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GENERAL INTRODUCTION

One of the central research areas in mathematical logic is the study of deductive
systems. Traditionally, the name “deductive system” refers only to what we here call
a 1-deductive system, for example the deductive systems of classical, intuitionistic,
modal and many-valued logics as well as predicate logic. To determine such a system
one specifies a set of formulasand a set of rules, which can be used to deduce theorems
of the system. A set of formulas, in turn, is specified by a set of propositional variables
and a set A of connectives. The variables are in a sense inessential for the deduc-
tive system: a systematic replacement of one variable with another does not change

the meaning of the rule. Thus a deductive system can be identified with a set A of

connectives and a set of deduction rules.

From the observation that the connectives of A are nothing but algebraic opera-
tions on the set of formulas, originated the area of algebraic logic. The set of formulas
is treated as the algebra of terms and the set of theorems forms a filter, i.e., a subset
closed under the deduction rules. Some properties of a given deductive system are

Ler vvmnnma ~F 14 ~dd o
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studied
with some subset of so-called designated elements, representing the values of truth.
In some special cases, for example in classical, intuitionistic, modal propositional

deductive systems, it is possible to identify these matrix models with just algebras:
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Boolean algebras for classical and pseudo-boolean algebras for intuitionistic logic are
examples. In these cases one can use the whole realm of the universal algebraic
methods to investigate the deductive system.

While in the 1-deductive systems we deal with the deduction of a term from a
set of terms, the deductive system used in algebra is of a different character. Here
the role of formulas is played by equations, i.e., pairs of terms. In [4] a deductive
system in which the deductions are performed on pairs of terms is called 2-deductive.
In general, a system is k-deductive if the role of formulas on which deductions are
performed is played by &-tuples of terms.

Gentzen-style systems, introduced by Gentzen in the 1930’s, are another im-
portant type of deductive systems in proof theory. Their importance has grown in
proportion to that of proof theory itself, which has become a central area of research
in mathematical logic as computation has become increasingly identified with formal
deduction; see for instance [13].

A concept that generalizes the concepts of a k-deductive system and of a Gentzen
system is that of a K{-deductive system, where K is somic (finite or infinite) predicate
language, i.e., a set of predicate symbols with an arity function. A K-deductive
system becomes a k-deductive system when A has exactly one predicate and this
predicate has the arity k. This unique k-ary predicate is interpreted as the “truth”
predicate; while for a general K, we deal with many different “truth” predicates. A
Gentzen system can be viewed as a A’-deductive system where for every nonzero n,
K contains exactly one predicate symbol of arity n. The concept of a K-deductive
system is equivalent to that of a universal Horn theory and [11] studies the models

of universal Horn theories from the same perspective as it is done in our Part I,



Chapter 2 or Part II, Chapter 2. We have chosen the name “K-deductive systems”
to stress the connection with the k-deductive system and Gentzen systems. Also,
these systems are studied under the name “generalized logical systems™ in [43].

For a 1-deductive system the connection with the universal Horn theory is as
follows. Let S be a 1-deductive system and let D be a unary predicate symbol, which
we interpret as a predicate of truth. Then a rule of § that allows to deduce from

some terms ti,...,t, another term ¢, is now interpreted as a first-order formula
D(t,),...,D(t,) = D(t).

A formula of this form is called a Horn formula. For a general K, a typical rule of
a K-deductive system allows to deduce a statement D(t,,...,t,), where D is one of

the truth predicates of K and ¢;,...,t, are terms, from some statements
Di(t], .. sth )see s D720 ),

where Dy, ..., Dy, are truth predicates of K and t{ are terms. Such a rule corresponds

Di(t3,.- -5t YA -+ ADp(i7, ... 80 ) = D(t1,. .., tn).

n

Let ¢ denote the above Horn formula and let £ = (zy,...,2,) be the list of all

variables occurring in terms t,t;. Then the expression Vzp is called a universal
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et T be a set of universal Horn formulas.
If every Horn formula that can be deduced from T is again in T, then T is called a
universal Horn theory. Every set X of universal Horn formulas generates a universal

Horn theory: it is the set of all universal Horn formulas that can be deduced from

X. Thus with every A-deductive system we can associate a universal Horn theory



generated by the set of universal Horn formulas obtained from the rules of S in the
way described above. Conversely, with every universal Horn theory we can associate
a K-deductive system.

The key notion of our investigations is that of the Leibniz congruence. It was
introduced in [3, 4] for one-deductive systems and k-deductive systems, respectively,
and motivated by the proposal of G. Leibniz [22] to treat two objects a and b as
identical if they cannot be distinguished by any property. In the language of con-
temporary logic this translates to defining an equivalence relation £ on some set of
“objects” in such a way that two objects are equivalent if and only if every sentence
that is “true” for a is also “true” for b and vice-versa. More precisely, let 2 be a
model of some language £ and let a and b be two elements of this model. We say
that ¢ and b are equivalent modulo the Leibniz relation (%) if, for every formula
©(z) of L, ¢(a) holds in 2 if and only if ¢(b) holds in 2. It turns out that for every
model 2 the relation (%) defined above is a congruence of the underlying algebra
of %. Moreover, if 2 is also a model of some deductive system with some sort of
“equivalence” counective (like the « connective of the classical logic), then the Leib-
niz relation has a particularly simple presentation. For example, if % is a model of
classical logic, then a and b are equivalent modulo (%) iff @ « b is true in U (see,
for example, [5]). In general, a set A of connectives is called an equivalence system
if it has some properties of the classical equivalence connective and in particular, if
the Leibniz relation can be retrieved from A in a way analogous to the way described
above for the case of the classical <.

For a logician investigating a concrete deductive system the existence of a system

of equivalence connectives is particularly helpful: in this case many of the construc-



tions and methods used in universal algebra can be applied in the study of the models
of the deductive system. This was shown for k-deductive systems in [4] and for the
general K-deductive systems in [11] (see also Part II, Chapter 2 of this dissertation).

A model is a pair consisting of an algebraic structure (called an algebra) and a
system of relations called a filter. If S is a K-deductive system, then an S-model
is a model in which the filter is an S-filter (Definition 2.23). Thus, with a single
algebra A one can associate in general many S-models, by pairing A with different
S-filters. The operator that to a given S-filter F on A assigns the Leibniz relation
Q((A, F)) is called the Leibniz operator on the lattice of S-filters of A. Let us
fix a finite set A of finitary algebraic operation symbols. A A-algebra is a set with
operations denoted by the symbols from A. For example, if A has one binary operation
symbol, then A-algebras are exactly monoids. A K-deductive system such that the
Leibniz operator on the lattice of S-filters of every A-algebra is monotone, is called
protoalgebraic. It turns out, [4, Theorem 13.2], that a 1-deductive system S over
A has a system of equivalence connectives iff § is protoalgebraic. A K-deductive
system is calied algedraizable if the i.eibniz operator is injective and continuous.
By [5, Theorem 4.2] a 1-deductive system S is algebraizable iff it has equivalence
connectives satisfying some strong conditions. These results, and in particular [4,
Theorem 13.2.] motivated our research presented in Part 1. In Chapter 3 we carry
over the characterization of protoalgebraicity to the general case of K-deductive sys-
tems. In particular, we disprove the characterization claimed for £-deductive systems,
k # 1in [4]. We correct and expand this and other results of [4, Section 13]. We apply
it to Gentzen systems in Chapter 4, where we also investigate natural conditions that

allow simplified equivalence formulas, also called equivalence sequents and associate



protoalgebraicity with certain weak notion of the (CUT)-rule. In Chapter 5 we extend
the main result of [5] to K-deductive systems.

Another important series of results concerns properly defining and characteriz-
ing the notion of a system of implication connectives, in a manner parallel to the
characterization of a system of equivalence connectives. Chapter 6 contains several
partial results which set the direction for future research. A key theorem is proved
in Chapter 5 on the equivalence of two systems, one a K-deductive system and the
other a K»-deductive system, is used.

In the last two parts of the dissertation we turn to the questions of being finitely
aziomatizable and finitely based. A deductive system S is finitely axiomatizable if
there is a finite set of rules such that every tautology of S can be derived from the
empty set of premisses using the rules of this set. If in addition all the inference rules
of the system follow from some finite set of rules, we say that S is finitely based. A
matrix is finitely axiomatizable or finitely based, if the deductive system determined
by this matrix is finitely axiomatizable or finitely based. In Part II we look at the
question of finite base from the general perspective of arbitrar
The main results of this part, Theorems 3.1 and 3.2, state that if the language has
only finitely many symbols, then every protoalgebraic and filter-distributive deductive
system that is determined by some finite set of finite matrices is finitely based. This
simultaneously extends the results of [42] and [3] and consequently a famous result
of Baker ([1]) stating that every finitely generated congruence-distributive variety is
finitely based. In Part III, we consider the question of finite axiomatizability of deduc-
tive systems determined by a single finite matrix or algebra. In Chapter 3 we answer

a question of {46, 61, 10] of finding a nonfinitely axiomatizable matrix of the smallest
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possible size which would also be the “simplest possible”. It was proved in [46] that
every two-element matrix must be finitely axiomatizable. Since a five-element, and
later a four-element example was found ([61, 10]), the above question translates to
the question of whether a three-element non-finitely axiomatizable matrices exist and
also if there are such matrices of a particular kind. In Chapter 3 we present two such
simple examples.

For the deductive systems of equational logic the finite axiomatizability and finite
basis questions translate respectively to the questions of whether or not for a given
finite algebra A there is a finite set of quasi-identities of A such that all identities,
and all quasi-identities of A are consequences of this finite set of quasi-identities.
Although examples of nonfinitely based algebras have been known for some time, the
first example of a nonfinitely axiomatizable algebra was found only recently ({21]).
The underlying algebra of a finite, nonfinitely axiomatizable matrix may be finitely
axiomatizable and even finitely based, as shown in Chapter 4. We also consider the

finite axiomatization problem at the second-order level of equational logic. A finite

rules admissible (or valid, in a stronger version of the concept) which can be used
to derive all first-order rules, i.e., all quasi-identities of A. A second-order rule r
for equational logic is a pair consisting of a finite set X of quasi-identities and a
quasi-identity ¢. In Chapter 5 we present, among other things, a proof that a finite
algebra that does not have homomorphic images and subalgebras is second-order
finitely axiomatizable.

In the preliminary part (Preliminaries and notation) we revise some classical

concepts and theorems of universal algebra and logic. For a reader unfamiliar with



universal algebra or logic, this part is a prerequisite to the entire dissertation. In
Part I the prerequisites are as follows: Chapter 1 contains basic definitions and should
be read before any other chapter. For Chapter 4 one needs to read Chapters 2 and 3
first. Chapter 6 depends on Chapter 5 and for Chapter 5 one needs only Chapter 1.
For Part III, the only prerequisite is Part I, Chapter 2; for Part II, both Chapter 1

and Chapter 3 of Part I are needed.



PRELIMINARIES AND NOTATION

The set of natural numbers will be denoted by N and its cardinality by w. We
sometimes omit parentheses when applying functions to elements or sets or when

speaking of the image or inverse image of a set under a function.

0.1 Set-theoretic preliminaries

The power set of a set A, i.e., the set consisting of all subsets of A will be denoted

by P(A).

Definition 0.1 Let X = {X; : ¢ € I} be a family of sets indezed by a set I. Then
the coproduct of X is the set
X =]IXi:={@z):2€ X}
i€l

We also call the coproduct of X the disjointed union of X.

In particular, if for every 7,7 € I, 7 # j = X; N X; = 0, then there is a bijection
from [] X onto the union U;e; X; of all X; and in this case we can identify IT X with
Uier Xi-

For a natural number n > 1, an n-ary relation on a set A is a subset R of the
cartesian power A" of A. The number n is called the arity of R. Thus if n =1 then

R 1s a subset of A. Relations of arity one are called unary, of arity two-binary and
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those of arity three-ternary. An important example of a binary relation on A is the
equality relation id4 = {{z,y) € A% : z = y}.

Sequences of elements will often be identified with strings and the notation @
is used to denote the sequence (ai,...,a,). We often write (a,...,a,) simply as
ay...a,. We write @ C A to express that @ is a string of elements of A.

Thus if R is an n-ary relation on a set A, then the expression @ € R stands for “ @

is an n-element sequence of elements of A,i.e.,d = (a1,...,a,) and {(ay,...,a,) € R.”

0.2 Universal algebraic preliminaries

0.2.1 Operations on elements

An n-ary operation on A is a function f: A* — A. The number n is also called

the arity of f.

Definition 0.2 An algebra is a pair A = (A, F) consisting of a set A and a set F

of operations on A.

We will write (A, f1,..., fa) for (A, {/1,.--,/n}). The set A is calied the underiying
set of the algebra A. We always use boldface capital letters (or groups of letters)
to denote algebras and roman capital letters (or groups of letters) to denote sets.

Moreover, unless we say otherwise, if some boldface letter is used to denote an algebra,

then the corresponding Roman letter is used to denote its underlying set.

Definition 0.3 (i) An algebraic language is a pair A = (A’, p) consisting of
some set A' = {)1,..., .} of n symbols and a function p : A — N, called
arity. The elements of A are called operation symbols. We identify the

language with its set of operations, i.e., A = A'.
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(ii) Let A = ({Ac : £ < a},p) be an algebraic language, where o is some (finite
or infinite) cardinal number. A A-algebra is a pair A = (A, { 2 : & < a}),
where A is a set and for every k < a, A2 is a p(\)-ary operation on A. If A

is finite, we say that A is an algebra of a finite type.

When the algebra is clear from the context, we omit the superscript A and write
simply A; for AA. We say that two algebras A and B are of the same type if there is
an algebraic language A such that A and B are A-algebras. Notice that every algebra

is a A-algebra for some A.

Definition 0.4 Let A be an algebraic language and let X be some set disjoint with
A. We define the notion of a A-term in variables X, or simply a term, inductively
as follows. Fuvery element of X is a term. If t;,...,t, are terms and A € A is an
n-ary operation symbol, then the ezpression A(ty,...,%,) is also a term. Nothing else

15 a term.

The set of all terms in variables X will be denoted by Tes(X). If we omit X and
write Te,, we understand that X is some set of cardinality w. Also, if A is clear
from the context, we omit the subscript A. TFor any X, the set Tep(X) equipped
with operations ATe = X € A, which, to a given n-tuple #;,...,¢, of terms assigns
the term A(ty,...,t,), forms a A-algebra. We denote this algebra by Tes(X). The
conventions above on omitting subscripts A or X apply also to the term algebras.
Terms will usually be denoted by small roman letters ¢,s,..., possibly with

subscripts.

Definition 0.5 Let ¢ € Tea(X). The set Var(t) of variables of ¢ is defined recur-

stvely as follows:



1. Ift € X, then Var(t) = {t}.

2. Var(A(ty, . .., ) = U, Var(t;).

0.2.2 Universal algebraic constructions

Homomorphisms and subalgebras. Let A and B be two A-algebras.

Definition 0.6 A function h : A — B is called an algebra homomorphism from
A to B if for every : < n and for every sequence of elements ay,...,a,: € A, we
have

h(f(a1,- ., a,)) = f(h(ar),. .., h(ay).
An isomorphism is a homomorphism h that is a bijection. In this case the inverse
of this bijection is also a homomorphism, called the inverse of h. We say that two

A-algebras A and B are isomorphic and write A = B if there is an isomorphism

h: A —B.

Definition 0.7 A subaigebra of ¢ A-algebra A 15 a A-algebra B such that R C A

and for every A € A and all strings b of length p()) of elements of B, A\A(b) = )\B(E).
We write B C A to say that B is a subalgebra of A.

Proposition 0.8 A subsel B of A is the underlying sel of a subalgebra of A if the

image of the restriction to B of every operation f € F is contained in B.

Definition 0.9 Let X C A. We say that X generates a subalgebra B of the algebra
A if B is the smallest subalgebra of A containing X. For a cardinal number a the

algebra A is a-generated if it is generaled by some subset of cardinality less than or

equal o a.
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Definition 0.10 Let A be an algebra, X C A, and let K be a class of A-algebras.
We say that A has the universal mapping property over X with respect to the
class K if for every B € K and for every function f : X — B there is ezxactly one

homomorphism h : A — B such that the restriction h|X of h to X is equal to f, i.e.,
h| X =f.

Theorem 0.11 ([7, 10.6, 10.7]) Let X and Y be two sets of the same cardinality. If
A has the universal mapping property over X with respect to K, B has the universal
mapping property over Y with respect to K, and if A,B € K, then A = B and in

fact any bijection f: X — Y extends uniquely to an isomorphism f* : A — B.

Theorem 0.12 ([7, Theorem 10.8]) Let X be some set of variables and let A be a
A-algebra. Then for every function f : X — A there is ezactly one homomorphism
h : Te(X) — A such that the restriction of h to X coincides with f, i.e., the term

algebra Te(X) has the universal mapping property with respect to the class of all

A-algebras.

0.2.3 Congruences

Definition 0.13 Let A = (A, F) be an algebra. An equivalence relation 8 is called

a congruence if it satisfies the following substitution property

(ai.b) €0 foralli=1,....n=> (flas,...,a.), flby,.... b)) €6, (0.1)

for every n-ary operation in F.

The set of all congruences of an algebra A will be denoted by the symbol Co(A).

The smallest congruence on A, with respect to inclusion, that includes some given
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set X of pairs of elements of A is called the congruence generated by X. [t is

denoted by O(X).

Theorem 0.14 (A.Malcev) Let A be an algebra and let X be some set of pairs of
elements of A. Then (a,b) € O(X) iff there ezists a sequence a = ay,az,...,a, = b
of elements of A such that for every: = 1,...,n there is a term t(z1,...,Tm) and
elements ¢y, ...,cm—1 such that a; = t(c,c1,...,6m-1) and a1 = t(d,c1,....Cm-1)

for some a,b such that (c,d) € X or (d,c) € X.

If A= (A, F) is an algebra and h : A — B a homomorphism, then the kernel
of h is the inverse image ker(h) = h~'(idg) of the identity relation on B. Observe

that ker(h) is a congruence.

0.2.4 Equations, quasi-equations and related classes

Definition 0.15 Let A be a A-algebra. Every homomorphism h : Tey, — A is called

a valuation. A valuation o : Ten — Te, is called a substitution.

In view of the universal mapping property (0.12), every valuation is uniquely
determined by its values on the set of variables. We will therefore identify valuations
with their restrictions to the set of variables. Similarly, we will identify a substitution
with its values on variables. Let v be a valuation into A and let ¢ = {(zy....,2,) be a
term. The value v(t) is denoted by t4(v) or by t*(a,,...,a,), wherefori =1,...,n,
a; = v(z;).

Every valuation v can be extended to the set of all atomic formulas in the

following way. Let ¢ = R(t1,...,tn). Then v(¢) := R((t1(v)), ..., (ta(v))). Also, if T

is the sequence ty,...,%, of terms, then ({{v)) := ({1(v)), - .., ({a(v)). In particular,
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for a substitution o, o(¢) := R(o(t1),...,0(ts)) and if t is the sequence t1,. .., %, of

terms, then o (1) := o(ty),-..,0(tn)-

Definition 0.16 (i) An (A-)equation is a pair of terms (t1,1,), usually written
as t; = t5. A valuation v satisfies an equation t; = ty if ti(v) = th(v). If
every valuation v satisfies an equation € then € is called an icientity of A and

we write A = €. The set of all identities of A is denoted by Id(A).

(i1) An ezpression q of the form

/\e,-—»c,

i<m
where m € N and €,...,€n,€ are equations, is called ¢ quasi-equation. A
valuation v satisfies a quasi-equation g above if it satisfies € whenever it sat-
isfies all €;, fort=1,...,m. If every valuation v satisfies q, then we say that
A satisfies ¢, write A & ¢, and call ¢ a quasi-identity of A. The set of all
quasi-identities of A will be denoted by QId(A).

Note that an equation is a special case of a quasi-equation, namely for m = 0. Also
an equation ¢ is an identity of A iff it is a quasi-identity of A.

Let K be a class of algebras. A quasi-equation ¢ is called a quasi-identity of K
if it is a quasi-identity of every algebra A € K. A quasi-identity of K that is an
equation is called an identity of K. The sets of all identities and of all quasi-identities
of K are denoted by QId(K) and Id(K), respectively.

Let ¥ be some set of quasi-equations. An algebra A is a model of ¥ iff & C
QId(A). The class of all models of ¥ is denoted by Mod(X). A class K such that
K = Mod(X) for some set of quasi-equations I, is called a quasi-equational class. If

all elements of ¥ are equations, then K is called an cquational class.
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Operators H,1,5, P, P;. Definitions of a product and an ultraproduct of al-

gebras can be found in [7].! We define the following operators on classes of algebras.

Definition 0.17 Let K be a class of A-algebras.
I(K):={B: B=ZA, for some A € K};
H(K):= {B: there exists A € K and a surjective homomorphism f : A — B};
S(K):={B:B CA, for some A € K};
P(K) = {HiEIAi: {Az ) S I} g K:}.
Py(K) :={Ilic; Ai/U: {Ai:1 € I} CK and U is an ultrafilter on I};
Varieties and quasivarieties. We say that a class K is closed under an op-
erator O on classes of algebras if the result of applying O to algebras in K is also

in K. For example, K is closed under the formation of direct products if the direct

product of any family of algebras from K is also in K.

Definition 0.18 Let A be some algebraic language.
(1) A variety is a class of A-algebras closed under the operations H, S and P.
(ii) A quasivariety is a class of A-algebras closed under I, S, P and Py.

‘T'he following two theorems characterize equational and quasi-equational classes

in terms of their closures under certain operators.

10n page 70 we will give definitions of a product and ultraproduct of so-called
matrices, of which the product and ultraproduct of algebras are special cases.
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Theorem 0.19 (G. Birkhoff [2]) Let K be a class of A-algebras, for some fized lan-

guage A. Then the following are equivalent:
(i) K is equational.
(i1) K is a variety.
(111) HSP(K) C K, i.e., K is closed under the operator HSP.

(iv) HSP(K) =K.

Theorem 0.20 (A. Malcev [29]) Let K be a class of A-algebras, for some fized alge-

braic language A. Then the following are equivalent.
(i) K is quasi-equational.
(i1) K is a quasivariety.
(iii) ISPPy(K) C K, i.e., K is closed under the operator ISPPy.

(iv) K = ISPPy(K).

Definition 0.21 Lct X bc some class of A-algebras. The variety (quasivariety)
generated by K is the smallest (with respect to inclusion) variety (resp. quasivari-
ety) including K. If K is a finite set of finite algebras then the variety (quasivaricty)

generated by K s called finitely generated.

Proposition 0.22 A variety V is finitely generated iff it is generated by a single

finite algebra.
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Proof. A variety generated by one finite algebra is finitely generated by definition.
Conversely, if a finite set K of finite algebras generates V, then also the product [TK
of all algebras of K generates V. For by definition, this product isin V and conversely,
each algebra of K is a homomorphic image of [[ KX and therefore is in every variety
containing X. Now the product of a finite number of finite algebras is finite, hence
V is generated by a single finite algebra. O A class K of algebras is locally finite if
every finitely generated member of K is finite. It follows from the universal mapping
property that a quasivariety @ is locally finite iff every free matrix on finitely many

generators is finite.

Theorem 0.23 ([7, Theorem 10.16.]) A finitely generated variety is locally finite.
Corollary 0.24 A finitely generated quasivariety is locally finite.

Proof. Let K be a finite set of finite algebras. The quasivariety generated by K is
included in the variety generated by K. The latter is locally finite by the previous

theorem. Hence the former is also locally finite, as local finitness is preserved by

subclasses. O

The following corollary follows directly from Theorems 0.19 and 0.20.

Corollary 0.25 Let A be an algebraic language. Let KC be some class of A-algebras.

The variety and quasivariety generated by K are, respectively, HSP(K) and ISP Py(K).

Definition 0.26 An algebra A is subdirectly irreducible if the set Co(A)\ {id4}
ordered by inclusion contains a smallest element. The class of all subdirectly irre-

ducible members of K is denoted by Kg;.
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Theorem 0.27 (G. Birkhoff) Every algebra A is isomorphic to a subdirect product

of subdirectly irreducible algebras that are homomorphic images of A.
For a class K of algebras of the same type let

Psp(K):={A : A is a subdirect product of a family A C K}.
Thus Theorem 0.27 says that A € PspH(A).

Corollary 0.28 Let K be a class of algebras of the same type. Then HSP(K) =
HSP(Ksp).

Corollary 0.29 A quasivariety is determined by its subdirectly irreducible members,

i.e., if K and L are quasivarieties, then

(’C)s; = ([:)51 =>K=CL

. 3 £+l -~ 41 f, O S TP S P
ave versions of the above theorems for Guasi-varicuies.

Definition 0.30 Let Q be a quasivariety and let A € Q. A congruence © on A is

called relative to Q if A/O € Q. The set of all congruences on A that are relative
to Q is denoted by Co(Q)A.

Proposition 0.31 For every quasivariety Q) and A € @, the set Co(Q)A ordered by

inclusion forms a lattice.

The lattice of congruences of A relative to ) will be denoted by CoQA.
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Definition 0.32 The algebra A is subdirectly irreducible relatively to Q if
the lattice CogA has the smallest nonempty element. The set of all algebras in Q
that are subdirectly irreducible relative to @Q is denoted by Qgss. Given a class K of
algebras, an algebra A is called subdirectly irreducible relative to K if it is subdirectly

irreductble relative to ISPPy(K). By Kps; we denote the class of all algebras that

are subdirectly irreducible relative to K.
Notice that Krsy C Q(K).

Theorem 0.33 Let  be a quasivariety. Then every algebra A € Q is isomorphic
to a subdirect product of subdirectly irreducible algebras relative to Q) that are homo-

morphic images of A.
Corollary 0.34 Let K be a class of algebras of the same type. Then
ISPPy(K) = 1SPPy(Kgsi)-

Corollary 0.35 A quasivariety is determined by its relatively subdirectly irreducible

members, i.c., if K and £ are quasivarieiies, then
(K)rst = (L)rs1 = K = L,

Definition 0.36 Let K be a class of A-algebras and let A be a A-algebra generated
by some set X of cardinality a. Then A is called a free algebra over K in a

generators if A € K and it has the universal mapping property over X with respect

to K (see Definition 0.10).

By Theorem 0.11, if A and B are both free algebras with « generators for a class

K, then they must be isomorphic. The symbol Fx(a) denotes a free algebra over K in
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r4

« generators—it is unique up to isomorphism. For a class closed under isomorphisms
the statement “Fx(a) € K” means that any one, and therefore all, free algebras in

« generators for K are in K.

Theorem 0.37 (Birkhoff [2]) If K is a quasivariety, then for every cardinal number
a >0, Fx(a) € K. Moreover, for any class K of algebras, K € I1Ssp(K).

Theorem 0.38 If K is a variety then the free algebra over K on w generators gen-

erates K, i.e.,

K = HSP(Fx{w)).

Let A be an algebraic language and consider the class of all A-algebras. This
class is equational, for it is the class of models of the empty set of equalities. Thus
it has a free algebra and it is easy to see that the free algebras over this class are

exactly the term algebras.

Corollary 0.39 (Birkhoff [2]) Let K be a class of algebras, let V be the variety gen-

T ) s o S a1/
éit ;J Oit W gcﬂ,c:al‘,Olo. 1 1en

Id(K) = 1d(V) = Id(F).

e
6.3 ¥

irst-order languages and structures

Definition 0.40 A relational language is a pair K = ( K', p) consisting of a set
K’ of relation or predicate symbols and a function p assigning to every relation

symbol R € K a natural number p(R) called its arity.
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We identify the set K of the relation symbols of K’ with the language K.

For a large part of the paper we will be concerned with the structures which are
both models of some relational language K and of some algebraic language A. We
will use the convention, that A always denotes an algebraic language, so whenever

we say “language A” it should be clear that we speak about an algebraic language.

Definition 0.41 A first-order language is a pair (A, K), where K is a relational
language and A is an algebraic language. Alternatively, a first-order language can
be viewed as a triple (A, K,p), where A and K are disjoint sets of symbols and
p: AU K— N. The elements of A are called operation symbols, the elements of

K are called predicate symbols and p is called arity.

Notice, that an algebraic language A can be considered as a first-order language with

K = 0 and a relational language K is a first-order language with A = §.

Definition 0.42 An atomic formula of a first-order language (A, K) is an ez-
pression of the form R(t;.....t,), where R € K isn-ary andty,... 1, are terms. A

conjunction of atomic formulas is an expression of the form \;c;¢;, where for

each 1 € I, ; is an atomic formula. A Horn formula s « first-order formula of

the form

/\ Pi @ (0.2)

i<m
where m is some naturai number and p; and @ are atomic formulas. The atomic
formulas ; are called premisses and the atomic formula ¢ is called the conclusion
of the Horn formula (0.2). A Horn formula preceded with a universal quantifier is

called a universal Horn formula.
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By analogy with quasi-equations we will also refer to the universal Horn formulas
as quasi-formulas (for example see Definition 2.7 (ii)). If X = {p; : 7 € I}, then
the conjunction A;c;@; can also be written as AX. Let ¢ be an atomic formula.
Then according to the above definition, there is an R € K and a sequence of terms
tiy- .., tp(R), such that ¢ = R(ty,...,t,). The set U;c, Var(t;) is called the set of
variables of ¢ and is denoted by Var(y). The notation ¢(z;,...,z,) assumes that
Var(p) C {z1,...,2,}. For a conjunction ¢ = A;¢; i of atomic formulas, Var(¢) =

User Var(y;). For a Horn formula ¥ = Ay i — @, Var(¥) = U;er Var(p;) U Var(e).

Definition 0.43 A structure of the first order language (A, K) is a iriple A =
(A, P,F), such that (A, F) is a A-algebra and

PC H AP(R).
re K

A K-matrix is a structure for (A, K), for some A.

We will always use capital gothic letters to denote models of first-order languages.

%

X
X

The structure 2 from Definition .43 can be identified with (A, € K), where

[3

€
]

A isthe algebra (A, F'). This algebra is called the underlying algebra of 2. The reason
for calling it a (A, K)-matrix will be made clear in Part I, Chapter 2. We will always
use the convention that if a gothic letter denotes a structure of a first order language,
then the corresponding Roman boldface capital letter denotes its underlying algebra
and, as we already said, the ordinary Roman capital letter denotes the underlying

set.

Definition 0.44 Let (A, K) be a first-order language and let 2% be a structure for

-

(A, K. Let o(z1,...,2.) = R(t(z1,...,2.)) be an atomic formula; let oy, ..., ¢, be
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atomic formulas in variables z;,...,z,. Let ay,...,a, € A and let v be a valuation

such that v(z;) = a;, fori =1,...,n.

(i) The valuation v satisfies ¢ if t*(ay,...,a,) € R2.

(i1) We say that % satisfies @, and write A = o, if for every choice @ = (ay,...,a,)

of elements of A, t*(@) € R®.

(iii) The valuation v satisfies A, i, in symbols A = i 0i(v), if for every

1 < m, v satisfies ;.
(iv) o satisfies Aic,n i #f for every valuation v, A = A< 9i(v).

(v) The valuation v satisfies the Horn formula A;c,, ¢: — ¢ if either % =
o(ar,...,an) or, for somei < m, A pi(ay,...,a,). Weuritetd = (Aigm i —

@){(v) in this case.

(vi) 2 satisfies Nicn 9i — @5 & E Nicm i — @, if for every valuation v, 2 =

(Aicm 9i = @)(v). In this case we write A = (Nign @i — ©).

Atomic formulas will be denoted by small greek letters. A universal Horn theory is
a set of universal Horn formulas that is closed under ordinary rules of the first order

classical logic.

Definition 0.45 Let K be a class of structures of a first-order language and let ®
be a set of formulas which are built from the set of atomic formulas by means of
the standard connectives V,A,—,— and quantifiers ¥V,3. We say that the class K

satisfies ® and write K = ® if every element % € K satisfies every formula ¢ € .
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The class K is axiomatized by @ if K = @ and for every formula ¢ such that

K E ¢, ¢ can be derived from ® by means of ordinary first order classical logic.

In this subsection we assume the reader’s familiarity with basic first-order logic;
in particular with the notion of a first-order formula and satisfaction. Roughly
speaking, a first-order formula is a formula constructed from atomic formulas by

means of the connectives A, V,—, — and quantifiers in certain standard way.

Definition 0.46 Let (A, K) be a language and let K be a class of structures for this
language. We say that K is elementary if there is a set of first-order formulas ®

such that K = {2 : %4 = @}. K is strictly elementary if the set & can be found

finite.

0.4 Lattice theoretical preliminaries

Here we review some basic facts and definitions concerning lattices. Proof of
these facts can be found, for example, in {7].

A partial ordering on a set L, such that every pair a, b of elements of L has an
infimum a A b and a supremum a V b in L with respect to this ordering, is called
a lattice ordering on L. Equivalently, a partial ordering < is a lattice ordering iff
every finite set of elements ay,...,a, of elements of L has an infimum A%, a; and
supremum V7, a; with respect to <. If there is a lattice ordering on a set L, then the
algebra (L.V,A) is called a lattice. A lattice is complete if the suprema and infima
exist for sets of arbitrary cardinality. An element a of a complete lattice L is compact
if, for every set {a;: 1 € I} C L, a = V;¢;a; = a = Ve a; for some finite subset .J
of I. A lattice L is algebraic, if every element of L is a supremum (possibly infinite)

of some family of compact elements.
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Definition 0.47 A subset {a;: 1 € I} of a lattice L, where I is some set, is called

directed if for all i,j € I there is k € I such that a;V a; < ai.

Definition 0.48 Let Ly, L, be two lattices and let f : Ly — Lo be a function (not
necessary a homomorphism). Then we say that f is continuous if for every set I

of indices and every directed subset {a;:1 € I} of L4,

fVa)=V a.

i€l i€l

Let A be an algebra and let Co(A) be the set of all congruences on A. Then the
relation C on Co(A) is a lattice ordering. With respect to inclusion, the infimum of
two congruences is their intersection and their supremum is the congruence generated
by 6Ue. Thus Co(A) with these operations forms a lattice which we denote by CoA.
It is well known that CoA is a complete algebraic lattice, whose compact elements
are exactly the finitely generated congruences on A.

Let L be a lattice and let a € L. Then the set {b € L : a < b} is denoted by [a).

Proposition 0.49 Let A be a set. Let L be a lattice of subsets of A ordered by

inclusion and let {a; : 2 € I} be a directed subset of L. Then V;c;a; = Uieya;-
Definition 0.50 A lattice L is distributive if it satisfies the following condition
zV({yAz)=(zVyjA(zVz) (6.3)

or, equivalently,

zA(yVz)=(zAy)V(zAz). (0.4)
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Lemma 0.51 A lattice (L, A, V) is distributive iff for every finite family ay, ..., a,,
by, ..., b, of elements of L
\/a,'ﬂ \/b]S V Va,-ﬂbj.
i=1 i=1 i=1j=1
A class K of A-algebras such that for every A € K, Co(A) is distributive is called

congruence distributive.



PART I.

DEDUCTIVE SYSTEMS



CHAPTER 1. INTRODUCTION

Mathematical logic can be viewed as a study of deductive systems. Originally,
only one deductive system was considered, namely the deductive system of the clas-
sical logic. In the first part of this century, the interest of logicians was captured also
by the new, so-called, non-classical deductive systems. These deductive systems were
at first studied only at the level of propositions (propositional deductive systems)
and in fact the investigations focused at first on the propositional theories rather
than on deductive systems. A theoryis a set of propositions (that are “true” in some
interpretation), while the deductive system can be identified with a set of rules that
we are allowed to use in order to make “correct” deductions. Gradually, attention
turned to the study of the “deductive apparatus” used to obtain the theorems of a
given deductive system; this deductive apparatus can be formalized as a set of rules,
or as a deductive system!.

Many deductive systems have been studied separately and many of them have
interesting applications. They have, however, many common properties that can
be formali nd stu jointly. The first to realize this were J. Lukasiewicz and
A. Tarski and their Lwow-Warsaw School of Logic. The most recent summary of

results in the area of deductive systems can be found in [59].

"In A. Tarski’s early work these notions of deductive system and theory are
reversed.
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We put the words “true” and “correct” above in quotation marks, for according
to the key observation of Tarski, the truth of a proposition is always relativized to a
class of (intended) models, or equivalently (intended) interpretations. A model of a
deductive system is an algebra with a special subset of designated elements. Elements
of the designated subset are called designated elements and are interpreted as “true”.
For example, the two-element Boolean algebra ({0,1},V,A,—,=) with {1} as the
designated subset is a model of the classical deductive system. We can see in this
example why a model is an algebra and not a set—we must be able to interpret logical
operations. Thus with every deductive system we can associate a class of models,
called the semantics of the deductive system. Properties of a deductive system are
reflected in its semantics and vice versa and hence the semantical methods have been
useful in investigation of the deductive systems.

A deductive system and its corresponding semantics of a somewhat different
type have been used in algebra. The role of formulas is played here by equations
and the role of inference rules by quasi-equations. Equations do not correspond to
elements, bui rather to pairs of elemenis of an aigebra and, therefore, we have a
designated relation rather than a set of designated elements. In the special system
that we have in mind, such a relation is called a congruence relation. Thus a model
of the deductive system of algebra consists of an algebra A and a congruence relation
on A.

The first systematic investigation of these two systems in a common {ramework
can be found in Blok and Pigozzi [4]. They introduced the concept of k-deductive sys-
tem. in which the notions of formula and equation are simultaneously generalized to

that of k-formulas. It is convenient in this context to identify terms and formulas. A
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k-formula is a k-sequence (t1,...,t) of terms. An example of a k-formula, for k = 2
is an equation, and for £ = 1, a formula. The historical notion of a deductive system
can be identified with that of a 1-deductive system in this context. Blok and Pigozzi
also remark that the formalism of a k-deductive system is equivalent to the formalism
of universal Horn logic with one predicate symbol and they mention the possibility
of generalizing their theory to universal Horn theories with an arbitrary number of
predicate symbols— what we call here K -deductive systems. If u universal Horn theory
has only finitely many predicate symbols, then the K-deductive system is called also
a k-deductive system.) Blok and Pigozzi obtain, among others, many interesting
results on the semantics of the k-deductive systems and remark that many of these
results can be carried over to the more general case of K-deductive systems. They
also characterize the k-deductive systems for which the semantical results parallel
the results of universal algebra.

Gentzen style deductive systems have also played an important role in the study

of logical systems and can be put in the same framework. Here the role of formulas is

<3

layed by scquents, where a scquent can be identificd with a finitc scquence o
(formulas). In the terminology of [3], a sequent of length k can be viewed as a k-
term, and in the same way that a k-term (¢;, ..., %) corresponds to an atomic formula
D(tq,...,t;) of universal Horn logic with one predicate, a sequent can be viewed as
an atomic formula of the universal Horn logic with infinitely many predicate symbols,
Dy, one for each natural number %.

Thus we see that k-deductive systems, universal Horn logic and Gentzen systems

can all be treated as special cases of the same general concept, that of K-deductive

systems which we introduce in Chapter 2. The work presented in Part I was inspired
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by the results of (3, 5, 4, 6]on algebraizable and protoalgebraic k-deductive systems.

We start by redefining the concepts of [4] in the more general context of K -de-
ductive system. Most of the facts can be carried over from [4] without difficulties but
we present some of the proofs for completeness.

We then turn in Chapter 2 to the generalization of the concept of the protoal-
gebraic logic. Roughly speaking, a logic, or more properly a deductive system, is
protoalgebraic if the so-called Leibniz operator (see General introduction or Defini-
tion 2.40) defined for models of this system is monotone. The algebraic methods can
be modified to apply to the semantics of protoalgebraic deductive systems. Here,
we first observe that for K-deductive systems the concept can be relativized in two
different ways and then we prove a theorem characterizing these relativized concepts
along the lines of the characterization of protoalgebraic 1-deductive systems in (4,
Theorem 13.2]. In fact, [4, Theorem 13.2] claims a characterization of protoalge-
braic k-deductive systems, but the proof for £ > 1 contains a gap and the theorem is
false (see Chapter 3 for a counterexample). We also relativize this characterization
14, Sec. 13]
depend on Theorem 13.2 of [4], we reformulate this theorem and also consider its
relativized version in Chapter 3.

The results of Chapter 3 apply to Gentzen systems. However, for all Gentzen
systems studied in the literature, a much better characterization of protoalgebraicity
can be given than the one that follows from Chapter 3. Namely, Theorem 3.10
implies that a Gentzen system is protoalgebraic if there is a family of finite sets of
sequents, called equivalence sequents, with some special properties. However, all the

systems arising naturally from different calculi are protoalgebraic and the system of
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equivalence sequents is much simpler: it is not only a family of finite sets but in fact
just one finite set. In chapter 4 we study some syntactical conditions on the Gentzen
systems that allow us to conclude that if a system is protoalgebraic then the system
of equivalence connectives is finite.

Chapter 5 is devoted to the concept and properties of equivalent deductive sys-
tems over different predicate languages. Roughly speaking, two systems are equiv-
alent if there are mutual translations that translate formulas of one language into
another in such a way that an inference is valid in one system iff its tanslation is
valid in the other. For example, consider the 1-deductive system of classical senten-
tial logic and the 2-deductive equational system whose models are exactly Boolean
algebras. Then it can be easily seen (see for example page 143) that these two sys-
tems are equivalent. The class of Boolean algebras is called the algebraic semantics
of the deductive system of classical logic. In general, a K-deductive system is called
algebraizable if there is some quasivariety of algebras such that S is equivalent to the
2-deductive system whose models are exactly the algebras of this quasivariety. The
wotion of algebraizable 1-deductive system was introduced in [5] and the inore general
concept of equivalence between a k- and an /-deductive system in [6]. It was proved
in [6] that two systems are equivalent iff there is an isomorphism between their lattices
of theories that commutes with substitutions. This theorem has as its special case
Theorem 3.7. of [5]. On the other hand, a deep Theorem 4.2 of [5] that characterizes
algebraizable 1-deductive systems in terms of injectivity and continuity of the Leibniz
operator, does not have an analogue for the equivalence of k-deductive systems. We
show, however, that this theorem can also be generalized, although its generalization

is more limited than the generalization of {5, Theorem 3.7.]. To this end we introduce
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the notion of a “Birkhoft-like K-deductive system” and the notion of “compatibility
relations”. We then prove that if S; is an arbitrary K;-deductive system and S, is
a Birkhoff-like K,-deductive system, then these systems are equivalent iff a certain
operator associated with the systems and the compatibility relations C is injective
and continuous (Theorem 5.19). This single theorem allows one to prove not only
the characterizations of algebraizable k-deductive systems and Gentzen systems, but
also certain deductive systems with the connectives that behave like implication. In
the next chapter, Chapter 6, we make use of this criterion to discuss the problem of
properly defining the notion of a system of implication connectives in a 1-deductive

system. In the future this work may be carried over to k-deductive systems and

Gentzen systems.
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CHAPTER 2. PRELIMINARIES ON K-DEDUCTIVE SYSTEMS

2.1 Introduction

The key concept of this thesis, that of a K-deductive system and also the con-
cept of a K-consequence, generalize the standard notions of consequence operator
and deductive system defined, for example, in {59, page 22]. The standard notions
correspond in our formalization to l-consequence and 1-deductive system. The first
step of this generalization was done in [4], where the k-deductive systems were intro-
duced and studied. It was anticipated there that the formalism and a large part of
the theory can be extended to universal Horn logic. The formalism of w-deductive
system was proposed by Pigozzi [41] and that of more general Gentzen systems of
so-called type (o, 5) by Rebaglialo and Verdd {50]. The notions of a k-deductive
system, w-deductive system and a Gentzen system of type (a, 3) are special cases of
the notion of a K-deductive system, which we define in Section 2.2. This notion is
equivalent to the notion of universal Horn logic (possibly without equality). We have
chosen the name ” K-deductive system” to stress the origin and applications of this
work for deductive systems of various kinds. The K-deductive system have been also
studied in [11], where some results of this chapter (and also of Chapter 2, Part II)
were independently obtained. We discuss examples of K-deductive systems in Sec-

tion 2.3 and define second-order-deductive systems in Section 2.4. Basic semantics
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of a K-deductive system is introduced in Section 2.5. The Leibniz operator, defined
in Section 2.6, serves to define reduced matrix semantics (Section 2.7) and protoal-
gebraicity (Section 2.8). A few first results illustrating the claim that the reduced
semantics of protoalgebraic K-deductive systems parallels the algebraic semantics of
quasi-equational logic are given in Section 2.8. In a later parts of the dissertation,
(Part I, Chapter 3 and especially Part II, Chapter II) the semantics of protoalgebraic
K-deductive systems is discussed in more detail.

Leibniz operator, reduced semantics and protoalgebraic deductive systems were
introduced in [3] and developed in [4] for 1- and k- deductive systems, respectively
(1- and k-deductive systems are defined in Definitions 2.18 and 2.17). Almost all
material presented in this Chapter is a straightforward modification of the content

of [4, Sections 1-8] and much of it has already appeared in the independent work of

R. Elgueta in [11].

Let A be an arbitrary but fixed algebraic language.

Definition 2.1 Let K := ( K, p) be some relational language. Recall that Te and Te
denote respectively the set and the algebra of A-terms. Let Fmg = Uge KTe”(R).

Thus a typical K-term is of the form (R,1) = (R, (t;,...,t

WR r simply
where R € K and t = (t1,...,tm) € Te”™. The elements of Fmg are called

K-terms or K-formulas. We will identify a K -term (R, 1) with the (A, K)-atomic

-

formula R(%) and write this as (R, (t1,...,tym)) or more simply, R(t)
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We will usually denote the K-terms by small Greek letters ¢, %, .... If K consists of
only one predicate symbol, D, with p(D) = 1, then the elements of Fmy are of the
form D(t), where t is a term. Thus Fmg can be identified with Te in this case, which
motivates the name K-term. The alternative name “K-formula” is partly motivated
by those cases where the language A is a set of connectives of some concrete logic,
say A = {V,A, =, —}. The terms of this language are traditionally called formulas of
A, or, in the algebraic setting, terms of A. Both words will be used here.

If K consists of one binary predicate symbol, then the elements of Fmg are
identified with pairs of terms. If this unique predicate symbol is the equality symbol
~, then the elements of Fmg are called equations.

If K has one predicate symbol R which is, say, k-ary for some integer &k, Fmg
can be identified with Te, i.e., sequences (t1,-.-,tk). Such sequences are called k-
formulas ([4]). Thus terms are 1-formulas and equations can be viewed as 2-formulas.

If K is finite, the elements of Fmg are called E-formulas, where k = (kr: R €
K) is the finite sequence of arities of the symbols of R, i.e., kg = p(R). Hence a
typical k-formuia is of the form Rit:,. .., tym), where (t;,.. . 1,5} is an kp-formula;
it may be identified with a universally quantified atomic formula of some first-order
language with finitely many predicate symbols.

Finally, in the special case that for every n = 1,2,... there is exactly one n-
ary predicate symbol, say R, in K, the coproduct Fmg =[] R.c K Te”Bn) becomes
the disjointed union [[,5o Te", which we identify with {J,5o Te". The elements of
this union are called w-formulas. Thus a typical w-formula is a non-empty sequence
(tys....t,) of terms. If this sequence is written in the form ¢y,...,t,_; — t, then we

call it a (A-)sequent.
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Definition 2.2 Let X be a set, < a partial ordering on X andlet f : X — X. Then
fis
e idempotent if for alla € X, f(f(a)) = f(a)

e monotone if for all a,be X,
a<b= f(a) < f(b), and
¢ increasing with respect to < if for all a € X, a < f(a).

Definition 2.3 Let A be a set. A function C : P(A) — P(A) that is idempotent,

monotone and increasing with respect to inclusion is called a closure operator.

Topological closure or the function assigning to a subset X of some algebra A the
universe of the subalgebra of A generated by X are closure operators. Definition 2.5,

page 38, provides another example.
Definition 2.4 A closure operator C on A is

1. algebraic or finitary if for all X C A,
C(X)c |UJ Cn(Y). (2.1)

2. A closure operator C on Fmy s called structural if for every substitution o

and every X C Fmy,

o(C(X)) € Clo(X)). (:

(W]
o
~—

Definition 2.5 Let (A, K) be a first-order language. An algebraic and structural

closurc opcrator Cn on Fmg is called a (A, K)-consequence operator.
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Usually, when it does not lead to a misunderstanding, we will drop one or both
prefixes A and K. Let us mention that other authors often mean by “consequence
operator” just the closure operator on the set of formulas of the appropriate deductive
system and then consider “finitary and structural consequence operators”.

Thus in addition to (2.1) and (2.2) a consequence operator has the following

properties, for all XY C Fmg:

X CY & Cn(X) CCn(Y), (2.3)
X CCn(X) and (2.4)
CnCn(X) C Cn(X). (2.5)

Definition 2.6 A triple (A, K,Cns), where (A, K) is a first-order language and Cng
is a (A, K)-closure operator is called a (A, K')-deductive system or simply a K-
deductive system when A is known from the contezt or is left unspecified. The

subscript § on Cng will be omitted when S is clear from the context.

For a given K-deductive system S as above, the consequence operator determines
the consequence relation, i.e., the relation Fs C P(Fmg) x Fmk defined by (X, o) €
Fsiff o € Cn(X). We write X s ¢ for {X, ) € Fs. Thus the conditions (2.3)-(2.5)

translate into the following conditions in terms of Fs:

v R L DT A
X s @ implies X, ¥ i-s @

~~
!\3
<D
-

X ks pforevery pe X (

S
-~1
~—

fXFspand YEseo, forally € X, then Y Fg .

—~~
o
[0s)

—
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and the conditions (2.1)-(2.2)
X Fs ¢ implies Y Fs ¢, for some finite Y C X (2.9)

X Fs ¢ implies X kg o for every substitution o. (2.10)

The consequence operator Cng and the consequence relation Fs are interderiv-
able and can be used interchangeably. Thus & is often expressed in the form (A, K, Fs).

If S is defined by Cn we write F¢, for S.

Definition 2.7 Let (A, K) be a first-order language.

(1) A pairr = (X, ) € P(Fmk)xFmg, with X finite, will be called a (A, K)-rule.
The elements of the set X are called the premisses of r and ¢ its conclusion.

r

A rule r can also be written in the form —.

(ii) A (A, K)-sequent is an expression of the form ¢1,. .., 0, — @ where vy, ..., oy,

and ¢ are K-formulas.

(i11) A (A, K)-quasi-formula is an expression of the form o1 A.. . Ap, — o, where

n €N and ¢1,...,0n, ¢ are K-formulas.

In any of the expressions (ii) - (iii), the formulas ¢; are called premisses and the
formula ¢ is called the conclusion. If A is known from the contexzt or is unspecified

we simply say K-rule, K-sequent, K-quasi-formula.

The three terms defined above have been used in the literature in different con-
texts: the rules are traditionally associated with deductive system, the sequents with
Gentzen systems and the quasi-formulas with the Horn logic. A sequent differs from

a rule only in the fact that the premisses are ordered and the difference between
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a sequent and quasi-formula lies only in the presence or absence of the symbol A
between the premisses. In many (although not all) situations these differences are
inessential and the three notions can be identified in these cases. One of our goals is
to study all the three areas in the common framework and the above definition is a

good illustration how this can be done.

Definition 2.8 A rule of the form (0,¢) is called axiomatic or simply an axiom.

We will identify an aziom (0, o) with its conclusion .

Definition 2.9 A (A, K)-rule r = (X, ) is called an inference rule or ¢ derived

rule of a (A, K)-deductive system S, if X s ¢. The set of all inference rules of S
will be denoted by I's or by I'cy if Cn = Cng.

Every set I of rules determines a consequence operator Cnr, and therefore a K-
deductive system Sr = (A, K, Cnr), in such a way that for any deductive system S,
Cnrg = Cns. To see this let I" be a set of rules and let the relation Fr be recursively
defined as follows. For a set X of K-formulas and a K-formula ¢ let Xt if and

only if
l.ogeXor

2. there is a set Z C Fmg, a substitution ¢ and a K-formula ¢ such that

f'r(’)/'
Yy

S

=<2

T

(Z,4) € T and

for every € € Z, Xtro(£).
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It is easy to show that this relation is the smallest relation F C P(Fmg) x Fmgk
satisfying (2.6), (2.7), (2.8) and (2.10) and such that I' C F. Also, since the set of
premisses of every rule is finite by definition, it is not difficult to see that Fr must

also satisfy (2.9). Thus it is a consequence relation.

Definition 2.10 Let I' be a set of K-rules. The smallest consequence relation such
that T C I s called the consequence relation determined by I'. The associated

consequence operator is called the consequence operator determined by I' and

is denoted by Cnr.

Notice that for a given consequence operator Cn, ¢, satisfies (2.6), (2.7), (2.8)
and (2.10) and therefore the smallest consequence relation containing I'c, is equal to

Lcn, i€, Fre, = Ten =Fs, where S = (A, K, Cn). Therefore Cnr,, = Cn.

Definition 2.11 A rule (X,¢) € br is called a secondary or derived rule of
Cl’lr.

When Xtrp, we also say that ¢ is derivable from X by means of rules in I'.

Definition 2.12 A proof or e derivation of ¢ from the set of premisses X by
means of the rules of I is a sequence T1,...,7, = ¢ of K-terms such that for every
i=1,...n—1, either 7; € X or there is a substitution o and a rule (Y,) € T, such

that 7; = o) and, for every y €Y, there isaj=1,...,1 — 1 such that oy =

lj.

Note that 7, must either be an element of X or a substitution instance of the con-
clusion of an axiomatic rule from T'.
Note also, that Xtr ¢ if there is a proof of ¢ from some finite subset ¥ of X by

means of I.
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Given a deductive system S and a set of rules I' we can consider a consequence
operator Cnsr determined by I' U I's. The deductive system Sr = (A,Cnsr) is

called an eztension of S by I'. An extension is called aziomatic if all the rules in T

are axiomatic.

Definition 2.13 (compare with, e.g., [8, 63]) Let § = (A,Cns) and R = (A, Cng)

be two K -deductive systems.

1. If for some set ' of rules Cng = Cns, then I' is called a basis of R over S,
or relative to S, and we say that R is based over S by I' . If Cn = Cngp

then we say that I’ is a basis of Cn over or relative to the K-deductive

system R.

to

If Cnr = Cnr then I is called a basis of R and R is based by I'. A basis of

a consequence operator Cng is the basis of the system S.

3. A K-deductive system R and the consequence operator Cng are called finitely

based (possibly over §) if there is a finite set I' of rules such that T' is a basis
of R (over S).

Observe, that a set I' of rules is a basis of R iff it is a basis of R relative to the

system S based by the empty set of rules.

Definition 2.14 Given a K-deductive system S, an S-theory is a set of K-terms
closed under Cng. The set of all S-theories is denoted by Ths or Thy, where I is a

set of rules such that Cns = Cnr.

