
INFORMATION TO USERS 

This manuscript has been reproduced from the microfilm master. UMI 

films the text directly from the original or copy submitted. Thus, some 

thesis and dissertation copies are in typewriter face, while others may 

be from any type of computer printer. 

The quality of this reproduction is dependent upon the quality of the 
copy submitted. Broken or indistinct print, colored or poor quality 
illustrations and photographs, print bleedthrough, substandard margins, 
and improper alignment can adversely affect reproduction. 

In the unlikely event that the author did not send UMI a complete 

manuscript and there are missing pages, these will be noted. Also, if 

unauthorized copyright material had to be removed, a note will indicate 

the deletion. 

Oversize materials (e.g., maps, drawings, charts) are reproduced by 

sectioning the original, beginning at the upper left-hand corner and 

continuing from left to right in equal sections with small overlaps. Each 
original is also photographed in one exposure and is included in 

reduced form at the back of the book. 

Photographs included in the original manuscript have been reproduced 
xerographically in this copy. Higher quality 6" x 9" black and white 
photographic prints are available for any photographs or illustrations 
appearing in this copy for an additional charge. Contact UMI directly 

to order. 

University Microfilms International 
A Bell & Howell Information Company 

300 North Zeeb Road. Ann Arbor. Ml 48106-1346 USA 
313/761-4700 800-521-0600 





Order Number 9234808 

Topics in nonlinear filtering 

Fan, Kaisheng, Ph.D. 

Iowa State University, 1992 

U M I  
300 N. Zeeb Rd. 
Ann Arbor, Ml 48106 





Topics in nonlinear filtering 

by 

Kaisheng Fan 

A Dissertation Submitted to the 

Graduate Faculty in Partial Fulfillment of the 

Requirements for the Degree of 

DOCTOR OF PHILOSOPHY 

Department: Mathematics 
Major; Applied Mathematics 

Approved: 

Irryëarge ot Major Work 

For the Major Department 

Foi^be Graduate College 

Iowa State University 
Ames. Iowa 

1992 

Copyright @ Kaisheng Fan. 1992. .All rights reserved. 

Signature was redacted for privacy.

Signature was redacted for privacy.

Signature was redacted for privacy.



ii 

TABLE OF CONTENTS 

GENERAL INTRODUCTION 1 

Explanation of Dissertation Format 5 

PAPER I. ON THE UNNORMALIZED SOLUTION OF THE FIL­

TERING PROBLEM WITH JUMP PROCESS OBSER­

VATIONS 6 

ABSTRACT 7 

1. INTRODUCTION 8 

2. PRELIMINARIES AND FORMULATIONS 10 

2.1 Definitions and Notations 10 

2.2 The Differential Equation for the Model 11 

3. THE OBSERVATION PROCESS 14 

3.1 The Jump Process and its Parameter 14 

3.2 The Structure of the Observation Process 15 

3.3 The Specific Structure of the Operator L 17 

4. THE PREDICTABLE QUADRATIC COVARIANCE OPERA­

TOR : 21 



iii 

5. THE FILTERED MARTINGALE PROBLEM 25 

5.1 Basic Setup 25 

5.2 The Filter Equation 27 

6. SOLUTION OF THE FILTER EQUATION 33 

7. EXAMPLES 37 

REFERENCES 43 

PAPER II. DIMENSION REDUCTION FOR FILTERED MARKOV 

CHAINS 45 

ABSTRACT 46 

1. INTRODUCTION 47 

2. PRELIMINARIES AND DEFINITIONS 53 

3. DIMENSION REDUCTION BY LINEAR INVARIANT SUB-

SPACES AND INVARIANT INTEGRAL SUBMANIFOLDS . . 56 

3.1 Dimension Reduction by Linear Invariant Subspaces 56 

3.2 Dimension Reduction by Invariant Integral Submanifolds 59 

4. EXACT CRITERIA FOR LOWER DIMENSIONAL FILTERS . 62 

4.1 Conditions for Mn to be an Invariant Manifold 62 

4.2 Dimension Reduction Using the Structures of the Matrices A and B 65 

REFERENCES 69 



iv 

PAPER III. APPROXIMATE DIMENSION REDUCTION FOR FIL­

TERED MARKOV CHAINS 70 

ABSTRACT 71 

1. INTRODUCTION 72 

2. PRELIMINARIES AND NOTATIONS 75 

2.1 Assumptions and Comments 75 

2.2 Fast and Slow Transition States of a Continuous Time Markov Chain 76 

2.3 Consistency of the Joint Process 78 

3. THE APPROXIMATE DIMENSION REDUCTION ALGO­

RITHM AND ERROR ESTIMATES 81 

3.1 The Approximate Dimension Reduction Algorithm 81 

3.2 Model Reduction Error 83 

4. EXAMPLE 89 

REFERENCES 92 

GENERAL SUMMARY 94 

LITERATURE CITED 95 

ACKNOWLEDGMENTS 96 



1 

GENERAL INTRODUCTION 

Filtering is the general theory of extracting information about a prescribed quan­

tity of interest from noisy observations. It concerns "estimating" something about 

an unobserved stochastic process {-Y^} given observations of a related process {F^}; 

the classic problem is to calculate, for each t, the conditional distribution of Xf given 

{}a,0 < s < t}. This was solved in the context of linear systems theory by Kalman 

and Bucy [5], [6] in 1960, 1961 and the resulting well-known Kalman and Kalman-

Bucy filter for respectively discrete and continuous time processes have found wide 

spread applications. A generalization of the linear stochastic filtering problem was 

soon made to systems with nonlinear dynamics. This is an essentially more difficult 

problem, being in general infinite-dimensional, but equations describing the evolu­

tion of the conditional distribution were obtained by several authors in mid-sixties, 

for example Bucy [1], Kushner [7], Shiryaev [8], Stratonovich [9], Wo h am [10]. In 

1969 Zakai [11] obtained these equations in a substantially simpler form using the 

so-called "reference probability" method. In 1968 Kailath [4] introduced the "inno­

vations approach" to linear filtering, and the significance for nonlinear filtering was 

immediately appreciated [2]. The definitive treatment in the context of martingale 

theory was given in 1972 by Fujisaki, Kallianpur and Kunita [3]. They obtained the 

"basic" stochastic differential equation of filtering theory, which, in principle, gave a 
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complete solution of the nonlinear filtering problem. In the late seventies and during 

the eighties, most work on nonlinear filtering had concentrated on the areas: rigorous 

formulation of the theory of stochastic partial differential equations, Lie algebraic as­

pects and discovery of finite dimensional nonlinear filters, development of "robust" or 

"pathwise" solutions of the filtering equations and the implementation of nonlinear 

filtering algorithms. 

Recently, the implementation of nonlinear filtering algorithms has received con­

siderable attention both from a theoretical and a practical viewpoint. Due to tech­

nological advances, heavy computational burdens can be carried out in real time 

and people from applied fields, such as communications, radar image analysis, sonar 

tracing, flight control , now demand to have available efiRcient filtering algoritms. 

During the last three decades linear filtering algorithms, based on the Kalman-Bucy 

equations, have enjoyed immense success in a wide variety of applications and have 

been implemented in many systems. However, for nonlinear filtering there exists a 

wide gap between the well developed theory and the design of efficient algorithms. 

The problem is that the design of useful numerical algorithms is complicated by the 

mathematical complexity of the filter equations, the generic nonexistence of finite 

dimensional filters, and the lack of convergence results and error estimates for the 

implemented algorithmic schemes with respect to the true (optimal) filter. 

In this dissertation, we study the implementation of nonlinear filtering algorithms 

that can be used in real time applications. This requires the use and development 

of a broad range of techniques in theoretical and applied probability and in systems 

theory. 

In order to implement a filtering algorithm, one has to discretize the state space, 
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the observation space and the time interval. If one discretizes the observation space 

first, the corresponding equations for the optimal filter are considerably less com­

plicated than in the diffusion case. This is the starting point of our method. A 

brief introduction to our procedure to solve the nonlinear fitering problem under 

consideration is given next. 

First, we focus on the development of a general procedure to solve the filtering 

problem for Markov semimartingale state processes and jump observation processes. 

Consider a partially observable system t > 0, where is a d-dimensional 

state process and yjj is a p-dimensional observable component, respectively. We 

assume that the joint process > 0, has the structure of a general Ito 

process in 9?^ (m=n+p), i.e., has the representation: 

+  b ( ^ s ) d s  +  c(^5)(/f'Fs+ -  d s u i d z ) )  

where Wi is a standard m-dimensional Wiener process and N is a standard Poisson 

random measure on 5?^ x3? with mean measure ds!/(dz). Besides the usual conditions 

on b and c, we assume that K is bounded. 

( i )  If Xi is a Markov semimartingale state process and is a jump process, 

then we split the resulting equation for the optimal filter into two equations, one 

governs the evolution of the filter between the jump times of the observation process; 

the other one updates the filter at the jump times. Then we ignore the nonlinear 

terms in both equations, and show that the resulting linear equations have at least 

one weak solution, which is a finite positive measure. It turns out that normaliza­

tion of this solution yields the optimal nonlinear filter for the problem, which is the 

unique solution to the filter problem. We use a Girsanov type change of measure 

argument and the filtered martingale set-up of Kurtz and Ocone to show existence 
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and uniqueness of the solution the filter equation respectively. 

(ii) If the state process is a continuous time Markov chain and the observation 

process Yi is a jump process, then, using the above procedure, we can obtain the so­

lution of the nonlinear filtering equation by solving the following ordinary differential 

equation and updating linear system (unnormalized density), 

Q [ t )  =  { o r t e [ T j _ i J j ) . Q  ( 0 . 1 )  

Q [ T j )  = for i = Tj , (0.2) 

where and are d x d  matrices, which can be obtained from the joint 

generator for the joint process T j , j  = 1,2, • • •, are the random jump times of the 

process Y^. 

We have shown, by numerical simulation, that solving the filtering problem by 

this procedure can save considerable time as compared to solving the nonlinear fil­

tering equation directly. 

(ill) For the implementation of equations (0.1,0.2), in particular for real time 

applications, it is important to know, whether (0.1) and (0.2) have a lower dimen­

sional realization, because any dimension reduction to d < d may save considerable 

computation time. We provide some necessary and sufficient conditions for (0.1,0.2) 

to have lower dimensional realizations by using three different approaches; invariant 

linear subspaces, invariant integral submanifolds and exact criteria. 

(iv) Unfortunately, the exact dimension reduction for (0.1,0.2) is a rare situation, 

i.e., genetically not possible. Hence, it is essential to study approximate dimension 

reduction for (0.1,0.2). I have developed an efficient and applicable procedure to 

do approximate dimension reduction . We classify the states of the joint process 
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into fast states and slow states according to their jump rates. Then the procedure 

is based on the rt that the sojourn times of the fast states are very short, or even 

negligible with respect to the time scale of the problem and hence can be deleted by 

properly modifying the transition between slow states. We also obtain conditions, 

under which the approximate nonlinear optimal filter converges to the optimal filter 

of the problem under consideration and we find corresponding error estimates. 

Explanation of Dissertation Format 

The dissertation contains three papers which have been submitted to scholarly 

journals for publication. Paper II is the joint work with Dr. G. Delgrsso, Dr. W. 

Kliemann, and Dr. F. Marchetti. They suggested this topic to me and gave a lot of 

useful suggestions and comments. The papers are followed by a General Summary 

and literature cited in the General Introduction and General Summary are listed 

following the General Summary. 
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PAPER I. 

ON THE UNNORMALIZED SOLUTION OF THE FILTERING 

PROBLEM WITH JUMP PROCESS OBSERVATIONS 



I 

ABSTRACT 

This paper presents a general procedure to solve the filtering problem for Markov 

semimartingale state processes and jump observation processes. We split the resulting 

equation for the optimal filter into two equations, one governs the evolution of the 

filter between the jump times of the observation process; the other updates the filter 

at the jump times. Then we ignore the nonlinear terms in both equations, and show 

that the resulting linear equations have at least one weak solution, which is a finite 

positive measure. It turns out that normalization of this solution yields the optimal 

nonlinear filter for the problem, which is the unique solution to the filter problem. 
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1. INTRODUCTION 

Kliemann, Koch and Marchetti [11] have established a general procedure to solve 

the filtering problem for Markov semimartingale state processes and counting obser­

vation processes. They rewrite the resulting nonlinear equation for the optimal filter 

into two equations, one describes the evolution of the filter between the observation 

jump times, the other one updates the filter at the jump times. Instead of solving the 

nonlinear filterting equations, they first solve a linear integral equation and a linear 

algebraic equation recursively, then normalize the solution, which turns out to be the 

solution of the original nonlinear equation. They use the Girsanov type change of 

measure argument and the filtered martingale set-up of Kurtz and Ocone to show 

the existence and uniqueness of the solution of the filter equation respectively. 

