
INFORMATION TO USERS

While the most advanced technology has been used to
photograph and reproduce this manuscript, the quality of
the reproduction is heavily dependent upon the quality of
the material submitted. For example:

® Manuscript pages may have indistinct print. In such
cases, the best available copy has been filmed.

• Manuscripts may not always be complete. In such
cases, a note will indicate that it is not possible to
obtain missing pages.

• Copyrighted material may have been removed from
the manuscript. In such cases, a note will indicate the
deletion.

Oversize materials (e.g., maps, drawings, and charts) are
photographed by sectioning the original, beginning at the
upper left-hand corner and continuing from left to right in
equal sections with small overlaps. Each oversize page is
also filmed as one exposure and is available, for an
additional charge, as a standard 35mm slide or as a 17"x 23"
black and white photographic print.

Most photographs reproduce acceptably on positive
microfilm or microfiche but lack the clarity on xerographic
copies made from the microfilm. For an additional charge,
35mm slides of 6"x 9" black and white photographic prints
are available for any photographs or illustrations that
cannot be reproduced satisfactorily by xerography.

Order Number 8721886

On the structure of intractable sets

Geske, John George, Ph.D.

Iowa State University, 1987

U M I
300N.ZeebRd.
Ann Arbor, MI 48106

On the structure of intractable sets

by

John George Geske

A Dissertation Submitted to the

Graduate Faculty in Partial Fulfillment of the

Requirements for the Degree of

DOCTOR OF PHILOSOPHY

Major: Computer Science

Approved:

In Charge of Major Work

For the Major Department

For the Gra^djia te College

Iowa State University

Ames Iowa

1987

Signature was redacted for privacy.

Signature was redacted for privacy.

Signature was redacted for privacy.

11

TABLE OF CONTENTS

1 INTRODUCTION 1

2 PRELIMINARIES 10

2.1 Conventions and Notation 10

2.2 Computability and Complexity 11

2.3 Reducibilities 14

3 HIERARCHIES OF ALMOST EVERYWHERE COMPLEX SETS 15

3.1 Introduction 15

3.2 Immunity and Almost Everywhere Complexity 17

3.3 Hierarchies of Almost Everywhere Complex Sets 19

3.4 Generalized Notions of Immunity 25

3.5 Applications 30

4 POLYNOMIAL COMPLEXITY DEGREES 32

4.1 Introduction 32

4.2 Polynomial Complexity Degrees 33

4.3 Basic Results 35

4.4 The Structure of C-Complete Sets 44

5 RELATIVIZATIONS OF SPECIAL CASES OF THE P ̂ NP QUES­

TION 48

5.1 Introduction 48

5.2 Main Results 49

lii

6 RELATIVIZATIONS OF UNAMBIGUOUS AND RANDOM POLY­

NOMIAL TIME CLASSES 55

6.1 Introduction 55

6.2 Main Results 56

6.3 On the Existence of One-way Functions 67

7 CONCLUSION 71

8 BIBLIOGRAPHY 74

9 ACKNOWLEDGMENTS 80

iv

LIST OF FIGURES

Figure 3.1 Inductive construction of a complex set 22

Figure 3.2 Space preserving inductive construction of a complex set . . . 24

Figure 3.3 Inductive construction of a DTIME(fi(7z))|r-complex set ... 28

Figure 4.1 Turing reduction of a set ^ to a set 5 33

Figure 4.2 Inductive construction of C-complex, set 37

Figure 4.3 Construction of set B; C { A) = C { B) and A \ j B 41

1

1 INTRODUCTION

Computational complexity deals with the fundamental issues of determining the

intrinsic difficulty of mathematically posed problems. Typically, the complexity of a

problem is meéisured by the amount of computational resources — usually time or

memory — needed to solve the problem. This presupposes that we have a precise

notion of a "computable problem" and a realistic model of computation on which to

measure computational resources; that we have both is due to Alan Turing [66].

Turing invented a mathematically simple device — the ubiquitous Turing ma­

chine — and proceeded to show that there existed a well-defined mathematical set

whose membership problem could not be determined by this machine. He argued that

this device precisely captured the notion of "computable" and that no process, either

human or mechanical, could therefore determine set membership for this particular

set; this problem was undecidable. While his arguments generated considerable con­

troversy, every attempt to precisely define the notion of computable haa been shown

to be equivalent to Turing's definition. This invariance of the Turing machine is

formulated in Church's Thesis:

Every procedure is effective (an algorithm) if and only if it can be simu­

lated (computed) on a Turing machine.

Belief in this thesis is a matter of faith, but as pointed out by Rogers [57] and Webb

[69] a large body of empirical evidence suggests that our faith is not misplaced. We

are confident, therefore, in using "Turing computable" as a precise definition of com­

putable and the Turing machine as our model of computation.

It soon became apparent that the class of decidable problems did not accurately

define those problems which were feasible to compute in any realistic time-frame, ̂ but

•'Von Neumann [68] was apparently aware of this as early as 1953.

2

it was not until the early 1960s that a precise definition of feasible computations was

made. Cobham [16] considered a set to be tractable only if there existed an algorithm

for accepting it that ran in polynomial time. Similarly, Edmonds [20] equated the

polynomial time algorithms with "good" algorithms.

The choice of polynomial time might seem somewhat arbitrary; a program with

run time bound of for example, hardly seems tractable. Nevertheless, there is

wide agreement that a problem has not been well-solved unless there exists a poly­

nomial time-bounded algorithm for doing it. Polynomial time is also appealing since

the class of polynomials is closed under addition, multiplication and composition.

We may concatenate programs that run in polynomial time, iterate them a polyno­

mial number of times, or allow them to make subroutine calls to another polynomial

time-bounded program, and the program still runs in polynomial time.

Our faith in using polynomial time-bounded Turing machines as a model of com­

putational complexity rests on a variant of Church's Thesis:

An algorithm is executable in polynomial time if and only if there is an

equivalent Turing machine that operates in polynomial time.

If Church's Thesis is the foundation of computer science, then this polynomial time

variant must surely be considered the keystone to the study of computational complex­

ity. While this variant, like Church's Thesis, is unprovable, there is strong evidence

that it is true; known simulations of random access machine models by Turing ma­

chines, for example those of Aho, Hopcroft and Ullman [2] or Machtey and Young

[48], cause computations to be slowed up by at most a polynomial factor.

The complexity class P is the class of all computable sets that are recognized

by polynomial time-bounded Turing machines. A problem is said to be intractable

if it is so hard that no polynomial time algorithm can possibly solve it. Obviously

the undecidable sets constructed by Turing are intractable; the earliest examples of

intractable decidable sets were obtained by Hartmanis and Stearns [36]. Meyer and

Stockmeyer [50], Ferrante and Rackoff [24], and others first proved the existence of

"natural" decidable problems that were intractable. These problems are provably not

in NP, the class of all sets recognized by polynomial time-bounded nondeterministic

3

Turing machines. Inasmuch as P ^ NP is an open problem, all the known provably

intractable problems are either undecidable or out of NP.

The complexity class NP was first studied by Cook [18]. He introduced a poly­

nomial time-bounded restriction of Turing reducibility in order to show that every

set in NP is reducible in this restricted sense to the Satisfiability Problem. Karp

[41] strengthened and extended the work of Cook. He defined a polynomial time-

bounded restriction of many-one reducibility, and showed that every set in NP could

be reduced to any of a number of classic combinatorial problems by this reducibility.

These problems themselves belonged to NP. There was a brief period of unsettlement

over notation, but of course, such problems are now called NP-complete, and the re-

ducibilities formulated by Cook and Karp are called efficient reducibilities. Therefore,

to obtain faster (tractable) algorithms for these problems is to prove that P = NP.

Few problems in Computer Science have generated as much interest and de­

bate as has the P ^ NP problem. This problem has come to dominate the field of

computational complexity. It has driven an enormous number of researchers in the

study of combinatorial algorithms, and new and important fields of research such as

approximation algorithms and probabilistic machines can trace their origins to the

study of this central problem. Nevertheless, the P ^ NP problem remains one of the

outstanding open problems in Computer Science.

We do not propose to tackle this problem here. Rather, we are interested in

studying the structural relations between intractable sets and the complexity class

NP. The first systematic study of efficient reducibilities is due to Ladner, Lynch, and

Selman [45]. They introduced the notation <^, and <j for polynomial time-bounded

many-one reducibility and polynomial time-bounded Turing reducibility, respectively,

and they proved, for example, that and <Ç are distinct on sets in DTIME(2").

With some exception, the work by Selman on p-selective sets [63], [64] being notable

here, it is not known whether and <Ç differ on NP. It is not known whether

NP-complete sets are p-isomorphic. Absolute structural results for NP appear as

difficult to arrive at as resolution of the P ^ NP problem — a point we will expand

upon shortly — and so we examine structural properties of other natural complexity

classes, E, the linear exponential time-bounded class, and TIME(2''°'"), in hopes that

these results will shed light on the structural aspects of NP.

4

We extend the traditional approach of using efficient reducibilities to study struc­

tural relationships between computable sets. We define a nonconstructive binary rela­

tion that makes precise the notion that "the complexity of A is polynomially related to

the complexity of B." The approach taken here to define the polynomial complexity

of A is analogous to the approach taken by mathematicians in defining the cardinality

of a set A. This is the weakest mathematically meaningful notion that captures all

other polynomial reducibilities, including polynomial time Turing reducibility.

Here we are motivated by nothing less than a reexamination of what it means for

a set to be NP-complete. Are there sets in NP that in a mathematically meaningful

sense should be considered to be complete for NP, but that are not NP-complete in

the usual sense that every set in NP is <^-reducible to it? While we fall short of

answering our question about completeness for NP, we do show that there are sets

that are hard for NP that are not NP-hard in the usual sense, and we do show that

there are sets that must be considered to be complete for the complexity class E that

are not even <j-complete for E.

In a certain way, hardness and completeness with respect to this relation is re­

lated to the notion of an almost everywhere (a.e.) complex set, and so we initiate this

investigation by first studying a.e. complex sets. Recall that if a set A ^ DTIME(<(n))

for some time function t, then for every deterministic Turing machine M that rec­

ognizes A there exist infinitely many inputs x for which the running time of M on

X is slower than <(|a:|). This leaves open the possibility that there exists some other

infinite set of inputs which M can recognize within the time bound i; the set A is

infinitely often (i.e.) complex with respect to t. The set A ^ DTIME(f(n)) a.e if

for every deterministic Turing machine M that recognizes A, M runs for more than

t(|x|) steps for all but finitely many strings x. Therefore, the a.e. complex sets are

intractable in the severest sense. Significantly, we show that a.e. complex sets can be

constructed almost as easily as i.o. complex sets.

Ko, Orponen, Schoning, and Watanabe [43] pointed out that there are two prin­

cipal views on the cause of intractability. The "distributional" view suggests that the

hard instances of an intractable problem are distributed in some irregular manner,

but feasible algorithms can only determine "smooth" distributions. The other view,

as discussed by Hartmanis [34], is that it is the individual instances of an intractable

5

problem that are inherently hard, i.e., hard independent of any particular algorithm to

decide the problem. The work done here strengthens this view of instance complexity.

We find, by analysis of our newly defined notion of completeness and hardness, that

the common existence of a.e. complex sets in E and TIME(2'"''") places restrictions

on the distribution of hard instances for the <^-complete sets for these classes.

We research into these theoretical topics in the belief that there is a deep math­

ematical structure that needs to be understood before the hard questions of wider

interest can be resolved. This belief is based, in part, on a historical analogy. Our

modus operandi is based on the failure of this analogy.

It is commonly believed that the question of whether P ^ NP has certain struc­

tural similarities to Post's problem — the problem in pure recursion theory of whether

there are incomplete r.e. sets. As Young [70] has eloquently stated:

It has been argued that the problem P vs. NP bears a reasonable analogy
to Post's problem and that, just as Post's problem required the inven­
tion of essentially new techniques for its solution, so too will P vs. NP
require essentially new techniques for its solution. It does indeed appear
that new techniques will be required if P vs. NP is to be solved, but it
should be noted that Post's problem was not solved by looking at "nat­
ural" problems, but was instead solved by using a structural approach.
Post's problem was definitively stated in 1944, and its solution took a
remarkably short time. Within little more than a dozen years Friedberg
and Muchnik had invented the necessary techniques. In the intervening
years, structural problems for r.e. sets were intensely investigated and a
remarkably rich and beautiful theory developed regarding the structure of
r.e. sets and the reducibilities among these sets. Although the Friedberg
and Muchnik solution perhaps explicity used very little of this theory, it
is difficult to believe that their structural solutions could have arisen in a
vacuum: Without the preceding intense research on the structural proper­
ties of r.e. sets it is difficult to imagine the scientific, social and historical
context which would have permitted the Friedberg-Muchnik solutions.

Indeed, it is very seductive to consider polynomial time complexity to be analogous

to classical recursion theory; the classes P and NP being analogous to the classes

of recursive and recusively enumerable sets, respectively; the NP-complete sets the

direct analogue of the complete r.e. sets; the polynomial time hierarchy the direct

analogue of the arithmetical hierarchy.

6

Ladner [44] showed that the structure of < ̂ -degrees in NP is similar to the struc­

ture of recursively enumerable <T-degrees. For example, they both form a dense upper

semi-lattice. The approach taken by Ladner, Lynch and Selman [45] followed cléissi-

cal lines; an attempt was made to distinguish polynomial time-bounded reducibilities

modeled after the development of effective reducibilities in recursive function the­

ory due to Post [54]. The p-selective sets used by Selman [63], [64] is based on the

McLaughlin and Martin construction that appears in Jockusch [40]. Some properties

of this construction have exact analogues in NP while others fail altogether. Even

the Hartmanis-Berman conjecture [10] — the conjecture that all NP-complete sets

are p-isomorphic — is based on the fact that in recursive function theory all complete

sets are reçusively isomorphic.

But these analogies are not quite correct. Breidbart [15], for instance, has shown

that no infinite, coinfinite maximal language can exist in NP. In this respect, the non-

deterministic complexity classes resemble the deterministic complexity classes (and

the recursive sets) more than they resemble the recusively enumerable sets. Also, it

is well known that the analogue of Post's theorem fails; there exist recursive sets A

and B such that A and A are both NP in B, but A is not deterministically reducible

to B in polynomial time.

Even the techniques of recursion theory seem to fail. As seen, early researchers

optimistically set out to solve the P ^ NP problem employing these techniques. It

seemed reasonable to assume that any diagonalization technique yielding P ^ NP

would be sufficiently general to yield, for every set X, P^ ^ NP^, and that any

simulation technique yielding P = NP would be sufficiently general to yield for every

set X, P^ = NP^. Baker, Gill and Solovay [6] burst this balloon of optimism by

showing the existence of sets A and B such that P'^ = NP"^ and P^ ^ NP-®, so that

P = NP does not imply that for every set X, P^ = NP^, and P^ NP does not imply

that for every set X, P^ ^ NP^.

The resultant flood of relativization results that followed this seminal paper cast

a pall over the entire complexity field. Answers about complexity class containment

for all but the most trivial of cases seem to be out of reach; the structural results

alluded to by Young have been shown, by Homer and Maass [38], to be difficult to

achieve. These results are often cited as proof that new techniques must be developed

7

before absolute results can be found. Unfortunately, "in spite of the fact that recursive

function theory has been a rich source of ideas, concepts, and questions, it has been

a notorious failure in providing solutions about computational problems in NP" [70].

And so we have the following dichotomy: On the one hand we are tantalized by

the methods and results of recursive function theory; on the other hand we are faced

with the failure of these techniques to solve the analogous problems in complexity

theory. This dissertation is similarly dichotomous. While we whole-heartedly embrace

the belief that the study of structural characteristics of intractable sets is necessary to

gain the insight needed to solve the more global questions, we reject out of necessity,

as the relativization results have shown, the techniques and mechanisms of recursive

function theory.

The failure of traditional techniques is the raison d'être of the second part of this

dissertation. Here we provide a few more drops to the ocean of relativization results.

Information on classes relativized to oracles can often lend plausability to conjec­

tures about the nonrelativized classes — conjectures which currently defy solution.

In particular, we establish several translation and separation results for relativized

subclasses of NP.

We first look at whether the recent result of Paul, Pippenger, Szemerédi and

Trotter [53] that deterministic real-time differs from nondeterministic real-time can

be of any help in proving P ^ NP. Book [ll] observed that P = NP if and only

if NTIME(7Z) Ç P. Therefore, the result of Paul, et ai, is a special case of the,

as yet unproven, assertion that P ^ NP. We show that for every i there exists a

recursive oracle A such that NTIME(n)'^ G DTIME{0(n'))'^ and NTIME(n)'^ Ç

DTIME(0(n''*'^))'^. As a corollary, we prove the existence of a recursive oracle A

such that DTIME(C>(n))^ 7^ NTIME(n)^ and P-^ = NP^.

According to the traditional point of view about relativization results, known

proof techniques will not succeed in obtaining separation results when there are oracles

for which the relativized classes are the same and oracles for which the relativized

classes differ, although this view needs to be tempered due to the recent results of

controlled relativization by Book, Long and Selman [13]. Though no precise rendering

has been made, recursion theoretic techniques usually relativize, while combinatorial

techniques do not necessarily relativize, and it is worth noting, in this context, that

8

the results of Paul, et al. are heavily combinatoric.

Next we study relationships between P, NP, and the unambiguous and random

time classes UP and RP. Questions concerning these relationships are motivated by

complexity issues in public-key cryptography. We prove that there exists a recursive

oracle A such that P^ ^ UP"^ 7^ NP"^, and such that the first inequality is "strong,"

i .e . , there exis t s a P '^- immune se t in UP '^ . Fur ther , we cons t ruc t a recurs ive orac le B

such that UP^ contains an RP-^-immune set. As a corollary, we obtain P® ^ RP-® ^

NP^ and both inequalities are strong. By use of the techniques employed in the proof

that P"^ ^ UP'^ ^ NP"^, we are also able to solve an open problem raised by Book,

Long and Selman [13].

The mathematical notation and definitions used throughout this work is pre­

sented in Chapter 2. We introduce the Turing machine as our model of computation

and discuss the reasons why this device is an appropriate vehicle to study computa­

tional complexity.

In Chapter 3, we state and prove a deterministic time hierarchy theorem for a.e.

complexity that is as tight as the well known Hartmanis-Stearns hierarchy theorem

for i.o. complexity. This result is a significant improvement over all previously known

hierarchy theorems for a.e. complex sets. As a corollary we obtain a simplified proof

of a similar hierarchy theorem for determinisitic space that was first proven by Meyer

and McCreight [49]. These results are due to a collaboration with D. Huynh (Geske

and Huynh [30]).

