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CHAPTER I. INTRODUCTION 

R. D. Ancleraon(2, 3) has recently developed some very powerful methods 

in the topology of the Hilbert cube which, among other things, characterise 

sets of topological infinite deficiency, and give stable extensions of 

homeomorphisms between certain closed subsets» He is able to apply these 

methods to separable infinite-dimensional Frechet spaces by considering 

the natural imbedding of s, the countable infinite product of lines, in 

I*̂  and by using the topological equivalence of all separable infinite-

dimensional Frechet spaces. This latter result follows from the combined 

work of Bessaga and Pelczynski, Kadec, and Anderson (see (1))« 

Klee(10, 11) has previously established numerous topological 

properties of Hilbert space /f, through linear space methods, involving 

category, convexity, and deficiency* His results include the homogeneity 

of Hilbert space with respect to compact sets, the homogeneity of any 

infinite-dimensional Banach space with respect to finite-dimensional 

compact sets, and an extremely useful homeomorphism extension lemma for 

Frëchet spaces. 

The methods presented here are of the linear space type, although 

Anderson's results figure prominently in Chapter III and part of Chapter V. 

The main topics of interest are the various deficiency conditions (finite, 

infinite, homotopy) and homogeneity, and isotopy and stability. Certain 

other results and applications appear in Chapter V. Various conditions 

on the spaces, such as Hausdorff, metrizability, local convexity, norm-

ability, inner-product, completeness, and separability, are used as needed* 

In Chapter II it is shown that closed c-compact (compact) subsets 

of infinite-dimensional Banach (Frechet) spaces have finite deficiency 



2 

(which is defined as a topological property)» Methods due to KLee and 

Gernavski are instrumental in the proof. Klee's extension lemma is used 

to obtain a homogeneity result for certain closed finite-dimensional 

subsets of Infinite-dimensional Banach spaces, and at the same time the 

finite stability of such spaces is established» 

The relationship of various deficiency conditions and their 

connection with homogeneity, in separable infinite-dimensional Fré'chet 

spaces, is considered in Chapter III» In particular, it is shown that, 

under rather general conditions, topological infinite deficiency implies 

finite deficiency implies homotopy deficiency implies Property Z« 

Anderson's fundamental theorems, derived primarily by consideration of 

homeomorphisms in the Hilbert cube, establish the equivalence of Property 

Z and topological infinite deficiency, and homogeneity with respect to 

sets having Property Z, in separable infinite-dimensional Pr̂ chet spaces. 

These have some rather interesting consequences: the equivalence of finite 

and topological infinite deficiency, the preservation of deficiency under 

closed countable unions, homogeneity with respect to closed c-compact 

sets, the local character of homogeneity and deficiency* 

Methods of Whittaker(l5) are used In Chapter 17 to show that, in 

a locally convex Hausdorff linear space, every stable homeomorphism is 

the product of two homeomorphisms each somewhere the identity* By 

Alexander's technique, applied to any topological linear space, every 

stable homeomorphism is isotopic to the identity* An application is 

made of Wong's isotopy methods(l6) for infinite product spaces to 

certain separable infinite-dimensional inner-product spaces, and a 

condition for stability of homeomorphisms is given» 
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Di Chapter V, Anderson's results are applied to show that, in 

separable infinite-dimensional Frechet spaces> complements of deficient 

subsets are horaeomorphic to the whole space» Certain results of ELee 

for infinite-dimensional normed linear spaces are noted, and an appli­

cation is made to complements of countable locally compact sets» A 

non-homeomorphism theorem, dependent on the connectedness properties of 

complements of <y-compact sets in separable metric spaces, is given. 

The application is to the topological type represented by separable 

Infinite-dimensional Frechet space* 
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CHAPTER II. FINITE DEFICIENCY IN BANACH SPACES 

The following lemmas will be useful at several points* For defi­

nitions and terminology involved, see TaylorClli). 

Lemma 2.1. Let M be a finite-dimensional subspace of a locally 

convex Hausdorff linear space, and let P be a closed subspace with MAP 

= 0» Then M has a closed complement N with N3P. 

Proof: By induction on dim M. Suppose dim H - 1» Let f be a 

continuous linear functionfd on M + P, with f''(0) • P. gy local convexity 

f may be extended to a continuous linear functional F on the whole space. 

The kernel of F is a closed hyperplane N, complementary to M. Now suppose 

dim M • k+1, and let M » M, ̂  M̂ , dim M, • 1. Then + P) • 0, and 

by the inductive hypothesis has a closed complement + P. By the 

above argument there exists a decomposition N̂  <• « N into closed sub-

spaces with N3P, and M « N Is 1Aie desired decomposition* 

Lemma 2.2» Let X " M « N be a decomposition of a topological linear 

space, with M finite-dimensional and N closed. Then the projections onto 

M and N are continuous. 

Proof: Since continuity of one projection implies continuity of the 

other (with the appropriate inclusion maps, the sum of the projections is 

the identity), it suffices to prove continuity of the projection onto M. 

The quotient map Q: I—»X/N is continuous, and since N is closed, X/N is 

Hausdorff. Let F: X/N-̂ M be the linear isomorphism defined by F(m + N) 

• m, me M. Since M is finite-dimensional, X/N is topologically isomorphic 

to some Euclidean space R*", and M is topologically isomorphic to a product 

T X G, where T has the trivial topology and G is Hausdorff, hence 

Euclidean (9, p- hi)» Then obviously the topology of R**refines that of 
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T X G, and F: X/N->M is continuous* Therefore FQs %-̂ M, the projection 

onto M, is continuouso 

It is a consequence of the closed graph theorem that, for any 

decomposition of a complete metric linear space into closed subspaces, 

the projections are continuous (lb, p« 2li2). 