A set X such that 7 = Cngs(X) is called the set of generators of T and we say

that T is generated by X. If X is finite, we say that T is finilely generated. For
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a given deductive system S, the set of all S-theories ordered by inclusion forms an
algebraic lattice, the compact elements of which are the finitely generated theories.
The smallest element of the lattice Thg is the theory Cns(0) generated by the empty
set. The elements of Cng(() are called theorems of S.

One of the most often asked questions about a logical theory or a deductive
system is the problem of finitely axiomatizing or finding a finite basis. As Wojtylak
points out in [61] the word "axiomatize” had different meaning for different authors.

Part (iii) of the definition below was proposed essentially by him ([61]).
Definition 2.15 Let S = (A, Cns) be a K-deductive system.

(i) Let T be an S-theory. A basis of T over S is a set E of K-terms such that
T = Cns(E). If E is a basis of T over S then we say that T is based by E
over §. If E is finite, we say that T is finitely based by E over S.

(ii) Let T be an S-theory. An axiomatization of T over § is a set T of (A, K)-
rules such that T = Cns (). In this case we also say that T is axiomatized
by I over § and if T can is finiie, ihai T is finitely axiomatized by I" over
S. T is finitely axiomatizable over S if it is finitely ariomatized by some

finite T over §.

(i) Let T be an S-theory. An axiomatization of T is the aziomatization of T
relative to the deductive system determined by the empty set of rules. In this
case we also say that T is axiomatized by T' and if T’ can be chosen finite,
that T is finitely axiomatized by I'. T is finitely axiomatizable if it s

ariomatized by some finite T.
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Notice that a “basis of a deductive system S” (Definition 2.13) is different from
a “basis of the theorems of & over §”. The first is a set of rules, the second is a set
of K-formulas. The first allows to derive all rules of S, while the second allows to
derive all theorems of S, by means of the rules of S.

Every basis I for the consequence operator Cn is also an axiomatization for the
set Cns(0) of all theorems of S. Thus if Cng is finitely based, then Cngs(d) is finitely
axiomatized. Also, if T is an S-theory and S is finitely based, then if T is finitely
based over §, then also T is finitely axiomatized. Clearly, every consequence operator
has some basis and every S-theory has some basis over § and some axiomatization.

But these bases and axiomatization don’t need to be finite.

2.3 Examples

A K-deductive system S corresponds to a universal Horn theory as follows. With
each K-formula R(f(x)) of S, where x is a sequence of variables, we associate the
universal sentence VxR(f(x)); and with every rule (X, ), where X = {R;(#(x)) :
i =1,...,n} and ¢ = R(f{(x)) for some sequences of terms t,, 7 = I,...,n, we
associate the universal Horn formula Vx A<, Ri(f(x)) — R(f{(x)). Let F be the
universal Horn theory axiomatized by the sentences associated with all the logical
axioms and rules of §. Then a rule r = (Y,¢) is a derived rule of S iff the universal

Horn formula associated with r is a theorem of F.

Definition 2.16 Let K be a finite set. Let k := (kym): R€ K}. Then a K-deduc-

tive system is called a k-deductive system.
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A k-deductive system S corresponds to a universal Horn theory with finitely many
predicates. The term “k-deductive” has been chosen for its connection with the

systems considered in the next definition.

Definition 2.17 ([4]) Let k be a natural number and let K consist of only one, k-ary

predicate symbol. Then a K -deductive system is called k-deductive.

The concept of a k-deductive system was motivated on one hand by 1-deductive

systems (Definition 2.18) and by equational logic, which is 2-deductive, on the other.

Definition 2.18 A 1-deductive system s K-deductive system, where K consists
of a single, unary predicate. A 2-deductive system is a K -deductive system, where

K consists of a single, binary predicate.

Until recently, only 1-deductive systems were called “deductive systems”. For
example the deductive systems of classical, intuitionistic, modal, relevance, BCK,
multi-valued and other non-classical logics, are 1-deductive. We will be particularly
ic and the symbeols CPC, TPC will
be used to denote the 1-deductive systems of classical and intuitionistic propositional
logics, respectively. These systems are determined by the sets of these rules r that the
set of all classical, and respectively intuitionistic, tautologies is closed under r. The
symbol BC K + A will be used to denote the so-called BC K-logic with conjunction. It
has two algebraic cperations: conjunction A and implication, — and is axiomatized

by the modus ponens rule and the following axioms.
Bz—y)—((y—2)—(z—2)

Cle=—2)—-H—(z—:)
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Kz—(y—z)
M (z—=(y—=2) = ((zAy) = 2)
N ((gAy) = 2) = (2 = (y = 2)).

Its algebraic semantics is formed by the class of all so-called BC K-algebras with the
operation (S), see for example [38] for definition, or, equivalently, by the class of all
algebras dual to the class of all ordered groupoids with residuation, [64]. If we reverse
the order such a groupoid duallyx, then the conjunction corresponds to the groupoid
operation and implication to the residuation.

We adopt the convention that the formulas of a 1-deductive system (1-formulas)
are written as terms, i.e., instead of D(¢(x)) we write ¢(x). The formulas of a 2-de-
ductive systems (2-formulas) are often, but not always, written as pairs of terms. If
K has one binary symbol =, then we write ¢ & s for the K-formula (¢, s} and call it
an equation. If the only symbol of K is a binary symbol <, then the K-formulas are
written as ¢t < s and called inequalities.

in Chapter 5 we cousider some 2-deductive sysiems. The most important of

them is the following system of equational logic.

Definition 2.19 Let A be an algebraic language. Let K have one binary predicate =~.
The (restricted) Birkhoff system over A is the 2-deductive system B aziomatized

as follows. It has one aziom
(1) z=z,
and the following rules of inference:

Ty

(5)

y~z
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(T) TRY, YRz

T~z
.leyl,...,x[zy[

R )
(R) My osz) = AY1s---5Y1)

for each l-ary operation symbol A € A.

The above system is called the “restricted” Birkhoff system, because it differs from the
system introduced by Birkhoff in that that it does not have the following substitution

rule.
txs

o(t) ~o(s)’

where ¢ ranges over arbitrary substitutions. In Part I we will call the restricted
Birkhoff system just Birkhoff system. In Part III, however, we will use the full
Birkhoff system, with the substitution rule. It is easy to see that the above set of
rules is finite if and only if the language A has finitely many operation symbols. This
system, used in every algebraic reasoning, was formalized in [2] and since then this
formalization played an important role in universal algebra, for example in solving
problems of finite basis.

Using our convention that the 2-formulas can be written as pairs of terms,
Birkhoff’s system B can be defined as a 2-deductive system axiomatized by the fol-

lowing axiom and rules.

(zi.91),- - (T, p0)
(R) (/\(.'171,. .. ’xl)v/\(ylw' . 7y1>),

for each [-ary operation symbol A.
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The axiom (I) is called identity and the rules (S), (T), and (R) are respectively called

symmetry, transitivity, and replacement.
Another important type of systems are Gentzen systems. For some deductive

systems a Gentzen system can be viewed as a so-called second-order deductive system.

Definition 2.20 Suppose that for every natural number n > 1 there is eractly one

n-ary predicate, R,, in K. Then a K-deductive system is called a Gentzen system.
As mentioned in section 2.2, we identify a K-formula R,(t1,...,t,) with the sequent
tl, e 7tn—1 — tn.

If S is a 1-deductive system then, as we mentioned above, its rules can be identified

with sequents, i.e., formulas of some Gentzen system G.

2.4 Second-order deductive systems

Let us observe that the operator associating with each set of rules I' the conse-

quence relation Fr has the following properties.

&

Frp= Fr.

3. T Chr.

4. If (X, ) € br, then there is a finite subset A C T such that (X,¢) € Fa.

Ut

If (X, ) € Fr, then for every substitution o, (0(X),0(¢)) € k-
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Thus the operator C such that C(T') = Fr is itself idempotent, monotone, increasing,

finitary and structural and hence is a consequence operator, except that it is defined

on sets of K-sequents rather than sets of K-formulas. We call the operator C a
L}

second order consequence operator. By contrast, a K-deductive system in the sense

of our original definition (Definition 2.1 is called a first-order deductive system.

Definition 2.21 For a fized A and K let T' k) denote the set of all (A, K)-rules.
An operator Cn : P(Ta,x)) = P(L(ak)) that is monotone, increasing, idempotent,
finitary and structural, i.e., satisfies the conditions (2.1- 2.5) is called a second-

order consequence operator.

Consequence operators of orders higher than two can be defined in a natural way.
But we will not do it here.

Note that the w-deductive systems are the second-order deductive system for K
with only one unary predicate.

A basic second order non-structural deductive system is the system &, deter-

mined by the requirements (2.6)-(2.8) for . (page 39). Its rules are:

Xt 0 X, ok and Yo
X,dke' gk’ X, Yk

Here X and Y represent finite sets of K-formulas and we use the identification of
a rule Xk with the sequent ¢1,...,9, — @. Thus the first of the above rules is
really an infinite set of rules: one rule for each n. Also, the third rule represents
an infinite set of rules. Another important second-order deductive system, which we
denote by Sy, is the one obtained from Sy by adding the following rules, expressing

the structurality condition (2.10):

Xk
ocXkoy



for every substitution o.

Of course, every first-order non-structural K-deductive system S is some (second-
order) axiomatic extension of Sg, and every first-order structural K-deductive system
is an axiomatic extension of Sy, where every second-order axiom is a first-order rule.

Given a K-deductive system S, we will be particularly interested in the second-
order axiomatic extension S; of S; on P(Fmxk) x Fmk that satisfies all the inference
rules of S. Note that the derived rules of this second-order system are exactly those
pairs (X,s) with X C I'(x x),s € T'(a k)T such that whenever 0 X C Fs then also
os € kg, for every substitution o.

Similarly as for first-order deductive systems we can define the axiomatization
and relative axiomatization of a second-order deductive system S. A second-order
axiomatization of a system S, above relative to S; deserves a special mention. It is
a set I of first-order rules such that Cnr = Cngs,. Thus I' is an axiomatization of
S, iff it is a basis of S. By analogy with the first-order case, a theory of a second-

order deductive system S, is a set of first-order rules closed under all second-order

Thus second-order theories coincide with the first-order systems and coincide with
the universal Horn theories over the language (A, K).

When K has just one unary predicate symbol, then K-rules can be identified
with w-formulas, so in this case C is a consequence operator in the sense of our
original definition. Thus a second-order consequence operator can be associated with
a Gentzen system, see Definition 2.20 in this case. In Part III, Chapter 5, we formalize

the second order deductive system of equational logic as a Gentzen system, for K = 2.
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2.5 Basic semantics of K-deductive systems

For a fixed algebraic language A, the semantics of a K-deductive system S is
a class of (A, K)-structures, called also (S-)matrices, that satisfy all the rules of
S. In this section we define matrices (subsection 2.5.2 and discuss the consequence
operator determined by a matrix (subsection 2.5.3). If S is an extension of the

Birkhoff’s system B, then the S-matrices are pairs consisting of an algebra A and a

congruence relation © on A.

2.5.1 K-elements and K-subsets

Definition 2.22 A K-element of a set A is a pair (R,d), where R € K and
@ € AP\P). The set of all K-elements of a set A is denoted by Ex(A), notice that
Ex(A) =ge KA”(R). A K-element (R,G) of A is also written in the form Ra. If
X C Ex(A), then X is called a K-subset of A.

Let us stress that the expression Rad is not used here as an assertion. On the other
hand the expression Ra@ € Ex(A) is an assertion, equivalent to “d is a sequence of
length p(R) of elements of A”. K-elements of A will be denoted by Greek letters «, 5.
Note that in case that A = Te, the A -elements coincide with A-formulas introduced
earlier. Recall that K-formulas are denoted by the Greek letters ¢, .

Also observe, that 1-subsets are just subsets and 2- subsets are binary relations.
Every K-subset X is of the form X = [] Re KX R, Where each Xp is a subset of
AP(R) in the usual sense and is called the R-component of X. We write R(@) € X for
(R,d@) € X. Notice that R(d@) € X iff @ € Xgr. Let X,Y be two K-subsets of A with

components Xp,Yr, R € N, respectively. We say that X C Y if, for every R € K,
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Xr C Yg. The intersection X NY and the union X UY are defined coordinatewise:

XNY = H XpNYr, XUY = H XrUYrg.
re K re K

2.5.2 Filters and matrices

Notice that Fmk is a K-subset of Te. Also every S-theory T is a K-subset of

Te. In fact, S-theories are exactly those K-subsets of Te that are closed under Cng,

see the next definition. Let K and A be fixed and let 2 = (A,R* : R € K) be a

model of the first-order language (A, K). Notice that [ g R® is a K-subset of A.

Definition 2.23 (i) A K-subset F' of a A-algebra A is closed under a rule

(iii)

(iv)

r = (X,a) if for every substitution o, if 0(X) C F then ca € F. It is closed
under a set of rules T, if for every rule r € T, it is closed under r. It is

closed under a consequence operator Cn, if it is closed under every rule

of Cn.

Let S = (A,Cn) be a K-deductive system and A a A-algebra. A K -subset F of
osed under Cn is called an S-filter of A. [f Cn = Cnr for some
set of rules ', we call F also an T'-filter on A. The set of all S- (respectively
['-) filters on A is denoted by Fis(A) ( by Fir(A), respectively).

A (A, K)-matrix is a pair 2% = (A, F), where A is a A-algebra and F is a K-
subset of A. If F is an S-filter, for some (A, K)-deductive system S, then U is
called an S-matrix. If Cns = Cnr, for some set T' of rules, then an S-matriz

s also called a [-matrix.

Let % = (A, Dq) be an S-matriz. An S-filter F on A such that Dy C F is

called an S-filter on the matrix 2. A T-filter on % is a I-filter on A such
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that Dy C F'. The sets of S-filters on A and on 2 are denoted Fis(A), Fis(2),
respectively. Similarly, Fir(A) and Fir(2) denote the sets of I'-filters on algebra

A and on the matriz 2, respectively.

Notice that (A, X) is a (A, K)-matrix iff (A, Xgr : R € K) is a model of the first-
order language (A, K). Conversely, if (A,R* : R € K) is a model of (A, K) then
(A, K B®) is a (A, K)-matrix. Hence the (A, K)-matrices can be identified with
the models of (A, K). Similarly, if S a K-deductive system and F is the universal
Horn theory associated with S (see page 45), then an S-matrix is a model of F in
the usual terminology of the first-order logic.

The filter F' of the matrix 2 = (A, F') is most often denoted by Dq. Its elements
are called designated elements of the matriz %. If Dy = [I5. K APR) e, Dy =
Ex(A)or if Dy is empty, the matrix (A, Dqy) is called trivial. We will denote matrices
by capital gothic letters and their underlying algebras by the corresponding boldface
capital letters. For a K-deductive system S, an algebra A (matrix 2, resp.) and a
K-subset X of A, an S-filter on A (on 2, resp.) generated by X is the intersection of
all S-filters on A (%, resp.) that contain X. This intersection is always an S-filter.

For two S-filters F,G on A, I'V G is the S-filter on A generated by FUG. The
sets Ilis(A), Fir(A), Fis(2), Fip(2) together with the operations M,V are algebraic
lattices. Let h : A — B be a function and D and F some A-subsets of A and B,
respectively. If for some R € K, some @ = (a1,...,a,r) € 4, (b1,...,byr)) € B,
we have ha; = b; for 2 = 1,..., p(R), then we define h(R@) = R(ha). We define the
image hD of D under h as

(D) = {R(h@) : Rd € D}
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and the inverse image h~! of E under h as
h~'(E) = {Rd: R(kd) € E}.
An image and an inverse image of a K-subset is also a K-subset.

Definition 2.24 An algebra homomorphism h : A — B is a matrix homomor-
phism between the matrices 2 and B if h(Dg) C Dg. This is equivalent to Dy C

h~Y(Dg). If h is surjective and Dy = h™'(Dsg), then h is called reductive, B is called

a reduction of 2.

For matrices M = (M, D) and %t = (N, I)'), a one-one algebra homomorphism
f : M — N is called a matriz embedding or simply an embedding if f~(D’') = D.
In this case we also say that 9 is embeddable into 91. An embedding which is onto is
called a matrix isomorphism. Two matrices are isomorphic if there is an isomorphism
between them. The matrix M is a submatriz of a matrix 9t if M C N and the identity

homomorphism is an embedding.

2.5.3 Tautologies and a consequence of a matrix

A homomorphism A from the term algebra into a A-algebra is called a valuation.
Let % be a matrix, R € K and t € Te?™. If for every valuation h : Te — A,

h(Rt) € Dg, then Rf is a tautology of the matriz %. The set of all tautologies of 2 is

Recall that a rule is a pair (X,t), such that X is a finite set of K-terms and ¢

is a K-term.

Definition 2.25 A rule r = (X, ) is valid in M ¢f, for every valuation f : Te —



56

M, f(X) C D implies f(¢) € D. A rule r is admissible for 9 if it is valid in the
matriz (Te, E(M)).

Thus r = (X, ¢)is admissible for o iff, for every substitution ¢ : Te — Te, whenever
o(X) C E(mm), then also o(t) € E(M).
Every K-matrix determines a K-deductive system Sy = (A, Cng) in the following

way.

Definition 2.26 The consequence Cny is the consequence operator determined by

the rules valid in .

(The consequence operator determined by a set of rules was defined on page 41.) Sim-
ilarly, every class of matrices determines a set of theorems E(K) and a consequence
operator: a K-formula ¢ is a theorem of K if it is a theorem of every matrix 2 € K.
A rule r is valid tn K if it is valid in every matrix 2 € K. The consequence operation
Cn.K. The consequence operation Cng is the consequence operator determined by

the set of the valid rules of K. Let Fyp be the free denumerably generated algebra
in HSP(M) and F’(M) the set of ail elements i € F such that f(#) € D for every
homomorphism f : Fpy — M. (Notice that if § is a congruence on Te such that
Fym = Te/6, then E'(M) = E(9M)/6.) The matrix Fm = (Fm, £'(M)) will be called
a free matrix over M. It is easy to show that a rule r is admissible for M iff » is valid
in the free matrix ;. The following connection between valid and admissible rules

is well-known (e.g. [45]).
Proposition 2.27 Every rule valid in M is admissible for M.

In general, the converse of Proposition 2.27 does not hold (see, e.g., [45], page

110). The matrices in which all admissible rules are valid are called structurally
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complete. It is easy to see that a sufficient condition for a matrix M to be structurally

complete is that 9 be embeddable in the free matrix over M, i.e., we have

Lemma 2.28 If M is embeddable Fon, then every rule admissible for M is also valid

n M.

Definition 2.29 Let S be K-deductive system, for some K and let 2 be an S-matriz.
An axiomatization of A (possibly over S) is an aziomatization of E(%) (over S).
A basis of % (possibly over S) is a basis of the consequence operation Cny (over
S ). The matriz ¥ is finitely based (finitely axiomatizable) if there ezists a finite
basis (aziomatization) of A. It has finitely based theorems over S if there is a
finite basis of theorems of % over S.

(Finite) aziomatization and basis for a class K of matrices (possibly over S) are

defined similarly.

Let us stress that, according to the above definition (which we borrow from
[60, 61, 10]), to axiomatize a matrix means to axiomatize its tautologies, possibly
with rules that are only admissible for the matrix. As P. Wojtylak pointed out in
[61] this notion of axiomatizability is the weakest of all notions of axiomatizability
considered in the literature. Thus if a matrix cannot be finitely axiomatized in
the above sense, then it cannot be axiomatized in any other sense existing in the
literature. In particular, the consequence operation of such a matrix cannot be finitely
based.

Notice that if I axiomatizes 2, then every rule in I is admissible for 2. However,

these rules do not need to be valid in 2.
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Definition 2.30 A matriz % is axiomatized by valid rules if there exists an

aziomatization I of A such that all the rules in T’ are valid.

Proposition 2.31 If % is finitely ariomatized by valid rules, then 2 is finitely az-

iomatizable.

Proposition 2.32 A set I' of rules ariomatizes A iff all rules in I’ are admissible

for 2 and E(21) C Cn(T, 0).

2.5.4 Examples

We apply the notion of a matrix to the special deductive systems considered
earlier.

l-matrices.

The notion of a matrix as a model of a 1-deductive system was defined by A. Tarski
and J. Lukasiewicz in [24], although the idea itself can be traced back to Ch. Peirce
and E. Schroder (see [58, section 31.5]). The theory of 1-matrices was developed in
Wajsberg {50}, S. Jaskowski [14],
A. Tarski [54] and others. The theory of logical matrices has been used in the papers
of many authors, especially in Poland.

It follows from Definition 2.23 that for a given algebraic language A, a 1-matrix,
or a matrix of a 1-deductive system, is a pair (A, D) such that A is a A-algebra and
D is a subset of A.

For example, if S is the classical deductive system, then a pair (A, {1}), where
A is a Boolean algebra and 1 is the largest element of A is a S-matrix. Similarly, a

l-matrix (A, {1}) isa
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(i) matrix of the intuitionistic deductive system if A is a pseudo-Boolean algebra

and 1 is its greatest element
(i1) matrix of the BC K-logic, if A is a BC K-algebra and 1 is its greatest element.

(ii1) matrix of the implicative logic of Rasiowa [44], if A is an implicative algebra

and 1 is the largest element of A.

The third example is more general then the first two. In all these examples, it
is sufficient to have one designated value. The first to consider two values was
J. Lukasiewicz. His matrices ({0, 3,1}, —,{1}) and ({0, 1,1}, —,{3,1}) are models
for the so-called Lukasiewicz 3-valued logics ([24]). The tautologies of the first of
these matrices are all the terms which are theorems in certain 1-deductive system,
and those of the second are the formulas which are true or possible in this system.
At first, the interest of logicians was focused on the tautologies of a matrix. Thus the
first of the axiomatizability/ basis notions defined above was the one of axiomatizing
a matrix (i.e., its set of tautologies) relatively to a given set of rules. For example
in Wajsberg's paper (reference), this set of rules consists just of the modus ponens
rule. Later, the matrices were considered as models of the deductive systems, and
the other notions developed. The standard notion of a deductive system used now is
that of for example [59] and it coincides with our 1-deductive system.
k- and B-matrices

For a set A, let id4 be the identity relation on A. As we already said in 0.43, a
K-matrix can be identified with an (A, K)-structure. It follows from Definition 2.23
that for a given algebraic language A, a k-matrix, or a matrix of a k-deductive sys-

tem, is a pair (A, D) such that A is a A-algebra and D is a subset of A*. For
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example, a 2-matrix is a algebra with a binary relation. Consider Birkhoff’s 2-deduc-
tive system B introduced in Definition 2.19. It follows from the axioms B-matrix is
a pair 2 = (A, ©), where O is a congruence relation on A. A valuation v satisfies an
equation t; & to if t;(v)O1,y(v) and ¢, & ¢ is a tautology of 2 iff for every valuation
v, t1(v)Ot2(v), i.e., if ¢; = {2 is an identity of the quotient algebra A /0.

Thus we have the first part of the following proposition ({4])

Proposition 2.33 Let % = (A, ©) be a B-matriz. Then

(1) E(2) =1d(A/0).
(i1) A rule (X,e) is valid in A iff Apex ¢ — € € QId(A/O).

(ili) If © = id4, then an equation ¢ is a tautology of U iff € is an identity of A;
a quasi-equation €1,...,6, — € is a valid rule of A iff €1,...,6, = € is a
quasi-tdentity of A.

Proof. Straightforward. O
The proposition above says that a quasi-equation is a valid rule of (bA,id,) iff
it corresponds Lo a quasi-identity of 2. If il corresponds (o a ruie ihai is only sound

(or admissible) then it is called a sound quasi-identity.

Definition 2.34 A quasi-equation A,ex ¢ — ¢ is a sound quasi-identity of an

algebra A if (X, ) is a sound rule of the matriz (A,id4).

Thus a quasi-identity A ex @ — ¢ is sound if “it does not lead outside the set of
all tautologies” of 4, i.e., if for some substitution o, o(¢) € Id(A), for all o € X,
then also o(c) € Id(A). Substitutions are the valuations into the term algebra Te; it
follows that a quasi-equation is a sound quasi-identity of A, iff it is a quasi-identity

of the free algebra in the variety generated by A.
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2.6 Leibniz operator

The definitions and results of this section are routine modification of the material
of [4, Section 5] concerning reductive homomorphism, congruence compatible with a

filter, Leibniz congruence associated with a filter and Leibniz operation.

2.6.1 Reductive homomorphisms

For the rest of this section let (A, K) be a first-order language and let 2 =
(A, Da),% = (B, Dg) be K matrices.

Definition 2.35 A homomorphism h : A — B is said to be reductive from 2 to B
if h is onto B and h™1(Dg) = Dq. B is areduction of % and B is an expansion of
2% if there exists a reductive homomorphism from 2% onto 8. A Kmatriz % is reduced

if for every B, if B is a reduction of A, then A= fB.

Proposition 2.36 (compare with [4, Proposition 5.1]) Let h : % — B be a reductive

homomorphism. Let R € K with p(R) =n and let t = t(z1,...,z,) be a sequence of

terms. Let o = R(f) € Fmg,I’' C Fmg and a4,...,a, € A. Then
(i) t(ay,...,a,) € R iff t(hay,..., ha,) € R®.

(ii) T Fa @ iff T s o.

Proof. The first claim follows immediately from the assumption that 271{Dg) = Dy
and that h is a homomorphism. The second claim follows from the first claim and
definition of satisfaction, def. 0.44.

For example, let %,% be B-matrices, where B is the Birkhoff deductive sys-

tem of equational logic, page 48. Then 2 = (A,0) and B = (B, ¥), where 0, ¥
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are congruences on A, B, respectively. Let h : 2 — B be a matrix homomor-
phism. It follows from the proposition 2.36 that if h is reductive then for all terms
t(z1,...,2s),8(21,...,2,) and for all ay,...,a, € A, t(as,...,a,)0%s(ay,...,a,) iff

t(hai,...,ha,)8%s(kay,..., ha,). Thus A/© and B/¥ are isomorphic.

2.6.2 Leibniz operator

Definition 2.37 Let © € Co(A) and let X be a K-subset of A. We say that © is
compatible with X if for every R € K and for all sequences @, be AP, ifa € Xgp
and a;0b; forallj=1,...,p(R) then b€ X.

If © is a relation on a set A, we write GO™b for the conjunction of statements:

d=(ar,...,a,); b= (by,...,b,) € A™ and for every i = 1,...,n, {a;, b;) € O.

Proposition 2.38 Let © € Co(A) and let X be a K-subset of A. Then © is com-

patible with X iff for every R € K, for every sequence @ = (as,...,a,r)) € Xr,
al/@ X az/@ X... X (I.p(R)/@ - XR.

Therefore,

X'R = U a1/6 X ...a,,(R)/G.

aeX

Proof. Immediate from the definition. O

Lemma 2.39 Let F be a family of congruences on an algebra A compatible with a

K -subset X of A. Then \| F is also compatible with X.

Proof. We need to check that for every R € K, if a(V F)*®b and Ra € X

(i.e., @ € Xg), then Rb € X. But it is sufficient to prove that for every £ <
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p(R), for all ay,...,an, b € A, if (ar,bx) € VF, and R(ay,...,a,) € V(F), then

rem 0.14 it suffices to prove that if {c,d) € UF and
R(ay,...,ax-1,t(c,€),ak41,-..,a7) € X,

for some term ¢ and some sequence € of elements of A, then also
R(ay,...,ak-1,t(d,€),ak41,...,a,) € X.

But (c,d) € O, for some ©® € F and therefore ({(c,¢€),t(d,€)) € ©. Since O is
compatible with X, it follows that R(ay,...,ak—1,t{(d,€), @kg1,---,a,) € X. O

Thus the largest congruence compatible with a K-subset X always exists.

Definition 2.40 The largest congruence on A compatible with X is called the Leib-
niz congruence of X and is denoted by Q2 (X). We omit the subscript S or su-
perscript A when S or, respectively, A is clear from the contezt. The operator Q2

is called the Leibniz operator on A associated with the K-deductive system

S.

Proposition 2.41 (compare with [4, Prop. 5.3])Two elements a and b of A are
identified by QA(X) iff for every K-formula R(H{(z,z,,...,z.)) and every choice of
elements &€ AP H{a,d) € Xr iff {b,¢) € Xr.

Proof. A routine modification of Proposition 5.3. in [4]. O

Lemma 2.42 (compare with Lemma 5.4 in [4]) Let S be a K-deductive system. Let
A,B be A-algebras and h : A — B a surjective homomorphism. Then for every
F € Fig(B), Q4(r1F) = h~1QB(F). In particular, if % and B are matrices and

h:% — B is a reduction, then Q4(Dy) = h10B(Dy).
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Proof. Same as the proof of Lemma 5.4. in [4]. O

For any matrix 2% = (A, Dg) we define
U := (A/Q(Da), Da/Q(Da)),

where Do /Q(Dqg) := {R(@/Q(Dq)) : R@) € Dya}. The matrix 2* is a reduction of .
In fact, it is a minimal reduction of 2 in the sense that for any other reduction %8 of
2, B™ is isomorphic to %*. We shall identify 2 with 2* if % is reduced. For any class

of K-matrices K we denote by K* the class of all minimal reductions of the matrices

n K.

Lemma 2.43 (compare with [4, Lemma 5.5.]) If © is a congruence compatible with

Dq, then A* is isomorphic to (A[©, Dy [0O)*.

O

By Proposition 2.36 (ii), Sk = Sk-. The following theorem is an immediate conse-

quence of this fact.

8. For any K-deductive system S, any sel of -

2
formulas T U {p} we have T ts ¢ iff T Eppoqts -

0

Also, the Proposition 5.7. of [4] says, among others, that for a congruence © on
the algebra A, Q(©) = ©. Hence the reduction of a 2-matrix (A, 0) is (A/©, A 4/0)-
So the reduced models of the Birkhoff’s system B are the matrices (A, A 4), which can
be identified with the algebra A. Therefore the reduced semantics for an extension
S of B is, after this identification, exactly the quasivariety defined by all the quasi-

equations £; A -+ A g, — € such that the rule ({¢;,...,2,},{c} €Fs.
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Definition 2.45 Let % be a matriz and F a filter on 2. Then the reduction of % by
the filter F is the matriz %4/ F := (A/Q(F), F/Q(F)).

Hence %" is exactly the reduction of % by the filter Dy. It also follows that the

reduction of a B-matrix (A, Dy) by a B-filter 6 can be identified with the quotient
A/6.
2.6.3 Leibniz operator relativized to a predicate

When K has more than one element, then for every R € K, we can define a

relativized compatibility in the following way.

Definition 2.46 A congruence © on A is R-compatible with a K-subset X of A

if for every sequence of pairs {a;,b;)) € ©,1=1,...,p(R),
R(al, . ,ap(R)) €EX=> R(bl,. . bp(R)) € X.

Definition 2.47 For R€ K and k € {1,...,p(R)}, we say that a congruence © on

A is (R, kj-compaiible with a K-subsei X of A, if for every pair (a,b) € O, for every

v v

sequence of p(R) — 1 elements ¢, ..., cr—1,Crs1,---,CoR) € A, we have
(al, e ,ap(R)) € Xp=> (bl,. ey bkl) € Xg.

Observe, that © is R-compatible with X iff for all pairs (a,b) € O, for every k =

1,...,p(R) and for every sequence ci,...,Cko1,Ckt1s- - - Cn,

Rley . yCha1,a,Chp1y...1¢) € X iff R(er,. .., Cha1,0,Chp1,---,¢) € X.

Proposition 2.48 (i) Q(X) =Nz g Qr(F).
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(i) Qr(X) = MNED Qak(F).

Proof. Clearly, a congruence O is compatible with X iff for every R € K it is R-
compatible with X. So for every R € K, Q(X) is R-compatible with X and therefore
QX) C Qr(X), for every R. Hence Q(X) C Nze K Qp(X). Also, Nge K Qr(X) is
a congruence R-compatible with X, for every R. So it is compatible with X and (i)

follows. Part (ii) can be proved similarly. O

Proposition 2.49 Let % be a matriz. Then the join of a family of congruences R-
compatible with Dy ts also R-compatible with Dy. Similarly, the join of a family of

congruences Rk-compatible with Dy is Rk-compatible with Dgy.

Proof. Similar to the proof of Lemma 2.39 O

By the above proposition, for every K-subset of A, for every R € K there is
the largest congruence Qr(X), which is R-compatible with X; and also the largest
congruence Qpi(X), which is (R, k)-compatible with X.

Definition 2.58 The largest congrucnce on an Glgebra A, whicl is R-compalible
with X is called the Leibniz congruence relative to R and denoted by Q% (X)).
The largest congruence Rk-compatible with X is called the Leibniz congruence
relative to (R, k) and denoted by Qf}g,k)(X). We omit the superscript A if A is

known from the context.

Proposition 2.51 Let A be an algebra and let X be a K-subset of A. Then a pair
{a,b) of elements of A is in Qr(X) iff for every sequence of terms t(z,zy,...,Tm) €

Te?®) and for every choice of elements E=cy,...,cm € A,

Ri(a,&) € X if Ri(b,8) € X.
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A pair (a,b) of elements of A is in Quri)(X) iff for every m and a sequence of
variables T,1,...,Tm, for every sequence of terms (ty,...,tk1,t,tkq1,. .., tym)) €

Te”™® such that for i # k, Var(t;) C {z1,...,2n} and Var(t) C {z1,...,Tm,z} and

for every choice of elements &€ A%

R(tl(a’ RS tk—l(av tk(a’ é’)v tk+1(6)’ cety tn(a) eX (2'11)

Zﬁ R(tl(g)’ R tk-l(g)’ tk(bv é)»tk+1(a7 cee tn(g)) € X.

Proof. We prove the second statement of the proposition. The first follows by
induction on n — k, where k+1,...,n from the first and Proposition 2.48 (ii). Since
Q(rk) 1s symmetric, it suffices to prove the second statement of the proposition with
“iff” in 2.11 replaced by “implies”. Let # be a sequence of terms as in the statement
of the proposition. Since © := Qgx)(X) is a congruence, (a,b) € © implies that
(tk(a,©),tk(b,C)) € O©. The necessity of the condition follows immediately from the
fact that © is (R, k)-compatible with X. For the proof of the sufficiency we define a
relation ¥ by (a,b) € ¥ iff for every sequence of terms (t1, ..., tk—1, %, tks1,.. -, tym)) €
Te?™® such that for 7 # k, Var(t;) C {z1,...,&n} and Var(t) C {z1,...,2m,2} and

for every choice of elements ¢ € Al

R4 (D), - - -+ ther(8), 1(5, ), £ (D), - ., £a () € X.

Notice that ¥ is a congruence on A and that ¥ is compatible with X. Therefore

U C Qg(X). The second statement of the proposition follows. O
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2.7 Semantics and reduced matrix semantics of K-deductive systems.

From the point of view of its deductive power, a class C of K-matrices is equiv-
alent to the class C* of all reduced matrices of C. In [3] and [4] it was shown that the
reduced matrices under many respects behave similarly as the algebraic models of
the quasi-equational logic. This is particularly true for the protoalgebraic deductive
systems defined in section 2.8.

In this section we extend, to arbitrary K-deductive systems, the results of [4,
Section 6] on reduced matrix semantics of k-deductive systems. These results are
stated here without proof, because either exactly the same proof or a straightforward
modification of a proof in [4] applies. When the modification is not completely
obvious, we indicate it.

Let the algebraic language A be arbitrary and fixed and let K be a fixed relational

language.

Definition 2.52 A class H of reduced matrices of the form Mod™S for some struc-

tural and finitary K-dedu

‘H is generated by an arbitrary class C of reduced K-mairices if it is the smallest

reduced universal Horn K-class including C, equivalently, if § = (A, I=(f:)

Recall that for a set A, by Ex(A) we denote the set of all K-elements of A, i.e.,

Ex(A) = Upc K APR) For a filter F on an algebra B and a subalgebra A of B, let
F|B:= F N Eg(A).

Definition 2.53 Let 2 = (A, Dq),8 = (B, Dg) be K-matrices. U is a submatrix

of B, in symbols A < B, if A is a subalgebra of B and Dy = Dg|A = Dg N Ex(A).
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Let %4;,i € I, be a system of K-matrices. The direct product of {2;:¢ € I} is
12 =(1A- ]I D).
iel €] el
We identify [lie; Da; with [Izc K DR, where Dp is the set of p(R) tuples ((an : 7 €
I),...{aipxr) : 1 € I)) € AP such that for every i € I, (ai1,...,aiR) € R™.
The set I may be empty, in which case [];c; A; is the trivial, one-element algebra
and [Tic; Da; = ITicr Ai- In [4, sec. 6] the examples are given that the reduced Horn

classes are in general not closed under subalgebras or direct products.

Proposition 2.54 ([4, Proposition 6.1]) Let %, B be K-matrices such that % < B. If

A is reduced, then U is isomorphic to a submatriz of B*.

Let F C PI be a lattice filter on (PI,N,U). We identify ([T;e; A:)F with

(ITie; AY) under the natural mapping

{lan:1€0),....{(ax:2 € I)) = ((an,...,au) : 7 € I).

Dﬁmi :={R(a1,...,a,r)) € Ex(A): {i € I : R(ai,...,air) € Da,} € F}.

Equivalently,
Dﬁ% =11 (R}Hm‘) where for each R
rRe K
(R .= ({a e (AP (5 € T faae. .- i) € B¥} € 7).
Then we let

(H‘Zl,‘)}. = (H A, D% ‘li)'

iel 1=y



We also define

O(F) := {(@,b) € HIA,. {i:a; = b} € FY,
i€

[TA:/F = (HA,-/@(.F),DHQ‘./}') where

1€l i€l

D,/ = Dffa,/O(F) = T1 (DFq,)n/0(F)
re K

Note that [T;c; A:/F is the usual filter product of algebras. Finally define

[12:/F == ([ Ai/F, Dpa,/ F-

i€l i€l
[lic; Ai/F is called the matriz filtered product of {%; : ¢ € I} by F. D% o, IS an
S-filter on the direct product and ©(F) is obviously compatible with it. In general
O(F) is smaller that Q(DH ‘As) and whence the matrix filtered product is not usually
reduced. By lemma 2.43 we have that ([;e;%:/F)" is isomorphic to [T/, 2:/DE o
An arbitrary reduced universal Horn K-class need not be closed under matrix

ultraproducts. This is shown in [4]. For any class C of K-matrices we define
IC := {2 : 2 isomorphic to some B € C},

SC := {%: 2% < B for some B € C},
PC .= {Hielmi 9, €Callie ]}
P.C:={2% X - XU : ,..., A, € C,n <w},
PrC := {Hielﬁl,—/}' 1% € C for all z € I, all lattice filters F on PI},
PyC = {Hielmi/}- ;A €Cforallz €1, all lattice ultrafilters F on PI}.

Also, for each operator Q € {I,S,P,P,.Pr Py} define Q*(C) := {* : % € Q(C}).
We will often omit parentheses and write QC for Q(C), for any of the reduced or not

operators defined above.
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Theorem 2.55 (see [4, Thm. 6.2.]) Let C be any class of reduced K-matrices and
let S := (A, =L). Then Mod*S = IS*P}PxC.

Proof. The inclusion from right to left is straightforward.

For the inclusion from left to right, the proof of [4, Theorem 6.2.] applies with
the following modification at the beginning. Let % € Mod™S. Let {a. : k < a} be
a fixed system of generators of A. Let {z. : kK < a} be a corresponding system of
variable symbols, and let Te, be the set of all terms in these variables. According to a
remark in section Universal Horn Logic we identify Fmyk with the set of all universal
Jorn formulas R(%), where R € K and i € Te2®.

Let

Diag := {R*(}): R€ K,ie Te?®) #(@) € Dy}.

Diag is called the diagram of 2. Let
A := P,(Diag) x P,(Fmg \ Diag)

If %8 is any matrix and by,...,b, € B, then for every § = (§%,57) € A we write
Ee Slby,...,b,) if

tB(by,...,b,) € R® for all Rf € S* and B(by,...,b,) € R® for all R%f € S-.

The proof now is continued exactly as the proof of {4, Theorem 6.2], except that we
consider K{-matrices rather than k-matrices, and K-elements, rather than sequences

of k elements.

Corollary 2.56 (see [4, Corollary 6.3.]) Let C be any set of reduced K -matrices and
let H be the reduced universal Horn K-class generated by C. Then H = IS*P*Py,C,
and, if K is a finile class of finite malrices, H = IS"P*K.
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Corollary 2.57 (see [4, Corollary 6.4.]) A classC of reduced K -matrices is a reduced
universel Horn K-class iff it is closed under reduced ultraproducts, reduced direct

products, and reduced subalgebras.

Another useful construction is that of a subdirect product.

Definition 2.58 A submatriz B C [];c;% is called a subdirect product of the
system {2; : ¢ € I}, in symbols BCspll;e /Ui, if the projection =; : B — A; is
surjective for every ¢t € I. The class of all subdirect products of matrices from C is

denoted by Psp(C).

We will use this definition in Chapter 3 and in particular in Part II. A useful char-
acterization of subdirect products is contained in Part II, Proposition 2.9.

Let S be an extension of the 2-deductive system B. Let us observe, that an
S-matrix % = (A,0) is reduced iff O is the identity relation id,s on A. Let 2
and B be two such reduced matrices. Then a matrix homomorphism h : %4 — B
is reductive iff it is an isomorphism. A product of a family of reduced S-matrices
% = (A;,ida,),7 € I is the reduced matrix % = ([];c; Ai,ida) and hence can be
identified with the product of algebras A;. Similarly, filtered products and subdirect
products of reduced S-matrices can be identified with the algebraic filtered products

and subdirect products of the underlying algebras.

2.8 Protoalgebraic K-deductive systems

The concept of a protoalgebraic 1-deductive system was introduced in [3], gener-
alized to k-deductive systems in [4], to w-deductive systems in [41] and to the universal

Horn classes in [11]. The authors of {3, 4] realized that all what is needed for certain
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important universal algebraic results to have their analogues for a k-deductive system
S is the monotonicity of the Leibniz operator for every S-model. They called those
k-deductive systems protoalgebraic.

Similarly as in the previous section, the results of this section parallel the results
of Section 7 of [4] and can be proved by a straightforward modification of the meth-
ods of [4]. Another presentation of these results, can be found in the independent
work [11].

Definition 2.59 A K-deductive system S is protoalgebraic if for each A-algebra A,
the Leibniz operator Q& is monotone, i.e., for all F,G € Fis(A),F C G implies
QF) CQG).

Corollary 2.60 (Corollary 7.2 in [4]) The Birkhoff system B is protoalgebraic.

Definition 2.61 A K-deductive system has the compatibility property if for ev-
ery A-algebra and every © € Co(A) if © is compatible with an S-filter F on A, then

it is also compatible with every filter that includes F'.

Let A.B be A-algebras and let £ : A — B be a surjective homomorphism.

If F € Fig(A), then

>

(F) need not be an S-filter on B. Let hsF be the S-filter
generated by hF, i.e.,

hsF :=({G € Fis(B): hF C G}
It is easy to see that if S = B and thus the S-filters are the congruences, then hs®

is the transitive closure of h©.

Lemma 2.62 (see [4, lemma 7.4.]) Let A, B be algebras and h: A — B a surjective
homomorphism. Let F € Fis(A) such that F is compatible with h™'Ap, i.e., with
the relation kernel of h. Then hsF = hF.
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Proof. By an easy modification of the proof of Lemma 7.4 of [4]. O

Definition 2.63 ([4, defin. 7.5]) A K -deductive system S has the filter correspon-

dence property if, for every surjective homomorphism h : A — B, and for every

F € Fis(A) and G € Fis(B),
h Y (hsFVG)=FVh'G,
where the joins are taken in Fis(B) and Fis(A), respectively.

The following theorem was formulated in [4] for k-deductive system, but its proof

applies without changes to arbitrary K-deductive systems.

Theorem 2.64 (see Theorem 7.6. of [4]) Let S be a K-deductive system. The fol-

lowing are equivalent:

1. § is protoalgebraic;

o

. § has the compatibility property;

Lo

. S has the filter correspondence property.

Corollary 2.65 (see [4, Corollary 7.7]) (The Correspondence Theorem) Let A and
B be algebras and h : A — B a surjective homomorphism. Let S be a K-deductive
protoalgebraic system. Then for any F € Fis(B) the mapping G — h™'G is an
isomorphism between [F) in Fis(B) and [h™'F) in Fis(A).

It also follows from the correspondence property, that if 2 is a model of a protoal-
gebraic K-deductive system S and F € Fis(%), then the lattice of S filters on 2/ F

is isomorphic to the sublattice of Fis(%) generated by F, i.e., to the lattice interval

[F)={GeFis(2): F C G}



in Fig(2).

Theorem 2.66 (see Theorem 8.1 of [4]) Let % and B be models of protoalgebraic
K -deductive system S. Then every surjective matric homomorphism h : 24 — B

induces a matriz homomorphism h* : A* — B*, of the respective reductions, defined

by h(a/QUDa)) = ha/QUDs).

Proof. (by a modification of the proof in [4]). O

Suppose that the system S, in the statement of the above theorem, is a extension
of the system B. Let %(A,0),8 = (B, ¥) be two S-matrices. A matrix homomor-
phism k : 24 — % is an algebra homomorphism such that f~!(¥) C ©. The reductions
of 2 and B are the quotient matrices (A/0O,id) and (B/®¥,id), respectively. Thus
Theorem 2.66 says that if A~1(¥) C © for some algebra homomorphism 4 : A — B,
then h induces algebra homomorphism ~*: A/© — B/¥. This is a corollary to the
homomorphism theorem in universal algebra.

An immediate consequence of the filter correspondence property is the following

Theorem 2.67 (compare with [4, Theorem 8.3.]) If S is protoalgebraic, then Fis(2)

is isomorphic to Fis(%*).
a

Definition 2.68 Let % = (A, Do) be a K-matriz and F any subset of [1 . kAR
that includes Dy. We define
A/ F := (A, F)".

A/F is a K-matriz and is called the quotient matrix of % by F.
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Note, that if K = 2 and F = O is a congruence, then the quotient matrix of 2 by F
is equivalent to the quotient of A by ©. We call the natural algebra homomorphism
n: A — AJQ(F), the natural map of F. Also, by analogy with universal algebra,

h~! Dy the inverse image of the filter Dy under 2 homomorphism % : % — B, is called

the filter kernel of h.

Theorem 2.69 (compare with [4, Theorem 8.4]) Assume that %, are models of
a protoalgebraic K -deductive system S, and let h : % — B be surjective matriz

homomorphism. Then
1. If B is reduced, %/h~' Dy is isomorphic to B.

2. Assume that F € Fis() such that F C h™'Dg. Then there is a surjective
matriz homomorphism g : A/ F — B such that h = g on where n is the natural

map of F.

Notice that when applied to the models of the Birkhoff’s system B, the above theorem
becomes the first isomorphism and the homomorphism theorems of universal al

([7, Theorem 6.12.])

Definition 2.70 A K-deductive system S is R-protoalgebraic, if for every S-matrix
U, the operator Qp on Fig(2) is monotone.
Similarly, S is Rk-protoalgebraic if Qpy is monotone on Fig(%), for every S-

matriz 2.

By Proposition 2.48, if for every R € K, S is R-protoalgebraic then it is protoal-
gebraic. In the next chapter we will give an example that the converse need not be

true.
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CHAPTER 3. REPRESENTATION OF EQUIVALENCE AND
EQUALITY FOR K-DEDUCTIVE SYSTEMS

3.1 Introduction

It was proved in [4] that a 1-deductive system is protoalgebraic if and only if it
has a so-called system equivalence formulas (Definition 3.3), or, equivalently, a (not
necessary finite) system of congruence formulas with parameters (Definition 3.14).
Similar result is claimed there for arbitrary k-deductive system, but the proof con-
tains a gap and the result. as stated in [4, Theorem 13.2], is not true (see Exam-
ple 3.1). Consequently, several results of [4, Section 13] are either incorrect or require
a different argument.

The main idea of the incorrect proof of Theorem 13,2, of [4], can, however, be
used in the proof of a different characterization of protoalgebraicicity of not only -,
but in general X -deductive systems; and also in the proof of a characterization of the
protoalgebraic relativized to a predicate (Theorems 3.10, 3.11,3.12). This is one of
the main goals of this chapter. We define system of equivalence formulas with param-
eters z, Definition 3.3 and prove that a K'-deductive system is protoalgebraic iff it has
an equivalence system with parameters z (Theorem 3.10). A similar characterization
(Theorem 3.12) of R-protoalgebraic K'-deductive system, where R € K and a partial

characterization of Rk-protoalgebraic K-deductive systems, where & < p(R) is also
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presented (Theorem 3.12). Theorem 3.10 allows to correct, and extend, the content
of [4, section 13]. In particular, the concepts of congruential and weakly congruential
deductive systems, introduced in [4], now acquire relatives: congruential and weakly
congruential systems with parameters z (Definition 3.24). It turns out, that the no-
tions with and without parameters z coincide exactly for those K-deductive systems
S whose classes of reduced models are closed under the operator S, i.e, systems S
such that a submatrix of a reduced S-matrix is also reduced.

In section 3.3, Theorem 3.22 we characterize protoalgebraic and R-protoalgebraic
K-deductive system s as those having systems of so-called congruence formulas with
parameters z, where z is a sequence of variables of length closely associated with the

arities of the predicate symbols of K (Definition 3.14).

Let the first-order language (A, K) be fixed. Let z denote a fixed sequence of
variables defined as follows: If max{p(R) : R € K} exists, and in particular when
K is finite, then z = (z1,...,2,), where n = max{p(R) : R € K} — 1. (Thus
if K has one unary predicate then z is the empty sequence.) Otherwise, z is the
infinite sequence z = (21, 22,...). fz2=(z1,...,2n),k < m (or 2 = (21,2,,...)) and
t € Te, then z[t/k] denotes the sequence (z1,...,2k_1,¢, 2k, . .-, Zm) (or the sequence

(z1y+ -~y 2k—1,%, Zks - - - » Zm ), Tespectively). We will write R(2[t/k]) for
R(zlv RPN 13 U -7 zp(R)—l);

thus the notation R(z[t/k]) assumes that not all, but only first p(R) — 1 variables of

z are involved in R(z[z/k]). By {z,y,z} we mean the union of {z,y} and the set

containing all variables z; listed in z.
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3.2 Equivalence formulas in protoalgebraic K-deductive systems

Definition 3.1 A K-formula of the form R(t,,...,t,r)), where R€ K andty,...,t,

are terms, is called an R-formula.

Definition 3.2 Let S be a K-deductive system, let R € K and let ty,...,t,R) be

terms, with Var(t;) C {z,y,2}.

1. The K -formula o(z,y,2z) = R(ty,...,t,) is called an S-reflexive formula with

parameters z if

Fs R(ty,-..,ta)(z,2,2). (3.1)

Let I is be a set and let A = A(z,y,2) = {Afz,y,2) : ¢ € I} be a set of K-formulas.
Then

1. The set A has the modus ponens property relative to (R, k) if
A(z,y,2), R(z[z/k]) Fs R(z[y/k]). (3:2)

2. If for every k < p(R), A has the modus ponens property relative to (R, k) then

we say that A has the modus ponens property relative to R.

3. If for every R € K, A has the modus ponens property relative to R then we say
that A has the modus ponens property or that it is a system of modus

ponens K-formulas with parameters z for S.

The key concepts of this section, which we now introduce, are partly motivated
by the concept of a system of equivalence k-formulas in [4, Definition 13.1]. When the

rclational language A has more than just one predicate symbol, then in addition to
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the notion of a system of equivalence K-formulas we also can define the relativized

notions of equivalence system.

Definition 3.3 Let S be a K-deductive system and let R € K.

1.

A system A(z,y,2) of modus ponens formulas with parameters z for S such that
each ¢ € A is reflexive is called an S-equivalence system with parameters

z or just equivalence system for § with parameters.

A set of reflexive K-formulas with parameters z that has the modus ponens
property relative to R is called an S-equivalence system relative to R

with parameters z or just S-equivalence system relative to R with

parameters.

A set of reflexive R-formulas with parameters z that has the modus ponens
property relative to R is called an (R, S)-equivalence system with param-
eters z or R-equivalence system with parameters z for S, or (R,S)-

equivalence system with parameters.

If the parameters z do not occur in A, i.e., Var(A;) C {z,y} for each A; € A,
then A s called, respectively, an S-equivalence system, S-equivalence
system relative to R and (R, S)-equivalence system if it is a S-equivalence
system with parameters, S-equivalence system relative to R with parameters,

(R, S )-equivalence system with parameters, respectively.

When S is known from the context, we just say “equivalence system with parame-

ters z, equivalence system relative to R with parameters z, R-equivalence system
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with parameters z,” respectively, for “S-equivalence system with parameters z, S-

equivalence system relative to R with parameters z, (R, S)-equivalence system with

»

parameters z.” We call an (R)equivalence system(with parameters z) also a sys-
tem of (R)-equivalence formulas (with parameters z). We say that S has
an equivalence system, an equivalence system relative to R, and an R-equivalence

system, possibly with parameters z (or with parameters) when the respective systems

Jor § exist.

Notice that the notions defined in parts 2 and 3 of the above definition are
not equivalent: Although every (R, S)-equivalence system is also an S-equivalence
system relative to R, the converse is not true. For example, consider K = {R, T},
where both R and T are binary and let § be the K-deductive system (we leave A

unspecified here) determined by the axiom R(z,z) and the following rules:
R(z,y), R(z,z) ks Ry, z)
R(z,y), R(z,z) Fs R(z,y)
R(z,y),T(z,2) ks T(y, 2)
R(z,y),T(z,2) ks T(z,y).

By definition, the set {R(z,y)} is an equivalence system relative to T, but it is not

a T-equivalence system.

Proposition 3.4 Let S be a K-deductive system. Let A(z,y,2) a set of K -formulas
and let R € K.

1. A is an S-equivalence system iff it is an S-equivalence system relative to every

Re K.
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2. A set A of K-formulas with parameters is an S-equivalence system if and only
if A = Upge KAR, where for every R € K, AR is an S-equivalence system

with parameters for R.

3. If A is an (R,S)-equivalence system then it also is an S-equivalence system

relative to R.

4. If for every R € K there is an (R, S)-equivalence system then there also is an

S-equivalence system.

Proof. Immediate [rom definition. O
In view of the above lemma, part 2, an S-equivalence system is a union of sets AR,
where each AR is a S-equivalence system with parameters for R. Of special interest

is the case when all AR can be chosen finite.

Definition 3.5 An S-equivalence system is called finitary if A = Up, KAR, where

for every R€ K, AR is a finite S-equivalence system with parameters for R.

Proposition 3.6  I. If a K-deductive system has an R-equivalence system with

parameters z, then it also has a finite R-equivalence system with parameters z.

2. If a K-deductive system has an equivalence system with parameters z, then it

also has a finitary equivalence system with parameters z.

Proof. It suffices to show that if A is a system of modus ponens formulas with
parameters z relative to R, then there is a finite subset A® that is also a system of
modus ponens formulas with parameters z relative to R. For if every formula in A is

reflexive, then AR is a system of modus ponens formulas with parameters z relative
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to R and if in addition each formula in A is reflexive, then so is every formula in
AR. So if A is an R-equivalence system with parameters z then so is A® and 1. is
proved. If A is an S-equivalence system with parameters z, then for every R € K
we have a finite equivalence system with parameters z A® for R and 2. is proved.