We derive similar, very tight, hierarchy, theorems for sets that cannot be a.e.

complex for syntactic reasons, but for which, intuitively, a.e. complex notions should

exist. For example, no subset of {1}' can be a.e. complex, but we show, essentially,

that for every two deterministic time classes Ci and C2, if Ci contains a language that

i s no t in C2, then Ci conta ins a ta l ly language L such tha t no inf in i te subse t of L

belongs to C2 and no infinite tally language in the complement of L is in C2. Similar

results are applied to the study of P-printable sets and to sets of low generalized

Kolmogorov complexity (See, for example, Allender [3], Allender and Rubinstein [4],

and Hartmanis [33]).

We define, in Chapter 4, a nonconstructive binary relation that relates, in a

natural way, the computational complexity of two recursive sets. This relation is

9

the weakest notion that captures all other polynomial time reducibilities and is even

weaker than the reducibility defined by Even, Long and Yacobi [21]. The equivalence

classes of this relation are called polynomial complexity degrees.

We show that this relation is properly weaker than polynomial time Turing re­

ducibility and yields new completeness and hardness notions for complexity classes.

These results provide new insights into the structure of the "hard instances" of com­

plete sets, and we show that the hard instances of complete sets for E and TIME(2'"'''')

have fairly regular distribution.

We begin our investigation of relativization in Chapter 5. Does the fact that

DTIME(0(n)) ^ NTIME(n) help in leading us to a proof that P ^ NP? Does one

imply the other? We seek evidence that this is hard. We construct an oracle that

answers this question in the affirmative, and we construct an oracle that answers this

question in the negative. We conclude from from our relativization results that the

result of Paul et al. does not imply P ^ NP by recursive theoretic techniques.

Finally, in Chapter 6, we investigate the containment relationships between the

common complexity classes P and NP with the more specilized classes UP and RP.

Even, Selman, and Yacobi [22] showed that the question of whether UP was equivalent

to NP is closely related to the question of whether there exist NP-hard public-key cryp-

tosystems. Grollmann and Selman [32] showed that "secure" cryptosystems should

have RP-immune sets in UP. We construct oracles that separate UP and RP from P

and NP and from each other, and most of these separations are strong. These results

involve a combinatorial argument for which we have developed a pebbling game. A

natural generalization of this game is used in solving an open problem of Book, Long,

and Selman [13]. The results presented here are due, in part, to a collaboration with

J. Grollmann (Geske and Grollmann [29]).

We summarize the main points of our work in Chapter 7, list open problems that

have been raised, and present some remarks about directions for future work.

10

2 PRELIMINARIES

2.1 Conventions and Notation

Let N denote the set of nonnegative integers, E the binary alphabet {0,1} and

E" the set of strings over S. Languages are subsets of S'. |w| denotes the length

of the string w E 2". We assume a total ordering on E" = {w, | i > 1} such

that shorter strings precede longer ones, and strings of the same length are ordered

lexicographically. We will adopt the notation E-" (respectively, S") for the set of all

strings in S' of length at most n (respectively, exactly n). For any set A Ç E", the

complement of A, S* — A, is denoted by A. If C is a class of sets, co-C denotes the

class {A\A € C}. The cardinality of the set A is denoted by ||yl||.

A set Ç E' is sparse if there is a polynomial p such that for all positive integers

n, ||E" n A\\ < p(n). A set is a tally set if Ç {l}'.

A lattice is a partially ordered set in which every pair of elements has both a least

upper bound and a greatest lower bound. An upper semi-lattice is a partially ordered

set in which every two elements have a least upper bound.

Let / be a function, / : E' ^ E*. The function / is finite-one if for every y G E",

/~'(y) is finite. The function / is honest if there exists a polynomial p such that for

all X G E', p(|/(x)i) > |x|.

We write 3°°z to denote "for infinitely many x," and V°°x to denote "for all

except possibly finitely many i."

We use the notation 0 { f { n)) to stand for any function whose magnitude is upper-

bounded by a constant times /(n), for all large n,e.g., 0(/(n)) denotes the set of all

functions g such that there exist positive constants c and no with g{n) < cf[n) for all

n > no.

In an inductive construction of a set X , X [i) denotes the finite set of strings

11

placed into X prior to stage i.

For m,n € N we define (m,re) = |[(m + n)(m + ra + l)] + m and inductively

(mi,..., mjfe+i) = ((mi,... ,mi),mi+i). Given mi... (mi,... ,mt) can be de­

termined in polynomial time as a function of the sum of the lengths of

written in binary. For a fixed k there is a polynomial time-bounded algorithm (as a

function of the length of m written in binary) for determining mi,... ,mk such that

m = (mi , . . .

2.2 Computability and Complexity

We use the Turing machine as our model of computation. Although a simple

device, a Turing machine is as powerful as any other computing machine. We do

not formalize Turing machines here (See for example Hopcroft and Ullman [39]).

Typically, when we need to demonstrate the existence of a specific machine we present

an algorithm written in a pseudo-Pciscal language, confident that a Turing machine

exists that implements the algorithm. Based on our faith in Church's Thesis we will

use the terms "algorithm", "procedure" and "machine" interchangably. When the

particular model of Turing machine is relevent we assume a multi-tape offline Turing

transducer, i.e., a Turing machine with a fixed number of work tapes, a single read­

only input tape, and a single write-only output tape. A Turing machine may be

deterministic or nondeterministic. Informally, a Turing machine is nondeterministic

if after each step in a computation it is allowed to have more than one possible next

step.

A Turing machine M accepts a string x if there exists a computation of M on

input X that halts in a distinguished accepting state. L{M) denotes the set of strings

accepted by transducer, and M is called an acceptor of the set L{M]. A Turing

machine acceptor M is a recognizer if M has both accepting and rejecting states

such that on every input x there exists a computation of M that halts in either an

accepting or rejecting state. A transducer M computes a value y on an input string

x if there is an accepting computation of M on x for which y is the current contents

of M's output tape. We will assume a standard, fixed encoding of Turing machines

into strings. The machine encoded by the natural number i is denoted M,-; ipi denotes

12

the function computed by transducer Mi. The sequence is an effective

enumeration of Turing machines.

Let f : N —> N be a function. A Turing machine M is t { n) t i m e (s p a c e) - b o u n d e d

if any computation of M on input of length n performs (visits) at most t{n) steps

(tape cells on any worktape). The function t is fully time(space)-constructible if there

is some Turing machine M that is t{n) time(space)-bounded, and M performs (uses)

exactly t{n) steps (cells) on all inputs of length n. A function / : S' —> E" is said to

be computable in time (space) t{n) if there is a t{n) time(space)-bounded transducer

M that on input x outputs f{x) in its accepting state.

We let Tm{x) denote the running time of machine M on input x. We adopt

the convention that "time complexity i(n)" means max(n, + l,[f(n)]) and "space

complexity f(n)" means max(l, [i(n)]).

Given a fully time-constructible function t, any Turing machine M can be con­

verted to a t[n) time-bounded Turing machine in the following fashion: Let Mj be a

Turing machine that executes exactly t{n) steps on all inputs of length n and then

halts; Ml exists by virtue of t being fully time-constructible. Let M2 be a Turing ma­

chine with two independent read heads on the input tape. On input x, M2 simulates

in parallel successive steps of M and Mi on input x. This simulation continues until

either M accepts or rejects x, whereupon Mz mimics M, or Mi halts after exactly

i(|a;|) steps, at which time Mg rejects x and halts. Using the techniques of Fischer,

Meyer and Rosenberg [25], we can convert M2 to an equivalent Turing machine with

a single read head on the input tape that runs at precisely the same speed as Mg.

Note that Mi acts as a "clock," terminating every computation of M that exceeds

t{n) steps on inputs of length n. Therefore, for every fully time-constructible function

t, there exists an effective enumeration of languages in DTIME(/) and NTIME(/):

DTIME(/) = {i(M) : M is a deterministic Turing machine acceptor

which operates within time bound/}

NTIME(/) = {Z,(M) : M is a nondeterministic Turing machine acceptor

which operates within time bound/}.

13

We concentrate on the following complexity classes:

P = [J{DTIME(p) : p is a polynomial}

NP = lJ{NTIME(p) : p is a polynomial}

E = ODTIME(2'=")
C=1

00

NE = [J NTIME(2<^")
C=1

TIME(2""'^) = U{DTIME(2'') : is a polynomial}.

TIME(2P°'^) is important since it is the smallest known deterministic complexity class

to contain NP.

We may specify a complexity class C as follows: Let {Mj},eN be the standard

enumeration of Turing transducers of some type, so that for every recursive set A

there exists an Mi such that A = L{Mi). Let {/,}f6N be a recursively indexed set of

unbounded fully time-constructible functions such that if fi^,fi2 6 {/,} and z'l < z'z,

then /i, (n) < fi^in) for almost all n. Let L[i,n) = {x\Mi accepts x in /n(|a:|) steps }

and define the time complexity class C to be {L{i^n)\i,n € N}. 7c is the class

of functions computable by deterministic transducers with the same enumeration of

time bounds. By choosing appropriate enumerations of classes of machines and classes

of functions P, NP, E, NE, and TIME(2P°^^) can be specified in this fasMon. We may

define space classes in a similar fashion.

An oracle Turing machine M is a Turing machine acceptor with a distinguished

oracle tape and three special states: QUERY, YES, NO. When M enters the QUERY

state the next state is YES or NO depending on whether or not the string currently

written on the oracle tape belongs to an external set — the oracle set. The oracle tape

is instantly erased after this transition. denotes the oracle Turing machine M

with A as its oracle set, and denotes the set of strings accepted by M relative to

the set A. Similar to above, we may enumerate the oracle Turing machines, and define

relativized complexity classes. For example, P'^ is the class of languages accepted by

deterministic polynomial time-bounded oracle Turing machines with oracle A.

We fix enumerations {Pt},-6N {{NPi}ielSl) of polynomial time-bounded determin­

istic (nondeterministic) oracle Turing machines. and NP^ denote query machines

14

with oracle X, and p,- (ra) = n' + z is a strict upper bound on the length of any com­

puta t ion by Pi (or NPi) with orac le X.

2.3 Reducibilities

A reducibility is a binary relation between two computable sets. In general, given

two reducibilities <r and <a, we say that <r is weaker than <3 if for all computable

sets A and B, A <, B implies A <r B. <r is properly weaker than <, if <r is weaker

t h a n < . , b u t n o t v i c e v e r s a . A = r B j u s t i n t h e c a s e A < r B a n d B < r A , a n d A | r B

just in the case A B and B -A. <r stratifies <s if there exist computable sets

A and B such that A =, B and A jr B.

A set A is many-one reducible to a set B in polynomial time {A<^B) if there

ex i s t s a p o l y n o m i a l t i m e c o m p u t a b l e f u n c t i o n f s u c h t h a t x E A i f a n d o n l y i f f { x) €

B. A set A is Turing reducible to a set B in polynomial time {A<^B) if and only if

there is a polynomial time-bounded oracle Turing machine M such that A = L(M^).

For a complexity class C, a set 5 is C-hard if for every set j4 in C, A<^B. Note

that B does not have to be an element of C. A set B is C-complete if B E C and, for

all € C, A<^B. The standard example of an NP-complete set is SAT — the set of

satisfiable prepositional formulas.

15

3 HIERARCHIES OF ALMOST EVERYWHERE
COMPLEX SETS

3.1 Introduction

Many of the early theoretical results in computational complexity — the work

of Hartmanis and Stearns [36], Hartmanis, Lewis and Stearns [35], and Rabin [55],

for example — dealt with the construction of arbitrary difficult-to-compute recursive

functions. Although all of these constructions involved diagonalization arguments,

two fundamentally different concepts of "complex function" emerged. Hartmanis and

Stearns constructed 0,1-valued recursive functions that required large running times

for infinitely many inputs. The 0,1-valued recursive functions constructed by Rabin,

on the other hand, required large running times for all but finitely many inputs.

As Gill and Blum [31] noted, the distinction between these two concepts was

obscured in the intervening years due in part to the concern of classifying recursive

functions by complexity classes. Recall that a recursive function / is defined to belong

to the complexity class determined by a time bound h if some program computed

f{x) in time /i(|a:|) for all but finitely many x. So a function is considered difficult to

compute with respect to h if every program for that function took more than

steps for infinitely many inputs x.

The perceived unnaturalness of a.e. complexity also played a role in this obfus-

cation. There is no known natural example of a recursive function / requiring

steps to compute f{x) for almost all x, where h is any reasonably large time bound.

The existence of natural problems which require exponential computation time for in­

finitely many inputs is well documented by Meyer and Stockmeyer [50] and Ferrante

and Rackoff [24].

Gill and Blum compared these two notions and attempted to provide a theoreti-

16

cal explanation for the fact that it appeared much harder to construct natural almost

everywhere (a.e.) complex functions than natural infinitely often (i.o.) complex func­

tions. They showed that it is impossible to prove every a.e. complex recursive function

to be difficult to compute, but they interpreted a result of Landweber and Robertson

[46] as showing that every i.o. complex recursive function could be proven to be i.o.

complex. They concluded that it was fundamentally more difficult to construct a.e.

complex functions than i.o. complex functions.

Lynch [47] proved that if a recursive set A is not solvable in polynomial time,

then there is an infinite recursive set X, called j4's complexity core, such that for every

deterministic Turing machine M that recognizes A and for every polynomial p, M

executes more than p steps on all but finitely many of the elements of X. Therefore,

some notion of a.e. complexity is precisely what makes sets intractable. Furthermore,

she showed that sets which are polynomial time many-one reducible to arbitrarily

complex sets are polynomial time computable. She cited this counterintuitive result

as further evidence of the unnaturalness of a.e. complexity.

Complexity cores have played a key role in the study of the structural properties

of intractable sets. Even, Selman and Yacobi [23] have shown that for any recur­

sive set not in P, it is possible to construct infinite recursive complexity core inside

the set. They proved similar results in a general setting to examine what abstract

properties a complexity class need have to prove the existence of recursive complexity

cores. Orponen and Schoning [51] showed that recursive intractable sets have infinite

cores that can be recognized in subexponetial time. They also showed that if P ^

NP, then NP-complete sets have nonsparse complexity cores recognizable in subexpo-

nential time. Balcazar and Schoning [8] pointed out the strong connection between

P-immunity and complexity cores.

In this chapter we first present the recursion theoretic notions of immunity and

bi-immunity and show how they relate to the complexity theoretic notion of a.e. com­

plexity. This work is perfunctory, and many of the results can be found in Balcazar

and Schoning [8]. We then prove the existence of a very strong deterministic time

hierarchy — a hierarchy of a.e. complex recursive sets — that is as tight as the

Hartmanis-Stearns Hierarchy Theorem. This result shows that a.e. complex sets can

be constructed eis easily as i.o. complex sets. Also, this result is a significant improve-

17

ment over all previously known results for the immune and a.e. complex sets. We

derive, as a corollary, a similar deterministic space hierarchy result due to Meyer and

McCreight [49]. The results presented in this section are the result of a collaboration

with D. Huynh (Geske and Huynh [30]).

Many sets are not a.e. complex for trivial reasons. We look at alternative ways

of viewing this and present a generalized form of a.e. complexity in Section 3.4. We

show that the very strong deterministic time hierarchy theorem also holds for this

generalized form. Finally, in section 3.5 we apply these results to answer several

questions concerning P-printable sets and generalized Kolmorgorov complexity.

3,2 immunity and Almost Everywhere Complexity

Various researchers have derived hardness notions for computable sets. One of

the earliest, as cited in the previous section, is Rabin's notion of the a.e. complex set.

We generalize that idea here.

Definition 3.1 Let C be a complexity class. A set A is C-complex if for every Turing

machine M that accepts A and every function f G Tc, 7m(x) > /(|x|) for all but

finitely many x € S*

Flajolet and Steyaert [26], and independently Constable [17], transformed the re­

cursion theoretic notion of an immune set into a computational complexity framework.

The bi-immune sets were first defined by Balcazar and Schoning [8].

Definition 3.2 Let C be a complexity class:

• A set is C-immune if and only if it is infinite and has no infinite subset that

belongs to C.

• An infinite co-infinite set A is C-bi-immune if and only if A is C-immune and

A is C-immune.

If the terms "a.e. complex", "immune", and "bi-immune" are used without ref­

erence to an underlying complexity class the class P is implicitly assumed, e.g., A is

immune if and only if A is P-immune.

18

Classes Ci and C2 are strongly separated if Ci Ç C2 and C2 contains a Ci-immune

set. Classes Ci and C2 are very strongly separated if Ci Ç Cg and C2 contains a

C i-complex set.

Lynch [47] introduced the notion of a complexity core.

Definition 3.3 Let C be a complexity class and ^4 Ç S'. An infinite set X is a C-

complexity core of A \denot. C-core(A)\ if for every Turing 'machine M that accepts

A and every f E 7c there are at most finitely many x G X such that TM{X) <

The relationship between these three definitions is easy to see.

Proposition 3.4 Let A be a recursive set, C a complexity class. The following are

equivalent

(a) A is C-complex.

(b) A i s C - b i - i m m u n e .

(c) ' E " i s a C - c o m p l e x i t y c o r e o f A .

Proof, (c) => (a) Obvious.

(a) => (b) Assume the contrary, i.e., A is C-complex and not C-bi-immune. Either

A is not C-immune, or A is not C-immune. The cases are symmetrical; we consider

the first case only.

If A is not C-immune, then there exists an infinite subset % of ^ and an /(n)

time-bounded Turing machine Mx that recognizes X, where f E Tc- Let M be a

Turing machine recognizer of A and construct a Turing machine M' as follows: On

input I run M and Mx in parallel, accepting x as soon as M or Mx accepts z. It is

easy to see that L[M') = A, but also for all x 6 AT, Tm'{x) < % is infinite and

f € Ic so A IS not C-complex, and we arrive at a contradiction.

(b) => (c) Assume 2' is not a C-core of A, then there exists a Turing machine

M that accepts A and there exists an f E Tc such that Tm{x) < /(|r|) for infinitely

many x in E'. Construct a Turing machine M' as follows: On input i simulate M

for /(|z|) steps. If M accepts x, then M' accepts x. If M rejects x, then M' rejects

X. Either L[M') = {x : M accepts x in /(|x|) steps} is infinite, or {i : M rejects x in

/(|x|) steps} is infinite. Both sets are in C; one set is a subset of A; the other set is a

subset of A. Therefore, we arrive at a contradiction.•

19

We will find the following characterization of the C-complex sets to be useful.

Theorem 3.5 (Balcazar and Schoning [8]) A recursive set A is C-complex if and only

if for every function f E 7c such that f[A) n f[A) = 0, / is finite-one.

Proof. Assume that a set A is not C-complex. Then there exists an infinite subset Ai

of A (or of A) such that Ai € C. Define / : S' —> S" by

y for all x e A i ;

where y is some fixed string in Ai. Clearly f(A) n f { A) = 0, / e f c , and / is not

finite-one.

