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1. IHTECDUCTION 

The study of kinetic theory has its roots in the 

classical physics of the last century. The most significant 

early pioneers in the field were Maxwall(l) and Bcltzmann(2). 

Their work led to a statistical interpretation of 

thermodynamics and transport phenomena which ultimately re

sulted in the ascendency of the kinetic-molecular theory of 

matter. 

The first completely satisfactory attempt at describing 

transport processes from a kinetic molecular point of view is 

due to Boltzmann. He proposed an integro-differential equa

tion appropriate to such a description in a paper of 1872(2). 

This has come to be known as the Eoltzmann equation. 

However, it was not until the powerful mathematical 

techniques of functional analysis were developed early in the 

20th century that a general method for the solution of 

Boltzmann's equation became possible. The first attempt at 

finding such a general solution was made by the mathematician 

David Hilbert(3}. Though his solution failed to produce a 

satisfactory procedure for the evaluation of transport coef

ficients, his techniques provided a firm mathematical founda

tion which paved the way for the simultaneous successes of 

Chapman(4,5) and Enskog(6). Their contribution was to pro

pose that the time dependence of the singlet distribution 
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function in a hydrodynamic regime should be a parametric 

function of the macroscopic thermodynamic state variables and 

their spatial gradients. The Chapman-Enskog method will be 

discussed in detail in Chapter 3. 

Within the context of this dissertation, it is interest

ing to note that the Chapman-Enskog approach to the theory of 

gases in noneguilibrium states predicted the existence of 

thermal diffusion in dilute gas mixtures before it was ob

served experimentally(7), Long known for liguids as the 

Soret effect, it was first observed in the gas phase by 

Chapman and Dootson (8)• 

An interesting development in the kinetic theory as ap

plied to gases with rotational structure came with 

Senftleben's observation in 1930 of the effect of an applied 

magnetic field on measurements of the thermal conductivity of 

oxygen (9)• This effect was also observed for the shear 

viscosity of oxygen by Engelhardt and Sack(10). Subseguent 

experimental work in the 1930s established the "Senftleben 

effect" as a property characteristic of paramagnetic gases. 

An early explanation of the Senftleben effect in terms 

of a change in the molecular mean free path due to the 

presence of an applied magnetic field was given by Gorter(ll) 

and later more quantitatively by Zernike and Van lier(12). 

Briefly, the idea is as follows. 
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The presence of a thermodynamic stress in a dilute mo

lecular fluid results in a preferential alignment of molecu

lar angular momenta. The presence of this polarization in 

the angular momentum tends to decrease the size of molecular 

cross sections appropriate to the description of transport 

processes. The behavior of a rotating molecule in a gas can 

be illustrated if one imagines the molecule as a spinning 

disk with axis of rotation parallel to an average magnetic 

dipole moment and perpendicular to the disk. The application 

of a field causes the axis to precess about the direction of 

the field. This precession increases the average molecular 

cross section by destroying the polarization, hence decreas

ing the transport coefficient correspondent to the 

thermodynamic stress. The effect becomes saturated if the 

applied field is sufficiently strong so that the collisional 

frequency is much smaller than the precessional frequency. 

Apparently, it never occurred to early workers that the 

Senftleben effect could be generalized to diamagnetic gases. 

Since there are relatively few examples of paramagnetic gases 

(NO and Og being the most notable examples), interest in the 

study of such a seemingly specialized effect remained limited 

for many years. 

The situation changed drastically in the early 1960s 

when it was realized that field effects should exist for 

diamagnetic gases also. Beenakker et al.(13) first observed 
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a magnetic field effect in the shear viscosity of the 

