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Abstract
Genomic prediction (GP) might be an efficient way to improve haploid induction rate

(HIR) and to reduce the laborious and time-consuming task of phenotypic selection

for HIR in maize (Zea mays L.). In this study, we evaluated GP accuracies for HIR and

other agronomic traits of importance to inducers by independent and cross-validation.

We propose the use of GP for cross prediction and parental selection in the develop-

ment of new inducer breeding populations. A panel of 159 inducers from Iowa State

University (ISU set) was genotyped and phenotyped for HIR and several agronomic

traits. The data of an independent set of 53 inducers evaluated by the University of

Hohenheim (UOH set) was used for independent validation. The HIR ranged from

0.61 to 20.74% and exhibited high heritability (0.90). High cross-validation prediction

accuracy was observed for HIR (r = 0.82), whereas for other traits it ranged from 0.36

(self-induction rate) to 0.74 (days to anthesis). Prediction accuracies across different

sets were higher when the larger panel (ISU set) was used as a training population

(r = 0.54). The average HIR of the 12,561 superior predicted progenies (μSP) ranged

from 1.00–18.36% and was closely related to the corresponding midparent genomic

estimated breeding value (GEBV). A predicted genetic variance (VG) of reduced mag-

nitude was observed in the twenty crosses with highest midparent GEBV or μSP for

HIR. Our results indicate that although GP is a useful tool for parental selection, deci-

sions about which cross combinations should be pursued need to be based on optimal

trade-offs between maximizing both μSP and VG.

1 INTRODUCTION

In modern maize breeding, doubled haploid (DH) technology
has allowed breeders to speed up breeding cycles by the rapid
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development of inbred lines (De La Fuente, Frei, & Lübber-
stedt, 2013). The success of the DH technology lies on the
efficient production of haploid seeds from segregating popu-
lations. For the in vivo induction of maternal haploids, pollen
of the haploid inducer is used to pollinate a maternal donor
from which DH lines are to be developed (Prigge, Schipprack,
Mahuku, Atlin, & Melchinger, 2012a). Therefore, availability
of haploid inducers with high haploid induction rate (HIR) is
a key factor to reduce the cost of DH line production.

It was recently discovered that a 4-bp insertion in
the last exon of a pollen-specific phospholipase, named
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MATRILINEAL (MTL), substantially increases the HIR of
maize maternal haploid inducers (Gilles et al., 2017; Kelli-
her et al., 2017; Liu et al., 2017). A single nucleotide poly-
morphism (SNP) in the ZmDMP gene, which encodes for a
DUF679 domain protein, enhances the HIR of inducers fixed
for the mtl allele by 2- to 3-fold (Liu et al., 2015; Zhong
et al., 2019). However, multiple genes are known to affect
HIR in cross-pollinations with inducers (Deimling, Röber, &
Geiger, 1997; Dong et al., 2013; Kelliher et al., 2017; Prigge
et al., 2012a; Trentin, Almeida, Frei, & Lubberstedt, unpub-
lished data). Apart from MTL and ZmDMP, which are located
on chromosomes 1 and 9, respectively, quantitative trait loci
(QTL) on chromosomes 3 (qhir2 and qhir3), 4 (qhir4), 5
(qhir5 and qhir6), 7 (qhir7) have been identified. Through
breeding, the accumulation of beneficial alleles resulted in
an increase of HIR from 3.2% (Stock 6, Coe, 1959) to 14.5%
(PHI-3, Rotarenco, Georgeta, & Fuia, 2010). Improving HIR
can significantly decrease the cost of DH line production by
reducing the amount of land and labor required to produce
and select the desirable amount of haploid seeds. A signifi-
cant improvement towards the automation of haploid selec-
tion was recently achieved with the development of high oil
content inducers and of machines capable of discriminating
haploid and hybrid seeds based on their differences in oil con-
tent (Melchinger, Schipprack, Wurschum, Chen, & Technow,
2013; Wang et al., 2016). Since both oil content and HIR
are governed by multiple QTL, genomic selection might be a
better approach for their simultaneous improvement than the
introgression of a limited number of QTLs by marker-assisted
backcrossing or selection.

Meuwissen, Hayes, and Goddard (2001) proposed the
simultaneous use of all molecular markers across the genome
to capture small and large effect QTLs and to predict the br-
eeding values of selection candidates. This genome-wide
selection approach, commonly referred to as genomic pre-
diction (GP), relies on the establishment of a prediction
model based on phenotypic and genotypic information of a
training set to predict the genetic merit of individuals with
only genotypic information in a breeding population. We
believe that GP will optimize resource-allocation of inducer
breeding programs by the genotyping of a great number
of selection candidates and field-testing of only the most
promising ones.