Lemma 2o3. In a locally convex metric linear space X the convex hull 

of a pracompact set S is precompact» 

Eeoof: Let lx| = d(x, 6), where d is an invariant metric for X Let 

e>0 be given* Choose 6>0 such that the convex hull of Ng(@) is contained 

in Nĝ (8). Choose A « {̂ x, ,•••, x̂ Ĉ X such that SCB • Ng(A)* Then the 

convex hull B^C Since Ac is compact (lU, p* 13li)> this implies a 

finite number of e-neighborhoods cover Bp, hence Ŝ * Thus is preconqpact* 

The following fundamental lemma is essentially due to Klee(lO)* 

Lemma 2»U' Let A be a c-precompact subset of an infinite-dimensional 

Frechet space X» Then there is a line L in X, no translate of which 

intersects Â  more than once* 

Proof: We may suppose A « UAj, Â CÂ ,̂, each Â  precompact* Qr 

the preceding lemmas - U(Al)c is ̂ -precompact* By completeness> the 

closure of a precompact set in X is compact, hence AQ, and therefore Â  - Â , 

is contained in a <3--compact set B* Every compact set in X is nowhere 

dense, since otherwise X would be locally compact and therefore finite-

dimensional (lli, p* 129)* For some ue X\@, the line L • {tu: t 

intersects Ag - Ag only at 0, for if not, WnB3 WnCAg - Ag) - X, and X 

would be first category* Thus no translate of L can intersect Â  more 

than once* 

Definition» Let A be a closed subset of an infinite-dimensional 
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topological linear space X» If for each positive integer m, there is a 

decomposition X = M ® N with dim M = m and N closed, and a honeomorphisn 

h of X onto itself such that hACN, then A has finite deficiency in X» 

In (10, 11), KLee shows that compact sets in infinite-dimensional 

Banach spaces have finite deficiency» 

Theorem Let A be a closed cr-compact (compact) subset of an 

infinite-dimensional Banach (Prêchet) space X- Then A has finite 

deficiency in X» 

Proof: Let L = [tu: -oo<t<'»o} be the line (through the origin) 

of Lemma Let H be a closed complementary hyperplane (use Lemma 2.1). 

Let T : XH be the (continuous) projection onto H. Then "̂ /Ag is 1-1. 

If A is compact, "C/A is a homeomorphism onto TA, which is closed in H. 

The homeomorphism ("C/A) ' defines a map m: T'A—>(--̂ , ~='), which can be 

extended to a map M: H'->(-»o, «a). Then h + tu -»h + (t - M(h))u defines 

a homeomorphism of X, extending /̂A» By a simple inductive argument, A 

has finite deficiency» 

Suppose X is a Banach space, assume %u|| » 1. The geometric flavor 

of the following can be imputed to Cemavski(5), who uses similar 

constructions in Euclidean space* For he H\0, define the 'semicircle' 

Sh * {tllhllu + rh: t® + r̂  » 1, r̂ o}. Let $ * he HNO}. Each 

point of X\L lies on exactly one semicircle in $ • Assuming Ge A, we 

have AC(XNL)U6, and no semicircle intersects A more than once (otherwise 

/̂AQ is not 1-1). For ye XNL, y • t||h||u + rh is the canonical repre­

sentation of y as a point on the appropriate semicircle Ŝ . Define T • 

[ye X\L: ltKW2S U0. Note that |t|4 1̂ 2 iff |t|4r iff r >lir/2. 

Lemma 2.6. There is a homeomorphism F of X such that FACT, and 
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for ye FA\Qi t -»0 (r—>1) as lly||->0. 

Aroof: Since A is closed and L\0 does not intersect A> there is 

a map VjV: (0,oo)—>(0̂  1) such that ̂ ye X\L! r< V4/(||h(|)J/lA • 0» Let 

 ̂: [0, {̂ /2, l] be a map such that ̂ (0) = 1, ̂ (a)<l for a> 0. 

Consider the collection he H\0] of 'quartercircles' obtained 

by bisecting the semicircles at h. Define F/lUH « id; on each 

(Qjj), F maps the point y with r̂ . * U/'(||h|!) onto the point z with r̂  " 

(̂l|h(|), and is extended 'linearly' (with respect to r) on the entire 

quartercircle (Q̂ ). Then F is the desired homeomorphisra. 

Thus we may assume, in proving the theorem, that ACT, and for ye 

A\G, t-̂ O as ||yl|—̂  0» Let ̂ denote the subfamily of  ̂consisting of 

those semicircles which intersect A» Define a bijection LJ  ̂

Û UG as follows: Ĝ (G) = G, and for Ŝ e (̂ /Ŝ  is fixed on the end-

poiiits (in L), takes Ŝ AA onto h » Ŝ AH, and is extended linearly on 

Lemma 2.7» is a honeomorphism, and Ĝ A is closed* 

ft-oof: Obviously Ĝ /A is continuous. For the continuity of both 

Ĝ  and Ĝ ' it suffices to show continuity of Ĝ '/Ĝ A» Suppose Ĝ '/Ĝ A 

is not continuous. Then there exists a sequence Ĝ (an)—̂ Ĝ (a), â , ae 

A, such that no subsequence of â  converges to a- With â  - t̂ Rĥ lfu + 

Tnhn, a • t(|h||u + rh, we have Ĝ (aĵ ) " ĥ -̂ h « Ĝ (a). Since there is 

some subsequence â , for which t̂ / and r̂ , converge, we have â /—̂ a'e A, 

hence Ĝ (an/)"~>Ĝ (a'), Ĝ (a) « Ĝ (a'), a « a', and â / —>a, contrary to 

hypothesis. 

To see that Ĝ A is closed, let Ĝ (â ) —̂ he H. Then, as before, ĥ  

—̂ h, there is some subsequence â / such that t̂ / and r̂ / converge, thus 

an'—>a'e A, Ĝ (â /) —>Ĝ (a') • he Ĝ A, and Ĝ A is closed. 
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The homeoraorphism Ĝ '/Ĝ A defines a map m: 1̂ 2/2], 

where m(C-̂ (tllh|(u + rh)) = t, m(6) = 0. Since Ĝ A is closed, there is 

an extension of m to M: H-̂ [-*1(272, Y572], and this extension may be 

used in the obvious manner to define a homeomorphism G: X—extending 

Ĝ * Again, a simple inductive argument completes the proof of the theorem» 

The following homeomorphism extension lemma of Klee(ll) is based 

on Dugundji's theorem that locally convex Hausdorff linear spaces are 

absolute extensors for the class of metrizable spaces-

Lemma 2*8» Let X = L, $ L̂  be a decomposition of a Fr̂ chet space 

into closed subspaces. Let A be a closed subset of L, and let h be a 

homeomorphism of A onto a closed subset of L̂ »̂ Then there is a «̂ isotopy 

"[J of X onto X such that id and Ĉ /A » h. (An isotopy on X 

is called a «̂ isotopy if its level map on X x I, defined by (x, t)—> 

(Ĥ (x), t), is a homeomorphism, i.e., if the family {H-t'} of inverse 

homeomorphisms is also an isotopy). 