Conversely, assume there exists an f E Tc, f{A) n f{A) = $ and / is not finite-

one. Then there exists a y € E' such that f~^{y) Ç is infinite, f~^[y) £ C and so,

A is not C-complex. o

One of the earliest results in computational complexity was Hartmanis and

Stearns' hierarchy theorem for deterministic time classes [36]. The recursive functions

constructed in that paper required large running times for infinitely many inputs. Gill

and Blum [31] compared this notion of i.o. complexity to the stronger notion of a.e.

complexity formulated by Rabin [55], and they concluded that "it may be fundamen­

tally more difficult to construct almost everywhere complex functions than infinitely

often complex functions." Contrary to this intuition, in this section we prove the

existence of a very strong deterministic time hierarchy — a hierarchy of a.e. complex

sets — that is as tight as the infinitely often case (although in a somewhat less general

form).

This result is a significant improvement over the only previously known result for

a.e. complex sets, as reported by Seiferas, Fischer and Meyer [62]. In fact, this result

is a significant improvement over the hierarchy theorem for immune sets presented by

Flajolet and Steyaert [27]. As a corollary we obtain the deterministic space hierarchy

result due to Meyer and McCreight [49].

X otherwise.

3.3 Hierarchies of Almost Everywhere Complex Sets

20

The results presented here are independent of the results of Paul [52] and Purer

[28]; they present much tighter time hierarchies of i.o. complex sets than the Hartmanis-

Steams result by restricting the class of machines examined to a fixed number of

worktapes. We are interested in a.e. complexity and place no such restriction on

the machines examined here, and so our results are the best possible using current

simulation techniques.

The intuition behind the very strong time hierarchy theorem is that if we are able

to "slow down" the diagonalization process of the Hierarchy Theorem sufficiently, it

should be possible to ensure that the constructed set is a.e. complex. In fact for many

classes, it is possible to slow down this diagonalization by an arbitrarily small function

— the function f{n) given below.

Theorem 3.6 I f t 2 { n) i s a m o n o t o n e i n c r e a s i n g f u l l y t i m e - c o n s t r u c t i b l e f u n c t i o n s u c h

that

l im in f ' ' (" ' 7 ' ' (")=0 ,
«->00 <2(«)

and there exists a fully time-constructible monotone increasing and unbounded func­

tion f[n) such that

1-t» t 2 [n)

then there exists a 'DT\MEi[ti{n))-complex set in DTIME(f2{»i)).

Example 3.7 I f t i [n) = 2", and t2[n) = «^2", then by the Hartmanis-Stearns Hier­

archy Theorem, DTIME(2") C DTIME(n^2"). By Theorem S.6, letting f[n) = logn,

there exists a DTIME(2")-comp/ex set in DTIME(ra^2").

The best previously known result [62] was that there existed DTIME(2")-complex

sets in DTIME((2+€)"), for any e > 0. Note, as in this example, that for many running

times <i(n) and t2[n) that satisfy the condition that lim„_oo inf fi(n) \ogti{n)/t2{n) =

0, a suitable /(n) such that the condition lim„_oo inf f{n)ti{n) logti{n)/t^in) = 0 is

satisfied can be found.

Example 3.8 There exist V-complex sets in DTIME(n'°®").

21

The construction of an a.e. complex set is based on a finite-injury priority ar­

gument. Given functions t2{n) and /(n), we construct a recursive a.e. complex set

A inductively on the enumerated strings of S'. We consider the following infinite

enumeration of restraining conditions-.

Ri : (pi is not finite - one => <Pi{A) fl i p i { A) ^ 0.

A condition Rj is satisfiable if its antecedent is true. A satisfiable condition Rj is

satisfied if <Pj(A) fi <Pj{A) ^ 0.

At each stage we attempt to satisfy the least (smallest indexed) restraining con­

dition that has not yet been satisfied. Such a construction is given in Figure 3.1.

In the construction, 5 is a set of restraining conditions (transducer indices) to be

considered.

Lemma 3.9 A 6 DTIME(f2(n)).

Proof. We show that there exists a Turing machine that executes the algorithm

given in Figure 3.1 in time t2[n). On an input x of length n, the time to cancel

machines from previous stages requires time t2{n). At most [^^/(ra)] transducers

must be simulated on at most [y/MJ strings, so at most /(n) simulations must be

made. Each simulation is run within \t2[n)/f[n)\ steps. (Note that for a machine

to do this requires that both ^^(n) and /(n) be fully time-constructible.) Therefore

the simulations require at most tz[n) steps, and the total time necessary to execute

the algorithm is 0{t2{n)). By the conditions placed on ti{n) and ^2(^)1 we have

limn-.oo inf (2(7*)/^ = 00 and so, by the Linear Speedup Theorem, we arrive at our

desired result. •

Lemma 3.10 For every ti{n) computable <pj that is not finite-one, Rj is satisfied.

Proof. Let T) be a ti{n) time-bounded transducer such that (p i is not finite-one and

<Pi{A) n (pi[A) = 0. Because of the conditions placed on t2{n) and f[n), we can

assume without loss of generality that at some stage i in the construction, for all

indicies j < I, either j 0 S, i.e., Rj has already been satisfied, or ypy is finite-one. So,

I is the smallest satisfiable index in S at stage i, and remains the smallest satisfiable

index at all future stages until Ri is satisfied.

22

stage i
begin

Let n [log zj ;
Let m := min(/(n), [logrej);
Let S :=
Let W := set of the first _y/m\ strings;
Within time t'i[n] execute as many previous stages as possible,

beginning with stage 1, removing transducer indices out of S
that have been diagonalized during previous stages;

for each j € 5 do
Simulate Tj for [t 2 [n) l f { n) \ steps to determine whether there

is a string it; in IV such that Tj{w) =
if yes
then begin

Let J be the legist transducer index with this property;
Let Wi be the least string in W with this property;
i f W î E A _
then add w,- to A
else add w, to A

end
end stage i

Figure 3.1; Inductive construction of a complex set

23

The time required to simulate T; on an input of length n is cti{n) logfi{n), where

c is a constant depending on Ti. Note that the Hennie-Stearns Theorem is needed

here since we make no assumptions about the number of worktapes Tj may have.

We are only allowed to simulate Ti for [tiin)/f{n)l steps. However, since (pi is not

finite-one, and by the conditions placed on t2{n) and /(n), there exist strings Wj,Wk

such that \wj\ < [^ymin(/(|wt|), [log |wjk|)jj,v3i(ty;) = (piiwk), and Wk is a sufficiently

l a r g e s t r i n g s u c h t h a t c ^ i (| w y |) l o g f i (| w y |) + c (i (| w t |) l o g (i (| w k |) < t 2 { \ w k \) / f { \ w k \) .

Therefore there is enough time to complete the simulation and witness the fact that

ipiiwj) = tpi{wk)- If Wj G A, then Wk 6 A, otherwise Wj E A and Wk E A. In either

case (pi(A) n (pi(A) ^ 0 and Bi is satisfied. •

Proof of Theorem 3.6. That ^ is a DTIME(ti(n))-complex set in DTIME(i2(?i))

follows directly from Lemma 3.9 and the fact (easily verifiable) that if Lemma 3.10

holds then the conditions of Theorem 3.5 are satisfied.q

Since we are allowed to reuse tape cells, it is not necessary to slow down the

diagonalization as was necessary for the time case, and we derive the tight space

hierarchy theorem of Meyer and McCreight. One should also note here that, as with

the time case, that 52(71) must be monotone increasing to insure the cancellation of

transducers diagonalized at previous stages.

Corollary 3.11 If S2[n) is a fully space-constructible monotone increasing function,

Si (re) and S2('i) ore at least log2 zi, and

lim inf — 0,
n—00 52(n)

then there is a DSPACE(5i(n))-comp/ex set in DSPACE(s2(w))-

As the proof of Corollary 3.11 is very similar to that of Theorem 3.6, we only

present the inductive construction of an a.e. complex set in Figure 3.2 and leave to

the reader the details of verification.

The very strong hierarchy theorems for deterministic time and space are as tight

as the hierarchies for the i.o. cases. Traditionally, translational lemmas have been used

to derive even tighter results than allowable by the hierarchy theorems. For example,

DTIME(2") C DTIME(n2") can only be obtained in this fashion. Unfortunately, the

24

stage i
begin

Let n := [log i\ ;
Let S {1,..[loglogrej};
Let W := set of the first [log log nj strings;
Within space S2(ra) execute as many previous stages as possible,

beg inn ing wi th s tage 1 , removing t ransducer ind ices ou t o f S
that have been diagonalized during previous stages;

for each j G 5 do
Within space s - i {n) simulate Tj to determine whether there is

a string wxaW such that Tj{w) = Tj[wi) \
if yes
then begin

Let J be the least transducer index with this property;
Let Wi be the leéist string in W with this property;
if Wi 6 A
then add w, to A
e l se add Wi to A

end
end stage i

Figure 3.2: Space preserving inductive construction of a complex set

25

padding technique used in translation lemmas (See for example Hopcroft and Ullman

[39]) does not carry over for the a.e. complex case; padded strings allow for easily

recognized subsets to exist. As padding plays a key role in Cook's [19] and Seiferas,

Fischer, and Meyer's [62] derivation of hierarchies for the nondeterministic classes, it

appears that new techniques will have to be developed for results of this nature to be

achieved for the a.e. complex cases. Resolution of these difficulties remain open.

3.4 Generalized Notions of Immunity

The complexity of set recognition, as pointed out by Lynch, lies in the recognition

of a set's complexity core. The fact that a set A is a.e. complex precisely when E",

the entire domain of A, is a complexity core of A emphasizes the restrictiveness of a.e.

complexity. Frequently the syntactic structure of a set makes it recognizable on many

of its inputs. For example, there exists a Turing machine M that runs in real-time

such that L{M) = {l}". Therefore for every tally language A, L(M) Ç A. This

fact says nothing about the complexity of a given tally set; tally sets of arbitrary

complexity can easily be constructed.

To overcome this difficulty, alternative notions of immunity have been developed.

Orponen and Schoning [51] considered sets that are uniformly hard to decide ev­

erywhere except on a single easily recognized subset. They called these sets almost

F-immune, that is, a set is almost P-immune if it is the disjoint union of a P-immune

set and a set in P. Grollmann and Selman [32] considered the notion of partial im­

munity: A non-sparse set S is partially immune to complexity class C if every subset

of 5 in C is a sparse set. We define our own generalized notion of immunity and

bi-immunity.

Definition 3.12 Let C be a complexity class and F Ç 2":

• A set A is C\T-immune if and only if A DT is infinite and every infinite subset

of A in C has a finite intersection with F.

• An infinite co-infinite set A is C\T-bi-immune if and only if A is C\T-immune

and A is C\T-immune.

26

So, an infinite set A is C|r-bi-immune if no infinite subset of A nF is in C and no

infinite subset of AnF is in C. For the case of tally languages, by letting F = {l}' this

generalized notion of a.e. complexity removes the trivial instances — those instances

containing a zero — from consideration. Note that if F = S*, then this definition is

precisely Definition 3.2. There does not appear to be any relation between this version

of immunity and those of Orponen and Schoning and Grollmann and Selman. Our

notion is perhaps most closely related to Ambose-Spies' notion of a sub-problem[5].

In a similar fashion, we may generalize the notion of a C-complex set.

Definition 3.13 Let C be a complexity class and F Ç S". A set A is C\T-complex if

for every Turing machine M that accepts A and every function f € /c, TM{X) > /(|x|)

for all but finitely many x G F.

The "naturalness" of our generalization can be seen in the following result.

Proposition 3.14 Let A be a recursive set, C a complexity class and F an infinite

subset ofH". The following are equivalent.

(a) A is C\V-complex.

(b) A is C\V-bi-immune.

(c) F is a C-complexity core of A.

Proof, (c) =>• (a) Obvious.

(a) => (b) Assume the contrary, i.e., A is C|F-complex and not C|F-bi-immune.

Either A is not C|F-immune, or A is not C|F-immune. The cases are symmetrical; we

consider the first case only.

If A is not C I F-immune, then there exists an infinite subset % n F of A and an

f{n) time-bounded Turing machine Mx that recognizes X, where f E Ic- Let M be

a Turing machine recognizer of A and construct a Turing machine M' as follows: On

input X run M and Mx in parallel, accepting x as soon as M or Mx accepts x. It is

easy to see that L[M') = A, but also for all x E X, TM'{X) < /(|i|). X n F is infinite

and f € Ic so A is not C|F-complex, and we arrive at a contradiction.

(b) => (c) Assume F is not a C-core of A, then there exists a Turing machine

M that accepts A and there exists an / G Jc such that TM{X) < /(|z|) for infinitely

many x in F. Construct a Turing machine M' as follows: On input x simulate M

27

for /(|z|) steps. If M accepts x, then M' accepts z. If M rejects x, then M' rejects

X. L{M') E C and L{M') Ç A. Assume L(M') is infinite, then clearly L{M') has an

infinite intersection with F and we have a contradiction. If we assume L{M') is finite,

then L[M') is infinite and the result is the same mutatis mutandis.a

Indeed, the results of the previous sections can be translated into results about

generalized a.e. complexity.

Theorem 3.15 A recursive set A is C\T-complex if and only if for every function

f E ?c such that f{A) n f(A) = 0, f~^{y) n F is finite for every y €12'.

Proof. Assume that a set A is not C|F-complex, then there exists an infinite subset

A\ of A (or A) such that Ai G C and j4i n F is infinite. Define / : S' S* by

f y for all x 6

[X otherwise,

where y is some fixed string in Ai. f{A) r\ f{A) = 0, / € ^ and there exists a y 6 E"

such that f~^{y) n F is infinite.

Conversely, assume there exists an / G 7c, f{A) n f { A) = 0 and a y 6 S' such

that / ~ ' (y) n F i s i n f i n i t e . E i t h e r f ~ ^ { y) G A , o r / ~ ^ (y) Ç A , f ~ ^ [y) € C a n d s o , A

is not C|r-complex.Q

Given a relatively ecisy to recognize subset F of E', we can restrict our attention

to this subset and construct new sets with complexity cores contained in this subset.

Using the techniques of Theorem 3.6, these new sets can be made to be a.e. complex

in our generalized sense. The proof of Theorem 3.16 is similar to that of Theorem 3.6;

for the sake of completeness, we give the proof in detail.

Theorem 3.16 Let F be an infinite subset of E' in DTIME(i2(n.)). If is a

monotone increasing fully time-constructible function such that

n-oo t 2 { n)

and there exists a fully time-constructible monotone increasing and unbounded func­

tion f{n) such that

l i ^ i n f / W i . W ' o g t . W ^
"-'OO t i l n)

then there exists a subset of F in DTIME(i2(ra)) that is DTIME{ii(n))|F-comp/e^.

28

stage i
begin

Let n ;= [log zj;
Let m := min(/(n), [lognj);
Let 5 := {l,...,
Let W := set of the first [i/mj strings;
Within time t^in) determine if w, 6 P. If not, then exit stage i;
Within time t2[n) execute as many previous stages as possible,

beginning with stage 1, removing transducer indices out of S
that have been diagonalized during previous stages;

for each j £ S Ao
Simulate Tj for [^2(0)//(n)J steps to determine whether there

is a string w in W n T such that Tj{w) = Tj{wi) - ,
if yes
then begin

Let J be the legist transducer index with this property;
Let Wi be the least string in W with this property;
if Wî e A
then add Wi to A
e l se add w, to A

end
end stage i

Figure 3.3: Inductive construction of a DTIME(<i(n))|r-complex set

We construct a DTIME(<i(n))|r-complex set inductively via a finite-injury pri­

ority argument. By virtue of Theorem 3.15, we only need concern ourselves with the

following enumeration of restraining conditions:

Ri : 3y ip l^{y) n T is not finite => ip i lA) n ip i {A) ̂ 0.

It is only necessary, therefore, to consider strings in F; this can be determined

"quickly." The construction is given in Figure 3.3. Again, S is the set of restraining

conditions to be considered.

Lemma 3.17 A € DTIME(< 2 (r a)) .

29

Proof. We show that there exists a Turing machine that executes the algorithm given

in Figure 3.1 in time t2{n). On an input x of length n, the time to determine whether

2 6 r requires time t2[n). The time to cancel machines from previous stages requires

time t2{n). At most \^\Jf{n)\ transducers must be simulated on at most [1^/(71)]

strings, so at most f[n) simulations must be made. Each simulation is run within

L^2(?î)//(n)J steps. Therefore the simulations require at most (2(7%) steps, and the

total time necessary to execute the algorithm is 0(i2{w)). By the conditions placed

on <i(n) and <2(7%), we have lim„_oo inf = 00 and so, by the Linear Speedup

Theorem, we arrive at our desired result.•

Lemma 3.18 For every ti{n] computable ipj such that (pj^{y) n F is not finite for

some y € S*, Rj is satisfied.

Proof. Let Ti be a ii(n) time-bounded transducer such that Ri is satisfiable. Because

of the conditions placed on t2{n) and f{n), we can assume without loss of generality

that at some stage i in the construction, for all indicies j < /, either j ^ S, i.e., Ry has

already been satisfied, or Rj is not satisfiable. So, I is the smallest satisfiable index

in S a t s tage i , and remains the smal les t sa t i s f i ab le index a t a l l fu tu re s tages un t i l Ri

is satisfied.

The time required to simulate Ti on an input of length n is cii(7i) log <1(71),

where c is a constant depending on 7j. We are only allowed to simulate TJ for

[iiin)/f{n)\ steps. However, since n F is not finite for some y 6 S", and

by the conditions placed on (2(71) and /(n), there exist strings Wj,vjk in F such

that \wj\ < |^y^min(/(|it/jfc|), [log = <Pi{wk), and Wk is a sufficiently

large string such that log<i(|wy|) + c(i(|wt|)log(i(|wt|) <

Therefore there is enough time to complete the simulation and witness the fact that

<Pi{wj) = (pi(wjc). If Wj € A then Wk E A, otherwise wj 6 A and Wk E A. In either

case <pi{A) D ipi[A) ^ 0 and Ri is satisfied.•

Proof of Theorem 3.16. Follows directly from Lemméis 3.17 and the fact Lemma 3.10

ensures that the conditions of Theorem 3.5 are satisfied.•

30

3.5 Applications

Generalized Kolmogorov complexity, introduced by Hartmanis [33] as a method

for studying the amount of information contained in individual strings, has generated

considerable interest. See for example the work by Allender [3] and Ko, Orponen,

Schoning and Watanabe [43]. Informally, the Kolmogorov complexity of a string is the

shortest program that generates it. Hartmanis' generalization includes information

about not only how far a string can be compressed, but how fast it can be restored.