One of the challenges in an inducer development pro-
gram is identifying suitable parents among several possible
crosses to derive new populations. According to Bernardo
(2014), the progeny of desirable crosses should have high
mean and large genetic variance, which would give breeders
greater opportunities to select superior individuals for more
generations of breeding. To address the trade-offs between
decisions about selecting lines to intermate based on high
genotypic values and maintaining potential genetic variabil-
ity, Schnell and Utz (1975) proposed the usefulness concept

Core Ideas
• Genomic prediction can be successfully imple-

mented to select superior haploid inducers
• Midparent GEBV played the major role in the pre-

diction of superior inducer progenies
• Induction rate can be improved without negatively

impacting agronomic performance

(UP), which is a function of the population mean, genetic vari-
ance, heritability and selection intensity predicted or applied
to a given bi-parental cross. A modification to UP was pro-
posed by Zhong and Jannink (2007), which estimates the
achievable genetic gain from a cross by focusing on the
mean and genetic variance of progenies while disregarding
trait heritability.

Unlike population mean, which can be easily predicted
based on midparent values, estimating genetic variance relies
on knowledge of population parameters that are not read-
ily known (Bernardo, 2010). Recent studies have used GP
to evaluate the potential of crosses (Bernardo et al., 2014;
Lado et al., 2017; Mohammadi, Tiede, & Smith, 2015; Tiede,
Kumar, Mohammadi, & Smith, 2015). Based on the predicted
progeny means and genetic variances of crosses involving
75 lines, Yao, Zhao, Chen, Zhang, and Wang (2018) were
able to identify potential crosses for improving both yield
and quality traits in wheat. In an inducer development pro-
gram, it would be of interest to improve the agronomic per-
formance of inducers besides increasing HIR. Poor pollen
production, plant vigor, lodging tolerance and disease sus-
ceptibility are common disadvantages of existing inducers
(Kebede et al., 2011; Rotarenco et al., 2010). There has
been an undocumented concern that HIR and agronomic per-
formance might be negatively correlated. Therefore, cross
prediction would be a great approach to identify promis-
ing parents to generate progenies with satisfactory agro-
nomic performance and high HIR before crosses are made in
the field.

We are unaware of the use of GP for parental selection and
for the improvement of HIR or agronomic performance of
maize maternal haploid inducers. Phenotypic selection was
employed in the few cases in which the breeding schemes of
inducer development were described (Chaikam et al., 2015;
Kebede et al., 2011; Rotarenco et al., 2010). The objectives of
this study were to (1) evaluate the GP accuracy for HIR and
agronomic traits important to maize maternal haploid induc-
ers, to (2) validate GP procedures for HIR by using differ-
ent sets of inducers as training and validations populations,
and to (3) evaluate the utility of GP in cross prediction and
parental selection.
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2 MATERIALS AND METHODS

2.1 Germplasm

We used a diverse panel of North American and Euro-
pean haploid inducers to identify QTL affecting HIR. The
North American panel contained inducers in the background
of different public and Ex-PVP lines, such as A637, B73,
DK78004, LH82, Mo17, PHG50 and Va35, and ranged from
the F4 to mostly homozygous (Supplemental Table S1). All
lines from the North American panel had the cross between
RWS and RWK as their source of qhir1. The European panel
included lines such as, MHI, PHI-3, RWS, RWK and eight
F7 progeny derived from the cross of RWS and PHI-3, which
were selected for high HIR. The HIR of all inducers was
evaluated in crosses with the commercial hybrid Viking 60-
01N, from Albert Lea Seed Company (Minnesota, USA).
This hybrid was chosen as a donor because it possesses good
inducibility and allows clear expression of the R1-nj marker.
Inducibility is the ability of the donor parent in generating
haploid seeds, and multiple studies indicated that the source
germplasm has an impact on HIR (Chase, 1952; De La Fuente
et al., 2018; Eder & Chalyk, 2002; Lashermes & Beckert,
1988; Randolph, 1940).

2.2 Field plot design and data collection

The inducers and donor used for this experiment were sown at
the Iowa State University Agronomy and Agricultural Engi-
neering Farm, located in Boone, IA, during the summer of
2018. The trial was grown under rainfed conditions, following
the same practices used for maize production in Central Iowa.
Pre and post-emergence herbicides along with hoeing were
used for weed control. Urea ammonium nitrate was applied
in the area before sowing. Two blocks of inducer and donor
genotypes were sown at different planting dates to ensure
enough seeds would be produced to obtain reliable estimates
of HIR. The first block of donor was sown on 8 May 2018
and the first block of inducers was sown on 21 May 2018. The
second block of donor was sown along with the first block of
inducers, while the second block of inducers was sown on 31
May 2018. Sowing of inducer blocks were delayed because
most inducers have a significantly shorter maturity than the
donor used.