Aroof: By Dugundji's theorem, there are maps a of L, into L̂  and 

P of L̂  into L, such that a/A - h and p/hA • h"'. By completeness, the 

projections of X onto L, and L̂  are continuous. For ye X and te [0, l] , 

let ̂ ŷ » y + t(ay, ) and Vĵ y = y - t(py; ), where y = y, + y), with ŷ e L̂ . 

Then ̂  and are ̂ -isotopies of X onto X. Now let for te 

[0, l/i] and jT̂  « for te[̂ , l]. Then if ye A, p̂ y • -

,̂(7, + % ) = 7/ + 0% - • 7/ - li"V/ + " <̂ f 80 Ĉ /A = a/A 

= h, and CTis the desired *-isotopy. 

The proof of the following proposition is due to D. E. Sanderson. 

Proposition 2»9» Every finite-dimensional locally compact separable 

metric space A can be imbedded as a closed subset of a Euclidean space* 
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Proof: The one-point compactification T is metrizable (7* p« 75) 

and finite-dimensional» Therefore "A can be imbedded as a (closed) subset 

of for some n, and deleting the compactifying point we have A " T\ 

imbedded as a closed subset of 

Definition (Brown-Gluck(U))• A homeomorphism h on a space X is stable 

if h can be written as a composition of finitely many homeomorphisms on X 

each of which is the identity on some nonempty open set in X» 

The stable homeomorphisms form a normal subgroup of the group of all 

homeomorphisms of X» Frcsn the proof of (2.5) it is clear that the homeo­

morphism constructed there can be chosen to be stable. 

KLee(ll) proves the following theorem (stressing isotopy rather than 

stability), for finite-dimensional compact sets in Banach spaces. 

Theorem 2.10. Let X be an infinite-dimensional Banach (Frechet) 

space> and let h be a homeomorphism between closed finite-dimensional 

separable locally compact (compact) subsets of X. Then h can be extended 

to a stable homeomorphism H of X. 

Proof: Let h: A->h(A). Observe that AUh(A) satisfies the hypo­

theses of Theorem 2.$. Thus there exists a decomposition X " T # E # N, 

where dim T " 1, E is a finite-dimensional subspace containing a closed 

copy A' of A, and N is closed, and a homeomorphism F of X such that F(AU 

h(A))CN. Applying (2.8) twice on E « N (first extending any homeomorphism 

of F(A) onto AS then extending the appropriate homeomorphism of A' onto 

Fh(A)), we obtain a *-isotopy of E « N, with  ̂• id and such that 

F"'XF/A • h. Define Gs X-̂ X as follows: 



G(t + e + n) -

ICfei 

t + 3!̂ (e + n), 04t41 

t + %(e + n), t40 

t + e + n , t • 

Then H • F''gF is the desired stable extension of h. 

Definition» A topological linear space X is finitely stable ifj 

for every homeomorphism f of X and every finite-dimensional subspace N, 

there is a stable homeomorphism g of X with f/N » g/N» 

Corollary 2.11. Every infinity-dimensional Banach space is finitely 

stable* 

Let J ..J be a complete orthonormal set in the Hilbert space 

Let W " sp |u,, , and for each n̂  let • sp {u, 

Erora a consideration of Cernavski's methods(̂ ) for finite-dimensional 

spaces, whereby he shows that every homeomorphism of R** is k-stable (agrees 

with a stable homeomorphism on a k-dim subspace) for k< ̂  n - 1* it seems 

likely that the following conjecture and its corollary are true. 

Conjecture 2.12. Let MDW be a linear subspace of s and let h 

be a homeomorphism of M« Then, for each n, h agrees with a stable 

homeomorphism of M on if. 

Corollary 2.13. Eveiy separable Infinite-dimensional inner-product 

space is finitely stable. 

Proof: Let P be such a space, and let A be a finite-dimensional 

subspace, with basis [x,,..., X;̂ . Let jx,, x%,..̂  be a countable 

dense subset of P. Let y, = x,. Let be the first xj which is not 

in sp (y, ,..., ŷ  ̂. Then the linearly independent sequence generates 

the same linear subspace, hence the same closed linear subspace P, as the 

sequence {x̂ . Applying the Gram-Schmidt orthogonalization process to 
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£X/ii, we obtain an orthonornial set {v,, Vjj j«««5 generating the closed 

l i n e a r  s u b a p a c e  P »  w i t h  s p  f v ,  j o . . ,  V n }  •  s p  { y ,  > • • • >  y « }  •  s p  { x , %  

• A' Since F is congruent to a dense linear subapace of we may 

suppose P • MDW, V£ • ut for each i) and A " The corollary follows* 
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CHAPTER III. DEFICIENCY AND HOMOGENEITY IN SEPARABLE FRECHET SPACES 

Notation, e''̂ ' is an (n+l)-cell, with BdCE"""') - S*. 

Lemma 3«1' Let X = L, c be a decomposition of a metric linear 

space with L, closed and dim » n + 2, and let A be a closed subset of 

L,. Let f: E*̂ '̂—̂  X with f(S'')AA • 0, and let e>0 be given» Then 

there exists g: E*̂ *'—=>• X with f/S" « g/S% d(f, g)<6> and g(E'**̂ ')nA • 0* 

Proofs Let be the projection onto L̂ , and consider f - (f, , f:,)j 

where f̂  » T̂ f * i - 1, 2. We construct g - (g,, g*) with g, " f; > ĝ /s'̂  • 

fj/S% d(f, j g, )< e» and such that g(E''*')A A • 0» Let II il be a norm on 

generating the same topology as the invariant metric d. Choose 5,> 0 

such that d(y, C)< 5, =:̂ Hy| < e, =:̂ d(y, 0) < e. Since f(8*) is compact, 

there exists 0<6<6, with sW(Ng(A)) - 0. Thus s"Af̂ CN̂ ĈA))Af̂ 'fNjb 

(0)) • 0. Set C • and consider the restriction f,/c% C 

—̂ L̂ * If f;, (C), take g, » f,. Otherwise> since all values of f̂ /c are 

unstable> 8 is unstable, and for every neighborhood U of 0 there exists a 

map ĝ î C-̂ L, satisfying ĝ (x) • f,(x) if f;,(x)/ U, ĝ (x)e U if f,(x)G Uj 

and 0/ gj(C) (8, pp. 72-79). Take U - N6/̂ (Q)AL%. Then ĝ  - f,/C\f;'(N*, 

(0)), and d(f,/c, g, )< 6, hence sup|f;,(x) - ĝ (x)|( <c,. Define k'(x) -
xeC 

f̂ Cx) - ĝ (x) for xe C, k«(x) - 0 for xe E"*\f;'(Nf,j,(A))Af̂  (Nĵ (0)), and 

extend to k: E"*'—> L, so that sup ||k(x)|| < s,. Let g, " f, - k. Then 
xeE"*' 

d(f;, g, ) < cj and g " (f, , g*) is the desired map. 

