-preserving i=-isotopy between e and g.

Define @ on sp {u,s Uaw} by &%, ¥) = (v, x), and let ¢ be the
natural extension to M. Then there is, for each n, a norm-preserving
#=-isotopy {(Ou,t}te[(n-/)/n, njn+)] ~ between e and &, fixed on the first
(n=1) coordinates.

Lemma L.8. Let P, P& M with B —>P, and let {f;} be a sequence of
functions with each f; = (A for some te [(n-1)/n, n/(n#l)] , such that
n—>oc(t—>1) as i—>oo. Then f; (P;)—>P.

Proof: Convergence of coordinates is obvious. Since each f; is
norm-preserving, there is convergence of norms.

Definition. M is shift-complete with respect to {u, ) u,,...} ir

it satisfies the following condition? éx;u;e M iff éx‘-uz,, € M

W and X;, among other subspaces, are shift-complete. Hereafter, we
assume that M is shift-complete. For any ae R and any positive integer n,
define maps a®” and TV, of M into itself by 2% (X, 5 Xzseee) = (X, 0005 Xpys
8y Xpyeee) and ﬁ“(x,, Xzseee) = (X, 9000 Xpoyy Xpppeee)e -

Lemma 4.9. Let Py P; ¢ M, a,&€ Ry, with B; —>P and a; —0, and suppose
n (=n;)—>oc as i—>oo. Then Tiy(P:)—>P and a,*(P;)—>P.

Proof: Convergence of coordinates and of norms is easily verified.

Let TT,¢ M—R denote the n** projection, and let ht M—>M be a
homeomorphism. Define ’ﬁ:& M—>M by ’ﬁ;(x) = (TT(x) )whﬁ‘(x)« For each
n, 'ﬁ; is a homeomorphism of M leaving the n** coordinate fixed.

Lerma L4.10. Let P, F: e M with P;: —P, and suppose n (=n;)—>ec as

i—>eo. Then h,(P;)—>h(P).
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Proof: We have 7(P;)—>P, and hT% (P:)—>h(P). Since TTu(P )—>0,
(Th(P:))™ b T (B2)=>(P)-

Lemma L.11. T, is *.isotopic to h.

Proof: Define h, = @b, Gy for te ((n-1)/n, n/(n+1)] . Note
that {h.‘,t} is a #=isotopy between ?x:. and Tf,.,,- Define H: M x I—M by
HMx t = hyp, H/Mx 1 = h. Suppose (P, t:) —>(P, 1), t; <1 for all i.

We have H(P:s t;) = hyg,(P:) = @ehe GhelP:)e Then (ae, (P:)—>P by
(4+8)5 B @y, (B )—>(P) by (4+10), and h,efin Dy, (B )—>h(P) = H(P, 1)
Thus H is continuous, and { Ht} is an isotopy. Similarly, {H{;'} is an
isotopy, therefore { H.h} is a #-isotopy.

Lemma 4.12. If h(®) = 9, then h is #~isotopic to e.

Proof: 'fi; is the natural extension of a homeomorphism h, on the
closed hyperplane 77,'"(0)- We can repeat the same argument on 73-'( 0) and
show that there exists a #-isotopy, fixed on the first coordinate, between
’ﬁ’, and a homeomorphism g, with the property that g, is the natural extensien
of a homeomorphism h; on T(0)NT;(0). Tterating this process, we can
define a function Ht M x I—>M such that H/Mx 1 = e, H/Mx 0 = h, H/M x /&
=", , etc. Let (B, t;)—>(P, 1), t; <1 for all i. We need to show
H(E, t;)—>P. Certainly we have convergence of coordinates. Let ¢>0
be given. Evidently H(P;, t;)|> kPl - € for i sufficiently large. Since
h(0) = O, there exists 0< 6<e/2 such that fix||< 6=>[lh(x)} < &/2. Then,
for any n, |xj< 6=>(h,(x)| <6 + ¢/2. Thus, since n,e 18 norm-preserving,
%l & 8=>|h,(x) < & + £/2. Then the construction of H implies that
NH(P,, t; #< §H + ¢ for i sufficiently large. Thus fJH(P;, t; ¥ —> IIPl,

H is continuous, and { Ht} is an isotopy. The same type of argument applies

to {HE'} » and therefore {H.b} is a #-isotopy.
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Theorem L4+13. Every homeomorphism on M is #-isotopic to the identity.

Proof: Every homeomorphism of a normed linear space is the product
of a stable homeomorphism and one fixed at the origin. Since every stable
homeomorphism is #-isotopic to the identity (L.6), the theorem follows.