Their procedure of solving the nonlinear filtering equation via unnormalized lin­

ear equations is based on the specific structure of the counting process observations, 

namely, its piecewise constant sample paths and unit jump size. Like counting pro­

cesses, the general jump process also has piecewise constant sample paths. This 

similarity seems to allow us to extend the above procedure to general jump process 

observations. Our aim in this paper is to generalize their results to the case that the 

state processes are the same ones as in [11], but the observation processes are gen­

eral jump processes ,which have finitely many jumps in any finite interval. Unlike the 
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counting process, the jump process does not always have monotone increasing sample 

paths and unit jump size. These differences force the use of different mathematical 

techniques for the problem, but, on the other hand, we can get more information for 

the estimation of state process from the jump sizes. 

The paper is organized in the following manner. Section 2 is the basic setup, 

which will be used in the succeeding development. Section 3 discusses the structures 

of the model and the operators, when the observation process is a jump process. 

Section 4 considers the dependence between the state and the observation processes. 

We will show that the quadratic variation between the state and the observation 

martingale terms can be described by a predictable quadratic covariance operator. 

Section 5 presents the filtered martingale problem together with its relation to the 

problem considered here. The existence and uniqueness of the solution of the filter 

equation will be proved in this section. Section 6 will show that the nonlinear filtering 

equation has a solution, which is a normalized version of the solution to the linearized 

equation. Section 7 deals with two examples. The numerical simulations are also 

given for them. 



10 

2. PRELIMINARIES AND FORMULATIONS 

This section describes most of the results from the literature, which are necessary 

in the sequel. 

2.1 Definitions and Notations 

Throughout, (fi, J^) is a fixed measurable space, the sample space . on which a 

probability measure P is placed. The time interval is 3?^ = [0,oo). We equip our 

sample space (Q, J-) with a filtration, that is, an increasing family {TF}, f > 0. of 

sub-cr-fields of J-. It will always be assumed that the is right continus. Thus, one 

has a probability space (f2, {/^}, P). We also always assume that the probability 

spaces are complete. We introduce the following notations. 

: ( E is an integrable — martingale} 

^ € 3?+, iV/^ is a square integrable - martingale} 

~ ^ E is a local integrable ~ martingale} 

=  { M ^  :  t  e 3Î+, M l  is a local square integrable - martingale} 

: < € )?+,a(is an integrable, increasing Ti - process} 

A ^ t )  =  {cif - aj : i e ^"'•(.Ff)}. 
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and are defined in a manner analogous to the previous definitions. 

£"(( M )) = { H: H is predictable, with Hg (/(M, M)^) < oo 

where M is a martingale and (•,•) denotes the quadratic variation }. 

If A is matrix or vector, .4^ is the transpose of the A. Throughout, the capital 

C always denotes a positive constant and it may have different meaning in different 

context. 

2.2 The Differential Equation for the Model 

Since the model which will be used in this paper is the same as the one in the 

[11], so we quote their results in here. 

Let {Xi,Yt)i t E %_L, be a partially observable stochastic system with Xi G Dî", 

the state process, and G the observable component respecticely. We assume: 

The joint process t G %+, has the structure of a general Itô process in 

ÏÎ'" (m = n+p) [5], i.e., (( has the reprsentation; 

=  ̂ 0 + f  H ^ s ) d s +  f  c i ^ s ) d W s +  [  /  K { ^ s - ' > = ) i - ^ i d s , d z )  -  d s u ( d z ) )  ( 2 . 1 )  
J o  J o  J o  J  z  

where, 

b: — 3?'" is a measurable function, 

c: — g l { m , ' S Î )  is a measurable ( m  x m) matrix valued map, 

K: 5?"^ X Z—is a measurable function, and 

Wf- is a standard m-dimensional Wiener process defined on (Q, J-, P), and (Z, 

Z ) is a measurable space. N is a standard Poisson random measure on x Z ,  

defined on (fi, J-, {Tt), P), with mean measure dsi/(dz). We denote: 

N { d s ,  d z ) . =  N ( d s , d z )  —  d s i ' ( d z ) .  
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is a m-dimensional random variable defined on (0, T) independent of W'l and 

N, with ) < oo. We denote the distribution of by //q, and ttq denotes the 

distribution of A'q. If Yj- is to represent a jump process with Vq = 0, then (g has 

distribution % " ̂0 ^ ^0 fg the Dirac measure at 0. We will need the following 

notations: 

b { i s )  = H U ) -  =  
J Zi 

F ( 0  =  { r G Z : | A ' ( ^ , c ) | ^ 0 } .  

(2 .2)  

(2 .3)  

We will always assume the following conditions on the coefficients of (1): 

(i) 

(ii) 

(iii) 

(iv) 

'/(n())<c'(i + i(i) 

| 6 (AP+ C(( )J (^)  <C' (1  +  | ( |2 ) ,V(E!R 

E/f/i 6(0-6(( + c(a-c((') < C m 

Throughout, because of (i), we will take Z = 5Î, 2 to be the Lebesgue cr-field, 

and V the Lebesgue measure [4]'. 

Several sets of sufficient conditions for the existence and uniquenes of the solution 

of the differential equation (2.1) are proved in [1]. Here, we quote a convenient and 

useful result from it. 

Theorem 2.2.1 Let be the diffusion part of (2.1), that is, the process solution of 

the stochastic differential equation 

+  [  H U ) d s +  j  c((j)(fPPa. 
t/0 «/ 0 

(2.4) 
m vo 

Assume the above (i) and (ii) are true and assume (2.4) has a unique weak Feller 
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solution such that 

(f) E( sup = 0 < C. 
0 < t < l  

Then (2.1) has a unique strong solution in the class of Ito processes, which is a time 

homogeneous Feller process with t G [0,T] for any T < oo. 

Throughout, we always assume (i)-(iv) and Theorem 2.2.1. Next, we introduce 

some facts concerning the strong generator L of the solution of the equation (2.1) 

that will be used later. 

(1) The martingale problem is well posed for both generators, generator L and its 

adjoint generator L*, with solution in D^m[0,oo) [8]. (X'gjm[0,oo) is the Skorohod 

space ). 

(2) Denote by X>( A) and 7^( A) the domain and the range of an operator A respectively. 

C'|(0?'") is the space of twice continuously differentiable functions on Dî'", bounded 

together with their derivatives. We have 

C'g(%^) CD(I). 

IffG C|(7e'^), then [5] 

=  (V/( ( ) ,6(A)  +  (2 .5)  

+ / [/(( + - AO - (v/(a, 

where (•,•) denotes the inner product in 

(3) The domain of the resolvent {al — L)~^ is separating for each a > 0 and bounded 

pointwise dense in the space of bounded measurable functions[5]. 
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3. THE OBSERVATION PROCESS 

In this section, we consider a special case of the model (2.1), that is, the state 

process lives in Dî" and the observation process is a 1-dimensional jump process. 

Before specializing the model and the observation process, we briefly describe the 

jump process. 

3.1 The Jump Process and its Parameter 

We begin by recalling the definition of the jump process in [6]. 

Definition 3.1.1 A jump process {Ui}, 0 < (, defined on (fi, P) with 

values in (Z, Z )  is defined by random sequences, {In}, and {Z77}, n=0.1, • • -, where 

Tq = 0, T^+i > Trj > 0, n = 1, • • • are the jump times and G Z, n = 0, 1, • • • 

are Z-measurable, such that 

Zq if 0 < i < 

U t =  Z n  i f r a < ( < r ^  +  i  

Zoo if Too ^ t 

where Tn Î 00 is allowed , as well as Zn Î 00, but they are finite on 0, T]. 

In [6], the jump process is determined by the joint distribution of (Tn, Zn, n 

=0, 1, • • • ) and described by its local characteristics. We will characterize our jump 

process by its integral representaion and describe it by the jump parameter, which is 
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given in the following definitions. 

Definition 3.1.2 If a jump process {Ut}, t G 9?+ has the representation 

U t  =  [  X s  d s  +  
t/0 

t  G 3Î+, where G G then is called the jump 

intensity of U^. 

Definition 3.1.3 If a jump process can be decomposed as 

U( = f/ - (f 

where 

v ' t  =  Eo<r;_i<( UTi.i'C £ aid i f  = 

we call the input process and the output process of U^. 

Definition 3.1.4 If a jump process has the reprsentation 

U i  = / X s d s  +  M l  
J 0 

where A^ = A^ - A^, Xj is the jump (up) intensity of the input process , and Ap 

is the jump (down) intensity of the output process , and Mi G (ken A^ 

is called the jump parameter of Ui-

We turn next to the discusion of the observation process. 

3.2 The Structure of the Observation Process 

In order to get a structure of the model (2.1) for Xi G 3?" and Yi G 9?, we 

introduce the following notations: 
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(ii) =  { =  e  Z  :  I A' Y((, :)| ^ 0}, 

ly(^) =  { :  e  Z  :  K y i ^ , : )  ̂  0}, 

(iii) H O m x l  =  ( ( ^ Y ( 0 ) f x n '(V( ^ ) ) l x l ) ^ '  

b ( 0  =  (6 Y(0.6y(n)^, 

c(() = (c%(0,cy(()). 

Using these notations, we get the equations for the state process Xf and the 

observation process as follows: 

= -̂ 0 /o + /q c_Y(̂ 5)rftF  ̂ + /o I z  ' ^ { d s , d z ) ,  

V t  = i'o + /Ô + /Ô <:%((«)''(y» + /o ! z  N { d , , d : ) .  

Furthermore, we have the following assumptions about our observation process 

Assumptions: 

(i) Iq = ^(5) = 0,cy = 0. 

(ii) { T n } , n  = 0,1,- • •  , w i t h , T Q  =  0 , 0  <  T n  <  r^^i,a.5., n = 1, • • •, 

are the jump times of 

(iii) ~)h'Y ~ " = 0' 1.» • • • ' 

where t  G [Tn, ), A:n G 3î are nonzero ^-measurable random variables. 

Remark 3.2.1 By the assumptions, it is clear that is a jump process and all of 

its sample paths are piecewise constant, moreover, 

Y f .  =  f  f  AY(^5_,r) iV((/5,dr) 
J o  J V y i ^ s - )  
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Lemma 3.2.1 Under the above assumptions, the observation process has the 

following representation 

= I -r 
J 0 

where Mf = /q jz) and 

MU) = /vy(^^_) with M t  e and that t  e lO.Jj, 

satisfies the following conditions; 

(i) ^ 

(ii) has a. Tf. — predictable version, 

("i) |A((f)| <C'(1+ !((!). 

The proof of this Lemma can be found in [3] or [6]. From now on, the .F^-parameter 

\(^l) is the predictable version. 

Remark 3.2.2 (i) The A((() defined in the lemma is the jump parameter of Yf-, and 

it satisfies 

where and are the jump intensities of y / and y P  respectively, 

(ii) Fix 0 < T , define 

= ' ^ ^ A T  

then Xf 6 A{!Ff;), M i  G Since we only consider t  G [0,7], we always write 

MI for Ml and for Â(. 

3.3 The Specific Structure of the Operator L 

Using the specific equations for Xi and Yf, we can get the specific structure for 

the opertors defined in Section 2.2. 
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First of all, for / G Equation (2.5) has the form 

.3 .1 ,  
i=l i = l k - l  '  ' '  

+  ^ [ / ( ^  -  K x { ^ ^  =  ) , y )  -  f { x , y ) ] t ^ ( d z )  

4- / [ / ( .R-t-A ' y(^ , - ) , ! /+  AY(^,R))  - / (X + A'  Y(^,-), !/))] 
J  Z  

If we define 

L . n o  = 
i =  l '  i = \ k = l  '  &  

+ / [/(j + A' Y(^,-),i/) -/(j;,y)]for y fixed, 
J  Z  

L ' z f i O  = L 2 f ( x i - K x , y )  

= / [/(z + -^V) ~ + A'y,!/)] y(dz), for x fied, 
J  Z  

then (3.1) becomes 

L f U )  =  + L ' l f i x  + Ar%(<^,-),(/) 

We should notice that L, I2 ^re conservative generators [8]. Now we turn to 

consider the restriction of the operator L on D Y(L) and £>Y(L), which are defined 

as follows. 

Definition 3.3.1 We define; 

= {/ € D(I) : /(() = /(z,y) = G «} 

D y [ L ]  =  { f e  D { L )  :  f U )  =  f { x , y )  =  V ' ( z ) , V '  G  c g ( % ) , i  €  % }  

I Y = L\£f^(L), the restriction of L on D Y(L). Ly = the restriction of 

L on DyiL). 
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Using the notations in the above definitions, we have , for f(^) € Dy^iL). 

=  ^ i f i O  =  L x A ^ )  

"  d < ^ { x )  i c \ T i c \ \  
' d x i  2 ^  f - ^  ^ ^ d x i d x u  i = l ' i = l k = l  '  

-r f y(x + Kx(^, = )) - ̂ ix)]'^{d=), 
J Z 

and for /(() € Dy(I), 

L f { ^ )  =  L o f i O  =  L y i i y )  =  f [ i i y  +  -  H y ï l i ' i d : ) .  
J  z 

Moreover, recalling that and are semimartingales, then for /(^) € D y ^ { L ) ,  we 

have the representation 

ri 

where 

^{Xt) = AXo)+ [ Lx'A-^s)ds + Mf, (3.2) 
J  0 

(3-3) 

*/0 jz 

It is not difficut to see that is a semimartingale and G (re­

calling Remark 3.2.2). For /(^) G Dyi^)^ we have the representation 

10 
i , { Y t )  =  HYq )  +  f  L y i i Y s ) d s  + m/', (3.4) 

1/ 0 

where A//' = /(j J z H ' { Y , _  +  A:y((,_,z)) - é(y,_)] N { d s , d z )  and M } '  G /^(:Ff). 

