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Splitting methods and Invariant Imbedding for time-Independent wave 
propagation In focusing media and wave guides 

J. W. Evans 
Ames Laboratory, Applied Mathematical Sciences, Iowa State University, Ames, Iowa 50011 

(Received 30 July 1986; accepted for publication 16 September 1987) 

For time-independent wave propagation in focusing media or wave guides, backscattering and 
coupling between propagation modes are caused by deterministic or random variations of the 
refractive index in the distinguished (x) direction of propagation. Various splittings of the 
wave field into forward and backward traveling components, which lead to coupled equations 
involving abstract operator coefficients, are presented. Choosing a natural explicit 
representation for these operators immediately yields a coupled mode form of these equations. 
The splitting procedure also leads naturally to abstract transmission and reflection operators 
for slabs of finite thickness (a.;;;;x.;;;;b), and abstract invariant imbedding equations satisfied by 
these. The coupled mode form of these equations, together with such features as reciprocity 
(associated with an underlying symplectic structure) are also discussed. The example of a 
square law medium is used to illustrate some of these concepts. 

I. INTRODUCTION 

Here we consider only time-independent scalar wave 
propagation described by the d> 2 dimensional Helmholtz 
equation. We assume that there is a distinguished direction 
of propagation chosen as the x direction in a Cartesian coor­
dinate system (X I,x2,x3"") where XI =x, (X2,x3"") = Xl' 
The Helmholtz equation is thus written naturally as 

~xx + S~ = 0 or ~ (~J = (0_ S ~)(~J, (1.1) 

where S = Al + k 2 (x), and suitable boundary conditions 
are imposed on ~ if the range of Xl is restricted. Here 
Al = a2lax/ is the transverse Laplacian, k(x) kn(x.), 
where n (x) is the refractive index, and k > 0 is arbitrary. We 
shall regard {S=S(x)} (implicitly including any appropri­
ate boundary conditions) as a generally noncommutative 
family of unbounded self-adjoint operators on L 2(Xl ). 

Our treatment of the Helmholtz equation ( 1.1 ) is based 
on a splitting of ~ into right (x increasing) ~+. and left (x 
decreasing) ~-, traveling components. This decomposition 
is achieved in terms of a splitting operator P as 

(~+) (~) . 1 (1 - iT-
1/2

) 
~- =P ~x • wlthP=P(x) =2" 1 +iT- I12 ' 

( 1.2) 

i.e., ~± =1(~ iT-1/2~x)' so ~=~- +~+. Suitable 
choices of the operators T= T( x), on L 2 ( Xl ) are discussed 
below (cf. Refs. 1-6). Formal manipulation of (1.1) now 
yields (cf. Ref. 4 ) 

d (~+) (~+) 
dx ~- =A(x) ~- , 

A(x) =p(O l)p 1 + (~p)p 1 

S 0 dx '(1.3a) 
or 

+~(T-1/2)xTI/2(~± - ~~) . (1.3b) 
2 

To motivate (1.2) and 0.3), we note that the choice 
T=S diagonalizes 

p(O l)p_ I 

-S 0 ' 

thus decoupling (1.3) and providing natural definitions for 
~± in regions wheren(x) (orS) isindependentofx. We call 
this choice full local splitting, noting that it provides, in some 
sense, the most complete splitting. It is naturally used (and 
illustrated in this contribution) for media with deterministic 
n(x) which varies with x. Clearly, as recognized previous­
ly,2,4 there is no unique natural choice in regions where n (x) 
varies with x. We now mention some other useful splitting 
choices. Reference splitting where T(x) =So, independent 
of x, is also suitable for treating deterministic media where 
variations in n(x) with respect to x are restricted to some 
localized region. Here we naturally choose 
So=lim1xl _.., Sex). We have recently implemented refer­
ence splitting to treat wave propagation in random media 
where the (statistical) mean, (n(x» ofn(x), is independent 
of x, and we choose So = (S ).7 Of course (1.2) and (1.3) also 
allow for the possibility of intermediate splittings where 
T=t=S, but Tstill depends on x, e.g., T(x) = (S(x» for ran­
dom media where (n(x» also varies with x. 