The following proposition resembles a lemma of Anderson (3, Lemma 3.1)
for homeomorphisms on the Hilbert cube.

Proposition L.1li- Let f be a homeomorphism on M, and H a closed

hyperplane such that f(H) = H. Then f is stable.

Proof: Klee has shown (see Chapter V) that for any closed hyperplane
in an infinite-dimensional normed linear space, there is a space homeo-
morphism taking the hyperplane onto the unit sphers. Thus any two closed
hyperplanes in M are equivalently imbedded, and f is the conjugate of a
homeomorphism g such that g(77°(0)) = 7 (0). By normality, we may assume
that £(770)) = 77(0). Let {f4}.,ctco be a *-isotopy (on 770)) between
e and £/1,’(0)s By connectedness, either f( T/,"t0,°°)) = 77710, =) or
£(77(0y,22)) = 77"/(~=e, 0)s Suppose the former. Define F: M—>M as follows:

£(X,s Xzse0e) if x, 20

F(x,5 X350e0) = (x,, fx’(xz,u-)) if <1¢x,40

(x,5 Xzs5000) if x, & =1-
Then F is a homeomorphism which agrees with e and £ on nonempty open sefs,
and £ is stable. If £(77,(0,09)) = 77;"(-00, 0), we make the obvious modi-
fications in the definition of F, and the result follows, provided the
homeomorphism < defined by & (X,, Xzseee) = (=X, 5 Xzsees) is stable. But
this is evident by the first part, considering the projection 77; instead
of T, «

From the proof of (4elly) it is clear that the following proposition
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holds for any infinite-dimensional norme’. Llinear space X for which every
homeomorphism on the unit sphere S is weakl; isotopic to the identity.
(H: Sx I->5 x I is a weak isotopy if it is a homeomorphism and H(S x 0)
=S5x0, H{Sx1) = Sx 1) In particular, it holds for M, since M is
homeomorphic to its closed hyperplanes and unit sphere, and we may apply
(4-13)-

Proposition L«15. Let f be a homeomorphism of X such that £(S) =

g(S) for some stable homeomorphism g. Then f is stable.
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CHAPTER V. APPLICATIONS

By pushing countable collections of weakly thin subsets of I°° to
the pseudo-boundary I°°~~\°I"° through B-homeomorphisms, Anderson(2) obtains
the following results for the space °I*°(= s):

Theorem 5.1. Let {thm be a countable collection of closed sets
in ®I"® such that for each i, the projections of K; onto infinitely many
coordinate intervals are nondense. Then *I™\\ HOK; is homeomorphic to
012,

Proof: The closure of each K; in I™ 1is weakly thin.

Corollary 5.2. For any o -compact subset K of °I, °I™\K is

OIQ.

homeomorphic to
Theorem 5.1, for the case of a single closed subset, implies the
following
Proposition 5.3. Let X be a separable infinite-dimensional Fréchet

space, and let ACX be deficient. Then X\A~X.

Proof: Let h: X—>°I°° be a homeomorphism. Then h(A) has Property Z
and has topological strong infinite deficiency in °I™°(3.6). Let °I* =
°Ix x °Iys s where o and o' are complementary infinite subsets of positive
integers. There is a homeomorphism g of “I°® such that gh(4) C°I. x ¢,
ce °Le -« By (5.1), I\ gh(a) ~°1".

In (10), Klee established the following

Theorem 5.4 Let Y be a compact set in the interior of the unit cell
U of a nonreflexive normed linear space X. Then there is a homeomorphism
of X onto X\Y, supported on U.

The fundamental tool, due to Smulian, is the equivalence of nonre-

flexivity with the existence of a decreasing sequence of nonempty bounded
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closed convex sets with empty intersection. Klee observes the theorem is
applicable to any space which admits a unit cell, unit sphere-preserving
homeomorphism with a nonreflexive normed linear space. In particular, it
applies to any infinite-dimensional LP space, hence to any infinite-
dimensional Hilbert space, using Mazur's homeomorphism between the nonre-
flexive space L' and LP.