Define A Y  =  ( - ) ) - ^ V y ( ^ ) '  ~  +  A F ,  : )  -  a n d  c o n s i d e r  

( E [ T j ^ - i , T n ) ,  then we have A Y  = k n  and A i p  =  4 ' { Y  +  k n , : )  -  t'(y'). Hence, by 

the theorem of Fubini we can interchange the order of integration [14], and obtain 
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IT" + Al's.,--)-
n — 1 

= IT" , - £-(Vi_)|^(</.-)rfj 
71 — 1 / 

=  -  i ' { Y s ^ ) ] d s u { d z )  

Thus 

J^LYiiYs)ds = (3.5) 

and therefore 

• ' a r t n _ :  
«•(k,) =  «•(ï'o) +  f  ^ ^ H U ) d s  + / i<in -(3.6) 

V O  - ^ ^ 5  J O  —  
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4. THE PREDICTABLE QUADRATIC COVARIANCE OPERATOR 

The main purpose of this section is to describle the dependence between the state 

process Xi and the observation process Y^. It will be established that this dependency 

is given by the predictable quadratic covariance operator, which is defined as follows. 

Definition 4.1 A quadratic covariance operator R is defined to be a linear bounded 

operator defined on D(L) , where L is defined in Section 2.2, such that, for ( > 0 

2.2 . The quadratic covariance operator R is predictable, if the process {Rf{^t)}t ' 

0 < (, is a predictable process. 

Recall that the jump parts of the semimartingale and the observation 

process Yf are described by 

respectively. Now, the dependence between and Yf can be characterized by the 

following Theorem. 

R f { ^ s ) d s  

where ,  N  G /  6 D { L )  and is the Itô process which is defined in Section 



22 

Theorem 4.1 There exists a quadratic covariance operator R such that 

ft 
, M ) t =  f  R x ' P ( X s ) d s  

J 0 

where Ey = restriction of R to D-^[L), and Ry^^p(Xs) has 

predictable version. 

The Theorem 4.1 is an immediate consequence of the following lemmas. 

Lemma 4.1 Under the above assumptions, we have 

{ M ' ^ , M ) f .  =  f  f  \ j p ( X s -  +  K x U s - i = ) )  -  =  
*/ 0 J z 

Proof. We write 

Mf = Mf'"" + 

where = Jq (c y(^s— i s  t h e  c o n t i n u o u s  p a r t  o f  

JO J z 

is the jump part of Then, 

Since M is a purely discontinuous martingale, it follows from [7] and |9|. that 

(iV/V^'SA/)^ = 0, and 

f  U X s -  +  K x { ^ s - , = ) )  -  ̂{ X s - ) ] K Y U s - ^ = ) ' ^ i d ~ ) d s ,  
V 0 J z 

therefore, 

*/ 0 V z 
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Q.E.D. 

Define 

+ =)./((/:) (4.1) 
J Z 

for / G D(L) ,  then the next lemma shows that R is a quadratic covariance operator. 

Lemma 4.2 (i) the solution of (2.1) , has finite second moments in [O.Tj. 

(ii) If / G ). then the operator defined in (4.1) is a bounded linear operator. 

Proof, (i) is from [11]. (ii) follows by the assumptions in Section 2.2 . 

Q.E.D.  

Following the above lemmas, we know that R defined in (4.1) is a quadratic 

covariance operator, with 

R x ^ ( X s ) d s .  
J 0 

Now we need to show that the process has a predictable version. 

Lemma 4.3 There exists a predictable process H such that 

H s X i U ) d s ,  
JQ 

where \(^t) = Iz 

Proof. By using the notations and results in the proof of Lemma 4.1 , we have 

M)f- .  Recall that both and are square integrable 

martingales, then the stable space generated by M is the set [7], 

5 = { H - M  :  H  e L ^ H M ) ) } .  

where { H - M ) i  =  / q  H s d M s  
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Write where is the projection of onto S, 

and M2''^ € 6»-^. Then 

Since iV/^'^ G 5, it can be written as = H - M ,  therefore 

( A / ^ ,  M ) t  =  { H - M ,  M ) t  =  t  H s  d { M ,  M ) ^ .  
J 0 

Since {M.M)g = Jq z) z/(dz)JT, we have 

{ M ' P , M ) t =  f ^ H s \ { ^ s ) d s ,  
J 0 

where Â((a) = A'^r((g_,z)z/( jz). 

Q . E . D .  

Lemma 4.4 For / = y(A'), "^(-Y) G Dj^{L), we have 

Rx<f{Xs) = HsM^s), a.s on [0,T]. 

Proof. By Lemmas 4.1 and 4.3, 

!\rX^{Xs ) - H s \ { i s ))ds = 0, for all t  6 [0,T] 
v 0 

then we have (compare [14]) Rx^iXs) = HsMù)^ a s on [0,T] . 

Q . E . D .  
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5. THE FILTERED MARTINGALE PROBLEM 

In this section, we will introduce a martingale formulation for the solution of the 

filtering problem. We also will establish the filter equation for our specialized model 

in Section 3.2 and then show that the filter equation has a unique solution. 

5.1 Basic Setup 

Although we will follow subsection III.A in [11] closely, we find it useful to recall 

here the filtered martingale set-up of T.G. Kurtz and D. Ocone. First, in addition 

to those already introduced, we need to use the following notations for the following 

sections. 

E, F will denote euclidean spaces, say %^,for some n  G .V,B(E) the bounded 

Borel functions on E, 'P(E) the set of probability measures on the Borel sets of E and 

oo ) the space of cadlag (right continuous with left limits) E-valued paths. As 

usual, V{E) carries the topology of weak convergence and oc) the Skorohod 

topology. 

For a (finite) measure on E, and / G B(E), we write f ( s )  ̂ i { d s ) .  Notice 

that the notation may be used for unbounded functions f,whenever /£• f ( s ) i . i ( d s )  

makes sence. 

Here we quote some results from [12] for our purpose. 
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Definition 5.1.1 A process (//f. L'l) with sample paths in p 0,T is a 

solution of the filtered martingale problem for the operator L of the equation (2.1), 

if is } -adapted and 

~ ^ ' ^ O )  " "  [  l - ^ s L f { - , U s )  d s  
v u 

is an }-martingale for every / 6 D ( L ) .  

Theorem 5.1.1 (Section 3 of [12]) If is ,F^^-adapted for each t, then there 

exists a measurable function Hi : Z?£'[0,Tj — TIE) such that 

fit = H ( U s I [s<t]^s e [0,T]), for all t  G [0,T| (5.1) 

Theorem 5.1.2 (Theorem 3.2 in [12]) Suppose that the pair ( X i , Y t )  i n  E  y  F  is the 

solution of a well -posed martingale problem for the opertor L and that, moreover. 

TZ{aI — L ), the range of operator al — L, is bounded pointwise dense in B(E x F) for 

all a > 0. Then the FMP (the filtered martingale problem) has at most one solution 

(in law) for each distribution of the initial value (hq,Uq). 

Theorem 5.1.3 (Corollary 3.4 in [12]) If (A'^,y^) is a solution to the martingale 

problem for L and 

E [ f i Q f { ; U Q ) ]  =  E [ f { X Q , Y Q ) ]  for all / G D { L )  (5.2) 

holds, then f^Q = Iq in law. Furthermore, if the solution to the FMP is unique, then 

Theorem 5.1.2 implies that 

in law 

where tt^ is the conditional law of given , and there is a version of tt^ such 

that TT = H{Y) in the sense of (5.1). 
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5.2 The Filter Equation 

We begin this subsection by considering the following filter equation for our 

specific model defined in Section 3, as they are given in [2,13]: 

Remark 5.2.1:(i) By noticing the asuumptions that we made on L and A and the 

integrability of it is not difficult to see that all integrals on the right side are well 

defined for every t E [0,T], and hence (5.3) is a representation of the conditional 

distribution tt^. 

(ii) The third term is martingale, due to the minimal reprsentation il3; 

- T T s _ \ { - , Y g _ ) - p c s _ f { - , Y s _ )  + T r s - R f { - , Y s - ) ]  [c/fs - T : s \ ( - , Y s ) d s ]  

for / G D ( L ) ,  where (•)"'" denotes the generalized inverse: 

( « ) • ' "  =  -  i f  a  
a 

( a ) + = 0  i f a  =  0 .  

where is a }-martingale. 

If / 6 D-\r{L), then we have the following equation: 

(5.4) 



28 

Now, we turn to show that Equation (5.4) has a unique solution. Recalling the 

facts about the operator L in subsection 2.2 and using Theorem 5.1.2. we immediately 

have the following theorem. 

Theorem 5.2.1 If the FMP for the model (2.1) has a solution, then this solution is 

unique (in law) and provides the required conditional distribution law 

The existence of the solution of the filter equation (5.3) is from the next theorem. 

Theorem 5.2.2 Let be a jump process with parameter - Â^, where 

xj and ÂP are the jump intensities of the input and output process and L'P 

respectively, and having values in 'D^[0,T]. Let be a measure valued process with 

values in T>-p^^n^[0,T], adapted to Assume 

(i) m g  <  C ( 1  -f U ^ )  for all t  £ [0, T], P-a.e, where g ( x )  =  x  G îî". and 

P = P\^ir, the restriction of F to \ and 

(ii) [pn^Uj-) satisfies Equation (5.4) P-a.e, for each / G D^{L). 

Then (i) There exists'a probability measure Pi on such that, under Tj . Ui is a 

jump process with parameter = mX^{-^Ui) - mX^where A(-,^'^) 

is defined in section 3. 

(ii) The pair (iHjUf;) is a solution to the FMP for the model defined in (2.1), which 

also satisfies equality (5.2). 

Before we show this theorem, let us make the following useful remarks. 

Remark 5.2.2 (i) We will know that, by the construction, the new measure Pi is 

absolutly continuous with respect to P, hence all properties , which hold P-a.e., also 

hold P]^-a.e.. In particular, if m = G [0,T]) for all t G .0, Tj holds 

P-a.e, then it holds P^-a.e. By recalling (5.2), and Theorem 5.2.1, it follows that 

TTi = H(YsI^q ̂ j(3),5 G [0,r]), t G [0,T],P-a.e and therefore P-a.e. 
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(ii) By assumption (i) and Lemma 3.2.1, we get 

and then 

for all t  G [0, T ] ,  P-a.e. 

Proof of Theorem .5.2.2. First, we show the part(i). Recall that and are 

^-predictable nonnegative process, and then in\^{-,Ui) and (-.Ui) are 

predictable nonnegative processes. Under P, by Assumption (i) and Remark .5.2.2 

(ii), we have 

E( f < CO (5..5) 
J O  

and 

(3.6) 
t/0 

If f.n\X(-,Ui)\ is P-a.e uniformly bounded in [0,T], we define 

l, = ejp{/'m'" jtf/ - j\,is4{;Us) -

JO ay vo 

Then {L^} is a jF^-martingale [11] and £'(Zy) = 1. Therefore , if we define Pi by 

^ = i(.<6[o,r|, 

then I'l, under F^, is a jump process with parameter [llj •,{'() = U^) -

We turn next to the general case. Define 

T n  =  i n f { T , i n f { 0  < t  :  m a x { { m X ^ ( • , U t ) , { f i t X ^ ( - , U t ) )  >  « } }  
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r r 
n = 1, 2, • • •. Then is a - stopping time. 

Define, for each n > 1, the probability by, 

d P  
— ^ [0,T ] .  

Since, ( o T  0  < t  <  T i l l  |A(-, )| is uniformly bounded, then by the same arguments 

as above, under P^^\ Ui is a jump process with jump parameter A( Arn ). 

Thus, we have finished the proof of part(i). 

We begin the proof of part (ii) by showing that solves, under P^^\ a 

stopped F MP, that is, for every / G D ( L ) ,  

rtATn 
f ' f A r / j  )  ~ ^  O )  ~  f i s L f ( - , U s ) d s  ( 5 . < )  

is a -martingale. 

To prove this, it is enough to show that (19) holds for a set dense in D(L). such 

as the set of / G D(L) with the form f{x,y) = ip{x)il'(y) (because of the linearity of 

the equation (5.7) ). Recalling (3.2), (3.5) and (5.4), applying the product rule for 

the semimartingles and and noticing that 

we can get, for such a function f and for t  6 [0,Tn], 

= 7ro^ii'(f'o) + / fi'S-'pdi'(Us) 
J 0 

+  f  4 ' { U s - ) d i x s ^  +  
«/0 „ ̂  i s < t  
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By (3.6) 

-r / fis-^^^^7f-^[dUs - fisM-d's)ds]. 
Jo ^(--s-

By (5.4) 

é ( U s - ) d f i s - p  = i l i U s - ) l - t s L x ' 7 ' d s  +  

- t i ' { U s - ) [ ^ s - M : U s - ) ] - ^ [ f i s - { M : l ' s - ) ^ ) -
J 0 

- /(j_a(.,('g_)/,g_y + y'p] -  H s H - , ^ ' s ) d s ]  

and 

ft 

- ;^g_a(-,[/'j_)/(g_y + [(/[/g -  f ^ s \ ( ^ , U s ) d s ] •  

Comhinlng those terms, we have 

~  f  f i s L { ^ i ' ) d s  +  M ' i - ,  (5.8) 
J O  

where 

M,' = f + Ar,-))[>.,-A(.,t-,_)|+. 