Neglecting ± coupling in (1.3) produces a "unidirec­
tional propagation approximation" which will be of the 
WKB (parabolic) type for local (reference) splitting. Such 
an approximation constitutes the lead term in an iterative 
Bremmer-type series expansion 1 of the exact solution of 
( 1.3). For either an exact or approximate treatment, it is 
clearly necessary to develop an operational calculus for the 
splitting operator T(x). This is trivial if one simply makes a 
scalar choice for T(x) [e.g., T(x) =k 2 (x,xl = 0) (or the 
Ixl ..... 00 limit, should it exist) which produces an Arnaud3 

(Leontovich-Fock8
) approximation], but instead we con-
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sider only "more complete" abstract operator choices in an 
attempt to avoid "kinematic" contributions to backscatter­
ing [i.e., those not associated with variations of k(x) with 
respect to x]. The spectral theory for T(x) is only trivial for 
stratified media where T is multiplicative in the transverse 
Fourier transform variables. More generally, Weyl pseudo­
differential operator calculus can be used,9 but here we uti­
lize conventional self-adjoint operator spectral theory, 
which, for focusing media or wave guides, corresponds to a 
wave field decomposition into a complete set of guided and 
radiation modes. 

Mode-coupled equations, obtained by evaluating the ab­
stract operator splitting equations ( 1.3) in a natural explicit 
representation, are displayed in Sec. II. A "more conven­
tional" derivation of these equations is also provided. The 
explicit example of a square law medium with one lateral 
dimension is treated in Sec. III, and a diagrammatic repre­
sentation of the Bremmer-type series solutions is provided. 
Invariant imbedding equations for transmission and reflec­
tion operators for slabs of finite thickness are presented in 
Sec. IV, and the symplectic structure of the underlying split­
ting equations is shown to generate important reciprocity 
conditions. 

II. LOCAL SPLITTING APPLIED TO DETERMINISTIC 
FOCUSING MEDIA AND WAVEGUIDES 

The infinite focusing media (or open waveguides) con­
sidered here have the following properties: (i) n(x) attains 
its maximum near Xl = 0; (li) n(x) ..... n ao (x), as Ixll ..... 00, 

for each x; and (iii) n(x) is independent ofx outside of the 
interval (0 < ) a < x < b. Thus any guided wave propagation 
is along the x axis, and scattering is restricted to a <x < b. 
The self-adjoint operator T(x) ==S(x) here in general has 
several discrete eigenvalues satisfying A.e(k 2n:, (x), 
k 2 max n2(x»). The corresponding L 2(Xl )-normalized ei­
genfunctions describe the guided modes. 10.11 We note that if 
d=3 and <5n(x)==n(x) -nao (x)eCO'(R 2

) is non-nega­
tive, then there exists at least one such guided mode,12 no 
matter how small k! (This is also a property of symmetric, 
but not asymmetric, slab waveguideslO

.) In addition, each 
A.e[ - 00,k 2n:, (x)] is in the continuous spectrum. Specifi­
cally, A.kl = k 2n:, (x) - Ikl l2 is associated with "weak" ra­

diation mode eigenfunctions _eik"Xl as Ixll ..... 00. Modes 
with A. > 0 ( < 0) are described as propagating (evanescent) 
for reasons which will become obvious. A schematic of the 
spectrum of T = S is shown in Fig. 1. Radiation modes can 
plan an important role in wave propagation, but one en­
counters fundamental problems associated with singulari­
ties in associated coupling terms l1 (see below). A guided 
mode can also disappear into the continuum of radiation 
modes as x varies, as a result of changes in the shape of n (x) . 
Such a cutoff highlights a fundamental problem with an 
"adiabatic" treatment neglecting mode coupling. 11 This 
problem will not be addressed here. 

For a closed waveguide, Xl is restricted to a finite region 
for each x. Its boundary (where conditions are imposed on 
the wavefield) is assumed to vary smoothly with x for 
a < x < b, and to be fixed elsewhere. Here the spectrum of 
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FIG. 1. A schematic of the continuum spectrum (cross-hatched line) and 
point spectrum (circles) of T=S. 