diaoagnetic gases CO and The corresponding experimental 

result for the thermal conductivity was suJbseguently obtained 

by Gorelik and Sinitsyn(14). This effect in both cases was 

shown to be similar to the Senftleben effect though it oc

curred at much higher field strengths because the magnetic 

moment of a diamagnetic molecule (of the order of a nuclear 

magneton) is much smaller than that of a paramagnetic mole

cule (of the order of a Bohr magneton). In addition, it was 

soon generally realized that the presence of an applied mag

netic field acting on a fluid could give rise to transverse 

components in the transport coefficients due to a lowering of 

the spatial symmetry of the system. The existence of these 

components was verified experimentally in 1966 for the shear 

viscosity by Korving et al.(15) and for the thermal 

conductivity by Gorelik, Hikolaevskii, and Sinitsyn(16). Fi

nally, it should be mentioned that after some unsuccessful 

attempts dating back to the 1930s, Senftleben(17) was able to 

obtain the first successful measurement of the effect of a 

static electric field on the thermal conductivity of a polar 

gas. A corresponding measurement of the effect of an 

electric field on the shear viscosity was obtained by 

Gallinaro, Heneghetti, and Scoles(18). 

The effects of static applied fields (electric or mag

netic) on the transport properties of gaseous systems have 
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come to be known collectively as "Senftleben-Beenakker 

effects." They are of interest because they provide rather 

direct information concerning the anisotropy of 

intecmclecular potentials. 

The general structure of noneguilibriam thermodynamics 

as first proposed by Onsager(19,20) and later generalized by 

Casimir(21) to include the explicit effects of applied 

fields, provides an interpretive framework appropriate to the 

understanding of transport in a linear phencmenological 

regime. Here follows a rudimentary survey of some of the 

basic ideas. 

It is assumed as a postulate of noneguilibrium 

thermodynamics that fluid systems not too far removed from 

equilbrium can be represented by a linear phenomenology. 

This is to say that a flux, J^, of seme physical parameter 

appropriate to a thermodynamic description of the state of 

the fluid (e.g. thermal energy, mass or fluid velocity) can 

be linearly related to thermodynamic forces (e.g. temperature 

gradient, diffusion force, or rate of shear tensor), , 

by the following expression, 

where is termed a phenomenological coefficient. The 

thermodynamic forces are the result of some stress placed on 

the fluid system such as a temperature, concentration or 
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velocity gradient. 

From the form of £g. (1-1) it follows that the 

pheoomenological coefficients can be regarded as elements of 

a matrix. The diagonal coefficients represent direct effects 

and correspond to the usual transport coefficients such as 

the thermal conductivity which appears in Fourier's Law of 

Heat Transport, or the diffusion coefficients which arise in 

Pick's Laws of Diffusion, etc. These relate the flow of some 

physical property of the fluid to a stress in that same 

physical property. For example, the thermal conductivity is 

the phenofflenolog4.cal coefficient relating a heat flux to a 

corresponding thermal stress (i.e., a temperature gradient). 

The off-diagonal elements are phenomenological coefficients 

which couple the flow of some physical property to a stress 

in some different physical property. The thermal diffusion 

coefficient Is an example of a phenomenological coefficient 

for such a coupled effect. It relates a diffusive flux of a 

molecular species to a thermal stress. 

Onsager vas able to show that the forces and fluxes 

could be chosen so that the matrix of phenomenological coef

ficients would be symmetric. This choice is embodied In the 

expression, 

H " "t 

Here, the derivative on the left is the rate of entropy pro-
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auction (entropy is maximized at equilibrium) and I is tem

perature. If Eg. (1-2) is valid for a specific choice of 

forces and fluxes, then the corresponding phenomenological 

coefficients obey the following symmetry relation. 

Equation (1-3) is a formal expression of the Onsager 

reciprocity relations. 

The consideration of an applied field modifies Eg. (1-3) 

as follows. 

where f denotes the field and fp denotes its time reversed 

image. A static electric field, E, is invariant with respect 

to time inversion, thus Eg. (1-4) becomes. 

In contrast, since a constant magnetic field, H, ultimately 

arises from the motion of electrical charges, the time 

reversed image of H is -H. In light of this fact. Eg. (1-4) 

becomes. 

Lij(F) . Lj.(TP) (1-4) 

(1-5) 

L.j(H) - L..(-H) (1-6) 

Equation (1-4) embodies the fundamental relations of 
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nonequilibriun thermodynamics which have come to be known as 

the Onsager-Casimic reciprocity relations. 