Definition» A closed subset A of a metric space X is homotoplcally 

deficient if, for each n̂ -1 and every map f: e"*"'—> X with f(8*)AA • 0# 

and every 6>0, there exists a map g: E"̂ '—>X with f/S" • g/S*, d(f, g) 

< 6, and g(E'̂ ')AA • 0-
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Proposition 3»2» Let X be an infinite-dimensional metric linear 

space» and let ACX be finitely deficient. Then A is homotopically 

deficient. 

Proof: Let a map f, and 6>0j be given* Let X • L, * be a 

decomposition, with L, closed and dim = n + 2, and let h be a homeo-

morphisra such that h(A)CL, • Consider hf: »X. Since hf (E"*"') is 

compact, h'' is uniformly continuous on it, and there exists e'> 0 such 

that re hfCE""'), se X, d(r, s)< s' =̂ d(kr'(r), h'"'(3))<e» By (3,1), 

there exists hg: e"*'—>X with hg/S" « hf/s", d(hg, hf)< e', and hgCE""') 

AhA • jà' Then g is the desired map. 

Rroposition 3»3» Let X be a complete metric space, and let LCX 

be a closed countable union of homotopically deficient sets. Then L is 

homotopically deficient. 

Proof: Let L - 0̂ .̂ Let f: Ê '̂ -̂ X with f(8*)r\L - jZf, and let //>0 

be given. Take 0 < s, < A/2. There exists g, : Ê ^̂ X wiih ĝ /S" » f/S", 

d.(f, g, )<e,, and g, (E"̂ ')'̂  A, - jZl. Since g, (E"̂ ') is compact, there exists 

6,> 0 such that d(g, (E"*'), A,) >6,. Assume g, ,••«, ĝ  have been defined, 

and 6,,..., 6£ have been chosen. Take 0< <min ̂ Ô,/2'', 6̂ /2*̂ "%... ,6̂ /2, 

There exists ĝ *,: e"̂ '—>X with ĝ +̂ /S*̂  » gt/S"=...= f/8*, d(g£, 

g2+,)< and ĝ +,(E"*')nAi+, » 0. Choose 6̂ ,̂ >0 so that dCĝ /̂E"̂ ')» Aĵ ,)> 

6i+/. The sequence (ĝ } thus defined converges uniformly to a continuous 

map g: E"*'-4X, and since ei<P/2̂  for each i, we have d(f, g)< fJ • 

Obviously f/S* • g/S*, and by construction g(E''*')AÂ  • 0 for each i. 

Definition (Anderson(3)). A closed subset A of X has Property Z if 

for each nonempty homotopically trivial open set U in X, UNA is nonempty 

homotopically trivial. 
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If X is a metric space it is clear that every homotopically deficient 

subset has Property 2» 

Definitions•• A closed subset of a topological linear space has 

(strong) infinite deficiency if it is contained in a closed subspace 

with an infinite-dimensibnal (closed) complement. 

A set has topological (strong) infinite deficiency if there is a 

space homeoraorphism taking it onto a set with (strong) infinite deficiency» 

The following proposition ensures the relevance of infinite deficiency 

for a large class of spaces* 

Proposition 3*h' Every infinite-dimensional locally convex Hausdorff 

linear space admits a decomposition X •* L, t into infinite-dimensional 

subspaces, with L, closed. 

Proof: A double sequence f̂ j of points and continuous linear 

functionals is a biorthogonal sequence if f̂ Xy • for all i, j. There 

is a simple inductive method* used by Klee(13) and others, for the con­

struction of such sequences* The Hausdorff condition and local convexity 

guarantee an adequate supply of continuous linear functionals* Choose 

X,, f, with f, X, » 1* Suppose x, ,**•, x̂  and f, ,**., f̂  have been chosen 

subject to the desired conditions. Set ®/̂ fî'(0), • sp{x, ,*.*, x̂ * 

Then X - Take x*̂ , e F̂ \@, and choose f̂ *, such that f„̂ /x„̂ /) = 

1, f«̂ /L̂ ) » 0. By induction we obtain a biorthogonal sequence [x;, f* 

Now consider the infinite-dimensional subspaces M • sp ̂ x,, x̂ ,***̂  

and N • sp [x*, x̂ ,*»*} * Let ve N\0. Then for soma n, f;in.(v) / 0, 

and there is some neighborhood U of v such that f,̂  does not vanish on U* 

Since f̂ (̂M) • 0, we have MAU = 0, and MAN = 9. Hxus X - L, * 1% with 

L, » M and L;, DN. 
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Proposition 3»5» Let X be a locally convex Hausdorff linear space, 

and let ACX have topological infinite deficiency. Then A has finite 

deficiency-

Proofs Let X = L/ A Lj, be a decomposition with L, closed, dim • 

oo, and let h be a homeomorphism of X such that h(A)CL̂ > For any positive 

integer n, let be an n-dimensional subspace of Lj,. By (2,1), there 

exists a closed complementary subspace L/̂ »% of L̂ ,̂ such that L/̂ ^̂ JL,. 

Then L » L̂  ̂t , h(A) CL̂ ^̂  , and A has finite deficiency. 

Thus in en infinite-dimensional locally convex metric linear space, 

topological infinite deficiency ŝ finite deficiencyhomotopy deficiency 

Property 2. The following theorems and corollary of Anderson(3) give 

the converse, by establishing homogeneity with respect to subsets having 

Property Z, in separable infinite-dimensional Frechet spaces. In what 

follows X denotes any such space. The Fréchet space s is the countable 

infinite product of lines, I*̂  the similar product of closed intervals. 

Theorem 3.6. Let Acs have Aroperty Z- Then A has topological 

strong infinite deficiency. 

The proof proceeds by imbedding s in l"", establishing that the 

closure of A in has Property Z (in I**"), and constructing a p*-

homeomorphism of 1"°* which takes the closure onto a set of infinite 

deficiency in T*' (h is p if h(s)I3S, p* if h(s) » s). 

Theorem 3*7. Each homeomorphism between two subsets of X with 

Property Z can be extended to a homeomorphism of X onto itself. 