T==S is purely discrete, each eigenvalue A. corresponding to 
one or more guided modes. A mode which is propagating 
(A. > 0), for large x, could become evanescent for part of 
a < x < b (the quantum mechanical analog of which is "bar­
rier tunneling" 13 ). In this case one sees singUlarities in the 
splitting procedure (certainA. -1/2 ..... 00) generating a strong 
coupling between forward and back propagating modes (cf. 
the connection formulas for barrier tunneling13

). We shall 
not discuss this further here. 

It is convenient to introduce generic mode labels K and 
to denote all (T==S)-mode eigenfunctions by tPK(xllx) 
== (x1IK,x) (using Dirac notation), and corresponding 
eigenvalues by A.K (x). Thus if l:K represents a sum/integral 
over all modes, then one has that 

f(T(x») = L:f(A.K(x»)IK,X)(K,xI· 
K 

The modal coefficients <PK (x) = (K,xl<p) of <p(x) satisfy 

(2.1 ) 
K 

We note here that 

(tPX)K = (K,xl ! I tP) = ! (K,xltP) - (! (K,xI)itP) 

= ! tPK + ~(K,xl ! IK',X)tP.; , 

(2.2) 
so, from ( 1.2), one has 

tP! = ~ (tPK += iA. K- 1/2 ! tPK) 

i , _ 1/2 ,,( I d I ' ).,. +=-"'K ~ K,x - K,X '/'.;. 
2 K' dx 

(2.3 ) 

We can obtain directly from (1.3), with T(x) ==S(x), cou­
pled equations for tPK±' which after some rearrangement be-
come 
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[(
A (x) )112] } 

- A: (x) + 1 t/J,t· (x) 

=F K± (x), say. (2.4) 

Note that contributions to (T(x) -1/2)x come from the x de­
pendence of both eigenvalues and eigenfunctions (here bras 
and kets). For evanescent AK<O, we set A!12=iIAKI

I
/
z 

guaranteeing that the corresponding components of t/J+ 
(t/J-) are exponentially decreasing as x increases (de­
creases). The singular behavior of the coupling coefficients, 
(K,xldldxIK',x), where K, K' are both radiation modes, is 
discussed in Appendix A for d = 3. 

Clearly (2.4) provides a natural starting point for the 
analysis of back scattering effects on wave propagation. For 
boundary conditions corresponding to one or more right­
propagating guided modes at x = 0 [t/JK+ (0) =1=0, for such 
K], and no left-propagating waves at x 00 [t/J K- ( 00 ) = 0] , 
(2.4) can be rewritten in integral form as 

t/JK+ (x) = ifJ/ (x) + LX dx' G K+ (xlx')F K+ (x') , 
(2.5) 

t/JK- (x) = - 1"" dx' G K (xlx')F K (x'), 

where 

ifJK+ (x) =G K+ (xIO)t/J/ (0) 

and 

G!(xlx' )= _K __ exp ±i dX"A~(X"). (
A (X'»)1I4 (LX ) 
AK(X) x' 

The only contribution to the integrals, associated with in­
homogeneity in n (x) with respect to x, comes from the scat­
tering region x' E [a,b ]. If coupling between guided modes is 
weak and coupling to radiation modes can be ignored, then 
the iterative solution of (2.5) is viable. 

It is instructive to consider the relationship of (2.4) to 
the more conventional mode-coupled equations for t/JK' 
(t/Jx ) K' We show, in Appendix B, how the latter can be used 
to generate a standard second-order equation for the t/J K [as 
could have been obtained from an explicit propagation mode 
representation of ( 1.1) ]. By introducing an appropriate infi­
nite matrix splitting operator, we can also recover (2.4). 

III. WAVE PROPAGATION IN SQUARE LAW MEDIA 
(WITH VARIABLE FOCUSING) 

When the guided mode wave propagation in focusing 
media is effectively confined laterally to a region near the 
maximum of n (x), one might expect a quadratic approxima­
tion for n (x) to be reasonable. This motivates the analysis of 
"square-law" media where 

n(x)2=I-B 2(x)lxl I2, (3.1) 

which. of course. is unphysical for IXll >B -I. Relation 
(3.1) provides a useful description for certain optical fibers. 
Although replacing the physical n (x) by (3.1) may have 
minimal effect on the highest (guided mode) eigenvalues 
and eigenfunctions of T(x) =S(x) and the corresponding 
eigenfunctions. it affects those of lower eigenvalues more 
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dramatically. and replaces the continuous radiation mode 
spectrum with a "spurious" point spectrum. 