Due to the differences in sowing dates, the first donor block
was pollinated only by the first inducer block, and the sec-
ond donor block was only pollinated by the second inducer
block. In this study, the blocking term of the statistical model
was confounded with planting date. Therefore, all environ-
mental variability, whether caused by planting date, different
physiological development, soil variability or some other fac-
tor, was captured by the blocking term. The weather condi-

tion surrounding the peak of pollen shed of inducers from the
first block (15 July 2018) were considerably warmer and less
humid (avg. max. 30.7◦C, avg. 25.1◦C, avg. min. 18.9◦C, avg.
RH 78.1%) than the same period for the inducer block (24 July
2018; avg. max. 25.5◦C, avg. 21.8◦C, avg. min. 20.9◦C, avg.
RH 88.4%). Given limited resources, conducting the same
experiment in an additional location or planting date, or with
an additional donor, would not have been possible due to
logistics and the extensive time required for pollination and
haploid selection. Each inducer and donor blocks were com-
posed of subblocks containing 16 plots. Inducers were not
randomized within subblocks because the great difference
in vigor among them would adversely affect other traits for
which data were collected for a companion study. For exam-
ple, if hybrid and inbred inducers were randomized, shading
caused by differences in plant height would be detrimental
to the development of inbred lines. Plots were 5.5 m long
and 0.75 m wide and were sown with 25 seeds. Inducer and
donor blocks were sown side-by-side, and pollen from induc-
ers in a given subblock was carried to the adjacent donor sub-
block. Multicolored tags with easy-to-match codes were used
to ensure that the pollen from each inducer plot was placed
in the corresponding donor plot. For the two planting dates,
days to anthesis (DTA, GDUs) was recorded when 50% of
the plants of a plot were shedding pollen. Plant height (cm),
ear height (cm), and tassel size (cm) were recorded on three
representative plants of each plot. Plant and ear heights were
measured as the distance between the soil surface to the node
of insertion of the flag leaf and upper ear, respectively. Tas-
sel size was measured as the distance between the first tas-
sel branch and the top of the tassel. Self-induction rate (SIR,
%) was calculated as the ratio of haploid plants over the total
number of plants in an inducer plot.

2.3 Haploid induction and selection

At each planting date, bulk pollen from each inducer plot was
collected in tassel bags and used to pollinate at least ten ears
of the donor, which were covered before silk emergence using
wax bags. Due to nicking issues, we were not able to pollinate
the targeted number of ears for all inducers. Ears were har-
vested when seeds reached the black layer stage and were air-
dried for one week. Visual haploid selection was performed
using the R1-nj phenotypic marker, and the number of puta-
tive haploid and diploid seeds per ear was recorded. Puta-
tive haploid seeds from each inducer were saved in a single
envelope, whereas putative diploid seeds were discarded. The
ploidy of the putative haploid seeds was verified by cutting
them in halves and checking the presence of anthocyanin pig-
mentation in the embryonic region. Subsequently, the actual
number of haploid and diploid seeds within each planting date
were summed to calculate the HIR. Embryo and endosperm
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abortion, which are correlated with HIR (Prigge et al., 2012a;
Xu et al., 2013; Zhao, Xu, Xie, Chen, & Jin, 2013), occur at
different stages of seed development (Xu et al., 2013). This
makes the identification of embryo and endosperm aborted
seeds quite subjective, and for this reason, these two classes
of seeds were not included in the formula to calculate HIR.

In total, 3,396 ears set seed and were evaluated, correspond-
ing to an average of 9.3 ears per inducer per planting date.
Two out of the targeted ten ears pollinated by each inducer
at each planting date were evaluated by the second author of
this manuscript, while the remaining ears were evaluated by a
team of trained undergraduate and graduate students. For each
inducer and planting date, the HIR data of the second author’s
sample was compared to the HIR data of other evaluators. If,
for a given inducer in a given planting date, an underestima-
tion of 3.0% or more in HIR data of the team of evaluators was
noticed, and such underestimation contributed to a reduction
of 2.0% or more in the overall HIR, the data from such inducer
were excluded from further analysis. Overestimated HIR data
did not represent a problem, since the ploidy of the putative
haploid seeds was subsequently verified by cutting the seeds
and checking for anthocyanin pigmentation in the embryonic
region. Data from inducers that did not produce at least 300
seeds on a given planting date were also excluded from fur-
ther analysis. After this culling, HIR data of 159 inducers (ISU
inducer set) across the two planting dates remained.