[//g_a(',U s - ) ^ p  -  //g-a(-,)ns-^ + ~ )c'5j. 

Clearly. is a .F^^-martingale under Thus, under f ("), (fitAsTn^ ^'tAvn ) 

the same distribution as the ( ' ^ ^ t A r n ^ ^ t A T n )  under P  [3]. Hence 

f ' t h t < r n ) =  e  i 0 . r | ) / ( « ^ „ ) ,  f o r  a l K  S  [ O . T ] ,  p ( " '  -  o . e .  ( 5 . 9 |  
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By using the sublinear growth condition on jA^I, it follows Ij that the sequence 

admits appropriately coverging subsequences, that any limit Pi of such sub­

sequence is absolutly continuous with respect to f ) and agrees with on {J'r^ } 

and that Tn\T, P^-a.e. Hence, by (5.9) 

for all n G -V, and therefore, // = H{U) in the sense of (5.1) with respect to Pi ,  that 

is 

Ht = H(L'E [0 ,T] ) , 'v  i G [0, r] P — a.e. .  

So i^t = G [0,T']),Vi E [0,T], ~ 

Finally, to check that all terms in (5.4) are well-defined, we only need to use 

Assumption (i) and the growth conditions (i) and (ii) of Section 2.2. Thus, we finish 

the proof of the theorem. 

Q.E.D.  
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6. solution of the filter equation 

In this section, we shall show that (5.4), under above assumptions and with 

Ui = our observation process, has a solution. 

For a probability law m, the equation (5.4) can be written 

^islx^ds + (6.1) 

-  ^ 5 - — v  +  ~  l ^ s H - i y s ) d s \  

for all ^{x) = /(O G DxiL). 

Recalling Remark 3.2.1, and noticing that Tj, i  =  1,2, • • •, are the jump times of 

Yi (TQ = 0), we can rewrite (6.1) as the following weak equation 

f  n s L ^ i f d s  (6 .2 )  
2 i J T i _ i  

f o r  t  e  [Ti_i,Ti), and 

with the initial condition //Q = TTQ. 

Ignoring the nonlinear terms in (6.2) and (6.3), we have the following equations 

Pi'r'= PT-_1 V'+ [  PS[(^ Y -Y)'I^] c/s -  f  P s - \ { - , Y s ^ ) ^ d s  (6.4) 
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for <  t  <  T ^ .  and 

PT^'P = 'M •» ^Ti_ ~ PTi_ •^A"^ (6.5) 

i = 1,2, • • •, with initial condition pQ = TTQ. 

Remark 6.1 Recalling the definition of A(-,in section 3.2, we know that 

for t e T^) and i = 1,2, • • •. 

Theorem 6.1 (i) Equations (6.4) and (6.5) have at least on one weak solution, which 

is also a finite measure. 

(ii) If this measure is nomalized to unit mass, it also provides a solution to (6.2) and 

(6.3) with values in ^[0,T], adapted to {.F^ }. 

Proof. By using Remark 6.1, the proof of this theorem can be seen in ill]. 

Q . E . D .  

If (6.4) and (6.5) happen to have a classical solution, then it follows that this one, 

after normalization, will provide a version of the conditional density pf. In such cases, 

we can consider the solution of the adjoint equation for the unnormalized density 

' € [T i_ i . r , )  (6 .6 )  

9y.(x) = + R*j^qrp^_{x) (6.7) 

with initial density pn. Then, we obtain pt as m = %—^T" • 
" ^ ^ Jsfin qtix) dx 

Remark 6.2 Intuitively, if we observe jumping at time Tn, then we expect 

that the process also changes its states at Tj, and the probability of such change 

should depend on the jump sizes of the The unnormalized equations (6.5) and 

(6.7) verify, in some sense, this intuition. In section 7, we will see more about the 
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behavior of the normalized and unnormalized equations at jump times and between 

jump times. 

If the state process X f -  is a continuous time Markov chain, then we can identify 

the equations (6.4) and (6..5) with a linear ordinary differential equation and linear 

system by the following methods. 

Let Xf-, ( > 0, is a Markov chain with state space {1, • • •, o?}, where d is a positive 

integer, and > 0, is a jump process with state space {aj^, • • •, Or;}, where n is a 

positive integer, then we can identify the terms in the above filtering equations using 

the generators, which are defined as follows. 

Define the joint generator Q  =  ^ ^^hich generates the Markov 

process (( = (%(,}(), by 

where mjG J  = {1,2, • • •, n} 

Furthermore, we define 

^(m^) _ ^ dx d matrix of .^^-transitions for V/ constant on the 

time interval [ T j _ i ,  T j ) ,  and 

^(mj) _ ^ m^))' where j ^ I, d x d matrix of X^-transitions for 

jumping, and 

Identifying the terms in the above filtering equation, we have 

,(m.) o i m i )  •  f Z, Y •' : = A  J  + B  J  IS a generator of A( given ) f = y j  

jrr, 

X  

\x 

R  
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Furthermore 

g'^l = R[ P K S ^"'j\ 

and therefore we have the filter equation 

Y _ for Yi = am-j in the interval: 

Vj-. = for —jumps at time T j ,  

where j  =  1,2, • • •. 



37 

7. EXAMPLES 

In this section, we use our results in two examples. The first example is a 

simple combination of diffusion state process and jump observations. A numerical 

simulation will show how the unnormalized and normalized equations help us to 

determine some properties of the unobservable state process A"^. The second example 

has been discussed by Yashin [1.5]. Yashin provided a nonlinear filter equation for 

the problem by using the theory of stochastic differential equations and derivatives 

of measures on function spaces. A numerical simulation will show that we can save 

considerable CPU time by use our procedure to solve the filtering equations. 

Example 1 Let be a stationary Ornstein-Uhlenbeck process, i.e.,, is 

the unique strong solution of th-e equation 

where f3 and cr are positive constants and Wi is a standard Brownian motion, and 

the initial random variable A'q has a normal distribution with mean 0 and variance. 

d X t  =  - i S X t d t  +  c r d W t  

l(here we assume ^ = 1) 

Let Yi be a jump process with 

— 1 otherwise 
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and with same jump rate j A(A'^_)!. 

We can easily write the following equations for the unnormalized density 

~  t  G  [ T i _ i , T i )  

= A(,r,Fy_ )q^_(x), for i = Tj. 
i  i  

We use i ) =0.5 to simulate the jump times We observe that the Yj-

starts with value -1 and then has first jump in Ti and so on. The jump times are 

given in Figure 7.1. We use a numerical routine to solve the above partial differential 

equation and algebraic equation. The simulation results are presented in Figures 7.1 

and 7.2. 

Figure 7.1 is a trajectory of the unnormalized density 1..5). If we observe that 

Yi has a 4-1 jump at Tj, then we can set the unnormalized conditional density qj^. to 

be 0 for X < 0 (since 1 = ^ Tj) = P{X'j<. > 0) ).Figure 1 shows that after 

the jump time Ti the unnormalized density ç^( + 1.5) decreases until the jump time 

T-j , and then it increases until next jump time Tg and so on. 

The graphs in the Figure 7.2 show us that 

(i) If = +1, then P{Xi > 0) > P(Xi < 0), and if Yf = —1, then P[Xi > 0) < 

< 0).  

(ii) Comparing the graph A and graph B, we can see that between jumps the condi­

tional density builds up again in this region and tends eventually to the stationary 

distribution of the Ornstein-Uhlenbeck process. 
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TH 

T3 Tî T2 

Fig. 7.1: Simulation record for the jump times, where Tl= .3.76. 

T2—.5.53. T3—12.61. and a typical trajectory of the unnormalized 

density %(.r) with j > 0. 

m 

o~ 

o 

o 
-10.C -5.0 0.0 • 5.0 
Fig. 7.2: Graph .A. is the graph of the conditional density 

Graph B is the graph of the conditional density g(,r). 
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Example 2 Let the state process A'^ be a Markov jump process and the state 

space consists of two points. 0 and 1. The corresponding matrix of transitions is of 

the form 
( 

900 %1 

\ 910 911 

where <?00 = "901'911 = "^lO* 

Let the observation process be a jump process with values 0 and 1. Let the 

matrix of transition rates for the process Yf depend on the values of the process 

at the time t. The transition probability of the process in this case are determined 
y 

by i 'y i I-Yi  following form 

(i, i = 7 _ yr A < + 0(Ai) 

+ ai) = 1 - + o(a0. 

We define the {Tn} Tz = 0,1, - " , with TQ = 0,Tn < T'ft+l' the jump times 

of the Y process. 

In [15] Yashin showed that 7rj(t), the conditional probability that X f  = j .  given 

Ya for s < t, satisfies the equation 

1 
d T T j i t )  =  q f ^ j T r j j { t ) d t  +  

A;=0 

•' n't.i-l'i '• '  

for i = 0,1, where 7r,,l_r, = ZLo 
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Using the our results, we can have the following unnomalized linear equations 

Pt^ = Prr-^- L psM-,ys-)'pds ^ F ps-

(7.1) 

t  € [ T i _ i , T i )  , and 

pt f ("-2) 

i  =  1 , 2 , - w i t h  i n i t i a l  c o n d i t i o n  p Q  =  TQ. where q o  = qol^'Jl ~ 910' 

We have simulated the solution of our filtering equation for the following param­

eters. 

?01 = 0.8, 910 = 0.3, iqi = 0.1 

7^Q = 0.2, iQi = 0.325, 7|Q = 0.64, 

with initial value pQ = f (Xg = 0) = 0.4 and T=22.0(seconds). The simulated Y) 

process starts in state 0, then transitions between the states 1 and 0 occurred at times 

Tj, i = 1,2, • • •, 11, which are shown in tsble 7.1. Using the above data and solving the 

linear ordinary differential equation and the linear system recursively, we find that 

the conditional probability of -Yj-. _Q = 0, given Y A, < a < / = 1, • • •. 11 

(table 7.1). 

We use the Runge-Kutta fourth order methords to solve the Yasin's nonlinear 

filtering equation with step size 0.01, we get approximate results, which have error 

order 0(10~^) with the above results. 

We record the CPU time to compute P(%20 ~ 01^6,0 < •s < 20) in both meth­

ods as follows: 0.34159E-01 seconds (Yashin's procedure), and 0.21130E-02 seconds 

(our procedure). (Ail computations are carried on the NAS AS/9180 mainframe com-



puter at the Computation Center of Iowa State University.) 

Table 7.1: The solutions of the filtering equations. 
Jumping Time Ti f < a < TJ 

1.077 0.34461076 
2.84.3 0.32163193 
8.870 0.31658635 
9.280 0.19855931 

12.67.3 0.30879970 
14.166 0.30361160 
14.949 0.22571545 
15.080 0.11239086 
16.195 0.22294083 
17.644 0.28892280 
21.111 0.31069577 
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abstract 

It has been shown that the solution of a nonlinear filtering equation for contin­

uous time Markov chain state processes Xf and jump observation processes Y'l can 

be obtained by solving the following filter equations (unnormalized density), 

ù( t )  = .4^"";)«(( )  for  t  e  G 

u ( T j )  =  for t=r^., 

where T j  j  =  I ,  • • • ,  are the jump times of the process Y^,  mj  G J = {1,2, • • •, and 

lim^j-j'. u{t) = u{T^), with certain restrictions on the matrices and 

This paper provides some necessary and sufficient conditions for the above filter 

equations to have lower dimensional realizations, i.e., the filter equations can be 

solved precise ly  in  a  manifold  of  d imension m,  wi th  m < d.  
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1. introduction 

Recently, Kliemann, Koch and Marchetti in [6] established a general procedure 

to solve the filtering problem for Markov semimartingale state processes and count­

ing observation processes. In [5] Fan generalized their procedure to the case where 

observation processes are general jump processes. Fan also showed, by numerical 

simulation, that solving the filtering problem by this procedure can save considerable 

computation time as compared to solving the nonlinear filtering equations directly. 

In the implementation of filtering techniques, the computation time is a key factor, 

since larger computation time does not only lead to higher cost, but may also prevent 

nonlinear filters from being used in certain applications. One way to reduce the com­

putation time for a given filtering problem is to reduce the the order of the filtering 

equations. It is the aim of this paper to investigate the existence of the reduced 

filter for the filtering equations presented in [5] and [6]. First, let us briefly introduce 

the procedure to solve the filtering problem for continuous time Markov chains state 

processes and jump observation processes in [5] and [6]. 