So suppose that A has the modus ponens property relatively to an R € K.
Then

A(:L‘, Y, Z), R(.’L‘, Z) I_S R(y') Z).

Since S is finitary, it follows that there is a finite subset A" C A such that

AR(:E’ yvz)7 R(:Ba Z) l_S R(ys Z).

Proposition 3.7 If K is finite, then a K -deductive system has an equivalence sys-

tem with parameters z iff it has a finite equivalence system with parameters z.

Proof. Immediate from Proposition 3.6 and Definition 3.5. O

A deductive system S which has a system of equivalence formulas with param-
eters z is called an equivalence theory. ([4]).
The above notion of an S-equivalence system for R and also the notion of the

(R,S)-equivalence system can be relativized to k < p(R).
Definition 3.8 Let Re€ K and ke {1,...,p(R)}.

1. A set A of reflexive K -formulas that has the modus ponens property relative to
(R, k) is called a S-equivalence system of K-formulas with parameters

z relative to (R, k).
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2. A set A of reflexive R-formulas that has the modus ponens property relative to
(R,k) is called a system of (R,S)-equivalence formulas with parame-
ters z relative to (R, k) or a R-equivalence system with parameters z

relative to (R, k).

Of course, if K is finite, then an S-equivalence system is finitary if and only if
it is finite. Theorem 13.2 in [4] reads:

A k-deductive system S is protoalgebraic iff it has a finite system of equivalence
formulas.

The proof of the necessity of this condition is, however, incorrect. It proves only
that for every k-deductive system S there exists a finite system of equivalence formu-
las with parameters, Theorem 3.9 below. The idea of this argument can also be used
to prove the relativized version of Theorem 3.9 (Theorem 3.11 below). Example 3.1

shows that Theorem 13.2. of [4] is false.

Theorem 3.9 Let S be a protoalgebraic K-deductive system. Then there exists a

Sinitary S-equivalence system. If K is finite, then there erists a finite S-equivalence

v L PERZEAZLIRS E 2R (2o 2 g

system.

Proof.

Assume that S is protoalgebraic. Let
1= {R(i(z,y,2)) : ks R(l{z,z,2)): R€ K,I € Te"F}.

First observe, that T is an S-filter on Te(z,y,2). For if T Fs S(i{(z,y,2)), then, by
structurality of § and by the definition of T, ks S(#{z, z,z)). By definition of T, the

K-term S(#{z,y,2)) in T.
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We now claim, that (z,y) € QTe=42)(T). To show this we use Proposition 2.51.
For let R(f(u,z?)) be an arbitrary K-term, where ¢ = vy,...,v, 1s some sequence
of variables. Suppose that for some choice of elements v; = v;(z,y,2z) of Te(z,y,2),
where j = 1,...m we have that Rs(z,v(z,y,2),...,vm(z,y,2)) € T. To show our
claim we need to prove that R(s(y,v1,...,vm)) € T, where v; stands for v;(z,y,z).

Let (z,y,2) := §(y, v, . .. ,Um ). By assumption that
R(3(z,vn(z,y,2),-...,vm(z,y,2))) € T,

we have Fs R(f{z,z,2)), which implies that R(#(z,y,2)) € T and finishes the proof
that (z,y) € QTeEv2)(T).

Now since § is protoalgebraic, for every k£ = 1,..., p(R), the pair (z,y) is also in
QTev2)(T U {R(z{z/k))}). But R(z[z/k]) € (T U {R(z[z/k])}), hence R(z[y/k]) €
(TU{R(z[z/k])}). So T is an S-equivalence system with parameters z. The theorem

now follows from Propositions 3.6 and 3.7. O

Modifying an argument used in the proof of [4, Theorem 13.2.], we get the

Theorem 3.10 Representation Theorem for protoalgebraic A-deductive systems

1. A K-deductive system S is protoalgebraic iff there is a finitary S-equivalence

system with parameters.

2. A k-deductive system S is protoalgebraic iff there is a finite S-equivalence sys-

tem with parameters.

Proof. Let A be a system of S-equivalence formulas with parameters z. Let A

be a A—algebra and let F,G € Fis(A) such that F C G. Suppose R(d) € G and
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@ = b(Q(F)"®) (recall that this means that sequences &, 5 have length p(R) and for
every ¢ < p(R), a; = b;(Q2(F))). Let us fix ¢ € A and assume that ¢ is of the form
S({(x,y,z)), for some S € K and some terms t3,...,t,s). Foreveryi=1,...,p(R),

for every k =1,...,p(S) and for all ¢ C A, we have
t(ai, a:, &) =qr) to(ai, b, ©).

By the reflexivity condition 3.1, S(t*(a;,a;,3),... ,tﬁs)(a,’,a;,é')) € F. 1t follows
that also S(t&(a, b, ), . .. ,t‘:(‘s)(a;,b,-,é')) € F C G, by compatibility of Q(F) with
F. Thus A(a;, b;,¢) C G. Now, A is a set of modus ponens formulas with parameters

z for S. Hence for every : = 1,..., p(R), if

R(ay,...,ai,biq4,...,0p) € G,

then also

R(al, el b, bi+1, . ,bp(R)) € G.

-

Since R(d@) € G, it follows that R(b) € G. We have shown that Q(F) is compatible
with G. Therefore Q(F) C Q(G). This shows that S is protoalgebraic. The reverse
implication follows from Theorem 3.9. O

We now turn to the protoalgebraicity reiativized to R.

Theorem 3.11 Let S be a K-deductive system and let R € K. Then S is R-

Proof. Let R € K and assume that S is R-protoalgebraic. Let

T:= {R([(.T, Y, Z)) € Fm}( : i‘s R({(;};’x’z))’{e Tep(R)}'
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(This set T differs from the one we used in the proof of Thm.3.9 in this that here R
is fixed and there it ranged over the set K.) First observe, that if T Fs R(t(z,y,2)),
then, by structurality of S and by the definition of T, R(#(z,y,2)) € T.

Similarly as in the proof of Theorem 3.9, we now claim, that

(2,y) € (UEV2)(T).

7

For let R(f{u,?) be an arbitrary K-term, where ¥ = v1,...,v,, is some sequence of
variables. Suppose that for some choice of elements v;(z,y,z) of Te(z,y,z), where
j = 1,...m we have that R(#(z,v(z,y,2),...,vm(z,y,2)) € T. Let 5(z,y,2) :=
f(y, vi(2,Y,2),...,vm(z,y,2)). To prove that {(z,y) € QT"'(I"’*Z)(T), we need to show
that also R(5(z,y,2)) € T. But by structurality and the assumption that
R((z,v(z,v,2),...,0m(z,y,2)) €T

we have s R(5(z,z,2)), which implies that R(5(z,y,2)) € T and finishes the proof
that (z,y) € QEE¥(T),

Now since S is R-protoalgebraic, for every k£ = 1,..., p{R), the pair (z,y) is also
in QREYE(T U {R(z[z/k]}). But R(z[z/k] € (T U {R(z[z/k]}), hence R(z[y/k] €
(T U {R(z[z/k]}). Therefore, there is some n = n(z, k) and some R-formulas gof’k =

c,o?’k(x,y,z) for j =1,...,n such that

o1(z,y,2),...,9i(z,y,2), R(z[z/k]) Fs R(z[y/k]). (3.3)

Also, by the definition of T,
Fs ‘r’.’i(zaxaz)’ (34)
Now the number p(R) is finite, so the union AF = ngp(R){tP?'k :j=1,...my}

is finite. It follows that A is a finite (R, S)-equivalence system.
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To prove that the existence of an (R, S)-equivalence system AF implies that
S is R-protoalgebraic, let F' C G be two S-filters on an algebra A. We show that
Qg(F) is -compatible with G. For let R(@) € G and assume that @ = b(Qr(F)). Let
@ € AR be arbitrary but fixed. Then ¢ is of the form R(i(z,y,z), for some sequence
of terms ¢ of length p(R). For every : = 1,...,p(R), for every £k = 1,...,p(R) and
for every sequence € of elements of A, tx(a;, a;, €) = ti(as, b, &)(Qr(F)), since Qr(F)
is a congruence. By reflexivity of Qg, R(tr(a:,q;,¢)) € F and by the compatibility
of Qr(F) with F, R(tx(a;, b;,€)) € F, for every k < p(R). Therefore AR(a;,b;,¢) C
F C G. Since R(@) € G and AT has the modus ponens property 3.2, we can prove by
induction that also R(B) € G. This shows that Qg(F) is compatible with G. Hence
Qr(F) C Or(G), which finishes the proof that S is R-protoalgebraic. O

Theorem 3.11 above gives necessary and sufficient condition for a K-deductive
system S to be protoalgebraic. We are not aware of any similar condition character-
izing the (R, k)-protoalgebraicity: a sufficient condition on (R, k)-protoalgebraicity
which can be obtained using the method of proof of Theorem 3.11 is strictly stronger

than the necessary condition obtained this way.

Theorem 3.12 Let § be a K-deductive system, let R € K and let k < p(R).

1. If § is (R, k)-protoalgebraic, then there is a finite system of (R,S)-equivalence
formulas for (R, k).

A reoooy - o~ . A« {D LY fr ™ o . - -~ . - e s -
Z. I there s a fnite system AV of { K,5)-equivalence formulas for (K, k) such

that every o € ARF) is of the form

R(tl(x,z), ey tk_l(.”I:,Z), tk(m,y, Z), tk.H(:L‘, Z), . ,tp(R)(:I:, Z), (35)

then S is (R, k)-protoalgebraic.
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Proof. To show that the existence of a finite (R,S)-equivalence system of the form
3.5. above implies that S is (R, k)-protoalgebraic, let 2 be a model of S, let F C G be
two S-filters on 2. In order to show that S is (R, k)-protoalgebraic, it suffices to show
that Q(r k) (F) is (R, k)-compatible with G . So let (a,b) € Q(ry)) and suppose that
(ClyenyChmly @y Chly- - - cp(é)) € G. Suppose that we have a finite (R, k)-equivalence
system A*) and that (a,b) € Qry). Hence also, for every ¢(z,y,z) € ARK),
(ti(a, ¢, ¢),tk(a, b, ) € Qry(F)- By (3.1),

R(tl(av 6)3 (R tk—l(av 6)7 ik(aa a, 6)7 tk-{-l(av 6), cee tp(R)(av 6)) € F
and therefore also, by (R, k)-compatibility of Qg ) with F,
R(tl(a,é'), cee tk_l(a, E), tk(a,a, E), tk+1(a,é), ceey tp(R)(a,E')) e FCQG,

using the fact that the formulas in A(®*) are of the special form. But then, by (3.2),
(€15 +5Ch1,b,Chi1,- -, Cp(R)) € GR, as desired.

For the proof of 1. let us fix R€ K and £ =1,...,p(R) and assume that S is
(R,k)-protoalgebraic. Let

T, := {R(t{z,y,2)) € Fmg : Fs R(i{z,z,2)),t € Te?®}.

Similarly as in the proof of Theorems 3.9 and 3.11 we can show that the pair
(z,y) € Qrx)(T) and by monotonicity of Qg it is also in (Q(R,k)Te(z’y’z)(T u
{R(z[z/k])})). But z[z/k] € (T U {R(z[z/k])}), hence

R(z[y/k]) € (1'U {R(z[z/k])}).

Therefore, there are some n = n(z, k) and some K-formulas ¢;(z,y,2) = 99§~R‘k)(:z:, Y,2)

for 7 =1,...,m, such that

591(1:’ Y, Z), R gl""j(:z"ﬁ Y, Z), R(Z[‘I/k]) I_S R(Z[y/k]) (36)
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Also, by the definition of T,
Fs @iz, z,2) (3.7)

and the formulas ¢;(z,y, z) are all of the form R(f) where  are sequences of terms of
length p(R). These formulas form therefore an (R,S)-equivalence system for (R, k)
with parameters z. As we mentioned above, a system which is (R, k)-protoalgebraic
for every £ < p(R) must be k-protoalgebraic, but we do not expect the converse to
be, in general, true. We would like to be able to characterize the (R,k)-protoalgebraic
K-deductive system in a manner similar to the characterization of R-protoalgebraic
K-deductive system above. So we ask the following

Open questions:

1. Is there a characterization of (R, k)-protoalgebraic K-deductive system similar
to the one given in Theorems 3.10, 3.11 for protoalgebraic and R-protoalgebraic

K-deductive systems?

2. If S is (R, k)-protoalgebraic for every £ < p(R), does it follow that S is R-

protoaigebraic?

Notice that when K has one predicate symbol which is unary, then the answer to
both questions are obviously positive. For in this case Theorems 3.10, 3.11 and 3.12
coincide. Notice also, that in all these theorems we may omit the restriction on the
equivalence systems that they involve the parameters, i.e., for example a 1-deductive
system S is protoalgebraic iff it has a finite system of equivalence formulas (without

parameters). This is the content of {4, Thm.13.2] for the special case of 1-deductive

systems.
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Corollary 3.13 ([4, Thm.13.2] for 1-deductive systems) A 1-deductive system S is

protoalgebraic iff it has a finite system of equivalence 1-formulas.

Proof. It follows from Theorem 3.10 that S is protoalgebraic iff it has a finitary
equivalence system with parameters z, where z is the sequence of variables z; of
length 1 — 1, i.e., z is the empty sequence of parameters. Hence there is a finitary
S-equivalence system without parameters. But as we already observed, in case that
K is finite, the existence of a finitary system of equivalence formulas is equivalent to
the existence of a finite system of equivalence formulas. O

The question remains, whether also for i # 1, protoalgebraic K-deductive sys-
tem must have a finite system of equivalence formulas without parameters. This
question is equivalent to the question whether the existence of a finite system of
equivalence formulas with parameters implies the existence of a finite system of
equivalence formulas without parameters. A relativized question asks if the existence
of a finite system of R -equivalence formulas with parameters implies the existence
of such formulas without parameters. (We do not consider here this question rela-
tivized to (R.k).) The following example shows that the answer to this last question
is negative, even in the simplest case that A has only one predicate, which is binary.
Since there is only one predicate in K, the same example proves that the answer to

the first question is negative.

'pe of one binary operation and let K be the
relational language consisting of one binary predicate R. Since R is the only predicate
symbol of K, the notions of R-protoalgebraic and protoalgebraic coincide as also do

the notions of R-equivalence system for S (with parameters) and of equivalence

system for S (with parameters). The result of the operation of A on terms ¢ and
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s will be written as juxtaposition. Let & be the 2-deductive system given by the

following axiom and rules:

 R(z,2) (3.8)
R(zz,yz), R(z,z) F R(y,=2) (3.9)
R(zz,yz), R(z,z) F R(y, ) (3.10)

The system consisting of one 2-formula R(zz,yz) forms an R-equivalence system
with parameter z for S. Thus by Thm. 3.11, S is R-protoalgebraic.

We claim, however, that & does not have an R- equivalence system without
parameter, i.e., that no set of 2-formulas in variables z and y forms an equivalence
system.

To see this, let A = A(z,y) be some set of pairs of terms in variables z,y and

let A := (CnsA) N Te(z,y). Note, that A is closed under rules 3.9 and 3.10.

We now claim that.
Cns(A, R(z,z)) = AU {R(z,z)} U {(t,t) : t € Te}. (3.11)

Let RHS denote the right hand side of the above equation. It is clear that RHS
is included in the left hand side and that AU {R(z, z)} is included in RHS.

It suffices to show that RHS is an § theory. It is clearly closed under the rule
3.8. We now show that it is also closed under rules 3.9 and 3.10. For the rule 3.9
suppose that R(tu,su), R(t,u) is in R. We want to show that then also R(s,u) is in
this set. This is obvious, if t = s, which is the case when tu = su as terms. Note

that (tu,su) # (z,z). So we may assume that R(lu,su) € A . In particular, the
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only variables occurring in ¢,u,s are z,y. Therefore, if R(¢,u) is contained in the
third component of RHS then it also is contained in A. It follows that R(t,u) € A
and therefore R(s,u) € A, since A is closed under rule 3.3. This verifies our claim
for 3.9. The proof for 3.10 is similar: suppose that R(tu,su), R(u,t) is in RHS. If
t =s, R(u,s) € RHS by assumption. So assume that ¢ # s. Then R(tu,su) € A and
therefore Var(¢,u,s) C {z,y}. In particular, ¢t # z and therefore R(u,t) # R(z,z). So
R(t,u) € A or t = u, so in any case R(t,u) € A. It follows that R(u,s) € A C RHS.
This verifies that S is an S-theory and therefore the equation 3.11.

Now R(y, z) is not contained in RHS and therefore is not in Cng(A, R(z, z)).

This shows that A is not a modus ponens system. Since A was an arbitrary set
of 2-formulas in variables z, y, it follows that S does not have an equivalence system

without parameter z. O

3.3 Systems of congruence K- and R-formulas

Definition 3.14 Let S be a K-deductive system. Let z be as defined at the beginning

of section 3.2. Let w be some sequence of variables, possibly infinite.

1. We say that a set A(z,y,z,W) of K-formulas has the S-replacement prop-
erty (relative to z and y), or just S-replacement property if for every term

t(z,v), where v is a sequence of variables,
Az, y,2,W) Fs A(t(z,v), 1y, v), 2, w). (3.12)

2. An S-equivalence system with parameters z A is called an S-congruence

system with parameters z and w if it has the replacement property 3.12.
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If such a system exists, then we also say that S has a congruence system

with parameters z.

3. An (R,S)-equivalence system with parameters z and w is called a (R,S)-
congruence system with parameters z and w or ¢ R-congruence sys-

tem with parameters z and w for S if it has the replacement property 3.12.

4. If for any of the above systems the sequence w is empty, we say that it is
a congruence system (S-congruence system,(R,S)-congruence system) with

parameters z.

Theorem 3.15 Let S be a K-deductive system and let 24 = (A, F') be an S-matriz.

1. Let Re K. If AR is an R-congruence system for S with parametersz and w,

then
a = b(Qr(F)) iff (AF)A(a,b,d) C F

for all sequences cfof elements of A of the length equal to the sum of lengths of

z and wW.
2. If A is a congruence system for S with parameters z and w, then
a=b(QUF)) iff A*a,b,d) C F
for all sequences d of elements of A of length equal to the sum of lengths of z

and w.

Proof. Let S and % be as in the statement of the theorem. First observe, that

if (a,b) € Q(F) then since Q(F) is a congruence, also (t(a,a,d), ¢(a,b,d)) € Q(F).
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Similarly, for R € K, {a,b) € Qr(F) implies (t(a,a,«f),t(a,b,tf)) € Qgr(F) for every
term t(z,y,z).

Now suppose that X(z,y,z) is a system of reflexive formulas with parameters
z. Then in particular, for every ¢ € X, cp(a,a,cf‘) € F. If in addition X has the
replacement property relative to an R € K, then for every ¢ € X of the form
¢ = R(t{z,y,z), we have that 5o(a,b,<i) € F, too. Now an R-congruence system AR
with parameters z has the replacement property relative to R and also every ¢ € AR
is an R-formula, so by the above argument, A®(q, b,J) C F, for every sequence of
elements d of the same length as z. An S-congruence system A with parameters z
has the replacement property with respect to every R € K. Also, for every ¢ € A, ¢
is an R-formula, for some R € K and Q(F) = Ny, g Qr(F). Hence if (¢, b) € Q(F)
and ¢ € A, then for some R € K, ¢ is an R-formula and (a,b) € Qg(F). The above
argument implies that ¢(b, a, J) € F, and whence A(a,b, J) C F, for all d.

For a set X of K-formulas define the following relation on A:
(a,b) € Oy iff AAa,b,d)C F

for all sequences d of elements of A of the same length as z.

To prove the theorem it remains to show that if AR is an R-congruence system
with parameters z and w, then Qs C Qg(F) and that if A is a S-congruence
system with parameters z and w, then @ C Q(F). In the series of lemmas 3.16~
3.20 we will show that ©ar) and ©4 are congruences on A that are, respectively,

R-compatible and compatible with F'.

Lemma 3.16 Let S be a K-deductive system and let A(z,y,z) be some set of K-

formulas with parameters z. Let % = (A, F) be an S-malriz. Then Oa is reflezive
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iff every o(z,y,2) € A is a reflezive K -formula with parameters z;

Proof. Immediate by definition. O
Lemma 3.17 Let S be a K-deductive system and let A = (A, F) be an S-matriz.

1. Suppose that R € K and let AR(x,y,z) be some set of R-formulas that has the

replacement property with respect to R. Then the relation ©(sr) is symmetric.

2. If a set of K-formulas has the replacement property for S (for every R € K),

then ©4 is symmetric.

Proof. Let (a,b) € ©ar). To show that (b,a) € O(ar), we need to show that
AR(b,a,d) C F, for all sequences of elements of A d of length of z. Let R({(z,y, Z) €

AR, We need to show that

-

R(#(b,a,d)) € F. (3.13)

-

Since AF is reflexive, we know that R(i(a,a,d)) € F. Notice that 3.13 follows by

induction from the following claim.

Claim 1 [f

- - - -

R(ti(a,a,d), ... te(a,a,d), tis1(b,a,d), ... .t r)(b,a,d)) € F then
R(t1(a,0,d), ..., tx_1(a,a,d),tx(b,a,d), ...t r)(b,a,d)) € F.
To prove the claim, we use the assumption that (a,b) € ©ar) and therefore also
(te(a,a,d), ty(b,a,d)) € O(ary.

By definition of ©(ar) we know that for every sequence € of elements of A,

A(tk(avav j‘)atk(bv a, Ci)?é') g F.
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Let € be the sequence (¢;(a,a, J), ey ti-1(a,a, J), te+1(,a, (f), s tiry(bs @, J)) The
claim follows from the modus ponens property with respect to R. This proves the
first statement of the lemma.

For the second statement, observe that if A is a S-congruence system with
parameters z and w for S, then it has the replacement property with respect to
every R € K and therefore the above proof can also be applied to show that @, is

symmetric.
Lemma 3.18 Let S be a K-deductive system and let % = (A, F) be an S-matriz.

1. Suppose that R € K and let AR(z,y,z) be some set of R-formulas that has the

replacement property with respect to R. Then the relation ©(ary is transitive.

2. If a set of K-formulas has the replacement property for S (for every R € K),

then ©4 s transitive.

Proof. Fix R € K and let X be either AR or A. Then let © be Oy , i.e., O is either
O(ary or Oa. Let (a,b),(b,f) € ©. Consider an R-formula ¢ = R(t1,...,t,R) €
O(ary, where for ¢ = 1,...,p(R), t; = ti(z,y,2). Let s(z,7) € Te. Fix two se-
quences of elements of A: ¢ of the same length as v and d of the same length as
zlengths. We claim that R(i{(s(a,?),i(f,&),d)) € F. For k = 1,...,p(R) let Let
1= t(H(a, @), 1{b, ), d) and t] := tx(i(a, &), (£, &), d). Since (b, f) € O(ary, we have,
for every k < p(R): (t}.,t}) € © and therefore, by definition of O,

A(te(H{a,8),1(b,8),d), (tx(Ha,0),1(f,2),d) C F. (3.14)
To complete proof of the claim we need to show that

R(t),...,typ) € F (3.15)
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Notice that R(t],...,t,p)) € F. Let us fix k < p(R) and suppose that

R(ty,- sty tips, - > t(r)) € F. (3.16)

Since X is R-compatible with F it follows that

R{th,... thy, thtl) € F.

Proceeding by induction we get that R(t],...,t,g) € F), i.e., the claim is true. Now

if X

= AR, it follows that AR(a, f,d) C F, i.e., (a, f) € Oar) and the proof of 1. is

finished.

If X = A, notice the above argument is independent of R and therefore in-

dependent of the choice of ¢ € X, i.e., for every ¢ € A, (a,b), (b, f) € © implies
o(a, f,d) € F, all d. Hence {a, f) € ©.

R(#{(s(a, &), 1(b,8), d)R(i{s(a, &), {{ £, ), d)).

Lemma 3.19 Let S be a K-deductive system and let %4 = (A, F) be an S-matriz.

LS
.

15

d let AR(z.y.2) be some set of R-formulas thal has the
modus ponens property with parameters with respect to R. Then the relation

O(ar) is compatible with F.

If a set of K-formulas has the replacement property for S (for every R € K),
then ©a ts compatible with F'.

Proof. Immediate from definition of the modus ponens and compatibility properties.

]

Lemma 3.20 Let S be a K-deductive system and let 4 = (A, F) bec an S-matriz.



99

1. Suppose that R € K and let AR(z,y,2) be some set of reflezive R-formulas
that has the replacement property with respect to R. Then the relation O zry is

a congruence.

2. If a set of reflexive K-formulas has the replacement property for S (for every

R € K), then ©4 is a congruence.

Proof. From the previous lemmas it follows that ©x and @(ar) are equivalence
relations. The fact that they are congruences now follows immediately from the
replacement property. O

The theorem follows from lemmas 3.19 and 3.20. O

We will now apply Theorem 3.15 to protoalgebraic K-deductive systems.

Lemma 3.21 Let S be a K-deductive system and let R € K. Assume that A(z,y,2z)
is a set of K-formulas. Define
Az, y,zw) =) U Az, v)t(y,v),2),
v t(z. Vlele
where the first union is indexed by the finite sequences of variables v and w is the

infinite sequence of these variables. Then
1. If A is an S-equivalence system, then A is an S-congruence system;

Cliie g

2. If A is an R-equivalence system for S, then A is

n
= ¢ L ey Wiy
S.

Proof. By definition, A has the replacement property. If A is a set of reflexive

formulas, then so is A and if A has the modus ponens property (relative to R ), then
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since A C A, it follows that

~

A(I, Y, Z), R(Z[.’L'/k]) [_S R(Z[y/k],

for every k£ < p(R). Therefore A has the modus ponens property in this case. Thus
if A is an S-equivalence system with parameters 2z, then so is A, and if A is an

(R,S)-equivalence system with parameters z, then so is A. The lemma follows. O

Theorem 3.22 (see Thm. 13.5 in[4]) Let S be a protoalgebraic K -deductive system
with a system A(z,y,2) of equivalence formulas with parameters z. Then for every

A-algebra A, all a,b € A, and every F € Fig(A)

a=b(QUF)) iff A(sP(q,d),s2(b,3),d) C F (3.17)

for all s € U Te(z,9),C A, and all sequences d

Yy
of elements of A of the same length as z.

f. By Lemma 3.21 and Theorem 3.15. O
Theorem 3.9 and Lemma 3.21 imply that every protoalgebraic K-deductive sys-
tem has a S-congruence system with parameters z and w. On the other hand, if §

has a congruence system with parameters z, then S is protoalgebraic. The following

theorem should replace [4, Theorem 13.10.].

Theorem 3.23 1. A K-deductive system ts protoalgebraic iff it has a system of

congruence formulas with parameters z and w.

2. A K-deductive system s R-protoalgebraic iff it has an R-congruence system

with parameters z and w.
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Proof. That the condition is necessary follows from Theorem 3.9 and lemma 3.21.

By Proposition 3.6 and Theorem 3.10 we need to show that the existence of a S-
congruence system with parameters z and w implies the existence of an equivalence
system with parameters z (but without parameters w) and that the existence of
an R-equivalence system with parameters z and w implies the existence of an R-
equivalence system with parameters z.

Assume that A(z,y,z,9) is a congruence system with parameters z and w. Take
A in 3.15 to be the term algebra over denumerably many generators, including z, y, z.
Let T be a theory generated by R((z1,...,2k-1,%, Zk41,- - - » 25(R)) together with all

substitution instances of of congruence formulas of the form ¢(z,y,z, 1), with © € A

fe Tel ie.,
T = Co({R(z[z/k]))} U {¢(z,y,2,1) : ¢ € A, T € Tel})

The variables z; may occur in the terms t; of . Since Q(T) is compatible with 7" and

(z,y) € QT), we have that R(z[y/k]) € T. This means that
R(z[z/k]), Alz,y,2,1) ks R(zly/k)).

Furthermore, since S is finitary, there exists a finite set I' C A(z,y, z, t-ﬁ such that

R(z[z/k])T Fs R(z[y/k]). Let A'(z,y,z) be the result of substituting z in T" for every

variable different from «,y,z. Then, since S is structural, we have
R(z{[z/k])A'(z,y,2) ks R(z[y/k])

Clearly, Fs A'(z,z,2). Thus A'(z,y,2) is a finite equivalence system with parameter

z for S, hence § is protoalgebraic. O

The proof of the second statement is similar. O
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In section 3.3 we have characterized the protoalgebraic K-deductive systems by
the existence of a S-congruence system with parameters z and w. This system
in general is infinite. In the next section we turn to the special cases when the
congruence system can be found finite and also to the cases where one of the two

sets of parameters may be omitted.

3.4 Congruential and related K-deductive systems

In addition to the concepts of a congruential and weakly congruential K-de-
ductive systems introduced (for k-deductive system) in [4, Definition], we consider
(weakly) congruential systems with parameters z. It turns out that the concepts
with and without parameters z coincide exactly for these K-deductive systems for
which the class of reduced models is closed under the operator S. We verify, or if
necessary correct, [4, 13.6-13.13] for K-deductive systems. Some of these results can
be relativized to a predicate symbol R. This research is still in progress.

A system of congruence formulas with parameters z is a system A of congruence
formuias with parameters z and w, where w is the empty string. A system of con-
gruence formulas is a system A of congruence formulas with parameters z, where z
is the empty string. We also say that A is a system of congruence formulas without

any parameters when A is a system of congruence formulas.

1. S is weakly congruential with parameters z if it has, possibly infinite,

system of congruence formulas with parameters z.
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S is congruential with parameters z if it has a finite system of congruence

formulas with parameters z.

S is weakly congruential if it has, possibly infinite, system of congruence

formulas.

4. 8§ is congruential if it has a finite system of congruence formulas.

Corollary 3.25 Let S be a K-deductive system and 2 € ModS.

1.

o

If § is weakly congruential with parameters z, whith an S-congruence system

with parameters z A(z,y,z), then U is reduced iff A satisfies

V(A A(z,y,2))] = z = y. (3.18)
Notice that the conjunction in the antecedent is infinite.

If § is weakly congruential, where A(z,y) is a congruence system, then 2 is

reduced iff 2 satisfies
(AA(z,y,2)) = z =~ y. (3.19)

Again, the conjunction in the antecedent is infinite.
If S is congruential with parameters z, where
pome N — (A (o o o .
A(“”.‘/a ") = 1‘/—\‘1(“"3’ "‘)1 s 7“71(4‘" Y, Z)}

is a finite S-congruence system with parameters z, then A is reduced iff %

satisfies

Va(Ai(z,y,2) A--- A Ap(z,y,2)] w2~ y. (3.20)
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4. If § is congruential, where A(z,y) = {Ai(z,y),-..,An(z,y)} is a finite con-

gruence system, then 2 is reduced iff it satisfies the universal Horn sentence

Ay(z,y) A A Dz, y) m T =Y.

Proof. By Theorem 3.15. O
Part 4. of Corollary 3.25 has first been stated in [4, Corollary 13.6 (i)] for

k-deductive systems.
Corollary 3.26 IfS is a K-deductive system then

1. If S is weakly congruential then Mod™S is closed under the operator S, of

forming submatrices.
2. If § is congruential with parameters z, then Mod™S is closed filtered products.

3. If S is congruential then Mod™S is closed under the formation of submatrices

and filtered products.

Proof. By Corollary 3.25. O
Parts 1 and 3 of Corollary 3.26 have first been stated in [4, Corollary 13.6 (i)] for
k-deductive systems.. An example of a K-deductive system S which has congruence

formulas with z but Mod™S is not closed under S will be given below ( Example 3.2).

Theorem 3.27 ([4, Theorem 13.7]) Let S be a K-deductive system with a finite
system of congruence formulas without parameters. Then for all K C Mod*S, the

reduced universal Horn class generated by K is ISPPyK.

Proof. By Corollaries 2.56 and 3.26. O
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Corollary 3.28 ([4, Corollary 13.8]) If S is a K-deductive system with a finite sys-
tem of congruence formulas without parameters, then the class of underlying algebras
of Mod*S forms a quasivariety. IfC is a class of reduced models then the class of the
underlying algebras of the reduced universal Horn class generated by C coincides with

the quasivariety generated by the underlying algebras of the elements of C.

Proof. By Theorem 3.27. O

The following theorem characterizes semantically models of protoalgebraic as
well as weakly congruential and congruential K-deductive systems (i.e., without 2).
The theorem is due to Blok and Pigozzi, {4, Theorem 13.2.]. They state this theorem
for k-deductive systems, but the same proof works for arbitrary K-deductive systems.
It is an open question, how to characterize the classes corresponding to (ii) and (iii)
below, but with z. It will be shown below (Example 3.2), that the class of all models

of a congruential with z system does not need to be closed under S.

Theorem 3.29 Let H = Mod™S, for some K -deductive system S.
o S is protoalgebraic iff it is closed under Psp.
o S is a weakly congruential iff H is closed under S and P.

o S is a congruential iff H is closed under S,P and Py.

Theorem 3.30 1. If S has a system of congruence formulas with parameters z
and Mod™S is closed under S, then S has a system of congruence formulas

without z.
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2. If S has a finite system of congruence formulas with parameters z and Mod*S

is closed under S, then S has a finite system of congruence formulas without z.

Proof. Let S be a K-deductive system and let A(z,y,2z) be a system of congruence

formulas for S. Let

X := {ga(:z:,y,t_) 10 € AT € Te(z,y)}

and let T be the S-filter generated by X in Te(z,y,z). Let %8 be the reduced matrix
(Te(z,y,2), T)* € Mod™S. Thus

B = (Te(z,y,2)/QF, F/QF),

where Q denotes QT=¥:3) Let A := {t/QUT) :t € Te(z,y)} and let T := {t/QT) :
t € TNTe(z,y)},i.e., T = (TNTe(z,y))/QUT). Note that T’ = (T'NTe(z,y))/UT).
Since Q(T) is compatible with T', we can conclude that 77 = T/Q(T)NTe(z,y)/UT).
The inclusion from left to right is obvious and for the inclusion from right to the left
let t € Te(z,y) and s € T be such that t/QT) = s/UT). Hence (t,s) € QT)
and since Q(T') is compatible with T, we have that t € T. Hence t € T N Te(z,y)
and t/QT) € (T N Te(z,y))/UT) = T'. It follows that the matrix % := (A, T') is
a submatrix of 8. By assumption that Mod*S is closed under S we conclude that
2 is reduced. Let z* = z/QUT),y* = y/Q(T). We claim that (z=,y*) € QA(T"). In
view of Thm. 3.15. it suffices to show that for every sequence /Q(T') of elements of
Te(z,y)/QUT) we have A(z,y,1)/QT) C T, i.e., for every sequence t of terms in
z,y, A(z,y,t) € T. But this is true by definition of T. So (z*,3~) € T’) and since
2 is reduced, z* = y~ in 2. Therefore also ™ = y™ in B. In other words, (z,y) € QT)

and hence A(z,y,z) € T in Te(z,y,2), by Thm. 3.15. Hence X +s A(z,y,2). By
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assumption, X C Te(z,y) and also X is reflexive, has modus ponens and replacement
property. Thus it is a S-congruence system without parameters z. If A(z,y,2z) is
finite, then by the finitary character of S, there is a finite subset A’(z,y) C X such

that A'(z,y) ks A(z,y,2). This subset is a finite congruence system for S. O

Corollary 3.31 to the proof of Theorem 3.30.

Let S be weakly congruential with parametersz. Let A,B,T and T’ be as in the above
proof. If Q3(T) N A% = QA(T") then S is weakly congruential.

Proof. As in the proof of Theorem 3.30 we prove that (z*,y*) € Q(T”). By assump-
tion, {(z*,y*) € Q3(T) N A% Since B is reduced, Q®(T) is the identity relation on
B. Hence z* = y™ and by the argument used in the proof of Theorem 3.30, we prove

that § has a congruence system (without z). O
Corollary 3.32 If Mod*S is closed under S, then
1. If § is weakly congruential with z, then S is weakly congruential.

2. If S is congruential with z, then § is congruential.

Proof. By Theorem 3.30.
Corollary 3.33 Let S be a K-deductive system.
1. If § is weakly congruential with parameters z, then the following are equivalent:

(a) S is weakly congruential

(b) Mod™S is closed under S
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(c) Let B € ModS and let A C %B. Then
Q3(F)NA? = Q*(F N A) (3.21)

2. If § is congruential with parameters z, then the following are equivalent:

(a) S is congruential
(b) Mod™S is closed under S

(¢) Let B € ModS and let 24 C B. Then
QF(F)n A* = Q¥(F N A) (3.22)

Proof. We will prove 1 and 2 simultaneously. The implication from (a) to (b) follows
from Corollary 3.26 and the implication from (b) to (a) from Theorem 3.30. From
the corollary 3.31 to the proof of 3.30 the implication (c) to (a) follows. Finally, for
the proof of (a) implies (¢) suppose that S is weakly congruential or congruential
with the congruence system A(z,y), and A < B, F € Fis(B). Let a,b € A. Then
(a,b) € QA(FNA)iff A(a.b) C FNA. Sincea,b € A, thisis equivalent to A(a,b) C F
and therefore to (a,b) € QB(F)N F. O

Recall that an operator O between two lattices is continuous, if it preserves the

unions of directed sets (Definition 0.48).

Theorem 3.34 (compare with [4, Theorem 13.13 (i)]) Let S be K -deductive system.
If for every algebra A, the Leitbniz operator §) : Fis{A) — Co(A) is continuous, then

S is congruential with parameters z.

Proof. Since Q is continuous, it also is monotone. Thus § is protoalgebraic and by

Theorem refpral implies delta we have a finite equivalence system A(z,y,z). We
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use the convention here that 5" denotes a sequence of terms of the same length as

z. Let here, exceptionally, Te := Te(z,y,z) and let Te' := Te(z,y,v,2). For all

S C Te,U C Te' define

Xy = {p(t(z/v),t(y/v),5) : ¢ € A(z,y,2),t(v,z,y,2) € U,5C S}.
Notice that X(sy) C Te. Let, for every pair S, U,
T(S,U) = CnsX(s’U).

Then Tirerey = U{Tisuy : S € Te,U C T€,S,U finite}. By continuity,
AT rerery) = U{QT(sv) : S, U finite}. Since A(t(x/v),t(y/v),8) C Tre1er), for all
t € Te(v,z,y,2), all § C Te, we conclude, by Theorem 3.22, that (z,y) € QT(1¢ 1¢)-
So (z,y) € YT (syy), for some finite S,U. Therefore for all ¢ € Te' and all 5§ C
Te, (t(z/v),t(y/v)) € Q(sv) and A(t(z/z),t(y/2)),35) C T(syv). Hence Xpo1e C
Tisyy € Trere- Therefore Tisyy = T(ere) and X(sp) Fs X(1e'1e)- In particular,

X(s,vy has the replacement property. Let =(z,y,2) : X(sy). Then = is finite, reflex-
ive and = ks A(z,y,2), and therefore = has the modus ponens property. Hence = is
a congruence s

The converse to Thm. 3.34 is, in general, false (Example 3.2 and Theorem 3.43

below). If, however, the system S is congruential without any parameters, then the

converse, proved for k-deductive systems in [4, Theorem 13.13 (i)], is true.

Theorem 3.35 compare with [4, Theorem 13.13(i), necessity] If a K -deductive sys-

tem is congruential then the Leibniz operator ) : Fis(A) — Co(A) is conlinuous for

every algebra A.

It 1s not hard to see that proofs very similar to those of Theorems 3.34 and 3.35

can be used to prove a relativized version of this theorem:
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Theorem 3.36 If for every A the operator Qg : Fis(A) — Co(A) is continuous,
then S is R-congruential without parameter. If § is R-congruential without parame-

ters, then the operator Qg is continuous.

Theorem 3.37 If for every algebra A the Leibniz operator Q) : Fig(A) — Co(A) is

monotone and for every filter F on A and a subalgebra B of A,
Q(F|B) = Q(F)n B?,
then § is weakly congruential without any parameters.

Proof. Since € is monotonic, S is protoalgebraic and therefore there exists an infi-
nite set of congruence formulas with arbitrary parameters. Let A(z,y,z,Vv) be such
a set. Let A be the term algebra Te and let B be its subalgebra generated by = and
y. Let F be the S-filter on A generated by the union of all sets A(z,y,t,s), where
t and s range over all sequences of terms in variables z,y, of the same length that
z and Vv respectively. Let z be among the variables generating A and let G be the
restriction of F to B. Then Q(G) = Q(F) N B2, by assumption. By definition of
F, the pair (z,y) is in QB(G). So (z,y) € QA(F). Therefore A(z,y,z) C F, which
means that Uy s UA(z,y,t,5) Fs 6(z,y,z). But this means that Uy s UA(z, y,t,s) is

a congruence system without parameters. This finishes the proof. O

Corollary 3.38 A K-deductive system S is weakly congruential iff it is protoalge-

braic and for every algebra A, every filter F' on A and a subalgebra B of A,

QB(F|B) = OA(F)n B~
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Proof. If S is weakly congruential, then it has a congruence system A(z,y). This
is also an equivalence system, so 2 is monotonic. Let B < A and let F be an
S-filter on A. Then for any elements @ and b of B, we have that {(a,b) € QB(F|B)
iff A(a,b) C F|B iff A(a,b) C F iff (a,b) € QA(F) iff (a,b) € Q4(F) N B2 Thus
QB(F|B) = Q*(F) N B2. The other direction is the content of Thm. 3.37. O

In the previous subsection we gave an example of a protoalgebraic 2-deductive
system S such that every equivalence systems for & must depend on parameter z.
Below we present an extension 7 of this system by rules which has a finite congruence
system with parameter z but does not have a congruence system, finite nor infinite,
without parameter. In fact, it does not even have an equivalence system without

parameter. Thus this single example supercedes Example 3.1.

Example 3.2 Let 7 be the 2-deductive system over A determined by the rules 3.8-
3.10 and the following additional rules:

R(zz,yz) F R((zu)z, (yu)z) (3.23)

R(zz,yz) b R((uz)z, (uy)z) (3.24)

Theorem 3.39 7 is congruential with parametersz but does not have an equivalence

system without parameters z. In particular, T is not congruential.

Proof. The system consisting of one R-formula R(zz,yz) forms a congruence system

with parameter z for 7. We now show, that no set of R-formulas in variables z,y
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only, can form an equivalence system. This will prove the theorem. To see this, let
A = A(z,y) be some set of R-formulas all of whose variables are among z,y. Let

A = A(z,y) := Cnzr(A) N (Te(z,y))% For the proof by contradiction, suppose that
A(-’L‘, y)7 R(IL’, Z) |_T R(yv 3)'

Then also

A(l‘, y)v R($, z) Fr R(y, 2).

Let 7' be the system based by the axiom 3.8 and the rules 3.23 and 3.24. Notice that
the rules 3.23 and 3.24 “preserve” variables, i.e., if X k7 R(¢,s), for some set X of
K-formulas and some terms t, s, then Var(X) C Var(t,s). Therefore R(y,z) cannot
be derived from A(z,y) U R(z,z) just by means of T, i.e., every proof of R(y,z)
from .f&(x, y)U R(z, z) in the system 7 must contain an application of at least one of
the rules 3.9 and 3.10. Let ' be the shortest proof of R(y,z) from [&(:c,y), R(z,z).
Consider the first application of one of the rules 3.9, 3.10. One of the derivations

below is such an application

{ \
2 N 3.2
R(s,r) (3.25)
or the derivation
R(tr,sr), R(r,t)
3.2
R(r, s) ’ (3.26)

for some terms t,7, s such that A(z,y), R(z, 2) F7v R(tr, sr), R(t, s).

X7 4 4l AY

I Var{i,r,s) C {«,y}, then R{s,r), R(r,s) € A and ihe conciusion of the rule
R(s,r), or R(r,s)isin A. But this contradicts the assumption that the proof I is the
shortest proof of R(y, z) from A and R(z, z). So we assume that Var(t,r,s) € {z,y}.

We now use the following two lemmas.
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Lemma 3.40 For every set E of K-formulas,

Cnr(E U {R(z,z)}) = Cor(E) U {R(z,z2)}

Lemma 3.41 For every set E of K-formulas and a K-formula ¢, ¢ € Cor(FE) iff
o= R(T(t,...,tn, ), T(t1,...,tn,8)T)
for some T, ty,...,t,,7,t,5 € Te and R(tr,sr) € E}.
Assume Lemmas 3.40 and 3.41. By Lemma 3.40 A(:c, y) b7 R(tv, sv). By Lemma 3.41
Var(v) € {z,y) (3.27)

and Var(t) U {z,y} = Var(s) U {z,y}. Therefore, by assumption that Var(¢,r,s) €
{z,y}, we have that

Var(t) € {z,y}. (3.28)

Therefore, R(t,r) is not the premiss R(z,z). Also, E(r,t) cannot be R(z,z), for if
= z and 7 = z, then we have that A F.p R(zz,sz), which by lemma 3.41 implies
that R(z,s) € A, a contradiction. Hence by Lemma 3.41, if 3.25 was applied, then
R(t,r) is derivable from A, and if 3.26 was applied, then R(r,t) is derivable from A.
By lemma 3.41, Var(t) € Var(r) U {z,y}. But by 3.27, this last set is just {z,y},
which contradicts 3.28. This finishes the proof that A does not have the modus

ponens property relative to R and the proof of the theorem.
It remains to prove the lemmas. For Lemma 3.40, notice that R(z,z) cannot be

a premiss of a substitution instance of any of the rules that are basis for S.
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For lemma 3.41, it is obvious, that the left-hand side of the equality is included

in the right-hand side. Clearly, the right-hand-side is closed under Cnz:. Thus the

two sides must be equal. O

Corollary 3.42 The class Mod*T of reduced models of the system T defined in
Ezample 3.2 is not closed under S.

Proof. By Theorem 3.30.
Theorem 3.43 The operator Q1 is not continuous.

Proof.

For every finite subset S of Te(z,y) define X(syy := {(zt,yt) : t € S}. Let Fs
be the Q-filter on Te(z,y) generated by Xs. We claim that

Fs = {(s,s):s € Te(z,y)}U

{{t[z/=])s,t[y/z]s) : s € S,t € Te(z,y, z) where z occurs in ¢ only once }.

We give now the proof of the inclusion from left to right. The other inclusion is
immediate.

Claim Suppose that (r,tq) € Fs. Then either r = tq or |¢| < maz{|s|: s € S}.
Proof of Claim. If (r,tq) € Fs, then there must be a 7-derivation of (r,tq) using
axioms X and rules of 7. If the last rule used in this derivation was (3.8), then r = tg
and OK. If the last rule was (3.23) or (3.24) then also OK, by the induction hypothesis
that for all the R-formulas with shorter derivations the claim holds. So suppose that
the last rule used was (3.9). Then there are some R-terms R{u(tq),r(tq)), R(u,tq)

for which the claim holds. Thus cither u(tgq) = r(¢¢), in which case u = r and we
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are done since (r,tq) = (u,tq) satisfies the claim by the induction hypothesis, or else
ltq] < maz{|s|: s € S}, which implies that also |¢| < maz{|s|: s € S}. The case
that the lat rule used was (3.10) is similar. The claim is proved.

It follows from the claim, that if s is the member of S of maximal length, then

(z(sz),y(s2)) € Fs.

Since {zz,yz) is a congruence system with z for 7, by Thm 3.15 we have that
(z,y) € Q(Fs), for any finite S. But by the same theorem, (z,y) € QU{Fs :
S C Te(z,y) finite}), hence QU{Fs : S C Te(z,y) finite}) # U{Q(Fs) : S C

Te(z,y) finite }. But the family of all Fs is directed, hence €2 is not continuous. O

3.5 Matrix homomorphisms and quotient matrices of protoalgebraic

K-deductive systems

Some of the results of Chapter 2 concerning protoalgebraic K-deductive systems,
can now be proved as corollaries to the representation theorem, Theorem 3.10. For

example, let us reprove the following theorem.

Theorem 3.44 (Theorem 2.66) Let A and B be models of protoalgebraic K -deductive
system S. Then every surjective matriz homomorphism h : 2 — B induces a matriz
homomorphism h™ : A" — B7, of the respeciive reduciions, defined by h*(a/(Dg)) =

ha/QDsg).

Proof. One way to prove the theorem is by a modification of the proof in [4]. We can

also use Theorems 3.15 and 3.23 as follows. We need to show that A* is well defined.
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Let A(z,y,2z,w) be an S-congruence system with parameters z and w that exists
by Theorem 3.23. By theorem 3.15 If a/Q(Dq) = b/Q(Da), then A(a,b,F) C Da,
for all sequences - of elements of A of length same as the sum of lengths of z and
w. Let ¢ be a sequence of elements of B of length equal to the sum of lengths
of w and z. Since h is surjective, ¢ = h(F), for some FC A. By assumption,
A(a,b,F) C Dy, hence A(ha, hd, &) C (Dq) C Dg. Since ¢ was arbitrary, this proves
that ha/Q(Dq) = hb/Q(Dg) and A* is well defined. O

3.6 Summary

In spite of the gap in the proof of Theorem 13.2, most of the results of [4, Section
13] remain true. By definition, Corollary 13.6 of [4] is true (Corollary 3.25 part 4 and
Corollary 3.26 part 3, here) and as a consequence, Theorem 13.7 and Corollary 13.8
are also true. Although the proof of Theorem 13.10 contains a gap, the result is true
and demonstrated here as Theorem 3.23(1.). Theorems 13.12 and 13.13 (ii) are also
true. Theorem 13.15 will be proved in Chapter 5.

We do not know if Theorem 13.13 (i) is true. Partial results are our I'heo-
rems 3.34 and 3.35. The two results of [4, Section 13] require modification: 13.2, and
13.5. However, due to the new characterization of protoalgebraicity involving param-
eters z, the discussion of [4, section 13] should be exteded to cover also the classes
defined by the congruence systems with parameters z. Some results are presented
here, but we still do not have a full semantical characterization of systems that are
congruential or weakly congruential with parametrs z. We only know that a sufficient
and necessary condition for such systems to be congruential (weakly congruential) is

the closure of the class of reduced models under the operator S. Similarly, we do not
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know if the characterization of congruential systems as those for which the Leibniz
operator is continous, Theorem 13.13 (i), is correct. We only know that the continu-
ity is a necessary condition, and that it is sufficient for a system to be congruential
with parameters z.

We have also relativized some results of [4, section 13 ] to the predicate R and
partially to (R, k). It will be interesting to relativize other results of this chapter.

The results presented in Chapter 3 will be used in Chapter 4 to protoalgebraic
Gentzen systems and in Chapter 2 to study the semantics of protoalgebraic K-deduc-
tive systems. Besides protoalgebraic and congruential K-deductive systems, another
interesting class is the class of so-called algebraizable K-deductive system. A K-
deductive system is algebraizable iff the Leibniz operator { is one-one and continuous.

We discuss the algebraizable K-deductive systems in Chapter 5.
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CHAPTER 4. PROTOALGEBRAIC GENTZEN SYSTEMS

4.1 Introduction

We discuss the consequences of the representation theorem, Theorem 3.10, for
protoalgebraic Gentzen systems. Following [50, 49, 41], Gentzen systems are for-
malized as w-deductive systems. Theorem 3.10 implies that a Gentzen system G
is protoalgebraic iff there is a finitary (but possibly infinite) G-equivalence system
with parameters z. It is an easy observation that for all Gentzen systems that have
a so-called (CUT) rule (page 121), a finite equivalence system can be found, but
the converse is not true. We discuss the connection between the (CUT) rule and
protoalgebraicity. In section 4.5 we consider a mild condition guaranteeing that a
protoaigebraic Gentzen system has a finite equivalence system with parameters z.
Let us mention that another way of explaining why the equivalence systems are fi-
nite for the Gentzen system known from the literature, leads through a different

formalization of a Gentzen system that will be explained in a separate work.

4.2 Gentzen-systems as w-deductive systems

We formalize here a Gentzen system as an w-deductive system. The basic notion
is that of a sequent, which here is identified with an w-term (Chapter 2, page 37).

Recall that for a given algebraic language A, w-formulas can be identified with (A-
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)sequents, i.e., expressions of the form ¢,,...,t, — ¢, where ¢1,...,t,,t are terms of a
given language A. A more general definition of a sequent was given in 2.7. Although
it is possibie to carry over the discussion presented here to this more general context,
as well as to the so-called sequents of type (a, 3) considered in [50], we will restrict
ourselves here to the sequents understood as w-formulas.

For an algebraic language A let Seqy, = Seq be the set off all A-sequents. An

w-deductive system will be called here also a Gentzen system. We now restate Defi-

nition 2.20.

Definition 4.1 A Gentzen system s a pair (A,Cn), where A is an algebraic
language and Cn : P,(Seq) — Seq is an algebraic and structural closure operator,

i.e., Cn satisfies conditions (2.1)-(2.5) for all subsets X,Y of the set Seq and all

substitutions o.

The rules of a Gentzen system take the form:

S1y-.-,5,
— g
where 5, ...,5,,5 are sequents.

We say that a sequent S is derivable in a Gentzen system G if S € Cng(D).

It is often convenient, see Example 4.1 below, to present rules of a Gentzen sys-
tem by so-called schemata of rules, called also rule-schemata. These schemata contain
meta-variables I, ® ranging over finite sequences of terms. An w-rule is a special case
of a rule-schema, namely a schema with no meta-variables. If, however, there is at
least one meta-variable in a rule-schema., then this rule represents an infinite number
of w-rules. The notion of a schema of rules can be formalized as follows. Suppose

that in addition to the set of (first-order) variables Var = {z,y,z,21,91,21,22,...},
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which we here also denote by Var;, we have a set Var, := {I',A,E,...} of second-
order variables. A schema of sequents or sequent-schema is an expression of the
form Xi,..., X, — X, where Xj,..., X, X € Te(Var;) U Var,. Let S5,...,5,,5 be
schemata of sequents. Then the expression §1,_§,_5n is called a schema of rulesor a
rule-schema. A second-order substitution is a pair of functions f = (fi, f2) such that
f1 is a substitution (i.e., a homomorphism on Te(Var;)) and f, : Var, — P, (Te).
For X € Te(Vary) U Vary, f(X) = fi(X), if X € Te(Vary) and f(X) = fo(X), if

X € Var,. For a sequent-schema S = X;,..., X, — X, f(S) = f(X1),..., f(X,) —
S1y.e e,

Sn
—S_a f(?”) =

Gentzen system G we say that a rule-schema r is valid in G or is a rule-schema of G

f(X), and for a rule-schema r = . Now for a
iff for every second-order substitution f = (f1, f2), the w-rule f(r) is a rule of G. An
instance of a rule-schema r is a rule f(r), where f is a second-order substitution. A
Gentzen system is based by a set B of rule-schemata if it is based by the set of all

second-order substituiions of rules from B.