2.4 Statistical analysis of phenotypic data

The phenotypic data of HIR, DTA, plant height, ear height,
tassel size, and SIR were analyzed using a random model
by likelihood methods (REML) which was part of the func-
tion mmer of the sommer R package (Covarrubias-Pazaran,
2016). Planting dates were considered as blocks. The statisti-
cal model was:

𝑦ij = μ + 𝐵𝑖 + 𝐺𝑗 + 𝑒ij

where μ is the overall mean; Bi (i = 1, …, I) is the random
effect of the ith block; Gj = (1, …, J) is the random effect
of the jth inducer; and eij is the random error term. With
the sommer package, we obtained best linear unbiased pre-
diction (BLUP) adjusted means and variance components for
each trait. Heritability on an entry-mean basis, was calculated
based on variance estimates, through the following formula:
ℎ2 = σ2

𝑔
∕(σ2

𝑔
+ σ2

𝑒
∕𝑟), in which σ2

𝑔
and σ2

𝑒
correspond to geno-

typic and residual variance, respectively, and r corresponds
the number of blocks (Hallauer, Carena, & Miranda, 2010).
The BLUP adjusted means of the inducers were used to cal-
culate the phenotypic correlation matrix, using the Pearson’s
correlation coefficient implemented in the CORR procedure
in SAS 9.4 (SAS Institute, 2016).

2.5 Genotyping and quality control

Leaf samples of each inducer were collected at seedling
stage (V3), lyophilized and sent to the International Maize
and Wheat Improvement Center (CIMMYT) for genotyping
using the Diversity Arrays Technology platform (Kilian et al.,
2012). Markers were aligned to version 4 of the B73 reference
genome. From the 32,929 SNP markers detected by this plat-
form, 16,639 remained after filtering for a call rate of at least
50% and minor allele frequency of 5%. The software Beagle
5.0 (Browning, Zhou, & Browning, 2018) was subsequently
used for the imputation of missing data.

2.6 Genomic prediction using the GBLUP
model

The BLUP adjusted means of each trait were used in the pre-
diction of the genomic estimated breeding values (GEBVs)
through the GBLUP model:

𝐲 = 𝟏𝑛 μ + 𝐙𝐮 + ε

in which y is the vector of phenotypic values (BLUP adjusted
means); 1 is the unit vector of length n (here n is the number
of inducers); μ is the fixed model intercept; u is the estimated
vector of random genetic effects of inducer with covariance
matrix 𝐊σ2

𝑔
; K is the estimated genomic relationship matrix;

and σ2
𝑔

is the estimated additive variance. The vector of ran-

dom residuals ε has a covariance matrix 𝐈σ2
𝑒
, where I is an

identity matrix and σ2
𝑒

is the residual variance. Term Z is the
incidence matrix of u. The R package rrBLUP (Endelman,
2011) was used for these analyses.

2.7 Accuracy of prediction

To assess the predictive ability of GBLUP, we performed
cross-validation for all measured traits and independent vali-
dation for HIR. Cross-validation was performed by randomly
dividing the ISU inducer set into training and validation pop-
ulations, which contained 60.0 and 40.0% of the individuals,
respectively. Accuracy was estimated as the Pearson’s corre-
lation between the predicted GEBVs and the observed BLUP
adjusted means. The average of fifty iterations was used as
the measure of accuracy for each trait. Independent validation
was performed using the phenotypic and genotypic informa-
tion of a diverse set of 53 inducers evaluated by the University
of Hohenheim (UOH set, Hu et al., 2016). This inducer set was
genotyped with the Illumina MaizeSNP50 BeadChip (Ganal
et al., 2011), which generated data of 40,572 SNPs. The
genotypic data of this dataset was realigned from the version
two to the version four of the B73’s reference genome using
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T A B L E 1 Estimates of range, mean, genotypic variance and heritability on an entry-mean basis of haploid induction rate (HIR, %), days to

anthesis (DTA, GDUs), plant height (PH, cm), ear height (ER, cm), tassel size (TS, cm) and self-induction rate (SIR, %) evaluated in the ISU inducer

set

Traits Average Minimum Maximum Genotypic variance Residual variance Heritability
HIR 6.27 0.61 20.74 21.32 2.41 0.90