Proofs Let h: A—̂ h(A), both A and h(A) having Property Z. Since 

all separable infinite-dimensional Frechet spaces are topologically 

equivalent, there is a homeomorphism k of X onto s. Since Property Z is 
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topological, k(A) and kh(A) have Property Z in s, and by (3.6) they both 

have topological strong infinite deficiency. Let s • « L;̂  » e M;, be 

decompositions into closed infinitê dimensional subspaces for which there 

exist homeomorphisms f, g of s with fk(A) CL, and gkh(A)CM/. Let ̂  be a 

horaeomorphism of s such that /O (L,) = M;, and /̂ (L;,) • M,. Then /Ofk(A)C 

Mjj. By fCLee's lemma (2.8) there is a horaeomorphism >i of a that extends 

gkhk"'f'̂ "'' from/Ofk( A) onto gkh(A). Then iT̂ g'̂ /̂ofk is the desired extension 

of h from A onto h(A)* 

Corollary 3.8, Let ACX have Rroperty Z. Then A has topological 

infinite deficiency. 

Proof! Let X = L, e L, be a decomposition into infinite-dimensional 

subspaces, with L, closed. Since L, is homeomorphic to X, it contains a 

closed copy A' of A, A' has infinite deficiency and therefore Property Z ,  

and the homeomorphism A<-»A' can be extended to a homeomorphism of X. 

Obviously, Property Z implies topological strong infinite deficiencgr 

wherever this is possible, i.e., in any separable infinite-dimensional 

Frechet space admitting a decomposition X = L, e L̂  into infinite"dimen­

sional subspaces, with L, and L;̂  closed. In particular, strong infinite 

deficiency is always obtainable in the Frechet space s, and Hilbert space 

Anderson's results, together with the earlier propositions, lead to 

the following 

Theorem 3*9. In a separable infinite-dimensional Frechet space, 

topological infinite deficiency, finite deficiency, and homotopy deficiency 

are equivalent, and are preserved under closed countable unions. Further­

more, there is homogeneity with respect to deficient subsets. 
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Since every compact set in an infinite-dimensional Frechet space is 

finitely deficient (2.2), we have the following homogeneity re stilt: 

Corollary 3=10' Each homeomorphism between two closed <y-compact 

subsets of X can be extended to a space homeomorphism* 

Theorem 3*9 implies that, in a separable infinite-dimensional Frechet 

space X, homogeneity and deficiency are local propertieŝ  In the following, 

 ̂is a class of closed subsets of X, containing all closed homeomorphs of 

its members (a closed topological class). 

Definitions» X is homogeneous with respect to ̂  if each homeomorphism 

f: A—between members of JS can be extended to a homeomorphism of X 

onto itself* 

X is locally homogeneous with respect to if for each homeomorphism 

f: Â B and each pe A, there is a neighborhood N(p) in A such that f/N(p) 

can be extended to a homeomorphism of X 

dearly3 X is (locally) homogeneous with respect to ̂  iff each set 

in ̂  is (locally) deficient in X* (A closed subset A is locally deficient 

if each point has a deficient neighborhood)* Since a locally deficient set 

is O"-deficient and therefore deficient# local homogeneity with respect to 

ÇS implies homogeneity* 
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CHAPTER 17. STABILITY AND ISOTOPT 

Let X be any topological space, and H(X) the group of homeomorphlsms 

of X. Let e denote the identity element of H(X). 

Definition (Whittaker(l5))* P(X) is the set of all ge H(X) 

satisfying the following condition: for each X6 X, there is a finite 

subset A(gix)CX such that for each ye X\ A(g>x), there exist 

neighborhoods U of x and V of y, and fe H(X)> with f = e/U and f - g/V« 

Lemma Ifl (whittaker). P(X) is a normal subgroup of H(X). 

Lemma b'2. Let X be a topological linear space, and f a continuous 

linear functional. Let x, ye U • f"ta, b). Then there exists he H(X) 

supported on U such that h(x) = y. 

Proof: Immediate with the observation that the projection onto the 

closed subspace f''(0) is continuous (Lemma 2.2). 

Lemma iiQ. Let X be a locally convex Hausdorff linear space, and 

suppose y / x / z. Then there exists a continuous linear functional f 

and an interval (a, b) such that xe f''(a, b) and {y, z}nf''[a, b] = 0. 

ft-oof: There is a continuous linear functional f* on sp {x, y, a] 

such that fo(y) / fo(x) / f,(z). Qy local convexity, f, can be extended 

to a continuous linear functional f on X, and the conclusion follows. 

The method of proof of the follô rir̂ r; proposition is due to Whittaker. 

Proposition U»U' Let X be a locally convex Hausdorff linear space, 

dim X >1, Then the normal subgroup S(X) of stable homeomorphisms of X 

coincides with the subgroup P(X). 

Rpoof: Since P(X)CS(X) always, we need only show that if fe H(x)  

with f » e/u, for some nonempty open set U, then fe P(X). Let xe X be 

given. Take A (f ,x) » [x, f"'(x)}. Let ye X\A(f,x). For each ze X\ 
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[y» f(y)} ) let Ujj be a set of the form f"'(a, b), f a continuous linear 

functional, with ze f"'(a, b) and [y, f(y)}Af"'ja, bj ® 0» Since X\ 

[y, f(y)} i? connected, there is a chain U,of such open sets 

between x and some ue U- Put A " ÏÏ,L/...UÛrt,* Then Ar\{y, f(y)} = 0-

For 14 i 4n, let ĥ -e H(X), supported on U/, be such that h(x) » ĥ ..«h,(x) 

= u. Set V = h''(U) and ̂  = (X\A)A(X\f'TA)). Then V and ¥ are 

neighborhoods of x and y, respectively. We have h'̂ fh = e/v, and h'̂ fh 

= f/lf. Thus h'fh 'bridges' e and f, and fe P(X). 

The restriction dim X >1 is necessary, since P(R') = {e}, while the 

stable homeomorphisms of r' are the order-preserving homeomorphisms. 

However, even for R', we have the following property of stable homeo­

morphisms, given in the finite-dimensional case by Brown-Gluck(lt). 

Corollary 1|«$» Every stable homeomorphism of a locally convex 

Bausdorff linear space is the product of two homeomorphisms each somewhere 

the identity. 

Proposition It»6» On a topological linear space X, every stable 

homeomorphism is *-isotopic to the identity. 

Proofs Let he H(X) with h « e/U. Let fe H(X) be a translation 

taking 0 into U, and let f"'(U) = V. Then f'̂ hf = e/v. Define G: X x I 

->X as follows: G(x, t) = i/tf"'hf(tx) if t / 0, G(x, 0) = x Then {"ĝ | 

is a «-isotopy between e and f''hf, and (fĜ f"'} is a «-isotopy between 

e and h. The result follows, since the set I(X) of homeomorphisms *-

isotopic to the identity is a (normal) subgroup. 