Exampie 4.1 (based on {33, pages 9-11]

o schamaza of rmieg
ng schema of rules
['—z ' -z
Weakening W W
eakening I‘1_\3:_)2( ) F*zvi\E T)
. 2= z—(z
Contraction : (C) Yy vy (Cr)
- I‘z(—I)-w: ® Tz—(>xV§/
'y Ty Y, —z - —~zV yV: Vu -
Exchange EX EX
© F:y’x7¢""’2( ) @—va(:\/y)Vu( 1')
- lzf—y;®—-=z
(CUT) S
9, —y
— introducti 2’ — =z - I'-:z, Az—> D 1
introduction —_—
F'—z=:z N Az=>z—D
/\t d t- r,:c—u: P,m—»z /\1) P"")Z @—)u(/\)
introduction , —_—
' I‘x/‘f’y—u: FyAnz — =z [oéd—zAu g
. . =2z Oy — 2z -z F'—=z
V introduction \ \ Vr
Ié,zvy —=z (V1) I'—-zvu I‘—»qu( )
. . F'—uv: Iz -z
= introduction — ()

I'-u—: I‘—>-ﬂ:cVz(ﬂr)
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The rules (W), (C), (EX), (CUT) will be called structural and the remaining
rules are called logical. Because each of the rules in the above example is a schema
of rules in which the second-order variables actually appear, each of them represents

an infinite set of w-rules. For example, (W) represents the set of rules of the form

tl,...,tn—)t

Syt1yeeytn =t

with ¢,¢; ranging over terms and n ranging over natural numbers. Since we are
assuming structurality, the meta-variables ranging over terms can be replaced by
elements of the set Var of all first-order variables, so (W) can be replaced by the

infinite number of rules

TiyeeeyTy = T

9
Y5Z15-2-93Zn 2 T

one for each n € N.

Example 4.2 We list some Gentzen systems, known from the literature, that can

be based by sets of rules listed in the previous example.

For the purpose of this example we will say that a Gentzen system G aziomatizes
a deductive system & if for every t € Te, t is a tautology of S iff the sequent — ¢
is derivable in G. Thus for example we say that a Gentzen system G axiomatizes
the deductive system C PC of classical propositional logic iff, for every term ¢ in the

language {=>,A,V}, t is a tautology of C PC iff the sequent — ¢ is derivable in G.

(LKp) The propositional fragment of the system (LK) ([53]) that axiomatizes C PC
is based by all the rules listed in Example 4.1. We also denote this system here,

exceptionally, by (LK).
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(LJ) If we add to the language the constant L, remove the rules (Cr) and (EXr),
and replace the rules (Wr), (-!), (—r) by the following rules

-4
-z
N —u
N ey

(Wr’)

ez— 1
—1’ ——,
(r) r-—)—l;z,’

respectively, then the Gentzen system based by the resulting rules is called (LJ)

and it axiomatizes the deductive system I PC of the propositional fragment of

intuitionistic logic ([53]).

If S is some subset of connectives {V,A,=>,—}, and we consider a Gentzen system
based by all the structural rules listed in Example 4.1 and exactly these of the logical
rules in Example 4.1 that involve the connectives of S, then this Gentzen system
axiomatizes the so-called S-fragment of the classical logic. Similarly, we get a Gentzen
system axiomatizing the S-fragment of intuitionistic logic by considering all structural
rules of (LJ)} and all and only these logical rules of (LJ) that involve the connectives
from S. For example, if we consider only S = {=}, then we get the following Gentzen

system that axiomatizes the implicational fragment of I PC.

(INT) The Gentzen system (INT) is based by the following rules: (W), (Wr’), (EX),
(C), (CUT), (= r) and (= 1); and equivalently, by (W), (EX), (C), (CUT), (=
r) and (= 1). It corresponds to the implicational fragment of the intuitionistic

logic.

(BCK) Removing from (INT) the rule (C), we get the Gentzen system called (BCK).

It axiomatizes the so-called (BCK)-logic, defined for example in [64]. The
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system itself is due to Y. Komori, see [39].

(BCK+A) is the Gentzen system obtained from (BCK) by addition of (Ar) and (A),
([38]).-

We also consider Gentzen systems resulting from the systems above by removing
the (CUT) rule. These are denoted by (LK\CUT), (LJ\CUT), (BCK\CUT) and
((BCK+A)\CUT), respectively.

Two Gentzen systems G, and G, are sequent-derivability equivalent if a sequent
S is derivable in G, iff it is derivable in G, i.e., if G; and G; axiomatize the same
deductive system.

Usually, a logician working with a concrete Gentzen system G is interested in its
power to derive sequents. Our approach here is different: we look at the deductive
power of a Gentzen system, i.e., at the set of derived rules of G. We say that two
Gentzen systems G, and G, are equivalent iff a (Gentzen-) rule r is a derived rule
of G, iff it is a derived rule of G,. As is easy to predict, and as we will below see
{Example 3.2). two Gentzen systems that are sequent-derivability equivalent, do not
need be equivalent. The next Theorem, says that each of (LK), (LJ), (INT), (BCK)
is sequent-derivability equivalent to a Gentzen system without (CUT). This contrasts

with Corollary 4.17 below.

Theorem 4.2 ([53] for (LK) and (LJ), [37] for (BCK) and (BCK+A)) Let G be
one of (LK), (LJ), (INT), (BCK), (BCK+A\)} Gentzen system. Then a sequent S is
derivable in G iff S is derivable in G\ (CUT).

O
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4.3 Semantics of Gentzen systems and the Leibniz operator. A review.

We apply here definitions from Chapter 2 to the case of an w-deductive system.

Let G be a Gentzen system.

Definition 4.3 (Definition 0.4/0) A model of G is a pair A = (A, F) consisting of a
A-algebra A and a system F = (F, : n € N), where for each n, F, C A", such that
for every rule §-1-1—S-’—Sk of G, where Sy,..., Sk, S are sequents of length ny,...,nk,n,

respectively, and for every valuation f : Te — A, the following implication holds.
J(S1) € Foyy- oo, f(Sk) € Fy, = f(S) € Fh.

The system F is called a filter on A and is sometimes identified with the disjoint

unton of all F;.

Definition 4.4 (Definition 2.23) If % = (A, F') is a model of G then a filter on 2 is
any filter G on A such that F C G, where inclusion is defined coordinatewise, i.e., if

F=(F,:n€N)and G= (G, :n € N), then F C G iff for everyn €N, F, C G,,.

Corollary 4.5 (to Proposition 2.41) Let 2 be a model of a Gentzen system G. Then
two elements a,b of A are in the relation Qg(F) on A, if for every positive integer
k, for every i < k, for every sequence tq,...,t; of terms in Te(z,zy,z2,...), for
every pair of homomorphisms f,g : Te(z, z1,22,...) — A such that f(z) = a,g9(z) =

b, (i) = g(z;) for aii i, we have:
(i)
flto)s s fti-1) — f(ti) € Fr =

f(tl)""’f(ti—l)vg(ti)’f(ti+l)a---vf(tk—l) - f(tk) € Fk and
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f(t0)3“'af(tk—1) _)f(tk) € F=>f(to)v--af(tk—l)_}g(tk) € F.

Equivalently, (a,b) € Qg(F) if for every k,i < k, for every pair of homomorphisms

,g as above, fO'I’ every sequence Of elements COoy.--5Ck € A, we h(we
g Y
Coy .- ,Cil,f(i),c;.*.l,.. cyCk—1 — C € F=

€0y ---3Ciys9(t)yCit1s. .. k1 — e € F and

Coy---sCk—1 = f(t) € F = ¢cq,...,c-1 — g(t) € F.

Definition 4.6 (Definitions 2.59 and 3.5) A Gentzen system G is protoalgebraic if

the operator §)g described above is monotone for every algebra A.

Definition 4.7 ( Definition 3.3) Let G be a Gentzen system. A finitary sys-
tem of equivalence sequents for G is a set A(zx,y,2) of sequents, where z =
(215« Zn,..-) i a (possibly infinite) sequence of variables, called parameters, which

are different of x,y, such that for every naturai & > 1 there is ¢ finite sct A,

of sequents such that A(z,y,2) = Uren Ak(z,y,2) and for every natural k > 1, for

every 1 < k
Fs Ax(z,z, 21,0, 25) (4.1)
Ap(Zy Yy 21y e o9 Zh)s Fhyevns Timly Ty Tiye vy Thml —* 2k and (4.2)
Zlse e s Zic1aUsZisen ey By — 2k
Ar(T3Yy 215 32k=1)s Z1s--- 2kl =z (4.3)

B1yeeey Bke1 Y
Corollary 4.8 (to Thm. 3.10) A Gentzen system G is protoaigebraic iff it has a

finitary system of equivalence sequents with parameters z, where z = (z1, zo,...).
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Let us stress that in general A(z,y,2) need not be finite, as shown in an example at
the end of this chapter (Example 4.5). On the other hand for all well-known Gentzen
system investigated in the literature, for example the systems (LK), (LJ), (BCK),
(BCK+A), (INT), the finitary equivalence system, if exists, is finite. We later discuss
(sections 4.2, 4.5) some extra condition which imply that a protoalgebraic Gentzen
system has a finite system of equivalence sequents.

In this Chapter we often will say that a system has some rule to mean that this
rule is derivable. Also, for a schema of rules we say that it is derivable, if every
instance of this schema is derivable. Thus for example, we will say that a Gentzen

system G has

Nz, —-y;A—>=z

(CUT) AT oy

if for every n the rule

L1ly-c 9 Tny Ty Y1y sYm 2 Y; Z15-. -, T > T

T1yeee3TnsZ1s++e38kyYlyeeesYm — Y

: 1 ] 1 ~
is a derived ruie of G.

4.4 Protoalgebraicity versus Cut rule and preservation of subterms

It is obvious, that if a Gentzen system G has (CUT) and z — z is an axiom
of G, then {z — y,y — «} forms an equivalence system for G that is finite and
without parameters. This is the case with the systems (LK), (LJ), (INT), (BCK+A).
An example below (Example 4.3) shows that the converse need not be true. In this
section we define the system of weak (CUT) rules, Definition 4.12). Every Gentzen

system G with these rules is protoalgebraic and in the next section we show that if
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G satisfies some mild condition then it is protoalgebraic iff it has a system of weak

(CUT) rules.

4.4.1 (CUT)-rule

Proposition 4.9 Let G be a Gentzen system such that ¢ — z is a theorem of G. If
(CUT) is a derived rule of G then G is protoalgebraic.

Proof. Let G be a Gentzen system in which (CUT) is a derived rule and z — z is a
theorem. We claim that the set A(z,y) := {z — y,y — z} is an equivalence system

for G. By assumption, (4.1) holds. The (CUT) rule yields (4.2) and (4.3). O

On the other hand, not in every protoalgebraic Gentzen system the (CUT) rule
can be derived. Below we give an example of a protoalgebraic Gentzen system which

does not have (CUT). In fact, (CUT) is not even admissible for this system.

Example 4.3 Let A have the following connectives: nullary connectives (i.e., con-

stants) 1 and T, and a binary connective =. Let G be the following Gentzen system

Axioms T—1, 1-T, —wz=z

Rules
Azl -y, ¥ —z==z (4.4)
AZT -y
Aoz, ¥Y—>z=z
(4.5)

AY — z
We now show that (CUT) is not a derived rule of G and moreover it is even not

admissible, even though G is protoalgebraic, lemma 4.11.

Lemma 4.10 (CUT) is not admissible in G and moreover, it is not even derivable.
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Proof. We first claim that the only sequents of the form
S:=Y—z=z (4.6)

that are derivable in G are those of the form — z =z whereX =0and z =z. If S'is
an axiom, then it certainly satisfies the condition that ¥ = () and z = z. So consider a
proof P of S and assume that the claim holds for every sequent S’ with a proof shorter
than P. Let us first observe that the rule (4.4) could not be the last rule used in the
derivation. For otherwise, some substitution instance t;,...,tx,t,81,...,8m, = T =2
of its first premiss would have a shorter proof than P and would be of the form
(4.6) with nonempty antecedent. So the last rule used in P was (4.5) and a premiss
t1y--.,tm = t = (z = z) has a proof shorter than P. But by our induction hypothesis
this is impossible. This establishes the claim.

Now suppose that one of the two rules of G has been applied to two sequents
S1, S5 that are derivable from the empty set of premisses. It follows from the claim
above that one of the sequents, say S5 is of the form — ¢ = ¢. Therefore the conclusion
S must be exactly Si. It [oilows that the only sequenis that are derivabie in G are
the axioms of G.

In particular, T — T is not derivable. But T — 1, 1 — T are axioms, so they

are derivable. It follows that the (CUT) rule is not an admissible rule of G. O
Lemma 4.11 The system G is protoalgebraic.

Proof. As noticed above, to show that § is protoalgebraic it suffices to observe
that there is a system of equivalence sequents for G. Let A(z,y,z) be {— z = y}.
Then the third axiom of G, i.e., = z = z, together with the two rules establish the

conditions for A(z,y) to be a system of equivalence sequents. O
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Thus a protoalgebraic Gentzen system does not need to have the (CUT) rule.
This 1s not surprising, since even in the presence of (CUT) the system of equivalence
sequents consists of 2 — y,y — z and not just £ — y. Thus the axiom and rules
(4.1)-(4.2) suggest the question whether every protoalgebraic Gentzen system should
have the following rules:

z—y y—z 'tA -z

(ECUT)) TR

z—oy y—z oz

(ECUT,) T

The above pair of rules, jointly denoted by (ECUT) is called a system of equiv-
alence (CUT) rules.

Again, it is easy to see that if (ECUT) is admissible in a Gentzen system G, then

the sequents £ — y and y — « form an equivalence system for G and therefore G is

protoalgebraic.

However a modification of the exampleabove by adding a new constant 1 and a

o
AV GL T s Gl 4A0LTAd Oy Duair aa ~o iVU iy

new axiom | — T, shows that a protoalgebraic Gentzen system need not have {

Example 4.4 Let A consist of the nullary connectives T, L, 1 and binary connective

=. Let G be the Gentzen system determined by the following axioms and rules.

Axioms —-z=z, T —=1,1—-T

Rules
['tA -z, —mz&y
FyA — z
-z, —wzoey

-y
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It is easy to prove by induction on the length of derivation, that a sequent of the
form — z & y is derivable in G iff £ = y. It follows that the only sequents which
can be derived in G are the axioms. Therefore the sequent L — 1 is not derivable.

Since L - T,T — 1 and 1 — T are derivable, this means that (ECUT) is not an

admissible rule of G. O

4.4.2 Weak equivalence cut

The conditions (4.2)-(4.3) of Example 4.4 establish some rules that are similar

to, although weaker than (ECUT).

We call the pair of these rules weak equivalence cut rules, (WEC).

Definition 4.12 Let G be a Gentzen system.

We say that G has a weak-equivalence cut property or just weak-cut prop-
erty, (WEC)-property for short, if there is a finite set A(z,y, z) of sequents such that
the following rules, called weak-cut rules and denoted (WEC), are derivable in G.

0z, 8 — 2 Az, y, 2)

(WECG) Ny,¥—=z
' =z, Az,y,z2)
WEC,
( ) -y

Notice that the set A in the above definition forms a system of equivalence sequents

with parameters z, in fact just one parameter, for G. Thus we have the following

proposition.

Proposition 4.13 If a Gentzen system G has a (WEC)-property, then G is protoal-

gebraic.
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Proof. By Definition 4.12 and Corollary 4.8. O

In the Gentzen systems defined in Example 4.2 all the rules, except (CUT),
preserve subterms (Definition 4.14 below). On the other hand, Gentzen systems with
(CUT) are protoalgebraic. We now observe that existence in a Gentzen system G of

some rule that does not preserve subterms is necessary for G to be protoalgebraic.

4.4.3 Preservation of subterms

Definition 4.14 A Gentzen style schema of rules preserves subterms if for every

variable (of first or second order) occurring as a subterm in any of the premisses of

a rule, this variable also occurs in the conclusion of this rule.

Notice that each of the (W), (Ex), (C), (Wr), (EXr), (Cr) preserves subterms. All
the logical rules defined in Example 4.1 preserve subterms, too. If a rule Sty 5
preserves subterms, then for every second-order substitution o, every subterm of a
term occurring in ¢5;,7 = 1,.. ., n, also occurs in ¢(S). This justifies our terminology.
Observe, that the (CUT) rule does not preserve subterms. For the variable z does
occurs in the premiss of the first sequent while it does not occur in the conclusion.

Similarly, the rule

I,z z; A{z,y,2)
(\VEC[) 1"1/72—+ ? (‘r y }

My, ¥—=z
does not preserve subterms.

‘I'hus we have the following

Lemma 4.15 Let G be a Gentzen system based by some set R of rules. If each of the

rules of R preserves subterms, then G does not have weak-equivalence cut property.

o
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Theorem 4.16 Let G be one of the systems (LK\CUT), (LJ\(CUT), (BCK\(CUT),
(INT\CUT). Then G is not protoalgebraic.

Proof. Since each of rhe systems in the assumption has the variable preservation

property, the conclusion follows by Lemma 4.15. O

Corollary 4.17 Let G be one of the Gentzen systems (LK), (LJ), (INT), (BCK),
(BCK+A). Then G is not equivalent to G\ (CUT). In particular, (CUT) is not a
derived rule of G\ (CUT).

By the Cut elimination theorem, Theorem 4.2 (CUT) is an admissible rule of

G\ (CUT), where G is as above. It, however, is not a derived rule, according to

Corollary 4.17.

4.5 Accumulative Gentzen systems

The rules (W), (EX), (CUT), and most of the logical rules considered above are

Siy- .- . o
of the form 22" where all the second order variables occurring in the sequent-

S

schemata Sy,. .., S, are pairwise distinct and all of them occur in S. Gentzen systems

based by such rule-schemata have the following property.

Definition 4.18 A Gentzen system G has the accumulation property if for every
set T of sequents, all finite sets of terms L, T and all terms t,s,r, if
T: 't

Yos

is dertvable in G, then also
T; r,T —t

Y — S

is derivable in G.
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The name “accumulation” is borrowed from [50], where Gentzen systems with left
and right accumulation are considered, but our definition slightly differs from the
definition of [50].

We have seen that a Gentzen system has, possibly infinite, system of equivalence
formulas, with infinitely many parameters. On the other hand the systems with
(CUT) and (WCUT) are examples of protoalgebraic Gentzen systems that have a
finite system of equivalence formulas without parameters. This leads us to the
following questions.

Questions Let G be a protoalgebraic Gentzen system.

1. Under which additional conditions does G have a finite system of equivalence

formulas?

2. Under which conditions the equivalence system for G does depend only on two

variables, i.e., is of the form A(z,y) for some set of sequents A?

We give here a partial answer to these question, by considering systems with the

accumulation property.

Lemma 4.19 If a Gentzen system I' has the accumulation property, then for every
set T of sequents, all finite sets of terms ¥,T,® and all terms t,s,, if

T, T —t

T o

&

is derivable in G, then also
T; ®,T — ¢
®.¥ —s

s dertvable in G.
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Proof. By induction on the cardinality of ® and using definition. O

Theovem 4.20 If G is protoalgebraic Gentzen system with the accumulation prop-

erty, then there is a finite system of equivalence sequents with one parameter z.

Proof. Since G is protoalgebraic, for every k there is a finite set A of sequents with
k—1 parameters such that their union forms a finitary system of equivalence sequents.
In particular, for k = 2 we have a finite set of sequents A(z,y,z) = Ay(z,y,z) such
that

Fs Az, z,z2)

A z
(x’y" )’ — X and

-y

Alz,y,z), = -z

y—z

By the corollary of the definition of a natural Gentzen system, we conclude that also

Thus for every k; < k, we have

Az,y,z), 1Tk — T and

Tiy--7Tk Y

Az,y,2), Ty Tim1TTigy - Tk — 2

b

Ty Ti-1YTip1 - " Tp > 2
which means that A(z,y,z) is an equivalence system for G. O
It follows from the above theorem that if a G has accumulation property, then

G is protoalgebraic iff it has weak-cut property.
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4.5.1 Examples

Lemma 4.21 Let G be one of the following Gentzen systems: (LK), (LJ), (BCK),
(INT), (LK\CUT), (LJ\CUT), (BCK\CUT), (INT\CUT). Then G has the accu-

mulation property.

We have seen, Proposition 4.9, that the first four systems are protoalgebraic, with
the (WEC) system {z — y,y — z}, \;vhile the remaining four are not, Theorem 4.16.
We conclude with an example of a Gentzen system that is protoalgebraic, but
does not have the weak-equivalence cut property. Hence this is also an example of a

system that does not have the accumulation property.

Example 4.5 For a rational number q let [q] be the largest natural number n such

that n < q. Let G be the following Gentzen system. It has one aziom:
(Ax) T,z — z;

and the following rules

Note that the axiom (Ax) as well as the rule (1) represent infinite families of w-axioms

and rules.

Proposition 4.22 TheGentzen system G is proloalgebraic.
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Proof. In view of Corollary 4.8 it suffices to show that there is a system A(z,y,z)

of equivalence sequents with parameters. Let

A(z,y,2) == {z1,...,2n, 2 =y :n > 0} U{z,..., 20,y = z:n > 0}.

Then

A= A,
nelN

where A, = {z1,...,2,2 = ¥, z1,...,2n,¥ — z}. The set A(z,z,2) consists of
axioms, so kg A(z,z,z). The condition 4.2 clearly holds by rule (1) and 4.3 can be
demonstrated as follows. If £ = 1, then

Ak(:c’y?zl’-"’zk—l)’ gy k=1 T

Z1yee ey lf=-1 Y

holds by rule (2). Let £ > 2. Consider the following instance of rule (1).

219003 8k=20T Y, Z1y...32-1 T

21900y Bk-1 Y

Since the left premiss is in A, we conclude that 4.3 holds. Hence A is an equivalence

system with parameters for G. O

We now show that G does not have a finite system of equivalence sequents.

Theorem 4.23 There is no finite set A of sequents that forms an equivalence system,

with parameters, for G.
Proof. The proof will be completed in a series of lemmas.

Lemma 4.24 Suppose that a sequent T — u is a theorem of G, where I is a sequence

of terms. Then u is a member of T'.
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Proof. We show that the set A := {I' = u:u € I'} is closed under the axiom and
rules of G. By definition, every axiom is in A. Clearly, A is closed under (EX). For
(1),if II,¢ — s and II,r — t are in A, then either s € II, in which case II,7 — s € A,
or s =1t. Since [I,r — t € A, it follows that s = ¢ € II, » and therefore I, 7 — s € A.
Hence A is closed under (1). The proof that it is closed under (2) is straightforward.

c

Let T be a set of sequents. Then let Ex(T') be the set of all sequents of the form
Ur(1)y - - Ug(n) — U
such that uy,...,u, = u € T and 7 is a permutation of the set {1,...,n}.

Lemma 4.25 Let S; := vy,...,v, = v and S; := wy,..., W, — w, where m #

n,m,n > 1. Then Cn(S;,S2) = Ex(S1,52) U A.

Proof. Let R be the right-hand-side of the above equality. It suffices to show that R
is closed under the axioms and rules of G. It clearly is closed under axioms and under

(Ex). By assumption that both m and n are greater than 1, and by the definition

e

of A th 2) can ne

«*
on
4]
w

ule

(44
"
o

that R is closed under (1). Let 5,5’ € R. Of course Ex(5,52) = Ex(S;) U Ex(S,),
and since m # n, if (1) can be applied to S and 5,

5,5’
< ()

then either one of 5,5’ is an axiom or both 5,5 € Ex(S;), fori =1ori = 2.
But it is clear that in the latter case, S” € Ex(S;), as well. If S =Tt —» s € A4,
S'=T,u—t€Ex(S),i=1,2,and S” = I',u — s, then either ¢ = s, in which case

S”" = S’ or else s € ', in which case S” € A. In both cases S” € R. Hence R is

closed under (1) and the proof of the lemma is finished. O
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Lemma 4.26 Let N > 1 and let
R:={ui,...,un 2 u:n< N}
Then Cn(R) = RU A.

Proof. Obviously, RU A is closed under axioms and rules of G. O

Lemma 4.27 Let N be a fired natural number. Suppose that A = A(z,y,z) is a set
of sequents such that for every uy,...,u, = u € A, n < N. Suppose further that
F¢ A(z,z,2). Let S :=z1,...,2841,¢ — z. Then Cn(A, S) = Cn(A) U Ex(S)U A.

Proof. By lemma 4.24, — z is not a theorem of G and therefore N > 1, by assump-
tion that kg A(z,z,z). By lemma 4.26, if v1,...,v,, = v € Cn(A), then m < N
and therefore, by lemma 4.25, Cn(Cn(A) U Ex(S)) € Cn(A) U Ex(S) U A. Hence
Cn(A, S) € Cn(Cn(A) U Ex(S)) C Cn(A)UEx(S)U A C Cn(A,S). O

Let A and S be as in the assumptions of Lemma 4.27. It follows from Lemma 4.27
and Lemma 4.26 that z;,...,2,,y — =z € Cn(A,S). In particular, a finite set A
satisfies the assumptions of Lemma 4.27 for some N. It follows that no finite A(z, y,2)
satisfies condition 4.2 and therefore there is no finite equivalence system for §. The
theorem is proved. O

Since G is protoalgebraic but does not have a finite system of equivalence se-

quents, by Theorem 4.20 it can not have the accumulation property. Indeed,

T—z, yY—o<C

Yy — 2

is an instance of the rule (1). However, let A := {z;,z — z}. By lemma 4.27,

I, =2, YT

is not a derived rule of G.
21, y — Z
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Let us make two more remarks. First, if we add to the rules of G the weak-
ening rule, then the resulting Gentzen system has a finite equivalence system with
parameters z, namely {¢ — y,y — z}. Hence this extended system is an example
of a non-accumulative Gentzen system that has (WEC) and therefore a finite system
of equivalence system. Second, although the Gentzen system G of example 3.90es
not have a finite system of equivalence system with parameters, it has a finite set of

sequent-schemata A(z,y,I") = {I',z — y,T,y — z} that has the properties

l"g A(a:,a:,[‘),

Alz,y,[),T,z — 2
MNy—o=z
Alz,y, 1), T — =«
-y

?

that are analogous to the properties of equivalence sequents. Gentzen systems with
finite systems of sequent-schemata that have the above properties are studied in a

separate work.

AR Qrrvvavra v wer
Xe\s

A Gentzen system is protoalgebraic iff it has a finitary system of equivalence
sequents. For example, a Gentzen system that has (CUT) and the axiom ¢ — z must
be protoalgebraic. Thus (LK), (LJ), (INT), (BCK), (BCK+A) are all protoalgebraic.
On the other hand, (LK\CUT), (LJ\CUT), (INT\CUT), (BCK\CUT), (BCK+ A
\CUT) are not. We also considered here the question whether a protoalgebraic
Gentzen system must have a finite system of equivalence sequents. Example 4.5,
Theorem 4.23, shows that no, but if we assume that the system has the accumulation

property, then the answer is positive.
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CHAPTER 5. ALGEBRAIZATION AND EQUIVALENCE
THEOREMS

5.1 Introduction

A deductive system is a (A, K)-deductive system, for some first order language
(A, K). In this chapter we consider a concept of equivalence of two deductive systems
(Definition 5.1). We give certain sufficient condition for two systems to be equivalent.
This allows for a generalization of Theorem 4.4 of [6] and Theorem 2.20 of [50]
(Theorems 5.19, 5.29). Theorem 5.19 will be applied, in chapter 6, to characterize

the deductive systems with implication.

The following definition is a straightforward generalization of a definition that

was first proposed for k£ and [-deductive systems in [6, page 12].

Definition 5.1 Let 51,852 be, respectively, a K- and a K,-deductive systems over
the same fized algebraic language A. By a (K, K;)-translation we mean a sequence
7= {tr: R€ Kk}, such that each Tg is a finite set of K,-formulas in k variables,

where k = p(R). Thus

TR(Pos - - -+ Pi=1) = {Th(Pos-- -, Pr=1) 1 1 < MR}
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for some positive integer mp.
If ¢ is a Ky-formula, e.g., ¢ = R(t1,...,t), for some R € K; and some

sequence of terms t = (t1,...,tx), then 7(p) = {74(1) : ¢ < k}. For T' C Fmy, we let
T(T)=U{7(¢): v €T}

A (Ki, Kj)-translation 7 is called an interpretation of S; in S, if, for all

I' € Fmg,,p € Fmg,, we have

T'ks, o iff 7(T) ks, (o). (5.1)
We say thal 8§ and S, are equivalent if there is an interpretation 7 of S; in S, and
an interpretation v of S; in S that are inverse to one another in the following sense
o s, vlr(9) 52)

for all p € Fmg, and
¢ s, 7(0()) (5.3)

for all o € Fmg,.

Thus S; and S, are equivalent iff there is a (K7, K3)-translation 7 and a (K>, K;)-

translation v such that

Ths, ¢ iff o(T)Fs, v(e), (5.4)
ks, o iff 7(T) ks, 7(), (5.5)
¢ ks, v(7()) (5.6)

for all ¢ € Fmg, and
¢ ks, T(v(®)) (5.7)

for all ¢ € Fmk,.
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Lemma 5.2 Let §;1,8; be K, and K,-deductive systems, respectively and let 7 and
v be (K, K3)- and (K,, Ky)-translations, respectively. Then the conjunction of the

conditions (5.5) and (5.7) is equivalent to the conjunction of (5.4) and (5.6).

Proof. By (5.5), v(I') ks, vy iff Tv ks, Tvp. By (5.7), this is equivalent to I kg, ¢.
Hence (5.4). To show (5.6), observe that by (5.5), vry kg ¢ iff TvTE kg, To.
By (5.7), this is equivalent to 7¢ ks, 7, which is true. The condition ¢ b5, vTe
is shown similarly. Hence (5.6) holds. Thus (5.5) and (5.7) imply (5.4) and (5.6).
Reversing the roles of §; and S, and of 7 and v, one gets that (5.4) and (5.6) imply
(5.5) and (5.7). O

In particular, let S; be classical propositional, intuitionistic propositional or
BCK-logic in some language that contains at least the binary implication connective
—. Let S; be g, where K is the class of Boolean, Heyting or BCK-algebras,
respectively. Consider the translations 7(z) = {z =~ 1} and v(z,y) = {z — y,y —

z}. It is well known that
ks, tiff {s=1:s5€T}ts,t~1and
txsdhsg, t—osxl,s—t=x1.

But these are conditions (5.3) and (5.7), hence S; and S, are equivalent and S; is al-
gebraizable. More examples of algebraizable as well as examples of non-algebraizable

1-deductive systems can be found in [3].

Definition 5.3 Let ¥, and £, be a K, and K,-deductive systems, respectively. Lel

o : Te — Te be a substitution. Then we say that a function ¥ : Ths, — Ths,

commutes with o if for every §;-theory T,

Cng, (0(E(T))) = E(Cns, (a(T))) (5.8)
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The next theorem generalizes [6, theorem 4.4] and also [5, theorem 3.7]. To prove it

we use the idea of the proofs in [5] and [6].

Theorem 5.4 Let S and S; be K- and K,-deductive systems, respectively. Then

the conditions (i)-(iii) below are equivalent.
1. §; and S, are equivalent;

2. There exists an isomorphism ¥ from ThS; to ThS, that commutes with all

substitutions;

3. There ezists an tsomorphism & from ThS; onto ThS, that commutes with sur-

jective substitutions.

If this is the case, the interpretations T of Sy into S, that exists by definition of equiv-
alence, can be chosen in such a way that for every S;-theory T, £(T') = Cns, ({7(¥) :

peT}) ={p:v(p) CT}

Proof. Suppose that S; and S, are equivalent with translations 7 and v such that
(5.5) and (5.7) hold. For a S;-theory T define ¥(T') := Cng,7(T'). By definition, ¥ :
Ths, — Ths,. We claim that ¥ is an isomorphism commuting with substitutions.
To show that it is 1-1, let T', S € ThS; and assume that £(T') = £(S). This means
that 7(T') ks, 7(5), which, by (5.5), is equivalent to T = S.

To show that ¥ is onto, let ® € ThS,. Define T by

T = Cns,v(®).

We claim that ® = E(T'). Let ¢ € ®. By definitionof T and &, rve € ©(T'). By (5.7).

@ € 5(T'). Hence @ C ¥(T'). On the other hand, let © € £(T"). Then there are some
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ay,...,a, € T = Cng, (v(®)) such that 7(ay),...,7(ay) ks, ¢. But T = Cng, (v(®)),
hence there are some @1,...,om € @ such that v(p1),...,v(0n) ks, @15, .
Therefore, Tv(¢1),...,7v(¢m) Fs, ¢ which is equivalent to ¢1,...,9, Fs ¢ and
therefore o € ®. This finishes the argument that ¥ is onto.

Finally, we want to show that ¥ commutes with substitutions. Let o be a
substitution and let T be an S;-theory.

Then (o (T) = Cns,({7(p(cZ : ¢(Z) € T}. But if o(Z) € T, then 7(p(Z)) €
Y(T) and 7(v(0Z)) € o(X(T)). Therefore X(o(T)) C Cns,o(E(T)). Also,

Cns, (0(Z(T))) Cns,{a(oZ) : a(Z) € Cns,7(T)}
Cns,{o(a(Z)) : o(a(Z)) € Cns,(r(e(T)))}
Cns, {8 : B € Cns,(7(o(T)))}

Cns, (r(o(T))) € Cng,7(Cns, (o(T)))

N N

]

E(o(T).

This finishes the proof of the theorem in one direction. For the other direction,
suppose that we have an isomorphism ¥ that commutes with substitutions. First
fixan R € K, and let T := Cng, (RZ), where £ = (z1,...,Z,Rr)-1). Since ¥ is an
isomorphism, E(T') is finitely generated and therefore there exist some set 7 of terms
Th(Z),...,78(Z) such that

E(T) = Cns,(r(7)).
Since R was arbitrary, we have a sequence 7 = {rg : R € K} which is a (K7, K3)-
translation. Now let » = R(f), where { = (t1,...,%,(g)) is a sequence of terms, be
a Kj-formula and let ¢ be a substitution such that for every ¢ = 1,..., p(R), we

have o(2;) = {;. Note, that o can be taken surjective. Since £ commutes with
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substitutions,

Z(Cns,(#)) = %(Cns,(o(TR)))
= Cns,(0(X(TR)))
= Cns,(mr(0(Z)))
= Cns,(mr(t1,---,tr))

= Cns,(7())-

Because of this and since ¥ is an isomorphism, for I' € Fmyg,, we have the

following sequence of equalities.

Cns,(T) = V =(Cng,(7)

~el

=V Cos,(7(7)) (5.9)
~el

= Cns,((T)). (5.10)

It follows from this and the fact that T' ks, ¢ is equivalent to E(Cng ) C
2(Cns,(T)), that for T'U {¢} C Fmy,,

I'ts, @ iff 7(T) Fs, 7(¢)-
By a symmetric argument, we prove that there is a (K, K;)-translation v such that
E7(Cns,()) = Cns, (v(9))
and therefore also for all sets ® U {¢} C Fmg,
O s, o iff (@) s, voo.

Also, Cns, (¢)Cns, () = ZZ7!(Cns, () = Z(Cns,(v())) = Cns,(Tv(9))), and we

conclude that

7(v(8)) Fs, ¢ and @ ks, Tvg.
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This finishes the proof that S; and S, are equivalent. It follows from the proof that
E(T)=Cns,({r(¥): v €T} ={p:v(p) ST} O

5.3 Birkhoff-like deductive systems

Theorem [5, Theorem 4.2] states that a 1-deductive system S is equivalent to
some extension of the Birkhoff system B iff Qs is injective and continuous. Similar
result can be proved if B is replaced by a so-called Birkhoff-like deductive system

(Definition 2.19). Theorem 5.8 justifies our choice of the name “Birkhoff-like”.

Definition 5.5 A set I' of K,-rules is called Birkhoft-like if for all Ky-formulas
Ply-- -2 Pn, @, ¥ the following conditions B(i) and B(ii) hold:

o(p)

B(i) For every surjective substitution o such that —— is an instance of a I'-rule,

there is an Ky-term & such that o(€) = and % s an instance of a rule of T.

B(ii) Let LASRAELL oMY ? be some instances of rules in I'. Then there are K,-
%2 0

ﬁ flr--:{n

formulas &1, . ..,&, such that for everyi =1,...,n, £ /
i v

are also in-

stances of rules of I.

If a Ky-deductive system S, is based by some Birkhoff-like set T of rules, then S, is
called Birkhoff-like.

Remark Condition B(ii) says that every derivation of the form

Ply---:Pn

)
¥



can be replaced by a derivation
fr Pn

51";/)" En’ (5.12)

i.e., every S-proof in which some multiple-premiss rules have been used can be re-
placed by one in which every single-premiss rule is used before any multiple-premiss
rule. It follows from the condition B(i) that if o is a surjective substitutionand
can be derived from o(¢) using only a nonempty sequence of one-premiss rules of a
Birkhoff-like set of rules I, then there is a € such that ¢ Fr €, also by means of only
one-premiss rules, such that ¥ = o(£). Notice that a condition similar to B(i) holds
trivially in case that 3 = o(vph), namely if yp = op then there is a ¥’ such that

1 = op and @ Fr ¢’ by means of at most single-premiss rules. So

Example 5.1 We will consider K, consisting of one binary relation and we will
write a K- fla either as a pair (¢, s) or as an inequality ¢t < s, with ¢, s € Te. Suppose

that with every A € A there are associated two, possibly empty, sets: Py, Ny C

{1,...,p(0)}. The system P : {{P\.N)) 1 X € A) determines a K,-deductive {i.e.. a

2-deductive) system Sp as follows.

Sp is the 2-deductive system axiomatized by the axiom (I) and the rules , (T), (Rp),

(Rn) below:

forall Aand k€ P
/\(317"'7271)[1;/21:] S A(zla'--azn)[y/zk] *
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y<z
(215, z0)[T/26) < M21y- -2 20) Y/ 2]

We will be using this system and its generalization in chapter 6. Notice that Sp

(Rn) for all A € A and k € N,.

depends on the choice of pairs of sets Py, N,.

We now show that the above axiomatization is Birkhoff-like and therefore Sp is

Birkhoff-like.

Theorem 5.6 For every choice of P = {Py, N)) as above, the system Sp is Birkhoff-
like.

Proof. For B(i), observe that all single-premiss rules are of the form (Rp) or (Rn). So

d(2)
P

This means that there is some n-ary A and some k < n, such that ¢ = (t,s),¢ =

suppose that for some surjective substitution o, is an instance of the rule (Rp).

(u, )y u = A(t1,- oy thm1,0(1)s tht1y oo n tn) @and v = A(t1, ..oy tke1,0(8), b1y e - -y tn)-

For 1 <7< n,i#k let t; be a term such that o(t}) = ¢;. Let also

RN O (S YRS 7% YSRIR ) IO (¢ PN /AN /ORI 4 )

’

Clearly, ? is an instance of the rule (Rp). The case of the rule (Rn) is handled
similarly.

For B(ii), note that if ¢ or ¥ in the statement of B(ii) is an instance of the axiom,
then the conclusion is obvious. So we need to prove that every derivation (5.11) in
which the first rule used was (T) and the second rule used was either {Rp) or (Rn)
can be replaced by a derivation of the form (5.12). So assume that this last rule is

(Rp) for some A and k& and suppose that we have a derivation

<tlv t2, )’ <t2’ t3>
(t17t3)
(Alt1), Alts))
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where A(¢;) stands really for A(sq,...,Sk—1,%, Sk+1,---,9n), Where n is the arity of A,
k is some number between 1 and n and s;, for 1 <7 < n,: < k, are some terms and
A(t3) stands for A(sy,...,Sk=1:5;Sks1s---,5n), With the same k and terms s;. This
derivation can be replaced by applying the rule (Rp) to both (t1,t;) and (t,,t3) first

and then applying the transitivity rule (T), i.e.,

(t1,1) (t2,13)
(A(t1), A(t2))  (A(22), Ats))
(A(t1), A(t3)) '

The proof for the rule (Rn) is similar. O
Notice that Sp matrices are pairs (A, <), where A is a A-aigebra and < is a quasi-

order on A with the property that if £ € Py then the polynomial

p(x)=/\(a17'"7ak—lvx7ak+l’---7an)’ (5.13)

for a; for 1 <z < n,t # k, is monotone with respect to < and if k¥ € Ny, then (5.13)
1s anti-monotone with respect to <.

As a special case consider A = {~,—,V} and let P, = § = N, P_. = {2},
P, ={1,2} and N. = N_ = {1}.

Then Sp is axiomatized by (I), (T), (S) and the following rules:

z<y
—nys-ﬁx

z<y

z—ozz<z—y

z <y

T—=z2Ly—z
Ty
tVz<yVz
Ty
:Vz<zVy
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Boolean algebras are examples of Sp-matrices for this «.

Similarly, if for the language {+,—,0} , where + is binary, — unary and 0
nullary, we let P, = {1,2}, Ny =0, P_ = {1}, N. = 0 and P, = Ny = 0 (the only
possible choice as the arity of 0 is 0), then we get the rules that are clearly satisfied by
(Z,+,-,0,<) and (R, +,~,0,<), where Z and R are the set of integers and reals,
respectively, + is the operation of addition of real numbers, — is the operation of
taking the number with the opposite sign and same absolute value, 0 is interpreted
as the number 0 and < is the standard ordering of real numbers. equipped with the
ordinary addition and taking the opposite as well as 0 and the usual ordering relation
on numbers.

If in Example 5.1 we let Ny = ) for every A € A, then we obtain as a special

case the following Birkhoff-like system.

Example 5.2 Let S(<) be based by the following axiom and rules.

I1z<z
vy, y<z
T r<z
R’ rsy for every n, e ti
, , every n-ary operation sym-
Mzrs- s zo)z/ze] < Alzry .oy 20) [/ 24

bol A € A and every k < n.
Corollary 5.7 The system S(<y considered above is Birkhoff-like.

Proof. The corollary follows directly from lemma 5.6. O
The rule (R’) is called a replacement rule and in the presence of the transitivity
rule (T), is equivalent to the rule (R) introduced in chapter 2. Let us mention,

however, that (R) is a multi-premiss rule and that the axiomatization (I), (T), (R)
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of S(<) is not Birkhoff-like. The models of system S(<) considered here are called
“ordered algebras”, i.e., they are pairs (A, <) consisting of an algebra A and a quasi-
order <, with respect to which all operations are monotone. Classes of ordered
algebras are studied in [57, section 4.2.1]. Results of [57, section 4.2.1] concerning
ordered algebras are now also consequences of the general theory of protoalgebraic
K -deductive systems.

The following theorem motivates the name “Birkhoff-like”.

Theorem 5.8 The deductive system B of equational logic is Birkhoff-like.

Proof. Recall that B is axiomatized by (I), (T), (R’) and the symmetry rule (S).

Suppose that UEZQ) is an instance of the rule (S). Then ¢ must be of the form (¢, s),
for some terms t,s and ¥ = (o(s),o(t)). Let £ = (s,t). Then ¥ = o(£) and 2

£

is an instance of (S). This, together with Corollary 5.7 guarantees that condition
B(i) holds. To check that B(ii) holds, consider a derivation 5.11, where the first rule

applied is (T) and the next is (S). Thus (5.11) is of the form
INY YRz

T2
IR
This derivation can be replaced by
yRz TRY
IRY YR
iz

This together with Corollary 5.7 guarantees that B(ii) holds for Sp. O
Example 5.3 Let S; be the 2-deductive system based by (I), (R’) and (S).

It follows from the proof of Theorem 5.8 that S, is Birkhoff-like. A §;-matrix is a pair
consisting of an algebra together with a reflexive symmetric relation that is closed

under the rule (R). Such relations are called tolerance relations on A.
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5.4 Compatibility relation

Definition 5.9 Let S; be a K,-deductive system and S2 a Birkhoff-like K,-deductive
system over the same language A. Let A be a A-algebra. Recall that Ex,(A) :=
e K Ar is the set of all Kj-elements of A, i.e., Ex,(A) is the universal S,-filter
on A. Recall that Fig (A) is the set of all S;-filters on A. Let C C Eg,(A)x Fis, (A).
Then C is called a (51,85, )-compatibility relation on A with respect to S; and S,
if the following conditions hold.

C(i) For every F € Fis,(A) and every R3 € Fg®(0), (Rd,F) e C.

C(ii) For every F € Fis,(A), the set {Ra € Ek,(A) : (Rd,F) € C} is closed under

all multiple-premiss rules of S,.
C(iii) For every Rd € Ex,(A) and any system (F;:i € I) € Fis (A),
(Ra,F;) € C for all i € I implies that (Rd,N;e; Fi) € C.
Now let C = (Ca : A is a A-algebra) be a system of (S1,S2)-compatibility relations,
one for each A-algebra A. Then C is uniform if the following condition holds

C(iv) For any homomorphism f: A — A and any F € Fig,(A), for every Ra €
Ex,(A), if (R(f(@),F) € Cp then (Ra,f'F) € Ca and if f is onto, then
(R(f(@), F) € Cp s equivalent to (Ra, f~'F) € Cy.

The Ky-elements of A will be often denoted by the greek letters «, 3,7, etc. We will
often write C(a, F) for {(a,F) € C.

Definition 5.10 Let S; be a K;-deductive system and let K, have only one, binary,

relation symbol. We will write the K,-elements as pairs of {a,b) of elements of A.
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Let A be a A-algebra. Define C = Cp C Ek,(A) x Fis,(A) as follows. For each
(a,b) € A and F € Fig,(A), {{a,b),F) € Ca iff for every R € K;j and for every

e AP = (¢1,...,Cio1,Cit1y- - -2 Co(r)) and every i with 1 <4 < p(R)
R(Cl, +++3Ci-1,4,Cit1,- - - 7cp(R)) €F=
R(C],...,Ci_l,b,6i+1,...,Cp(R)) € F. (514)
The system C is called the standard system of (S, S:)-compatibility relations.

The term “(S;,S;)-compatibility relations” in the above definition is justified by

Corollary 5.12 below.

Lemma 5.11 Let S; be a K,-deductive systemand S, a 2-deductive system. Let C =
(Ca : A is a A-algebra) be the standard system of (S1,S:)-compatibility relations.
Then:

1. the system C satisfies the conditions C(iii)-C(iv) of Definition 5.9.;

59

if 82 does noi have oiher muilipie-premiss rules than posstdiy (T), then C aiso

satisfies C(it).

3. Thus under the assumption of 2., a sufficient condition for C to be a uniform
system of (S1, S2)-compatibility relations is that for every aziom {t,s) of S,, for
every A-algebra A and S:-filter F on A, for every relation symbol R of K,
for every 1 <7 < p(R) for all elements cy, ..., cCio1,Cit1,- - ., Cyr) and for every
valuation f : Te — A, we have that R(cy,...,ci-1, f(t),Ciz15. .., com)) € F =

R(cl,...,ci_l,f(s),c,-+1,...,cp(,q)) € F.
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Proof. Let us fix some algebras A, B, a family (F; : i € I) of S;-filters on A indexed
by some set I, some homomorphism f : A — B and an S;-filter F on B. Since

Ek,(A) is identified with A2, for the first statement of the lemma we need to show
C(iii) If for every ¢ € I, ({(a, b), F;) € C, then also {{a,b),N;c; Fi) € C and

C(iv) If {{(fa, fb),F) € C, then also ({a,b), f"'F) € C; and if f is onto, then
{{fa, fb),F) € C is equivalent to {{a,d), f~'F) € C.

Let R € K; and let ¢ be a sequence cy,...,Ck_1,Ck41,---,Cp(r) Of elements of A.
The condition C(iii) then follows from the following equivalence that is obviously

true for every z:
ViE[R(cla «ee3Ck-15T,Cht1,5-- - 7cp(R)) € Fi = R(cla cee sy Ck-1,7T, cn) € niel R~

For assume that Vie;((a,b), F;) € C and assume that R(ci,...,Ck-1,a,Cry1,Cn) €

Nier Fi- Then R(cy,...,¢k-1,8,Ck41,---,Cy(R)) € Fi, for every ¢ € I. Hence also
R(C],--- 7ck—1ab7ck+l7- . -acp(R)) € -Fz

for every 2 € I. This is equivalent to the condition R(ci,...,ck—1,b, Ckt1,...,CoR)) €
Nicr Fi- This shows that ((a,d),Nics F3)-
For C(iv), assume that for every sequence ¢ = (c},...,¢_;,Chpqs---» or)) Of

elements of B, we have that

R(chy ey G2 F(@)s Chprre - Cor)) € F = R(chs- -5 ¢y, F(D), Crgrs - - - Cyry) € F.

(5.

[\
—
(a1
~—

Assume that R(c1,...,Cko1,a,Ckt1s---,Co(R)) € f~'F. Then

R(f(Cl), e 7fck—1)7 f(a)’ f(ck+l)7 s 7f(cp(R))) eF
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and therefore

R(f(cl)’ e fck-l)v f(b)’ f(ck-H), seey f(cp(R))) EF

by assumption (5.15). This finishes the proof that

R(c1y. o yChm15G,Chy1y- -5 Co(r)) € fT'F = R(cr, ... k1, b, Ckg1, .- -, Cpm) € fTIF
(5.16)
Hence R(cy, ... Ck=1,8,Ckt1,-- -1 Co(R)) € f7YF. 1t is clear that if f is chosen to be
onto B, then (5.15) and (5.16) are equivalent.
This finishes the proof of C(iv) and of the first statement of the lemma.
For the second statement assume that the only multiple-premiss rule is (T). But

the relation = is transitive, i.e.,
(GeF=bcF)and (be F=>CcF)]= (@€ F=zccF),

so C(ii) holds.

The third statement follows from the first two. O

Corollary 5.12 Let S; be a Birkhoff-like 2-deductive system, such that S, does
not have other multiple-premiss rules than possibly (T) and the only aziom of S,
is (z,z). Then for every K, and for every K,-deductive system S;, the standard
system of compatibility relations (Definition 5.10) is a uniform system of (S1,S,)-
compatibility relations. In particular, let Sy be a 1-deductive system. Then the system
C = (Ca :A is a A-algebra), where Cp({(a,b)),F) iff a € F = b€ F), is a uniform
system of (81,82 )-compatiblity relations.

Proof. By 3. of lemma 5.11.
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Corollary 5.13 Let S, be one of the systems Sp,S(<), St, B considered above, and
let S; be a K;-deductive system, for some K;. Then the standerd system of (S),S2)-
competibility relations is a uniform system of (S1,S2)-compatiblity relations. In par-
ticular, let S; be a 1-deductive system. Then the system C = (Cp : A), such that
Ca({a,b)),F) iff a € F = b € F), is a uniform system of (51,S;)-compatiblity
relations.
Proof. Apply Corollary 5.12. O

Recall that the condition 5.14 was used in Chapter 2, Definition 2.37 to define
the compatibility of a congruence 8 on an algebra A, i.e., an B-filter on A, with an S-
filter on A. We now introduce a more general concept of compatibility of an S,-filter
with an S;-filter. This concept is relativized to a uniform system of compatibility

relations C and therefore also to the systems §; and S,.

Definition 5.14 Let S; and S; be a K, and Ks-deductive system, respectively. Let
C be a uniform system of compatibility relations between K-elements and S;-filters.
Let A be a A-algebra. We say that an Sy-filter 8 is C-compatible with an S;-filter
F if for every a € 8 we have C{a, F).

Let S, be the 2-deductive system Sp defined in the Example 5.1 page 147, and let
C be the uniform system of compatibility relations (Definition 5.10). Recall that the
models of Sp are algebras ordered by a quasi-order relation < with the property,
that the polynomials of the form A(ay,.-..,ak-1,2,aks1,--.,a,) are monotone in z if
k € P, and antimonotone in z if £ € N,. Then this quasi-order < is C-compatible
with an S;-filter F iff forall a < bin A, a € F implies b € F.

Notice also, that if the 2-deductive system S, has the symmetry rule (S), and C

is standard (Definition 5.10) then an S,-filter § on A is compatible with an S;-filter
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Fon A, if for every R € K, and for all ¢;,...,ck_1,Ck41,---,Co(R) € A, we have

R(ciy. ..y Cha1,8yChi1y- -, Cp(r)) € Fiff R{cy,. .., Chm1, b, Chp15-- -5 ¢p(R)) € F,
(5.17)
i.e., the implication in definition 5.10 is replaced by the equivalence. Thus we see
that in case that S, is the Birkhoff’s deductive system for equational logic, then
the congruence 6 is compatible with an Sy-filter iff it is compatible in the sense of

definition from chapter 2.

5.5 Generalized Leibniz operator

Definition 5.15 Let S, S, be K;- and K;-deductive systems and let C be a uniform
system of (S1,S2)-compatibility relations. Let A be a A-algebra. The generalized
Leibniz operator on A is the function that to every S;-filter F of A assigns the
following K,-subset Q°(F) of A :

Q°(F) := {a € Ex,(A) : for every f € Fgl(a), C(,F)}.

Let S; be a K;-deductive system, let S; be a K,-deductive system in some Birkhoff-
like axiomatization I'. Let I be the set of all axioms and one-premiss rules of I'. Let

A be a A-algebra, F' € Fis, (A).

Lemma 5.16 Assume that S; is a Birkhoff-like K,-deductive system and let C be

a uniform system of (S1,Sz)-compatibility relations. Let o be an K-element of A.

Then

Q°(F) = {a € Ex,(A) : for every 8 € Fer(a), C(8,F)}.
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Proof. We need to prove that

(i) for all B € Fgii(a) C(B,F)
implies

(ii) for all 8 € Fg(a) C(B,F).

We first prove this implication for the special case that A = Te, @ = ¢ € Fmg,,8 =

¥ € Fmg, and F =T is an S;-theory. Thus we are proving the following claim

Claim 2 Let T be an S;-theory, let ¢ be a Ky-formula. Then
Vulo For ¥ = C(4,T))] = (5.18)

V(e br ¢ = C(%,T))] (5.19)

Assume that 5.18 is true and suppose that ¢ Fr ¥. If o Frv %, then we are done. So
assume that ¢ I/ 3. Therefore some multiple-premiss rules must have been used in
a derivation of ¢ from ¢. In view of B(ii), we can assume that for some n > 1 and

for some K,-formulas ¢, ..., ¥,

"1
f’
’m
:’sl
NS
~~
(4]
[

Q;bla' . 'vdjn “I‘\I" Ip’ (' -21)

where ¥; # 1, for any 2 = 1,...,n and % is not an axiom. By assumption, for every

1=1,...,n, we have C(¥;, F'). By C(i1), C(%,T). This finishes the proof of Claim 1.
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Now let algebra A be arbitrary and let us return to the proof that (i) implies
(ii). So let us assume (i) and also let 8 € Fg?(a). Then there are a valuation f,
K,-formulas ¢ and % such that f(¢) =, f(¥) = B and ¢ Fr ¥. Without the loss of
generality, we can assume that f is surjective. We now claim that the condition 5.18
holds for ¢ and T := f~'F. For suppose that ¢ rs &, for some £ € Fmg,. Then
by our assumption (i), we know, that C(f(¢), F) holds, and by C(iv), also C(¢,T)
holds. This verifies 5.18. Therefore 5.19 holds as well and in particular, C(¢,T). By
C(iv) again, C(B, F). This finishes the proof of the lemma. O
In the next chapter, we will apply Lemma 5.16 to a generalization of the system Sp.
On page 150 we considered a special case of Sp, namely a system S(<) axiomatized
by (I), (T) and (Rp). We already mentioned that this system is Birkhoff-like and
that the relations C defined in definition 5.10 form a uniform system of (S;,S2)-
compatibility relations for every system S;. According to lemma 5.16, for this system
S(<), {a,b) € Q°(F) iff for every term t(z, ) and every sequence € of elements of A
of the same length that ¥, we have that {(a,€) € F = t(b,é) € F.