DTA 1327 1222 1461 2123.47 493.10 0.82

PH 150 98.45 188.89 352.73 82.42 0.81

EH 58.20 32.63 87.72 145.26 46.95 0.75

TS 30.84 24.01 39.17 8.32 3.93 0.68

SIR 12.66 5.84 27.66 36.37 62.23 0.37

annotation provided by Illumina (Susan Chambers, unpub-
lished data). The same parameters used for quality control in
the Diversity Arrays Technology platform’s genotypic dataset
were applied to the Illumina MaizeSNP50 BeadChip dataset.
After this process, the remaining 27,031 markers of the UOH
inducer set were joined with the 16,639 markers of the ISU
inducer set, resulting in a combined dataset of 43,670 markers.
Both datasets were connected by 4 common inducers (RWS,
PHI-3, MHI, RWK-76) and 122 common SNPs. The merging
process was performed as described by Li, Willer, Sanna, and
Abecasis (2009), through the software Beagle 5.0 (Browning
et al., 2018). For independent validation, phenotypic infor-
mation of the UOH inducer set was masked and predicted
using the model created with the information of ISU inducer
set, and vice-versa. Accuracy was estimated as the Pearson’s
correlation between predicted and observed values in each
inducer set. Cross-validation was also performed within the
UOH and the merged (ISU+UOH) inducer sets, following the
same procedures described above. Phenotypic data was used
to classify part of the inducers as having superior and infe-
rior performances. Subsequently, a coincidence index (Can-
telmo, Von-Pinho, & Balestre, 2017) was used to evaluate how
accurately the prediction model placed the same inducers in
these two categories. Genetic diversity within each set was
measured using nucleotide diversity analysis (Pi) (Nei & Li,
1979) implemented in the software TASSEL 5.0 (Bradbury
et al., 2007).

2.8 Cross prediction for parental selection

In order to select the best inducers to derive a new breeding
population with high HIR and good agronomic performance,
12,561 biparental crosses were predicted using the data of the
ISU set. For each possible crossing combination, 10 popula-
tions with 200 individuals were simulated using the R package
PopVar (Mohammadi et al., 2015). For each trait, the popula-
tion parameters midparent GEBV and predicted genetic vari-
ance (VG) were calculated based on the marker effects. The
superior progeny average (μSP) was calculated as the mean of

T A B L E 2 Phenotypic correlation coefficients of haploid

induction rate (HIR, %), days to anthesis (DTA, GDUs), plant height

(PH, cm), ear height (ER, cm), tassel size (TS, cm) and self-induction

rate (SIR, %) observed in the ISU inducer set

HIR DTA PH EH TS SIR
HIR −0.20**a −0.28** −0.21** −0.19** 0.44**

DTA 0.43** 0.51** 0.29** 0.009ns
b

PH 0.80** 0.30** −0.05ns

EH 0.28** −0.06ns

TS −0.18**

a**significant at P < .01
bns, non-significant

the 10% of individuals with better performance simulated for
each possible crossing combination.

3 RESULTS

3.1 Inducer performance, heritability, and
trait correlations

In the ISU inducer set, HIRs ranged from 0.61 to 20.74% and
had an average of 6.27%, which was twice lower than the aver-
age SIR (Table 1). Plant and ear height values ranged from 99
to 189 cm (avg. 150 cm) and from 33 to 88 cm (avg. 59 cm),
respectively. The average of days to anthesis and tassel size
were 1,327 GDUs and 31 cm, respectively. In general, esti-
mated heritability on an entry-mean basis was high for all
traits except SIR. The highest value observed was for HIR
(0.90), while for other traits it consistently exceeded 0.60, and
ranging from 0.68 for tassel size to 0.82 for DTA.

Phenotypic correlations between most traits were highly
significant (P < .01) (Table 2). Non-significant correla-
tions were only observed between SIR and DTA, and plant
height and ear height. The HIR was slightly negatively cor-
related with DTA (−0.20), plant height (−0.28), ear height
(−0.21) and tassel size (−0.19) and positively correlated with
SIR (0.44).
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F I G U R E 1 Average cross-validation prediction accuracies and

standard deviation observed in the ISU inducer set, for the following

traits: haploid induction rate (HIR, %); days to anthesis (DTA, GDUs);

plant height (PH, cm); ear height (EH, cm); tassel size (TS, cm);

self-induction rate (SIR, %)

3.2 Genomic prediction

The results from the 60:40 cross-validation analysis showed
that GBLUP is suitable to predict HIR. Estimated accura-
cies ranged from 0.75 to 0.88 (avg. 0.82), while for the
other traits they ranged from 0.36 (SIR) to 0.74 (DTA)
(Figure 1).