Consider a partially observable system, t  G where G is the 

state process, and Yi G is the observable component respectively. We assume that 

the joint process = (A'^,F^), t G 9?+, has the structure of a general Itô process in 
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(m = d^p), i.e., (( has the representation: 

cUs)dWs + J^  J^K(^s- '> = ) i -^ ' ids .d:)  -  dsu(d:) )  (1.1) 

where Wi is a standard m-dimensional Wiener process and N is a standard Poisson 

random measure on x % with mean measure dsf(dz). Besides the usual conditions 

on b and c, we assume that K is bounded. Existence and uniqueness of a strong Feller 

solution of (1.1) are guaranteed if the solution of the diffusion part of (1.1) has fourth 

moments [1], 

Now if is a jump process (in %1), then in [5] and [6] it has been shown that 

(i) Yi can be represented as 

I f  =  j \ ( U ) d s  +  M t ,  ( 1 . 2 )  

where Mi and A(^f) are the local intergrable martingale and the jump parameter of 

Yj- respectively, for t G [0,7]. 

(ii) The filtered martingale problem for (1.1) and (1.2) has a unique solution. 

(iii) The resulting equation for the optimal filter splits into two equations: one governs 

the evolution of the filter between jump times of Y^; the other updates the filter at 

t h e  j u m p  t i m e s  T ^ . i  =  1 , 2 , . . .  ,  

yifds (1.3) 
-* •'ïi-i 

for  t  e  [Ti_i,Ti), and 

^Ti_  + /'T-_ ( 1-4) 
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where is a probability measure ,  R-^  is  k quadratic covariance operator and L y 

is the generator of the process (all those are defined in [51), and 'j~ is defined as 

follows, 

[a]^ = - if a ^ 0, and [a]"'" = 0 if a = 0. 

(iv) A general procedure to solve the above nonlinear filtering equations is as follows. 

First, ignoring the nonlinear terms in (1.3) and (1.4), we have the following equations 

PfP = PT-_a 'P  ^  !  /)5[(Z Y -  E Y )y] (fa -  /  ps_\[- ,Ys-)^  ds  (1.5) 
^ ' 'H- l  

for Tj-i < t <  Tj, and 

PTjf  -  ^  PTi_^X'^  (1-6) 

where i  ~  1,2, -. Then, it is shown in [5] and [6] that the normalization of the 

solutions of (1.5) and (1.6) yields the optimal nonlinear filter for the problem, which 

is the unique solution to the problem. 

(v) If ( > 0, is a Markov chain with state space {1,---,(/}, where d is a positive 

integer, and > 0, is a jump process with state space {aj^, • - - ,0^}. where n is a 

positive integer, then we can identify the terms in the above filtering equations using 

the generators, which are defined as follows. 

Define the joint generator Q = (9(j- ^ )i which generates the Markov 

process = {Xt^Yi), by 

= i ,Y t  = a^nj} .  

where mj,mi  G J  = {1,2, - - - ,n}. 
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Furthermore we define 

m )(A; m ) ) '  d  x  d  matrix of A'^-transitions for Y f -  constant on 

the time interval Tj), and 

at the jump times T j ,  and 

^(mj) _ ^ where j  ^  I ,  d  x  d  matrix of A'^-transitions for Y j .  

iur 

Identifying the terms in the above filtering equation, we have 

,  (  j  )  A m i )  1  •  1  •  .  
L  yr • '  :  =  A  J + B  J  ,  which is a generator of A; given i f =amj, 

Rp^- .  = 

Furthermore 

= L p ^  -  R p ^  -

and therefore we have the filter equation 

Û = for Y f - =  a r j i j  in the interval [ T j _i. T j )  (1.7) 

u ( T j )  = ) for Y f  — jumps at time T j ,  (1.8) 

where j  =  !,•••,, and T j  is a random variable. 

For the implementation of equations (1.7,1.8) in particular for real time appli­

cations, we have to solve them numerically. Since the order of computation time 

depends on the dimension d for the ordinary differential equations (1.7) and for the 

updating operations (1.8), the computation time can be excessive, if the dimension 
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d is very large. Thus it is important to know, whether (1.7) and (1.8) has a lower 

dimensional realization, because any dimension reduction from d to d < d may save 

considerable computation time. Since the matrices and depend only 

on the system and observation dynamics, a lower dimensional realization can be com­

puted beforehand, and at application time only the reduced order system has to be 

evaluted. 

.A . S  we have seen, the idea of dimension reduction for (1.7,1.8) is different from 

that of minimal linear stochastic realizations. Losely speaking, minimal linear stochas­

tic realization is about the syndissertation of stochastic processes such that the pro­

cess is described equivalently by a state space with smallest possible dimension. How­

ever our purpose here is to analyze, whether the filter equations can be solved pre­

cisely in a manifold of dimension m, with m < d, without setting up a new system 

of dimension m. 

In this paper it is investigated, whether there exists a lower dimensional real­

ization for (1.7,1.8) under some conditions on and B^^j\ We will present 

some necessary and sufficient conditions for (1.7,1.8) to have lower dimensional re­

alization by using three different approches : invariant linear subspaces, invariant 

integral submanifolds and exact criteria. The paper is organized as follows. In Sec­

tion 2, assumptions, definitions and notations are given. In Section 3, it will be shown 

that if B^^j^ and A^^j^ are reducible, there are lower dimensional invariant linear 

subspaces for the problem, and if B^^J^ = exp(C^^^^) , then there exist lower di­

mensional invariant integral manifolds for the problem. Finally, in Section 4, it will 

be investigated whether there exists any lower dimensional invariant submanifold for 

the problem without assuming B^^j^ = exp{C^^^^) and whether there exists lower 
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dimensional invariant cone for the problem, when is irreducible. 
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2. preliminaries and definitions 

We start this section by looking at the structures of and in 

(i) has negative diagonal nonnegative off-diagonal )(A-.mj)' 

(1.7,1.8). From the constructions, we know that, 

(i) has negative 

i  ̂  k ,  i .k  = 1 , 2 , . . . ,  d.  

(ii) All elements of the are nonnegative, and if the processes and have 

no common jumps, B^^j^ is a diagonal matrix. 

We assume that: 

(i) e  Gl{d,^)  = {G: G is d X  d matrix; det(G) f  0 } , j  = 1,.... 

(ii) The jump times { T j }  satisfy the condition T j  - T j _ i  >  0, j = l,2,..., and TQ = 0, 

a.s. 

Let us briefly comment on the above assumptions. Assumption (i) allows us 

to restrict ourselves to the consideration of all nonsingular matrices B^^j\ This 

assumption is without loss of generality since if there exists some matrix B^^j^ 

with rank( 5^ ^ ) = d-^ < d then we can get a d^ dimensional invariant subspace 

i m m e d i a t e l y .  A s s u m p t i o n  ( i i )  g u a r a n t e e s  t h a t  d o e s  j u m p  a t  i t s  j u m p  t i m e  T j .  

We also should notice that the jump times T j ,  j  = 1, - - are random, and 

exponentially distributed. In order to analyze lower dimensional filters, one has to 

consider (1.7) and (1.8) for arbitrary times Tj > 0, which leads to the following 
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solution manifolds. 

First, it is obvious that the solution of 

(Vll) û = .4("^l)u, i G [To,II) 

is of the form Mi = ^ ^ %}, where = exp(L4(^l)) and ug ^ which 

defines a 1-dimensional manifold. Then at time t  =  Ti ,  the system has the first 

jump: which can be interpreted as the solution of 

(^21) Û = with «(0) = and t=ri. 

The system continues via 

( V 2 2 )  Ù =  A^'^2)u with 1/ ( 0 )  G ; u G M^}.  

The system (^21, ̂ 22 ) defines a manifold 

A/2 := : ̂ 1,^2 ^ ^}-

Continuing the above procedures to n-1 jumps, we can get the system 

( T n l )  w  =  ) ) - ! » ,  u ( 0 ) = 5 ( " ' l ) « o  

-  1 ) )  Û  =  5 ( ' " n - l ) . 4 ( ' " n - l ) ( 5 ( ' " n - l ) ) - l u ,  « ( Q )  e  

(Vnn) Ù = u(0) G 5^'"" 

The system (V nl, ̂ n2,..., Y^nn ) defines a manifold, 

Mn ••= ^  = 1, 2 , . . . , n } .  

By the construction of the Mn, we can see that dim(Afn) < for every n G A'. 

where J\f is the set of positive integers. Our purpose is to analyze whether there exists 

a lower dimensional submanifold of 3?^, which contains Mn for every for n G -V" un-
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der some conditions on and First, we want to introduce the following 

definitions. 

Definition 2.1 A filter of the form (1.7,1.8) has dimension m from UQ G if there 

is a submanifold V C with dim(V) = m such that Mn(uQ) C V, for every n Ç .V . 

Remark 2.2 By Definition 2.1, if a filter has dimension m from f/g 6 V, then 

UQ G V and C)j  uQ G V,  ^  ̂  G V.  

Definition 2.2 A filter has dimension m if there is some submanifold V with dim( V) 

=  m such that  A/n(«)  C V,  for  every  u G V and n G J^ .  

Remark 2.2 It is easy to see that Mn(u)  C V for every u G V.r i  G A' iff 

)V C V for every ( G 3? and C V',j G A". 

Definition 2.3 We say that the filter (1.7,1.8) admits a dimension reduction, if the 

f i l ter  has  d imension m with  m < d.  
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3. DIMENSION REDUCTION BY LINEAR INVARIANT 

SUBSPACES AND INVARIANT INTEGRAL SUBMANIFOLDS 

The equation (1.7,1.8) is a combination of a linear ordinary differential equation 

(1.7) and a linear updating operation (jump) (1.8). We can make use of just one of 

these two structures to obtain sufficient criteria for dimension reduction. 

3.1 Dimension Reduction by Linear Invariant Subspaces 

In this subsection, we want to find a linear subspace V C 3?*^ such that dim(V')<d 

and .V/n(u) C V for every n G and u GV . The following result gives a necessary 

and sufficient condition for such a lower dimensional linear subspace V to exist. 

Theorem 3.1.1 (1.7,1.8) has a lower dimensional linear subspace iff there exists a 

transformation matrix T G Gl{d,^) such that TUT~\ is simulataneously reducible, 

where 15 is the algebra generated by { \ g ,\J }, i.e., for all C G U, 

jg of the form 
/• \ 

* * 

\ 0 * y 

The theorem is an immediate consequence of the following lemma. 

Lemma 3.1.1 The following statements are equivalent. 

(i) There exists an invariant subspace V for (1.7,1.8). 
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(ii) There exists an invariant subspace V for 15. 

(iii) There exists a transformation matrix T G G-7(c?, 5Î) such that TUT~^ is simul­

taneously reducible. 

Proof: Let V be invariant for (1.7,1.8). By Remark 2.2, we have, C V 

and C V for t  € G .V. Then B^'^ jh '  C F, C V for 

every n , j  G .V'. This implies that V is invariant for 15. Thus, we proved that "(i) 

(ii) 

Now we show that "(ii)—-(iii)". Choose a basis ..., for by extending 

a basis ..., e^. of the L5-invariant subspace V. Then for any C G U, we have 

/ \ 
TUT~^ = 

* * 

\ 0  .  y  

where = [e^ , . . .  ,e j] .  So, (ii) is true. 

Finally, by linear algebra, it is easy to see that (iii) implies (i). Thus we proved 

the Lemma 3.1. 

Q.E.D.  

Remark 3.1.1 (i) If 15 is commutative, in particular if and commute 

for all j  G ,V', then they have the same invariant subspaces and hence all U-invariant 

subspaces are direct sums of the invariant subspaces of A^^j\ 

(ii) If TUT" ̂  is simultaneously upper triangular, then the basis given by T~^ defines 

all U-invariant subspaces. 

(iii) If there exists a matrix D G gl{d,^) ,  where gl{d, ' !R)  =  {G : G is a dxd matrix 

}, such that D commutes with 15, i.e., DC = CD for all C G 13, then range D is a 

U-invariant subspace. 
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Our next goal is to see the geometric characteristics of the system dynamics 

( 1.7,1.8) on the above invariant lower dimensional subspace V. Consider the foliation 

of given by the affine subspaces 

Fu = w 4- y u € 5?^. 

The intimate connection between the U-invariant subspace V and the foliation Fu is 

given by the following theorem. 

Theorem 3.1.2 V is U-invariant iff the foliation Fu = u + V is invariant under the 

system dynamics (1.7,1.8). 

Proof. If V is U-invariant, then, by the Theorem 3.1, we know that and 

take the following forms 

/  , ( m ; )  ( m  )  

"^11 -^12 

0 -"^22 
[ m j )  

and 

B-j' ' *• ,("1,) I ®12 

0 b: ' 

{ m j )  
22 / 

( m y )  ( m ;  )  
where .4^]^ and are kxk matrices and k=dim(V). Let (u^ u j )  be the 

corresponding linear coordinate functions on 9?^, i.e., the basis such that the matrices 

f TÏ1 '  ̂  ( 771 * ) 1 nr 
.4 ^ and B 3 have the above structures. We write u = (u^.... ,uj^) and 

u^ = ..., u^)^. Then the system dynamics (1.7,1.8) can be written 

1 ( m j )  ,  (m,-) .y 
J + (3.1) 
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and 

1  ( m ,  )  1  (m:)  .•)  
uHTJ) = u^iTp (3.2) 

0 ( "^ 1 ) 0 

It is easy to see that the foliation Fu = u + V is the same as the Fu = {[/ = 

(u^, u"^)|u^ = constant vector}. Consider and ^2 on the same leaf, i.e., —92 E V, 

or equivalently u"{qi) = u"{q2). Then, by (9.1) and (10.1), we can see that the 

solutions u(t.0,g2 ) and u(t,0,Ç2) at every time instant t > 0 will be again on the 

same leaf. Thus the foliation Fu is invariant under the system dynamics (1.7,1.8). 