)
(¥ crm {2, ¥) and cvery

o ) ; ;
For §;, lemma 5.16 says that (q,

e Qf

;g ‘Ff\v‘ MY
w280 OV

\
J 1 ~ iy

-
I8

id
sequence € of elements of A of the same length as ¥, we have that t(a,€) € F iff
t(b,€) € F. Since Lemma 5.16 characterizes Q¢ independently of the multiple-premiss
rules, and since the single-premiss rules of the Birkhoff’s system B and of S; are the
same, Q€ for B is characterized in exactly same way as for S;. Notice, that this means
that when S; = B and C is the standard system of (51, Sz)-compatibility relations,
then QF(F) is exactly the Leibniz congruence for F), i.e., the largest congruence

compatible with F. This fact is generalized in theorem 5.18. We first prove an

auxiliary lemma.
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Lemma 5.17 Let 851,852 be some K, and K,-deductive systems and let C be some
uniform system of (Sy,S2)-compatibility relations. Let also, for some A-algebras A

and B, f : A — B and F € Fis (B). Then f~1(Q°(F)) C Q°(f-'F).

Proof. Suppose that o € f~HQC(F)), i.e., f(a) € Q°(F). Let 8 € Fgg, (a). We

want to show that C(8, f~'F). But then f(8) € Fgs,(f(e)) and therefore C(f(8), F).
By C(iv), C(B, f~'F). O

Theorem 5.18 Assume that S, is a Birkhoff-like K,-deductive system. Then for
every K;, every Kj-deductive system & and for every uniform system of (S1,52)-
compatibility relations C, for every A-algebra A and an S:-filter F on A, the set
QC(F) is the largest Sy-filter C-compatible with F.

Proof. Let I be a Birkhoff-like axiomatization of S;. To show that Q¢ (F) is an

S,-filter, we first prove the following claim.

Claim 3 Let T be an S;-theory and let o1, ...,pn,% be some Ky-formulas. If ¢ is

derivable from 1, ..., . by means of T and ¢1,...,p0, € Q¢(T), then C(p,T).

Proof of Claim.
Assume that ¢ is derivable from ¢4, . .., ¢, by means of I'. By B(ii) there are deriva-
tions @y,...,¢n Fr ¥1,...,¢¥m and ¥y,...,%m Fr\r . Then for every : = 1,...,m
there exists j = 1,...,n such that ¥; € Cnp(p;), so ¥; € Q°(F), hence C(w;, F)
holds. By C(ii). also C(w, F') holds, which finishes the proof of the claim.

Now to finish the proof that Q¢(F) is a S,-filter, let A be an arbitrary A-algebra,
let F be a S;-filter on A. We need to show that for all ay,...,a, € Q°(F) and for
every A € Fg3 (a1,...,0n), also 8 € QF(F). For this let us take v € Fg3 (8)-

We need to show that C(8, F'). Since v € Fggz(/.?), v € Fggz(al,...,an)), as well.
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But then there exist some K,-formulas ¢,...,¢,,% and a valuation f such that
Ply---,0n s, ¥ and o; = f(v;),7 = f(¥). Moreover, by lemma 5.17, ¢; € Q°(T),
where T = f~!'F. But then, by Claim, C(,T) and therefore C(v, F), as needed.
This finishes the proof that QC(F ) is a S,-filter.

It follows directly from the definition of Q¢ and the fact, that a s «, for every
system S, that Q€(F) is compatible with F.

If  is another Sp-filter C-compatible with F, then let a € 6. Let 8 € Fg3 ().
Since 8 is a S,-filter, it follows that 3 € 6 and therefore C(8, F). This shows that
a € Q°(F), hence § CQ°(F). O

5.6 Equivalent semantics Theorem

For a predicate language L and a class K of L-matrices, let S be the L-deduc-
tive system determined by all the L-rules that are valid in every matrix from K. The

consequence relation ks, will also be denoted by k.

Theorem 5.19 (Fquivalent Semantics Theorem) Assume that §;,8; are R, K;-
deductive systems, respectively, Sz is Birkhoff-like and C is a uniform system of
(S1,8;)-compatibility relations. If the generalized Leibniz operator Q° : ThS; —

ThS; is injective and continuous, then there exists a class K of S;-matrices such that

Sy and |=x are equivalent.

respectively, such that the following conditions hold for allTU{¢} C Fmg,, ¥ € Fmg,
and S;-theortes T'.

Tts, o 4 7(T) Fx 7(0)
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r(v($)) A ¥ and

T ts, @ tmplies C(7(p), T).

Proof. The proof breaks into a sequence of lemmas.

Lemma 5.20 Let A be a A-algebra and F; a family of filters on A indezed by some
set 1. If QC is order-preserving on Fis (A), then

Q° (N F) = Q8 (F).

i€l €l

Proof. The inclusion from left to right follows from the fact that Q€ is order preserv-
ing. To prove the other inclusion, let @ be a Ko-element of A such that o € N(Q°(F;).
Then C(a, F;) holds for every i. By C(iii) C(a,N F;). This shows that NQC(F;) is
compatible with N F;. Hence N Q€ F; C QO N F;, by theorem 5.18. O

Lemma 5.21 Let A be the term algebra and let T be an S;-theory. Then for every
surjective substitution o,

o~ HQCT) = Q°(¢7'T).

Proof. The inclusion from left to right follows from lemma 5.17. For the other
inclusion suppose that ¢ € Q°(f~Y(T)). To show that v € f~Y(QC(T)), assume
that ¥ € Cnr f(¢). We need to show C(¢,T). Since ¢ € Cnr¢, then by B(i) (see a
remark on page 147), we conclude that there is a 2" such that ¢ b " and f(b') = .
But since ¢ € Q°(f~1(T)), we know that C(3', f~'F) and therefore, since f is onto,

we have, by C(iv), that C(¢, F'). This finishes the proof of the lemma. O
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Lemma 5.22 Let K := {(Te,Q°T) : T € Ths,}. If Q° is continuous on Fis, (Te),
then

(i) For every T € Ths,, Q°(T) € Thy.,.

(ii) For every ® € Thi, there exists a T € Thg, such that ® = Q°(T).

Proof. (i) Suppose that Q(T) Ex ¢. But (Te,Q°T) € K and Q°(T) C Q°(T). So
© € QO(T). (ii) Let ® € Thy. Assume first that ® is finitely generated, i.e., there
is a finite set T’ of K>-terms such that ® = CnxI. Let ¢ € ®. Then I' [£x @, hence
there is o : Te — Te and T € Thg, such that oT C Q°(T) and o & Q°(T). So
[ C o 10°T) = Q%0 'T), by Lemma5.21 and ¢ & 07'Q°(T) = Q°(0~'T). Hence
also ® C Q%(6~'T) and ¢ & Q°(07!T). Let S := 07'T. Then S is a S;-theory. Thus
we have shown that for every ¢ ¢ ® there is S € Thgs, such that ® C Q¢(S) and
© & Q°(S). So
& = {0(S) : @ CQ°(S)},

so ® = Q°(N{S : & C N°(S)}, by lemma 5.20. This finishes the proof of ii) in case
that @ is finitely generated.

Now suppose that ® is arbitrary. Then
d = \/({CI)i : ®; C @, ®; is finitely generated}.

By the first part, for every ® as above, there is T; such that ®; = QC¢(T;). Also

{®;: ®; C P, ¥, is finitely generated} is a directed set. By the continuity of Q°,

® = \/{®;:®; C ®,9; finitely generated}

VA{QC(T:) - Q(T;) € ,QF(T;) is finitely generated}

= Q°(\/{T:: Q°(T;) € ®,Q°(T.) is finitely generated}).
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This proves the lemma. 0O

Lemma 5.23 If Q° is 1-1 and continuous, then Q° commutes with surjective sub-

stitutions.

Proof. Let o be a surjective substitution. Let 7" := Cng,oT. Since Q°(T") is an
K-theory, in order to show the inclusion Cnx(c(2°(T))) € Q°(Cng,0T), it suffices
to show that o(QC(T)) C QY(T"). Let ¢ € oQ°(T). Then ¢ = o¢', for some
¢ € Q°(T). To show that o € QC(T"), let ¥ be such that ¢ b <, where IV is the
set of all single-premiss rules in some Birkhoff-like axiomatization I' of ;. Moreover,
by C(i), we can assume that all the rules used in such a proof had exactly one premiss.
So by B(i), there exists a ¢’ such that ¢’ ks, 1’ and o' = . Now, ¥’ € Q°(T). Also,
o(T) C Cns,(0(T)) =T',s0 T C o~}(T"). Since Q€ is continuous, it also is monotone
and therefore Q°(T) C Q€(0~'T"). Hence ¢ € Q(o~'T"). So C(¢',0~'T") and by
C(iv), C(¢, T") This shows that » € Q°(T") and completes the proof of the inclusion

from right to left. Now as Cnco(2°(T)) € Th, by the previous lemma we have that

this last equality by Lemma 5.20. Since Q° is 1-1 and, by lemma 5.20 Q¢ (T) N
Q¢ (e~18) = Q°(T N o~185), we conclude that T C o~1S. Therefore ¢T C S and
Cngs, 6T C S. So

Q%(Cns,oT) C Q°(S) = Cnxo(Q°(T)).

It follows that Q€ : Ths, — Thg is an isomorphism which commutes with

surjective substitutions. By Thm. 5.4 §; and = are equivalent. This finishes the
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proof of the first statement of the theorem. The first two conditions in the second
statement follow immediately from theorem 5.4. For the third condition, £(T) =
Cns,(7(¢0) : ¥ € T). But the role of £ is played by Q€ here. Since Q°(T) is
C-compatible with T, it follows that if ¥y € T, then 7(3)) € Q°(T) and therefore
C(r(¥),T). 0

5.7 Corollaries

For a K;-deductive system Sy, a Kj-deductive system S;, a (K, K;)-translation
v and for every A-algebra A, define the operator Q, : Fig (A) — P(Fg,(A4)) as
follows

Q,(F):={a € Ek,(A):va € F}.

Lemma 5.24 Let 51,8, be a K- and a K,-deductive systems, respectively. Let v be

a (K,, K )-translation. Then the operator ,, is continuous.

Proof. Let A be a A-algebra and let F = {F;:7 € I} be a directed set of S;-filters

- A ‘(! I,A TN \I (\ bl

~ 1 4 Lo — { \ T 4 hal 14 \
Ol A. Vveé fI€ed L0 SIOW iab LTVJ') dridg)- ucuuebhz\

. Since [ is
directed, and v(«) finite, v(a) C V F iff there is an ¢ € I such that v(a) C F; and

the claim follows. O

Lemma 5.25 Let S; be a K;-deductive system and let S; be a Ky-deductive system.

n such that

...... <

¢ ks, vT.

Then §2,, is injective.
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Proof. Suppose Q,(T) = Q,(S) and let « € F. Then vra € F and therefore
T € Q,(F) = Q,(G). Thus v(7(e)) € G and @ € G. It follows that F C G and by

a symmetric argument F'=G. O

Corollary 5.26 (Second equivalent semantics Theorem) Assume that S;,S; are a
K- and a K,-deductive systems, respectively, Sy is Birkhoff-like and C is a uniform
system of (81, S,)-compatibility relations. Then the generalized Leibniz operator Q° :
ThS; — ThS, is injective and continuous iff there exists a class K of Sy-matrices
and a pair of (K1, K, )- and (K2, K, )-translations T and v, respectively, such that the

following conditions hold for all T U {¢} C Fmk,, ¥ € Fmg, and S;-theories T'.
I'ks, o ff 7(T) Fx 7(9)

7(v(¥)) =k ¥ and

¢ =Q,.

Proof. If Q° is injective and continuous, then by Theorem 5.19 there is a class K
and translations 7 and v such that the first two conditions hold. The third condition
follows from the proof of Theorem 5.19. The converse follows from the fact that Q.
is injective and continuous, according to Lemmas 5.25 and 5.24. O

In some cases the condition O¢ = Q. can be dropped from the right-h

of Corollary 5.26

Lemma 5.27 Let S; be a K;-deductive system and let S, be a Ko-deductive system.

Suppose that there is a (K, Ki)-interpretation v, i.e., v is a translation such that



for dlT U {¢} C Fmg,
T ks, ¢ iff o(T) ks, v(p)

Then for every A-algebra A and for every S;-filter F on A, Q,(F) is an Sz-filter of
A.

Proof. The lemma follows immediately from the assumption and definition of §2,,. O

Lemma 5.28 Let S; and S; be Ky and K,-deductive systems, respectively. Let C be
a uniform system of (S1,82)-compatibility relations. If K is a class of Sz-matrices
such that Sy and |=x are equivalent with some translations 7, v as in Definition 5.1,
then for every algebra A and every Si-filter F, the set Q,(F) is a subset of Q°(F).

If moreover, a € Q°(F) implies v(a) € F, then the two sets are equal.

Proof. By the previous lemma, for every algebra A and for every S;-filter F', Q,(F)
is a Sp-filter. The condition that 7¢ € T implies C(p,T), together with C(iv),

guarantees that Q,(F) is compatible with F. O

.o

Theorem 5.25 Lei 52 ve one of ine following 2-deduciive sysiems: BB, S, or the
system S(cy. Let § = &) be a Ky-deductive system, for some K,. Let C be the
standard system of compatibility relations (Definition 5.10). Then the operator QF is
1-1 and continuvous on Fis (Ths,) ¢ff there is a class K of S; matrices such that =

and 8, are equivalent.

Proof. As all these systems are Birkhoff-like and C is uniform system of (S;,Ss)-
compatibility relations, for any S;, the direction “only if” follows immediately from
the Semantic Equivalence Theorem 5.19. For the other direction, let v and 7 be the

interpretations, such that (5.4)-(5.7) hold. In particular, v is a (A3, A} )-translation,
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where K has only one predicate and this predicate is binary. The following conditions

follow from (5.4) and the fact that (I) and (Rp) are in the axiomatization of S,.
Fs v(z,z) (5.22)

v(z,y) ks v(A(z/k), My/k)) (5.23)
where A € A,n = p(A) and 1 £k < nand Mz/k) := A(21,. -+, 2k—1, %, Tkt - - - » Zn)s
AMy/k) := X215+ -32k=1,Y, Zk415-- -5 2). The first condition implies that for every
Sy-filter F, 7(a,a) € F and the second guarantees that if {a,b) € QF(F), for some
S;-filter F, then also the pairs (71(a,a), 7.(a, b)) are in Q°(F), where 7 = (7y,..., 7).
Since Q°(F) is C-compatible with F, it follows that v(a,b) C F. By Lemma 5.28,
the operators Q€ and Q, are equal. The latter is continuous and 1-1 by lemmas 5.24

and 5.25. The theorem now follows from this and from Theorem 5.19. O.

Definition 5.30 Let for every n, x® denote the sequence of n variables zy,...,z,.
A K-deductive system S is algebraizable if it has a finite system A of congruence
formulas and, for, every R € K with p(R) = n, a finite system of equations {e;(x™) ~

81(X™)y. ooy Emp(X™) R Omp(X™) such that

A(6:(x™),e(x")) Fs R(x™).

A system A of equivalence sequents for a Gentzen system G is called a system of
congruence sequents if it is a system of congruence w-formulas in the sense of Defini-

tion 3.14. A special case of Definition 5.30 is the following

Definition 5.31 (i) ( /5, Definition 13.14.]) A k-deductive system S is alge-

braizable if it has a finite system A of congruence formulas Ay, ..., A,, with-
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out parameters, together with a pair of finite systems of k-ary terms &,,...,6m

and €1,...,Em such that
{A(é,-(x),e,-(x)) ) < TTZ} ‘”‘5 X.

(i) ([50]) A Gentzen system G is algebraizable if it has a finite system A of congru-
ence sequents, without parameters, and for every n a finite set 7, of equations
Tn = {61 R €1,...,0m X €n}, where fori =1,...,m, &,¢&; are terms in vari-
ables x™ such that

{A(6:(x),&:(x)) : 1 <m} HF¢ x.

Corollary 5.32 (Algebraization Theorem) A K-deductive system S is algebraizable

iff the Letbniz operator on ThS is injective and continuous.

Proof. By theorem 5.29. O

We list two special cases of Corollary 5.32 that have been considered in the literature.

Corollary 5.33 ([5, Theorem 4.2.]) A 1-deductive system S is algebraizable iff the

Leibniz operator on ThS is injective and continuous.

Corollary 5.34 A Gentzen system G is algebraizable iff the Leibniz operator on ThG

ts 1-1 and continuous.

Algebraizable Gentzen systems have been considered in [50]. In fact [50] considers so
called “Gentzen systems of type (a, 3)”, which we do not define here, and of which
the Gentzen systems in our sense are special cases. Gentzen systems of type (a, 3)

of [50] can be formalized as K-deductive systems, for some special K, and therefore

our Corollary 5.32 applies also to these systems.
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CHAPTER 6. THEORY OF ALGEBRAIC IMPLICATION

6.1 Introduction

For many well-known 1-deductive systems S the connective — of implication is
strictly associated with some partial ordering in the models of S. Also, the results
of [4, 5] reviewed in Chapters 3 and 5 demonstrate the connections between the exis-
tence of a system of congruence formulas for a 1-deductive system S, interpretability
of equality in &, properties of the operator {2 and the equivalence of § with some
extension of the Birkhoff-system B. In this chapter we turn to the question of inter-
pretability of a partial ordering in a 1-deductive system and how this interpretability
is associated, firstly, with the existence of some set of formulas, called later a sys-
tem of impiication connectives, secondly, with the equivalence of S with some other
system, called here S,, and, thirdly, the properties of certain operator, denoted by
Q7, that plays the role analogous to the operator Q in the case of interpretation of
equality. We would like to define a system of implication connectives, a 2-deductive
system system S, and the operator Q7 in such a way that the theorems obtained
by replacing equivalence formulas by implication formulas, equality by partial order-
ing, B by S, and © by Q7, in the characterizations theorems of (5], hold. We are
able to obtain some partial results of the desired form. Full analogy is, we believe,

impossible, due to an intrinsic difference between equality in an algebra and partial
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ordering, or any other predicate, for this matter. We hope, however, that the study
of 1-deductive systems with systems of implication formulas, initiated in this chapter,
will be continued, possibly by other authors.

In this chapter, “deductive system” means 1-deductive system.

6.2 Occurrence of a variable in a term

Let the algebraic language A be fixed. Let N* be the set of all finite (possi-
bly empty) strings of elements of N. The empty string is denoted by ¢ and the

concatenation of two strings by their juxtaposition.

Definition 6.1 A tree is a subset T of the set N* of all finite strings of natural

numbers that has the following properties.
(1) eeT.

(ii) Let « € N* and let k € N. If a string ok € T then o € T and ot € T, for
every ¢t < k. The string « is called a parent of ak and ok is called a child
of inT.

The empty string € is also called the root of T. The elements of T are called the
nodes of T. A node that has no children is called a leaf of T.

Definition 6.2 A A-tree is a finite tree whose internal nodes are labeled by elements
of the set A and the leaves are left unlabeled. Also, every node labeled by a basic

operation A € A, has ezactly p(A) children.

Since the language A is fixed, we will omit the prefix A and say “tree” instead

of “A-tree”.



172

Let T and S be trees and let N be a set of leaves of T'. A substitution of S for
leaves in N in T is the tree T[S/N]:=T\ NU {n1v2: 11 € N,v; € S}.
Let N and M be two sets of strings. Then

NM:={vp:ve N,ue M}.

Definition 6.3 A A-term s a A-tree in which every leaf is labeled by some variable.
The parse tree of t is the tree Ta(t) in which all nodes other than leaves are labeled
the same as they are labeled in t; the leaves are left unlabeled. If A is known, Ty(t)
is also denoted by T'(t). A parse tree is a parse tree of some term t. In the special
case that t = A(zy,...,x,), T(t) is denoted by A. An occurrence of a variable z in
t is a leaf v that is labeled by z. We say that z occurs at v in t, in this case. The
set of all occurrences of a given variable x is denoted by Oy .. If x occurs in t at v,

we write ¢ = o(t,v). Thus
Otz :={v:o(t,v) = z}.

The set of all leaves of the parse tree of t is denoted by Occ,

the set of all possible occurrences of variables in t. So

v € Occ(t) iff for some z,0(t,v) = z.

We will not consider here trees other than parse trees. So whenever we say “tree”
we mean a parse tree of some term. Note that the above definition of a A-term is
equivalent to the Definition 0.4. We will often omit the prefix and subscripts A. To
illustrate the above concepts by an example, let + and p be a binary and ternary

operations, respectively. Let ¢t = p(z,y,z) and s = (z+y)+=z. Then Occ(t) = {1,2,3}
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and o(t,1) = z,0(t,2) = y. To find the elements of Occ(s) we note that s = r{z+y/u],
where r = u + z. Now Occ(r) = {1,2}, with u = o(r,1). Thus Occ(s) = {11,12,2}
and o(s,11) = z,0(s,12) = y and o(s,2) = =.

Let ¢ and s be two terms, N C Occ(t). Let T = T(¢), S = T(s). Then by ¢[s/N]
we mean the tree T[S/N] labeled so that if v € Occ(t)\ N then v has the same label
asin t and if v = nive, 1 € N,v; € Occ(s), then v has the same label as v, in s.

Intuitively, t{s/N] results from ¢ by replacing all variables occurring at leaves
labeled by elements of N, by the term s. In particular, if N = O, then t[s/N] =
{[s/z], the result of substitution of s into ¢ for z. In other words, a substitution ¢[s/z]
replaces all and only occurrences of a given variables z in t by s, whereas to get t[s/N]
we replace maybe not all occurrences of z and possibly also some occurrences of other

variables in ¢.

Definition 6.4 Two terms t and s are similar if their parse trees, T(t) and T(s)

are the same.

Trdn dbas 02 1 27 o
Note that if £ and ¢ ar

[¢)
w
4N
-
-
=
=

6.3 Polarity

Intuitively, a polarity is a function that to a leaf n in a parse tree T assigns either
{+1} or {—1} or the empty set. Occurrences of variables in a term inherit polarity
from the polarities on the parse tree of the term.

We also consider a set-polarity (which we also call polarity on sets), which differs
from polarity in that that it assigns {+1} or {—1} or the empty set to some nonempty

sel of occurrences of a variable in a term, rather than to just one occurrence. Thus a
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polarity is in particular a set-polarity. However, for a large part of our considerations

the concept of polarity will be sufficient. We first consider polarity defined for (parse)

trees.

Definition 6.5 A set-polarity on A, is a function © that to a pair (T, N), where
T is a tree and N is some set of leaves of T, assigns a set #(T,N) C {+1,—1} that

has at most one element and has the following properties:

(ROOT) If T consists of only one node (and therefore this node is the root of the
tree), then +1 € #(T, {¢}).

(SUBST) If a € #(T,N) and B € ©(S, M), then a - B € x(T[S/N], NM), where

a- 3 is the product of the two numbers o and .

The property (SUBST) is called the substitution property of set-polarity. We often
will say “set-polarity” rather than “set-polarity on A”. Every tree-polarity on sets
determines certain function on pairs consisting of a term ¢ and some sets N C Occ(t).

if t is a term and v a leaf in the parse tree 1'(t), then we write 7 (¢,v) for = (¢, {v}).

Definition 6.6 Let = be a set-polarity on A, let t be a term and let N C Occ(t).

Then we put
7(t,N):==(T(t),N) and

7(i,z) := 7(t, Orz)s
where z is some variable occurring in t.

Note that the condition (ROOT) implies that #(z,¢) = {+1} and the condition

(SUBST) implies the following property of = on terms:
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If t and s are terms, N C Occ(t),M C Occ(s), 7 € N,o € M and if a € 7(t,7)
and 8 € n(s,0). then a - B € w(t[s/N], NM).

In particular, if NV is the set of all occurrences of certain variable z in ¢t and M is
the set of all occurrences of some variable y in s such that y does not occur in ¢, then
the property (SUBST) says that, if a € 7(¢,z),8 € 7(s,y), then a- 8 € w(t[s/z],y).

For example, consider the language of one binary operation + and one unary op-
eration —. Suppose that 7(z +y, {1}) = r(z +y,{2}) = {+1} and #(~z,1) = {-1}.
Then it follows from (SUBST) that if 7 is a set-polarity, then #(z + (—y), {21}) =
{—1}. In this case we can also write that 7(z + y,z) = #(z + y,y) = {+1} and
7(—z,z) = {1} and therefore 7(z + (—y),y) = {—1}, if 7 is a set-polarity.

Recall that in Example 5.1, we considered some system of pairs of sets P =
{({Px,N)) : A € A), where for every A € A P\,N, C {1,...,p())}. Such a system
P determines a set-polarity 7 = wp by the conditions +1 € w(A,{k}) iff k£ € P\,
~1 € =(A, {k}) iff £ € N and (SUBST). Conversely, every set-polarity = defines a
unique system P = (P\, Ny : A € A) by +1 € n(A, {k}) iff k£ € P, -1 € =(A, {k})
ifft & € Ny. However, there may be many different set-polarities that define the
same system P in this way. This follows from the fact, that, for any term ¢ and
N C Occ(t), the set-polarity 7p(t, N) determined by P as above, is non-empty only

if N is a singleton.

Definition 6.7 . By a polarity we mean a set-polarity = such that for every
tree T and for every set N of leaves of T, if N has more than 1 element, then
m(T,N)= 0.

2. A polarity 7 is total if for every pair (T, v), such that v is a leef of T, n(T.v) #
0.
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A polarity is strict if for every tree T and for every leaf v of T, n(T,v) has at

most one element.

Consequently, if 7 1s a total polarity, then for every term ¢t and N C Occ(t), #(t, N) #

0 iff N is singleton. For a total and strict polarity =, 7(¢,v) is always a singleton. If

x occurs more than once in ¢ and 7 is a polarity, then 7(¢,z) = 0.

Remarks

(1)

A strict polarity = can be identified with a partial function on pairs (T, v) into
{+1, -1}, which is defined only if #(T, v) # 0; in this case its value on (T, v) is
the unique element of this set. This function is total exactly when the polarity

1s total.

If the polarity = is strict and total, then it is entirely determined by its values
on the parse tree of the terms A(z1,...,z,), more precisely, its values on pairs
(M k) (e, (T(Mz15---,20))), k), where k =1,...,n. Namely, if there is only
one value for 7(t, v) allowed, then this value is uniquely determined by (SUBST)

and the values of w(, k), for all A occurring in ¢ and all k < p(A).

Consider again a system P = (Py,N) : A € A), as in Example 5.1. If for every
A€ A, AN N, = 0, then mp defined previously is a strict polarity. If for
every A € A P, U N, = {1,...,p(\)}, then 7p is total. By remark (2), there
strict total polarities
on A and the set of all systems P = (P, Ny : A € A), such that for all A € A,
PiNNy=0and PAUN,={1,...,p(N)}.

Definition 6.8 A polarity 7 is called positive if —1 ¢ n(T,v), for all (T.v). In
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other words, = is positive if #(T,v) # 0 implies +1 € =(T,v). A polarity = is
negative if +1 & n(T,v), for all (T,v).

Given a polarity © on sets, we say that a term t is positive (negative) in a set
of occurrences N, if +1 € w(t,N) (resp. —1 € (T, N)). We say that t is positive

(negative) in z if t is positive (negative) in O, ;.

If £ is a sequence of variables indexed by the strings enumerating the leaves of T,
then T'[Z] denotes the term resulting by labeling the leaves of T by Z, where the leaf
numbered by v is labeled by z,. Let ¢ be a A-term and N set of leaves in the parse
tree T'(t) of t. We say that a variable = occurs in t outside of N, if there is a leaf v
of the parse tree T'() of ¢t such that v is labeled by z inf and v € N. Let A be a
A-algebra, let t be a term and let N C Occ(t). Let a € A and let also ¢ be a sequence
of elements of A indexed by the variables z occurring in ¢ outside of N. Then we let
t(a/N)(C) := h(t'), where t' = t[z/N], z is a variable that does not occur in ¢ and A
is a valuation that sends = to a and a variable z that occurs in ¢ (outside of N) to
¢.. If a sequence ¢ is indexed by some set of variables including all the variables that
occur in t outside of N, then t(a/N)(¢) :=t(a/N)(Z), where ¢ is the subsequence of
¢ indexed by the variables occurring in ¢ outside of N. In the future, whenever we
write some expression of the form ¢(a/N)(¢) it will be automatically assumed that ¢
is a sequence of elements of the algebra A, known from the context, that is indexed

by a superset of the set of all variables occurring in t outside of N.

Definition 6.9 Let A be a A-algebra and consider a binary relation < on A.. Then

we say that < agrees with a set-polarity m if for every term t and N C Occ(t), we

have



178

a < b= t(a/N)(c) < 1(b/N)(@),

if +1 € =(¢,N) and
a < b= tB/N)E) < Ha/N)(@,

if =1 € w(t,N).

Example 6.1 Let A be the language consisting of a binary operations + and a unary
operation —. Let 7 be the polarity determined by letting = + y be positive in both
z and y and —y negative in y. It is clear that this determines a unique A-polarity.
Consider now the set of all real numbers with the standard operations + and — and
let < be the standard ordering of the real numbers. Then it is easy to see that <

agrees with the polarity =.

Example 6.2 Let A have the following connectives: binary connectives —,V, A and
unary connective =. Let A’ be a subset of A. The standard polarity on A’1is defined
as follows: 7(—,1) = 7(=,1) = {-1} and #(—.2) = #(V.1) = 7(V,2) = =(A,1) =
7(A,2) = {+1}. In other words, £ — y is negative in z and positive in y, =z is

negative in z and all the remaining polarities are positive.

Let (A, <) be an ordered A’-algebra, where A’ C {V, A} such that if V € A’ then
V is the operation supremum on A, if A € A/, then A is the operation infimum. Then
the order < agrees with the standard polarity. Also, if {A,—} C A" C {A,V,—} and

(A, <) is a A’-algebra, where A and V are as above and for all a,b € A,

a = b=max{z:zAa<b}, (6.1)
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then it is well known that < agrees with the standard polarity. More generally, if
—€ N C {A,V,—>} A, < are as above, A has the largest element 1 relatively to <

and for all a,b,c € A,
(a=b) = [lcoa)= (c— b =1,

(@a—=b)—=[b=c)—(a—0))=1,

then < agrees with the standard polarity. Finally, if in addition A’ contains -, and
A has the least element 0 such that -z = z — 0, then < agrees with the standard
polarity.

A BCK-algebra is a {—}-subalgebra of a {—}-reduct of a {A, —}-algebra such
that 6.1 holds ([(64]). Thus for every BCK-algebra, as well as for every semilattice
or lattice, every pseudocomplemented lattice, every Heyting, Brouwerian or Boolean
algebra, the partial order defined by a < biff @ — b = 1 agrees with the standard

polarity.

A 2-deductive system S

Recall from chapter 3 that a 1-deductive system S has a system of equivalence
connectives iff 05 is monotone and that this system of equivalence connectives has
some strong properties iff in addition Qs is continuous and 1-1. In the next sections
we will be concerned with the question whether the existence and properties of a
system of implication connectives for S can be characterized in a similar way by
means of some operator analogous to the Leibniz operator. This new operator turns
out to depend not only on the deductive system S itself, but also is relativized to a

pre-established polarity = and therefore we call it QF or O7.
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If 7 is a strict total polarity determined by its values on A, or, equivalently, by
sets Py, Ny for A € A, where NN, =0, P,UN, = {1,...,p())}, then the definition
of 07 has been already given in Chapter 5. We generalize this definition of Q7 to
the case that « is an arbitrary set-polarity. We first generalize the definition of the

2-deductive system Sp (Example 5.1).

Definition 6.10 Let S be a 1-deductive system. Let = be a set-polarity. The 2-de-

ductive system S, over A is based by the following ariom and rules of inference:

0
9
(z,2) (62)
{z,9),(y,2)
6.3
(z,2) (6.3)
(z,y)
6.4
{=/N, g7V (64)
for every term t and N C Occ(t) such that +1 € w(t,N); and
(z,y) .
(4000 INTT #1 /ATTA (6.5)
NS 4T Jsvrfan |/

for every term t and N C Occ(t) such that —1 € w(t, N).

The next theorem has already been proved for the special case that the set-polarity

is determined by a system P = ((Py, N} : A € A) (Theorem 5.6).
Theorem 6.11 For every sei-poiarity =, the 2-deductive system S, is Birkhoff-like.

Proof. The proof below is a modification of the proof of Theorem 5.6. For B(i).

observe that all single-premiss rules are of the form (6.4) or (6.5). So suppose that



181

for some surjective substitution o,

a(e)
b

is an instance of the rule (6.4). This means

that there is some term 7 and some N C Occ(7) such that ¢ = (¢,s), ¥ = (u,v),
= 7(o(t)/N)({) and

= 7(a(s)/N)(3),

for some sequence of terms £ = (t. : z occurs in 7 outside of N). For each such z, let
t. be a term such that o(t.) = t. and let # = (¢, : z occurs in 7 outside of N). Let

also
= ((t/N)(¥), 7(s/N)(t)).

Clearly, % is an instance of the rule (6.4). The case of the rule (6.5) is handled
similarly.

For B(ii), note that if ¢ or ¢ in the statement of B(ii) is an instance of the axiom,
then the conclusion is obvious. So we need to prove that every derivation (5.11) in
which the first rule used was (T) and the second rule used was either (6.4) or (6.5)
can be replaced by a derivation of the form

Lail % a av&uallia i vaa 4 aax

(5.12). Sc assume

1240

in (5.12) is (6.4) for some 7 and N and suppose that we have a derivation

(tlv t2, )’ <t2’ t3>
(t1, t3)
(T(ta/N)(5), T(tz/N)(3))

where § is some sequence of terms. This derivation can be replaced by applying the

rule (6.4) to both (¢1,2) and (¢,,13) first and then applying the transitivity rule (T),

ie.,
(tl,tz) (t27 t3>

(T(t1),7(t2)) (T(tz/N (5). 7(ts/N)(3))
(T(t:1/N(8)), 7(ta/ N)(3))
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The proof for the rule (6.5) is similar. O

If some total polarity 7 is used in the role of the set-polarity in Definition 6.10,

then we get a simpler basis for S.

Proposition 6.12 Assume that 7 is a total strict polarity. Then S, is based by the

following aziom and inference rules.

F{z,z) (6.6)
(z,9), (y,2) F (2, 2) (6.7)
(z,y) F (A(=/z:), Ay/x:)) (6.8)

for every A € A such that +1 € 7(A,%) and

(z,9) F (My/z:), Mz /=) (6.9)
for every A € A such that —1 € 7(,1).

Proof. All of the above rules are included in the basis given in Definition 6.10. So
it suffices to show that the rules (6.4) and (6.5) are derivable from the rules given
in the proposition. Let ¢ be a term and N C Occ(?). Since 7 is a polarity, to verify
(6.4) and (6.5) we may assume that N = {v} for some v € Occ(t). If ¢ = A, for some
A € A, then (6.4) and (6.5) are (6.8) and (6.9), respectively and there is nothing to
prove. Suppose that ¢ = A(¢1,...,%,) for some n ary A € A and some terms ¢1,...,1%,,
such that (6.4) and (6.5) are derivable for t;, : = 1,...,n in the role of {. Suppose
that v = kp, for some k£ < n and p € Occ(t;), some ¢ = 1,...,n. By (SUBST),
w(t,v) = {+1} iff n(t,v) = w(A, k) and =(t,v) = {1} iff =(t,v) # =(\ k). By

{z,y) N Can {z,y) i
Wl tlpga) TGk = i and g e

the induction hypothesis,
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7(ti, 1) = {—1}. Let u = t;[z/p],v = t:fy/pl, if #(t;, 1) = {+1} and u = ¢;[y/u],v =
ti[z/p), if w(t;, 1) = {—1}. Now applying the rule (6.4), if #()\, k) = {+1}, or (6.5) if

7(A, k) = {1}, with u in the role of z and v in the role of y, we get

(z,y)
(tlz/v], tly/v))

if 7(t;,v) = {+1}; and
{z.9)
(t[y/v],tz/v])

if m(t,v) ={-1}. O

Definition 6.13 Let S be a 2-deductive system. Then S is called a quasi-ordering
system if ks (z,z) and (z,y),{y,2) Fs (z,z). Let © be a set-polarity. A quasi-

ordering system S that satisfies 6.8 and 6.9 is called a T-quasi-ordering.

Note that S is a w-quasi-ordering iff § is an extension of S,. In particular, S; is
the smallest 7-quasi-ordering system. According to Definition 2.23, an S;-matrix
is a A-algebra with a reflexive and transitive relation < such that for all elements

a,b € A, and sequences ¢ of eiements of A

(a,b) € < = (Ha/N)(@), tB/N)(@) € < (6.10)
for every A-term ¢ such that +1 € =(¢, N); and

(2,5) € < = {LB/N)E), He/NHE) € <

~~
(2]
ra
[y
~—

for every A-term ¢ such that —1 € =(t, V).

In other words, if < is a Sy-filter on a A-algebra A, then < is a quasi-ordering

on A that agrees with .
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Definition 6.14 For any 1-deductive system S, let C = (Ca : A-algebrasA) be
the standard system of (S, S )-compatibility relations (Definition 5.10), i.e., for each
A-algebra A, a,be€ A, F € Fis(A), {{a,b),F) € Cp iffa€c F=>be F. Let A be
a A-algebra, let F be a S-filter on A, and let © be a quasi-ordering on A that agrees
with the set polarity . We say that © is compatible with F if © is C-compatible
with F, i.e., when for all elements a,b of A, if (a,b) € O, thena€ F = be F.

It follows from Definition 5.15 and Theorem 5.18 that for every A-algebra A
and every S-filter F' on A, the largest quasi-ordering on A that agrees with = and is

compatible with F', exists.

Definition 6.15 Let A be a A-algebra and let F be a Sy-filter on A. Then Q™ (F) =
Q% (F) is the largest Sy-filter on A that is compatible with F. Thus Q7(F) is the
largest quasi-ordering on A that agrees with polarity # and is compatible with F. Also,

for every A-algebra A this defines an operator O} : Fis(A) — Fis (A).

Proposition 6.16 For every A-algebra A and every S-filter F on A, we have {a,b) €
Q7 (F) iff for every A-term t, N C Occ(t), for every sequence ¢ of elements of A in-

dezed by the variables occurring in t outside of N, we have
If +1 € n(t,N) then t(a/N)(C) € F = t(b/N)(C) € F and (6.12)

~1 en(t,N) then t(b/N)(c) € F = t{a/N)(c) € F. (6.13)

Proof. By Lemma 5.16 and Theorem 5.18.
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Recall (Definition 6.8) that a total polarity = is positive iff for every A € A, for
every k < p{)), we have +1 € w(A, k) and negative iff for every A € A, for every
k < p(A), we have —1 € w(A, k).

If 7 is a positive polarity, then the condition (6.8) becomes the condition (R')
of equational deductive system B (Definition 2.19) and S, differs from B in that S;

does not have the symmetry axiom (S). In particular,
Proposition 6.17 Let 7 be a total polarity and let A be a A-algebra.

1. If w is positive, then every equivalence relation on A which agrees with 7 is a

CONgruence.

2. If © is negative, then every equivalence relation on A which agrees with = is a

congruence.

Proof. For the proof of 1., suppose that O agrees with #. Since 7 is total, for every

A € A and for every k£ < p(A), +1 € w(A, k). By (6.4), a©b implies that
/\(clv cer 3 Cha15GyChy - -y Cp(l\)—l)e/“(cla e ooy Ckm1, b’ Ckyer ey cp(.\)—l)'»

for all A € A, all a,b,¢1,...,¢,0)-1 € A. Since A and k are arbitrary, it follows that

O is a congruence. 2. is proved similarly. O

Lemma 6.18 If 7 is a total polarity, then for every A-algebra A and for every S-
filter F on A, the Leibniz operator Qa (F) = Q3 (F) N (Q3(F))~".

Proof. We first verify that Q(F) C Q7(F). If {a,b) € Q(F), then for every term
t and an occurrence v € Occ(t), we have t(a/v)(¢) € F iff t(b/v)(¢) € F. Thus
in particular, if +1 € =(t,v), then t(a/v)(¢) € F implies {(b/v)(¢) € F; and if
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—1 € 7(t,v), then ¢(b/v)(&) € F implies {(a/v)(&) € F. Hence Q(F) C Q~(F).
Therefore also Q(F) = (Q(F))™ C (Q™(F))™. So QF) C Q™ (F)n (Q~(F))™.

On the other hand, if 7 is total, for every term ¢ and occurrence » € Occ(t),
t is either positive or negative in v. Suppose that (a,b) € Q7(F) N (Q7(F))7}, i.e,
(a,b) € Q7(F), (b,a) € O7(F) and assume that t(a/v)(c) € F. For +1 € (¢, N) this
implies t(b/v)(¢) € F, by (a,b) € Q7(F) while for -1 € =(t,N), t(b/v)(E) € F
follows from (b,a) € Q7(F). We have shown that t(a/v)(¢) € F and (a,b) €
Q"(F)N (Q"(F))™! implies t(b/v)(c) € F. By symmetry of Q7(F) N (Q7(F))™!,
also t(b/v)(€) € F and (a,b) € Q*(F)N(Q"(F))~! implies t(a/v)(c) € F. This shows
that Q7(F) N (Q7(F))™ C Q(F). O

Let IT be one of the operators Q7, (7)1, Q™N(N7)~1, 0. We say that II is respec-
tively monotone, continuous or injective iff it is monotone, continuous or injective,

respectively, on the S-filter-lattice of every A-algebra.
Lemma 6.19 Let S be a 1-deductive system and let 7 be a set-polarity. Then
1. If Q™ is monotone then (Q7)~! and Q™ N (Q™)~! are monotone.
2. If O™ is continuous then (7)~! and Q™ N (Q7)~! are continuous.
In particular, if = is a total polarity then
3. If Q™ is monotone then Q is monotone.
4. if Q7 is continuous, then Q is continuous.

Proof. Clearly, O7(X) C Q7(Y) implies (Q7(X))™! C (Q7(Y))"! and therefore
implies Q7(X) N (Q7(X))™! C O7(X) N (Q7(X))~. The first claim follows.
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For the second claim, let I be a directed set and let F = {F; : 7 € I} be a family

of S-filters on some algebra A. Observe that the following statements are equivalent.
(i) (a,) € (Q7(VF))™
(ii) (b,a) € Q"(VF)
(iii) (b,a) € Vies Q" (F:) = Uies ¥7(F%), by continuity of Q7
(iv) {(a,b) € Uies (V" (F))".

This shows that (27)~! is continuous, if Q7 is. Therefore

@ @)V O(F) = (VE)n@(V(EF)™

i€l i€l el

= Va(F)n\/ (@ (F)™

1€l i€l

= U ) nJ @ (F)™

i€l i€l
= U Q" N Q7)) HF).
el
This shows the second claim. Claims 3. and 4. follow from 1. and 2. and
lemma 6.18. O
We conclude this section with two questions to which we would like to know the

answer.

Questions Let © be a total polarity.
1. Does the injectivity of 2™ imply the injectivity of Q7

2. Do the continuity and injectivity of Q7 jointly imply the injectivity of 07
piy J Yy
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6.5 Operators ) and Q;

Let § be an arbitrary but fixed 1-deductive system.

Definition 6.20 Let A be a A-algebra and let F be an S-filter on A. Then
Q(F) = {(p,9) : ¥ € Fe®(F U {p})}
In particular, if A = Te and T is an S-theory, then
O (T) = {{z,9) : T,z Fs v}
Lemma 6.21 For every deductive system S

1. The operator Q- is continuous.

2. If S has theorems, i.e., Cns(0) # 0, then Q- is injective.

Proof. Let A be a A-algebra and let {F; : 7 € I} be a directed family of S-filters on
A. Let (a,b) be a pair of elements of A. For 1. we need to show that
(a,b) € (| Fi iff (a,0) € J(U(F)).
i€l i€l

But (a,b) € Q-(Uier Fi iff b € Fg(Uier Fi U {a}). Since S is finitary (Definitions 2.4,
2.5 and 2.6), this last statement is equivalent to b € Fg(V;c; F; U {a}), for some finite
J C I. Since the family { F; : 7 € I'} is directed, this is equivalent to b € Fg(F;U{a}),
for some j € I, which in turn is equivalent to {a,b) € U;;(Q-(F})), t.e., 1. holds.
For 2., let @ be an element of A that is contained in every S-filter on A. Such an
a exists, by assumption that Cns(f) # 0. Assume that for some S-filters F and G
on A, Q(F) = Q(G). Then for every element b € A, b€ F iff b€ Fg(F U {a}) iff

{a,b) € U(F) iff (a,b) € U(G) iff be Fg(GU {a}) iff b€ G. Hence F=G. O
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Lemma 6.22 Let 7 be a set-polarity. If Q™ is monotone then Q™ C Q.

Proof. Let A be a A-algebra and let F € Fis(A). Suppose that (a,b) € Q7(F). By
monotonicity of Q7 also {a,b) € Q" (Fg®(FU{a})). By compatibility of Q= (Fg®(FU
{a})) with Fg®(F U {a}), b € Fg*(F U {a}). Hence (a,b) € Q-(F). O

Definition 6.23 For a given set I of binary formulas, an algebra A and an S-filterF
on A, define
Q(F):={{a,b) : I(a,b) C F}.

For example, if £(z,y) is a system of congruence formuias for a protoalgebraic system

S, then Q = Q (Theorem 3.15).

Lemma 6.24 For every finite set of binary formulas I, the operator Q; on the lattice

of S-filters of A ts continuous.

Proof. Let F = {F; : i € J} be a directed set of S-filters on A. We need to show
that Q;(VF) = Vies (F).
But since {F; : ¢ € J} is directed, and I(a,b) finite, I(a,b) C VF iff there is

¢ € J such that I(a,b) C F; and the claim follows. O

Definition 6.25 LetS be a fizred 1-deductive system and let I(z,y) be a set of binary

formulas.

1. I is reflexive over S if

ks I(z,z) (6.14)
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2. I is transitive over S if
I(z,y),](y,z) I_S I(.’L’,Z) (615)

3. I is a modus ponens (MP) system over S or has detachment property

over S if

The rule (6.16) is called modus ponens or detachment rule.

4. Iis a Deduction Theorem (DT) system over S if, for every set GU{, ¥}

of formulas,

L o bs ¢ implies T ks I(p,%). (6.17)

5. I is a Deduction-Detachment Theorem (DDT) system over S if it has
both (MP) and (DT), i.e., for every set I'U {p, ¥} of formulas

Lors & ff Ths I, ). (6.18)

We say that S has the (MP) rule, (DT) or (DDT), with I, if I is a set of
binary formulas that is a (MP), (DT), (DDT) system over S.

Note also that any set of equivalence formulas is a reflexive (MP) system. but in

general is not a (DT) system.

Lemma 6.26 Let I be a set of binary terms. Then 4 = Qp iff I is a DDT system
for S.

Proof. Immediate by definitions. O
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Definition 6.27 Let S be a 1-deductive system, & a set-polarity, and I(z,y) a set of

binary formulas. We say that I is monotone over 7 and S if for all t € Te, N C
Occ(t), if +1 € 7(t,N), then

I(:l:,y) l_5 I(t(.’L‘, é‘)7t(y7‘€")) (619)
and for every term t and N C Occ(t) such that —1 € =(t, N)

I(z,y) ks 1(i(y, 2), t(z, 2))- (6.20)

Definition 6.28 Let 7 be a set-polarity and I(z,y) a set of binary formulas. Then

I has polarity over 7 if for each t € I either

-l en(t,z) or +1 € w(t,y). (6.21)
Proposition 6.29 Let = be g sct-polarity and let I{z,y) bc a sct of binary formulas.

1. If I is reflezive over S and has polarity over # and S, then Q™ C .
2. If I is a reflexive, transitive, monotone (MP) system over S then Q; C Q7.

3. Hence if I is a reflerive, transitive, monotone (MP) system over S and has

polarity over S then Q5 = Q"

Proof. For the first statement, let A be a A-algebra and let F' be an S-filter. Suppose

that (a,b) € Q7(F). Since I is reflexive, I(a,a)U I(b,b) C F. Let t(z,y) € I(z,y).
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Since I has polarity over = and S, either +1 € =(t,y) or —1 € #(¢,z). In the first
case, t(a,a) € F implies t(a,b) € F, and in the second case, t(b,b) € F implies
t(a,b) € F. So I(a,b) C F and (a,b) € Qi(F).

For the second statement, let A be a A-algebra and let F' be an S-filter. ; is
reflexive and transitive, by reflexivity and transitivity of I. Since I is a (MP) system,
(a,b) € Q(F),a € F imply b € F, i.e., Q(F) is compatible with F. Suppose that
(a,b) € Q(F). Then I(a,b) C F. Since I is monotone over = and S, then for every
term t, and N C Occ(¢) such that +1 € = (¢, N), we have I(¢(a/N,<),t(b/N,c)) C F,
for all ¢ C A. Similarly, for for every term ¢, and N C Occ(t) such that —1 € =(¢, N),
we have I(t(b/N,¢c),t(a/N,c)) C F, for all ¢ C A. Hence §; agrees with w. Since
Q7 (F) is the largest quasi-ordering compatible with F' that agrees with =, Q(F") C
Q"(F). O

By Proposition 6.29, if a set of binary formulas I(z,y) is reflexive, transitive,
monotone and has the (MP) property, then Q; C Q7. The next proposition says that

also conversely, this inclusion implies that I(z,y) has the (MP) property.

Proposition 6.30 Let S be a 1-deductive system and let I(z,y) be a set of binary

formulas. Then
1. If Q; C Q7, then I has the (MP) property.

2. If I is reflexive, monotone and transitive then Q; C Q7 iff I has the (MP)

property.

Proof. Let T = Cns(z,I(z,y)). If @y C Q7, then (z,y) € Q;(T) C Q7(T). Since

also z € T, then by compatibility of Q7(T') with T', y € T follows, i.e., I{z,y),z Fs y.
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This proves 1. The condition 2. follows from the condition 1. and Proposition 6.29,1.

]

Proposition 6.31 Let S be a 1-deductive system and let = be a set-polarity. If a set

of binary formulas I has polarity over m and S and is monotone over = and S, then

I is transitive.

Proof. We need to show that I{z,y), I{y,z)Fs I(z,z). Let t(z,y) € I(z,y). Since
I has polarity over = and S, either +1 € 7 (¢,y) or —1 € =(¢,z). Suppose that the

former is the case. Since I is monotone over 7 and S,

I(y, z),t(z,y) Fs t(z, 2).

I(z,y),I(y, ) ks t(z, 2). (6.22)
In the second case, i.e., when —1 € =(t,z),

I(z,y),4(y, 2) ks #(z, 2)
and therefore 6.22 aiso hoids. T

Corollary 6.32 Let S be a 1-deductive system, let © be a set-polarity and let I be

a set of binary formulas. If I is a reflexive, monotone (MP) system over S and has

polarity over S then O = Q7.
Proof. By Propositions 6.29 and 6.31

Proposition 6.33 Let S be a deductive system and let © be a set-polarity. If there
exists a reflexive (MP) system over S that has polarity over = and S then Q7 is

monotone.



194

Proof. Let A be a A-algebra and let F, G be S-filters on A. It suffices to show that
if F' C G, then Q7(F) C Q7(G). Assume that F' C G and, for some elements a, b of A,
(a,b) € Q7(F) and a € G. By Proposition 6.29, Q™(F) C Q;(F), so I{a,b) C F C G.
By (MP), b € G, which finishes the proof that Q7(F') is compatible with G. O

6.6 Monotonicity Theorem

Recall (Theorem 3.10) that, for a deductive system S, S has a system of equiv-
alence formulas iff the Leibniz operator (s is monotone. One of our hopes was to
prove a similar result characterizing deductive systems with some sort of a system
of implication formulas, to be yet properly defined, by the monotonicity of QZ. By
a method similar to that used in [4] to prove the version of Theorem 3.10 for 1-de-
ductive systems, we will prove in this section that if Q% is monotone, then a system
of (MP) and reflexive formulas exist (Theorem 6.34). This makes a system of (MP)
and reflexive formulas natural candidates to be called implication systems. In distinc-
tion to Theorem 3.10, however, the converse of Theorem 6.34 is false (Example 6.3).
Moreover, every equivalence system is reflexive and (MP), but not every equivalence
system is what we would like to call “implication” system (Example 6.3). In sec-
tions 6.9 and 6.10 we show that under some special condition on the system S and
polarity 7, we can prove a converse to Theorem 6.34. The question, whether if = is

strict and total, then Theorem 6.34 has the converse, is open.

Theorem 6.34 Let us fir a language A and a set-polarity =. Let S be a 1-deductive
system and suppose that the operator Q7 : Ths — Ths_ is monotone. Then there is

a finite system of reflexive (MP) formulas over S.
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Proof. Let
T := {y(z,y) € Tea : ks v(z,z)}
First observe that T is an S-filter on Te(z,y). For suppose that T ks 7(z,y). Then,
by structurality, T(z,z) Fs 7(z,z), where T(z,z) is the result of substituting y for
z in every term of T. But by the definition of T, every element of T'(z,z) is a
theorem of S. Hence also 7(z,z) is a theorem of S. Therefore 7(z,y) € T, by the
definition of T again. We have shown that T is an S-theory. We next claim that
(z,y) € Q°(T). To show this, consider a term 7(z,u;,...,u,), where m is some
number and 2, uy,...,u, are some variables. Now substitute first z for z and some
elements t;(z,y) of Te(z,y) for u;’s and assume that 7(z,t1(z,y),...,tn(z,y)) € T.
Next, substitute the same terms for u;’s but y, rather than z, for z. In order to show
our claim we need to show that also 7(y,#1(z,y),...,tn(z,y)) € T. Call this last
term v(z,y), i.e.,
1(@,9) = (5, 54(2, )y s 2, 9).

From our assumption that 7(z, ¢ (z,y),...,tn(z,y)) € T it follows that also
T(z,t(z, 2),...,tu(z, 2)),

which is equal to ¥(z,z), is a theorem of S. Hence y(z,y) € T, as desired. This
finishes the proof that (z,y) € Q7(T).

By monotonicity of " we have that also (z,y) € Q7(T V Cng(z}). But since

T\ (Ow
Ll § L)

<

But this implies that there is some finite set I(z,y) C T such that

I(if’y)’x}'.s Y,
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i.e., (6.16) holds. Also, since I C T, by definition of T the condition (6.14) holds.