For simplicity we confine our attention to d = 2 here (a 
single lateral dimension). Here the eigenfunctions and 
eigenvalues of 

a2 

T(x)=S(x) =--2 +k 2(1-B 2(x)x/) 
aX1 

are given by 

t/Jm(x1Ix) = (2- mlm!)1/2(kB(x)hr)I/4 

XHm(kl/2B(x)1/2xde-kB(X)XI12, (3.2) 

Am (x) k Z - 2kB(x) (m + D. for m;;..O. 

where H m is the mth-order Hermite polynomial. Using stan­
dard relationships for the H m' one can show that 

..!!....Im.x) = B'(X) [m l/2 (m -1)1/2Im - 2,x) 
dx 4B(x) 

(m + 2)1/2(m + 1)1/21m + 2,x)] • 
(3.3a) 

so 

I m,xI..!!....ln x) = B '(x) [(m + 2)1/2(m + 1)1/2t5 
\ dx' 4B(x) m+2,n 

(3.3b) 

It is elucidating to consider the high wavenumber (k) 
regime here where dldxlnAm and (Am±zIAm)1/2-1 
= O( 11k). which indicates the small coupling between for­
ward and backward propagating modes. In this regime (2.4) 
becomes 

! t/J~ =+ i[ k - B ( m + !)] t/J~ 
= B'(x) [ml/2(m _1)1/2.1.± 

4B(x) 'Fm-2 

(m+2)1/2(m+l)1/2t/J~+2] +o(!). (3.4) 

Let us now utilize the integral form (2.5) ofthe mode 
coupled equations (2.4) for a scattering problem with 
boundary conditions t/J';:- (0) a::t5m ,o, t/J,;; (00) = 0 for all 
m;;..O. Clearly, from (3.3) and (2.4), one has that 
t/J:; (x) =0, for m odd. Expressions for t/J:;. with m even, can 
be obtained from the iterative solution of (2.5) [assuming 
that no A m (x) changes sign or becomes zero, as x varies]. It 
is natural to represent contributions to these solutions dia­
grammatically in terms of paths on a lattice of points labeled 
by the modes (m, ± ). The zero length path (0, + ) and 
segments connecting different points have the interpretation 
shown in Fig. 2. Then t/J:; is represented as a sum over all 
paths connecting (0, + ) to (m, ± ) (see Fig. 3). One can 
straightforwardly extend these considerations to higher di­
mensional (d;;.. 3) square law media. 

IV. INVARIANT IMBEDDING, SYMPLECTIC 
STRUCTURE AND RECIPROCITY, AND OTHER 
SYMMETRIES 

We have shown that the basic differential equation asso­
ciated with any splitting has the form 
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[
(\;2(X.»)1I2 ]~) 
l~ ... a~. 

(m,-) (m.2,-0) [(m,-) (m,.») (m,.) (0.2, 0) [(m,.) (0,-») 
~ ~ are obtained from ~ ~ 

by repladng r dx' G+ ••• vlthI- dx' G- ••• 

JO • x • 

FIG. 2. Operator theoretic interpretation of path segments appearing in the 
diagrammatic representation of solutions of the coupled wave equations. 
Hereu= + I or -1. 

where j = (0_ I ~), ( 4.1 ) 

defining H(x) = - jA(x) and noting that - j2 = 1 (the 
identity). Since (4.1) is linear, one naturally defines the ab­
stract transmission T ± and reflection R ± operators for 
slabs [x,y] of finite thickness, by 

(
V'-(X») = (R + (x,y) T-(X,y»)("V(X») 
t/J+(y) T+(x,y) R -(x.v) t/J-(y) 

(
t/J+ (X») 

=S(x,y) t/J- (y) , (4.2) 

where S is called the scattering operator and clearly 
T ± (x,x) = I, R ± (x,x) = O. The operator S satisfies the 
differential equation (cf. Refs. 4, 5, and 14) 

.E... S = (T - O)H (T + R -) . 
ay \R - I (y) 0 I (4.3) 

Taking the four components of (4.3) provides the familiar 
Ambarzumian form of the invariant imbedding equations. 14 

An equivalent set may be obtained from these by making the 
replacements a/iJy-a/ax, T-++T+, R -++R +, 

H± ± (y)-H~~ (x),H± ~ (y)-H~ ± (x). 