Wong has shown (l6) that for infinite product spaces X"̂  " TTX with 

X satisfying a certain Property $ , every homeomorphism on X*̂  is isotopic 

to the identity. X satisfies Property ̂  if the homeomorphism g on X*̂  
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defined by g(x,, x̂ , Xg, x*,...) • (x̂ , x,, Xj, x*,...) is isotopic to 

the identity» He then shows that both I = [O, l] and l" = (0, 1) satisfy 

Property ̂  . Thus on the Hilbert cube I*** and on the Frechet space s = 

(which is homeomorphic to by (1)), all homeomorphisms are 

isotopic to the identity. Using results proved in (2), Wong establishesj 

for s, the stronger result that every homeomorphism is stable* Andarson(3) 

shows that every homeomorphism on is stable* 

With merely an added emphasis on the norm, Wong's isotô  methods 

can be applied quite naturally to certain separable infinite-dimensional 

inner-product spaces. The relevant fact is that convergence in Hilbert 

space is convergence of coordinates and of norms* As in Chapter 11» let 

WCMCwhere W is the span sp |u,, U;,,.• ̂  of a complete orthonormal 

set in , and M is a linear subspace—any separable infinite-dimensional 

Inner-product space is congruent to a space of this type* We have ̂ x̂ û  

6  iff  d e n o t e  b y  ( x , ,  x, , . . . ) .  L e t  e :  M — d e n o t e  

the identity map, and define g: M-»M by g(x,, x̂ , x,, x,,.*.) = (x,, x,, 

Xgf Xy,...)* An isotopy {hj is called norm-pro serving if (m)(ï = 

llh^^(m)|/ for all me M and every t,t,* 

Lemma U*?* There exists a norm-preserving ̂ «̂ isotopy between e and g* 

Proof: For each n, define 60̂  on sp {û , u*„] by <̂ K(xf y) = (-x, -y), 

and let & norm-preserving ĵ -isotopy between e and 

6\on sp {uh, u,«}* Let the natural extensions to M (all 

other coordinates are fixed). Let ĥ  = ..w,h, = e. Define h#̂ t " 

te [(n-l)/n, n/(n+l)] * Let <5'(x,, x,,...) = (-x,, x,,...). 

Then M x I->M, defined by H/M X t • ĥ ^̂ if te [(n-l)/n, n/(n+l)] and 

H/H X 1 = C J is a norm-preserving *-isotopy between e and CT. Let F be 



20 

the rotation of sp , u,| counterclockwise through Tr/it radians, and 

let F be its natural extension to M. Then g = F"Vf, and since F is norm-

preserving, there is a norm-preserving ̂ -isotopry between e and g. 

Define Çn. on sp (n„, by ̂ (x, y) » (y, x), and let % be the 

natural extension to M« Then there is, for each n, a norm-preserving 

*-i3otopy between e and 4%, fixed on the first 

(n-1) coordinates. 

Lemma lt'8- Let P, e M with % —̂ P, and lot {fi} be a sequence of 

functions with each fj = for some te [(n-l)/n, n/(n+l)] , such that 

n—»oo(t—>1) as i—>00. Then f/ ()—>P' 

Proof! Convergence of coordinates is obvious. Since each f̂  is 

norm-preserving, there is convergence of norms. 

Definition. M is shift-complete with respect to £u,, u,,...} if 

it satisfies the following condition: ̂ Xj-û e N iff ̂ x̂ -û v/ e M. 

W and , among other subspaces, are shift-complete» Hereafter, we 

assume that M is shift-complete. For any ac R and any positive integer n, 

define maps a'"̂  and TT̂ of M into itself by a''*̂ (x,, X;,,...) •  (x,x ^ . , ,  
^ '— 

a» X/i»***) &nd TTii(x,, Xj,'**) = (x, ,*»», x̂ .,, x#̂ .̂**). 

Lemma L»?. Let P, % e M, â e R, with P/ —>P and â  —»0, and suppose 

n (=n£ )—> 00 as i—Then TTn(Pt)—*P and â '̂ (̂P̂ )—»P. 

Proof: Convergence of coordinates and of norms is easily verified. 

Let T\s M—denote the n**̂  projection, and let h: M—be a 

homeomorphism. Define ĥ î by ĥ (x) = (7Tj(x))''"'ĥ (̂x). For each 

n, is a homeomorphism of M leaving the n'̂  coordinate fixed. 

Lemma U.IQ. Let P, e M with P; —>P, and suppose n (=nf)—as 

i—»oo. Then "ĥ CP̂  )—>h(P). 
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ft-oofî We have and hT7̂ (P<:)~̂ h(P). Since T7%(P )—>0, 

(Ti;(Pz)r\'̂ (Pj)-»h(P). 

Lemma U'll* "ĥ  is *-isotopic to h« 

Proof: Define ĥ ^̂  « (&,f for te [(n-l)/n, n/(n+l)] . Note 

that {hH,t} is a *-isotopy between ĥ  and Define H: M x I -»M by 

H/k X t = H/M X 1 = h. Suppose (P/, ti) -»(P, 1), t̂  <1 for all 1. 

We have H(P̂  j t/) = h„,t/P;) = Than (Pf ) "̂ P by 

(a.8), ĥ <%,̂ .(Pj-̂ h(P) by (k.lO), and )->h(P) - H(P, 1). 

Thus H is continuous, and is an isotopy. Similarly, j is an 

isotopy, therefore is a *-isotopy. 

Lemma b*12« If h{0) = 0, then h is *-isotopic to e» 

Proof: 'ĥ  is the natural extension of a homeomorphism h, on the 

closed hyperplane 7Ij'[o)* We can repeat the same argument on 7̂  to) and 

show that there exists a «--isotopy, fixed on the first coordinate, between 

h, and a homeomorphism g, with the property that g, is the natural extension 

of a homeomorphism h, on 77J"'(0)A 75"'(0). Iterating this process, we can 

define a function H: M x I—such that H/M X 1 • e, H/M X 0 • h, H/M X '/< 

= % , etc. Let (P̂ , t̂ )-̂ (P, 1), t£<l for all i. We need to show 

H(^', t^)—>P. Certainly ive have convergence of coordinates. Let 6>0 

be given. Evidently I1H(P£, ti)||> (PU - e for i sufficiently large. Since 

h(e) = e, there exists 0<5<6/2 such that f|x|( < 6=̂ (|h(x)|| < e/2. Then, 

for any n, ||x|( < ô=::̂ ||h„(x)|| < 6 + e/2. Thus, since is norm-preserving, 

IIx|| < 5=̂ 11 hy,̂ (̂x)|( < 6 + e/2. Then the construction of H implies that 

tlH(Pi, ti)|(< llFf + e for i sufficiently large. Thus (|H(P-, t£ )j( —» l|P||, 

H is continuous, and is an isotopy. The same type of argument applies 

to {iÇ'}, and therefore is a «-isotopy. 
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Theorem ti«13« Every homeomorphism on M is *-isotopic to the identity» 

Proof! Every homeomorphism of a normed linear space is the product 

of a stable homeomorphism and one fixed at the origin. Since every stable 

homeomorphism is *-isotopic to the identity (L'6), the theorem follows. 