This finishes the proof of the theorem. O

Example 6.3 Let A consist of one binary symbol « and let £ be the deductive sys-

tem, called the deductive system of equivalential logic, determined by the following
axiom and rule
(zey) o (z0y) < (ze2)
z,z ey
—

It can be proved that k¢ ¢ < y. Hence the set of binary formulas {z < y} is
reflexive and (MP). In particular, Q¢ is monotone. Let 7(t, N) = 0, for all ¢ € A and
all N C Occ(t). Then, by Proposition 6.16, (a,b) € QF(F) iff a € F is equivalent
to b € F. Therefore in the algebra Te(z,y), (z,y € Q§(Fg;re(z'y)((0)), while (z,y) €

Q”(Fgge(x’y)(x)). Thus Q7 is not monotone.

If = is a total polarity then Theorem 6.34 is a corollary of Theorem 3.10 and
Lemma 6.19, (4). Let us notice that in the proof of the above theorem it really is
inessential if we use Q7 or §). Moreover, in the role of Q™(7T") we do not need to take
the largest S;-filter compatible with 7- it is enough that it is compatible.

Let us also observe that the properties (6.14) and {6.16) are exactly the defining
properties of equivalence formulas. Thus in particular, we have the following corollary
to the monotonicity theorem 6.34 and the representation of equality Theorem 3.10.

This corollary improves Lemma 6.19, (3).

Corollary 6.35 If Q™ is monotone then also Q is monotone.
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Proof. By 6.34, if Q™ is monotone then there is a finite set I(z, y) of binary formulas
satisfying (6.14) and (6.16). But then I is also a set of equivalence formulas and
therefore by Theorem 3.10, we conclude that €2 is monotone. O

Example 6.3 shows that for a 1-deductive system S, Q% does not need to be
monotone, even if (s is monotone.

Open question Is there a property P of sets of binary formulas, relative to a
deductive system S, such that the formula z — y satisfies this property relatively
to at least some well-known deductive systems with implication and such that for a
1-deductive system S, Q% is monotone iff S has a set of binary formulas satisfying
P?

In the next section we turn to stronger conditions on Q% and, therefore, to

conditions stronger than just monotonicity, on 3.

6.7 Definition of m-implication

A main issue here is when do we want to call a system of formulas an implication
system. We want this concept to be general enough to apply at least to all deduc-
tive system defined in the literature that have some implication connective. On
the other hand the conditions on an implication system should be strong enough to
distinguish it from an equivalence in those deductive systems as well as strong enough
to guarantee that Q7 is injective and continuous, or at least that it is monotone.
We considered the monotonicity of 25 in the previous section. So let us now turn
to systems of formulas the existence of which is guaranteed by the continuity and

injectivity of Q7.



198

Definition 6.36 Let S be a 1-deductive system and let I(z,y) be a set of binary

formulas. Then I(z,y) ts called a m-implication system if I is reflexive, transitive

(MP) and monotone over * and S.

Recall that for a class K of Sy-matrices, S is the 2-deductive system determined

by the rules that are valid in every matrix in K. We write |=x for Fs,..

Definition 6.37 Let S be a 1-deductive system and let = be a set-polarity. Then
a class K of Sy-matrices is a m-quasi-ordered algebraic semantics for S if the

systems S and Sk are equivalent (Definition 5.1).

Since the S,-filters are quasi-orderings, we will use the symbol < for the only predicate
of the language of S; and we will write an Sy-formula (¢, s) as the inequality ¢ < s.
If £ and & are finite sequences of unary terms of the same length, then 4(t) < )
stands for the set {&;() < e(t) : i = 1,...,n}, where § = {6 : i = 1,...n},
E={&:1=1,...,n}. If X is a set, then (g(X) < (X)) is the union of all sets

-

(6(z) £ €lz)), where z € X. If I(x,y) is a set of binary formulas, then
I(8(), &18)) = {@(6:(1),&i(t)) :i = 1...,n,0 € I}.

Proposition 6.38 Let S be a 1-deductive system and let 7 be a set-polarity. Then S
has an T-quasi-order algebraic semantics iff there is a set I(z,y) of binary formulas,
and a system §< &= (6; < & 1= 1,...,n) of inequalities, where é;,¢; are unary
terms, such that I is reflexive, transitive and w-monolone and moreover

-

z ks 1(8(z) < &z)).

Proof. By Definition 5.1 with I(z,y) := v(z,y) and 7(z) := {&i(z) < ei(z) : 7 =

l,...,n} O
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The following theorem is a corollary to Thm 5.26.

Theorem 6.39 Let S be a 1-deductive system and let © be a set-polarity. Then the
operator (1% is injective and continuous iff S has a 7-quasi-order algebraic semantics,
i.e., there exists a class K of Sy-matrices, a finite set I of binary terms, and two finite

sequences of unary terms §,& such that

z ks I(8(z),&(z)) (6.23)
Blexa < B iff {J(7,¢): 7 < (€ @} Fs I(a,B) (6.24)

Moreover,
Q= (6.25)

Proof. By Corollary 5.26 with the translation 7 defined by 7(z) := {6:(z) < &:(z) :

i=1,...,n} and the translation v defined by v(z,y) := I(z,y). O

Corollary 6.40 Let S be a 1-deductive system and let © be a set-polarity. If QF is

injective and continuous, then S has w-implication.

Definition 6.41 Let S be a 1-deductive system and let © be a set-polarity. Then a
set I(x,y) of binary formulas is called algebraizable r-implication if Q" = Q; and

there is a system g(:c) < &) of inequalities such that the conditions 6.23 and 6.2/
hold.

Corollary 6.42 Let § be a 1-deductive system and let = be a set-polarity. Then
Q7 is injective and continuous iff S has an algebraizable w-implication. If a set of
binary formulas I{z,y) is an algebraizable 7-implication for S, then I(z,y) is also a

x-tmplication for S.
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Proof. The first statement follows directly from the algebraization theorem. For
the second statement, let I(z,y) be an algebraizable w-implication. The fact that
I(z,y) is reflexive, transitive and monotone follows from (6.24) and the conditions
(6.2)-(6.8) of the definition of S, Definition 6.10. Since ™ = Q;, then Q;(Cns, (I'))
is compatible with Cnr), where T' = Cng(I(z,y),z). But (z,y) € ©;(Cns(T')) and
z € Cng(T). Therefore y € Cns(I(z,y),z),i.e., I is MP. O

Lemma 6.43 If I(z,y) is a system of algebraizable implication formulas, then Q1 C
Qr.

Proof. Recall that Q;(F) is an S;-filter compatible with F'. Since Q"(F') is the

largest Sy-filter compatible with F', the inclusion follows. O

Lemma 6.44 If I is a set of algebraizable implication formulas, then the operator

5 is injective and continuous.

Proof. Continuity of €; has been proved in lemma 6.24. Let now Q;(F) = Q,(G),
for two S-filters on an algebra A. Then for all a,b € A, I(a,b) € F iff I(a,b) € G.
Let a € F. By (6.23), I(8(a),&la)) C F. Therefore also I{§(a),&(a)) € G and by
(6.24) again, z € G. O

Theorem 6.39 fully characterizes the 1-deductive systems with algebraizable im-
plication as those satisfying the conjunction of 6.23, 6.24 and Q = Q;. The first two
of these conditions refer to the existence of formulas with certain properties, while
the third one is of a different nature. It is natural to ask whether a theorem similar
to Theorem 6.39 would hold, if we dropped from the right-hand-side the condition

that Q7 = Qy, i.e., whether (6.23) and (6.24), possibly with the assumption that
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I is MP, imply that Q7 is injective and continuous. Unfortunately, this is not the
case as witnessed by Example 6.3 above. Recall that the Q™ considered there is not
monotone. Hence it is not continuous. However the systems I(z,y) = {z < y} and
§(z) = {z}, e(z) : {z & z} satisfy (6.23), (6.24) and I is (MP).

The question whether there are some syntactical properties of I that imply (in
addition to being implied by the fact) that Q7 is injective and continuous, is open.
In the next sections we turn to some additional conditions on polarity or system S
that allow to characterize the continuity and injectivity of Q7 in purely syntactical

terms.

Our goal is to find a set of properties P on polarity 7 or on Q7 and a set
of properties @ of I(z,y) such that first, the properties @ distinguish implication
from equivalence, second, Q7 is injective and continuous and P holds iff S has an
algebraizable system of implication formulas satisfying @ and third, Q7 is monotone
and P holds iff S has a system I of MP reflexive formulas satisfying @). Moreover
we would like @ to be such that for every deductive systems with implication I
considered in the literature, I has (). The problem is still open. The next three

sections present some partial results.

6.8 Condition I(z,y) Vs I(y,z)

I(z,y) Vs 1(y, ) (6.26)

clearly distinguishes implication from equivalence in all standard systems. We ob-

tain a version of the algebraization theorem for I satisfying (6.26) together with its
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converse. However we do not have any interesting version of the monotonicity the-
orem, other than Theorem 6.34. Clearly, such an implication system cannot be an
equivalence system, which solves one of our problems. We obtain a version of the
algebraization theorem for this implication. We still do not know, however, whether

the converse to this theorem holds.
Lemma 6.45 If Q™ = Qy, then Q7 # (™)™ iff I(z,y) Vs I(y,z).

Proof. Q7 # (Q7)7' iff Q~(T) # (27(T))7?, for some S-theory T iff Q;(T) #
Q;~Y(T), for some S-theory T iff for some terms ¢,s, I(t,s) C T and I(¢,s) € T, for
some T iff I(z,y) /s I(y,z). O

Theorem 6.46 Let S be a 1-deductive system and let © be a polarity function. Then
Q" is continuous, injective and Q™ # (™)~ iff there exist sequences of unary terms
§,& of the same finite length and a finite set I of binary formulas such that (6.23)-
(6.24), Q" = Q; and

I(z,y) Vs I(y, z). (6.27)

Proof. Suppose that 27 is continuous, injective and that Q™ # (Q7)~!. The existence
of 1,8 and € such that (6.23)-(6.25) follows from theorem 6.39. (6.27) follows from
lemma 6.45.

On the other hand if the conditions on the right hand side hold then in pa

Q" = Q; and therefore by lemma 6.44 ) is continuous and injective and Q7 # (Q7)!

by lemma 6.45. O
Thus the condition Q7 # (27)~! is strong enough to imply that the set of impli-

cation formulas cannot be an equivalence system. We however do not know if the
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existence of a m-implication satisfying (6.27) implies that Q™ is injective, continuous
and Q7 £ (Q™)~L.

Another question is the following:
Question If Q" is monotone and Q" # (Q7)7!, does it follow that & has a Mp

reflexive system satisfying (6.27)?

6.9 Condition y Fs I{(z,y)

In this section we define some set-polarity 7, which depends on the system S.
We obtain versions of algebraization and monotonicity theorems, with converses. A
dark side of this approach is that the applications are too limited. For example, our

theorems do not apply to relevance logic.

Definition 6.47 For every tree T and a set N of leaves of T let +1 € 7,(T,N) iff
z ks T[z/N][2], where Z is a sequence of variables different of z, indezed by the leaves

of T that are not in N. Assume further, that —1 & =(T, N) for any pair (T, N).

Let us notice that if S is the deductive system of classical, intuitionistic or (BCK+A)
logic, then m,(A,1) = 0, hence 7, is not the standard polarity defined before. Of
course, also the polarity for the connectives of negation and implication in the first
component is not stndard, by the assumption that = is positive. The implication in
the second variable is positive for classical, intuitionistic and (BCK) (also with A)
logics as well as for all logics in which z F y — z. However for the implication of

the relevance logic, 7, is not standard, since y /s £ — y in this logic and hence
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We will write z +s T[z/N] if z ks T[z/N][Z] for every sequence of variables =

indexed by the leaves of T that are not in N.
Proposition 6.48 The function 7, defined in definition 6.47 is a set-polarity.

Proof. The condition (ROOT) of definition 6.5 clearly holds for 7,. To check the
condition (SUBST), let T and S be two A-trees and let N and M be some sets of
leaves of T' and S, respectively. Notice, that by Definition 6.47, (T, N)U=(S, M) C
{+1}. Suppose that +1 € =(S,M) and +1 € «(T,N). Then z ks s[x/M] and
u ks tfu/N]. Taking in the role of u S[z/M][Z], we get = Fs T[S[x/M]/N]. Hence
z ks T[S/N][z/MN]. Thus +1 € #(T[S/N]{z/MN],NM). O

It follows from the definition of 7, that if t = t(z,Z) is a term and = is a variable
occurring in ¢, then #(¢,0, ) = {+1} iff z F-s t(z, ). Recall that =(¢,z) = 7 (¢, Or.z),
for a term ¢ and a variable = occurring in {. Note also that 7 is not neéessary total
and that = is positive.

Let now S be a fixed 1-deductive system and let 7 = 7, for S.

Lemma 6.49 Let A be a A-algebra and let a,b be elements of A. Let F be an

S-filter on A. Then {(a,b) € Q7(F) iff for all € = ¢;,...,¢n, every t,S such that
+1 € 7p(t,5), we have

tla/S)[¢) € F = t[b/S][c] € F.

6.9.1 A version of equivalent semantics theorem for 7,

Recall that we say that a A-term { is positive in a variable z if +1 € ns(t, ).
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Lemma 6.50 Suppose that © = 7, and let F be a S-filter on a A-algebra A. Then
Ax F CQ7(F).

Proof. By lemma 6.49, we need to show that for every term ¢ positive in z, for all

a,b e A we have :
If b € F then t(a/z,¢) € F = t(b/z,¢) € F.
But if ¢ is positive in z, then z ks t and therefore t(b/z,¢) € F,ifbe F. O

Lemma 6.51 Let «# be an arbitrary set-polarity. Suppose that Q" = Qj for some

system of binary formulas I(z,y). Then y ks I(z,y) iff for every A-algebra A and
every S-filter F on A

I(Ax F)C F and Ax F C Q7(F)

Proof. The “only if “ part follows directly from lemma 6.50 and our assumption
that {I" = {Z;. To get the “if  part let A be the term aigebra and F the S-theory
generated by y. Then, by assumption, (z,y) € Q"(F) = Q;(F) which means that

I{z,y) CCns(y). So I(AX F)CFand Ax FCQ"(F). O

Theorem 6.52 Let S be a I-deductive system and let @ = %,. Then for every A-
algebra A and S-filter F' of A the operator Q7 is injective, continuous on the lattice of

S-filters of A iff there exists an algebraic implication system satisfying the condition

y ks I{z,y). (6.28)
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Proof. Assume first that there is a system of algebraizable implication formulas
such that (6.28) holds. For every t € I let O, := O, i.e., the set be the set of
all occurrences of y in #(z,y). It follows from definition 6.47 that =(¢,0;) = {+1}.
Therefore, by lemma 6.29 we know that Q™ = Q;. Hence on every A-algebra A, Q7
is injective and continuous, by lemma 6.44.

If Q7 is injective and continuous theorems 6.42 and 6.39 imply that there is a
finite system I(z,y) of algebraizable implication formulas and that Q™ = ;. The

condition (6.28) follows from lemmas 6.50 and 6.51. O

6.9.2 A version of monotonicity theorem

Theorem 6.53 Let & be a 1-deductive system and let 7 = m, be as above. Then

Q7 is monotone iff there exrists a system I(z,y) of reflexive MP formulas that satis-

fies (6.28).

Proof. If I satisfies the conditions on the right-hand side of the equivalence, then

the I{z,y) is positive in y and Q7 is monotone by lemma 6.29. On the other hand,

if Q7 is monotone, then let
D i= {t(a.y) € Te(z,y) : +1 € 7(t,y) and Fs t(e. )},

Let T := Cns(I'). We claim that (z,y) € Q7(T'). For suppose that we have a term
s(u,vi,...,v,) that is positive in u and let ¢,..... t» be some elements of Te(z.y).
i.e., for every i = 1,...,n, t; = t;(z,y) is a term. Suppose that s(z,t1,...,8,) € T

and let t(z,y) := s(y,ti(z,y),-..,ta(z,y)). We want to show that also #(z,y) € T.

But s(z.t1,...,t,) € T implies that s t(z,z) and s positive in v means that u Fs
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s(u,v1,...,v,) and therefore y ks ¢(z,y). Hence ¢t(z,y) € T, which finishes the proof
of our claim.

It follows from the claim and the monotonicity of Q7 that (z,y) € Q7(TVCns(z))
and therefore I', 2 b5 y. So there exists a finite set I(z,y) C I such that I(z,y),z ts

y. Since I C T, the other two properties of I follow. D

6.9.3 Some remarks

Defining set-polarity the way we did in this section has the advantage that we
are able to prove both the algebraization theorem and the monotonicity theorem in
both directions. Also, the condition y s I(z,y) distinguishes the implication system
from the equivalence systems.

On the other hand the strong condition in the definition limits the applications.
Also, since 7, is not total, we can’t, in general prove, that Q" N (Q7)~! = Q.

We could of course “make” , total by saying that m,(¢, N) = {—1}, whenever
it is not {+1}. This, however, would limit our applications yet further. For example,
with this new definition, the classical connective A would have negative polarity in
both occurrences. But then Q7 # Q;, where I is the singleton set consisting of the
implication connective, because (z,y) € Q7(F) would then imply (y A z,z A z) €
Q7(F), while (z,y) € Q;(F) does not imply (y A z,z A z) € Q;(F). This is the main

reason why we have chosen def. 6.47 as the definition of =,.

6.10 Polarity entailment defined

One of the most tempting “corrections” to algebraizability, and also monotonicity

theorem is to tie the polarity more strongly to the deductive system S. Here we
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consider some strong conditions on polarity determined by the entailment relation of
S. The converses to both algebraization and monotonicity theorems are immediate
under these strong assumptions. It turns out, however, that because of the strength
of the assumptions, the results of this section apply only to deductive systems with

Deduction-Detachment Theorem.

Lemma 6.54 Let S be a I-deductive system and assume that for every term t and a

set N C Occ(t) at most one of the two conditions below holds for every S-theory O:

x, @ I‘s Yy (6 _)9)
t{z1,...,20)[2/N], O Fs l(z1,. .., 2n)[y/N] ’
z,0Fsy (6.30)

t(z15-.-,2k)[y/N], O ks t(z15-- -, zn)[z/N]
Let w be the function defined b for a tree T and a set N of occurrences of variables

in t by

+1 € n(T,N) iff (6.29)
holds for t = T[z/N][Z] and all S-theories © and

-1 en(T,N) iff (6.30)

holds for same t as above and all theories © . Then 7 is a lolal polarity.

Proof. It is straightforward to check that = satisfies conditions (ROOT) and (SUBST).

O

Definition 6.55 Let S be a I1-deductive system satisfying the assumption of the
lemma. Then the polarity - satisfying the the conclusion of the lemma is called

the polarity entailment defined .
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Remark If S is the deductive system of classical or intuitionistic logic then x coin-
cides with the standard polarity. As we shall see in a moment, the implication of BCK

logic is neither positive nor negative, with respect to 7, in any of its components.

Proposition 6.56 Let S be I-deductive system and let I be a finite set of binary

formaulas.

1. IfI is a DDT system for S, then for everyt € I, t is positive in y and negative

in T, with respect to m-. Moreover,

2. If I is a system of reflexive formulas, then I is a DDT system iff for every
tel, m(t,y) = {+1} iff for every t € I, m-(t,z) = {-1}.

Proof. directly from definition 6.55( I may include it in the next version) O
This proposition implies that 7 is not standard on any deductive system pos-

sessing implication but without Deduction-Detachment Theorem.

6.10.1 A version of the monotonicity theorem

Lemma 6.57 Let S be a 1-deductive system such that for every term t and N C

Occ(t), at least one of the conditions (6.29) and (6.30) holds. Let # = nr. Then
Q- COm.

Proof. It suffices to see that for every A-algebra A and F' € Fig(A), Q(F) is a
S:-filter compatible with F. This will imply that Q-(F) C Q7. Q.(F) is clearly
reflexive, transitive and by definition it is compatible with F'. Conditions (6.29) and
(6.30) guarantee that this relation satisfies the condition (6.10) and (6.11). Thus it

is an S--filter. O
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Theorem 6.58 Let S be a I-deductive system such that for every term t and for

every N C Occ(t) one of the conditions (6.29) and (6.30) holds. Let # = m. Then

the following conditions are equivalent:
1. Q7 is monotone
2. Q" =0,
3. QT is injective and continuous.

Proof. By lemma 6.22 the monotonicity of 27 implies Q™ C Q and lemma 6.57
gives the other inclusion. On the other hand, if @™ = 4, then Q7 is injective and

continuous by lemma 6.21. Clearly, continuity implies monotonicity. O

Theorem 6.59 Let S be a I-deductive system such that for every term t and for
every N C Occ(t) one of the conditions (6.29) and (6.30) holds. Let * = m-. Then
Q7 is monotone iff there exists a finite system of algebraizable implication formulas

satisfying Deduction—Detachment Theorem such that QT = (1.

Proof. First suppose that {17 is monotone. By previous theorem, 2™ is aiso injective
and continuous and therefore there is a finite system of algebraizable implication
formulas such that ; = Q7. Also, the monotonicity of Q7 implies that Q™ = Q-

and therefore 2; = Qr, which by lemma 6.26 is equivalent to Deduction-Detachment

Theorem for § with I.

The converse follows from the fact that ; is monotone. O.

Theorem 6.60 Let S be a deductive system and let & be some polarity. Suppose that
Q7 is injective and continuous. Then there erists a system of algebraizable implication

formulas satisfying the Deduction-Detachment Theorem for S iff n = 7.
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Proof. We have already shown that if polarity is entailment defined and Q7 injective
and continuous, then there is an implication system I with Deduction-Detachment
Theorem. For the converse, let ¢ be a term positive in v, i.e., +1 € 7(¢,v) and assume
that z,T Fs y. By Deduction Theorem, T ts I(z,y). By (6.19), T +s I(t[z/v], t[y/v]

and by the detachment, t[z/v],T ks t[y/v]. O

6.10.2 An open problem

Let A be an algebraic language and let G be a Gentzen system over A. Let L :=
{t :Fg— t}. Let S be the deductive system determined by all the rules admissible

for £. Can we use G to define a polarity = in such a way that:

1. For standard classical and non-classical logics this polarity agrees with the

standard ones

[SV]

. there are versions of equivalent semantics and monotonicity theorems, with
converses, that are applicable to all the standard logics with implication would

also bring some new information about other logics?



212

PART II.

FINITE BASIS AND RELATED PROBLEMS



CHAPTER 1. INTRODUCTION

One of the most intriguing problems in universal algebra is the so-called finite
basis problem. For a finite algebra A the problem asks, whether all the identities
satisfied by A can be derived from some finite set of identities of A. If this is the
case, then the algebra A is called finitely based. Recall (Corollary 0.39) that the
identities of A are the same as the identities of the variety generated by A, hence
the finite basis problem can be restated as asking whether every variety generated
by a single finite algebra is finitely based. Recall also, Definition 0.21, that a variety
generated by a finite set of finite algebras, or, equivalently (Proposition 0.22), by one
finite algebra, is also called finitely generated. In general, not every finite algebra

he first example

T€ Not every
to show this was found by R. Lyndon, [27]. But on the other hand, there are some
special classes of algebras such that if a finite algebra A is a member of this class,
then A is finitely based. For example, every two element algebra, every finite group
and every finite ring ([26, 33, 20, 25], respectively) are finitely based.

Another positive resuli that we want to mention applies to a large ciass of va-
rieties generated by finite algebras. This theorem, proved by K. Baker [1] in 1977,

says that a finitely generated congruence-distributive variety is finitely based.

The finite basis question was also considered in the context of quasi-equational



214

logic. We say that a finite set K of finite algebras is finitely ¢-based if there is a
finite set T’ of quasi-identities of K such that every quasi-identity of X can be de-
rived from I'. By a finite g-basis question we will understand here the question
whether a finite set of finite algebras is finitely g-based. Again, there are many
examples of finite but nonfinitely g-based algebras. The simplest one in our opin-
ion is the 3-element finitely based, but non-finitely g-based, semigroup found by
M. Sapir, [51}. The first general positive results were proved in [42] for so-called
relatively congruence-distributive finitely generated quasivarieties. A quasivariety @
is relatively congruence-distributive if for every algebra A € @Q, the lattice of these
congruences O of A that are relative to Q) (definition 0.30) is distributive. Recall that
a variety or quasivariety is of finite type if it is a variety or quasivariety of A-algebras,
where A has only finitely many operation symbols and all of them are of finite arity.

The following are the main theorems proved in {42}.

Theorem 1.1 FEvery finitely generated and relatively congruence-distributive quasi-

variety of finite type is finitely g-based.

Theorem 1.2 Let Q be a relatively congruence distributive quasivariety of finite

type. Then every finitely generated relative subvariety of Q is finitely based.

Because of the special character of congruence-distributive varieties, [15], the
above theorem generalizes Baker’s theorem, see [42] for the argument. We now turn
to another generalization of Baker’s theorem, that has been proved in {3].

Recall that an algebra A can be identified with a reduced model % = (A, =) of
the 2-deductive system B of equational logic and the equational theory of A then

coincides with the set of theorems of 2. Also, if § is an extension of B by theorems,



215

then a 2-subset © of a A-algebra is an S-filter on A exactly when © is a congruence

on A. Hence Baker’s theorem can be restated as follows.

Theorem 1.3 [1] Let K be a finite set of finite reduced B matrices and let Sx be the
extension of the Birkhoff-system B by the theorems of K. If Sx is filter-distributive,
then Sk is finitely based over B.

Recall {Definition 2.15 (1)) that the theorems of K are finitely based relative to S if
there is a finite number of formulas true in K such that every theorem of X can be de-
rived from this finite set of formulas. A natural question arises, whether Theorem 1.3
remains true, if Birkhoff’s system B in its assumption is replaced by an arbitrary
K-deductive system S based by a finite set of rules, i.e., one may ask the following

question.

Let S be a K-deductive system aziomatized by some finite number of rules. Does

every finite S-matriz, have finitely ariomatizable theorems relatively to S ¢

These question and similar were considered for example in [60, 61, 46, 8, 3]. In
general, universal algebraic results do not carry over to the logical matrices. For
example Part III, Chapters 3 and 4 contains examples of matrices 9 with theorems
nonfinitely based over any system S axiomatized by a finite set of rules while their
underlying algebras are finitely based.

The situation changes, however, when the deductive system S is protoalgebraic.
The results of [3] and most of all [4] show that many constructions of universal algebra
can be applied, after a suitable modification, to the semantics of protoalgebraic de-
ductive system. This allowed the authors of [3] to prove the following strengthening

of Baker’s theorem.
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Theorem 1.4 ([3, Corollary 4.7.]) Suppose that we have only finitely many algebraic
operations. Let S be a protoalgebraic filter-distributive 1-deductive system based by a

finite set of rules and let A be a finite S-matriz. Then the theorems of A are finitely

based over S.

In Chapter 2 of this part we apply the results of Part I Chapters 2 and 3 to
the semantics of protoalgebraic universal Horn logic with finitely many predicates
symbols, or, equivalently, to protoalgebraic E-deductive systems and in some cases
even to K-deductive systems. The content of Chapter 2 is a straightforward extension
of the results of [4] to k-deductive systems. Some of these extensions have been
independently obtained in [11].

Similarly as in the case of k-deductive systems ([4]), many of the theorems of
universal algebra have their analogues for protoalgebraic k-deductive systems. In
particular, the classical lemma of B. Jénsson [15] that describes the subdirectly ir-
reducible algebras in a congruence-distributive variety can be extended to reduced
models of a filter-distributive protoalgebraic k-deductive systems. We use this fact in
the proof of the main results of Part II, Theorems 3.1, 3.2. These theorems generalize
the finite basis theorem of Pigozzi to general filter-distributive k-deductive systems
in the same way as the theorem 1.4 generalizes Baker’s theorem. In fact we go one
step further and prove this generalization for E-deductive systems, while in [3] only
1-deductive systems were considered. This adds to the complication of the technique
and constructions, but once this is done, most of the idea of the proof of [42] can be

generalized rather easily, using techniques originated in [3].



CHAPTER 2. K-PROTOQUASIVARIETIES

2.1 Introduction

The reduced matrix semantics of a protoalgebraic K-deductive system resembles
under many respects the quasi-variety semantic of equational logic. Scveral results
to support this point for 1- and k-deductive system have been proved in [3] and [4,
Sections 9-12]. The material of [4, Sections 9-12] can be extended without difficulty
to K-deductive systems, in fact in most cases the proofs used in [4] are independent
from the relational language K chosen, although the results are stated only for k-de-
ductive systems. In this Chapter we restate some of the content of [4, Sections 9-12]
for K-deductive systems. We include sample proofs, for example of Theorem 2.12,
but in general the reader is referred to [4]. Sections 2.2-2.2 of this chapter contain the
results that will be used in Chapter 3. In section 2.5 a theorem about the existence of
a free object in the class of reduced models of a protoalgebraic A-deductive system
is proved (Theorem 2.23). The results presented in sections 2.2 and 2.2 have been

independently obtained in [11].

2.2 Protoquasivarieties and relative subvarieties

Here we define protoquasivariety, subdirect products, subdirectly irreducible ma-

trices, meet irreducible filters and prove, among others, the subdirect representation
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theorem for protoquasivarities, that generalizes Theorem: 0.20 (Chapter “Preliminar-
ies and notation”).
If §is a K-deductive system with a basis I', then ModI' := ModS. Recall that

a class of all reduced models of a K-deductive system is called a matriz quasivariety.

Definition 2.1 The class Mod™S of all reduced models of a protoalgebraic K -deductive

system S is called K-protoquasivariety or simply protoquasivariety.

Definition 2.2 Let S be a K -deductive system. A relative subvariety of a matrix
quasivariety Mod*S is the class Mod™R, where R is some aziomatic extension of

S.

Definition 2.3 Let Q be a matriz quasivariety. A matriz homomorphismh : 2 — B
is a Q-homomorphism if B € Q. The class of all @-homomorphic images of matrices

in C is denoted by HpC. If Q is the class of all reduced K -matrices, then HoC is
abbreviated as HC.

Proposition 2.4 B8 € HgC iff there exists an % € C and F € Fig() such that
B = (A, F)~.

Proof. By Part I, Theorem 2.69.

Proposition 2.5 Let R = Mod™(I' U E) be a relative subvariety of @ = Mod™T,
where I is a set of K-rules and E is a set of K-formulas. Let A be a A-algebra.

Then a K-subset X of A s an R-filter iff it is an S-filter and E C E().

Proof. Immediate from definition. O

Corollary 2.6 A relative subvariety of a protoquasivariety Q is also a protoquasiva-

riety.



Proof. By Proposition 2.5. O

Theorem 2.7 ([4, Thm. 11.1]) The relative subvariety of a protoquasivariety Q gen-
erated by C is HoS*PC.
Proof. See the proof of [4, Theorem 11.1]. O

Recall that a E-protoquasivariety is a K-protoquasivariety, where K is finite. By

a simple modification of the proofs of [3, Lemma 1.6. and Theorem 1.7.] one can

prove the following

Lemma 2.8 Let C be a finite set of finite k-matrices. Then the class
{2%: %" = B for some B € C}

is strictly elementary.

Proof. A modification of the proof of Theorem 1.7. of [3]. O

2.3 Subdirect products

A subdirect representation theorem below implies that every protoquasivariety
is determined by its subdirectly irreducible members. Theorems 0.27 and 0.29 of the
Chapter “Preliminaries and Notation” are special cases.

Recall (Definition 2.58) that a submatrix % of a direct product of a family of
matrices 4 = {%; : ¢ € I} is called a subdirect product of A iff for every ¢ € I,
the projection of B onto %; is onto. The following proposition characterizes subdirect

products.

Proposition 2.9 (see [4, Prop. 9.1.]) A reduced matriz 2 is isomorphic to a subdirect
product of reduced matrices B;, with ¢ € I, iff there exists a system F;,i € I, of K-
subsets of A such that
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(1) Nier Fi = Da

(i) %/ F; is isomorphic to B;, for alli € I.

Proof. See the proof of [4, Proposition 9.1.]. O

Definition 2.10 Let S be a K-deductive system with a basis I'. Let C C Mod™S.

Let o be a nontrivial K -matriz.

1. % is subdirectly irreducible relatively to C if the fact that U is isomorphic

to some subdirect product B of matrices ¢; € C, 1 € I, implies that for some

i € I, the projection m; is an isomorphism from B onto ;.

2. % is finitely subdirectly irreducible iff whenever 2 is isomorphic to a sub-

direct product of a finite family A of matrices then 2 is isomorphic to some

algebra from A.

3. The class of all relatively (finitely) subdirectly irreducible members of C is de-

4. Let C = Mod™S and let K be some class of K-matrices. Then the class of all
members of Q that are subdirectly irreducible relatively to C ( finitely subdirectly
irreducible relatively to C, resp.) is denoted by Qcsy or by Qrsy (by Qcrs; or

by Qrrsr, resp.).

In particular, let C in the above definition be a relative subvariety of Mod*S.
Then it follows from Proposition 2.5 that a matrix % is subdirectly irreducible rela-

tively to C iff it is subdirectly irreducibie relatively to Mod*S. Hence
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Proposition 2.11 If R is a relative matriz subvariety of a matriz protoquasivariety

Q, then
(R)st = RN Qst and (R)rsz = RN Qrst.

Proof. By Proposition 2.5. O

Theorem 2.12 (compare with Subdirect Representation Theorem, [4, Thm.9.2}].)

Assume Q is a protoquasivariety. FEvery matriz in Q is tsomorphic to a subdirect

product of matrices in Q that are subdirectly irreducible relatively to Q.

Proof. Let @ = Mod"S with S protoalgebraic. Let %4 € Mod"S. For each R € K
and @ € A?® \ R?* choose an S-filter Fp(z; on 2 that is maximal with respect to
the property that @ & (Fr(z))r- Such a filter exists, because Fis(2) is an algebraic
lattice. By Proposition 2.9, 2 is isomorphic to a subdirect product of the %/ Fr(z. We
show that 2/ Fp(z) is subdirectly irreducible relatively to S. By the correspondence
property Fig(2/Fr(d)) is isomorphic to the lattice filter [Frzn) in Fis(%). Every
proper filter of this lattice contains the pair R(@). Thus no family of proper filters
of %/ F;z intersects at DayFp - This implies by 2.9 that 2/Fprs) is subdirectly

irreducible relative to §. O

The above theorem has also been independently proved in (11, Theorem 6.7].

Corollary 2.13 1. Let Q and R be protoquasivarities and suppose that Qs; =
Rsi. Then Q =R.

2. Let R and T be relative matriz subvarieties of the same protoquasivariety Q.

IfRﬂ Q51=7t5'1, then RZT



N
(3]
(3]

Proof. The first statement follows from Theorem 2.12 . The second statement
follows from the first, by Proposition2.11. O

Let % be a model of a K-deductive system S. An S-filter F on 2 is (completely)
meet irreductble in the lattice Fis(2) if F' cannot be expressed as the meet of a finite
(arbitrary) set of S-filters. It follows from the above argument and Prop. 2.9 that 2
is subdirectly irreducible iff Dy is completely meet irreducible and that 2 is finitely

subdirectly irreducible iff Dy is meet irreducible (all these irreducibilities relative to

S).
Theorem 2.14 compare with ([4, Theorem 9.3.])

(1) Every K -protoquasivariety is closed under subdirect products and, in particular,

under direct products.

(i1) Conversely, every reduced universal Horn K -class that is closed under subdirect

products is a K -protoquasivariety.

Recall that for a class of C of K-matrices
PspC = {Ql:ngsp HQ[,' 4, €Callie I}
i€l
In this notation the subdirect representation Theorem 2.12 can be expressed as the
equality
Q =1Psp(Qrs,)

for every protoquasivariety Q determined by the set of rules I' and Theorem 2.14 says
that a universal Horn K-class is protoquasivariety iff it is closed under the operator
Psp. Thus a protoquasivariety @ is determined by the class Qrs; of its subdirectly

irreducible members.
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Corollary 2.15 (Corollary 9.4.) Assume that C generates a K -protoquasivariety Q.
Then @ =IS*PP*yC. If K s a finite set of finite K-matrices, then @ = IS*PC.

a

Theorem 2.16 ([4, Theorem 9.6.]) Let C be a set of reduced matrices and Q the
K -protoquasivariety generated by C. Suppose that Q is determined by the set of rules
I'. Then Qrrsi C IS*P*yC. IfC is a finite set of finite matrices, then Crrsy C IS*C.

Corollary 2.17 Assume that C is a set of reduced K -matrices and Q the protoquasi-
variety generated by C. Then @ = IPgpS*P*yC. IfC is a finile sel of finile malrices,
then @ = IPspS*C.

2.4 Filter distributivity

Recall, Definition 0.50, that a lattice L is distributive iff for all elements a, b, ¢ of
LyaV(bAc)=(aVb)A(aVc). Equivalently, L is distributive, if for all a,b,c € L,
aA{dVec)=(and)ViaAc). If @ = Mod™([') and for every matrix 2 the lattice
Fig(%) of Q-filters of A is distributive, then we call the matrix quasivariety Q filler
distributive. The following theorem is a straightforward generalization of Theorem
12.1 of [4], which in turn generalizes the well known lemma of Jénsson [15]. A similar

theorem was proved in [11, Theorem 6.16].

Theorem 2.18 (see [4, Theorem12.1]) Let Q be a filter-distributive protoquasivariety
and let K C Q. Let V be the relative matriz subvariety of Q generated by K. Then
Vest C HZZS'P{J]C.
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Proof. The proof of Theorem 12.1. in [4] depends only on the semantical results
generalized here, among others, in Corollary 2.65 and Lemma 2.16. Hence the same

proof can be used to prove Theorem 2.18. O

Corollary 2.19 If a relative matriz subvariety V of a filter-distributive protoquasiva-
riety is a finitely generated, then Vs ts a fintte set of finite matrices. If K is a finite
set of finite matrices, then, as is well-known, P K C K. Hence, by Theorem 2.18,
if V is finitely generated by K, then Vrs; € HGS™(K), which is a finite set of finite

matrices, if K is finite.

Proof.

Recall that a matrix protoquasivariety is a class Mod™I', where I" determines a
protoalgebraic deductive system. We say that a class Mod™S of first order structures
is elementary, if S can be axiomatized by a set of axioms. It is strictly elementary,

if S can be axiomatized by a finite set of axioms.

Corollary 2.20 If V is a finitely generated relative matriz subvariety of a filter-
IS N 1 . i, AL\ N PPN 7 ¢ TeNY - ~ et
WISLILOULIVE PTOLOGUASIUGTIELY, LIEIL VES] 5 SLItCuty etenentary. 1f v s a ftniely gen-

erated, filter-distributive protoquastvariety then Vpsy is strictly elementary.

Proof. Notice that the second statement follows from the first. Indeed, let V be
a filter-distributive protoquasivariety finitely generated by K. Then V is a relative
matrix subvariety of itself and includes K. Now if W is a relative matrix subvariety
of V that includes K, then W is also a protoquasivariety, hence V C W, as V is
the protoquasivariety generated by K. Therefore V is the smallest relative matrix
subvariety of itself that includes K; thus the relative matrix subvariety of V generated

by K is V itself. Hence V is a finitely generated relative matrix subvariety of V. By the
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first statement of the corollary, Vgs; is finite. Now if V is a finitely generated relative
matrix subvariety of a filter-distributive protoquasivariety Q, then by Corollary 2.19,
Vrsi is finite. Since Vrsp generates V as a relative subvariety of Q, it follows from

Lemma 2.8 that Vg is strictly elementary. O

2.5 Free matrices

For every K-deductive system S there exists an S-matrix that is a free object
in the class of all S-matrices. If S is protoalgebraic or R-protoalgebraic, then also

there is a free object in the class Mod"S of reduced models of S.

Recall that Te, denotes the A-term algebra on o generators. Let Fmg, =
Upe K Te™.

Let S be a K-deductive system, and let T, be the smallest S-theory in Fmg,,
i.e., T, = Cng(®). Then let T, be the set of all theorems of § in variables z,, x < a.
Let LT, := (Te,,T,). The matrix LT, is called the Lindenbaum-Tarski matriz of S
over « variables. By convention, z% := z,./Q(T,).

A K-deductive system S is R-trivial, if either all or none R-formulas are theorems
of S. The system § is trivial if it is R-trivial for all R € K. Let S be a K-deductive
system and let a be a non-zero cardinal number. Let Te be the algebra of of A-terms
over a generators z., & < a. Let T, be the set of S-theorems in variables z, z,., x < a.
Let, for every & < a, z% = z,/QT,). One corollary of Theorem 3.10 is that if a
protoalgebraic K-deductive system S is not R-trivial for at least one R € K, then

in the reduced Lindenbaum-Tarski matrix, all the generators z= are distinct.

Theorem 2.21 Let R € K and assume that a K-deductive system S is not R-trivial.
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Then
1. If § is protoalgebraic, then z # z, for k < A < a.

2. If § is R-protoalgebraic, then . # ), for K < A < a.

Proof. Let z := z,,y := z. Let A(z,y,2) be a system of equivalence K-formulas
with parameters z for S, that exists by Theorem 3.10.

Suppose that = = y*, i.e., (z,y) € Q(Ty).

If S is protoalgebraic, then by monotonicity of €2, for every k£ < p(k) and for

every choice of variables z1,...,2,Rr)-1

("Ev y) € Q(Cn(TO' U {R(zh R 7 - PR S PR zp(R)—l)}))'

Since

R(zla' ey Zhk=1yTy Thtly - - '7zp(R)-1) (S Cn(Ta ) {R(zl’ cee9Zk=1yTy 241y - -’zp(R)—-l)})v

it follows that

R(zl,. ey Zke1sYs Thtls .- .,z,,(R)_l) € Cn(Ta U {R(zl,. ey Zhe=1sTy Zhgls - - - ,zp(R)_l)}),

and therefore

R(Z], P4 5 DR -7 ' PR 3zp(R)—1) l_S R(zh e s Bkm19T Zhglg e e ey zp(R)—l)-

ut th possible only if § is R-trivial) a contradiction.

The same argument applies when “protoalgebraic” is replaced by R-protoalgebraic
and Q by Qp. O
A special case of this theorem was stated in [4], although the proof was based on a

false Theorem 13.2. of [4].
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Theorem 2.22 ([4, Corollary 13.3]) If S is a nontrivial protoalgebraic k-deductive

system, then z% are pairwise disjoint.

The argument used in the proof of Theorem 2.21 cannot be applied if the assumption
that S is R-protoalgebraic is replaced by the assumption that it is Rk-protoalgebraic.
We would like to know whether the assumption of Rk-protoalgebraicity is sufficient
for the conclusion of 2.21.

Note that if a K-deductive system is R-trivial for every R, then for every z := z,,
y := z), every R € K and for every sequence of p(R) terms {(u,z), where u is a new

variable and z is some sequence of terms, elements of T,, we have
R(f(z,2)) € Tu iff R(ily,2)) € T

Thus if S is protoalgebraic, then S is trivial iff for every pair of variables z,y, z* = y~

in every Lindenbaum-Tarski matrix £7 ,.

Theorem 2.23 Let Q = Mod™S be a nontrivial matriz protogquasivariety. Then for
every a > 1, (LT ,)" @5 a free, a generated, object in the category Mod*S. If K

generaies G inen (L7 o)" € IPspS* K.

Proof. The first part of this proof is the same as the first part of the proof of [4,
Thm. 10.1]. It uses Thm. 2.66 and Corollary 2.21. To prove the second part, let
K generate Q. For each R7(zy,,...,Zx,) € Fmg, \ T there exists 4 € K and
ai,...,an such that {(a1,...,an) & (Da)r. The rest of the proof goes the same as
in[4].

A K matrix (A, D) is finitely generated if the algebra A is finitely generated.

Definition 2.24 A class Q of K-matrices is locally finite if every finitely generated

member of K is finite.
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Recall (Theorem 0.23) that a finitely generated variety (of algebras) is locally finite.
Lemma 2.25 A finitely generated protoquasivariety is locally finite.

Proof. Since a protoquasivariety Q generated by K is IS*P*P;(K), it follows that
the underlying algebra of a matrix % € Q is a member of the variety generated by
the underlying algebras of matrices from K. Hence if % € Q is finitely generated,

then its underlying algebra A is finite. Hence Q is locally finite. O
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CHAPTER 3. FINITE BASIS THEOREM FOR
FILTER-DISTRIBUTIVE PROTOQUASIVARIETIES

Assume that A and K have only finitely many symbols. In this chapter we
generalize Theorems 1.1 and 1.2. to arbitrary filter-distributive K- deductive sys-
tems. Theorems 1.1 and 1.2 then become the special cases our theorems, for the
Birkhoff system in the role of the K-deductive system. Recall that when K is finite,
then a K-deductive system is also called k-deductive.

In [4] most of the well-known universal algebraic results which were the starting
points of the proofs in [42, Theorems 1.1 and 1.2] were generalized to protoalgebraic
k-deductive systems and in Chapter 2 to protoalgebraic K-deductive systems. It
turns out that using these results one can relatively easily generalize the proof of
Theorems 1.1 and 1.2 to the arbitrary filter distributive E-deductive systems. Recall
that a k-deductive system & is finitely based if there is a finite set I of rules (some of

which may be axiomatic) such that Cns = Cnr. A protoquasivariety @ = Mod*(S)

is finitely based if S is finitely based, equivalently, if there is a finite set ' of rules

such th

be

1-protoquasivariety Q is finitely based, then every finitely generated relative matrix
subvariety of Q is finitely based. The extension of this result to i;-protoquasivarities,

(Lemma 3.7), will be here used to prove the following theorems:
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Theorem 3.1 Every finitely generated and filter-distributive matriz protoquasivari-

ety is finitely based.

Theorem 3.2 Let Q be a filter-distributive matriz protoquasivariety. Then every

finitely generated relative matriz subvariety of Q is finitely based.

Our proof follows closely the idea and organization of the proof in [42]. In
sections 3.3 and 3.4 we generalize key notions of [42]: the notion of universally
parameterized quasi-equation and that of transformation of a parameterized quasi-
equation by an equation. We later use them to prove some lemmas needed in the

proofs of our main theorems in section 3.5.

3.1 Universally parameterized definable principal filter meets

In this section we show that if a finitely generated protoquasivariety Q is filter-
distributive then there is a finite system of universally quantified atomic formulas
that define the intersection of any pair of principal filters in Q.

By a universally parameterized atomic formula (or simply parameterized atomic

formula), we mean any formula of the form

VAT (1(2,3), ... ki) (Z ), (3.1)
where R € K, € Var™ for some m, 4 € Var” for some n, &i,...,k,7) € (Te(Z, 7@)).
We also write & for (£1,...,K,7)) and K(Z,4) for (k1(Z,d),..., k1) (T,@)). In the

future, whenever we write T'(K(Z, %)), we will assume, without even saying so, that
the strings &, Z,d are of such a length that the expression (3.1) makes sense. The

variables 4 are called parameters.
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A finite conjunction of parameterized atomic formulas is a formula Vip(Z, @),
where ¢(Z, @) = Ai<n Ti(Ki(Z, @)), for some positive integer m, some relation symbols
Ti,...,T; € K, and sequences of terms &; of length p(T;). According to our conven-
tion, Z,u are assumed to be strings of variables of such length that the expressions
make sense.

A finite conjunctions of parameterized atomic formulas indezed by a pair (R, S) €

K? is a formula
VE(PRS(Ev i’ 7'7)7

where T = (z1,...,Z,R))s ¥ = (¥1,-- -, Yp(s)) and
ers= N\ TEF(E7.0) (3.2)
i<mRps

for some positive integer mps, some relation symbols T?° € K, some sequences of
terms &;.

Whenever we write prs we will assume without further explanation that this is
a conjunction (3.2) which depends on p(R) + p(S) variables Z§ and some additional
variables i, called parameters.

A system @ of finite conjunctions of parameterized atomic formulas indexed by

K? is a system ® = {Viipns : R,S € K}, where for every pair (R, S), ¢rs is of the

form 3.2.

Lemma 3.3 Let Q be a matriz quastvariety and let ® be a system of finite con-
junctions of parameterized atomic formulas indezed by K?. Then the following are

equivalent:



o
w
8]

1. Vg se KVacoVd € AW B e AS)
Fg*(Ra) NFg*(Sh) = \ V Fe*(T/°(7(d.5,9)
i<m €A
2. VR,SG K VaecoVa € A"(R),Ee AP(S)
Fg*(Ra) N Fg®(Sb) = Dy iff A |= Yaors(d, b, @)
3.V

Rse K

QFSI i= Vng[V,-;(pRs(f, _‘, 'II) Rad RfV Sﬂ

Proof. The implications 1 = 2 = 3 are immediate. For 3 = 1 let F = Fg®(Rad).
Then (A,F) € Q. Suppose that F = N, F;, where for every j = 1,...k, F;
is meet irreducible. Then for all j = 1,...mgs, (A, F;} E Rd and therefore by
3, (A, F}) = VYaprs(@, g,ﬁ) For every i < mpgs, let here T; = TRS R, = RFS,
So for all ;7 < k, for all 7 < mps, for all strings € of elements of A of the same
length as @, we have (A,F;) & Ti(R:(@,b5,€). Hence %i(d,5,8) € Mooy (F)n =
Fr.. Thus for every i, Fg*(1}%:(a, g,é')) C F = Fg*(Ra). Similarly, for every i,
Fg?(T:7(@,5,€)) C F = Fg*(Sb). This proves the inclusion from left to right in 1.
For the other inclusion, it suffices to show that for every finitely meet irreducible filter
F of %, Viem Vaean Fe*(T(7(3,5,8))) € F = Fg®(Ra) NFg®(SB) C F. Suppose
that the inclusion in the antecedent holds. Then for every ¢ = 1,...,mps, for every ¢,
(A, F) =T;7(@,b,8). So by (3), (A, F) =RaV Sb. Therefore Fg®(Ra)NFg?(58) C F.
a

Definition 3.4 Let Q be a protoquasivariety and ® a system of finite conjunctions

of parameterized atomic formulas indezed by K*® such that one, and therefore all,
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of the conditions of Lemma 3.3 holds, for all R,S € R. Then we say that Q has

parameterized definable principal filter meets, or parameterized DPFM, for

short.

Theorem 3.5 Let Q be a matriz protoquasivariety. Then Q has parametrized DPFM
iff Q is filter-distributive and Qrsy is elementary. Moreover, if parameterized DPFM

are defined by a system ® = {Vipps: R,S € K} of parameterized atomic formulas
indezed by K2, then

Qrst € Mod™(I' U £), where (3.3)

S={ N\ VesVewns(@7,) — RZV S7)} and (3.4)
RSe K

[ is such that @ = Mod™T. (3.5)

Proof. For the proof of the implication from left to right, assume that Q has pa-

rameterized DPFM by means of some system
® = {Viprs: R,S € K}.
Let I" be such that Q@ = Mod™I". Then
Qrs1 C Mod™(I'U T), (3.6)

by lemma 3.3.

To see the inclusion in the other direction, let 2 be a reduced model of T U E.
Then % € Q and we want to see that 2 is finitely meet irreducible. Let F and G be
['-filters on 2 such that Dy = F'NG. Suppose also that F' # Dy and let R € K and

@ € A'pR) be such that @ € Fg\ (Da)r. We will show that for every $ € K and
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for every be A"(s),g € Gs implies be (Dg)s. Since FNG = Dqy.d € Fr,b € Gs
imply that Fg2(R@) N Fg(S6) = Da. By lemma 3.3, part 2, this implies that
A k= Viprs(d, b, %). Since we have assumed that 2 is a model of ¥, we know that
2 = R@V Sb. We also know by assumption that o £ Ra. So % = S5, i.e., b € (Da)s.
This proves that G = Dqy. Thus

Qrsi =Mod (TU{ \/ Vzg(Vaprs(Z,7,4)) — (RTV 5%)}),

Rse K

and therefore Qps; is an elementary class. Now to show that Q is filter-distributive,
we want to show that F N (G V Gy) C(FNG)V (FNG,) for all 24 € Q, all
F,Gy,G; € Fig(2t). Since Fig(2) is algebraic, it suffices to prove that

\/ Fg*(R;a;) N \/ Fg*(Sib) € V V/[Fg™(R;d;) N Fg(Sibi)]

i<t i<k i<li<k
We prove this inclusion by showing that every finitely meet irreducible I'-filter F' that
includes the right-hand-side also includes the left-hand side. So let F' be finitely meet
irreducible and suppose that the right-hand side is included in F. Then (A, F) €
Crs and for every ¢ < k,j < { (A, F) =Vapr,s (@, bi,@). Therefore for aii pairs
1< kg <,

(A,F) ER;d; V S:b. (3.7)

We either have that for all j < [ If (A, F) [=R;d;, in which case V; Fg*(R;d;) N
Vick Fg2(Sib;) C F; or else by 3.7 for this j and all ¢ < k, we must have that
Fg(S:5;) C F and the left-hand side is included in F.

For the implication from right to left assume that Q is filter-distributive and that
Qrsi is elementary. Let R, S € K,p(R) = n,p(S) = m. Let § be the free matrix

over Q countably generated by zy,....Zn,y1... . Ym, U0, 1, .... Let {F(T,7,%) :7 <
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w} C Te* and {T;: ¢ < w} C K be such that

Fg¥(RZ) NFg*(57) = \/ Fg*(L(7(Z, 7, 1))

<w
Let 2 be a countably generated matrix in Q, such that @ = ay,... ,an,l-; =
byi,...,bm € A and let € = e, €,... be any sequence of elements of A that together
with aq,...,ax,,b1,...,bn generate A. Let h be a surjective matrix homomorphism

from § to % such that hz; = a; for: = 1,...,n, hy; = b;, for 3 = 1,...,m, huy =
e,k = 0,1,.... Let F := h™}(Dg). Then by the correspondence property we have
that for every R € K,5 e AR 7 e Te?™ such that h(7) = 7,

r~Y(Fg*(Rp)) = Fg*(R7) V F.
Now making use of filter-distributivity we have:
h™'(Fg*(Ra@) N Fg®(Sb)) = h~'(Fg*(Ra)) N k™" (Fg*(Sb)

= (Fg*(RZ)VF)N(Fg*(S7) V F)

= (Fg*(RE)NFg’(S))V F

Fg*(R&) N Fg*(Sb) = Dy & Vi 7(d,5,€) € (Da)r, (3.8)

for all €in A such that &, 5, €g, €1, - . . generate A. We will argue that the quantification

“such that &@,5, eo, €1, . .. generate A” can be removed from (3.8) and that (3.8) holds
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for all matrices % € Q, not necessarily countably generated. Indeed, for every matrix

A€ Q
Fg2(R&) N Fg*(SB) = Dy & for every B < 9, Fg®(Ra) N Fg®(Sb) = Dy.  (3.9)

So let 2 be an arbitrary matrix from Q and assume Fg®(Ra) N Fg*(S E) = Daq.
We want to show that Vic,7:(&@,,€) € (Da)r,, for arbitrary sequence € from A. Let
B be the submatrix of % generated by @,b,&. By 3.9, Fg®(R@) N Fg®(Sb) = Dy
and by 3.8, Vic,7:(d,5,6) € T:®, and therefore V;c, (&, 5,&) € (Da)7.. To show
(3.8) for arbitrary 2 in the other direction, assume that V;,7:(a, b,€) € (Da)r,
for all sequences € of elements of A. Thus by (3.8), for every countably generated
submatrix B of %, Fg®(Ra) N Fg2(Sb) = Dg. By 3.9, Fg?(R&) NFg(S8) = Dy. We
have proved that for every Q-matrix 2,
Fg*(Ra) N Fg*(58) = Da & Vicu7i(@,5,) € (Da)r,
for all infinite sequences € of elements of A. Thus QFs; satisfies
Ve 7 A\ Vali(7i(Z,7, 7)) < REV 57. (3.10)
i<w
Since it is an elementary class, it is easy to show that the infinite conjunction can be
replaced by a finite subconjunction and
Orst EVzy A\ VaTi(7(Z.§.%)) < RTV S7.
i<m
Therefore also the infinite string of variables @ can be replaced by a finite one. O

If K is a class of matrices, let QK be the smallest matrix quasi-variety containing

K. 1t is called the matrix quasivariety generated by K.
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Corollary 3.6 (see [3, Lemma 4.4], for 1-deductive systems) Every finitely generated

and filter-distributive protoquasivariety has parameterized DPFM.