+ 
ljIo 

-
ljio 

+ 
I/Izm 

0+ 2+ 4+ 0+ 2+ 0+ 2+ 

= 2+ + ru + f§[ + IT 
0- 2- 0- 2- 0- 2-

0+ 2+ 0+ 2+ 0+ 2+ 0+ 2+ 

+ 0= + 2t + &" +N + ••• 
0- 2- 0- 2- 0- 2-

0+ 2+ 0+ 2+ 0+ 2+ 

IT + I2[ + N + ... = 
0- 2- 0- 2- 0- 2-

0+ 2+ 4+ 2m+ ITI _____ n_ TI 
= -- ---- ---

0- 2- 2m-

0+ 2+ 4+ 2m+ 

+ &L2r -------=-n + ... 
0- 2- --------. 2m-

FIG. 3. Diagrammatic expansions for various forward and backward trav­
eling modal components of the wave field. 
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Since these equations have a structure generic to many 
problems in wave propagation and transport theory, we anti­
cipate that there exist basic relationships between the reflec­
tion and transmission operators. To fully elucidate this 
structure, it is appropriate to introduce several new quanti­
ties. Let C (x,y) be the operator which propagates the wave­
fields t/J± from x toy, i.e., 

(4.4) 

where, from (4.2), 

C++ = T+ -R -[T-]-IR +, C+_ =R -[T-]-I, 

C_+ = - [T-] -IR +, C __ = [T-] -I. (4.5) 

Though C is less physical than S, we shall see that in certain 
cases it can be regarded as a (linear) canonical transforma­
tion. Note that from (4.1) and (4.4), one clearly has 

C(x,x + ax) = 1 + A(x)ax + O(ax2
) , (4.6) 

where 1 is the identity. Finally, it is convenient to define 

OI(X) = (0 _ O(X») O(x) = (O(X)? ) 
- O(x) 0 ' .v 0 O(y) , 

(4.7) 

where the operator O(x) will be sp'ecified later, and - denotes 
a real involution operation (so A = A, i = i). Now using 
( 4.1 )-( 4. 7) as defining relations, one has the following. 

Theorem: The following conditions are equivalent for 
any differentiable O(x): 

i.e., 

and 

(i) O(x.v)S(x,y) = S(x,y)6(x,y) , 

O(x)R + (x.v) = R + (x.v)O(x), 

O(y)R - (x,y) = R - (x,y)O(y) 

O(x)T-(x,y) = r+(x.v)O(y); 

(ii) C(X,y)OI(y)C(X,y) = OI(X) , 

i.e., a symplectic condition for C; 

(4.8) 

(4.9) 

(iii) A(X)OI(X) + OI(x)A(x) + O! (x) = 0, (4.10) 

or equivalently, 

i.e., 

and 

H(x)6(x,x) - O(x,x)H(x) + O! (x) = 0, 

H++(x)O(x) = O(x)H++(x), 

H __ (x)O(x) = O(x)H __ (x) , 

H_+(x)O(x) -O(x)H+_(x) +Ox(x) =0. 

Proof: (i) => (ii): Calculation of the components of 
C(X,y)OI (y)C(x,y), followed by substitution of identities 
from (i), shows straightforwardly that this quantity equals 
OI(X). 

(ii) => (iii): Substituting the expansions 

C(x,x + ax) = 1 + Aax + O(ax2
) , 

C(x,x + ax)-I = 1- Aax + O(ax2
) , (4.11 ) 

and 
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al(x + t\x) = al(x) + a! (x)t\x + O(t\x2) , 

into the identity 

C(x,x + t\x)al(x + t\x) = al(x)C(x,x + t\x) -I, 
(4.12) 

and equating terms O(t\x) yields (iii). 
(iii) ~ (i): Using Eqs. (4.3) and identities from (iii), 

one obtains 

i.[O(x)R +] =O(x)T-H++(y)T+ ay 
= T+O(y)H++(y)T+ 

+ [O(x)T- - TO(y) ]H++(y)T+ , 

and 

~[R +O(x)] = T+H++(y)T-O(x) 