Reversing each of the above statements, we can show the "only if " part. 

Q.E.D.  

The significance of this theorem is that, 

(i) it shows that the foliation is a set of stacked V subspaces, and then the quotient 

of 3?^ with respect to the foliation can be identified with V {V is a subspace of 

such that 3?*^ = V'©V' ), and 

(ii) it provides a method to obtain the reduced dynamical syatem, namely, to get the 

reduced dynamical system we only need to project the linear vector field with respect 

to this foliation. 

3.2 Dimension Reduction by Invariant Integral Submanifolds 

In this subsection, we consider the case that the matrices have real loga­

rithms, B^^j^ = exp(C'^'"j ̂ ). In this case, the solutions of (1.7,1.8) live on the max­

imal  in tegra l  manifolds  of  the  Lie  a lgebra  C generated by \  j € A } ,  
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and then the rank £(u) for u 6 5?^, determines the dimension of the reduced system 

starting at u. First, we introduce some notations. 

Let M C gHd, DÎ) be an arbitrary subset, denotes the Lie algebra gener­

ated by M.,  If ZY is a set of matrices in Gl{d,  5î),we let { l i}g  denote the multiplicative 

matr ix  group generated by U, i .e . ,  the  smal les t  group in  G7(c/ ,  5?)  which conta ins  U 

and is closed under multiplication and inversion. If yW C gl(d, %), then one can show 

|.3j that 

{exp(.Vl)}^ = {g: g = exp(Mp)... e x p ( M i ) , M j  e  M , p  =  1....}. 

The rank of any subalgebra g of at u € 3?^ is the dimension of the subspace 

{ M u  :  M  E  g }  Ç  The dimension of a Lie algebra is the dimension of its vector 

space. 

Now we turn to our problem. First, we should notice that the matrix B has 

a real logarithm iff all eigenvalues of B are real and positive [8,p312'. If = 

exp(C^"^.?^), then B^^^^ is the fundamental matrix of the ordinary differential equa­

tion ii{t) = for t = 1. Hence one can consider dimension reduction for 

u ( t )  =  (3.3) 

i i { t )  =  (3.4) 

Here, the solution is given by (3.3) at between jump times, and are described by (3.4) 

a t  jump t imes  as  the  solut ion of  (12)  between t  = 0 and t  = I .  

If (11,12) has a dimension reduction, i.e., there exists a lower dimensional in­

variant submanifold V for (11,12), then we have 
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exp( tA^"^j^)u  €  V  and exp{tC^"^j^)u  G V for all ( € % and j  G .V', 

and hence o^u G V for all ( E % and exp(C^"^^^)u  G V for all j G .V . 

This implies 

o{ V C V and C V for all ( G % and j  G A'. 

Hence, recalling Remark 2.1, we know that V is also invariant for (1.7,1.8). Thus 

(1.7,1.8) admits a dimension reduction if (11,12) does. 

Theorem 3.2.1 Let G gl(d ,^)J  G .V exist. Then ( 1.7), ( 1.8) 

reduce the dimension from u  inO?^ iff dim({.4^ j \ j  G .\/}yj^)(u) < d. 

Proof: By the above notations, we have [3], 

Clearly, Rank{{exp{A^^j\c^"^j\j G 'V}^}^)(u) = dim({A^'"j ̂  ^ j G 

A'}^)(u). Thus, if G .V'}^)(u) < d for all u G then 

there is submanifold V with dim(V)<d such that U { u )  C V .  That is, (1.7,1.8) 

admits a dimension reduction. 

Q.E.D.  

Corollary 3.2.1 Under the assumption of the above theorem, (1.7,1.8) admits a 

dimension reduction iff G ^V'}^)(u) < d for all u 7^ 0,u G 
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4. EXACT CRITERIA FOR LOWER DIMENSIONAL FILTERS 

In this section, we will give some explicit criteria involving the matrices 

), j c ;V' on the existence of a lower dimensional filter for ( 1.7.1.8). 

4.1 Conditions for Mn to be an Invariant Manifold 

Observing the construction of Mn in Section 2,. we can see that Mn consists 

of all the trajectories of (1.7,1.8). It is of interest to know if Mn itself reduces the 

dimension for the problem. In this subsection, we look for conditions on the matrices 

G A/'} such that Mn is an invariant manifold for (1.7,1.8). First, 

we consider the special case = B for j = l,2, .... In this case 

definitions 2.1-2.2 are equivalent to the following conditions, 

C Mn for all t  € % (4.1) 

B ( M n )  C  M n  

where <pi  =  exp( tA) .  

By the above definition, we know that a filter has dimension n from i/Q € iff 

given ti, - • • ,tn G 9î there exist 5]^, •• • ,Sn 6 M such that 

(i) ( f ) ié i j^B. . .Scpi^  UQ C (PsBésn-  • this is always satisfied via construction, 

( " )  B(i) t^B. . .B( t ) t^UQ = (i )snB. . .B(( )s iXiQ.  
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The task is to find explicitly conditions in terms of A and B for this. Before 

presenting the main results for this section, we remark a trivial case. If tr(A)= 0. 

then, by the structures of the generator Q and the matrices A and B, we know that 

all states of the joint processes (( = (Xi,Yi) are absorbing and so are all states of 

the state processes A'^. Therefore, it is of no interest to do the estimation for the 

problem. Thus, we assume tr( A)^0 in the rest of this subsection. 

Theorem 4.1.1 (1) Mn is B-invariant iff AB=BA and if UQ € then we have 

Buq ^ Mn ). 

(1) If A/n is B-invariant, then dim(A/n) = l. 

To show this theorem, we need the following lemma. 

Lemma 4.1.1 If Mn is B-invariant, i.e., given G %, there exist 

5 ^ , ..., 5ti G % such that B. . .B(pt ,^  =  ésn^ . .-B^is^ ,  then 

(i) det(B)>0, 

(ii) if tr(A)f 0, then 

Proof; Suppose, given ... ,tn E %, there exist 5]^,...,G R such that 

Then det(B(pi^.. .Bét-^)— det(4>s.n- • •B<i)si), thus. 

Since det(B)^0, then det(J5) = exp((Tj^_^5j^ - T^^_-^tj)tr(A)), and we have 

det(B)>0 and 

~ = ln{det{B))  
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Q.E.D.  

We should notice that if all the eigenvalues of B are positive, then 

_ V "  ,  
2^fc=i  ^ 2^fc=i  b  yd ^ 

where Aj(B) and \ j { A ) ,  j = l, ..., d. are the eigenvalues of A and B respectively. 

Now we prove Theorem 4.1.1. 

Proof: Suppose .\B = BA and HQ is B-invariant. 

Let u=exp( tnA)B. .  .Bexp( t iA)uQ € Mn, then , 

Bu = Bexp( tnA)B. .  .Bexp( t iA)uQ = exp{tnA)B. .  .Bexp{t iA)(Bi tQ)  6  Mn,  

since is B-invariant. Thus Mn is B-invariant. 

If Mn is B-invariant, it is clear that uq is B-invariant and hence we only need 

to show BA=AB. 

Given ti,.. .,tn G 3?, there exists , 5^ E % such that 

Bexp( tnA)B. .  .Bexp( t iA)  = exTp{snA)B. .  .Bexpis^A)  

then 

d d  
— (Bexp(inA).. .Bexp(ii .4) = —(exp(snA)B...exp{siA)) 
otn  otn  

Since ti,...,tn and are arbitrary real numbers and, by Lemma 4.1.1. 

sn  = tn  + 

BA(l) f -^B. . .B( i ) i^  = .4ç!»5„B.. and hence BAéi^B. .  .Bcf)^^  =  AB0i^ . .  .Bof-^ .  
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Because det(B)^0, we have BA=AB. Thus we proved (1.1). 

Now, it is clear, dim(Mn)=l for all n > 1. 

Q.E.D.  

For general case, we have the following corollary. 

Corollary 4.1.1 Mn is an invariant manifold iff ^ ^ 

and for all j = l 

k=l,2, ..., and WQ is ^-invariant, j = l,2,... and then dim(.U»)=I. 

4.2 Dimension Reduction Using the Structures of the Matrices A and 

B 

From Section .3.1, we know that if j  =  1,..., are reducible, we 

can find a lower dimensional invariant subspace for the problem. It is also of interest 

to know, whether there is any lower .dimensional submanifold other than a linear 

subspace for the problem. It is the aim of this section to investigate, whether there 

is such lower dimensional manifold for (1.7,1.8). For simplicity, we only consider 

)  =  B for j = l, First let us assume that B is irreducible. 

Recalling the dimension reduction for our problem, we are interested in finding 

some subspace or submanifold V C 3?^ with dim(V)<d such that 

BV C V and é^V C V for all ( > 0 , 

and the matrix B satisfies the conditions in Section 2. Clearly, if B is irreducible, 

then there is no lower dimensional invariant linear subspace for the problem. Since 
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is a cone (a cone in a real vector space is a subset closed under addition and 

multiplication by positive real numbers ) and exp(tA) is nonnegative for all t ^ 0. 

then it is natural to look for the existence of a lower dimensional cone V in such 

that V or d{V) (the boundary of V ) is invariant for the problem. The following 

results will give a negative answer to the above question, if B is irreducible. 

Before we state our results for the problem, we introduce some notations. 

Let M be a dxd matrix, we define 

(T(M) = the spectrum of M, 

K ( M ) = max{|Al : A G 

Theorem 4.2.1 Let B be dxd irreducible matrix and all its entries be nonnegative 

(we use the notation B > 0) with tr(B)>0. If there is a subcone V C such that 

BV C V, then eithere dim(V)=d or dim(V)=0. 

Proof: Since B >0,  it is clear that B(%^ ) C . Since B is irreducible. B leaves no 

subcone V C (5?^) with dim(V)<d and BV C V invariant (see [2]), where (M^) 

is the interior of 5?^. 

Since B>0, is irreducible and tr(B)>0, K (B)  G <%(B) is a simple eigenvalue and 

K{B) > |A| for all A G cr(B),\ ^ k(B) [7,pll] and hence there exists n G ;V' such 

that B^ > 0 [8,p546]. This implies that, for any u G 5(3f?^\{0}), B" u G (%^) and 

hence if 5 C 5(3?^) such that BS C S, then 5 = {0}. Thus we proved the theorem. 

Q.E.D 

We now turn our attention to the case when B is reducible. If B is reducible. 
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there exists a permutation matrix P such that 

P'^BP = 
^  Bl l  0  ^  

V 521 B'22 

where Bll = diag( B i i , . . . ,  B j ^ j ^ ) ,  the blocks B j j ,  j = l,...,k are irreducible and 

n j x n j  m a t r i c e s .  L e t  

P j  ^  B j j P  =  J ( B j j )  ;  =  k  

where J { B j j )  is the Jordan form of B j j .  Since B j j  is irreducible, J ( B j j )  has only 

one block. Let 

P  =  d i a g ( P i , ,  P f ^ , I ,  • • • , / )  a n d  T  =  P P  

then 

1 , J(511) 0  
T ' ^ B T =  

It is easy to see that there exists lower a dimensional invariant submanifold for 

(1.7,1.8) iff there is one for 

Ù  = T-K\TU  T E[ T j _ i , T j )  

u { T j )  = T~'^BTu{Tp t  = T j .  

(4.2) 

(4.3) 

If it happens that T~^AT = diag(Ji (A) , . . . ,Jp(A)) ,  where J^.(.4),A- = 1—,p are 

the Jordan blocks of A, and some J}.{A) has the same structure as the corresponding 

J^.(j5), then there exist lower dimensional invariant submanifolds other than a linear 

subspace for (1.7,1.8) in the following cases. 
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( a )  T h e r e  i s  s o m e  J j ( A ) ,  I  <  j  < p,  which has the form 

^  l 3  a ' ^  

V ^ J 

( b )  = A/» , for some I  <  j  < p.  

Summary the above results, we have the following theorem. 

Theorem 4.2.2 Suppose there is a nonsingular matrix T such that T ~ ^ B T  has 

the above form and T~^AT has Jordan form as the above, then there exists lower 

dimensional invariant submanifold for (1.7,1.8) if the following conditions are satisfied 

( i )  t h e  J o r d a n  f o r m  o f  T ~ ^ A T  has at least one of the stuctures of (a)-(b), and 

(ii) the corresponding J [ B j j )  has the same structure as the T ~ ^ A T  in (i). 

Before ending this paper, we make two remarks. 

( i )  I f  a l l  a r e  d i a g o n a l  m a t r i c e s ,  t h e n ,  b y  t h e  c o n s t r u c t i o n  o f  B ^ ^ j \  w e  k n o w  

that the assumptions in Theorem 3.2.1 and Corollary 3.2.1 are satisfied and hence 

we can use invariant integral submanifolds to reduce the dimension for the problem. 