In order to evaluate the utility of prediction across inde-
pendent sets, the ISU inducer set was used to predict the
performance of the UOH set, and vice-versa. Population
size played an important role in the accuracy of the pre-
diction model. The accuracy across populations was higher
when the ISU set, which was larger (159 vs. 53 individu-
als), was used as a training population and the UOH set as
the prediction population (r = 0.54) (Table 3; Figure 2a). A
principal component analysis clearly separated the inducers
sets into two groups, confirming the presence of two dif-
ferent sub-populations (data not shown). Genetic diversity
was higher in the UOH set (Pi = 0.34) than in the ISU set
(Pi = 0.23).

Furthermore, training the model with ISU set was also
effective to select the best (coincidence of 56%) and discard
the worst inducers (coincidence of 62%) of the UOH set.

F I G U R E 2 Linear regression of the 53 inducers genomic

estimated breeding values with their observed values, using the ISU

inducer set as training population (a). Linear regression of the 159

inducers genomic estimated breeding values with their observed values,

using the UOH inducer set as training population (b)

When UOH was used as the training set, the accuracy was
reduced (r = 0.30), as were the coincidence indexes to select
the best (coincidence of 42%) and discard the worst inducers
(coincidence of 29%) of the ISU set (Table 3; Figure 2b). The
seemingly outlier in Figure 2b is RWS, inducer present in both
sets and that, along with RWK, was used as a parent of most
inducers of the ISU set. Cross-validation within the UOH set

T A B L E 3 Prediction accuracies among different sets of inducers and coincidence index (%) of the 30% predicted inducers with higher and

lower haploid induction rate (HIR, %). Sets are from Iowa State University (ISU) and University of Hohenheim (UOH)

Coincidence index (%)
Training set Validation set Prediction accuracy High HIR Low HIR
ISU UOH 0.54 56.0 62.0

UOH ISU 0.30 42.0 29.0

UOH
a

- 0.70±0.08 - -

ISU+UOH
b

- 0.80±0.04 - -

aAverage 60:40 cross-validation prediction accuracy and standard deviation for the UOH inducer set
bAverage 60:40 cross-validation prediction accuracy and standard deviation for the merged ISU+UOH inducer set



ALMEIDA ET AL. 7 of 12The Plant Genome

resulted in an average accuracy of 0.70, with values ranging
from 0.45 to 0.89.

The increase in marker density and individuals gained
by the integration of the ISU and UOH set did not influ-
ence the accuracy of the prediction model. The average
prediction accuracy of a 60:40 cross-validation analysis in
this merged population was comparable to the one observed
for ISU set. For this new cross-validation scenario, accura-
cies ranged from 0.70 to 0.86 and had an average of 0.80
(Table 3).

3.3 Cross prediction for HIR

Table 4 contains the population parameters, average and range
of HIR of the 10 most promising crosses within the ISU set.
The average HIR of the 12,561 superior predicted progenies
(μSP) was 6.7%, ranged from 1.0 to 18.36% and was closely
related to the corresponding midparent GEBV (avg. 6.2%,
min. 0.46%, max 18.08%) (Table 4) and the average BLUP
values for each possible crossing combination (Figure 3b).
The predicted genetic variance (VG) for HIR ranged from 0.01
to 0.14 and, in general, was of reduced magnitude in crosses
involving inducers with high HIR (Figure 3a; Supplemental
Table S2).

The average HIR (13.0%) of the 10 superior predicted pro-
genies was almost the double of the overall average (6.7%).
HUT_005 appeared in 6 out of the 10 most promising crosses,
indicating that this inducer is a good source of beneficial alle-
les for HIR.

3.4 Cross prediction for agronomic traits and
self-induction

Satisfactory agronomic performance was observed in 12,561
predicted crosses (Table 4). Plant height and ear height of
the superior predicted progenies ranged from 113 to 184 cm
(avg. 153 cm) and from 38 to 83 cm (avg. 60 cm), respec-
tively. For tassel size and days to anthesis, the superior
progenies averages were 31 cm and 1,327 GDUs, and val-
ues ranged from 26 to 37 cm and from 1,240 to 1,435
GDUs, respectively. The average self-induction rate was
2-fold larger than the one observed for HIR, and values
ranged from 9.7 to 15.0%. The superior predicted proge-
nies of the 10 most promising crosses also exhibited rea-
sonable agronomic performance. We found plant height and
DTA values ranging from 131 to 144 cm and from 1,281
to 1,331 GDUs (∼57–64 days), respectively. Tassel size and
SIR values ranged from 29.7 to 32.1 cm and from 12.8 to
14.7%, respectively.