Definition 3.19 For a Universal Turing machine Mu and functions g and G on the

natural numbers, the generalized Kolmogorov complexity is defined as

Ku[g { n),G{ n)] = { x : 3y{ly|) < g(|x|) and M v { y) = x m < G(|i]) steps)}.

It was shown in [33] that there exists a universal Turing machine Mu such that for

a n y o t h e r T u r i n g m a c h i n e M v t h e r e e x i s t s a c q s u c h t h a t Kv [g [n) , G { n) \ Ç Ku \ g { n) +

CQ,coG{n) logG(re) +co].

The following propositions are straightforward.

Proposition 3.20 Every tally set is a subset of ifi;[c log n,7i°] for some integer c.

Proposition 3.21 For every integer c, Ku\c\ogn,n'\ G P.

The P-printable sets were first defined by Hartmanis and Yesha [37], and they

arise naturally in various areas, such éis P-uniform circuit complexity and data com­

pression. Allender [3] has studied the strong connections between generalized Kol­

mogorov complexity and P-printable sets.

Definition 3.22 A set S is V-printable if there is a polynomial time computable

function which, on input 1", lists the elements of S which have length < n.

Clearly every P-printable set is sparse and in P.

Proposition 3.23 (Allender and Rubinstein [4]) S is p-printable if and only if S is

p-isomorphic to a tally language in P.

31

We briefly examine these concepts here; specifically, we examine what our no­

tion of generalized almost everywhere complexity can say about these concepts. The

following corollaries follow directly from Theorem 3.16.

Corollary 3.24 There exists 'P\{\Y-complex sets in DTIME(n'°®").

Corollary 3.25 There exist infinite tally sets in DTIME(%'°^") that have no infinite

'P-printable subsets.

Proof. By Theorem 3.16 we can construct an infinite tally set A £ DTIME(n'°®") that

is PKlj'-complex. Assume 5 Ç ^ is an infinite P-printable set. This implies that S

is in P, but then there exists an infinite tally subset of A in P. This contradicts the

fact that A is P|{l}*-complex.a

Theorem 3.26 There exists a sparse set A in DTIME[n^°^^) such that no P-printable

set is a subset of A, nor A.

Proof. Let r = Jrc/[log^n,r 6 DTIME(7i'°®"). Furthermore,/fy[clog71,71*^] Ç

iiTt; [log^ for every integer c, and every P-printable set is a subset of F. Let

^ be a sparse P|r-complex set. A can be constructed such that A 6 DTIME(n'°®").

By definition, no infinite set S Ç ifj/llog^ n, 5 e P, is a subset of A, nor can

5 be a subset of A. •

Theorem 3.27 There exists a set A in DTIME(n'°®") such that the only infinite

subsets of A, or A, in P are of low generalized Kolmogorov complexity.

Proof. Let T = S* — iiTirflog^ n, Construct a set vl G DTIME(re'°®") such

that A is P|T-complex. Any set in P that is a subset of A, or A, must be of low

generalized Kolmogorov complexity, since no infinite set 5 in T that is in P can be

a subset of A or A. These are precisely the sets that do not have low generalized

Kolmogorov complexity. •

32

4 POLYNOMIAL COMPLEXITY DEGREES

4.1 Introduction

The early history of the theory of NP-complete sets was fraught with confusing

attempts at notation and concepts. Several authors attempted noneffective formu­

lations of NP-completeness. For example, Sahni [59] and Sahni and Gonzales [60]

tried to formulate NP-completeness without the use of polynomial time-bounded re-

ducibilities. They called a set ^ 6 NP P-complete if and only if membership of A

in P implied P = NP. It soon became clear that such a nonconstructive test did not

properly capture the notion of NP-completeness. For, as Book, Wrath all, Selman and

Dobkin [14] pointed out, if P ^ NP then every set in NP - P obeys the criterion set

forth by Sahni, and by Ladner's result [44] that if P ^ NP then there exist a multitude

of sets in NP - P that are not polynomially equivalent, it follows that P-complete is

not the same as NP-complete.

Nevertheless, there is an attractiveness to a nonconstructive approach, and we

pursue such an approach here. We show that the intuition of these early researchers

was correct — though their methods were wrong. We define a binary relation that

nonconstructively relates the computational complexity of two computable sets. We

show that this relation is properly weaker than polynomial time Turing reducibility,

and yields new completeness and hardness notions for complexity classes. This new

completeness notion differs from <y-complete for sets in E, and the hardness notion

differs from <^-hardness for sets in NP. Furthermore, through the use of this relation

we show that if a complexity class C contains a set A whose "hard instances" are

uniformly distributed, then every <y-complete set for C must have its hard instances

uniformly distributed. This uniform distribution property holds for the <y-complete

sets in E and TIME(2'"''»).

33.

begin
input i;

for { u p t o p [\ x \) i t e r a t i o n s) do
begin

generate a query q, |g| < p(|a:|), to oracle B\
input q to MB',

run MB on q;
return (answer to query);

end;

end.

Figure 4.1: Turing reduction of a set to a set B

4.2 Polynomial Complexity Degrees

The importance of polynomial time bounded Turing reducibility is the fact that,

placing faith in the polynomial time variant of Church's Thesis it is the most general

constructive relation which, when it holds between two sets A and B, A<jB asserts

that the "complexity" of A is "polynomially related" to the "complexity" of B. We

wish to make this statement precise.

Let A and B be recursive sets. When we assert that A<ÇB we are asserting

the existence of a polynomial time-bounded oracle Turing machine that recognizes A

using B as an oracle. Consider the oracle Turing machine program given in Figure

4.1 that witnesses A<jB, runs in polynomial time-bound p, and in which queries to

the oracle are replaced with executions of a Turing machine Mg that recognizes B.

The reduction yields a Turing machine which accepts A so that

Vx6 S*(rM^(x) < p(|i|)max{rMB(y) : |y| <p(k|)}). (4.1)

We have seen from Figure 4.1 and Equation 4.1 that A<ÇB implies the existence

34

of a polynomial p such that

VMbBM^Vx 6 E*(rM^(x) < p(|x|)max{7MB(y) : |y| < P(kl)})- (4.2)

We take (4.2) to be the mathematical definition of the phrase "the complexity of A

is polynomially related to the complexity of B."

Definition 4.1 A binary relation <c over the recursive sets is defined as follows.

Given recursive sets A and B, A<cB if and only if there exists a polynomial p such

that

VMb3MaV~s € 2'((z) < p(|xi) max {TM^ (y) : |y| < p(|i|)}).

Proposition 4.2 (z) <c is a reflexive and transitive relation.

(ii) <c n <c~^ is an equivalence relation.

The equivalence classes of this relation are called the polynomial complexity degrees,

and for each recursive set A, the equivalence class that contains A is denoted C{A),

for it represents a formal definition of the "polynomial complexity" of A. Note that

the approach taken here to define the polynomial complexity of A is analogous to the

approach taken by mathematicians in defining the cardinality of a set A.

Definition 4.3 A binary relation < over the complexity degrees is defined as follows.

Given complexity degrees a and b,

a < b 3A3B[A 6 a A 5 6 b A A<cB).

Proposition 4.4 Let A and B he recursive sets.

[i) < c i s a w e l l d e f i n e d p a r t i a l o r d e r i n g o n t h e p o l y n o m i a l c o m p l e x i t y d e g r e e s .

[ii) C{A) < C{B) ̂ A<cB.

[Hi) A<^B ̂ C{A) < C[B).

[i v) < c i s a n u p p e r s e m i - l a t t i c e w i t h 0 - e l e m e n t , 0 = P.

35

A<cB is the weakest notion on the recursive sets A and B that captures all

other polynomial time-bounded reducibilities; it is even weaker than the reducibility

defined by Even, Long and Yacobi [21].

Definition 4.5 Let C be a complexity class.

• A recursive set A is <c-hard for C if for every recursive set B in C, B<cA.

• A recursive set A is <c-complete for C if A is <c-haTd for C and A E C.

Proposition 4.6 Every <^-complete set for a class C is <c-complete for C.

T h e p r o o f f o l l o w s d i r e c t l y f r o m P r o p o s i t i o n 4 . 4 [H i) .

4.3 Basic Results

The converse of Proposition 4.4 [H i] fails in several strong ways. We will show

[cf. Corollary 4.14) that ifP ^ NP, then there exists a recursive set A that is <c-hard

for NP, but is not <y-hard for NP. Further, we show [cf. Theorem 4.18) that there

e x i s t r e c u r s i v e s e t s A a n d B i n E s u c h t h a t C { A) = C (B) a n d A \ j B .

Proposition 4.7 Let C be a complexity class. Every C-complex set is <c-hard for C.

Proof. Let be a C-complex set. For an arbitrary set S G C there exists f E Tc and

a Turing machine MB recognizing B such that for all i in S", Tsfoi^) < /(kl)- Since

A is C-complex, for every Turing machine MA recognizing A, 7a/^(x) > /(|x|) for all

but finitely many x in S'. It follows from the definition of <c that B<cA. Since B

was an arbitrarily chosen set in C, vl is <c-hard for C. •

Proposition 4.8 If for some polynomial p, a set A is DTIME(2''^"^)-comp/ei, then

A is <c-hard for TIME(2'""«').

Proof. Let B be a set recognized by a deterministic 2'^"^ time-bounded Turing ma­

chine, for some polynomial q. Let pi be a polynomial such that p{pi{n)) > q[n) for

sufficiently large n. Then for all strings x,

ÏMaW < < 2P(P'(I'I)). (4.3)

36

But note that since A is DTIME(2''('*))-complex, for every Turing machine that

accepts A, and all but finitely many x,

max{2M^(î/) : iy| < Pi(|z|)} = max{rM^(y) : |y| = Pi(|x|)} = (4.4)

It follows from (4.3) and (4.4) that B<cA.a

These are rather appealing results, for intuitively, a set that is C-complex is

computationally harder than any set in C, and <c captures this idea. It follows from

these propositions that one way to obtain <c-hard sets for DTIME(f(n)) is to use

Theorem 3.6 in order to obtain DTIME(i(re))-complex sets. We shall see that this is

not the case for polynomial time-bounded Turing reducibility.

Theorem 4.9 Let C be a complexity class. For every recursive set A E C—P, there

ex i s t s a sparse recurs ive se t B such tha t B i s C-complex and A B .

The inductive construction of the set B is based on a finite-injury priority argu­

ment. Let be an enumeration of Turing machines time-bounded by functions

of Tc- We consider two infinite enumerations of restraining conditions:

Ri ; \ \L{Mi) n 5|| = 00 => L(M,) 2 B. (4.5)

Ri ; \ \L{Mi) n 511 = oo => L{Mi) g B. (4.6)

Again, a condition Rj {Rj) is satisfiable if its antecedent is true. A satisfiable condition

Rj [Rj) is satisfied if L{Mj) g B 2 B). An added difficulty arises in satisfying

that A%xB, that is,

N(A^L(i^®)). (4.7)

The ability to satisfy (4.7) lies in the fact that if A ^ P and B is a finite set, then for

every polynomial time-bounded deterministic oracle Turing machine P, there must be

an in f in i t e number of wi tnesses to the fac t tha t A ̂ L[P^) .

An inductive construction of the set B that satisfies these conditions is given in

Figure 4.2.

Lemma 4.10 A%^B.

37

stage 0
begin

B := 0;
iîS-^r :={!};
RPSAT := { ! } ;
y ••= 1;

end stage 0

stage n[n > 0)
begin

if there is an i 6 RSAT U RPSAT such that z» G L[Mi)
then begin

Let î be the smallest such i\
if Î 6 RSAT
then RSAT := RSAT - {*}
else begin

RPSAT := RPSAT-{ Î} ;
B := Bu {x„}

end
end

if |a:„| < |x„+i|
then

if by running Pj with oracle B{n) for |x„| steps on all inputs

a witness is found that L { P f ^ " ' ^) ^ A
then begin

j := j + 1;
RSAT := RSAT U {;};
RPSAT := RPSAT U {;};

end
end stage n

Figure 4.2: Inductive construction of C-complex, A^^B set

38

Proof. Assume A<ÇB, then there exists a machine Pj in the enumeration of determin­

istic polynomial time-bounded oracle Turing machines such that A = L{Pf). Note,

though, that in the construction of B no more than j elements can be in B until a

witness is found, if one exists, that A ^ L{Pf). Since A^ P and B is finite, at some

stage n such a witness must eventually be found. Furthermore for all strings queried

of oracle B in witnessing this fact, membership in B has already been decided. There­

fore, the fact that A ^ L{Pf) will be witnessed at all future stages. This contradicts

our assumption, and hence A%x^-n

Lemma 4.11 B is C-complex.

Proof. Clearly if every satisfiable Ri and Ri condition is satisfied, then B will be

C-complex. By Lemma 4.10 we have shown that for every integer n, P„ is successfully

diagonalized, and hence conditions i2„ and Rn will be considered at future stages.

Assume that for some index j that ||L(Mj)|| = oo and Rj and Rj remain unsatis­

f ied. It must be the case that for all strings x we never determine if i 6 L{Mj). This

implies that there is always an index i < j such that we determine x € L[Mi) before

we can de te rmine tha t x E L(Mj) . This can on ly happen f in i t e ly o f ten . S ince L{Mj)

is infinite, there must exist a stage n such that 6 L{Mj) and Rj (or Rj) is the least

satisfiable condition not yet satisfied, and we then satisfy Rj (or Rj). Therefore our

assumption is invalid, and we conclude that all satisfiable conditions Rj and Rj are

satisfied. •

Proof of Theorem 4.9. Follows immediately from Figure 4.2 and Lemma 4.10 and

Lemma 4.11.•

Corollary 4.12 For every recursive set A, A ^ P, there exists a sparse recursive set

B such that C[A) < C(B) and A B.

Proof. Follows directly from Theorem 4.9 and Poposition 4.7.•

Corollary 4.13 For every set A 6 NP — P, there exists a sparse recursive set B such

that C{A) < C{B) and A B.

39

Proof. Let A € NP — P. Choose a polynomial q such that A 6DTIME(2'(")) and

let C = DTIME(2^W). By Theorem 4.9 there exists a sparse recursive set B that is

DTIME(2'''"^)-complex, and A'^ÇB. Since NP Ç TIME(2''°'''), it follows immediately

from Proposition 4.8 that C{A) < C{B).Q

If we consider the NP-complete set SAT, we immediately have the following.

Corollary 4.14 There exists a sparse recursive set B that is <c-hard for NP and is

not <J-hard for NP.

This result is in contrast to Karp and Lipton [42] where it was shown that there

can be no sparse NP-hard sets unless the polynomial hierarchy collapses to Ef.

By focusing our attention on the complexity class E, specifically, the a.e. complex

sets in E, we can strengthen the result of Theorem 4.9 by showing that the polynomial

complexity degree of the <c-hard sets for E contain more than one <^-degree.

Theorem 4.15 For every DTIME(2")-comp/ei set A in E there exists a sparse re­

cursive set B in E such that C{A) = C(B) and A B.

Proof. Let ^4 be a DTIME(2")-complex set in DTIME(2^"); such sets exist in E by

use of Theorem 3.6. Let {M,},gN be an effective enumeration of all deterministic 2^"

time-bounded Turing machines, and construct a set B via the construction given in

Figure 4.2. By Theorem 4.9, B is DTIME(2^")-complex, A%jB and A<cB.

To determine whether 6 B, where |x„| = m, it is sufficient to execute 2'"''"^

stages of the construction. Each stage requires steps, so the total running time

is bounded by 2"^"^ steps, for some integer constant cg, and 5 6 E. It follows from

Proposition 4.8 that B<cA. •

Corollary 4.16 <^-complete and <c-complete sets differ in E.

Proof. The set B E E constructed in Theorem 4.15 is DTIME(2^")-complex. By

Proposition 4.8 B is <c-hard for TIME(2''°'®'), and hence B is <c-complete for E. B

is not <y-complete by construction.•

Ladner, Lynch and Selman [45] showed that stratifies <Ç in DTIME(2").

Similarly, we show that <y stratifies <c in E. To do this we employ the technique of

40

using arbitrarily large "gaps" that was used in [45]. Define the function /i : N —»• N

as follows:

/i(0) = 1,

/i(n + l) =

Definition 4.17 Let EG = {x : |z| = k{m), for all integers m}. A set A has expo­

nential gaps if A is a subset of EG.

There exists a polynomial time-bounded Turing machine that on input x writes

m in binary, where m is the greatest number such that h[m) < |x|, and determines

if h(m} = |x|. Therefore, the membership question for EG is decidable in polynomial

time.

Theorem 4.18 For every DTIME(2") | EG-complex set A Ç EG in E there exists a

set B in E such that C[A) = C[B) and A \Ç B.

Proof Let A Ç EG be a DTIME(2")| £'G-complex set in DTIME(2^"); Theorem

3.16 ensures the existence of such a set. We construct a set B Ç EG such that B is

D T I M E (2 ^ ") | £ ' G - c o m p l e x a n d B G D T I M E (2 ' ^ ") , f o r s o m e i n t e g e r c > 2 , a n d A ^ Ç B

and B-^ÇA. TJie construction is similar to those of Theorem 4.9 and Theorem 4.15.

Once again, we restrict our attention to the enumeration {M,} of 2^" time-bounded

deterministic Turing machines. There are two additions in the construction. First,

the diagonalizations take place only on strings in EG. Secondly, we diagonalize over

each machine P,- twice. The first time to ensure that B 7^ L{P/^). This step requires

that we place strings into B. The second time we diagonalize over Pi is to ensure that

A ^ L{Pi^). This step requires that we place strings into B. Both diagonalizations

take place over Pi before we examine machine Pi+i. The construction of B is presented

in Figure 4.3.

That B E E follows along the lines of Theorem 4.15. That is, to determine

whether Xn E B it is sufficient to execute 21®""'"^I stages of the construction. Each

stage takes steps, plus an additional 21®"' steps to simulate a machine Pj

with oracle A. The remainder of the proof follows immediately from the following

lemmas: Lemma 4.19; Lemma 4.20; Lemma 4.21.•

41

stage 0
begin

B := 0; j := 1; k := 1;
RSAT := {1}; RPSAT := {l};

end stage 0

stage n{n > 0)
begin

if |z„| = h { m) for some integer m
then

if there is an i 6 RSAT\J RPSAT such that x„ € L[Mi)
then begin

Let I be the smallest such z;
if Î e RSAT
then RSAT := RSAT - {:}
else begin

RPSAT := RPSAT - {%};

B := B L> {x„}

end
end
else

if j = k and pk{h[m)) < 2'*''^' (
then begin

run machine Pk, with as an oracle, for pjfe(|z„|) steps with
input Xn,
if Xn ^ L[Pk) then B:= Bli {i„};
k := k + 1',

end;
if |z„| < |zn+i| and j <k {**

then
if by running Pj with oracle B{n) for [xnl steps on all inputs

a witness is found that L [P f ^ " ' ^) ^ A
then begin

j := j + 1;
RSAT := RSAT U{jy,

RPSAT := RPSAT U {;};

end
end stage n

Figure 4.3: Construction of set B; C{A) = C{B) and A B

42

Lemma 4.19 A ^ j B a n d B ^ Ç A .