= T+H++(y)O(y)T+ + T+H++(y) 

X [T-O(x) - O(y)T+] , (4.13) 

so 

i.[O(x)R + - R +O(x)] 
ay 

(4.14 ) 

where I denotes the involution of the first term. Similarly, 

i.[O(y)R - - R -O(y)] 
ay 

= [O(y)R - - R -O(y)] 

X[H++(y)R+H++(y)] -I, 

i.[O(y)T+ - T-O(x)] 
ay 

= [O(y)R - - R -O(y) ]H++(y)T+ 

- [R -H++(y) +H++(y)] 

X [T-O(x) - O(y)T+] . 

(4.15 ) 

(4.16) 

Since the identities (i) [i.e., (4.8)] are trivially satisfied 
when x = y, (4.14)-(4.16) show that they are satisfied for 
ally;;;.x. 0 

Now we apply these results to the specific choice of split­
ting of", into "'± defined by (1.2) and thus associated with 
the operator T = T(x). The corresponding components of H 
can be determined from (1.3). For this application it is nec­
essary to choose the real involution - to correspond to the 
real transpose (rather than Hermitian adjoint) and to note 
that appropriate choices of T satisfy T = T, i.e., 

I dXl "'(Xl )(T;)(xl ) == I dXl ;(Xl )(T",)(xl ) 

= I dXl "'(Xl )( T; )(Xl ) . 

( 4.17) 

This is obviously true choosing, e.g., T = Sex) 
= a1 + k 2(X) (local splitting) or T = So = a1 

+ k2(X = ± 00 ,Xl ) (reference splitting) even if 
k(x) = kn (x) is complex valued corresponding to a dissipa-
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tive medium. Then condition (iii) is satisfied by the choice 

0= TI/2, ( 4.18) 

as may be verified by straightforward calculation. 
Another symmetry property for the operator C(x,y) is 

based on the observation that the (easily verified) relation­
ship 

(0 1)- (0 I) I 0 A(x) = A(x) I 0' 

or 

A++ =A __ , A_+ =A+_, 

is equivalent to 

(0 1)- (0 I) 
I 0 C(x,y = C(x,y») I 0 ' 

or 

( 4.19) 

C++(x,y) = C __ (x,y), C_+(x,y) = C+_(x,y) . 
(4.20) 

This is representative of a broader class of symmetry rela­
tionships.ls When (4.20) is combined with (4.9) and 
( 4.18 ), one also obtains 

_ (T 1/2(y) 0 )_ 
C(x,y) 0 _ T/2(y) C(x,y) 

= (OT
I
/
2
(X) 0 ) 

_ T I/2(X) • 
(4.21 ) 

Matrix elements of scattering operators are evaluated 
here using a natural mixed representation with respect to 
eigenfunctions of (different positioned) splitting operators 
T(x). For example, T K~K (x,y) = (K',yl T + (x,y) IK,x) is the 
appropriate transmission coefficient connecting right propa­
gating modes K at x, and K' at y. Generic Dirac notation is 
used here for T eigenbras and eigenkets, and corresponding 
eigenvalues are denoted by AK (x) (but now these will not 
correspond to S eigenbras and eigenkets and eigenvalues 
when S 1= n. This prescription is automatically compatible 
with the evaluation of operator products required in (4.3) 
(or equivalent versions of these equations). Clearly, in 
(4.3), Tbras and kets for all components ofH(y) are evalu­
ated at y. The important reciprocity conditions (4.8) [using 
( 4.18)] have the explicit form 

AK (x) 1/2(K,xIR + (x,y) IK',x) 

= AK' (x) 1/2(iC' ,xIR + (x,y) liC,x) , 

AK (y) 1/2(K,yIR - (x,y) IK',y) 

=AK, (y)1/2(iC',yIR + (x,y) liC,y) , 

AK (x) 1/2(K,x1 T - (x,y) IK',y) 

= AK' (y) 1/2(iC',yl T + (x,y) liC,x) , 

where (xlliC,x) = "'K (Xl )*. 