4 DISCUSSION

4.1 Heritability and relationship between
HIR and agronomic traits

Herein, we estimated high heritabilities for HIR. Previously,
with other germplasm materials, HIR was shown to be a
highly heritable trait, e.g., Prigge et al. (2012b), reported mod-
erate to high heritabilities (0.32–0.80) in different filial gen-
erations of crosses between inducer UH400 and three non-
inducer and one inducer line. A high correlation (92.1%) was
observed between the HIR data of the first and second plant-
ing dates. For each inducer, an elevated number of ears and
seeds were evaluated, fact that give us confidence in the heri-
tability estimates obtained. The agronomic traits evaluated in
this study exhibited high heritability and showed weak cor-
relations with HIR. Prigge et al. (2012a) also observed weak
correlations between HIR and DTA, plant height, and tassel
size in a set of 190 tropical inducer candidates derived from
crosses between temperate inducers and tropical CIMMYT
lines. According to the authors, the weak correlations con-
firm the possibility of combining the high HIR of temperate
inducers with the improved adaptation to tropical conditions
found on CIMMYT lines. Altogether, these results demon-
strate that HIR can be improved without negatively impacting
agronomic performance.

4.2 Genomic prediction for inducer
development

In the current study, cross-validation results showed that HIR
and most of the agronomic traits could be accurately pre-
dicted, suggesting that GP can be successfully implemented
in inducer breeding. Several other studies exploring cross-
validation suggested that GP is an efficient tool for improving
polygenic traits in maize. Crossa et al. (2011), using multiple
GP models, obtained prediction accuracies for DTA ranging
0.46–0.79. Zhang et al. (2015), when evaluating 19 biparental
populations under stressing conditions, noted that accuracies
for plant height ranged from 0.38 to 0.76. In both studies,
prediction accuracies of grain yield were consistently lower
than 0.50, which could be explained by the fact that this is
a trait under direct and indirect control of many genes. The
cross-validation prediction accuracies for DTA (0.58–0.83)
and plant height (0.60–0.82) observed in this study were in
the same range as those reported in the aforementioned stud-
ies, demonstrating the quality of our phenotypic data.

Although there are no studies on the application of GP
for the improvement of HIR, Prigge et al. (2012b) sug-
gested this method for increasing the frequency of favorable
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F I G U R E 3 Relationship between the average of superior

predicted progenies (μSP) and predicted genetic variance (VG) (a) and

average BLUPs of each possible crossing combination (b) for HIR (%)

in each of the 12,561 predicted crosses

alleles in inducer development programs and to reduce the
laborious and time-consuming task of phenotypic selec-
tion for HIR. Moreover, since HIR is governed by a
major gene and affected by several other small-effect
QTL, long-term genetic gain based on phenotypic selection
would be extremely difficult to achieve once major genes
become fixed.

Cross-validation is commonly used to evaluate the accu-
racy of GP. However, it can overestimate the model’s predic-
tion ability and hamper the breeder decision with to regards
the real efficacy of the GP for selection purposes (Hofheinz,
Borchardt, Weissleder, & Frisch, 2012). The evaluation of GP
requires independent validation, using different experimental
conditions and populations, and is a more accurate approach
to draw useful inferences. In the present study, a satisfactory
estimate of accuracy (0.54) for HIR was observed when inde-
pendent validation was performed by predicting the GEBVs
of inducers of the UOH set using a model trained with data
of the ISU inducer set. This value was remarkably similar to
the one reported by Albrecht et al. (2014), who observed an

accuracy of 0.58 for grain yield in an independent validation
study that used testcrosses of two different maize populations.
Pace, Yu, and Lübberstedt (2015) were able to predict with
an accuracy of 0.55 the total root length of 200 “extreme”
(short or long) genotypes in an independent set of 2,431 maize
inbred lines belonging to the Ames Panel (Romay et al., 2013).
They concluded that GP is a useful approach for identifying
the most informative genotypes. Cantelmo et al. (2017) also
reported a satisfactory correlation (0.53) between the GEBVs
of 402 maize hybrids predicted in the winter crop season and
their mean values observed in the summer crop season for
grain yield. They also reported that the coincidence index of
genomic values of the winter and summer seasons was more
efficient to discard the 20% lowest-yielding hybrids (coin-
cidence of 89%) than to select the highest-yielding hybrids
(coincidence of 43%). They concluded that genomic predic-
tion might be useful for discarding the low-yielding hybrids
during the winter, aiming the selection during the summer
season. Considering a selection intensity of 30% (16 induc-
ers), the coincidence index of the present study was efficient
to both select the best (coincidence of 56%) and to discard
the worst (coincidence of 62%) inducers. In other words, only
∼6 out of 16 inferior or superior inducers would be erro-
neously selected or discarded in the UOH inducer set when
the model was trained with the ISU inducer set. In a breed-
ing program for haploid induction, it would be more reliable
to use genomic prediction to discard families with lowest pre-
dicted HIR than to select families with highest predicted HIR,
since that would give a chance for families that were predicted
to have intermediate performance, but that in fact have good
performance, to be field-tested. This would optimize resource
allocation, since phenotyping efforts would be concentrated
on the more promising genotypes.