Proof. It is sufficient to show that for every machine Pj in the enumeration of

deterministic polynomial time-bounded oracle Turing machines, A ^ L{P^^) and

B ^ L[P^). Therefore, we diagonalize over each Turing machine Pj twice. The

diagonalization to ensure B^ÇA occurs when the conditions of the if statement (*)

in Figure 4.3 are satisfied; the diagonalization to ensure A^ÇB occurs when the con­

ditions of the if statement (**) are satisfied. This second diagonalization can occur

only after the first diagonalization since only then is the variable k incremented, thus

ensuring that j < k. After this diagonalization occurs the variable j is incremented,

once again ensuring that j = k, and the first diagonalization of Pj+i can occur. Both

diagonalizations of Pj must occur before another transducer index can be added to

R S A T a n d E P S A T . T h e r e f o r e , \ \ R S A T \ J R P S A T \ \ < 2 j . T h a t R S A T u R P S A T

remains bounded guarantees that for every positive integer j, the statement (*) is

eventually reached.

For any Turing machine Pj , a stage n = h{m) is eventually reached such that

Pj { n) < 2 " . P j i s t h e n r u n o n i n p u t 0 " w i t h o r a c l e A . N o t e t h a t a n y q u e r y q ,

n < \q\ < Pj{n) < 2", can be answered "no" a priori since A Ç EG and contains

no strings in this interval. Therefore at this stage we ensure that B ^ L{Pf). That

A ^ L{Pf) follows directly along the lines of Lemma 4.10. Once we ensure that

B 7^ L{P^) and A ^ L{Pf) we may proceed to examine machine Py+i at a future

stage. Therefore we can conclude that B'^^A and A^jB.^

Lemma 4.20 B is DTIME(2^")-comp/ex.

Proof. Initially, RSAT = RPSAT = {l}. By Lemma 4.19 we have shown that

for every integer ti > 1, P„ is successfully diagonalized twice. Therefore, n + i is

added to RSAT and RPSAT, and for all integers j > 1, Rj and Rj are eventually

considered. That every satisfiable Rj and Rj condition is satisfied follows along the

lines of Lemma 4.11.0

Lemma 4.21 A =c B.

43

Proof, Let MA be a deterministic 2^" Turing recognizer of A such that

(2^l'l for all z 6 EG;
TmA^) = \

[g(|x|) otherwise,

for some polynomial q. Since B is a DTIME(2^")-complex set, for every deterministic

Turing recognizer MB of B, TMI,{X) > for all but finitely many x G EG. There­

fore, 6 EG[TMA{X) < TMO{X])J and it follows trivially that A<cB. A similar

argument shows that B<cA. •

We will find it convenient to consider the following partion oî EG:

EGo = {x : |x| = h{m), where m — 1,3,5,..

EGe = {x : |x| = h[m), where m = 2,4,6,..

Theorem 4.22 There exist recursive sets A and B such that A,B E DTIME(re'°®")

and A |c B.

Proof. Let A Ç EGg be a P| ^(?o-complex in DTIME(n'°®"), and B Ç EGe be a

P| EG;-complex in DTIME(ra'°®"). Once again, these sets are guaranteed by Theo­

rem 3.16. The distance, i.e., the difi'erence in length, between sucessive hard instances

of different lengths of A is at least a double exponential. That is, all but finitely

many x £ EGo require 2l''l steps for a Turing acceptor of A to determine membership

in A, and for all y, |r| < |y| < 2^'"', the membership question for A is trivial. But

in the middle of this "gap," precisely where |y| = 2'®!, are the hard instances of B.

Therefore, for any Turing machine recognizer of B, say MB, every Turing machine

recognizer MA of the set A, and any polynomial p we have

3°°xTMO(x) > p (l x j) m a x { T M ^ (y) : |y| <

It follows that B -^c A. A similar argument shows that A •^c B. a

Corollary 4.23 There exist sets A and B in DTIME(n'°®") such that A |y B.

44

4.4 The Structure of C-Complete Sets

We will now use <c to analyze the structure of complete sets. First we note

that <c-complete for a clciss C does not imply C-complex for the class C; Berman [9]

has shown that any set <^-complete for a deterministic time class contains infinite

polynomial time recognizable subsets, thus showing that they are not a.e. complex.

The following theorem shows that sets that are very dilBcult to recognize are not

necessarily <c-hard.

Theorem 4.24 There exists a recursive set A such that every infinite subset of A is

a TIME(2'"'''')-core, and A is not <c-hard for TIME(2P°'^).

Proof. Let A Ç EGQ be a TIME(2P°''')| J?Go-complex set. Note that by Proposi­

tion 3.14, every infinite subset of A is a TIME(2'"'''')-complexity core for A. For

all but finitely many x E A Ç EGo and any polynomial p, a deterministic Turing

recognizer of A requires more than steps to determine membership in A.

Specifically, there exists a Turing machine MA that recognizes A and a polynomial q

such that for all but finitely many x £ EGo, and Tm^{x) = g(|z|)

for all X 0 E G g .

Now let B be a DTIME(2")-complex set in DTIME(2^") and assume A is <c-

hard for TIME(2'"''^). Then there must exist a polynomial p and a Turing machine

recognizor MB of B such that

V°°I 6 r{TMa{x) < p(|z|) max{rA/^(y) ; |y| < p(|x|)}).

But then, for sufiiciently large n,

e < p(z)g(p(|z|))),

and since B was assumed to be DTIME(2")-complex, we arrive at a contradiction.

Therefore, A cannot be <c-hard for TIME(2'"''''). •

Therfore the existence of "hard" complexity cores alone is an insuflScient criterion

for <c-hardness. The distribution of the hard instances must also be taken into

consideration. We investigate this phenomena further.

45

Definition 4.25 Given a Turing machine M and a function f on the natural num­

bers, the set of f-hard instances for M is

H { M , f) = { x e i : ' : T M { x) > f { \ x \) } .

Definition 4.26 Given a function g over the natural numbers, a set A is g-distributed

if

V°°z e A 3 y e A (|x| < |y| < ff(|x|)).

Proposition 4.27 If a recursive set A is C-complex, then for every Turing machine

MA that recognizes A and every f E Tc, H{MA,f) is p-distributed for any polynomial

P-

Proof. If A is C-complex, then almost every string x is an /-hard instance for / G Tc-a

Theorem 4.28 If there exists a polynomial p such that for every Turing machine rec­

ognizer MA of the set A, H {MA,2") is p-distributed, then A is <c-hard for TIME(2^°^^).

Proof. Let ^ be a set and p a polynomial such that for every Turing machine recognizer

MA of A, H{MA,2'̂) is p-distributed. Further, let B be a set in TIME(2'"'''') and MB

a Turing recognizer of B, TM^ (z) < for some polynomial q. Define

i+1 times

p{n) = (a) = p o • • • 0 p(n),

where i is the least integer i such that p'(n) > q { n) for all sufficiently large n .

For any MA, maxj^M^(?/) : \ y \ < p(n)} > 2^''^"^, since by the p-distribution of

H{MA,2'^) there must exist a y, p'(n) < |j/| < p(p'(n)), such that T^^iy) > 2l''L It

then follows that for p and every MA,

TMM < 2'"'» < 2'''"» < na.x{TMAv) • Isl <

for all but finitely many x, and we conclude that B<cA.a

Corollary 4.29 There exist <c-complete tally sets in E.

Proof Let A Ç {1}* be a DTIME(2") | l*-complex set in E; Theorem 3.16 ensures

the existence of such sets. For every Turing recognizer MA of A, (l") > 2" for all

b u t f i n i t e l y m a n y n , h e n c e H { MA , 2 ' ^) i s p - d i s t r i b u t e d f o r p { n) = n . •

46

Corollary 4.30 There exist tally sets in TIME(2'"'''') that are <c-complete.

Corollary 4.31 There exist tally sets in DTIME(7i^2") that are <c-hard for NP.

Proof. The set constructed for Corollary 4.29 is in DTIME(n^2"), and this set is

<c-hard for TIME(2'"''«).

A function g is a generator for TIME (2'"'''') if for every polynomial q there exists

a polynomial p such that g{p[ri)] > 2''("). For example, g{n) = 2" is a generator for

TIME(2P''''').

Theorem 4.32 A set A is <c-hard for TIME(2''°'^) if and only if there exists a

polynomial p such that for every Turing machine recognizer M of the set A and some

generator f o/TIME(2''°'^), H{M,f) is p-distributed.

Proof. (<i=) Let / be a generator of TIME(2''°''') and H{MA,f) be p-distributed.

For a set B in TIME(2P°'^) and Mb, TMn{^) < for some polynomial q, define

p(n) = p'+^(/i), where i is the least integer such that f{p'{n)) > 2'^"^ for sufficiently

large n. Such an i exists since / is a generator of TIME(2'"''''). The rest of the proof

proceeds as in Theorem 4.28.

(=*-) Assume false, then (at least) one of two cases must hold. We handle each

case separately.

{Case 1) For some Turing machine MA that accepts A, there does not exist

an infinite set of /-hard instances for any generator / of TIME(2''°'''). Let B be a

DTIME(2")-complex set in TIME(2'"''''); B<cA. Therefore, for every Turing ma­

chine M that recognizes A there exists a Turing machine recognizer MB of B and a

polynomial p such that all but finitely many x

2''' < TMO < p(|x|)max{rM(y) : |y| < p(|x|)}.

Specifically, for MA and sufficiently large x

21^=1 < max{TM^(y) ; |y| < p(|x|)}.

But this implies TMj ,{y) > 2li| for infinitely many y , and we arrive at a contradiction.

47

{Case 2) For every generator / of TIME(2'"''^) and some machinethat accepts

A, there does not exist a polynomial p such that H{MA,f) is p-distributed. Again

letting 5 be a DTIME(2")-complex set in TIME(2'"'''') implies the existence of a

polynomial p such that for every Turing machine M that recognizes A

y°°x e S*max{TM(y) : |yi < > 2l^L

Specifically for MA, this implies

G E"3y((|x| < \y\ < p(|x|)) A TM,(y) > 21''.

But this is merely a statement that is p-distributed, and is a gen­

erator for TIME(2'"''^). Again we arrive at a contradiction.•

Corollary 4.33 A set A is <c-hard for E if and only if there exists a polynomial p

such that for every Turing machine recognizer M of the set A and some generator f

of E, H{M, f) is p-distributed.

Therefore since every <y-completeset for E is <c-complete, it follows that "hard

instances" for these sets must be at most a polynomial "distance" apart.

48

5 RELATIVIZATIONS OF SPECIAL CASES OF THE
P ^ NP QUESTION

5.1 Introduction

The remainder of this dissertation is devoted to relativization results. The study

of relativized complexity classes began with the work of Baker, Gill, and Solovay [6].

They formulated questions similar to the P ^ NP question for mathematical models

of computers that computed with the aid of oracles. The resulting machine classes are

quite similar to the class of Turing machines without an oracle, but they showed that

with this slight altering of the machine model different answers to relativized questions

were possible. In particular, the relativized P ^ NP question has an affirmative answer

for some oracles but a negative answer for other oracles. This suggests that resolving

the original question requires careful analysis of the computational power of machines.

We begin this study by looking at polynomial subclasses of P and NP. Specif­

ically, we look at relativized DTIME(0(n')) / NTIME(0(n')) questions and the

consequences of these results. The proofs of these results are straightforward appli­

cations of the techniques developed by Baker, et al. We present them in some detail,

for in the following chapter we will study relativized questions of a far deeper nature,

and while the techniques employed for these results are the same, the details are often

obscured by technical considerations.

Book [11] showed that P = NP if and only if NTIME(n) Ç P. A consequence

of this is that if DTIME(0(ra)) = NTIME(ra), then P = NP. Of course, it may

be true that P = NP and DTIME(0(n)) ^ NTIME(n). Rosenberg [58] showed

that DTIME(n) ^ DTIME(2n) while Book and Greibach [12], on the other hand,

showed that NTIME(n) = NTIME(0(n)). An obvious corollary of this is that

DTIME(n) ^ NTIME(n). Paul, Pippenger, Szemeredi and Trotter [53] have shown

49

that DTIME(C>(n)) ^ NTIME(re). Therefore, this result is a special Ccise of the un-

proven assertion that P / NP. In this chapter we look at the question of whether such

special cases can be of any help in proving P ^ NP.

Obvious modification of the results of Baker, Gill and Solovay yields a recursive

oracle A such that DTIME(0(n))'^ ^ NTIME(n)'^ and P"^ ^ NP^. We prove the

existence of a recursive oracle B such that DTIME(0(n))'® ^.,NTIME(7i)^ and P^ =

NP^. Our conclusion is that techniques for separating complexity classes which rel-

ativize, e.g., translation results, will not be sufficient for obtaining P NP from the

now known separation of linear time classes. Moreover, we draw the same conclusion

for even more general special Ccises of the P ^ NP question, for we show that for every

z > 1 there exists a recursive oracle B such that for every j < i, DTIME(0(n^))'® ^

NTIME(0(n^))^ and NTIME(0(n))^ Ç DTIME(0(ra'))^ and therefore P^ = NP^.

5.2 Main Results

Does the fact that DTIME(0(n)) ^ NTIME(n) lead us to a proof that P ^ NP?

We construct oracles A and B such that

(i) DTIME(0(n))^ # NTIME(n)^ and P^ # NP-^.

(ii) DTIME(0(n))® ^ NTIME(n)^ and P^ = NP^.

The first task is easy to satisfy.

Theorem 5.1 There is a recursive oracle A such that DTIME(0(n))"^ ^ NTIME(n)'^

and 7^ NP"^.

Proof. The proof follows directly from the proof of Baker, Gill and Solovay that

there exists an oracle A such that P"^ ^ NP'^, and the observation that relativized

NP-complete sets exist in NTIME(n)'^.Q

Definition 5.2 For any oracle X,

K { X) = {0'10"lx : some computation of N P f accepts x in fewer than n steps.}.

50

We will say that a string of the form 0'10"lz is valid (with respect to an oracle

X) if NPi accepts x, with X as the oracle, in less than n steps. Baker, Gill, and

Solovay showed that for any oracle X, K{X) is <^-compIete for NP^, and therefore

px ^ if and only if K{X) e P^.

Definition 5.3 For every integer k > 0 and oracle X, let

L k { X) = { x : there is a y € X such that |y| = |x|* and y e IE'}.

Clearly for any oracle X, Lk{X) £ NTIME(n*)-*; a nondeterministic ti* time-

bounded oracle Turing machine on input x nondeterministically writes a string y of

length |z|*' on its query tape beginning with a "1." It then accepts x if y belongs to

X.

Theorem 5.4 For every integer i there exists an oracle B such that NTIME{n)^ g

DTIME(0(ra'-i))^ and NTIME(n)® Ç DTIME(C»(n'))^.

Proof. Let be an effective enumeration of deterministic 0(n*~') time-

bounded oracle Turing machines. We assume that P;(n) is a strict upper bound

on the l eng th o f any computa t ion o f mach ine Mj. We wi l l bu i ld the o rac le se t B

inductively on the length of the strings in the set. During the construction of B we

will have two different conditions to meet. First, we ensure that K{B)<^B. Sec­

ondly, each machine in the enumeration is run with oracle B in order to

diagonalize out of the class DTIME(0(n'"^))^. The construction of B proceeds in

s t ages . In i t i a l ly , l e t m = 0 and B = 0 .

Stage n. For every w G S-", look at each string of length n of the form O^lClw;.

If it is valid, then place the string into B[n). This is a valid inductive

step in the construction of B. In a computation of length less than re, no string of

length greater or equal to n can be queried. To simulate NPf on input ly for y < n

steps, we need know only which elements of length less than n belong to B. Therefore

B is well defined.

If at this stage n > m, and for the least element k not already examined in the

enumeration of 0[n*~^) time-bounded deterministic oracle Turing machines, Pk[n) <

n' < then run with oracle B[n) on input Xk = 0". Once machine has

51

been examined it will never be examined again. If Mk accepts 0", then add nothing

to B{n). If Mk rejects 0", then add the least string of length n, the first bit being a

"1 , " t ha t Mk does no t que ry t o B{n) . We know such a s t r i ng mus t ex i s t s i nce Mk

can query at most Pk{n) < 2""^ strings. Again, this step is valid since every query

Mk makes to the oracle is of length less than n*, and for all such strings membership

to B has already been decided.

Now set m = 2", thus ensuring that no string is added later to B that may affect

the running of on strings of length n, and go to the next stage.

Claim. NTIME(n)^ Ç DTIME(0(n'))^.

Proof of claim. Let L 6 NTIME(n)'®, therefore L = L[NP^) for some non-

deterministic oracle Turing machine NP^ with time bound Pz(n) = 0(n). The

function fz(x) = is computable in time C>(|x|). So, x € L if and

only if N P f accepts x in P z{ \ x \) steps if and only if = f [y) G B , where

y — But, f{ y) = f { f z{ x)) is computable in time DTIME(0(|i|*)), and

hence L 6DTIME(0(7i'))^.

Claim. NTIME(n)^ g DTIME(0(n'-i))^.

Proof of claim. Li{B) € NTIME(n)®. By construction, for each j , M f rejects

Xj i f and only if some string of length |xj| beginning with a "1" belongs to B. That

is, Xj 0 L{Mf) if and only if Xj G Li{B). Therefore Li{B) does not belong to

DTIME(0(a'-i))^.o

Corollary 5.5 There is a recursive oracle B such that DTIME(0(n))'® ^ NTIME{n)^

and P® = NP®.

Proof. Let i = 2 and construct the oracle 5 as in Theorem 5.4. Since K{B) is <^-

complete for NP®, it is only necessary to show that K{B) G P^. For this we only

need to show that

O'KXlx eK{B) O'Kyixl"'"" G 5, where n = |0'l(y'lx|.

Let w G K [B) , then w is of the form 0'10'lx. At stage n = |w|, w is found to be a

valid encoding and O'lO^ lxl"^"" is placed in B. Conversely, note that the only strings

in B that begin with a "0" are perfect squares, and a string w = O'ltVlxl"^"" is in

B , | t y | = n ^ , o n l y i f O ' l O ^ l x i s a v a l i d e n c o d i n g . T h a t i s , o n l y i f Q ' l O ^ l x G K { B] . •

52

We have seen from Corollary 5.5 that there exist relativized worlds where the

Paul, Pippenger, Szemerédi and Trotter result is expected and yet P = NP. Moreover,

even more generalized results can be expected in these worlds.