If B^^j^ = ^rrijii where cmj is a positive constant and I is the dxd identity matrix, 

then we can use Reriiark 3.1.1 (i) to find invariant linear subspaces . Moreover the 

assumptions in Theorem 4.1.1 and Corollary 4.1.1 are automatically satisfied, and 

therefore the lower dimensional manifolds for (1.7,1.8) always exsit. 

( i i )  A s  w e  h a v e  s e e n ,  e x a c t  d i m e n s i o n  r e d u c t i o n  i s  r a r e  s i t u a t i o n ,  i . e . ,  g e n e r i c a l l y  n o t  

possible. We will develop an approximate approach to the dimension reduction for 

the problem in a forthcoming paper. 
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abstract 

It has been shown that the solution of a nonlinear filtering equation for contin­

uous time Markov chain state processes and jump observation processes can 

be obtained by solving the following filter equations (unnormalized density), 

P' ( t )  =  f o r t G [ r j _ i , T j ) , P ( 0 e 3 î ^  

P ( T j )  =  for t=7), 

where d is a positive integer, T j  j  =  ! , • • • ,  are the jump times of the process m j  G  

{1,2,•••,«} and lim^(() = P{TJ'), with certain restrictions on the matrices 

.4'^j'and 

This paper presents an efficient and applicable procedure for approximate di­

mension reduction of the above filter equations. The conditions under which the 

approximate optimal filter converges to the optimal filter of the problem under con­

sideration and coresponding error estimates also are given. 
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1. introduction 

Filtering is the general theory of extracting information about a prescribed quan­

tity of interest from noisy observations. Applications include such diverse areas as 

communications, radar image analysis, sonar tracking, flight control and general pa­

rameter for random systems. During the last three decades linear filtering algorithms, 

based on the Kalman-Bucy equations, have been implemented in many systems. For 

the nonlinear filtering problem genuine nonlinear filtering theories have been avail­

able for over twenty years, but there exists a wide gap between the well developed 

theory and its applications. The crucial task in bridging this gap is the development 

of efficient numerical methods, which obviously should be implement able on modern 

digital computers. However, the design of useful numerical algorithms is complicated 

by the mathematical complexity of the filter equations. 

Recently, an efficient and applicable approach to study the implementation of 

nonlinear filtering algorithms has been presented in [3] and [7]. The authors have 

established a general procedure to solve the nonlinear filtering problem for Markov 

semimartingale state processes and general jump observation processes. They rewrite 

the resulting nonlinear equation for the optimal filter into two equations, one describes 

the evolution of the filter between the observation jump times, the other one updates 

the filter at the jump times. Instead of solving the nonlinear filtering equations, they 
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first solve a linear integral equation and a linear algebraic equation recursively, then 

normalize the solution which turns out to be the solution of the original nonlinear 

filtering equation. For practical and numerical purposes, one is more interested in 

the case, where the state process is a continuous time Markov chain. In this case, by 

using the procedure in [3,7], one can identify the nonlinear filtering equation as one 

linear ordinary differential equation and one linear algebraic system. First . let us 

briefly introduce the procedure to get these equations. 

Let , ( > 0 be a continuous time Markov chain with state space {1, 2, • • •, c/}, 

where d is a positive integer, and Yj-, t > 0, a jump process with state space 

{a]^,a2,-• • ,an}, where n is a positive integer, and let the joint process = (Xi,Y'f:) 

b e  a  c o n t i n u o u s  t i m e  M a r k o v  c h a i n  w i t h  t h e  g e n e r a t o r  Q  =  ^  

= «m; ' = ^ m j )  

and G {l,2,-",a}. 

Furthermore, we define ^ ~ m • )(A; m • ) ^ matrix of A'^-transitions 

for Yi constant on the interval [Tj_i,Tj), and 

^ where m j  ^  m i ,  d  x  d  matrix of A'^ transitions for 

Y j < .  jump. 

Then, by identifying the terms in the nonlinear filtering equations, we can get 

the following filter equations (unnormalized density), 

P { t )  =  F O R « E [ T J _ I , T ^ - )  ( L I )  

P [ T : )  = for ( = T. (1.2) 
J J J 

In [3], it has been shown, by numerical simulations, that solving the filtering 

problem by the above procedure can save considerable computation time as com­
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pared to solving the nonlinear filtering equations directly in the case where the state 

process has a small number of states. However, in many applications the state process 

Xi has a larger number of states. This will lead to significant computation problems; 

e.g. to intolerable computation time in real time applications, or excessive compu­

tation time for other problems. Both problems prevent the above procedure from 

being used in applications. Therefore, it is essential to find a reduced order filter 

that estimates only the required minimum number of states. In [6] it has been shown 

that exact dimension reduction for (1) and (2) is a rare situation, i.e., generically not 

possible. In the present paper, we will propose an efficient and applicable procedure 

to reduce approximately the dimension for (1) and (2). There are several model 

reduction methods for dynamical systems available, for example, the method of prin­

cipal component analysis [8], the method of balanced energy [1] and the method of 

balanced stochastic realization [2], etc. , but these existing methods of model re­

duction deal with either the continuous time systems or discrete time systems. Our 

systems (1) and (2) are combination of a continuous and a discrete times system. 

Moreover, the variety of and the random jump times make the 

problem quite complicated. 
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2. PRELIMINARIES AND NOTATIONS 

In this section we shall introduce some assumptions and look at the structures 

of the state and observation processes. 

2.1 Assumptions and Comments 

First, we assume: 

(i) The state process is an irreducible continuous time Markov chain. 

(ii) Ç G7(c/, 5Î) =  { G  :  G  i s  a .  d  x  d  matrix; det(G) ^ 0}, where € 

{ 1 , 2 , • • • , " } •  

(iii) The random jump times { T j }  satisfy the condition T j  - T j _ i  • 0, where 

j = 1,2, • • •, and To — 0, a.s. 

Let us briefly comment on the above assumptions. Assumption (!) is without 

loss of generality, since, otherewise, we can use the arguments in G to get lower 

dimensional filter equations for the problem. Assumption (ii) allows us to restrict 

ourselves to considering all nonsingular matrices This assumption holds 

also without loss of generality since, if there exists some matrix 

rank(5^"'j"'^^'^) = d^ < d, then we can get a di dimensional filter ecjuation imme­

d i a t e l y .  A s s u m p t i o n  ( i i i )  g u a r a n t e e s  t h a t  d o e s  j u m p  a t  i t s  j u m p  t i m e  T j .  

From the construction of and ^ we know that. 
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(i) rrij E {1,2. • • •, n}, are dominant diagonal matrices with negative diagonal 

elements and nonnegative ofF-diagonal elements, and 

(ii) all entries of the matrices ^re nonnegative and if the processes and 

Yi have no common jumps, then a,re diagonal matrices. 

In the following two sections, we want to look at the structures of the state and 

the observation process. 

2.2 Fast and Slow Transition States of a Continuous Time Markov 

Chain 

In this subsection we will classify the states of the continuous time Markov chain 

state'process into fast and slow states in terms of their transition rates. First, we 

introduce the folllowing definitions. 

Definition 2.1 Let X = {Xi,t G be a continuous time Markov chain with 

transition rates matrix A = ( j), i,j = 1,2, - - -, J, 

(i) We define p  = be the average transition rate of the process X. 

(ii) Denote by X { i ) , i  =  1,2, • • •, J the state i of X. Then the state X { i )  is called a 

fast state if 

> ap, 

where a is a positive constant, to be chosen later. The state X ( i )  is called a slow 

state, if it is not a fast state. 

Definition 2.2 Let 

Q f { X )  =  the set of the fast states of the process X, 
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Ç l q { X )  =  the set of the slow states of the process X 

(i) We say that state .Y(;) is connected to state X ( j )  via fast transitions if X i j  > 

apj(d — 1), otherwise it is called a slow transition. 

(ii) The subset Q p { X )  is called a fast recurrent subset if any X ( i )  G Q f { X )  is 

connected via fast transitions to any other X(j) E Qf(X)^ but is connected to any 

X{j) G only by slow transitions. 

(iii) The subset Qf{X) is called a fast transient subset if any A''(i) E QfiX) is 

connected to the states X[j) G Clq{X) by at least one fast transition. 

Definition 2.3 We say that two positive real numbers and ro have comparable 

magnitude, if ^ = cxlO""^, where 1 < c < 10. Two nonzero matrices 

and R2^xn &re of norms of comparable magnitude if lli?l||^ and i]/Z2j!^ are of 

comparable magnitude. 

By reordering the states of the original Markov chain following the partition into 

slow states and fast states, the original trnasition matrix A assumes the following 

block form 

\ -'^5F ^ F F  / 

Remark 2.1 If a > 1, let Ajrjr = aKpp and A^^ = If the Q . p ( X )  is a 

fast recurrent subset, then A. g g , A and A-gf have norms of comparable 

magnitude. If the Q , p ( X )  is a fast transient subset, then A^^ , Â p g  , •^5F 

A ff have norms of comparable magnitude. 

For a continuous time Markov chain, one of the important statistics is its sojourn 

time. The following result will show the intimate connection between the sojourn 

times and the transition rates. 
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Let 

where T > 0. Then, Sj'(i) is the sojourn time of the process X in state i during [0, 

T). 

Proposition 2.1 If \ ^ j j \  >  i^jjl > 0,1 < i , j  <  d ,  where are 

defined in Definition 2.1, then 

(i) EiSjii)) > EiSjU)) , 

(ii)P(%(6) = ,)>P(.Y(6) = ;). 

Proof The result follows from the following facts 

(i) E { S j { i ) )  =  1^(1 - exp(-lAjjir)) and 

(ii)£'(5j(i)) = /d' P { X ( s )  =  i ) d s .  

Q . E . D .  

By this proposition, we can see that the sojourn time in a slow state is longer 

than the sojourn time in a fast state. This will be one of the criteria to reduce the 

dimension for the filter equations (1) and (2). 

2.3 Consistency of the Joint Process = (.V^,V^) 

Now, we turn our attention to the structures of the jump observation process and 

the joint process ( = {X^^Yi ). By the structure of the partially observable system, we 

know that the jump rates of the observation process Y depend on the state process 

X. Thus it is reasonable to introduce the following consistency concept for the joint 

process ( = (%, F). 

First, let us introduce some notations. 
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Let Y be the jump observation process and ) be the conditional jump 

rates matrix, i.e.. 

Pi'^Ti = ^Ti = j\'^Ti-h = "^Ti-h = /î + o(/z) 

for i  ^ J, and 7^^^ = 0, where i . j  = 1,2, • • •, n, k  =  1 ,  •  •  •  , d ,  and/i > 0. 

Definition 2.4 (i) We say that = (.Y^,is consistent if > 7-^ for 
V V 

A:, / = 1, •••,(/, such that %( A;) € Q p ( X )  and X { 1 )  G 

Remarks 2.2 If the joint process is consistent and .Y( A;) G 0 jr(.Y), 

then 

(!) where 6 {1,-","}, ' € 

and X { i )  e  n s ( X ) .  

(") « = 1," such that A\. € 

n_$"(%), and m j  ^  

By reordering the states of the original joint process ( following the parti­

tion into slow states and fast states, and using the above remark, the matrices 

), the following corresponding block forms: 

/ .(mv) (m •) 

^55 •'^FS 
{ m j )  [ m j )  I  '  

\ ' ^ S F  ' ^ F F  

and 

\ ̂ S F  

S S  ^ F S  

F F  

The unnormalized density vector P { t )  is partitioned as P { t )  =  

V 
We 

assume that P g { t )  is an -dimensional vector and P f ( t )  is an n 2 -dimensional vector 
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with n i  +  n 2  =  d  (actually, the dimension of the vector P c ; { t )  will be determined 

by the chosen constant a). 
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3. THE APPROXIMATE DIMENSION REDUCTION ALGORITHM 

AND ERROR ESTIMATES 

In this section we shall propose a procedure to reduce the the dimension of the 

filter equation (1,2) approximately. 

3.1 The Approximate Dimension Reduction Algorithm 

If the joint process is uniformly consistent, and the matrices 

and partitioned as above, then we have 

Now, we want to find an approximate dimension reduction algorithm for the 

problem. The idea is based on the fact that the sojourn time of the fast state is very 

short, or even negligible with respect to the time scale of the problem and hence can 

(3.1) 

(3.2) 

for t  e  [ T j _ i , T j ) ,  and 

for t  =  T j .  
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be deleted by properly modifying the transition between slow states. The following 

proposition will suggest how to approximate the P g ( t ) .  

Proposition 3.1 Let P^(s) be the Laplace transform of P g ( t ) :  

( m ^ )  (m; ) (m; ) , ( > ^ ^ ^ )  i 
P ^ ( s )  =  [ s l ^  -  ~ ^ ^ F S  ) ''^SF ) ^ 

(m,-) I 
[ P s [ T j ) ^ A p ^  { s I p - A p ^  r ^ P p k T j ) ] .  

where Iq and Ip are n ^ and n-2 dimensional identity matrices respectively. 