The following proposition resembles a lemma of Anderson (3> Lemma 3*1) 

for homeomorphisms on the Hilbert cube. 

Proposition Ij.lU. Let f be a homeomorphism on M, and H a closed 

l̂ perplane such that f(H) « H • Then f is stable. 

Aroof: KLee has shown (see Chapter V) that for any closed hyperplane 

in an infinite-dimensional normed linear space, there is a space homeo­

morphism taking the hyperplane onto the unit sphere* Thus any two closed 

hyperplane s in M are equivalently imbedded, and f is the conjugate of a 

homeomorphism g such that g{7f\o)) • "̂ ''(0). By normality, we may assume 

that - T̂ "'(0). Let be a *-isotopy (on between 

e and f/ n ',"'(0). Ejy connectedness, either f( 77"to,o<»)) • or 

f(77''(0, )) • 7r,'\̂ r̂ f 0). Suppose the former. Define F: as follows: 

f(x/, X,,...) if X, 

(x,, f*,if -14*, 4 0 

(x,, X,,...) if X,4 -1" 

Then F is a homeomorphism which agrees with e and f on nonempty open sets, 

and f is stable. If f(77J"'(0, «̂  )) • TT/'X-oo, 0), we make the obvious modi­

fications in the definition of F, and the result follows, provided the 

homeomorphism defined by ̂ (x,, x*,...) « (-x,, x,,...) is stable. But 

this is evident by the first part, considering the projection 7̂  instead 

o£ TT, * 

From the proof of (!;.lL) it is clear that the following proposition 

F(x,, x̂ ,...) 
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holds for any infinite-dimensional norme . linear space Z for which every 

homeomorphism on the unit sphere S is weakl; isotopic to the identity. 

(H: S X I—X I is a weak isotopy if it is a homeomorphism and H(3 x 0) 

= S X 0, H(S X 1) « S X !)• In particular, it holds for M, since M is 

homeomorphic to its closed hyperplanes and unit sphere, and we may apply 

(k.l3). 

Proposition L,l$. Let f be a homeomorphism of X such that f(S) * 

g(S) for some stable homeomorphism g. Then f is stable. 
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CHAPTER V. APPLICATIONS 

pushing countable collections of weakly thin subsets of I*̂  to 

the pseudo-boundary through p-horaeomorphisms ̂ Anderson(2) obtains 

the following results for the space ''I*̂ (= a): 

Theorem 5*1' Let be a countable collection of closed sets 

in "I°° such that for each i, the projections of K; onto infinitely many 

coordinate intervals are nondenae. Then *l"\ is horaeomorphic to 

Proof: The closure of each in I*" is weakly thin» 

Corollary 5*2. For any <T -compact subset K of ° I"°, " I*** \ K is 

horaeomorphic to "I"®. 

Theorem $>1, for the case of a single closed subset, implies the 

following 

Proposition 5»3» Let X be a separable infinite-dimensional Prechet 

space, and let ACX be deficient» Then XN-Â X* 

Proof: Let h: X—be a homeoraorphism. Then h(A) has Property Z 

and has topological strong infinite deficiency in ''l"̂ (3»6). Let "I*® = 

"Jef X "lot» ) where c< and of' are complementary infinite subsets of positive 

integers. There is a homeomorphism g of *1*̂  such that gh(A) Cl,, x c, 

ce (5.1), 'I'̂ N.ghCA)--'!"". 

In (10), KLee established the following 

Theorem Let Y be a compact set in the interior of the unit cell 

U of a nonreflexive normed linear space X. Then there is a homeomorphism 

of X onto X\Y, supported on U. 

The fundamental tool, due to Smulian, is the equivalence of nonre-

flexivity with the existence of a decreasing sequence of nonempty bounded 
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closed convex sets with empty Intersection* KLee observes the theorem is 

applicable to any space which admits a unit cell, unit sphere-preserving 

homeomorphism with a nonreflexive normed lineaf" space* In particular; it 

applies to any infinite-dimensional space, hence to any infinite-

dimensional Hilbert space, using Mazur's homeomorphism between the nonre­

flexive space L* and L̂ . 

In a later paper (12), KLee produced an alternative tool, for arbitrary 

infinite-dimensional normed linear spaces: every such space contains a 

decreasing sequence of nonempty linearly bounded closed convex sets with 

empty intersection. (A set is linearly bounded if its intersection with 

each line is bounded)» With this, and evidently using the fact that, in 

a normed linear space, a closed convex body which is linearly bounded can 

be taken onto the unit cell, and its boundary onto the unit sphere, through 

a (stable) space homeomorphism, he is ab].e to show that any infinite-

dimensional normed linear space can lose a compact set without changing 

its topological character* Moreover, the full statement of Theorem 

remains valid when T is a single point, and thus every infinite-dimensional 

normed linear space can be 'inverted' across its unit sphere, i*e*, there 

is a homeomorphism which is the identity on the unit sphere and takes the 

exterior of the unit cell onto the interior* It follows that every closed 

hyperplane can be thrown onto the unit sphere by a stable space homeo­

morphism, and there is a stable space homeomorphism taking the boundary 

of the unit cell onto itself, and the exterior onto the interior* 

From Theorem 5'U there can be deduced a similar result for countable 

locally compact setss 

Proposition 5»5* Let X be homeomorphic to a nonreflexive normed 
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linear space, and let ACUCX, where A is countable locally compact and 

U is open. Then there is a homeomorphism of X onto X\A, supported on U« 

Proof: Since the property is topologicalj we may assume X is a 

nonreflexive normed linear space• Let A = faz} • Choose a (closed) ball 

B, about a,, such that B, CU, B, A A is compact> diam B, < 1, and Bd(B, )A A 

= 0. If â , £ B, , let B, = B,. Otherwise, choose a ball B;, about a,, such 

that B̂ CU, B;,AA is compact, diam B̂  < l/2, Bd(B;,)AA = and B,<\ B;, » jZL 

Continuing in this manner, we obtain a sequence {B;} of balls in U» By 

KLee's theorem, there exists, for each i, a homeomorphism By'̂ B̂ XA which 

is the identity on Bd(B̂ ). These define the desired homeomorphism X-̂  

X\A, supported on U« 

Corollary 5»6« Let Z be any topological space, and let ACUCUCXCZ, 

where A is countable locally compact, U is open, and X is homeomorphic to 

a nonreflexive normed linear space* Then there is a homeomorphism of Z 

onto ZSA, supported on U» 

Proof: By (5»5), there exists a homeomorphism of X onto XNA, 

supported on U» Combined with the identity map on Z\X, this gives the 

desired homeomorphism. 