Corollary 5.6 For every integer z > 1 there exists a recursive oracle B such that for

all j < i, DTIME{0(nO)^ ^ NTIME(0(n^))^ and NTIME(n)^ Ç DTIME(0(7i''))^

a n d t h e r e f o r e P ^ = N P ^ .

Proof The proof follows directly from Theorem 5.4 with the observation that Li{B) 0

DTIME(0(a^))^ for every j < z.q

Theorem 5.7 For every positive integer i there exists a recursive oracle C such that

DTIME(n')'^ ^ NTIME(n')^ and DTIME(0{n'))^ = NTIME(0(7i'))^.

Proof. We assume an effective enumeration of deterministic oracle Turing machines

such that runs in time re*'. Thus for each natural number k, is an

effective enumeration of the set of all n'^ time-bounded deterministic oracle Turing

machines. The construction of the oracle C proceeds in stages. Initially let C = 0.

Stage n. For each x E E-", look at all strings of length n of the form 0^10^Ix.

If such a string is valid, then place it into C(n). Now, focus attention on the least

element in the enumeration of deterministic oracle Turing machines that has

not already been examined. If there exists an no such that »Q,= n, then run

w i t h o r a c l e 0 (n) o n i n p u t 0 " " . I f a c c e p t s 0 " " , t h e n a d d n o t h i n g m o r e t o C (n) .

If rejects 0"", then add the legist string of length n, the first bit being a "1,"

that does not query to C (n) . We now go to the next stage. The machine

so examined will never be examined again. If no integer no can be found, then

remains unexamined, we add nothing more to C(n), and we go to the next stage.

First note that for all natural numbers j, k, is eventually examined. Sec­

ondly, at each stage n only strings of length n are placed into the oracle. Since all

machines run prior to stage n can only query strings of length less than n, no string

placed into the oracle at stage n will have any effect on previously run machines.

Thus, we may take C = U^jC(n).

Claim. For every positive integer i, NTIME{0(n'))^ Ç DTIME(0(n'))^.

Proof of claim. Let L G NTIME(0(n'))*^. Then L = L[NP^) for some non-

deterministic polynomial time-bounded oracle Turing machine NP,. with time-bound

53

P z{ n) = 0 { n *) . The function f z{ x) = is computable in time 0(|i|'). So

X € L if and only if NP^ accepts x in Pzdij) steps if and only if /z(x) = 6

C. Hence, L E DTIME(0(n'))^.

Claim. For every positive integer i, NTIME(n')^ g DTIME(n*)^.

Proof of claim. Li{C) £ NTIME(n*)^. By construction, for every natural number

y there is a stage n such that rejects 0" if and only if some string, beginning

with a "1," of length n' belongs to C. But then 0" 6 and therefore i/, (C) ^

DTlME{n ' f . a

Theorem 5.8 There is a recursive oracle D such that for every positive integer i,

DTIME(0{n'))^ ^ NTIME(0(n'))^ and NTIME(0(n'))^ Ç DTIME(C>(n=''))^.

Proof. We assume an effective enumeration of deterministic oracle Turing machines

such that M{j^k,c) runs in time c7i* + c. Thus for each natural number k,

is an effective enumeration of the set of all time-bounded deterministic oracle

Turing machines. The construction of D proceeds in stages. Initially m = 0 and

D = 0.

Stage n. For every x 6 E-", look at each string of length n of the form O^lO^li. If

such a string is valid, then place into D{n). If at this stage n> m, then

focus attention on the least machine M{ j _ k , c) not yet examined in our enumeration. If

there exists an no such that = n and cn + c < < 2"~^, then run M(^j^k,c) with

oracle D{n) on input 0"". If accepts 0"", then add nothing more to D{n). If

M(j^k,c) rejects 0"", then add the least string of length n, the first bit being a "1," that

M{j^k,c) does not query to D{n). Set m = 2" and go the next stage. If no suitable

n o c a n b e f o u n d , t h e n M i ^ j ^ k . c) r e m a i n s u n e x a m i n e d , w e a d d n o t h i n g m o r e t o D { n) , m

remains unchanged, and we go to the next stage.

The details of the remainder of the proof are handled in a fashion similar to the

previous theorems and are omitted. •

We close this chapter with one final result. Baker, Gill, and Solovay constructed

an oracle E such that = NP^. This oracle results in a collapsing of the linear time-

bounded classes. We present the proof of this result here for the sake of completeness.

Theorem 5.9 There is an oracle E such that DTIME(0(n))^ = NTIME(n)^ and
pE ̂

54

Proof. We construct the oracle E sucht that E — K[E). Again this is done in stages

with E initially empty. At each stage n we place all valid strings of the form O'lO^ lx

into E{n). E = U^ij5'(n), and E = K[E) by definition.

Consider some L € NTIME(fz)^. We want to show that L is reducible to E

in linea r t ime . L i s a ccep t ed by some nonde t e rmin i s t i c o r ac l e Tu r ing mach ine NPi

in time bounded by p,(n) = 0{n). The function /,(i) = is computable

in time 0(|x|). So, r 6 Z, if and only if NPf' accepts x within p,(|x|) steps if and

only if f{x) e K{E). But, K{E) = E, E e DTIME(0(n))^, and NTIME(7i)^ Ç

DTIME(0(n))^.n

55

6 RELATIVIZATIONS OF UNAMBIGUOUS AND
RANDOM POLYNOMIAL TIME CLASSES

6.1 Introduction

Valiant [67] introduced the notion of an unambiguous Turing machine — a nonde-

terministic Turing machine that has at most one accepting computation for any input.

Let UP Ç NP be the collection of languages accepted by unambiguous Turing machines

in polynomial time. UP^ is the relativization of this class with respect to some oracle

X. Rackoff [56] showed that there is a recursive oracle A such that P"^ ^ NP'^ = UP^

and there is a recursive oracle B such that P® = UP^ ^ NP®. A natural question

that arises is: Does there exist an oracle C such that P^ ^ UP^ ^ NP^? We answer

this in the affirmative.

The proof of the result for UP involves a combinatorial argument for which we

have developed a pebbling game. This technique is of interest in itself, and a natural

generalization of this game is used in solving an open problem of Book, Long and

Selman [13].

The question of whether UP = NP is closely related to the question of whether

there exist NP-hard public-key cryptosystems (PKCS). Even, Selman, and Yacobi [22]

have shown that if promise problems associated with such systems do not exist then

UP ^ NP. Since the promise problem for a PKCS and sets in UP are very similar,

and any algorithm solving the cracking problem of the PKCS should need more than

polynomial time for all sufficiently large codes, we in addition want P^-immune sets

to exist in UP^.

The class RP Ç NP, the common class of problems having efficient randomized

algorithms, was defined by Adleman and Manders [l]. A set vl belongs to RP if and

only if there exists a nondeterministic polynomial-time bounded Turing machine M

56

such that A — L [M) and for each x £ A , M accepts x with probability at least 1/2.

Rackoff showed, analogous to the results for UP, that there is an oracle D such that

^ RP^ = NP^, and there is an oracle E such that P^ = RP^ ^ NP^. Again the

question arises: Is there an oracle F such that P^ ^ RP^ ^ NP'^? Such an oracle

is provided by Sipser's construction [65] of a recursive X such that RP"^ contains no

complete set.

A secure cryptosystem should not be susceptible to cryptanalytic attack by ef­

ficient randomized algorithims. It should not even be "crackable" by an efficient

randomized algorithm infinitely often. Hence, we would like to know whether a lan­

guage in UP exists which is RP-immune. In fact, we will show that both inequali­

ties in P^ ^ RP^ ^ UP^ are strong for some oracle F. Therefore, for this oracle

P^ / RP^ ^ NP^ and both inequalities are strong.

Rackoff's results, and ours, taken together, indicate that it will be hard to prove

P ^ UP 7^ NP and P ^ RP ^ NP. Intuitively, one believes P ^ UP / NP and

P ^ RP # NP. Since existence of an oracle X such that P^ # UP^ ^ NP^ is a

necessary condition for P ^ UP ^ NP, the separation results obtained here support

our intuition about the non-relativized world. The same can be said for the P ^ RP

7^ NP question.

6.2 Main Results

Let UP Ç NP be the collection of languages accepted by unambiguous Turing

machines in polynomial time. A characterization of UP is that L belongs to UP

if and only if there is some polynomial-time computable predicate P[x, y) and con­

s t a n t k s u c h t h a t L = { x : t h e r e e x i s t s a y s u c h t h a t | y | = a n d P [x , y)) — { x :

there is a unique y such that [yl = |s|* and P{x,y)}. RP Ç NP is the collection of

languages L such that for some polynomial time-computable predicate P[x,y) and a

constant k, L = {x ; there exists a y such that [yl = and P{x,y)} = {x : there

e x i s t a t l e a s t v a l u e s o f y s u c h t h a t \ y \ = | x p a n d P { x , y) } .

We say that a nondeterministic Turing machine M is unambiguous on if on

each accepted input of length n or less, M has a unique accepting path. Conversely, a

nondeterministic Turing machine M is ambiguous on if on some accepted input

57

of length n or less, M has more than one accepting path.

Before we state and prove our theorems we must first introduce some terminology

and state a combinatorial lemma. A board is an m x m matrix over {0,1}. A square

of the board is an element, 6,j, of the matrix, where i,j < m. There are squares

for every m x m board.

We describe a very simple pebbling game. Given a pebble, we may place it on

any square of the board that does not already have a pebble on it. We denote a

pebble on a square by a "1." The board is covered if the following two conditions are

met for all i <m and all j < m:

(1) bii = 1.

(2) bij = 0 —> bji = 1.

The object of the game is to cover the board.

Lemma 6.1 At least [m^/2] pebbles are necessary to cover an m x m board.

The proof is trivial.

Definition 6.2 For any oracle X,

L o { X) = {0" : there exists a unique y 6 X such that \ y \ = n and

n is odd},

L i (X) = {0" : there is a y 6 X such that |yi = n and n is even}.

Theorem 6.3 There is a recursive oracle A such that ^ ^ NP'^.

Proof. For every oracle X, P^ Ç UP^ Ç NP^. Therefore, it is sufficient to construct

an oracle A containing at most one string of length n, for each odd n, such that

Lo(^) i P-^ and Li{A) ^ UP'^. (Note that Lo[A) 6 UP^ and Li[A) G NP^.) We

build A in stages. Initially m = 0 and A = 0.

Stage i. If i is odd, we look at the least element j not already examined in the

enumeration of polynomial time-bounded deterministic oracle Turing machines. Once

a machine Pj has been examined it will never be examined again. Machine Pj has

a polynomial bound Pi[n). Pick an odd integer n, n > m, so large that Pj[n) < 2".

R u n P j w i t h o r a c l e A { i) o n i n p u t X j = 0 " . I f a c c e p t s 0 " , a d d n o t h i n g t o A { i)

58

at this stage. Otherwise, if rejects 0", add to A the least string of length n not

queried during the computation of on input 0". (We know such a string exists.)

We have thus added a single string of odd length to A. Finally, set m = 2" and go to

the next stage.

If i is even we look at the least element k not already examined in the enumeration

of polynomial time-bounded nondeterministic oracle Turing.machines. Again, once

machine NPk is examined it will never be examined again. Machine NPk has a

polynomial bound Pk{n). Pick an even integer n, n > m, so large that Pk{n) <

If NP^^*^ is ambiguous on we add nothing to A{i) at this stage, set m = 2"', and

go to the next stage.

If is unambiguous on S-", run NP^^'^ on input Xk — 0". If NP^^^^ accepts

0", add nothing to A [i) at this stage. If rejects 0" then add one or more strings

of length n to such that NPk either still rejects 0", or accepts 0" ambiguously.

We will show that such strings can always be found. Now we set m = 2" and go to

the next stage.

Claim. A nonempty subset % Ç E" exists such that either rejects 0"

or accepts 0" ambiguously.

Proof of claim. We can, by exhaustive search, determine whether there exists a

nonempty X Ç S" such that rejects 0". If we Snd such an X, then we are

finished.

If such a subset cannot be found, then it must be the ceise that for all nonempty

subsets X of E", accepts 0". In particular, NP^^*^ does not accept 0", but

for each string x 6 S", does accept 0". An accepting path of

on input 0" is called a critical path for x. Note that every string x of length n has

a critical path. If for some x 6 S" there exists more than one critical path, then

j^pA(t)u{x} .g ambiguous on 0". In this case take X = {z} to settle our claim. Hence,

we assume that there exists exactly one critical path for each string x. Therefore,

there exist at most 2" critical paths.

Denote cr [x) as the set of queries of length n made in the critical path for x .

Clearly x 6 cr(i). Any change in an answer to a query in cr[x) may affect the

resulting computation. If we place a string E Z" into the oracle and y ^ cr(i), then

the addition of y to the oracle is oblivious on the critical path for x. Therefore, if we

59

can find strings a:,t/ € E" such that x ^ cr(y) and y ^ c r { x) , then by placing both x

and y into A[i) there will exist two distinct computation paths that accept 0". We

show that such strings can be found by reducing this problem to the board covering

game described earlier.

Fix an ordering, zi, 2:2,^3, - - -, of the strings of S". The success, or failure, in

finding strings r, ^ cr(zjj and Xj ^ cr{xi) is equivalent to. determining whether a

2" X 2" board can be covered with a given number of pebbles. The "pebbles" in this

game are the queries of length n made in each critical path of a string in S", i.e.,

bij = 1 -O- Xj G cr[xi). If the board is covered then for each Xj ^ cr(xj) (6,y = 0) we

have Xi 6 cr[xj) {bji = 1). If the board is not covered, either for some i, x,- ^ cr(z,)

{ b i t = 0) , w h i c h c a n n e v e r h a p p e n , o r f o r s o m e i a n d j , X j ^ c r (x ,) a n d ^ c r { x j)

{bij = 0 and bji = 0). If this is the case, then we have found suitable strings.

Each critical path is of depth at most pkip). Since there exist at most 2" critical

paths, there are at most pjt(n)2'* pebbles, and since

pjt(n)2" < 2"-^2" = 2^"-\

it follows from Lemma 6.1 that we cannot cover the board. Therefore, there must be

strings i,- and Xj such that Xj ^ cr(x,) and z,- ^ cr{xj), and this proves our claim.

To complete the proof of the theorem we need only to show LO{A) ̂ and

LI{A) ̂ UP'^. LQ{A) ̂ P'^ by the usual argument {cf. [6]). Suppose LI{A) £ UP"^,

then LI{A) is accepted by some unambiguous NPi. At some stage k, and for some

integer n, NPi is ruii with oracle ^(A:). By assumption is unambiguous on 2-".

But 0" 6 Li {A) if and only if 0" is rejected by N P f ^ ' ' ^ or 0" is accepted ambiguously.

Since we assumed NPi is unambiguous, we have a contradiction; LI{A) ̂ UP'^.n

Theorem 6.4 There exists a recursive oracle B and a language L{B) such that L{B)

is -immune and L{B) E UP^.

Proof. The construction is basically the same as the one given in the proof of the

Immunity theorem in [61]. However, our theorem does not follow from the Immunity

theorem, and so we give a straightforward proof here.

We build the oracle B in stages. T { i) is a finite set of indices at stage i . Initially

T{i) = B{i) = 0 and m = 0.

60

Stage i . Let T ' [i + 1) = T [i) U {%}. Choose an integer n > m such that >

+ j)- Check whether there exists an index j € T'{i + 1) such that

0 " 6 I f a n i n d e x e x i s t s , t a k e t h e s m a l l e s t s u c h i n d e x j , d e f i n e T { i + l) =

T ' { i + 1) - { j } , m = 2", add nothing to B at this stage and go to the next stage. If

such an index does not exist, choose a string of length n that is not queried by any

of the machines j G T'[i + 1), on input 0". (We have chosen a sufficiently large

n so that such a string does exist.) Add this string to B, define T[i + 1) = T\i + 1),

m = 2" and go to the next stage. Note for each n, B contains at most one string of

length n.

Let L [B) = {0" : there exists a . y £ B and |y| = re}. Clearly L { B) € UP^. We

have to show that L{B) is P^-immune. First, ||X(B)|| = oc. Suppose L{B) were

finite; then B would also be finite. Therefore, after some stage z'o, we must always

have, in stage i > io, the case that 0" G L{Pf) for a given n and some j G T'(i + 1).

T h e r e f o r e j i s r e m o v e d f r o m T ' { i + 1) . T h i s m e a n s t h a t , f r o m s t a g e i o o n , a l l T { i)

have a constant length. Therefore only a finite number of sets L{Pf) (those whose

indices are never removed from any T{i)) do not contain some element 0" for some

n. But, there are infinitely many j with L{Pf) = 0, and so we have a contradiction,

and L{B) must be infinite.

Now we show that no infinite subset S of L { B) is equal to some L { P f) . Suppose

S = L{Pf), S Ç L{B) and S infinite. If j is removed from T'{i + l) at some stage

i, then 0" E L{P?^*^) and 0" G L{P^). Therefore, 0" G 5 and 0" G L{B). But if

0 " G L { P f ^ ^ ^) a t s t a g e i , w e a d d n o s t r i n g s o f l e n g t h n t o J 5 , t h e r e f o r e 0 " ^ L { B) .

This is a contradiction, so j must stay in T[k) for all stages k > j. Therefore for all

but a finite number of 0" chosen, 0" ^ L{Pf). But in L{B) we only have elements

X, where x = 0" for some chosen n, and by assumption, L[P^) Ç L[B). Therefore

L{Pf) must be finite. This is also a contradiction.•

Corollary 6.5 There exist a recursive oracle C and a language L{C) such that P^ ^

UpC ^ 2(C) is -immune, and L{C) G UP^.

Proof. For the proof we only need to replace the odd stages in the proof of

Theorem 6.3 with the corresponding stages in the proof of Theorem 6.4, mutatis

mutandis.Q

61

Let {Prj}jçji be a recursive enumeration of polynomial time-bounded oracle Tur-

in g machines that compute predicates of two variables. We define for any oracle X,

each A; € N, and for each Prf, j 6 N, the following language:

L { P r f , k) = { x : there exists a y such that \ y \ = |x|* and P r f [x , y) } .

(P r f , k) is random if and only if L{Prf,k) = {x : there exist ' distinct y 6

X such that |y| = |z|^ and Pr^{x,y)}. Note that L 6 RP^ if and only if there

exists a j and k such that {Prf,k) is random and L = L{Prf ,k). We assume that

(|z| + \y\y + j is the time bound of Prj on input {x,y). Thus, on input (x,y), where

|y| =]i|*, Prj runs for at most + j steps.

Theorem 6.6 There exist a recursive oracle D and a language L[D) such that L{D) G

U P ^ a n d L (n) i R P ^ .