Proof. Let @ = QC, where C is a finite set of finite matrices. In view of the theorem
it suffices to show that Qpg; is elementary. But by the Lemma (refJonssonlemma),

Qrs1 C IS*P;C = IS*C and therefore is finite. Hence it is elementary.

3.2 First main lemma

Main Lemma 3.7 Assume that S is a protoalgebraic deductive system aziomatized
by some set I of rules consisting of finitely many proper rules and possibly infinitely
many azioms, i.e., [ = Ty Uy, where I'y is finite, Ty C At. Assume further that
Q = Mod*S s filter-distributiv and that Qsi is a strictly elementary class. Then
there exists a finite set A C At, such that Mod™S = Mod™(I'; U A).

Proof. Let & = {¢rs: R,S € K} be a system of conjunctions of parameterized

atomic formulas that defines PFM in @. For R, S € K, let
Yrs = Vz3(Vaors(Z, 7, %)) — RTV Sy.

Then
Orst = Mod*(T; UT, U {¢rs : R, S € K}),

where Qrqr is the class of all finitely subdirectly irreducible matrices in Q. Since Q

is strictly elementary, there exists a finite subset I';, of T', such that
Y y 2

Qrst = Mod™ (I UT, U {¢rs : R, S € K}). (3.11)
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Let {2 be the set consisting of the formulas (3.12)-(3.15) below, for every finite m
and for all R, S, T,T1,...,T» € K.

Rz — VL’Z(‘PRS(E') 3;.‘: a.)) (312)
Viors(Z, 7, %) — Vzosr(Y, T, ) (3.13)
Vadrr(Z, 7, @) — RE (3.14)

N Vazorr(Z, %) — Vaora(Z, ¥, ) (3.15)

<m

for each rule A;.,, T:(7(Z)) — T(7(Z)) in T.
Lemma 3.8 QEQ, ie, [T U, EQ.

Proof. Let % € Q. Since @ defines PFM in Q, 2 = (3.12) is equivalent to the
condition that, for all R,S € K and for all &, b, if @ € R?, then Fg®(R3)NFg(Sb) =
Dq, which is obviously true.

Similarly, 2 k= (3.13) follows from the fact that for all @ € A*(®) and § € A#(S) |

V Ti(7(&)) - T(F(&)) € I.

i<m
Then 2 f= (3.15) iff, for all sequences &@,b of appropriate length, Fe*(Ti(F(@))) N
Fg2(Rb) = Dy implies Fg>(T'(7(&))) N Fg*(Rb) = Dy. But

Fg™(T(7(@))) € V FeX(Ty(7(@)))

i<m
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and therefore, by filter-distributivity,

[Fg*(T(7(@))) N Fe*(RE) < [\ FeX(T:(7(a))) | N Fg(Rb)

t<m

=V [Fed(Ti(#(@)) N Fe*(RD) |

i<m

= D‘l?

by assumption. O

Let now L := Mod™(T'; UT, U ). Note that L is finitely axiomatizable.

Lemma 3.9 LN (Mod‘(Fl))FSI Q QFSI-

Proof. Let 2 € L N (Mod™(I'1))esi- Then 2% = I UT, U Q and Dgy is finitely
meet irreducible(relatively to T';). By 3.11 it suffices to show that 2 &= wps, for
all R,S € K. Leta € A”(R),I_; € AP and suppose that for every sequence ¢,

% k= ors(@, b,&). We want to show that 2 = RZV Sb. For arbitrary U,V € K define

Fy:={ye€ APV -y E orv(@,7,¢) for all c}

= ~
GUZ=1J7CA"

CiU = ouv(f, 7,6 forall ¢, all V € K, all 7 € Fy}.

We claim now that F':= [[{Fv : V € K} and G := [I;;¢ g Gu are I';-filters. For

this, assume that
A Ti(7(E)) — T((E)) (3.16)
i<m

. - .
is a rule of T'; and that for some & and forall i < m, (A, F)

(3.13), we have

QJ.}: /\ VWRT,‘(ZZ%( ) -‘)—')v"(r/RT(g‘ 77(5)76)

i<m



Therefore
2 |= ‘foRT(av ﬁ(é')v E)s

for all ¢, i.e., 7(€) € Fr and (A, F) ET(7(€)). This finishes the proof that F is a
['1-filter. Now suppose that (3.16) is in ['; and that, for all i < m

7]1'(5') S GT‘». (317)

Then, by (3.15),

2= A Veorv(i(Z),9,4) — Vaprv(i(),7, @)
i<m

(3.17) says that, for all &, all V € K, and all f € Fy

2 = orv(7i(9), £, 9).
Therefore,

% E orv(ii(@), £, 9),
i.e., 7(€) € Gr.This finishes the proof that G is a filter. We claim now that FNG =
Dgy. For if for some V € K € € A*V), & € Fy N Gy, then, by definition of G,
A E ovv(€,€,¢), for all & But then € € Dy, by (3.14), which completes the proof
of our claim that F NG = Dy. Since % € QFsy, it follows that F' = Dy or G = Dyg.
By definitions of F and G, Sb € F and Rd € G. Therefore 2 L= RV S5. We have

proved that for all R, S € K, 2% = ¥ps and thus completed the proof of the lemma.
a

Since Ty UT; =T UT, UQ (Lemma 3.8), there is a finite set I'j C I, such that
[MUurT; T U, U Q. Therefore @ € Mod™(I'; UTY) € L € Mod™(T';). Recall that
Qrs1 = QN (Mod™(I'1)rst) = @ N (Mod™(I'; UT'%))rs1- Hence

Qrsi = Q@ N (Mod™(I'1)pg;) € (Mod™(T; UTY))Est-



It follows that
Qrst € Mod™(T'; UT3)rst € L N (Mod™T'y )rsi.

By Lemma 3.9, L N (Mod™(I'1))rsi € Qrsi. Therefore
Qrst = (Mod"(I‘1 U Fg))psl =LN (Mod*(I‘1 YFsI-

Thus @ = Mod™*(I'; UTY), and Q is finitely axiomatizable.

3.3 Universally parameterized Horn formulas

A universally parameterized strict Horn formula or just universally parameterized

Horn formula is a formula of the

ﬁo(f)/\.../\fk_l(f) —>T]0/\-" /\77[..1(5), (318)

where [ > 1 and for: = 0,...,k—1and j =0,...,] = 1 &(&),n;(%) are arbitrary
parameterized atomic formulas with free variables zq,...z,-; for some p and such

that £ = zo,...zp-1. Thus every parameterized Horn formula is logically equivalent
to a formnia 9 {¥) of the form
Vs \ Ri(7(Z,9)) = Y5 N\ S5(55(2,9)) (3.19)
i<k i<l
for some sequence of variables v. Note that a Horn formula (3.18) corresponds to
a rule. In the sequel ¥(Z) will always represent a parameterized Horn formulaand
B(F), £(F), n(F) arbitrary parameterized atomic formulas or conjunctions of such. Ev-
ery ordinary Horn formula is a parameterized Horn formula with an empty list of
parameters.
The formulas (3.12)- (3.14), which constitute the set Q of the previous section

are also examples of parameterized implications.
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A class £ of matrices s called a parameterized matriz quasivariety if £L = Mod T
where I' is a set of parameterized Horn formulas.

An arbitrary filter F' on an algebra A is closed under parameterized implication
(3.19) if whenever {r;(a,€) : € € A7} C Fpg, for all ¢ < k then also for every j <
1,{0;(d@,€): €€ A%} C Fs,. If F is a filter on a A-algebra A, then (A, F) |= ¢(Z) iff
F is closed under ¢(Z). Clearly, if each member of some system of filters is closed
under a given parameterized Horn formula then so is their intersection.

Let £ be a parameterized quasivariety and let A € L. A filter F on A is
called an £- filter if (A, F) € L. So F is an L- filter if it is closed under any set of
parameterized Horn formulas that form a base for £. Hence the set of all L-filters on

A, which we again denote by Fiz(A), is closed under arbitrary intersections. This

gives

Lemma 3.10 Fvery parameterized quasivariety is closed under the formation of sub-

direct products.

The set Iig{A) need not be ciosed under the formation of unions of directed sets, so
Fiz(A) is not, in general, an aigebraic lattice.

A matrix % = (A, F) € L is finitely subdirectly irreducible relative to £ if F
is finitely meet irreducible in the lattice Fiz(A). The subclass of £ so defined is
denoted by Lrs;. Fiz(A) need not be algebraic, so a fixed filter need not be the meet
of finitely many meet irreducible £ filters. This is always the case, of course, when

A is finite, so we have

Lemma 3.11 Assume L is is a parameterized quasivariety and let A € L. If 9 is

finite, then it is a subdirect product of a finite number of matrices in Lpsy.
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3.4 Calculus of transformations

We introduce the notion of transformation of a parameterized Horn formula by
a parameterized atomic formula. This always generates another parameterized Horn
formula. We look at the relationship between the model-theoretic properties of an
arbitrary parameterized Horn formula and those of its transform.

Let 4@ = ug,...,un—1 be some fixed string of variables. Let
® = {Vipps : R,S € K}

be arbitrary but fixed system of finite conjunctions of parameterized atomic formulas.

Recall that ¢grs is of the form (3.2). For any pair of ordinary atomic formulas

o(F) = R(7(%)), B(Z) = S(A(&)) define
Tr(a, B) = Vaprs(7(@), A(3), )

Next, for any pair é(&), (&) of conjunctions of parameterized atomic formulas, where

€(Z) :== V5 Aiq @i(Z, ) and 9(2) := Vg A< B;(Z,7) define

.. A e s N
A A Tric, ;)

Finally, for any Horn formula #(Z) := £(Z) — n(Z), where &(&),n(Z) are conjunc-
tions of parameterized atomic formulas, and any conjunction of parameterized atomic
formulas 6(Z) define

Te(,0) = Tr(€,8) — Te(n,0)

Tr(6,4) = Tr(6,£) — Tr(8,7)

Transformations Tr(¢(Z),0(2)) and Tr(0(Z2),¥(Z)) are called respectively the right
and left transforms of ¥(Z) by 6(Z). Sometimes we write Tre instead of just Tr to

stress the fact that this operator depends on the system ®.
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Note that we define the transforms of a parameterized Horn formula by a con-
junction of parameterized atomic formulas, not by another parameterized Horn for-
mula. Note also that the transforms are again parameterized Horn formulas, so it
makes sense to iterate the operation. For any parameterized Horn formula (%)
define

Lt™ () := Tx(3, RZ)
Rt?() := Tr(RZ,¥)

called the left and right transforms of i with respect to R, respectively. Again,
to stress that L#® and Rt? depend on ® we sometimes write the names of these
operations with the subscript ®. We put Lt®(%) := {Lt&(¥) : R € K}and Rt®(%) :=
{Rtg(¢): Re K}

Observe that the formulas (3.15) of the section 3.2 are just the left transforms
of the rules I'.

In the proof of Lemma 3.9 we were able to conclude that the filter F' was closed
under the rules I" from the fact that the matrix 2 universally satisfied the correspond-
ing left transforms. Similarly, G was closed under the same rules because 2 satisfied
the corresponding right transforms. This relationship between closure under rules

and satisfaction of their transforms extends to parameterized Horn formulas.

Lemma 3.12 Let 2 be any matriz and let X = Ure g X1 with X7 C AT for each
T € K. Define Fx :=1lp¢ j(Fx)7,Gx = Uge g(Gx)s by:

(Fx)r :={f € AT : % |=VYaors(Z,6,@) : forall S€ K and all €€ X5}

(Gx)s := {7 € A*®) : ol =Vaprs(E,7.1%) : foralT € K and all &€ Xr}.
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Then for any parameterized Horn formula

2 = Lt® () implies that Fx is closed under ¥, and

2 = Rto () implies that Gx is closed under .

Proof. Suppose that % = Lt®(¥), with ¢ = £(Z) — n(Z), where

£(Z) = Vs /\l Ti(7:(, 7)), (3.20)
1<

7(2) = Vs \ S(#H(Z, 7). (3:21)
<m

Then

Ltg(¥) = Tre($(2), R(2))
= Treg(Z)R(Z) — Tren(Z)R(Z)

= VVa A\ énr(n(Z,7),2,@) - VaVz N 8s,r(p;(Z,9),Z,7) (3.22)

i<l Jj<m

Assume that 2 = Lt®(¢), i.e., for every R € K, = Lt5(¥). To complete the
proof we need to verify the following implication : if @ € AP (where p is the length of
the sequence 7) and if for any choice of € € A” (where r is the length of the sequence
¥ ) and for every z < [ we have 7(d,€) € (Fx)r, then for any € € A and for every
j < m we have p;(d, €) € (Fx)s;-

So suppose that @ € AP and that for all €€ A7, all ¢ < [ 74(@, &) € (Fx)r,. This
means that for every R € K, for all ¢ € Xg, we have 2 = Vz A, ¢1.r(7:(d, €), T, 4).
Since for every R € K, = Ltf(«), this means that also for all R € K, & € Xpg,

j <mand €€ A" we have % = Vz A ¢s,r(p;(@, €), ¢, 1), i.e., that for all € all j </
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p;(@,€) € (Fx)s;- This finishes the proof that Fy is closed under ¢. The proof that
Gx 1s closed under % is similar.

Let Q be a protoquasivariety for which ® defines principal filter meets. The real
content of Lemma 3.8 is that, whenever an implication ¥ is a rule of Q, so are the

left and right transforms of .

Lemma 3.13 Let Q be a protoquasivariety with principal filter meets defined by a
system ®. Then Q = Lt,(¢) and Q | Rt (¥), for every rule ¢ such that Q = .

Proof. It suffices to show that Qpm; satisfies the transforms of ¢. Let v = & — 7
where ¢ and 7 are as in the previous lemma. Then Lt,(¢) = {Ltg(z[)) : R € K},
where Ltg(z,/)) is of the form 3.22. Let 2 = (A, Dy) € Qrm1, R € K and &€ A°R).

Assume that for all €€ A™ % = Vz A, d1.r(7:(a, €), €, @). We want to show that
for all € € A™ U = Yz Ajem ¢5,r(p; (@, €), ).

Since ¢ defines principal filter meets, we have
Fg*(T}(7(@&)) N Fg*(R?) = Da

for all i < [,€ € A™. Since % is FMI either 7(d,€) € (Da)7, = T for all 2 < [ or
¢ € (Da)r = R*. In the first case, £(@) holds and therefore by assumption, 7(&)
holds too, i.e., 5(@,€) € {(Da)s, = S} for all j < m, all & € A". So in this case
Fg?(5;(p;(@,¢€)))) NFg®(RE) = Dq. Of course this is also true in the second case. So
U = Vi Aj<m 95,r(p;(d, €), ¢, 1) for all € € A™ and therefore % |= Lt (). The proof
that 2 = Rte (%) is similar. O

In order to axiomatize the property of defining principal filter meets we consider

the following formulas:

a = Tre(RZ, SY) — Tre(Sy, RT), i.e., (3.23)
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- —

a = Vgprs(Z, 7, @) — Yapsr(¥, T, 4);

B := Tre(Tre(Rz, SY),TZ) « Tre(RZ,Tre(SYy,T2)) ie., ; (3.24)

B = Tre(Vadrs(Z,¥,4)),T2) & Tre(RZ,Vadsr(¥,Z,%)))

= V{; /\ Trq’(ﬂRS(TiRs(fai’ﬁ))ng)Hvﬁ' /\ TrQ(RfvTiST(TiST(gvg7J))

i<mpgs i<mpgs
= Vg /\ S‘OR;STT(K‘i(ia .77$ ﬁ),é’) = Vg /\ SORRfT(Ev ’ii(fl‘, z, ﬁ))
i<lst <lg

Note that 3 is the conjunction of two parameterized implications.

Lemma 3.14 Assume that Q is a protoquasivariety and that ® defines principal
filter meets in Q. Then Q = a, .

Proof. Let 2 € Q. Notice that « is the formula (3.13 and that the fact that Q =«
has already been proved in lemma 3.8 . It suffices to show that for every finitely meet
irreducible filter F on 2, (A, F) = 3. So let F be a finitely meet irreducible filter of
2. To demonstrate that (A, F) = 8.i.e, that

(A, F) = Tre(Tre(Rz, SY), T'Z) — Tro(RZ, Tre(S7, T7)),

we will show that the satisfaction of either antecedent or conclusion of the above

formula is equivalent to the condition that
TE€Frorye Fsor Z€ Fr. (3.25)
Indeed,

Tr¢(Trq>(Rf, S:’j), T..’?) Tr(D(VlT‘PRS(fv 373 ﬁ)'FE)

= Tro(Vz A\ R¥(xI*(2,7,7)).T3)

i<mRgs

= Va N\ VoprasT(77°(Z,7,4), 2, 9).

i<mpgs
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This is equivalent to the condition that for every i < mpg, for all @ € A”(R),g €

Ap(s), ge AT

-

(A,F) E VzNﬁgoszsT(ﬁRs(&', b,u), ¢, v).
As F is finitely meet irreducible this in turn, for a fixed 7, is equivalent to the
condition that either 77*3(g, b, @) € Fprs, for every #, or ¢ € Fr. Thus either €€ Fr
or for every i < mps,7R5(a,?, ©) € Fgrs, for all 4. But this last condition is is
equivalent to

(A7 F) '=V17 /\ TiRS(ﬁRS(E7g’ﬁ))’ Le., to

i<mRps

(A, F) k= Vaprs(@,b,@) and whence to (3.25).
The fact that (A, F) = Tre(RZ, Tre(SY,TZ)) is equivalent to (3.25) is proved
similarly. Hence @ = 8. O

Lemma 3.15 Let @ be a system of parameterized conjunctions of atomic formulas

indezed by K?. Then for every parameterized Horn formula ()

a = LS (%) & RtJ(¥)

forall Re K. O

Lemma 3.16 Let ® be a system of parameterized conjunctions of atomic formulas
indered by K?, let ¢(Z) be a parameterized Horn formula. For R € K let z® be a
string of variables of length p(R) such that none of the variables in the sequence %
occurs in Y. Let Z be a concalenation of all z*. Then for any conjunction 6(&) of
parameterized atomic formulas

=V A\ (Tre($(3), RZ7))) — Tre($(2),6(:5))

re K
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Proof. Let ¢(F) = &(Z) — n(w), where &(&), n(W) are parameterized conjunction of
atomic formulas. Let 6(w) = VT A;x Si(t:(w,7)). Then Tre(¥(F),0(0)) is logically
equivalent to
Vi A\ Tre(€(2), Si(m:(, 7)) — Yo A\ Tro(mi(Z), Si(:(w, 7))
i<k i<k
This, however, is logically implied by
Vo A Tre(é(Z), Si(7:(w, 7)) — Tre(ni(Z), Si(:(w,%))], which is equal to
i<k

Vz’z’[/\ Tr(b('@b(i:)’ Si(Ti(QE’ 6)))]

i<k
this in turn is a substitution instance of Vz A;<x Tre (¥(Z), S:(2)), which is implied by

VE N\ Tra(9(@), RS
re K

Lemma 3.17 Let ® be a system of parameterized conjunction of atomic formulas

indexed by K2. Then for any parameterized implication 7 and all R.S € K we

ER TN

have:

B,Ltg(¥) k= Ltg(Ltg(s))

Proof. Let ¥(Z) = £(Z) — 7n(Z), where £ and 7 are of the forms (3.20), (3.21),
respectively.

Then Lt3 (LtE(x)) is:

Tre(Tre(€(Z), R2), SW) — Tre(Tre(n(Z), RZ), Sw) =
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Vs \ Tro(Tro(Ti(7i(Z, 7)), RZ), SW) — ViTre(Tre(S;(05(, 7)), RZ), Sw).
i<l
Under f, a conjunction on the left is equivalent to Tre(Ti(m:(Z, 7)), Tre(RZ, Sw))
and the conjunct on the right to Tre(S;{p;(Z, 7)), Tre(RZ, Sw)). Thus LtB(Lt3 ()
is equivalent under B to Tre(T;(¥(F), Tre(RZ, Sw)). But by Lemma 3.16 this last

formula is a consequence of Ltg (7).

3.5 The main results

The aim of this section is to prove Theorems 3.1 and 3.2. Theorem 3.2 is a

consequence of Theorem 3.1, which in turn follows from the Main Lemma and the

following:

Theorem 3.18 Let Q be a finitely generated, filter-distributive protoquasivariety.
Then there exists a finite set of rules R such that @ = Mod"(R U E(Q)), where
E(Q) is the set of all the theorems of Q.

Proof. By hypothesis, Q is finitely generated; so by Lemma 2.18, Qps; is up to
isomorphism a finite set of finite matrices. So it is strictly elementary. 1'his together
with filter-distributivity implies that @ has parameterized DPFM (Thm. 3.5). Let
Q = Mcd™T, where I is a possibly infinite set of Horn formula s {rules). Let ® be a

system defining PDFM in Q. Then by theorem 3.5

RFV S7l: R, S € K}

kil
D20 B

As in section 3.2, we use ¥rs as an abbreviation for Vz7{(Vaprs(Z, ¥, %)) — RTV S7].

Since Qfg; is strictly elementary, there exists a finite subset I of ', such that

Qrsi = Mod™(I"U {¢rs : R, S € K}).
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Let v := Vgporr(Z,Z,7) — RZ and let Q be {a, 8,7} U Lte(I" U {a, 5,7}).
For any set A of parameterized Horn formulas let Ltg(A) = {Lto(?) : ¥ € A}

and similarly for Rtg(A).
Lemma 3.19 Q = Lt*(I" U Q) URtY(I" U Q).

Proof. Let » e T'UQ =T" U {a, 8,7} ULt*(I" U {a,8,7}). f ¥ € T' U {e, 8,7},
then Lt® (%) C Q and we are done. If ¥ € Lt*(I" U {e, 8,7}), then 8,9 k= Lt®() by
Lemma 3.17. Therefore Q = Lt®(%) and thus also Q = Rt*(%), since o, Lt®(#) E
Rt®(s). O

Let £ = Mod*(I" U Q). Note that £ is a parameterized matrix quasivariety.

Lemma 3.20 ﬁps} C QFSI-

Proof. Let 2 € Lps;. Then 2 = I", so in order to show that % € Qpg; it suffices to
show that for all R,S € K

A= ¥gs, ie,

2% = Vza(Vaprs(Z, ¥, 4) — ETV SY) (3.26)
Since % € Lpsi, we have that FNG = Dy & F = Dy or G = Dqy for all L-filters
F,G on 2. Let R,S € K have the arities n, m, respectively. Let @ € A, b € A™
be such that % = Vgapgs(c'i,l;,tf). Define F = [I{Fr : T€ K}, by Fr := {C €
APT) : o = Vaors(S,b,@)}. By Lemma 3.12, applied to Xs = {8}, X7 = 0, for
T # S, we conclude that F' is closed under every parameterized Horn formula
¥ € IVUQ. Thus F is an L-filter and @ € Fgr. Now define G = [[{G7r : T € K}
by Gr := {JG AT o = Vﬁ(,ovr(é',ti,ﬁ) forall Ve K,alld e Fy}. The fact that

0 k= Rt®(¢») for every ¢ € I U Q implies that G is an L-filter. Also, be Gs. Let
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¢ € (FNG)r. Then U k= Vzprr(C, ¢, @). Therefore A = T¢, i.e., FNG = Dgy. This
implies that either F' = Dy or G = Dgy. Since @ € Fr and be Gs, either 2 |= Ra or
2 k= S5 and (3.26) is established. O

To prove Theorem 3.18, we first show that @ C £. Recall that £ = Mod™(I'UQ),
where Q = {a, 8,7} U Lt*({e, 8,7} U I¥). Trivielly, @ k= I". Since ® defines meets
of principal Q-filters in @, we have @ & «, ,v. This was shown in Lemma, 3.14 for
a, B and for 7 see the proof of Lemma, 3.8. Also, we have Q@ = Lt*(I"U{a, 8,7}) (by
Lemma3.13). ThusT' ET'UQ and @ C L as desired. Since [YUQ is finite, there exists
a finite subset I of T" such that I = I U 2. Then @ C Mod™(I' U E(Q)) C L. To
complete the proof we show that Mod™(I"UE(Q)) C Q. Mod*(I'"UE(Q)) is a matrix
subquasivariety of the matrix variety Mod*(E(Q)) generated by Q, which is finitely
generated by hypothesis. So Mod™(FE(Q)) is finitely generated and therefore, by
lemma 2.25, locally finite. We claim that it suffices to prove that every finite member

2% of Mod™(I"UE(Q)) is in Q. For suppose that % € Mod™(I"UE(Q))\ Q. Then there

N srh dhad o LL doteme ~neles Rotd 1o M. N
rule r r sucn tnat & - COnivainis Oiity 1iilivesry

P P N - e 1N
ally valiavies, there is

I

..
H
]

ince

is

I3
m

a finitely generated submatrix B of 2, which does not satisfy r. Therefore also B~ is
finitely generated and does not satisfy 7. Now since Mod*(I'” U E(Q)) is closed under
S*, 98" is a finite matrix and whence belongs to the matrix quasivariety @. But this
contradicts the fact that 8* ¢ Q. This verifies the claim. Let 2 € Mod™ (I U E(Q))
be finite. Then 2 € £ and therefore 2 <gp By X --- X B,,, for some n and some
matrices B; € Qrsi, for each : < n. By Lemma 3.20, %B8; € Qpsy, all i < n. Thus

2 € Q. This completes the proof of Theorem 3.18. O
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Now we turn to the proof of Theorem 3.1.
Proof. of Theorem 3.1.
Let Q be a matrix protoquasivariety satisfying the hypothesis of the theorem. By
Theorem 3.18, @ = Mod™(R U E(Q)) for some finite set of rules R C I'. Also, by
Corollary refcor20 s2 (to generalized J6énsson’s lemma, Lemma 2.18 ) Qpgy is strictly

elementary. So we can apply our Main Lemma 3.7 to conclude that Q is finitely

based. O

Theorem 3.2 is now a corollary to the above theorem. Recall that V is a matrix
subvariety of a matrix quasivariety @ if V is the intersection of @ with some matrix
variety.

Proofof Theorem 3.2.

Let V be a finitely generated matrix subvariety of Q. Then V is also filter-distributive
matrix protoquasivariety. Let K be a finite set of finite matrices generating V. By
the generalized Jonsson lemma for filter-distributive systems, Theorem Jonlemds,
Ves1 € HpS*PyK C HS*K. Since Vpg generates V as a matrix quasivariety, it
foliows that V satisfies the assumptions of Theorem 3.1 and therefore is also finitely

based. O

3.6 Discussion

A 1-deductive system S has disjunction if there is a binary connective V in the
algebraic language of S such that for every set X U{,%} of formulas, Cns(X U {pV
¥} = Cns(X,¢) N Cns(X, psi).
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Corollary 3.21 1. Let S be a protoalgebraic 1-deductive system with disjunction.

If Mod™S is finitely generated, then S is finitely based.

2. Let S be a protoalgebraic 1-deductive system with disjunction and let V be a

finitely generated relative matriz subvariety of Mod™S. Then V is finitely based.

Proof. It follows from [9] that a 1-deductive system with disjunction is filter-
distributiv. The corollary follows from Theorem 3.1. O A special case of the above
corollary is due to J. Czelakowski, [8]. A matrix 2 is weakly adequate for a deductive

system S, if E(9) = Cng(0).

Corollary 3.22 ([8, Corollary II1.4] Let S be a congruential 1-deductive system with

disjunction. If there is a fintte matriz weakly adequate for S, then S is finitely based.

Proof. Let 9 be a finite matrix weakly adequate for S. Let V be the relative matrix
subvariety of Mod*S, generated by M. Then V = Mod*(SUE(mm)) = Mod*(§), since
E(m) = Cng(@). By part 2. of Corollary 3.21, § is finitely based. O

It follows from our earlier observations that if S is the equational deductive sys-

ol

tem of G. Birkhoif, then our Theorems 3.i and 3.2 become Theorems (.1 and 1.2
of [42].
Recall that Theorem [3, 4.1.] was (the instance of) our Main Lemma here.

Although this theorem does not follow directly from our main results, the following

weakening of this theorem is also a corollary to the results presented here.

Corollary 3.23 ([3, Corollary 4.7.])Let A be a finitary algebraic language and let
S be a 1-deductive system over A. Assume that S can be presented by finitely many
inference rules and that S is filter-distributive. Then any finite S-matriz has finitely

ariomatizable theorems.
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Theorem 4.1. of [3] would of course immediately follow from the positive answer

to any of the following two questions

Question 1 Assume that § is protoalgebraic filter-distributive E-deductive system

and that (Mod™S)s; is strictly elementary. Does S need to be finitely based?

Question 2 If R is a relative matriz subvariety of a filter-distributive protoquasiva-

riety Q. Does R need to be finitely based?

Both of these questions were first formulated in [42] for ordinary quasi-varieties and
varieties ([42, Problems 9.6. and 9.7.}).

Notice that in the proof of Theorems 3.1 and 3.2 we have essentially used the
fact that K has only finitely many relation symbols. Thus the theorem applies to
k-deductive systems but not to Gentzen systems.

We would like to ask the following question

Question 3 Suppose that K has infinitely many finitary predicate symbols and sup-

pose that ¢ K-deductive system S is protealgebraic and filter-distributive. Does it

CRULLLT LT

follow that every finite set of finite models of S generates a finitely based K-poto-

quastvariety?

We also mentioned in the introduction to Part III that Baker’s theorem has been
generalized to congruence-modular varieties in [30]. It would be interesting to see if

this result can in turn be generalized to k-deductive systems. Thus we would like to

ask

Question 4 Suppose that S is a protoalgebraic filter-modular k-ds. Let K is a finite

sct of finite modcls of S and supposc that there is a number n such that every subdi-
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rectly irreducible matriz in Q(K) has at most n elements. Does it follow that Q(K)

is finitely based?

For quasi-varieties this question has also already been asked in [42] ({42, Problem

9.13]).



PART III.

FINITE AXIOMATIZATION



CHAPTER 1. INTRODUCTION

In Part II we considered the finite basis problem for arbitrary k-matrices. In
Part III we turn to a related finite axiomatizability problem, restricted to the following
3 contexts: 1-deductive systems, equational logic and second-order equational logic.

Recall (Part I, Definition 2.29) that the finite axiomatization problem for a finite
matrix 2 asks whether there is a finite set R of rules such that ¢ is a theorem of
2 iff ¢ is derivable from the empty set of premisses using the rules of R. This
implies that the rules of R are sound for 2. One can also ask whether 2 has a
generally stronger property that such a set of valid rules can be found. In the case of

structurally complete matrices, i.e., the matrices for which every sound rule is valid,

valT adail A

the two questions coincide. Recall also that the finite axiomatization
weaker than the property of having a finitely based consequence operation or finitely
based theorems over any, finitely axiomatizable, deductive system S.

In the context of equational logic finite axiomatization problem for a finite alge-

bra A translates to the question whether the identities of A are logical consequences
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quasi-equations that are sound for the algebra. The question whether every finite
algebra A is finitely axiomatizable in this sense was first proposed by W. Raut-

enberg in [46] and independently by A. Wroniski (see [42]). A matrix 2 is called
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left-associative iff the term (z(yz) is a tautology of 2. Some auxiliary results about
left-associative matrices and their underlying algebras are proved in Chapter 2. In
Chapter 3 we prove that among 3-element left-associative algebraic matrices there
exist exactly two that are nonfinitely axiomatizable. This answers the open question
of [46, 61, 10]. In Chapter 4 we consider the Rautenberg—-Wroriski problem for the
underlying algebras of the nonfinitely axiomatizable matrices of [60] and Chapter 3.

The finite axiomatization problem can also be considered in the context of
second-order equational logic. Here, we require that the second-order theorems of
a finite matrix be derivable from a finite set of second-order rules. This is equivalent
to the condition that the first-order rules be derivable from a finite set of second-order
rules.

In the context of equational logic first-order rules are quasi-equations and the

second-order rules take the form

/\I‘l—)E],...,/\I‘n——)En
ANA =6 ’

where ¢;, 6 are equations and A, T'; are finite sets of equations. The second order

finite axiomatization problem for a finite algebra A then asks whether there is a finite
set of second-order rules valid, or, in the more general version, sound, for A such that
every quasi-identity of A can be derived from this set of rules.

The problem whether every finite algebra is second-order finitely axiomatizable
is open, but in Chapter 5 we prove that the answer is positive for two classes of finite
algebras, namely the class of all finite algebras that do not have a proper nontrivial
subalgebra, and the class of all finite algebras A embeddable into the free algebra in
the variety generated by 2 and such that no homomorphic image of A is a proper

subalgebra of A.



CHAPTER 2. LEFT-ASSOCIATIVE ALGEBRAS AND MATRICES

This chapter contains basic definitions and lemmas concerning 3-element left-

associative both algebras and matrices.

For this and next chapter, our language A is determined by an infinite set of
variables Var = {z¢, z1,...,y,...} and one binary connective o. The A-algebras are
called groupoids. Te(x) and Te(z) will denote respectively the set and the algebra of
terms in one variable z. The length |t| of a term ¢ is 1 if ¢ € Var and is |s| + |r| if

= sor,ie., |t| is the total number of occurrences of variables in ¢.

Definition 2.1 We say that a term t is left-associated if t € Var ort = so z,
where s is left-assoctated and ¢ € Var. Similarly, a term t is right-associated if it

is a variable or is of the form x o s, where x is a variable and s is a right-associated

ferm.
Definition 2.2 A matriz % is leftassociative if the term

z(yz) (2.1)
is a tautology of .

It follows that every non-tautology of a left-associative matrix must be a left-associated

term. Notice also, that if 2 is an algebraic matrix. i.e., a matrix with exactly one



261

designated element, then the term z(yz) is a constant. We call the underlying alge-

bras of left-associative matrices left-associative algebras, i.e., we have the following

definition.

Definition 2.3 A left-associative groupoid is a groupoid satisfying

—~
o
8]

~—

2(y2) = u(uu)

Corollary 2.4 If9 is a left-associative algebraic matriz, then A is a left-associative

algebra.

We adopt the following conventions: We will omit the symbol of the binary operation
o and when parentheses are missing we assume the association to the left. By zy*
we mean z if k = 0 and (zy*~!)y if £ > 0. Let A be a groupoid and let Rg be the

range of the operation o in A, i.e.,
Rg=AoA=1{aob:a,be A}.

Suppose in addition that 2 satisfies (2.2) and let e be an element of A such that

for all a,b,c € A, a(bc) = e. Then

aob=e, for eacha € A,b € Rg; i.e., (2.3)
AoRg = {e}. (2.4)

This implies that
Rg is a proper subset of A, (2.5)

for if Rg = A, then by (2.4), {e} = AoRg= Ao A = Rg = A, a contradiction. Using
the observations (2.3), (2.4), (2.5) above, we can now list all possible three-element

groupoids satisfying (2.2).
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Lemma 2.5 Let A be a three-element groupoid satisfying 2.2. Then up to isomor-

phism A = ({0,1,2},0), where the operation o is given by one of the following tables.

o|0(112 0101112 o|0j1}2 ol0|112
0(1(2]2 011122 011212 0{21212
1{112(2 111212 1121212 111122
21141212 2121212 2121212 2114122
(I (IT) (I11) (IV)
o|0|1(2 o012 o|0]1]2 o012
0121212 0121212 0122 012122
1({112]2 1121212 112212 1121212
2121212 2121212 211122 2111212
(V) (VI) (VII) (VIII)

Proof. Note that up to isomorphism A is the algebra ({0,1,2},0), where 2 =
a(bc) for any choice of a,b,c € A. By (2.5) Rg = Ao A is a proper subset of A and

by (2.3), 2 € Rg. Without loss of generality we assume that

Rg C {1,2}. (2.6)

For if this is not the case, then A is isomorphic to some algebra satisfying (2.6). We

observe that

aoli=aqo02=2foreacha=0,1,2. (s

o
-1
—

This is obvious if Rg = {2} and follows from (2.3) if Rg = {1,2}.
We have shown that a 3-element algebra satisfying (2.2) is isomorphic to an

algebra A = ({0,1,2},0) satisfying (2.6) and (2.7). Clearly, (2.6) and (2.7) imply
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that the algebra satisfies (2.2). Hence A satisfies (2.2) iff it is isomorphic to a algebra
A’ = ({0,1,2,},0) which satisfies (2.6) and (2.7). The 8 algebras listed in the

conclusion of the lemma are exactly all the algebras A = ({0, 1,2}, o) satisfying (2.6)

and (2.7). O

Corollary 2.6 Let M = (M, D) be a 3-element algebraic matriz. Then M satisfies
(1) if m= ({{0,1,2},0,{2}), where o is given by one of the tables (I)-(VIII).

The matrix with the multiplication table (V) is the matrix with non-finitely based
consequence operation discovered by Wronski, [63].

Recall that for a given matrix M, F (M) denotes the content, i.e., the set of all
tautologies, of M.

Recall from Chapter 2 the following definitions and facts. A rule r is admissible
for o if it is valid in the matrix (Te, E(2)). Thus r = ( X , ¢ ) is admissible
for M iff, for every substitution o : Te — Te, whenever o(X) C E(M), then also
o(t) € E(m). Let Fyp(z) be the free algebra on one generator z in HSP(M). We will
identify the elements of F'(z) with terms in the variable z, i.e., with the elements of

Te(z), in the standard way. Let E(z) = E'(M)NF(z) and let Fo(z) = (Fum(z), E(2)).

Lemma 2.7 1. Suppose that a finite left-associative algebra M is 1-generated.

Then M is isomorphic to Fp(z).

2. Let M be a finite left-associative algebraic matriz whose underlying algebra M

is 1- generated. Then M and Jox(z) are isomorphic.

Proof. Let a be a generator of M. Then every element of M is of the form #(«)

for some term ¢(z) € Te(z). In particular, if b € M, b # a, then b € M?. Also, by
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(2.5), a & Rg. Let f: Fpr(z) — M be the unique algebra homomorphism such that
f(z) = a. Since a generates M, f is onto.

To show that f is one-one it is enough to show that for all terms ¢,s € Te(z),
if t(a) = s(a), then t(z) = s(z) is an identity of M. Suppose that t(a) = s(a). If
t(z) = «, then s(a) = a and therefore s(z) = z as a ¢ M?. So we can assume that
t(z) # z, ie., t(z) = ty(z)t2(z) for some terms ¢1,t, € Te(z). By the symmetric
argument we also can assume that s(z) = s;(z)s2(z), for some terms s;, s, € Te(x).
Let b€ M, b# a. We want to show that t(b) = s(b). As b € M?, s5(b),t2(b) € M2
So t(b) = s(b) by 2.2. The first claim of the lemma follows.

For the second claim we need to observe that f(E(z)) = D. Clearly, f(E(z)) C
D and by (2.1), f(E(z)) is nonempty. The matrix 9 is algebraic, which means that
D is a one-element set. Thus f(E(z))=D. O

Forn =1,2,...,8, let M, and M, be the algebra and the matrix determined by
the n-th table, according to the enumeration of the Lemma 2.5. Also, let 3; denote the
free denumerably generated matrix 3m; and §i(z) the corresponding one-generated

ix. The following lemmafort =5 isduc to

to A. Wroniski (personal communication).

Lemma 2.8 All matrices M;, ¢ = 1,...,8 are structurally complele. All algebras

M;, i=1,...,8, are structurally complete.

Proof. In view of Lemma 2.28 it is enough to prove that M; is embeddable into
F; and that m; is embeddable into F;. This second condition is of course stronger
than the first, since it means that there is an embedding e of M; into F; such that
(e(M;), e(D;)) is a submatrix of ;.

Notice that in each of the matrices M; — 9y and M; — Mg, 0 generates M.
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Hence by Lemma 2.7 each of these matrices is isomorphic to the submatrix Fm,(z)
of §;, i.e., is embeddable into §;. For the matrix M5 let a mapping e : Ms — Js
be defined by e(0) = zq, (1) = 170 and e(2) = zozo. It is straightforward to
verify that in the free algebra Fs these three terms are pairwise distinct, so e is
one-one. Similarly, (yz)z = yz and y(zu) = zezo for all elements y,u,z in Fs.
Thus (z120)zo = 7120 and zo(z120) = zo(ToTo) = (2120)(z170) = (T1Z0)(T0T0) =
(zoz0)(Z1Z0) = (Z0z0)(ZoTo) = ZoZo, 1.€., € is an embedding of M5 into Fs. Finally,
it is clear that 9 is isomorphic, via e(0) = zg,e(1) = z1,€(2) = zoz;, With a free
2-generated matrix, i.e., the submatrix (F(zo, 1), D) of 3s, where F(zq,z;) is the
subalgebra of Fg generated by z¢,z1 and D is uniquely determined. By a similar

argument it also follows that the algebras M;-Mj are structurally complete. O



CHAPTER 3. THREE-ELEMENT NONFINITELY
AXIOMATIZABLE MATRICES

3.1 Introduction and overview

From now on we consider only 1l-matrices, i.e., models of a language whose
relational part of the language consists of only one predicate. Recall that in this case
we identify the 1-terms with just terms and that matrix filters are identified with
subsets.

In [46] W. Rautenberg proved that (the set of tautologies of) any 2-element
matrix is finitely axiomatizable and asked (see [60]) if the same is true for any fi-
nite matrix. This question was answered by P. Wojtylak, who in [61] (see also [60])
constructed a 5-element matrix with two designated elements that is not finitely ax-
lomatizable. This led Rautenberg to the natural question ([45], page 109) whether
there exist nonfinitely axiomatizable 3- or 4-element matrices. In [61] Wojtyiak sug-
gested the more specific problem whether there is a 3-element nonfinitely axiomatiz-
able matrix with one designated element. In particular, he wanted to know if there
was a nonfinitely axiomatizable matrix as simple as the 3-element matrix with one
designated element considered by A. Wronski in [63]. Wroniski showed that the con-
sequence operation of this matrix is not finitely based. Earlier examples of this kind

with more than three elements had been presented by Wronski [62] and Urquhart
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[55], but the result of [46] shows that such a matrix must have at least three ele-
ments. Subsequently, Wronski’s matrix was shown to be finitely axiomatizable in
[45, page 116] and independently in [61]. Matrices with only one designated element
are called algebraic in the literature. Thus Wojtylak was particularly interested in
finding a “simple” nonfinitely axiomatizable algebraic matrix with four or, better yet,
three elements. In [10] W. Dziobiak presented a 4-element nonfinitely axiomatizable
algebraic matrix thus reducing the problem to the 3-element case.

We believe that the particular simplicity of Wronski’s matrix, as well as of the

proof that it is not finitely based, is due to the fact that the term

z(y2) (3.1)

is a tautology. This term is also a tautology of the matrices of Urquhart ([55]),
Wojtylak ([60, 61]) and Dziobiak ([10]).
In this Chapter we examine the eight 3-element algebraic matrices (up to iso-

morphism) that satisfy (3.1). Using the method of [60, 61, 10] we prove that exactly

. Dot . -3 timahd T+ alam dasmema . PO NS L I T DR e D
two of them are nonfinitely axiomatizable. It also turnis out that all 3-element alge-

braic matrices satisfying (3.1) are structurally complete — a fact noticed earlier by
W. Rautenberg for Wronski’s matrix. Since every nonfinitely axiomatizable matrix
is also nonfinitely based, our result gives several more examples of matrices whose

admissible rules are not finitely based'.

'We thank Prof. W. Rautenberg for pointing this out.
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3.2 The results

Throughout this section, whenever we say “ matrix ”, we mean a matrix whose

underlying algebra is a groupoid. The aim of this chapter is to present the following

Theorem 3.1 Let M = (M, D) be a 3-element algebraic matriz satisfying (1). Then

M is nonfinitely aziomatizable iff M is isomorphic to M, or Ms.

Proof. The proof will be completed by proving the following two lemmas.
Lemma 3.2 For:=1,...,6, M; is finitely aziomatizable.

Lemma 3.3 The matrices M7, Mg are nonfinitely axiomatizable.

Forn =1,...,8let 0, : Te — M, be the unique valuation such that 0,(z) =0,

for each variable z € Var.

Proof of Lemma 3.2. For each of the matrices 9; mentioned in the Lemma
we provide a finite set R; of rules which axiomatizes the matrix. Note that for

A 1

1 = 1,3,4,6 all the rules are axiomatic.
(1). The matrix M, is axiomatized by R; = {z(yz)}.

Proof. The valuation 0 shows that no term of the form sz, where s € Te and
z € Var, is a tautology of M. Since z € E(,) it follows that each tautology is of
the form rt, where r,t are terms, i.e. of the form r(us), where r, u, s are terms. Since

also z(yz) € E(M,), we conclude that R; axiomatizes 9.
(I1). The matrix M, is axiomatized by R, = {z(yz), (=, zy)}.

Proof. Note that every term ¢ is of the form ¢ = Yv;---v, for some n > 0

and vy,...,v, € Var, where 9 is either a variable or is the longest subterm of ¢ of
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the form 9 = t(rs). The valuation 0, shows that no term of the form wov; - - - v, for
n 2> 0, v; € Var, where ¢ = 1,...,n, is a tautology of ?M,. Hence every tautology of
M, 1s of the form

© = r(ts)vive- - - vy,

where n > 0 and r,¢,s € F and forz = 1,...,n, v; € Var . Such a formula ¢ clearly

is in Cn(Rz,0). Also, R, is valid in 9, which shows that R, axiomatizes ;.
(ITI). The matrix M is axiomatized by R; = {z(yz), (zy)z}-

Proof. Since z and zy are not tautologies of M3 for any pair of variables z,y,
each tautology must be of the form r(st) or (rs)t, so E(93) C Cn(Rs3,0). Clearly,

all rules of R3 are valid in 93, so E(9M3) = Cn(Rs, ).
(IV). The matrix My is axiomatized by Ry = {zz,z(yz)}.

Proof. It is easy to see that every rule of R4 is valid in M. Let ¢ € E(My)
and suppose that ¢ is not a substitution instance of either axiom in R,. Since a
tautology of Mts cannot be a variable, { = sz for some s € Te, s # z and z € Var.

A N\ WAamass g T N\ Ll i aemal o LY

~ a . { s n
zAxISv , $ ¥ var, OCCausSt y& ¢ s ag) 10 aiiy vauau €Y.

/
re O4(5) # 0; hience

04(t) € {100,200} = {1}. This contradicts the choice of ¢.

(V). The matrix 95 was used in [63] to show that the consequence operation of a
finite matrix need not be finitely based. It was shown in [45] and independently in [61]

that this matrix is finitely axiomatizable by the set Rs = {zz, z(y=z), (z, zy), (zy,zzy)}

(VI). Clearly, Mg is axiomatized by Rs = {zy}. O

Proof of Lemma 3.3. Since M; and Mg differ only in 000, they have many common

properties. Some of these properties are listed in the following proposition.
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Proposition 3.4 Letn =7 or 8 and let a,b,c € {0,1,2}. Then
al =a2=2
If m,n >0 and m = n (mod 2) then a0™ = a0
Proof. By inspection of the multiplication tables VII and VIII.
For each natural number £ we define terms
Q7 = T2k41T2k " -~ T2y

and

Qgk = T2k Tok—1"°"*T2T1

Observe, that for n = 7,8 and for any natural £ > 0

Proposition 3.5 Let m > 0, vy,...,v, € Var and let
t=Qniv1- - Un
be a tautology of M, (forn =T or8). Then m is even.

Proof. Since t is a tautology,
2 =0,(t) = 0p(ank)0n(v1) - - - 0x(vm) = 20™.

If m =0, then m is even, and if m > 0, then m is even by (3.3).

0

O
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For every positive integer k£ and n = 7,8 let G, be the set of all left-associated

tautologies of M, which have a subterm e, x. Thus an element of G, x is a tautology

of the form

Qpn (U1V2° - Uy

for some m > 0, where vy, --,v, € Var. By Proposition 3.5, m must be even. We

next show that, for every k and n = 7,8, G, 1 # 0. Let
ti= QpkT1T1%2%2 - * TokToAT2k+1T2k+1-
Then t is left-associated and for any valuation f, if f(z;) # 0 for somei =1,...,2k+1,
then f(t) =2. If f(z;) =0foreachz=1,...,2k 41, then
f(t) = 0,(t) = 0, (@ x)0%+2 = 20%+2 = 20% = 2
by (3.3). This shows that ¢ is a tautology and thus t € G, .

From now on, let us fix n = 7,8. We will write 0, and Gy, for 0,,a, and

G i, respectively.

Claim 4 Ift € G, then, for each cven ¢ < 2k | z; cccurs in t outside of ar.

Proof of Claim 1. Let ¢t € Gx. Then
t = agvy--- v,

for some vy,...,v, € Var. By Proposition 3.5, m is even. Let 7 be an even index,

0 S ) S 2k. Then m + 1—11s Odd. Deﬁne a valuation f by f({r‘) = 2’ fOI‘ every x;

13

occurring in ax and f(v) = 0 otherwise. If z; does not occur among the v;’s, then by

(3.2) and (3.3)

f(&)= 0:--020---00---0=20"""1 =20 =1.

jog[ i i=1 ™
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This contradicts the assumption that ¢ € Gy C E(M,); so z; must occur in ¢

outside of a. O

It follows from Claim 1 that

for every t € Gy the length of ¢ is at least 3k. (3.4)

Now let R be a finite set of rules admissible and therefore, by Lemma 2.8, valid in
My, and let k be an integer such that |s| < k for every rule (X,s) € R. In order to
complete the proof we want to show that R does not axiomatize 9,. Notice that

since § # G C E(o,,), it suffices to prove that that
E(9m,) \ Gy is closed under R.

To prove this by contradiction, assume that (X, s) € R and that o is a substitution

such that
o(X) € E(M,) \ Gi (3.5)
and o(s) € Gi. Then o(s) is left-associated, so there is some m = 0.1,... and some
Vo, ... ,VUm € Var such that
5 = Vg1 * - * U, (3.6)
o(v1),...,0(vm) € Var, and (3.7)
o(vo) is left-associated. (3.8)

By the choice of k

k2ls|=14m,



and by (3.4)

3k < |t] = Jo(s)] = lo(eo)] + 3o lo(ws)] = lo(wo)| +m

=1

S Ia(vo)l + k-1 < |0'(’Do)] + k.

Hence 2k < |o(vo)|, which implies that o(vo) & Var and that

ay is a subformula of o(vp). (3.9)

Thus,

vo # v; for every : = 1,...,m. (3.10)

Claim 5 Let o and vy be as above. Ifr = vgzy--- 2z, for somep 2> 0 and z1,...,2, €
Var such that, for eachi = 1,...,p, o(z;) € Var, and o(r) is a tautology of M,, then
a(r) € G.

Claim 5 follows immediately from (3.8) and (3.9). Consider now the valuation f :
Te — M, such that f(vg) = 1 if m is even, f(vy) =2 ifm isodd and f(z) = 0(o(z))

for every variable z # vo. Note that

f(s) = 10™ =1ifmiseven

= 20" =1 ifmis odd

by (3.7) and (3.3). Observe that for any term r not containing va, f(r) = 0(c(r)).
Also, if vy occurs in r at the position other than the leftmost one, or if o(r) is not
left-associated, then f(r) = O(o(r)). This implies that if f(r) # 0(c(r)), then o(r)
is left-associated and vg occurs on the leftmost position in r, hence r = vyz; - - - z, for

some p > 0 and some variables zy,..., z, such that o(z;) € Var. Therefore we have
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Claim 6 For any termr, if f(r) # 0(o(r)), then there is p > 0 and variables z; ...z,

such that r = vgzy - - - 2, and, for each i =1,...,p, 0(z;) € Var.

Since f(s) = 1, we must have f(r) # 2 for some r € X, as the rule (X,s) is valid.
But o(r) is a tautology of Mm,, so f(r) # 0(c(r)). By Claims 6 and 5 o(r) € Gy.

This contradicts (3.5) and completes the proof of Theorem 2. O

Remark 1 As in [60], [61] and [10], our proof shows, that for any set R of rules
such that the length of the conclusion of any rule from R is not greater than &, no

tautology of Gy is derivable from R.

Remark 2 Our proof can also be applied to matrices, with one binary operation

satisfying (zy)z rather than z(yz). Every nontautology of such matrix must be

right-associated.
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CHAPTER 4. RAUTENBERG-WRONSKI PROBLEM

4.1 Introduction to the Rautenberg—Wronski conjecture

Wojtylak’s example of a nonfinitely axiomatized finite matrix ([61]) motivated
the following two problems. stated in as questions by Rautenberg [46] and, indepen-

dently, as conjectures by A. Wroniski; see [42].

(Cl) Every finite algebra A is finitely based over some first-order equational sys-
tem that is obtained from B by adjoining finitely many new first-order rules

(necessarily sound for A).

(C2) Every finite algebra A is finitely based over some first-order equational system

thali is obilalued irom B by adjoining finitely many new first-order ruies that

are valid in A.

The second conjecture is stronger in the sense that a positive resolution would
automatically give a positive resolution of the first. The first conjecture was only
recently disproved in {21]. Most of the well-known finite, nonfinitely based groupoids,
those of Lyndon [27] and Murskii [32] in particular, have been shown to be finitely
based over some extension of B by finitely many rules. So we would like to know if

nonfinitely axiomatizable matrices of the size smaller than 18 exist and in particular,

if a 3-element algebra with this property exists.
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In this chapter we show that the underlying algebra of the nonfinitely axiom-
atizable matrix 20 considered in [61] and the underlying algebras of the nonfinitely
axiomatizable matrices considered in the previous chapter satisfy both (C1) and (C2)
and moreover all these algebras are even finitely based. In the first section we show
this for all 3-element left-associative algebras and in the second section for the un-

derlying algebra of the Wojtylak’s matrix.

4.2 Three-element left-associative algebras

Theorem 4.1 Every three-clement left-associative algebra is finitely based.