Proposition 5» 7» There does not exist a subset FCR*̂  such that for 

every locally compact subset L of F, F\L is nonempty (n-l)-connected. 

Proof: Assume such an F exists. We shall construct an antipode-

distinguishing map f: S**—>FCR , contradicting Borsuk's antipodal theorem 

(6, p. 3li9)* Let fg : s"—̂ F be any map with fo(-l) / f«, (1). Assume 

there is defined an antipode-distinguishing map f̂ _/: Ŝ '̂ F, î n. 

Define ̂  (x) = d(f̂ _/(x), f̂ v/(-x)) for all xe ESjr compactness, there 

exists 6>0 such that ̂ (x)>e for all x Let = (TJ| be a triangulation 
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of s'""', with dim Ty = a> such that diam f̂ *-/(Ty"')< 6/2 for all Ty"' Then 

X£ Tj", -xe imply f̂ _, (Tt'OAfz./T̂ O - 0. Choose pe We 

consider the cons cS*"' over S*"', and its triangulation c T induced by CT. 

Define f/(c) " p» f//S • Observe that for every face Tj" of CT ̂ 

f̂ '_̂ (S"')\fi-/(Ty ) is locally compact. We extend f/_/ to f/j cS'"*'—>F by 

stages: first on the 1-faces cTj, then on the 2-faces, etc., and finally 

on the i-faces cT̂ '', such that, for each Ty", fJ(cTy)Af̂ .̂ (S'""'') = f̂ -_,(Ty). 

Now choose qe F\f/(cS''0' Define f/(c) = q, fJ/S*"'- f/.̂ > and as above, 

extend f;,, to f/: cS'"̂ -̂ F\(f/(cS'"0\ft-/(S''')) so that, for each T/, 

^̂ (cT;)Af,-.,(S''-0 = f/_/(T/). Then f/, f/ define a map f̂ - : S'-»F which 

distinguishes antipodes, and f " f« is the desired map. 

Theorem ̂ .8. Let cMJ be a separable metric space such that the 

complement of every locally compact (c-compact) subset is nonempty 

homotopically trivial. Then x C, where F is finite-dimensional 

and C is locally compact (o"-compact). 

Aroof: Assume oM,̂  F x C, either case considered. Then FCR*̂  for 

some n, and for every locally compact subset L of F, (F\L) x C is non­

empty homotopically trivial, therefore (n-1)-connected. Thus F\L is 

nonempty (n-l)-connected, contradicting (5*7). 

Corollary i?»9. Separable infinite-dimensional Frcchet space is not 

homeomorphic to a product F x C, where F is finite-dimensional and C is 

C-compact. 

Rroof! By the proof of (3*3), every cr-compact subset has homotopy 

deficiency, without the closure requirement, and therefore the complement 

is nonempty homotopically trivial. (Of course by Anderson's result ($.2), 

the complement is homeomorphic to the whole space)» 



28 

CHAPTER VI. LITERATURE CITED 

1« Anderson, R. D. Hilbert space Is homeomorphic to the countable infinite 
product of lines* Bull# Amer* Math* Soc* 72: ^^-^19. 1966. 

2. • Topological properties of the Hilbert cube and the infinite 
product of open intervals. Trans. Amer, Math» Soc. 126: 200-216* 1967* 

3* . On topological infinite deficiency* Michigan Math* J* ll̂ î 
365-3»3* 1967. 

li* Brown, M* and Gluck̂  R. Stable structures on manifolds: I. Homeo-
morphisms of S'®. Ann. of Math* (2) 79: I-17. 196L. 

Gernavskij A. V« Homeomorphisms of Euclidean space nnd topological 
imbeddinga of polyhedrons in Euclidean spaces: I* k-Stability of 
homeomorphisms of for k<% n - 1. (Russian) Mat* Sb. 68: ̂ 81-
613. 1965* 

6* Dugundji) James* Topology* Boston, Mass*, Allyn and Bacon, Inc. I966. 

7* Hocking, John G. and Young, Gail S* Topology. Reading,Mass*, Addison-
Wesley Publishing Company, Inc* 1961* 

8* Hurewicz, Witold and Wallman, Henry* Dimension theory. Revised Ed* 
Rrinceton, N* J*, Princeton University Press* 19it8. 

9* Kelley, J* L* and Namioka, I* Linear topological spaces* Princeton.» 
N* J*, D. Van Nostrand, Inc* 1963* 

10. dee, V. L* Convex bodies and periodic homeomorphisms in Hilbert 
space* Trans* Amer. Math* Soc. 10-U3* 1953* 

11* . Some topological properties of convex sets* Trans. Amer* 
Math. Soc* 78: 30-U5* 195̂ * 

12. * A note on topological properties of normed linear spaces* 
Proc* Amer. Math* Soc* 7% 673-67U. 1956. 

13* . On the Borelian and projective types of linear subspaces* 
Math. Scand. 6: 189-199* 1958. 

lli* Taylor, Angus E. Introduction to functional analysis. New York, 
N* Y., John Wiley and Sons, Inc. 1958* 

15* "Whittaker, J* V. Some normal subgroups of homeomorphisms. Trans. 
Amer. Math. Soc. 123: 88-98. 1966. 

16* Wong, R.Y. T. On homeomorphisms of certain infinite dimensional 
spaces* Trans. Amer. Math. Soc* 128: 12*8-151** 1967* 



29 

CHAPTER VII. ACKNCMLEDGMENT 

The author is indebted to Professor Donald Sanderson for his 

encouragement and helpful direction throughout this studyj and for 

referral to the literature# 