(4.22) 

It is a straightforward matter to write down the explicit 
form of the mode coupled invariant imbedding equations. 
One could investigate an iterative form of solution which, to 
the lowest order, gives 

T ?;K -~K"K exp(f dS(K,sIH =F ± IK,s») and R K~K -0 . 

(4.23) 
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V. CONCLUSIONS 

An abstract splitting operator based formation is shown 
to provide a powerful and flexible formulation of wave prop­
agation in "imperfect" media. Mode coupled equations con­
necting forward and backward propagation provide a natu­
ral basis for the analysis of backscattering effects. We have, 
however, noted some difficulties associated with guided 
mode cutoff, and propagating-evanescent transitions. The 
formalism also provides a natural basis for derivation of in­
variant imbedding equations for transmission and reflection 
operators. The reciprocity relations derived here for these 
are important from a fundamental and practical perspective. 
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APPENDIX A: RADIATION MODE EIGENFUNCTIONS 
AND MATRIX ELEMENTS FOR d=3 

Here the eigenvalue equation for the radiation mode ei­

genfunctions, rfJk, - (l/21T)eIk1
"", as IXl I ... (X), can be con­

verted to the integral form 

.1. 1 1 ,k.1·Xl ik 2 J d I 
'f'k (Xl x) =-e +- Xl 

1 211' 4 

XH~ (kl lx1 - xL I)<5n(x,xL )rfJk1 
(xI Ix) , 

(Al) 

where kl = Ikll, and we have used the Hankel function H ~ 
to provide an explicit representation of the two-dimensional 
free Green's function (Al + kf)-1 (see Ref. 16a). Let us 
analyze radiation to radiation mode coupling coefficients, 
(k1,xld IdxlkL,x), of (2.4). First, one must consider 
d 1 dx rfJ ., which can be obtained from (AI) by differentiat-

kl 

ing under the integral sign. Thus its large Xl = IXl I asymp-
totic behavior is obtained directly from that of 

H ~ (k Ixl ) - (1Tk Lxl l2) -1/2 exp(ik LXl - i1T14) . 

Second, it is convenient to reexpress the plane wave part of 
rfJk

1 
as a linear combination of cylindrical wave eigenfunc­

tions of A 11 proportional to 

Jv(k1x1) _(1TklXl )-112 COS(klXl __ 1 ___ 1_), 
2 2V1T 41T 

as Xl -+ (X) .16b After writing 

J dXl = J dt/J J dXl Xl"' 

it is clear that these coupling coefficients involve singular 
integrals of the form 

roo dkeikx = J..<5(k) + iPlk , (A2) 
Jo 2 

where P represents a Cauchy principal value integral. 

102 J. Math. Phys., Vol. 29, No.1, January 1988 

APPENDIX B: SPLITTING OF CONVENTIONAL MODE­
COUPLED EQUATIONS 

Let '11, '11 x denote infinite dimensional vectors with com­
ponents rfJ K' (rfJx) K' respectively. Then, from (1.1), one can 
readily obtain the following infinite matrix form of the con­
ventional mode-coupled equations II: 

d ('11) ( - D : I )('11 ) 
dx 'I1x = --'71. r .:. 5 'I1x ' 

(BI) 

where (I)K,,..· = <5K ,K is the identity, (A)K,K = <5,..,KAK (where 
the AK are the eigenValues of T=.S) , and (D),..,K 
= (K,xld IdxIK',x). Elimination of 'fix from (Bl) yields the 

standard second-order equation for '1111: 

d
d: '11 + 2D ~ '11 + (D2 + ~ D +A)'I1 = o. (B2) 
x dx dx 

Instead we introduce right, 'fI+, and left, "'-, traveling vec­
tors in terms of a splitting operator P by 

(::) = p(:J, where P = ~ G j-;~;~), (B3) 

so the components of'l1± are just rfJ! (for local splitting 
where T=.S). Deriving equations for '11± from (BI) in the 
obvious way [cf. (1.3)] yields 

~'11± = +iI!.I/2'11± +J..(A- 1/2 ) Al/2 ('11± -'114=) 
dx - 2 x , 

- ! A - 1/2DA 1/2('I1± _ '114=) (B4) 

- ! D('I1+ + '11-) , 

recovering (2.4). 
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