For i = 1,...,8 let A; be the 3-element algebra ({0,1,2},0,), where o is the
operation determined by the ¢!* table of Lemma 2.5. To prove Theorem 4.1, for each
A; 1=1,...,8, we will demonstrate a finite equational basis B;.

We first list all the B; and then we prove the lemmas that B; is a basis for A;

for those cases for which this is not obvious.
o By ={zz=yz}
e B, is the set of the following equations:

z(yz) =~ u(vw) (4.1)

TYz X TZY (4.3)
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TYY R TY (4.4)

TTY R YyT (4.5)

e The algebra Aj is the 3-nilpotent commutative semigroup discussed by M. Sapir
in [51] and, as observed there, is based by {z(yz) = (zy)z,zyz ~ uuu,zy = yz}

or equivalently, by {z(yz) = (uv)w, zy = yz}.
¢ By = {2z ~ u{vz),zyz = uvz}.

e Bj; is the following set of equations:

z(yz) =~ uu (4.6)
TYz X T2y (4.7)
TYy X TY (4.8)

That Bs is a basis for As has already been noticed in several places by W. Raut-
enberg, see for example [47]. For selfcontainment, and also because the proof
in [47] contains a type error, we present below (lemma 4.3) our proof of this

fact.
- A PR R P A
w g 1> Lical ly 111110C

e B-; consists of

TIT & uuu (4.9)

z(yz) =~ vuu (4.10)
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TYYY ~ TY (4.11)
TYzz N TZYY (4.12)
TYT X Yy (4.13)
TY2Y N T22Y (4.14)
TYzUy N T2ZUY (4.15)

e let Bg consist of the following set of equations:
TT X uu (4.16)

z(yz) = vu (4.17)

and of (4.11), (4.12), (4.13), (4.14) and (4.15).

We claim that for each ¢, B; is a basis for the equational theory of A;. This is
straightforward for ¢ = 1,3,4,6. For : = 2,5,7,8, this is the content of lemmas 4.2-

4.15.

4.2.1 Proof for A,

Lemma 4.2 A, s based over B,.

Let ¢t be a non-leftassociated term. Then ¢ has a subterm of the form s(ru) and
{(4.2),(4.1)} F t = z(yz). Note that if z(yz) =~ s € Id(A;) then s cannot be left-
associated. For otherwise the valuation v(z) = 0 for all variables z would map s to 1
while it maps z(yz) to 2. Therefore if ¢ or s is not left-associated and ¢ =~ s € Id(A,)

then B, Fit~s.
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Let now both t and s be left-associated and assume that t =~ s € Id(A;,). So
t=zy---z,and s=y; -y, for some n,m > 1 and t = s € Id(A,). Our first claim
is that {z1,...,2.} = {y1,-- -, Ym}-

Notice that for any variable v, the only term to which v can be identically equal
in Az is v itself. So assume that n,m > 1. Consider a valuation f such that for
1 <1< n f(z;) =0 and f(z) = 2 for any other variable z. Then f(t) = 1 and
therefore f(s) = 1. But this is only possible if for every 5 < m f(y;) # 2, so
{y15---ym} S {z15.--,ZTn}. Similarly, {z1,..., 2.} C {y1,---,Um}-

Our second claim is that also {za,...,Z.} = {y2,...,yn}. For let v(z;) =
1,v(z) = 0 for every variable = # ;. If for some ¢ # 1, y; € {z,,...,Z,} then by
our first claim y; = z; and v(s) = 2. Therefore v(t) = 2 and whence z; = z; for
some j # 1. Thus y; = z; = z; € {x2,...,2,}. We have shown that {y2,...yn} C
{z2,...,z,}. The claim now follows by the symmetric argument.

It follows from the above claims that B, F ¢t ~ s. For if z; = y; then t = s

is derivable from (4.3), (4.4), as {z2,...,z2} = {y2,--.,yn}- If 27 # y; then by

claims i and 2 73 =y = 7;, 17y = 27 = y;, for some 7,7,k 1 # 1. Using (1.3

v ——— J
(4.4) again, we can assume without the loss of generality that: = j =2,k =1 = 3,i.e.,

t = 1712324 - - T, and that s = z3232124 - - T,. But (4.5)F 212129 = To797,. So

Bz Ftxs.
Lemma 4.3 Bs is a basis for 1d(As)
Proof First, the following is derivable from Bs:

ITY X Uu (4.18)
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Let R be the reduction determined by the following rules:

z(yz) — uu,
TTY — U,
TY1- Yo — uu foralln >1
Ty - TpZp — Ty Ty, foralln>1,1<k<n.

A term ? is reduced if none of its subterms is a substitution instance of any of the
left-hand-sides of the above reductions, i.e., if the reduction cannot be applied to any

subterm of t. The following statements are easy to verify:

1. every reduced term is left-associated;

o

a reduced term of length greater than 2 has all of its variables distinct;

3. for every reduction rulet — s, Bs Ft = s;

W

5. to show that Bj; is a basis for Aj it is enough to show that for every pair of

reduced terms t,s,if t & s € Id{A);, then Bs -t = s.

Let t,s be reduced and t = s € Id(As). Sot =z;-+-Tp, $ = Y1+ ym for some

variables z1,..., 74, ¥1,...Un. Hn=m =2 and 7; = =,

" U then clearl
Yy o1y

o xr
J2s vaalll LIRLL g1

2 Y B+
t =~ s, since from {4.6) one derives zz = yy. So suppose that all variables in one of
the terms, say t, are distinct. We claim that z; = y; and {z2,..., 2.} = {y2,. - -, Ym }-

Let v be a valuation such that v(z;) = 1,v(z;) = 0 for all : = 2,...,n and

PP

v(y) = 2, for all variables y distinct from z4,...,2,. Then v(t) = 1 and therefore
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v(s) = 1, which implies that y; = z; and that {ys,...,ym} C {z2,...,2,}. It also
implies that y; is distinct from all the other variables in s, so the above argument
may be repeated with the roles of ¢ and s interchanged to show the reverse inclusion.
This proves the claim. It follows from the claim that the equality ¢ & s can be derived

using just (4.7). This finishes the proof that Bs is the basis for As.

4.2.2 Proof for A;
Lemma 4.4 B; is a basis for Az

For a term ¢ by Vart we understand the set of all variables occurring in ¢. Consider

the following equations:

TYYzz N TZZYY (4.19)
UUUT X TT (4.20)
ZTYY X Yy (4.21)

Proposition 4.5 (4.19), (4.20), (4.21) are derivable from B; and moreover, (4.19)

4 1

is derivable from (4.12) and (4.14) onldy

—~

Proof Using (4.12) and then (4.14), we get the following derivation of (4.19): zyyzz =
zyzyy = rzzyy. (4.20) 1s immediate from (4.9) and (4.11) and (4.21) from (4.12)
and (4.13). O

Lemma 4.8 For everyn > 0, the identity

TYVpUn—1 """ V1T R YYVrUp—1 " V1T, ( 62)
is derivable from (4.13), (4.15) and (4.11) and the identity

TYZUy -+ 1Y R T2V, -+ - V1Y, (Tn)



(]
[02]
(3]

is dertvable from (4.14), (4.15) and (4.11).

Proof Note that (4.13), (4.14), (4.15) are (60), (7o), (71), respectively. It suffices
to show that for every n > 1, the identity (6,) is derivable from (6,-1), (4.13), and
(4.11) and that for every n > 2, the identity (7,) is derivable from (7,-1), (4.15) and
(4.11). The following derivation using (4.11), (4.15), (6.-1), demonstrates the first

of the above claims:

TYVpVp-y ... V1T X by (4.11)
TYVpUn - - - VoV VI T R by (4.15)
TYVpUpoi - . . V2TV T by (6,-1)
YYUnUn—g - - . V2TVIVIT N by (4.15)
YYVnUn_1 - .. V2V V11T = by (4.11)

YYUnUn1 - - - V1 L.
The following derivation using (4.11), (4.15), (Tn-1), (4.13), (4.5), in this order,

demonstrates the second of our claims:

TYZUp... V1Y R by (4.11)
TYZUp . . . VUIVIV1Y R by (4.15)
TYZVn ... VYUY R by(Tz-1)
T2V, ... VYUY R by (4.15)

TIZVpUn—1Vn, - . . 2VIVIV1Y by (4.11)
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ZZUpVn—1Vn, ... NY. O

A left-associated term t = z,z,—1 - - - 1 is reduced (with respect to B;), if either

n=3and z; = 7, = 3, Or
z; = z; implies |¢ — j] < 1,

l.e., every variable occurs in ¢ at most twice and these occurrences are consecutive.
Two terms ¢ and s are called equivalent (with respect to B;) if the equality ¢ =~ s

is derivable from B; using the Birkhoft’s rules.

Lemma 4.7 For every term t there exists a reduced term s such that t and s are

equivalent.

Proof Use (4.10) to get a left-associated term equivalent to ¢. To this term, use (7,)
and (6,) (possibly several times) to get an equivalent term in which all occurrences
of a given variable are consecutive. Then, for every variable other than the leftmost
one, if this variable occurs more than twice, use (4.11) to get an equivalent term with
no more than 2 occurrences of this variable. Finally if the leftmost variable occurs
at least 3 times and the length of the term is more than 3, use (4.9) and (4.20) (an
appropriate number of times) to get a reduced term. O

Let A denote the empty term, so that Az = z.

1) t = uuu

2) t is of the form t = tyzpy 22 - - 2322, for some t; € TeX U {\}, some p > 0 and

some pairwise distinct variables z,,...,zp41 € X, such that



[ ]
(03]
N

a) t; =X or

b) t; = ap41 o7

c) t1 € TeX and z,41 does not occur in t;.

(it follows, from the fact that t is reduced, that none of zy,...,x, occurs in

in any of these cases).

For a reduced term ¢ of the form 2 define a valuation v, : TeVart — A~ as follows:

a) if t is of the form 2a, let vi(z,41) = 1,ve(z;) =0, foralli=1,...,p
b) if t is of the form 2b, let vy(z;) =0, foralli =1,...,p+1

c) if ¢ is of the form 2c¢ let v;(z;) =0 foralli=1,...,p+ 1 and v,(z) = 2 for every

variable z € Vart,.

Fact 4.8 For every term t of the form 2, v,(t) =1

O

Lemma 4.9 Ift =~ s € Id(A7) and t,s are reduced, then t is of the form 1 {ff s is of
the form 1.

Proof Suppose that ¢ is not of the form 1. Then v,(¢) = 1 and therefore v;(s) = 1.

But for every valuation v, v(uuu) = 2. So s cannot be of the form 1. |

Lemma 4.10 Let t and s be reduced terms of the form 2, i.e., there exist k,p > 0
and ty,s1 € TeX U {A} such that t = tyzp4a22-- 2322, 5 = s1yepyi- - y3y? and
the condition 2) on t,s holds. Ift =~ s € Id(As), then k = p and {y1,...Yrs1} =

. . 1
{113---lp+lj’-
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Proof Note that if {y1,...yks1} = {z1,...Tp+1}, then k£ = p by the fact that ¢ and
s are reduced. In order to prove the lemma it suffices to prove that {z;,...,zp41} C
{Zh,---,yk+1}-

Suppose that for some i =1,...,p+ 1, z; & {y1,...,Yxs+1} and choose the minimal
such 7. Let v(z) = vs(z) if z € Vars, and if v(z) = 2, otherwise. Observe that by
the choice of 7, v(z;) =2 and v(z1) = ... = v(zi-1) = 0. Sov(t) =2 and v(s) =1, a

contradiction. It follows that {z1,...,Zp+1} C {¥1,- -+, Ykt+1}- 0O

Lemma 4.11 Ift,s are reduced terms, s is of the form 2a and t = s € Id(A7) then

t is also of the form 2a.

Proof By lemma 4.9 ¢ cannot be of the form 1. Hence t = tlxp.,.la:f,---xf By
lemma 4.10 all variables of s are contained in {z1,...,zp41}. If ¢ is of the form 2b
or 2c, then v(z1) = ... v (zps1) = 0 and therefore v,(s) = 2, a contradiction with

t~ s € Id(A7) and Fact 4.8. Hence t is of the form 2a. o

Lemma 4.12 Ift,s are reduced terms, s is of the form 2b and t = s € Id(A-), then

t is also of the form 2b.

Proof By lemmas 4.9, 4.11 and Observation 1, ¢ is of the form 2b or 2c. Suppose
that t is of the form 2c, i.e., t = t12p4122-- -z}, where t; is a term not containing
any of the variables {z1,...,zp41}. Also, as t is reduced, so must be ¢;. Moreover t,

cannot. be of the form 1, because then ¢ would not be reduced. So ¢; is of the form

15 vad 2 sas

2 and vy, (t;) = 1. As {z1,...,Zp41} N Vart; = B, we can extend this valuation to a
valuation v : Vart — A7 by setting v(z;) =0forz=1,...,p+ 1. But then v(t) =2,
while v(s) = 1, by lemma 4.10. This contradiction shows that ¢ must also be of the

form 2b. a
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Corollary 4.13 Let t,s be reduced terms such that t = s is an identity of A7, Then

s is of the form 2i iff s is of the form 2i, for: = a,b,c.

0

Lemma 4.14 Ift = s € Id(A-), then t = s is derivable from B;.

Proof By lemma 4.7 it is sufficient to assume that ¢ and s are reduced. We will
prove the claim of the lemma by induction on the minimum of [¢],[s|. Without loss
of generality assume that ¢ is no longer than s. If |{| = 1, then t is a variable,
whence s = ¢, as no variable can be identically equal in A7 to any other term but
itself. So in this case t & s is derivable from B;. Now assume that [¢|,|s| > 2 and
that every identity of A; with at least one side shorter than ¢ is derivable from B-.
If both ¢ and s are of the form 1 then the identity ¢ ~ s is derivable using (4.9).
Next consider the case that they are both of the form 2a, i.e., t = x,,_,_lxi-- -z
and s = yr41y5---y2. By lemma 4.10 Vart = Vars. If zp41 # yis1, then v(s) =
2, a contradiction with the assumption and Fact 4.8. So z,4; = ws; and ¢t =
s follows from (4.19). If both ¢ and s are of the form 2b, then t = 22, ---z%,
s=ytyiand {z1,....2p41} = {y1,...,Yks1}. Sot = s can be derived from
(4.21) and (4.19). Finally suppose that both ¢ and s are of the form 2c, i.e., t =
t1@pp12222_y -+ 2} and s = s1ykpayfyi_, - - - i, where z;’s do not occur in ¢; and yi’s
does not occur in s;. Moreover, by lemma4.18. p =k and {z:,... 2.} = {y1,. ..,y }.
So {(4.12),(4.19)} F s = s12,4122 - - - 2. Now observe that since z; ¢ Vart; U Vars,
forany ¢ = 1,...,p+ 1, v(t1) = v(s1) for every valuation v. For otherwise letting
w(z;) = 0forallz=1,...,p+ 1 and w(z) = v(z) otherwise, we would have that

w(t) # w(s), a contradiction. Hence ¢; & s, is an identity of A7 and by the induction
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hypothesis it is derivable from B;. But ¢ & s is derivable from ¢; & s; by using the

rule of replacement,so B; I t = s. Corollary 4.13 ensures that we have considered all

the cases. m]

4.2.3 Proof for Az

Lemma 4.15 Bs is a basis for Ag

Let us observe that

UUTT R UU (4.22)

is derivable from Bs using (4.16) and (4.11) and that (4.19) is derivable from Bs, by
Proposition 4.5. Similarly, by lemma 4.6 we have that (6,) and (7,) are derivable
from Bs.

We will say that a left-associated term t = z,2,—1 - - - 21, Is reduced (with respect

to Bs), if t does not contain a subterm zzyy for any variables z,y and
x; = z; implies |t — j] < 1,

i.c., every variable occurs in ¢ at most twice and these occurrences are consecutive.
Two terms ¢ and s are called equivalent (with respect to Bs) if the equality t ~ s

is derivable from Bs using the Birkhoff’s rules.

Lemma 4.16 For every term t there exists a reduced term s such that t and s are

equivalent.

Proof Use (4.17) to get a left-associated term equivalent to t. To this term, use (7,)
and (6,) (possibly several times) to get an equivalent term in which all occurrences

of a given variable are consecutive. Then use (4.16) and (4.11) to get an equivalent
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term with no more than 2 occurrences of a given variable. Finally use (4.22) to get
an equivalent term with no subterm zzyy, for any pair of variables z,y. O

Let A denote the empty word, so that , Az = z.
Observation 2 For every reduced term t one of the following is true:

1) t is equivalent to uu

2) t is of the form t = tyzp41 2] ---z222 for some p > 0 and some pairwise distinct

variables z1,...,Zp+1 € X, where either
a) t;=Aor

b) t; € TeX and z,41 does not occur in t, (it follows, from the fact that t is

reduced, that also none of z1,...,z, occurs in ty).

Let ¢t be a reduced term of the form 2 above. Define a valuation v, : TeVart — Ag

by vi(z1) = ... = v(zp41) = 0 and vy(z) = 2 for every z € Vart,.
Fact 4.17 Ift s of the form 2, then v,(t) = 1.

Lemma 4.18 Let t and s be reduced terms of the form 2, i.e., there exist k,p > 0
and ty,s1 € TeX U {A} such that t = tyzpp122--- 232}, s = s1yrp1¥i -~ - Y5y and the
conditions on zis and y.s required by 2 hold. Ift =~ s € 1d(A)s, then k = p and

(.. . 1 . f. - 1
Wiy Yp+15 = 1T15-- - Tht1f-

Proof Note that if {y1,...yp+1} = {Z1,...Zk41}, then k = p by the fact that ¢ and

s are reduced. So in order to prove the lemma it suffices to show that under our

assumptions {Z1,...,Zk+1} C {Y1,-- - Yps1}-
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Suppose that for some ¢ =1,...,k+1, z; € {y1,.-.,Yp+1} and choose the minimal
such 7. Extend v, to a valuation v : TeX — Ag by setting v(z) = 2 for every variable
r for which v, is undefined. Note that v(z;) = 2 and thus v(¢) = 2 while v(s) =1, a

contradiction. It follows that {z1,...,zks1} C {y1,---,¥ps1}. O

Lemma 4.19 Let X be any of the 1,2a,2b. Ift = s € I1d(As), then s is of the form
X iff t is of the form X.

Proof Similar to the combined proof of Lemma 4.9 and Corollary 4.13, using valua-

tions v; defined above. =]

Lemma 4.20 Ift and s are reduced andt =~ s € Id(As), then t = s is derivable from
Bs.

Proof We prove the lemma by induction on the minimum of [¢|,[s]. Without loss
of generality assume that ¢ is no longer than s and that s = y,ym—1 - - y1, for some
Y1,...,Ym € X. First note, that if || = 1, then ¢ is a variable and that any variable
is identically equal in Ag only to itself. So in this case t = s is derivable. Suppose
next that |¢| > 2 and assume that every identity of Ag with at least one side shorter
than ¢ is derivable from Bg. If both ¢ and s are equivalent to uu (recall that this
means that ¢ & uu is derivable from Bg), then there is nothing to prove.

If both ¢ and s are of the form 2a, then Vart = Vars and moreover zp11 = yrq1.
For if 2,01 = u; for some ¢ # k + 1, then v.(t) = 2, a contradiction with Fact 4.17
and the assumption. But this means that ¢ and s differ only by the order of variables
Ty,...,Tp and t X s is a consequence of (4.19).

Finally assume that ¢ and s are of the form 2b, i.e., there exist k,p > 0, ¢;,5; €

TeX and variables 21,...,2p,y1,-.-yx such that ¢t = tyz,02222 -~ 2% and 5 =
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S1Yr+1YEy2_, -+ y2, where z;’s do not occur in ¢, and y;’s does not occur in s;. By
lemma4.18, p =k and {z1,...2p31} = {y1,-- -, Yr41}-

We claim now, that ¢; = s; € Id(A). Consider any valuation v and put w(z) =
v(z),f ¢ # g; foranyz = 1,...,p+ 1 and for every ¢ = 1,...,p + 1,w(z;) = 0.
Then w(t;) = v(t1), w(s1) = v(s1) and if w(#;) # w(s1), then also w(t) # w(s). But
t = s € Id(A), so it follows that w(t;) = w(s;) and therefore v(¢;) = v(s1). This
proves that {; = s; € Id(A). By the induction hypothesis, ¢; = s; is derivable from
Bs. But then also t = s is derivable using the Birkhoff’s rule of replacement, (4.12)
and (4.19). By lemma 4.19, the above argument covers all possible cases. o

Thus Bg is a basis for the algebra As.

4.3 Wojtylak’s algebra

We mentioned above that the first matrices with nonfinitely axiomatized theo-
rems were introduced by P. Wojtylak in [60, 61].

We present this algebra here and show that the smaller of these algebras is

finitely based.

Definition 4.21 The algebra W is the groupoid (W,o), where W = {0,1,2,3,4}

and the operation o is given by the following table:

o

el o] =] e o
NN IR NG NG NS

ol o] o) of —
N RN N N N )

] O] O ] W
W ] R ]
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Theorem 4.22 The algebra W is finitely based .

ProofWe claim that the set £ consisting of the following equations (4.23)~(4.27) is
a finite basis of W.

z(yz) = u(uu) (4.23)
u(uu)zr =~ u(uu) (4.24)
TYz X Y (4.25)
TTY N YT (4.26)
TIT R TT (4.27)

Lemma 4.23 The following useful identity can be derived from ¥

YTTT N YIT (4.28)
Proof
yzrz = zzyzr by (4.26)

= zzzy by (4.25)

= zzy by (4.27)
Lemma 4.24 W E X,

Proof By inspection of the multiplication table of W. O

Definition 4.25 A term t is in normal form if it is right-associated and t = u(uu)
or it is left-associated, no variable occurs in t more than twice and if twice then both

occurrences of this variable are consecutive.
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It follows from the above definition that a term in a normal form cannot have a

proper subterm of the form #(sr).

Lemma 4.26 For every term t there is a lerm t' in normal form such that T+t =~ t'

and therefore also t = t' € Id(W).

Proof Let 4 abbreviate the term u(uu). We proceed by induction on the complexity
of t. Clearly, each variable is a term in normal form: it is left-associated and the
rest of the conditions follow trivially. So suppose that ¢ = sr and assume that for
every term less complex than ¢ the lemma helds. So in particular, we can assume
that s and r are in normal forms. If s is right-associated, i.e., s = 4, then t = 4r
and L F t = 4, by 4.24. Similarly, if 7 is a term other than a variable, then we can
use equation (4.23) to derive { =~ 4 from ¥. So assume that s is left-associated, in
normal form and that r is a variable, say » = z. Now if z is different from every
variable occurring in s, then ¢ is in normal form. So assume that = occurs in ¢, say
t=2,-+,2Z, and 1 <7 < nis the largest index such that z; = z. Then using (4.25)
we can derive from ¥ the equality i = ;- @;70;01 -7, andif s =lorx;_; £ 7
then the right-hand-side of the above equality is in normal form and lemma is proved.
Otherwise, z;_; = = and we can use (4.27 or (4.28) to derive equality of ¢ with just

$ = Ij--- Ty, which is in normal form. O
Lemma 4.27 Ift =~ s € Id(W), where t,s are in normal form, then £ =t = s.

ProofFirst observe, that for every valuation v the value of the term 4 under v is 4.
On the other hand, the valuation v such that for every variable z v(z) = 1 sends any
left-associated term into 2. Hence if ¢, s satisfy the assumptions of the lemma, then

cither both of them are 4, in which case obviously ¥ ¢ & s, or else they are both
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left-associated. Let = be some variable. Consider valuation v such that v(z) =3 and

v(y) = 1, for every variable y # z. Then for every left-associated term r in normal

form, the following statements are easy to check.

1. If = does not occur in r, then v(r) = 2.

(O]

. If ¢ occurs in r exactly once, then v(r) = 0.
3. If z occurs in r twice, then v(r) = 4.

It follows that if terms {,s in normal form are left-associated and W =t = s,
then the number of occurences of a variable z in ¢ is the same as the number of
occurrences of z in s.

Thus t and s differ at most by the order of occurrences of variables, i.e., ¢t =
T1...Tny, § = Y1,...,Yn Where zy,...,Zn,Y1,...,Y» are variables and the strings
Tiy..-yTn, Y1,-- -, Yo are permutations of each other. Notice, that if z; # y; then z;
must occur in ¢ twice. For if 1 occurs in ¢ only once, let v be a valuation such that
v(z1) = 2 and v(z) = 1, for every z # z;. Then v(t) = 2 while v(s) = 4. Hence
if z; # y;, then both z; and y; occur in both ¢ and s twice. If z; = y;, then the
equality ¢ = s follows from (4.25). If z; # y; and both z;,y; occur in ¢ and therefore
in s, twice, then ¢t = s follows from (4.26) and possibly (4.25).

This finishes the proof of the lemma. O

Returning to the proof of the theorem, in view of lemma 4.24 it remains to show
that every identity of W is derivable from . Let ¢ & s be an identity of W. Then
by lemma 4.26, £t = t',s = &, where t', s’ are in normal form. It follows again by
Lemma 4.26 that ' = s’ is an identity of W and therefore, by lemma 4.27, ¥ - ' ~ ',

Thus £ F ¢t = s, as desired. This finishes the proof that W is finitely based. O



CHAPTER 5. GENTZEN-STYLE AXIOMATIZATION OF
EQUATIONAL LOGIC

5.1 Introduction

This chapter presents result of a joint work of the author with her major pro-
fesor. The analogue of the Rautenberg-Wronski conjecture in quasi-equational logic
is considered and a Gentzen-style deductive system for quasi-equational logic is pre-
sented. In this system, the sequents correspond to quasi-equations. We conjecture
that every finite algebra gives rise to an extension of this system by a finite set of
new Gentzen-style inference rules from which all (and only) quasi-identities of the
algebra can be derived. This conjecture is verified for a class of algebras that includes
all finite algebras without proper subalgebras and all finite simple algebras that are

embeddable into the free algebra of their variety.

5.2 Preliminaries and notation

We use €. 6, v to represent equations and v, 1,9 to represent either equations or
quasi-equations. For any equation ¢, €' and ¢ will denote the left- and right-hand
term of ¢, respectively. Recall that for any formula ¢, by Var(p) we denote the set

of all variables occurring in . and that by a substitution instance of an equation ¢
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we mean o€’ & oe” for some substitution o. If ¢ is the quasi-equation

ELA- - Aen — &, (5.1)

where n is a natural number and 4,¢,,...,£, are equations, then o = g1 A--- A
oen, — 6.

The conjunction ;A --Ag, in 5.1 may be empty. It is convenient to treat it as a
finite (possibly empty) set rather than a conjunction of equations. So we write 5.1 in
the form { €1,...,6n } — &; we often omit the set-building brackets and write simply
€lyenesEn — 0.

Other useful notational conventions for representing quasi-equations: Let ¢, é
be equations and I', A finite sets of equations. We write A - efor TUA — ¢
and I',§ — ¢ or §,' — ¢ for T U {6} — e. We identify the quasi-equation § — ¢
with the equation ¢; it is normally written in the form — ¢. The capital greek letters
', A will represent finite sets of equations and ®, © finite sets of either equations of

quasi-equations.

5.3 Second-order equational logic

In chapter 2, section 2.4, with every deductive system S we associated a cor-
responding second-order deductive system, in which the formulas are the sequents
representing the rules of S and the rules take the form of Gentzen rules. By contrast,
S is called a first-order system. We consider here the deductive system of equational

logic. The weakest second-order equational system we consider has the following

axioms:

(1) =z~ «z,



(R) z1 = y15...,z1 = 51 = O(z1,...,21) = O(y1,...,y) for each l-ary operation

symbol O,
(U) € — ¢, for every equation ¢.

We also have the following inference rules: ¢ and é represent arbitrary equations and

I' and A arbitrary finite sets of equations.

[L6—e A—d
() [LA—e
'—e¢
(W) IA—e¢

The axiom (U) is called tautology, and the rules (C) and (W) cut and weakening,
respectively.

This second-order equational system is essentially the one given in Selman [52];
we will refer 1o it in the sequel as S. A closely relaied sysiem was formuiated by
Lo$ and Suszko [28}; see {46], section 6. The following completeness theorem for
second-order equational logic is established in [52]: for every sequent % and every set

of sequents &,
=y ff OFgib.

r . . .
Every first-order rule — can be associated with a sequent ' — ¢ and vice-versa.
€
Trivially, the rule is valid in an algebra A iff its associated sequent is a quasi-identity
of A and this rule is sound in A if the associated sequent is a quasi-identity of the

free denumerably generated algebra. This correspondence between first-order rules
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and second-order formulas extends much further, as was first observed by Rautenberg
[46]. Let ®,...,®, be a finite set of first-order rules and ¢4, ..., v, their associated

sequents. Let 7 be the first-order system obtained by adjoining the rules @,,...,®,

to B. It is not difficult to show that, for any system ¢1,...,&n,, 6 of equations,
El,--€mbré Ml — e, Em, 01,0 g

Because of this equivalence and the completeness theorem for second-order equational

logic, the two Rautenberg-Wronski conjectures above can be reformulated as follows:

(C1) For every finite algebra A there is a finite set {¢1,...,9,} of sequents such

that ¢ is an identity of A iff ¢1,...,0n Fg— €.

(C2) For every finite algebra A there is a finite set {©1, ..., .}z of quasi-identities

of A such that ¢ is an identity of A iff ¢1,..., 0, Fg— €.

The problem of whether a finite algebra is finitely-based over a first-order system
has an analogue in second-order equational logic.

Let 7 be a second-order system obtained by extending & by new second-order
(Gentzen) inference rules. An algebra A is finitely g-based over T if there is a finite
set ® of sequents (quasi-equations) such that, for any sequent ¢, » € QId(A) iff
® 7 . It is finitely g-based if it is finitely g-based over the weakest second-order
system S.

u is said to be sound or admissible for

An arbitrary second-order rule
an algebra A if, for every substitution o, either oy; fails to be a quasi-identity of A
for some ¢, or o? is a quasi-identity of A; the rule is valid for A if, for every valuation

v: Te(X) — A, either v fails to satisfy ; for some ¢, or it satisfies . Clearly every

valid rule is sound.
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If A is finitely g-based over some second-order system 7 that is obtained from
S by adjoining finitely many new second-order rules, then we say that A is second-
order finitely aziomatizable. If all rules of 7 are valid for A, then we say that A is
second-order finitely axiomatizable by valid rules.

We make the following two conjectures:

(C3) Every finite algebra A is finitely g-based over some second-order system that is

obtained from & by adjoining finitely many new second-order rules (necessarily

sound for A).

(C4) Every finite algebra A is finitely q-based over some second-order system that
is obtained from S by adjoining finitely many new second-order rules that are

valid for A.
The two conjectures can be equivalently formulated as follows

(C3) Every finite algebra is second-order finitely axiomatizable.

(C4) Every finite algebra is second-order finitely axiomatizable by valid rules.

As was the case for the two first-order conjectures, verification of the second
would automatically verify the first. In section 5.5 this chapter we verify both con-

jectures for a large class of algebras, namely we prove

Theorem 5.1 Let A be a finite algebra. Suppose that A has no proper non-trivial

subalgebras, i.e., for every aigebra B
B e S(A) implies B=A or|B|=1. (5.2)

Then the conjecture (C4) holds for A, i.e., A is second-order finitely axiomatizable

by valid rules.
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Theorem 5.2 Let A be a finite algebra such that no proper subalgebra of A is a

homomorphic image of A, i.e., for every algebra B
B e H(A)N S(A) implies B = A. (5.3)
Assume in addition that
A is isomorphic to a subalgebra of F, (5.4)

where F is the free algebra on denumerably many generators in HSP(A). Then the
conjecture (C4) holds for A ,i.e., A is second-order finitely aziomatizable by valid

rules.

A corollary to any of the above theorems is that (C4) holds for every finite algebra
whose every element is an algebraic constant. This corollary was chronologically the
first result of this paper. We proved it by generalizing Kalmar’s proof (see e.g. [31],
pages 36-37) of completeness theorem for classical propositional logic. By a further
generalization we obtained the proofs of Theorems 5.1 and 5.2. We believe that it
will be instructive to present these results here in the same order: In section 3 we
sketch the direct proof of the special case mentioned above and in section 4 we prove

our main resulis.

5.4 Special case

Let us say that an element a of an algebra A is an algebraic constant, if there
is a term a such that, for every valuation v : Te(X) <« A, v(a) = a. Observe
that if every element of the algebra A is an algebraic constant, then A cannot have

proper subalgebras. In particular, it can neither have proper nontrivial subalgebras
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nor proper subalgebras which are homomorphic images of A. Also, such an algebra
is embeddable in the free algebra in the variety generated by A. This means that the
assumptions of both Theorem 5.1 and Theorem 5.2 are satisfied and that we have

two ways of proving the following

Corollary 5.3 Let A be a finite algebra such that every element a € A is an alge-
braic constant. Then the conjecture (C4) holds for A, i.e., A is second-order finitely

aziomatizable by valid rules.

In this section we will sketch a direct proof of this corollary in the case when the
language Q of our algebra A has only one non-constant operation and this operation
is binary. It is easy to see how this proof works in the case of arbitrary type (with

algebraic constants for elements of A). Thus we are proving the following

Corollary 5.4 Let Q be a type of some constants and one binary operation. Let A
be a finite algebra of this type such that every element a € A is an algebraic constant.
Then the conjecture (C4) holds for A, i.e., A is second-order finitely ariomatizable

by valid rules.

Proof Let A = {ai,...,a,}. Let T be the Selman system S extended by the

following rules:

A

—a;-a;~a; foralla;-*aj=arin A, (5.5)

ajxa;—c~xyforale #a;in A (5.6)

rxa,A —y=xz, e, TR A, A —yxz

(5.7)

A — y=z
Let us note that (5.5) and (5.6) represent finite sets of axioms, while (5.7) rep-

resents one rule. It is not hard to see that these axioms and rule are valid. To see
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the completeness, let z;,...,z; be some fixed variables and let @ = (a;,,...,a;,)-
For a term t(zy,..., ;) let t¥ = b, where b = t*(a;,,...,q;). For an equation ¢ let
e¥ = (¢')% = (¢")? and for a set of equations I' let % = {¢% : ¢ € T'}. For example if
[ — ciszy 29 ® 2319 — 21 = 23 then® — £%isa; -a;, ~ a;,-2;, — a;, X a;,.
Finally, for given @ let Az be the set of equations: z; = a;,,...,zx = a;,. By induc-
tion on the complexity of term ¢ and using rules (5.5) one can prove without much

difficulty the following

Claim 7 For each k, each @ € A* and each term t € Te(zy, ..., z1),

Fr Ay — t & t2.

It follows from Claim 7 that for every equation ¢
Fr Az, e — €% and F7 Az, e% — ¢.

This observation can be used to prove

|

-
G

'~

Ciaim & /fi7 T8 — & then Fp

Using this claim, and the rule (5.7) by induction on & one proves that

Claim 9 Assume that Var(I' — ¢) C {z1,...,2+} and that for every choice of

@={ai,...,a;) we have F7 T — ¢%. Thent7r [ — ¢.

Claim 10 [fT — ¢ € QId(A), Var(I' — ¢€) C {z1,...,2«} then for all @ € A*,

f‘fr e — &°.
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Proof Let @ = (aj,,...,a; ). Since [' — ¢ € QId(A), either
A = y(aiy,-..,a,,) for some y(z1,...,zx) €T or

A= e(in, ... az,).

If A = v(a,--.r00,), 1.6 ¥ (@i, -,a:) # 7 (a5, -,a;,) in A, then 7%is a, ~ a,
for some p,q such that a, # a;,. So by a rule (5.6) F+ v* — ¢% and by (W)
Fr % — €%,

If A Ee(ai,...,a;), then €/(d) = €7(@), i.e., €% is a, = a, for some p. Hence by (I)
and (W) k7 I'® — ¢%. This finishes the proof of the Claim. The Corollary follows
from Claims 9 and 10.

5.5 Main theorems

In this section we prove Theorems 5.1 and 5.2. Each of these theorems gives a
sufficient condition for a finite algebra to be finitely g-based over some second-order
system. The two conditions are incomparable in their strength, but both theorems
are proved by essentially the same technique presented in Lemmas 5.5-5.8 below.
These lemmas generalize Claims 7-10 from the previous section. We also observe
(Propositions 5.9 and 5.10) that our conditions are sufficient neither for a finite

algebra to be finitely g-based (over &) nor for a finite algebra to be finitely based
(over B).

Recall that X = {z1,z,...} is a set of variables. Let Z = {z,y,z;,22,...} be a
denumerable set of new variables, i.e., XN Z = (. The variables of Z (and only these

variables) will occur in the descriptions of second-order systems 7, R below. In the
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sequents whose derivability we will discuss both the variables of X and of Z will be
used.

Let F be a free algebra freely generated by Z in some variety. Then F can be
identified with the quotient of the term algebra Te(Z) by a congruence = where
for t,s € Te(X), t = s iff t ® s € Id(F). Let G be a finite subalgebra of F,
and let T := {g1,---,9:} C Te(Z) be a set of representatives of the elements of
G, so that G = {g;/= : g € Tg} and g; # g; for ¢ # j. Then there is m such
that g; = gi(z,y,21,-..,2m) for every 2 = 1,...,n. Let Z represent the sequence of

variables z1,...zn,. Finally, let z € Z be distinct from z,y, z.

Define the second-order system 7 to be the extension of S by the axioms:

— 0(9;1,...,gil) =~ g; (58)
for every l-ary operation symbol O and every choice of terms g;,, ..., gi,,9: € T such

that O(gi,,---,9;) = ¢ € Id(F); and rule

WA —srmy; gz y, D), A—zxy

/™ AN
\2.9)
This is a single rule since A is viewed as a second-order variable ranging over

finite sets of equations. Thus the system 7 is obtained from & by adding only finitely

many axioms and a single rule.

Let « = {gi,,-.-,9:i,) be a sequence of elements of T;. Then for a term ¢ €
Te(zy,...,zk), there exists a unique term t* € T such that #(g;,...,9;,) = t* €
Id(F). Observe that, if t = O(ty,....t), then O(tf,...,t7) = t* € Id(F) and hence
Fr— O(tf,...,tf) = t* by one of the rules (5.8). Also observe that t* = g;(z,y, ?)

for semez=1,...,n.
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For a as above, let A, be the following set of equations:

Ap={z1 % giy,-- -, Tk = i, }-

Lemma 5.5 Let t € Te(X) and assume that all variables of t are among z,..., .

Then for every sequence a = {(gi,,.-..,gi.) of elements of T

Fr Ay, — t = t°.

Proof We prove the lemma by induction on the complexity of ¢. If ¢ is a variable,

i.e., t = z;, for some j, then t* = g; and the statement is clear. So suppose that

t = O(t1,...,t) for some operation symbol O and some ¢y,...,t; € Te(zy,...,zk),

for which the lemma has already been proved. Thus for each: =1,...,1

Fr Ao — 1 &7,
and by the rules (R) and (C) of S we get

¢\ ’ .
Fr Ay = Olia, .. 0) = O3, ... 8

\

Fr Ay — t = O, ..., 1)

As we observed earlier,

Fr O@te, ..., 18) ~ 1o

Applying (W), (T) and (C) to (5.10) and (5.11) we get

Fr A, — t~t°. O

(5.10)
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Lemma 5.6 Let t,s € Te(X) and assume that all variables of t and s are among

T1,-..,2k. Then for every o € TS

FrAgtxs—=txs* and F7rA,1"=xs*—>txs.

Proof By Lemma 5.5 we know that

I‘T Aa — s~ 5% (512)
Fr A, =t =t

The last line is equivalent (by (S) and (C)) to:

Fr Ay — 1~ 8. (5.13)

Also, by (T),

Frixs,sxs® —t=xs.

Applying the cut rule to (5.12) and the last sequent, we derive
Frixs, Ay =t = s°. (5.14)

By (T),

L 4 + 4 ~O L 4O -
T RS —r RS

?

and applying (C) to this last sequent and to (5.13),

Fr Qg t = s® — t% ~x 5°.
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Applying (C) again to this sequent and to (5.14),
FrAg,trs—t* =~ s
The second claim of the lemma is proved similarly. O

For a sequence a € T, and for an equation & with variables contained in

{z1,...,2¢}, let €* be the equation
(') = ().
For a finite set of equations I' = {e1,...,&}, let
I = {e},...,e7}.

We say that a second-order system R is a (finite) extension of 7 if R results
from 7 by adding (finitely many) new axioms and rules. For a set of equations A let

Var(A) denote the set of all variables occurring in the elements of A.

fod g

Lemma 5.7 Lel ¢ second-order sysiem R be an eziension of 7. Lei o € Ty and
assume that Var(T'U{e}) C {z1,...,z1}. Suppose that FpT'* — ¢*. ThentpA,,T —

g.

Proof By Lemma 5.6 and the weakening rule

FrA,, [ — 6%, for every § €T.

By the hypothesis

i"RFa — g%,
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Applying the cut rule several times (once for each equation in '), we get
FrA,, T — &%.
Using now the second statement of Lemma 5.6 and the cut rule,
FrAL, T —e. O

Lemma 5.8 Suppose that the second-order system R is an extension of T. Let
I' = € be a sequent such that Var(T'U {e}) C {z1,...,z¢}. Assume that bpT'* — &%,

for every o = {g;,,...gi,) € T§. Thenbp T — e

Proof Let ¢ =t~ s. Recall that for i = 1,...,m, ¢g; = gi(z,y, Z). Also recall that
r,Y,2,%,&1,...,2; are all distinct. Let g/ be the result of substituting ¢ for z and s
for y in g;, i.e., ¢! := gi(¢, s, 2).

Using induction on j = 1,...,k+1, we prove that for all choices of g; ,...,g;, €
he

Frz; & gi ...z gL T — e
Notice that this claim with j = k£ + 1 is the conclusion of the lemma.

First, let j = 1. By Lemma 5.7,
FRrT1 = giyy. .. 2k = giy, I — €.
Applying the substitution z < £,y < s to the last sequent, we get
Frei =g ,...,zx = gi,. T —e.

Thus for ;7 = 1 the claim holds.
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Assume next that the claim is true for some j < %, and let g; ,,,...,9: € TG.

o / . o 4 ~o ! 3
Then Frz; = ¢}, T;41 = Giigyro o Tk N g, T —e¢ ie,

4 !
Frz; =~ g:i(t,8,2),2j41 R G,y Tk R G, I mIRS
j+1 k

for every : = 1...,n. But this sequent is the value of the substitution z < %,y <

8,z & z; in the i-th premiss of the rule (5.9) where
A= {z;n zgfﬁl,...,.’ck ~g, tUT.

Applying rule (5.9), we get the conclusion of the lemma for y +1. O

Lemma, 5.8 says, that in order for an extension R of 7 to be complete for the
quasi-identities of A, it is enough to “encode” into its rules and axioms all the quasi-
identities of the form I'* — &*. We use this in the proofs of our criteria for finite

second-order axiomatizability.

Proof of Theorem 5.1 Let G = F; be the free algebra in HSP(A) on gener-

aters z,y. Then G is a finite subalgebra of the denumerably generated free 2

ebra
F in the variety generated by A. Thus T = {¢:1(z,¥),- .., gn(z,y)} for some n and

some terms g¢;(z,y).
Let now 7 be defined with respect to this G (by adding the axioms (5.8) and

the rule {5.9) to 8). Consider the extension R of 7 by the set of all axioms of the

e — ¢, (5.15)

for all natural numbers k, all ' — ¢ € QId(A) such that Var(T'U {¢}) C {z1,... 71}

and all o € TC';Z. Notice, that since T¢ is finite, there are only finitely many different
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sequents I'* — £%. Thus we have adjoined only finitely many new axioms to 7 and

therefore only finitely many axioms and a single rule to S.

We first show that these axioms and rule are valid. This is clear for the axiom
(5.8). To see that axioms of the form (5.15) are valid, recall that,

by definition, I'* — € is equivalent to some substitution instance of ' — «¢.
Thus if ' — ¢ € QId(A), then also I'* — ¢* € QId(A).
For the rule (5.9) assume that A is a finite set of equations. For each : = 1,...,m
let

pii= zRg,A-zTRY

and let

Consider a valuation v : Te(X U Z) « A of terms into the algebra A and assume
that v satisfies each ¢; and also that v satisfies A. By the hypothesis (5.2) the set
{v(g1)),.--,v(gm)} is either the entire set A or has one element. If it has one element,
then v{z) = v{y), in which case v satisfies = ~ y. Otherwise, for every element a
of A, there is an ¢ such that a = v(g;). Therefore v(z) = v(g;), for some ¢. Since
@; € QId(A), it follows that v(z) = v(y), which finishes the proof that the rules
axiomatizing R are valid.

It follows from the above that every sequent I' — ¢ derivable in R is a quasi-
identity of A. To compiete the proof of the theorem, we need to show that every
quasi-identity ¢ of A is derivable in R. Let I' — ¢ € QId(A). Assume, without loss
of generality, that Var(I' U {¢}) C {z1,...,2«}. Then by axiom (5.15) FgrI'* — &°,

for every o € T&. Thus FrI' — ¢ by Lemma 4. O
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Remark 1 An immediate corollary to the above theorem is the fact that if a finite
algebra A does not have proper nontrivial subalgebras, then there is a second order
deductive system R with finitely many axioms and rules such that an equation ¢ is
an identity of A iff Fg — &. Actually, the system 7 discussed at the beginning of

this section is sufficient for this purpose, i.e., the following is true:
e€ld(A) iff Fr—e, for every equation ¢.

This can be proved as follows. Using the method similar to the one used in the proof

of Lemma 5.6, we can show that for every identity ¢ of A and every o € T
f"]’ Aa — E.

Then using the rule (5.9) as in the proof of Lemma 5.8 we show that for every
¢ €ld(A)

I"']'—) g.
The converse follows easily from the validity of rules (5.8) and (5.9).

Proof of Theorem 5.2 By assumption, A is isomorphic to some finite sub-
algebra G of the free algebra generated by {z1,z2,...} in HSP(A). Therefore G
is also a finite subalgebra of F, the free algebra in HSP(A) generated by Z. Also,
Tc = {g1,-.-gn}, for some terms gi,...,gn, whose variables are among z;’s,i.e., z.y
do not occur in g;’s. Let now 7 be defined with respect to this G (bv adding the

axioms (3.8) and the rule (5.9) to S§). Consider the extension R of 7 by the axioms:

GiRg DT RY, (5.16)
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for all ¢;,g; € T such that ¢ # j. Note that in forming R we have adjoined only

finitely many axioms to 7 and therefore only finitely many axioms and a single rule

to S.

We first show, that these axioms and rule are valid. It is clear for axiom (5.8).
For the other axioms and rule note that for every valuation v : Te(X UZ) < A
the set {v(g1),...,v(gn)} is @ homomorphic image of G and therefore of A. Hence
{v(g1),--.,v(gn)} = A by (5.3). Thus v(g;) # v(g;) for ¢ # 7, from which it follows
that (5.16) is valid. It also follows that v(z) = v(g:) for some ¢, which implies that
(5.9) is valid.

It follows that if Fgrep, then ¢ € QId(A). It remains to show that every quasi-
identity of A is derivable in R. We verify the assumption of Lemma 4.

Let I — ¢ € QId(A) with Var(T U {e}) C {z1,--.,7+} and let o € TE. Also, let
¢ be t = s. Recall that by definition of Tg, ¢; = g; € Id(A) iff g; = g;. It follows from
the definition of é* and I'* that I'* — &% is also a quasi-identity of A and therefore
of G, as G is isomorphic to A. Thus if, for every s; = ¢; € I, s¥ is the same term as

i¥, then {* is the same term as s%. In this case we have rs™ = i by (i), and then

by (W)

FR® — t% & 57, (5.17)

On the other hand, if for some t; = s; € I, t; # s;, then (5.17) follows by the
rule (5.16) and (W). This verifies the assumption of Lemma 4. By Lemma 5.8, every

quasi-identity of A is derivable in R, which finishes the proof. O

Remark 2 The system R that we used in the proof of the Theorem 5.1 could

also be used in the proof above. However the system we did use in the proof of the
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Theorem 5.2 has in general a smaller number of axioms. On the other hand, note
that the quasi-identities (5.16) are not, in general, valid under the assumptions (5.2).

Thus, in the proof of Theorem 5.1, we could not replace (5.15) by (5.16).

Remark 3 Analogously to Theorem 5.1, an immediate corollary to Theorem 5.2 is
that if no proper subalgebra of a finite algebra A is a homomorphic image of A, then
there is a second order deductive system R with finite number of axioms and rules
such that an equation ¢ is an identity of A iff Fgr — e. Again, the weaker system 7

from the beginning of the section is sufficient for this purpose.

Recall from the previous section that the assumptions of both Theorem 5.1 and
5.2 hold for a finite algebra A whose every element is an algebraic constant. In [51]
M. Sapir presented a three-element semigroup T that is not finitely g-based. Let ©
be a language consisting of the binary multiplication symbol and of three constants,
one for each element of T. Let T’ be an Q-algebra, with 7’ = T', the multiplication of
T' the same as that of T, and each of the constants interpreted as its corresponding
element. The fact that 7" is not finitely q-based can be obtained as a corollary of the

proof in [51]. Thus we have

Proposition 5.9 Neither condition (8) nor the conjunction of (11) and (12) is suf-

ficient for a finite algebra A to be finitely q-based.

In spite of not being finitely g-based, the algebra T’ is finitely based. It turns
out, however, that neither (5.2) nor the conjunction of (5.3) and (5.4) is sufficient
for a finite algebra to be finitely based. In [40] it is shown that every finite non-
finitely based groupoid A, whose equational theory is regular, can be extended by

adding three elements and a finite number of constants to a finite, nonfinitely based
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groupoid B all elements of which are algebraic constants. Since there exist finite non-

finitely based groupoids whose equational theories are regular, we have the following

proposition:

Proposition 5.10 Neither condition (8) nor the conjunction of (11) and (12) is

sufficient for a finite algebra A to be finitely based.

Acknowledgment Prof. M. Sapir called our attention to the algebra T presented

above and pointed out why T’ also fails to be finitely g-based.
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SUMMARY

In this part we settled down the question of finding the smallest possible matrix
that is non-finitely axiomatizable. Our method was to first list all the three-element
matrices satisfying certain tautology and then to examine which of them are finitely
axiomatizable and which are not. Piotr Wojtylak, in his letter to the author, sug-
gested that it might be interesting to look also at other tautologies and examine the
finite axiomatization problem for the classes of matrices satisfying these tautologies.

The Rautenberg-Wroriski problem has been settled in [21]. We would like to
know, however, whether there are algebras of smaller size than the 18-element algebra
found in [21], that do not satisfy the conjectures (C1) and (C2) stated in Chapter 4.

n particular, what is the smallest sizc of such algebra? It is known, [26]. that every

we would like to ask

Is there a 3-element algebra that does not satisfy conjecture (C1)? Is there a
3-element algebra that satisfies (C1) but does not satisfy (C2)? If not, what size are
the smallest algebras with these properiies?

We have checked that every 3-element left-associative algebra must be finitely
axiomatizable, in fact, even finitely based; although not all of them are finitely q-

based ([51]). The finite axiomatizability is associated with the existence of some finite
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number of “patterns” in the set of all identities such that every identity of the finitely
axiomatizable algebra is of some of those “patterns”; and moreover the “patterns”
are captured by quasiidentities, that must be sound n the algebra. We are wondering,
if the arguments of Chapter 4 can somehow be extended for left-associative algebras
of more than 3-elements and whether all finite left-associative groupoids must be
finitely axiomatizable.

So we would like to propose the following conjecture

Conjecture Every finite left-associative algebra satisfies (C1), i.e., its identities
are dertvable from a finite set of quasi-identities sound in the algebra.

In Chapter 5 we have also asked whether every finite algebra must be finitely

second-order axiomatizable.
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CONCLUSION

In this dissertation we have generalized certain results on semantics of universal
Horn logic without equality to Gentzen systems. We introduced the notion of a K-
deductive system which unifies these two concepts and therefore also extends to the
deductive system in the standard sense and to the deductive system of equational
logic.

Our main results fall into three, related, categories. First, we investigated the
general properties of K-deductive system with the emphasis on the existence of cer-
tain sets of connectives in these systems. For example, in part I, Chapter 3, The-
orem 3.10 we characterized the protoalgebraic K-deductive systems as those which
have a so-called finitary system of equivalence
extends the results on protoalgebraic k-deductive systems claimed in [4]. We then
analyzed some strengthenings of this theorem in the case of protoalgebraic Gentzen
systems.

Another main result of Part I is our algebraization Theorem 5.19. It extends the

large class of equivalences between a K-deductive system and a L-deductive systems,
when the latter is so-called Birkhoff-like. It also gives some necessary conditions in

a more special, but also quite general case.
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We use this theorem to analyze the existence of the implication connectives in
a l-deductive system, Part I, Chapter 6. We believe that the algebraization theorem
will find also other applications.

The main result of Part II is the finite basis theorem for protoalgebraic filter-
distributive deductive systems with finitely many “truth” predicates. We call such
systems k-deductive and they are also the deductive systems of the universal Horn
logic. The theorem states that every protoalgebraic filter-distributive and deter-
mined by a finite set of finite matrices K-deductive system, has finitely based conse-
quence operator. This theorem extends the theorem of [42] for relatively congruer.ce-
distributive finitely generated quasivarieties and thus also the finite basis theorem
for finitely generated congruence-distributive varieties of Baker. An important open
question associated with the finite basis theorem is the question proposed by D. Pigozzi
whether a similar result can be proved for filter-modular K-deductive systems, i.e.,
whether a protoalgebraic filter-modular K-deductive system determined by a finite
set of finite matrices is finitely based. It is known (R. McKenzie, {30]) that the
theorem is true for varieties provided the variety is residually bounded, but for
sivarieties the question is open.

In the Part III we investigate finite axiomatization of finite matrices in the special
case of 1-deductive systems and in the special case of finite algebras. We also consider
this question in the second-order equational logic. Chapter 3 contains the optimal
solution to the question asked by Rautenberg, Wojtylak and Dziobiak to find the
smallest and “simplest” possible nonfinitely axiomatizable matrix. In Chapter 4 we
showed that the algebras associated with some of the finite nonfinitely axiomatizable

matrices are finitely based. In Chapter 5 we proposed two second-order conjectures
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concerning finite axiomatization of finite algebras and we proved that they hold for
two large classes of algebras.

Research presented here suggests several open questions and new topics. For
example, our study of the possible equivalent semantics for systems with a set of
implication connectives shows that the problem of a proper definition of implication
is more difficult that the problem of defining the equivalence. This only makes the
problem more interesting and we are hoping that our observations will be a basis for
the future research.

As we already mentioned, we believe that the algebraization Theorem 5.19 can
be used for future study of connectives other than equivalence or implication and
also that it may have applications beyond just the study of connectives. Some other
open questions are suggested in Part I, Chapter 3. A list of open questions related

to the Rautenberg-Wronski problem can be found at the end of Part 3.
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