In a later paper (12), Klee produced an alternative tool, for arbitrary
infinite-dimensional normed linear spaces: every such space contains a
decreasing sequence of nonempty linearly bounded closed convex sets with
empty intersection. (A set is linearly bounded if its intersection with
each line is bounded). With this, and evidently using the fact that, in
a normed linear space, a closed convex body which is linearly bounded can
be taken onto the unit cell, and its boundary onto the unit sphere, through
a (stable) space homeomorphism, he is able to show that any infinite-
dimensional normed linear space can lose a compact set without changing
its topological character. Moreover, the full statement of Theorem 5.l
remains valid ﬁhen Y is a single point, and thus every infinite-~dimensional
normed linear space can be !'inverted' across its unit sphere, i.e., there
is a homeomorphism which is the identity on the unit sphere and takes the
exterior of the unit cell onto the interior. It follows that every closed
hyperplane can be thrown onto the unit sphere by a stable space homeo-
morphism, and there is a stable space homeomorphism taking the boundary
of the unit cell onto itself, and the exterior onto the interior.

From Theorem 5.l there can be deduced a similar result for countable
locally compact sets:

Proposition 5.5. Let X be homeomorphic to a nonreflexive normed
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linear space, and let ACUCX, where A is countable locally compact and
U is open. Then there is a homeomorphism of X onto X\ 4, supported on U.
Proof: Since the property is topological, we may assume X is a
nonreflexive normed linear space. Let A = {a;}. Chooss a (closed) ball
B, about a, , such that B,CU, B,/\A is compact, diam B,< 1, and Bd(B, )NA
=g If a,¢ B, , let B, = B, Otherwise, choose a ball B; about a,, such
that B,CU, B,NA is compact, diam B, <1/2, Bd(B;)NA = @, and B,NAB; = &
Continuing in this manner, we obtain a sequence {B;} of balls in U. By
Klee's theorem, there exists, for each i, a homeomorphism B; ~~B;\ A which
is the identity on Bd(B; ) These define the desired homeomorphism X~
X\ A, supported on U.

Corollary 5.6. Let Z be any topological space, and let AcUcCTcXc2,

where A is countable locally compact, U is open, and X is homeomorphic to
a nonreflexive normed linear space. Then there is a homeomorphism of 2
onto 2\ A, supported on U.

Proof: By (5.5), there exists a homeomorphism of X onto X\A,
supported on U. Combined with the identity map on Z\X, this gives the
desired homeomorphism.

Proposition 5.7. There does not exist a subset FCR" such that for

every locally compact subset L of F, F\L is nonempty (n-l)-connected.
Proof: Assume such an F exists. We simll construct an antipode-~

distinguishing map £: S"—>FCR , contradicting Borsuk's antipodal theorem

(6, p. 349). Let f,: S°—>F be any map with £,(=1) ¥ £,(1). Assume

there is defined an antipode-distinguishing map f.,: S°“>F, i&n.

Define Z (x) = d(fz,(x), £;.,(=x)) for all xe S’ By compactness, there

exists €0 such that 2‘ (x)>¢ for all x. Let S = {T:'} be a triangulation



27

of S‘:", with dim T} = a, such that diam f‘--,(TJ‘-'")< ¢/2 for all Tf"« Then
xe T}", -xe T imply fy, (Tj")nf;.,('l‘i") = #. Choose pe F\f;,(5")e We
consider the cons cS“" over S , and its triangulation ¢ J induced by J »
Define £f(c) = p, £//S = f;.,+ Observe that for every face ¢ of T,
f‘-.,(s‘.")\fd-,(Tf) is locally compact. We extend f,., to ff ! 08T SF by
stages: first on the l-faces cﬁf, then on the 2-faces, etc., and finally
on the i-faces cTS”, such that, for each T7) fF(cTF)NL., (55 = £, (TF).
Now choose qe F\ff(cS™). Define £f(c) = q, £1/5/ = £:,, and as above,
extend f;., to £ cS/—FN(£f(c5*)\£x,(5)) so that, for each T,

£f (eTHINL, (S5) = £;,(TF). Then £, £f define a map f;¢ S‘—>F which
distinguishes antipodes, and £ = £, is the desired map.

Theorem 5.8. Let . be a separable metric space such that the
complement of every locally compact (o -compact) subset is nonempty
homotopically trivial. Then ./ 7%¢F x C, where F is finite-dimensional
and C is locally compact (o~ -compact).

Proof: Assume /#{~ F x C, either case considered. Then FCR" for
some n, and for every locally compact subset L of F, (F\L) x C is non-
empty homotopically trivial, therefore (n-l)-connected. Thus F\L is
nonempty (n-l)-connected, contradicting (5.7).

Corollary 5.9. Separable infinite-dimensional Fréchet space is not

homeomorphic to a product F x C, where F is finite-dimensional and C is
o =compact.

Proof: By the proof of (3.3), every o -compact subset has homotopy
deficiency, without the closure requirement, and therefore the complement
is nonempty homotopically trivial. (Of course by Anderson's result (5.2),

the complement is homeomorphic to the whole space).
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