Proof. Let L{X) = {0" : there exists a y E X such that |y| = n}. To show that

L{X) ^ RP^, it is sufficient to show:

yj, k e N { P r f , k) random L { X) ̂ L { P r f , k) .

We build the oracle D in stages. Initially £> = 0 and m = 0.

Stage i. We look at {Prf^'\k) where { j , k) = i . Choose an integer n > m such

that 2""' > + j. Determine whether [Prf^*\k) is random on E-". If it is not

random, set m = 2", add nothing to D at this stage and go to the next stage. If it is

random, and 0" 6 L{Prf^^\k), set m = 2", add nothing to D at this stage and go to

the next stage.

If 0" ^ L { P r f ^ ' \ k) , we must find a string x , |x| = n, such that 0" is not accepted

by {Prf^*^^^'^\k) with probability > 1/2. Such a string exists. Add x to the oracle,

set m = 2" and go to the next stage.

Claim. If 0" ^ L{Prf^^\k), a string a: G E" exists such that 0" is not accepted

by A;) with probability >1/2.

Proof of claim. For each y, |y| = n*, a (deterministic) path of Prf^'^ on (0",y)

leads to a reject state. There are 2"* such paths; along each path there may be oracle

queries of the form "x G D?" where |x| = n, that are answered "no." If adding any

X to the oracle causes the machine to accept 0" with probability > 1/2, then there

62

are paths such that the machine queried the oracle about i on these paths;

the corresponding changes in the responses caused the machine to accept. We say

these are critical queries for x. For the 2" strings of length n we have at least 2"2"*~^

critical queries. The length of any path is limited by n''' + j. The total number of

possible critical queries is (r*' +y)2"* < 2"2"*~^ A string x, |x| = n, such that 0" is

not accepted by with probability >1/2 must exist.

From the construction it follows that L { D) ^ RP^. L { D) G UP^ since for every

length n there is at most one string of length n in D.a

Corollary 6.7 There exists a recursive oracle E such that P^ ^ RP^ ^ UP^, RP^

contains a -immune set and UP^ contains an RP^-zmmurae set.

Proof. Let Lo{X) and L i { X) be as defined in Definition 6.2. We build E in stages.

At the odd stages we "slowly diagonalize" Lo{E) out of P^. That is, we proceed as in

the proof of Theorem 6.4, but instead of adding one string of length n to the oracle,

add 2"~^ strings to the oracle. Hence, Lo{E) G RP^. In the even stages, we slow

down the construction in the proof of Theorem 6.6 so that Li[E) is RP^-immune.o

Balcazar and Russo [7] contain a variety of relativization results of probabilis­

tic complexity classes, and some of these results overlap with Corollary 6.7. They

independently prove the existence of a recursive oracle EQ such that RP^" contains

a P-^'-immune set, and they prove the existence of a recursive oracle Ei such that

NP^' n CO — RP^' contains an RP^'-immune set.

The following corollary shows that each of the classes P, RP, UP and NP can be

made distinct. Its proof is a simple extension of Corollary 6.7. Rather than diagonalize

in two stages, we diagonalize in three stages, and in the third stage diagonalize NP

out of UP via the techniques used in Theorem 6.3.

Corollary 6.8 There exists a recursive oracle F such that P^ ^ RP^ ^ UP^ ^ NP^,

RP^ contains a -immune set and UP^ contains an -immune set.

We raise the following open questions:

(1) Is there an oracle X such that NP^ contains UP^-immune sets?

(2) Are there an oracle X and a language L { X) such that L { X) G RP^ and

L { X) i U P ^ ?

63

Now we will apply our combinatorial technique to solve an open problem raised

by Book, Long, and Selman [13] which studies properties of restricted forms of rela-

tivizations of NP.

Definition 6.9 Let M he an oracle machine. For any set X and any input string x

of M, let QA{M, X,x) = {q : in some accepting computation of M relative to X on

input X, the oracle is queried about q}.

Definition 6.10 Let X be a set. NP.ACC.DEP^ is the class of languages L such

that L G NP^ 15 witnessed by a machine M such thai for some polynomial q, and for

a l l x , \ \ Q A { M , X , x) \ \ < q [\ x \) .

Obviously for all sets X we have UP^ Ç NP.ACC.DEP^ Ç NP^.

Theorem 6.11 There is a recursive oracle F such that P^ ^ UP^ ^ NP.ACC.DEP^.

Theorem 6.11 follows from a simple modification of the proof of Theorem 6.3.

Namely, we may ensure that in the even stages of the proof we always add at most

two strings of any even length to the oracle. Hence Li{F) € NP.ACC.DEP^.

Book, Long and Selman raised and left open the question of whether there exists

an oracle X such that NP.ACC.DEP^ C NP^. This is so, and to prove this fact we

first describe a generalization of the pebbling game defined earlier.

A board is a c-dimensional m-element matrix [i.e. m entries in each dimension)

over {0,1}, where c and m are positive integers. A square of the board is an ele­

ment, of the matrix, where ii, •• • ,ic<m. A c-dimensional m-element board

contains m" squares. Let I = {(îi,---,2c) : ù,- ••,IC < m} be the set of all ordered

c-tuples. A c-tuple is denoted by t Let ij € Tif and only if r= (I'l, • • •, ty, • • •,ic), i.e.,

i j i s a c o m p o n e n t o f t h e c - t u p l e Ï . W e s a y t h a t T i s p a i r w i s e d i s j o i n t i f f o r a l l i j , 6 T ,

j k i m p l i e s i j ^ i k .

The pebbling game is played as described earlier. Namely, given a pebble, denoted

by a "1," we may place it on any square not already covered by a pebble. The object

of the game is to cover the board with a given number of pebbles. The board is

covered if the following conditions hold:

(1) 6r = 1 for all i that are not pairwise disjoint.

(2) For all pairwise disjoint T there is a permutation tt such that = 1.

64

Lemma 6.12 + r r f — m!/(m — c)! pebbles are needed to cover a c-dimensional

m-element board.

Proof. Let A = {?: Tis not pairwise disjoint}. If the board is covered, then for each

re A, 6r = 1- Also, if the board is covered, then for each t 6 / - A, bj^^t) = 1 for some

permutation tt. There are c! permutations for each t, and ||J - A|| = m!/(m — c)!.

Therefore, the total number of pebbles needed to cover the board is

ml g ml

(m — c)!c! ^ (m - c)!

which proves our claim.•

Theorem 6.13 There exists a recursive oracle G such that NP.ACC.DEP^ ^ NP^.

Proof. Let L{G) = {0" : there exists a . y , y £ G and |y| = n } . G is constructed in

s t a g e s s u c h t h a t L [N P f '] ^ L [G) f o r a l l L { N P f) 6 N P . A C C . D E P ^ . I n i t i a l l y m = 0

and G = 0.

Stage i = {j,k). We examine (with polynomial time bound Pj{ n)) and

polynomial P k { n) — n ' ' k . Choose an integer n , n > m , so large that P k { n) <

2 " / 3 _ 1 and Pj{n) < 2". At this stage we will ensure that either L{NPf) ^ L[G) or

||Q^(iVP,-,C?,0")|| is not bounded by pk[n). Run NPf^^ on If accepts

any string z, | x j < n, and \ \QA{NPj , G(z),x)|| > Pfc(lx |) , then we add nothing to G(i)

at this stage, set m = 2", and go to the next stage.

If on each accepted string x , |x| < n, ||Q.A(7VPj-,G(z),x)|| < p k [\ x \) , then run

NP^^*^ on input 0". If NP^^*^ accepts 0", then we add nothing to G(z), set m = 2"

and go to the next stage.

If rejects 0", then we add X Ç E" to G{ i) such that either still

rejects 0" or \ \QA{NPj ,G{ i) U X,0")1| > Pk{n) . We will show that such strings can

always be found. Now set m = 2" and go to the next stage.

Claim. A non-empty subset % Ç E" exists such that either rejects 0"

or accepts 0'' but \ \QA{NPj ,G{ i) U X,0")|| > p k { n) .

Proof of claim. We can, by exhaustive search, determine whether there exists

X Ç E" such that rejects 0". If we find such an X, then we are finished.

65

If such a subset cannot be found, then it must be the case that for all nonempty

subsets X of S", accepts 0". In particular, does not accept 0", but

for each string x 6 E", does accept 0". QA[NPj , G(z)u{i},0") is the set of

queries made on the accepting paths of NPj with the oracle G(t)u{x}. In this context

we denote this set QA{x). To every string x of length n there exists a non-empty set

QA{x). Obviously, there exist no more than 2" such sets. If ||Q^(z)|| > Pk(n) for

some X 6 E", then take X = {x}, and the claim is proved. Hence, we can assume

without loss of generality that ||Q.i4(i)|| < Pk(n} for each x € 2".

Clearly x G Q A (x) . A n y change in an answer to a query in QA(x) may affect the

resulting computation. If y ^ Qyl(z) and y is placed in the oracle, then the addition of

y to the oracle is oblivious on accepting computation paths of Therefore,

if we can find a set of strings X in S" such that ||X|| = Pk{n) + 1 and for all x , y G X ,

X ^ y implies x ^ QA{y), then \\QA{NPj,G{i) U %,0")|| > pjt(n). We show that

such strings can be found by reducing this problem to the generalized board covering

game.

Fix an ordering, xi,x2,x3,- - of the strings of S". Let us see that the success,

or failure, in finding a suitable X is equivalent to determining whether a (pfc(n) + 1)-

dimensional 2"-element board can be covered with a given number of pebbles. We

will pebble the board in the following way: We place a pebble on every i G I which is

not pairwise disjoint, because Xr G QA{xr) for each Xr G S". Now let us assume that

Xr E QA[xg), r ^ s. Then, for each maximal subset 5 of 7 whose elements contain

r and s, are pairwise disjoint and identical up to permutation, we choose one of the

elements of S, say T, and set 6r = 1.

If the board is covered, then for each Tc / there exists a permutation tt such that

= 1. But if b,r(.-} = 1, then it must be the case that for some r , s E i , X r G Q A { x i ,) .

Therefore, if the board is covered, then a subset X, eis described above, does not exist.

Conversly, if the board is not covered, then there exists a pairwise disjoint Tsuch that

6,- = 0 and for all permutations, TT, 6,r(0 = 0. For such an Ïto exist it must be the case

that for all r,s Ei, r ^ s,vfe have Xr ^ QA{xs). The set X = {xr : r E is a suitable

set.

66

Now we count the pebbles on the board. There are

on)

(2"-pjt(ra) - 1)!

pebbles on the board for those elements in / that are not pairwise disjoint. Further­

more, since there are at most 2" sets QA{x), and since for every x, ||Q^(x)|| < pfc(n),

it follows that there exist at most pfc(n)2" queries Xr E QA{xs), r ^ s. For each such

query, the number of pebbles placed on the board is the number of different subsets

5 of / as given above. There are

2" - 2

Pk{n) - 1

such subsets. Hence there are at most

(2»)«(»)+i _ 2"!/(2" - p.(„) - 1)1 + pi(n)2" f j

pebbles on the board.

By Lemma 6.12, it is sufficient to show that this number is smaller than

\Pk{n) + l) (2" - pk{n) - 1)!

But this is equivalent to

Pl{'")[Pk{n] + I) < 2" - 1.

Since we have chosen Pk{n) < 2"/® — 1, this inequality is fulfilled. So it follows that

the board cannot be covered. There must be a suitable subset X Ç E" such that

Xr ^ QA[xs) for all Xg,Xr E X, r ^ s, and this proves the claim.

It follows from the usual argument that L { G) ^ NP.ACC.DEP*^ and L { G) G

NP^.a

Corollary 6.14 There is a recursive oracle H such thatP^ ^ UP^ ^ NP.ACC.DEP^

^ NP^, and the first inequality is strong.

We do not know whether Corollary 6.14 can be strengthed so that all inequalities

are strong.

67

6.3 On the Existence of One-way Functions

Here we wish to make some remarks about the existence of one-way functions in

a relativized setting. Recall that a one-way function is a 1 — 1, honest function that is

computable in polynomial time but whose inverse is not polynomial time computable.

One-way functions are known to play a critical role in complexity issues surrounding

public-key cryptosystems. It is observed in Grollmann and Selman [32] that one-way

functions exist if and only if P ^ UP, so the results of Rackoff, as well as here, show

that there do exist relativized worlds in which one-way functions exist.

It is also of interest to know whether there exist one-way functions with range

belonging to P. Indeed, Grollmann and Selman show that this existence question

is equivalent to whether P ^ UP n co — UP. Using the techniques developed in

the previous section we prove the existence of a recursive oracle A such that P'^ ^

UP'^ n CO — UP"^ ^ NP'^, and therefore, relative to oracle A, there exist one-way

functions with easy to recognize range.

Combining results of Baker, Gill and Solovay [6] and Rackoff [56], we have the

following theorem.

Theorem 6.15 There exists a recursive oracle A such that ^ UP'^ = NP"^ and

NP"^ IS closed under complementation.

Proof. Recall that for any oracle X, the language K{X) = {O'lO^ lx : some computa­

tion of NP^ accepts x in fewer than j steps} is many-one complete for NP^. Clearly,

NP"* is closed under complementation if and only if K{X) 6 NP^, where K[X) is the

c o m p l e m e n t o f K { X) . D e f i n e L (A) = { 0 " : t h e r e e x i s t s a y E A s u c h t h a t | y | = n } .

It is sufficient to construct an oracle A such that:

(i) L { A) e NP^ - P-^.

(ii) w € K { A) if and only if there exists a string u, [t;[= |w[— 1, such that Ovw 6 A.

(iii) w € K { A) if and only if there exists a string v, |i;| = [w[— 1, such that \vw 6 A.

We build the oracle A in stages. At stage n we decide the membership in A of

all strings of length n. During the construction some strings are reserved for A, i.e.,

designated as nonmembers of A. Initially, A = 0.

68

Stage n = 2m. For every string w of length m of the form O^lO^lz such that

accepts X in less than y steps, find the least string uq of length m, beginning

with a "0," such that VQW is not reserved for A and place VQW into A[n). For every

string w of length m of the form such that does not accept x in less

than y steps, find the least string V\ of length m, beginning with a "1," such that viw

is not reserved for A and place viw into A[n). Go to the next stage.

Stage n = 2m + 1. We look at the legist element j not already examined in the

enumeration {i^} of polynomial time-bounded deterministic oracle Turing machines.

Once a machine Pj has been successfully diagonalized, it will never be examined again.

If any string of length > n has been reserved for A, or if Pj{n) > then add no

elements to A at this stage. Otherwise, run on input 0" and reserve for A all

strings of length > n queried during this computation. If Pj accepts 0", then add

no element to A. If Pj rejects 0", then add to A{n) the least string of length n not

queried. Go to the next stage.

First, note that every machine Pj in our enumeration of polynomial time-bounded

deterministic oracle Turing machines is examined at some stage, and this guarantees

that L[A) ^ At any odd stage 2m + 1, at most Pi{n) < 2™'i strings are queried,

so fewer than 2™"i strings of length 2m can be reserved for A at odd stages before

stage 2m. Therefore, every string v of length m is prefixed by at least one string of

equal length that begins with a "0," and one string of equal length that begins with

a "1," that is never reserved for A. By construction, w 6 K[A) if and only if there

exists a unique string v such that Ovw € A and |0%;w| = 2|it;|. Therefore, K{A) E UP'^

a n d N P ' ^ = U P ^ . S i m i l a r l y , w € K { A) i f a n d o n l y i f t h e r e e x i s t s a u n i q u e s t r i n g v

s u c h t h a t I v w 6 A , | l v w | = 2 \ v } \ , a n d K { A) G U P ' ^ = N P ^ . •

Corollary 6.16 There exists a recursive oracle A such that P'^ ^ UP'^ n co — UP^.

While the results of Theorem 6.15, Corollary 6.16 provide us with the desired

one-way functions, they do so in a relativized world that seems counterintuitive. In­

tuitively, one believes that P ^ UP ^ NP. The results of the previous section support

this intuition. Do our desired one-way functions exist in such a relativized world?

The answer is provided in the following theorem.

69

Theorem 6.17 There exists a recursive oracle B such that ^ UP'® n co — UP'® ^

NP*.

Proof. For any oracle X, let

L o { X) = { x : \ x \ is odd and there is a string Oy e X with |0y| = |i|},

Li{X) = {x : |x| is even and there \s a. y € X with |y| = |x|}.

We construct an oracle B such that L o { B) 6 UP® n co - UP® - P^ and L i { B) €

N P'® - UP'®. To force Lo{B) 6 UP® n co — UP® we require that for every odd n there

is exactly one string Oy of length re in S if and only if there is no string ly of length

n in B. Therefore, Lo{B) = {x : |i| is even, or |i| is odd and there is a string ly E B

with |ly| = |x|}. If we require that for every odd n there is exactly one string ly of

length n in if and only if there is no string Oy of length n in B, then Lo{B) G UP®

also. We build B in stages. Initially m = 0 and B = 0.

Stage i. If i is odd we look at the least element k not already examined in the

enumeration {P, } of polynomial time-bounded deterministic oracle Turing machines.

Once a machine Pk has been successfully diagonalized, it will never be examined again.

Pick an odd integer n, n > m, so large that Pk{n) < 2"~^ For all odd integers g,

m < q < n and n < q < 2", place 1' into B{i). Run on input Xk = 0". If

Pk accepts 0", then add to B the least string of length n beginning with a "1" not

queried during the computation of f on input 0". Otherwise, add the least string

of length n beginning with a "0" not queried during the computation of on input

0". We have thus added, for each odd integer g, m < g < 2", a single string of length

q. Set m = 2" and go to the next stage.

If i is even, then we look at the least element k not already examined in the

enumeration {iVP,} of polynomial time-bounded nondeterministic oracle Turing ma­

chines. Once a machine NPk has been successfully diagonalized, it will never be

examined again. Pick an even integer n, n > m, so large that Pk{n) < 2"~^ For all

odd g, m < g < 2", place 1' into B{i). If TVP®^'^ is ambiguous on E-", then we add

no string of length n to B{i) at this stage, set m = 2", and we go to the next stage.

If is unambiguous on E-", then run iVP®^'^ on input Xk = 0". If TVP®^'^

accepts 0", then add no string of length n to B { i) at this stage. If iVP®^'^ rejects 0"

70

then add one or more strings of length n to B { i) such that NPk either still rejects

0", or accepts 0" ambiguously. Theorem 6.3 shows that such strings can always be

found. Now we set m = 2" and go to the next stage.