Increasing the training population by adding the 53 induc-
ers from the UOH set to the ISU set barely altered the accuracy
of the GBLUP model (ISU = 0.82 vs ISU + UOH = 0.80). A
similar observation was made in oat (Avena sativa L.), where
the inclusion of historical data from older lines to the train-
ing population marginally changed the accuracy of predic-
tion for five traits (Asoro, Newell, Beavis, Scott, & Jannink,
2011). In a GP for different maize root architectural traits,
Pace et al. (2015) added the information of 200 selected lines
from an independent prediction population to the original
training population. They observed that increasing the number
of individuals in the training population did not increase the
prediction accuracy for some of the evaluated traits. Although
no increase in prediction accuracy was observed by merging
the two inducer sets, it seems beneficial to include the data
of the UOH inducer set into the ISU inducer set, in order to
increase genome coverage and the genetic diversity that the
model can use for predictions. The former is composed by
a set of diverse inducers genotyped with a different genotyp-
ing platform, and thus might contain useful information which
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when combined with the latter set, could be used to efficiently
select new breeding candidates.

4.3 Cross prediction to improve the HIR and
agronomic performance of inducers

A useful application of cross prediction to inducer breeding
would be in the selection of parents to develop new breed-
ing populations. The midparent value has been considered an
important criterion to determine which crosses should be per-
formed in plant breeding programs (Bernardo, 2014; Zhong
& Jannink, 2007). In the current study, midparent GEBVs
played the major role in the prediction of the superior pro-
genies (μSP) for all traits investigated. For instance, high cor-
relation was observed between these two criteria for all traits
in the 12,561 possible crossing combinations. Our results are
in agreement with those from Lado et al. (2017), who reported
that crosses with the highest midparent values drove genetic
gain for grain yield in wheat. They also observed that the rel-
ative importance of genetic variance was higher for quality
traits. A similar observation was made by Yao et al. (2018),
which noted that when selection intensity is large (e.g., 10%),
genetic variance has less weight on the selection of superior
progenies. Such observations indicate that the same parents
would be chosen if usefulness or midparent GEBV were used
as selection criteria, which in turn would equate the genetic
gain achieved by both criteria. While in agreement, our results
also indicate that employing midparent GEBV or μSP as the
only criterion for parental selection can be risky. For instance,
if HIR was the only trait of interest and if parental selec-
tion was solely based on one of these two criteria, the twenty
parental combinations with highest midparent GEBV or μSP

values would only include full-sibling, F7 families derived
from the cross between inducers RWS (Röber, Gordillo, &
Geiger, 2005) and PHI-3 (Rotarenco et al., 2010) (Supple-
mental Table S2). The predicted genetic variance (VG) for HIR
among these twenty combinations varied from 0.021 to 0.048,
whereas 0.092 and 0.147 were the average and highest VG val-
ues of all 12,561 possible crossing combinations, respectively.
It should be mentioned that these F7 families were phenotypi-
cally selected for HIR (Trentin, Almeida, Frei, & Lubberstedt,
unpublished data) and that their induction ability is consider-
ably higher than the ones of other inducers included in the
ISU panel (Supplemental Table S1). This might explain the
fact that the cross combinations with higher midparent GEBV
and μSP were composed of different combinations of these F7

families. Unless for special reasons, it is very unlikely that
a breeder would cross highly related individuals to develop
new breeding populations, since that would limit the genetic
gain that could be achieved. Therefore, high caution is rec-
ommended in the use of midparent GEBV or μSP as the solely
selection criterion for parental selection. Maintaining genetic

diversity is a key factor for the long-term success of breed-
ing programs, and thus cross prediction and parental selec-
tion should be based in the optimal combination of midparent
GEBV and VG.
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