If ÇLp{X) is a fast recurrent subset, then 

and if QA') is a fast transient subset, then 

[ m A  ( m - - )  1  
( P s { T j ) - A p g '  (Aj,/ r'Pf(T,)), 

where () is defined in the Remark 2.1. 

Proof: Proposition 3.1 follows from Remark 2.2. 

Q . E . D  

Proposition 3.1 suggests taking as an approximation P g { t )  of P g ( t )  the solution 

P  (I) = Agg' P s i T j )  

with P g ( T j )  =  P g ( T j )  if Ç l f ( X )  is a fast recurrent subset, and 

_/ (m:) (m,• ) (m;) •, (m;) _ 
Pg( t )  =  {Agg^ '  ) P s i l )  (3.5) 

(m,) 1 (m;) _ 
PpW = -(Ap^ PsW (3 6) 
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with 

P f i T j )  =  

(3.7) 

(3.8) 

if Q . p { X )  is a fast transient subset. 

It should be noticed that if Q^(,Y) is a fast recurrent subset then the process 

is nearly decomposable, i.e., the states can be divided into two nearly invariant sets 

( sets each of which consists of communicating states but with the property that 

passage to other set is of very small probability). In this case, we can find the 

solutions for the (1, 2) from two separated low dimensional filter equations. Thus, 

we will limit our attension in the case where Qf(X) is a fast transient subset. 

3.2 Model Reduction Error 

First, let us look at the asymptotic distribution of normalized solution of ( 1) and 

(2). If t G then the solution of the filter equation (1) is 

P i t )  =  

\ / 

and, the normalized solution is 

/ 

\ / 
u T p { t )  

P { t )  

where = [1. ' • ', l]i xc/ 

Since is a dominant diagonal matrix-with negative diagonal elements, 

the real parts of all its eigenvalues are negative [4, p26]. Let \ j , j  =  1, •••,(/ be its 
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eigenvalues with 

< • • • < ;Ajj. 

The following proposition gives some useful properties of the eigenvalue 

Proposition 3.2 (i) Aj is a real eigenvalue of 

(ii) A 2 is not an eigenvalue of App , 
(m ,•) (m; ) (m;) . (m, ) 

(iii) det(A27^ - .4^^ ~''^FS ) ''^SF 

Proof Since —is an M-matrix, then, by Theorem 11.4.7 in [5, p385J, -A^ is 

a positive real eigenvalue of —and hence (i) is true. 

Since the matrix is reordered by the partition into slow states and fast 

states, we have 

an < «22 ^ < «n^ + lTT^ + l < ••• < 

By Theorem 11.4.8 in [4, p386], 

— A^ < «11 < + 

(m.-) _ (mv) . 
Thus, + Ai/p is an M-matrix and then + ^\^F nonsigular [o, 

(m.) 
p383]. So Ai is not an eigenvalue of App . 

(iii) follows from (ii) and the following fact, 

( m O  ( m ; )  ( m .  )  ( m ;  )  i  ( m ,  )  ( m ,  )  
- X ^ I )  =  d e t { \ i I s - A ^ g ^  - A p ^  { \ ^ I p - A p ^  ) d e t { A p ^  - X ^ I l  

Q . E . D .  

We now turn to investigate the asymptotic distribution of 

e x p { { - \ i I  +  A ^ ' ^ j ' ' ) t ) P { T j )  
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by using Laplace transform techniques 

:ai 

\ 

Let P * ( s )  be the Laplace transform of e x p ( { — \ ] ^ l  - r  A ^ ^ j ' ^ ] t ) P ( T j ) .  Then 

n . ) = - =  [ s i - [ - x i i + / ' ^ j h r ' ^ p ( T j )  

Thus, 

(m ,• ) (m;) (m ,• , (m ̂  , 
= [sli - ) - •'^fg (sIf-(-XiIp + A p p ^ ) )  -^5^ 1 

(n? • ) (m;) 
l P s { T j )  +  A F g ^  ( 3 / p - ( - A i / f +  . 4 ^ /  ) P F ( T j ) ]  

( m  • )  ( m  j )  (  m  - •  )  ( m : )  .  ( m  
Let .4^ J  =  sIg-{-Xilg +  A g g  ^ ~ ' ' ^ F S  ' ''^SF ' 

Since 

d e t i A l ^ ^ ' ^ j ^ )  =  C q  +  C ' l a  +  . . .  +  

where C'r,0 < r < nj^ is equal to the sum of all principal minors of order — r of 

.4];/5) multiplied by (-1)"!"^. By Lemma 3.1 , CQ = 0. Thus, 

lim^ 

where C]^ is the sum of all principal minors of order — 1 of 

( m y )  ( m y )  ( m y )  ,  ( m  : )  

4 = ̂ i^s-^ss -'Vs W f - A f f  • 

Therefore, it is easy to see that 

1  ^  ( m y )  ( m y )  

\ i m ^ s P s i s )  =  { - ^ a d j ( A Q ) ) [ P g { T j )  -  A f s  i h ^ F  ~  ̂ F F  

By the finite value theorem of the Laplace transform [9,p21], we have 

^lim exp(—\it)Pg{t) = lim^s/'^(3) 

{ ± a d j { A ' ^ ) ) [ P s { T j )  -  A ^ p f i h l p  -  A p f ) P F { T j  »! 
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If we use e x p ( A  '"j — Aj^/) to modify our reduced dimension filter equation (7), we 

have 

P g ( t )  =  \ ( ; ' P g ( t )  (3.9) 

( m y )  ( m y )  ( m y )  ( m y )  
where i\.Q = Aqg - {sIf + XiIp-App ) • 

Using the Laplace transform to (11), we have 

P ^ { s )  =  [ s I s - À c r ^ P s ( T j )  

By the same arguments as above we can obtain, 

= i - ^ a d j { A o ) ) P s { T j )  

Summarizing the above dicussions, we have the following theorem for the con­

vergence of the errors. 

Theorem 3.1 If E { W j )  — oo, where W j  =  T j j ^ i  —  T j  is the wating time of the 

jump observation process Y^, then 

E|e^(()| -^0, as < — oo 

where t  € [ T j , T j j ^ i )  and e ^ { t )  = P g { t )  -  P * { t ) ,  provided that both have the same 

initial values. 

Next, we want to find the corresponding error estimate for the above procedure. 

First, let us introduce some notations. 

1  r / D  I D  u \ \ T ] T  Let P*(0 = r and 

• e(0 = 

£^(0 y 

=  P * { t ) -  P * { t ) .  
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Then, it is easy to find the following equation for e(t): 

e ( t ) -r G ( t )  +  H i { t ) -r H o i t ) ,  ( 1 2 )  

where G { t )  = [ 0 ^ , ( - A P g { t ) ) ' ^ ] ' ^  and H i ( t )  = P * U ^ A ( m j )P'' with 

at jump times 

It is easy to see that the first three terms in above inhomegeneous ordinary dif­

ferential equation can be computed. H2{t) also can be computed because P'it) = 

the error at between jump times and at jump times by the above formulas. Un­

fortunately, the formula described above is of limited utility, because the numerical 

computation is very complicated. So it is essential to seek a simple and resonable 

approximate error estimates formula. 

Before looking for such an approximate error estimates formula, we prove the 

following proposition. 

Proposition 3.3 The system (12 ) is asymptotically stable. 

Proof Since the real parts of all eigenvalues of are negative, the system 

e ' { t )  =  is asymptotically stable. Since is diagonally dominant with 

0 

and H 2 { t )  = - P * u ' ^ for t G and 

—  T j ) ) ) P * { T j )  and P * { T j )  =  e { T j )  -f P * { T j ) .  Thus we can compute 
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negative diagonal elements [4, pl28], real parts of all eigenvalues of A^- are negative 

and hence 

lim [  G ( s ) d s  <  oo, lim [  H - \ ( s ) d s  <  oo, lim [  H o ( s ) d s  <  o c .  
t — o c  J T j  ( — ' O C  J X j  t — ^ o o J T j  

Hence the system (12) is asympoticlly stable. 

Q.E.D 

With Proposition 3.3 in mind, we can take the following approximate error esti­

mates, 

for T j  <  t  <  +  
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4. example 

In order to illustrate the efficiency of our approximate dimension reduction pro­

cedure let us consider the following simulation example. 

Let the continuous time Markov chain state process t  >  0 ,  have states {1,2, • • • ,6}, 

and the observation process Yi, t > 0, have states {3/1,1/2,^3}. We assume that A'^ 

and Yf. do not have common jumps. Let the joint process = (Xf^Yf-) be the 

continuous time Markov chain with the following generator. 

The ) &re given as follows, 

= iia^(0.220,0.240,0.260,0.280,0.800,0.900), 

BiyhVs) = diag(0.240,0.280,G.320,0.360,0.840,0.940), 

5(î/2'2/l) = (/m^(0.220,0.290,Q.360,0.430,1.000,1.100), 

Biy2^yz) = (fia5(0.295,0.340,0.385,0.430,0.880,0.980), 

B(i/3'î/l) = dm5(0.340,0.410,0.480,0.550,1.100,1.200), 

= 6a^(0.270,0.290,0.310,0.330,0.880,0.940). 

The \ are given as follows. 
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.4(^1 ) = 

/ 
1.3 0.1 0.15 0.2 0.5 0.6 

0.15 1.35 0.2 0.25 0.6 0.7 

0.2 0.2 1.55 0.3 0.7 0.8 

0.25 0.25 0.3 1.75 0.8 0.9 

0.11 0.13 0.15 0.17 5.24 0.9 

\ 0.13 0.15 0.17 0.19 1.0 5.74 

given as follows, 

for i  ̂  k  and 

i V j )  
^ k k  

J '  _  i y  
~ E ̂ ik E E ^ik 

i y j , y i )  

k ^ i  i = l y i T ^ y j  

We have simulated the Yf- process with the above parameters and initial condi­

t i ons P(Xi = i) = g, i = 1, 2 • • •, 6. The simulated process starts at state i = 1, 

then jumps to state i = 2 at time = 5.46, jumps to state i = 1 at time To = 6.08, 

jumps to state i = 2 at time Tg = 9.3.5, jumps to state i = 3 at time = 9.66. 

jumps to state i — 2 at time Tg — 10.97 and so on. 

The average transition rates of the X ^ ,  given = y j  i s  p  =  1.875 and 3  = 1.03. 

If we take a = 0.56 then we can reduce the filter equation to a 3-dimensional filter 

equation. If we take a = 2.79 the filter equation can be reduced to a 4-dimensional 

filter equation. The numerical solutions of the original filter equations and the two 

reduced dimension filter equations at time t=I0.0 are given as follows. 
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The solution of the original filter equation is 

^(-^10.0 = I'^IO.O = ^3) = 0.1516 P(%io.O = 21^10.0 = f.3) = 0.2465 

^('^'10.0 = 3'^10.0 = fs) = 0.2233 P { X i Q Q  = 4|yio.O = %) = 0.2663 

^(-^'10.0 = 5|^10.0 = i/3 )  = 0.0490 P { X i Q  Q  =  eir^o 0 = y ^ )  = 0.0631. 

The solution of the reduced dimension filter equation in the case a = 0.56; 

The solution for slow states is 

^(.^10.0 = 11^10 = i/3) = 0.2077 ^(A'lo.O = 2|>10.0 = ^3) = 0.3406 

^('^'10.0 = 31^10.0 = = 0.2904. 

The solution for fast states is 

^('^10.0 = 4|}io.O = ^3) = 0.1568 = ô|Fio.O = y?,) = 0-0043 

. ^('^10.0 = 01^10.0 = VZ) - 0.0016. 

The solution of the reduced dimension filter equation in the case a = 2.79: 

The solution for slow states is 

^(-^10.0 = li^lO.O = ys) = 0.1718 P(A'io.O = 21^10.0 = y^) = 0.2781 

f('^10.0 = 3|yio.o = Î/3 )  = 0.2480 P {X i q q  = 4lFio.O = J/3) = 0.2896. 

The solution for fast states is 

^(-^10.0 = -^1^10.0 = 3/3) = 0.045 P(.Yio.o = 6IV10.0 = i/ 3 )  = 0.077. 

The approximate errors for the first and second cases are 

e(10) = 0.3211 and e(10) = 0.0555. 

respectively. 

Remark 4.1 As we have seen that the number of dimension reduction and errors 

depend on the constant a. Small a results in large error and high dimension reduction 

and large a results in small error and low dimension reduction. 
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general summary 

In this dissertation, we have studied the implementation of nonlinear filtering 

algorithems that can be used in real time applications. 

In the first part, we developed a general procedure to solve the filtering problem 

for Markov semimartingale state processes and jump observation processes. By this 

procedure, we can obtain the solution of the nonlinear filtering equation from solving 

the corresponding linear filtering equations. 

In the second part, we consider the discretization of the state space which leads to 

filtering equations that are a combination of ordinary differential equations and linear 

updating operations. For this we investigated the problem of dimension reduction. 

We provided some necessary and sufficient conditions for the problem to allow for 

exact dimension reduction. 

In the third part, we considered the approximate dimension reduction. We estab­

lished a procedure to reduce the dimension approximately. The computer simulation 

showed that this procedure is efficient and applicable. 
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