To complete the proof of the theorem we need only to show LO[B) G UP^ n

CO - UP^ - P^ and LI[B) I UP*. That LI{B) € NP^ - UP* follows as in the proof

of Theorem 6.3. LQ(B) ̂ P* by the usual diagonalization argument. But also, for

each odd integer q we have added to the oracle exactly one string of length q. In

particular, x 6 LO{B) if and only if |i| = g is odd and there exists exactly one string

Oy of length ç in B if and only if there is no string lu; of length q in B. Hence,

Lo{B) G UP. Similarly, x G Lo{B) if and only if |a:| = g is even or if and only if q is

odd and there exists exactly one string ly of length g in 5 if and only if there is no

string Ow of length q in B. Hence, LQ{B) G UP.q

Corollary 6.18 There exists a recursive oracle B such that P* ^ UP*Pico — UP* ^

NP* and NP* is closed under complementation.

Proof. The proof follows along the lines of Theorem 6.17. but with an additional

stage; the odd stage of Theorem 6.15. •

We close this section with the following question: Does there exist a recursive

oracle C such that P^ ^ UP*^ = NP^ and NP^ is not closed under complementation?

71

7 CONCLUSION

We have studied structural properties ^ of intractable sets in the belief that these

properties need to be understood before the hard questions of wider interest, e.g., P 7=

NP, can be resolved. This belief can be traced back, in part, to an analogous situation

in Recursive Function Theory, and the work presented here has been influenced by

the success and failure of various analogues to this theory.

The study of efficient reducibilities has been a rich source of ideas, concepts

and questions in computational complexity. Unfortunately, it has not provided the

techniques necessary to solve these problems. Very little is known about the structure

of NP, and relativization results show that such insight is not forthcoming. This has

led us to view structure questions from two different perspectives. We have examined

absolute structural properties of the classes E and TIME(2'"''") in hope that these

results will shed light on the structural aspects of NP, and we have looked at relativized

structural questions about NP.

The first part of this work was motivated by a reexamination of what it means for

a set to be complete for a complexity class via efficient reducibilities. We extended the

traditional approach of using efficient reducibilities to study structural relationships

between computable sets. We defined a new noneffective binary relation <c that in

a precise way related the computational complexity of two recursive sets. The <c

relation can be viewed as a transitive reducibility. It is the weakest mathematically

meaningful notion that captures all other efficient reducibilities, and it yields new

completeness and hardness notions for complexity classes.

In investigating this relation, we found that the notion of a.e. complexity played

^ We have never formally defined exactly what a structural property is; perhaps the words of former
Supreme Court Justice Potter Stewart, who when asked about pornography replied, "I may not be
able to define it, but I know it when I see it," are applicable here.

72

an important role, and so we first looked at this phenomena with the view of con­

structing a.e. complex sets for various complexity classes. This led to the derivation

of a deterministic time hierarchy theorem for a.e. complex sets that was as tight as

for the i.o. case, and it is a significant improvement over all other known results for

a.e. complex sets.

Intuitively, the a.e. complex sets must be viewed as the "hardest" sets to compute,

and it is from the strong hierarchy theorem that the first important theorems on <c-

completeness and <c-hardness are derived. For example, it was shown that if a set

was /(n)-complex, then it was in fact <c-hard for DTIME(/(n)). This is a very

appealing result, for it shows that <c-hard accurately captures the notion of being

computationally hard-to-compute. Moreover, we showed that there are sets that are

<(7-hard for NP that are not <^-hard for NP, and we showed that there are sets that

must be considered complete for E that are not even <^-complete for E.

Further investigation of <c-hardness showed that a.e. complexity was too strong

a concept to accurately characterize all <(?-hard sets for a given complexity class.

We derived a generalized notion of a.e. complexity and derived similar, very tight,

hierarchy theorems for sets that cannot be a.e. complex for syntactic reasons, but

for which, intuitively, a.e. complex notions should exist. By using the techniques

developed here, it was possible to show that the hard instances for complete sets for

E and TIME(2''°''') must have a fairly normal distribution.

The second part of this work was concerned with relativization. Information

on classes relativized to oracles can often lend plausability to conjectures about the

nonrelativized classes — conjectures which currently defy solution. We introduced the

basic concepts and techniques employed in relativization results in Chapter 5. Here

we were motavated by the fact that it is now known that deterministic linear time

differs from nondeterministic linear time. We investigated, by relativization, whether

this result would be of any help in solving the P ^ NP. We concluded that even with

this result recursion theoretic techniques would be insufficent for solving the P ^ NP

problem.

Finally, we studied the relationships between P, NP, and the unambiguous and

random time classes UP, and RP. Questions concerning these relationships are mota­

vated by complexity issues in public-key cryptosystems. We proved that there exists

73

a recursive oracle A such that ^ UP'^ ^ NP^, and such that the first inequal­

ity is strong, i.e., there exists a P'^-immune set in UP^. Further, we constructed a

recursive oracle B such that UP^ contains an RP^-immune set. As a corollary we

obtained P^ ^ RB^ ^ NP® and both inequalities are strong. By use of the techniques

employed in the proof that P'^ ^ UP"^ ^ NP^, we were also able to solve an open

problem raised by Book, Long and Selman.

There are several directions in which this work can be expanded. The very strong

hierarchy theorem we obtained for deterministic time is as tight as the hierarchy

result for the i.o. case. Translation lemmas have traditionally been used to derive

tighter results; this is particularly true in the nondeterministic case. Unfortunately,

the padding technique that is critical to these results does not carry over for the a.e.

complex case. It is an open question whether there exists a tight, very strong hierarchy

theorem for nondeterministic time. Can we derive similar translation results for the

a.e. case? Any technique that is developed to solve this problem would seem to offer

promise for the nondeterministic time case.

Generalized Kolmogorov complexity has renewed interest in the study of sparse

sets and P-printable sets. We have shown how our generalized notion of a.e. com­

plexity and hierarchy theorem can be used to answer questions in this area. Can

generalized Kolmogorov complexity be used to answer questions pertaining to gener­

alized a.e. complexity?

Our initial motivation for developing the <c relation was to study NP-complete

sets: Are there <c-complete sets in NP that are not <^-complete for NP? We fell short

of answering this question, but we did show that this is the case for <c-hardness. We

conjecture that <c-complete for NP differs from <^-comp!eteness, but this question

is unresolved.

74

8 BIBLIOGRAPHY

[1] Adleman, L., and K. Manders. "Reducibility, randomness, and intractibility".
Proc. 9th ACM Symposium on the Theory of Computing 9{1977):151-153.

[2] Aho, A., J. Hopcroft, and J. Ullman. The Design and Analysis of Computer
Algorithms. Reading: Addison-Wesley, 1974.

[3] Allender, E. "The complexity of sparse sets in P". Structure in Complexity The­
ory, Lecture Notes in Computer Science Vol. 223, pp. 1-11. Berlin: Springer-
Verlag, 1986.

[4] Allender, E., and R. Rubinstein. "P-printable sets". Manuscript. Rutgers Uni­
versity, 1986.

[5] Ambos-Spies, K. "On the relative complexity of subproblems of intractable prob­
lems". STACS 85, Lecture Notes in Computer Science Vol. 182, pp. 1-12. Berlin:
Springer-Verlag, 1985.

[6] Baker, T., J. Gill, and R. Solovay. "Relativization of the P =? NP question".
SI AM Journal of Computing A[\91^yAZ\-AA2.

[7] Balcazar, J., and D. Russo. "Immunity and simplicity in relativizations of
probabilistic complexity classes". Manuscript. Facultad de Informâtica U.P.C.
Barcelona, Spain, 1985.

[8] Balcazar, J., and U. Schôning. "Bi-immune sets for complexity classes". Mathe­
matical Systems Theory 18(1985):1-10.

[9] Berman, L. "On the structure of complete sets: almost everywhere complexity
and infinitely often speedup". Proc. 17th IEEE Symposium on the Foundations
of Computer Science 17(l976):76-80.

[10] Berman, L., and J. Hartmanis. "On isomorphisms and density of NP and other
complete sets". SI AM Journal of Computing l(l977):305-322.

75

[11] Book, R. "On languages accepted in polynomial time". SIAM Journal of Com­
puting l{l972):281-289.

[12] Book, R., and S. Greibach. "Quasi-realtime languages". Mathematical Systems
Theory 4(1970):97-111.

[13] Book, R., T. Long, and A. Selman. "Quantitative relativizations of complexity
classes". SIAM Journal of Compu^mj 13(1984):461-487.

[14] Book, R., C. Wrathall, A. Selman, and D. Dobkin. "Inclusion complete tally lan­
guages and the Hartmanis-Berman conjecture". Mathematical Systems Theory
ll(1977):l-8.

[15] Breidbart, S. "On splitting recursive sets". Journal of Computer and System
Sciences 17(1978) :56-64.

[16] Cobham, A. "The intrinsic computational difficulty of functions". Proc. 1964
International Congress for Logic Methodology and Philosophy of Science, pp. 24-
30. Ed. Y. Bar-Hillel. Amsterdam: North Holland, 1964.

[17] Constable, R. "Hierarchy theorems for axiomatic complexity". Computational
Complexity, pp. 36-63. Ed. R. Rustin. New York: Algorithmics Press, 1973.

[18] Cook, S. "The complexity of theorem proving procedures". Proc. 3rd ACM Sym­
posium on the Theory of Computing 3{1971):151-158.

[19] Cook, S. "A hierarchy for nondeterministic time complexity". Journal of Com­
puter and System Sciences 7(1973):343-353.

[20] Edmonds, J. "Paths, trees and flowers". Canadian Journal of Mathematics
17(l965):449-467.

[21] Even, S., T. Long, and Y. Yacobi. "A note on deterministic versus nondetermin­
istic complexity". Information and Control 55(1982):117-124.

[22] Even, S., A. Selman, and Y. Yacobi. "The complexity of promise prob­
lems with applications to public-key cryptography". Information and Control
61(1984):159-173.

[23] Even, S., A. Selman, and Y. Yacobi. "Hard-core theorems for complexity classes".
Journal of the ACM32(1985):205-217.

[24] Ferrante, J., and C. Rackoff. "The computational complexity of logical theories".
Lecture Notes in Mathematics Vol. 718. Ed. A. Dold, and B. Eckmann. Berlin:
Springer-Verlag, 1979.

76

[25] Fischer, P., A. Meyer, and A. Rosenberg. "Real-time simulation of multihead
tape units". Journal of the ACM 19(1972):590-607.

[26] Flajolet, P., and J. Steyaert. "Une formalisation de la d'algorithme de tri non
récurrent". Thèse de 3° cycle. Université Paris 77/(1973).

[27] Flajolet, P., and J. Steyaert. "On sets having only hard subsets". Automata,
Languages, and Programming, Lecture Notes in Computer Science Vol. 14, pp.
446-457. Berlin: Springer-Verlag, 1974.

[28] Fûrer, M. "The tight deterministic time hierarchy". Proc. 14th ACM Symposium
on the Thepry__of Computing 14(1982):8-16.

[29] Geske, J., and J. Grollmann. "Relativizations of unambiguous and random poly­
nomial time classes". SI AM Journal of Computing 15(1986):511-519.

[30] Geske, J., and D. Huynh. Hierarchies of almost everywhere complex sets. Tech­
nical Report 86-05 Dept. Computer Science, Iowa State University Ames, Iowa
1986.

[31] Gill, J., and M. Blum. "On almost everywhere complex recursive functions".
Journal of the A CM 21 (1974) :425-435.

[32] Grollmann, J., and A. Selman. "Complexity measures for public-key cryptosys-
tems". Proc. 25th IEEE Symposium on the Foundations of Computer Science
25(1984) :495-503.

[33] Hartmanis, J. "Generalized Kolmogorov complexity and the structure of feasible
computations". Proc. 24th IEEE Symposium on the Foundations of Computer
Science 24(l983):439-445.

[34] Hartmanis, J. "On sparse sets in NP - P". Information Processing Letters
16(1983) :55-60.

[35] Hartmanis, J., P. Lewis, and R. Stearns. "Hierarchies of memory limited com­
putations" . Proc. 6th IEEE Symposium on Switching Circuit Theory and Logical
Design 6(1965):179-180.

[36] Hartmanis, J., and R. Stearns. "On the computational complexity of algorithms".
Transactions of the American Mathematical Society 117(1965):285-306.

[37] Hartmanis, J., and Y. Yesha. "Computation times of NP sets of different densi­
ties". Theoretical Computer 5cience 34(1984);17-32.

77

[38] Homer, S., and W. Maass. "Oracle dependent properties of the lattice of NP
sets". Manuscript. Boston University, 1985.

[39] Hopcroft, J., and J. Ullman. Introduction to Automata Theory, Languages, and
Computation. Reading: Addison-Wesley, 1979.

[40] Jockusch, C. "Semirecursive sets and positive reducibility". Transactions of the
American Mathematical Society 131 (1968):420-436.

[41] Karp, R. "Reducibility among combinatorial problems". Complexity of Com­
puter Computations. Ed. R. Miller, and J. Thatcher. New York: Plenum Press,
1972.

[42] Karp, R., and R. Lipton. "Some connections between nonuniform and uniform
complexity classes". Proc. 12th ACM Symposium on the Theory of Computing
12(1980) :302-309.

[43] Ko, K., P. Orponen, U. Schoning, and O. Watanabe. "What is a hard instance
of a computational problem?". Structure in Complexity Theory, Lecture Notes
in Computer Science Vol. 223, pp. 197-217. Berlin: Springer-Verlag, 1986.

[44] Ladner, R. "On the structure of polynomial time reducibility". Journal of the
>1 CM 22(1975):155-171.

[45] Ladner, R., N. Lynch, and A. Selman. "A comparison of polynomial time re-
ducibilities". Theoretical Compuicr 5cjence l(1975):103-123.

[46] Landweber, L., and E. Robertson. "Recursive properties of abstract complexity
classes". Journal of the ACM 19(l972):296-308.

[47] Lynch, N. "On reducibility to complex or sparse sets". Journal of the ACM
22(l975):341-345.

[48] Machtey, M., and P. Young. An Introduction to the General Theory of Algo­
rithms. Amsterdam: North Holland, 1978.

[49] Meyer, A., and E. McCreight. "Computationally complex and pseudo-random
zero-one valued functions". Theory of Machines and Computations, pp. 19-42.
Ed. Z. Kohavi, and A. Paz. New York: Academic Press, 1971.

[50] Meyer, A., and L. Stockmeyer. "The equivalence problem for regular expres­
sions with squaring requires exponential space". Proc. ISth IEEE Symposium on
Switching and Automata Theory 13(1972):125-129.

78

[51] Orponen, P., and U. Schoning. "The structure of polynomial complexity cores".
Automata, Languages, and Programming, Lecture Notes in Computer Science
Vol. 176, pp. 452-458. Berlin: Springer-Verlag, 1984.

[52] Paul, W. "On time hierarchies". Proc. 9th ACM Symposium on the Theory of
Computing 9(1977) :218-222.

[53] Paul, W., N. Pippenger, E. Szemeredi, and W. Trotter. "On determinism versus
non-determinism and related problems". Proc. 24th ACM Symposium on the
Theory of Computing 24(l983):429-438.

[54] Post, E. "Recursively enumerable sets of positive integers and their decision
problems". Bulletin of the American Mathematical Society 50(1944):284-316.

[55] Rabin, M. Degree of difficulty of computing a function and a partial ordering of
recursive sets. Technical Report 2 Hebrew University Jerusalem, Israel 1960.

[56] Rackoff, C. "Relativized questions involving probabilistic algorithms". Journal
of the CM 29(1982) :261-268.

[57] Rogers, H. Theory of Recursive Functions and Effective Computability. New
York: McGraw-Hill, 1967.

[58] Rosenberg, A. "Real time definable languages". Journal of the ACM
14(1967):645-662.

[59] Sahni, S. "Computationally related problems". SIAM Journal of Computing
3(1974) :262-279.

[60] Sahni, S., and T. Gonzales. "P-complete approximation problems". Journal of
the ACM23(l976):555-565.

[61] Schoning, U., and R. Book. "Immunity, nondeterminism, and relativization".
SIAM Journal of Computing 13(1984):329-337.

[62] Seiferas, J., M. Fischer, and A. Meyer. "Separating nondeterministic time com­
plexity classes". Journal of the .4CM 25(1978):146-167.

[63] Selman, A. "Analogues of semirecursive sets and effective reducibilities to the
study of NP complexity". Information and Control 52(1982):36-51.

[64] Selman, A. "Reductions on NP and p-selective sets". Theoretical Computer Sci­
ence 19(l982):287-304.

79

[65] Sipser, M. "On relativization and the existence of complete sets". Automata,
Languages, and Programming, Lecture Notes in Computer Science Vol. I40, pp.
523-531. Amsterdam: North Holland, 1982.

[66] Turing, A. "On computable numbers, with an application to the Entshei-
dungsproblem". Proceedings of the London Mathematical Society 5(l936):20-23.

[67] Valiant, L. "Relative complexity of checking and evaluating". Information Pro­
cessing Letters 5(l976):20-23.

[68] von Neumann, J. "A certain zero-sum two-person game equivalent to the optimal
assignment problem". J. Von Neumann: Collected Works, Volume F/, pp. 44-49.
Ed. A. Taub. Oxford: Pergamon Press, 1963.

[69] Webb. J. Mechanism, Mentalism and Metamathematics. Dordrecht: D. Reidel,
1980.

[70] Young, P. "Some structural properties of polynomial reducibilities". Proc. 15th
ACM Symposium on the Theory of Computing 15(1983):392-401.

80

9 ACKNOWLEDGMENTS

As Mary-Claire van Leunen, in A Handbook for Scholars, hcis observed, "Many

an advisor before yours has been thanked for understanding and guidance; many a

colleague for useful contributions; many a typist for accuracy and neatness; many a

spouse for patience. Not one has escaped gratitude for service above and beyond the

call of duty." And yet, at the risk of sounding trite, I must extend special thanks to

those people who supported me in this endeavor; I would be remiss in not doing so.

My first thanks must go to Alan Selman who introduced me to computational

complexity and suggested the topic for this thesis. He fostered a theoretical environ­

ment that allowed a budding graduate student to grow intellectually, and through

his cajoling and insightful comments a germ of an idea flowered into this final prod­

uct. Dung Huynh also deserves a special "thank you" for serving tirelessly on my

committee. It was only through his insight of the Balcazar and Schoning paper that

the Hierarchy Theorem for a.e. sets was possible. I would also like to thank Joachim

Grollmann for the many wonderful discussions, not all technical, we had during his

one year stay at Iowa State; it was, for both of us, a most productive time.

No thanks need go to the typist — any typographical errors, unfortunately, are

mine. This thesis was produced using the and I^TgX document preparation sys­

tems, without which the readability of this thesis would have been greatly diminished.

My wife, Barbara, deserves special accolades for her patience, understanding and

sacrifice during this process. Her support and encouragement was always necessary

and not always acknowledged. The final word belongs to Michael, age seven, and

Matthew, age three, whose arrival into our world greatly prolonged this undertaking

— a small price to pay for such wondrous progeny.