The first synthesis of quantum mechanics with the 

kinetic molecular theory of transport processes is due to 

Dehling and Ohlenbeck(22,23). In their approach, Boltzmann's 

equation is modified by replacing the classical expression 

for the differential scattering cross section appearing 

within the collision term, with its quantum mechanical 

analog. This method evades interprêtâtional difficulties en

countered when one attempts to define a molecular phase space 

distribution function in a manner consistent with the 

Heisenberg uncertainty principle. Green(24) has given a more 

rigorous statistical mechanical justification of this proce

dure. 

Hang Chang and Uhlenbeck have extended the preceding 

treatment to the description of dilute polyatomic fluids 

possessing active internal degrees of freedom(25). The re

sulting analog of Boltzmann's equation (i.e.« the Wang Chang-

Ohlenbeck equation) has as its solution a velocity distribu

tion function indexed ty an appropriate internal state label. 

However, the Wang Chang-Uhlenbeck equation is an ad hoc ex

pression which employs, without justification, a quantum 

mechanical differential cross section in an essentially 

classical equation. 
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It is well-known that the expectation value of a 

mechanical property in quantum mechanics is given as the 

trace of the matrix product of the density matrix of the 

system and the appropriate self-adjoint operator. For a 

dilute gas, bulk mechanical properties can he expressed in 

terms of operators which consist of a sum of single molecule 

operators. Thus, the trace formula can be written exclusive

ly in terms of a singlet density matrix. (For mixtures, sin

glet density matrices appropriate to each species are 

needed.) In addition, if the bulk state of a dilute gas is 

sufficiently homogeneous (i.e. its bulk properties vary on a 

spatial and temporal scale which is much larger than a mean 

free path or a mean collision time), then it is characterized 

by a singlet density matrix (or matrices) which can to a good 

approximation be considered diagonal in total molecular ener

gy. For molecules which have no internal state degeneracy, 

this amounts to approximate momentum diagonality as well. In 

the nondegenerate case, one can ignore the contribution of 

all off-diagonal density matrix elements to the evaluation of 

expectation values which then can be expressed as averages 

with the diagonal density matrix elements playing the role of 

a "guasi-classical" singlet distribution function. It is 

this "distribution function" which is the solution of the 

Hang Chang-Ohlenbeck equation. However, the existence of 

degeneracy in the internal states (e.g. rotational states) of 
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the gas molecules, implies that some of the off-diagonal den

sity matrix elements cannot be ignored in the evaluation of 

averages. Thus, description of the relaxation of the gas to 

equilibrium requires a more fundamental approach. This is 

discussed in detail in Chapter 2. It suffices here to note 

that the correct quantum mechanical analog of Boltzmann's 

equation was obtained first by Waldmann(26) in 1957 and inde

pendently later by Snider (27) in 1960. The lialdmann-Snider 

equation incorporates formal quantum mechanical scattering 

theory as proposed by Lippman and Schwinger (28) and Gell-Hann 

and Goldberger (29) into the kinetic molecular theory of 

transport processes. 

The primary objective of this dissertation is to examine 

various cross sections which arise from the solution of the 

classical Boltzmann equation and its quantum mechanical 

analog (Valdmann-Snider equation) for a binary mixture of 

atoms and diatomic (more generally, linear) molecules close 

to equilibrium (i.e. within a linear phenomenological 

regime). This will be done for realistic nonspherical inter

actions and in the presence of an applied field. (Ar-C02 

He-COg, and Ar-Ng systems are considered.) A perturbation 

expansion of the linearized collision operator in the density 

of the diatomic species will be constructed which will allow 

an explicit separation of contributions from atom-atom, atom-

diatom and diatom-diatom collisions. The discussion will 
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center on the evaluation of the thermal diffusion coefficient 

since this quantity is extremely sensitive to the 

nonspherical nature of an interaction. Both classical aad 

guantal results will be given and compared. Of special 

interest in this connection is the application of the 

recently developed quantum mechanical sudden approxima-

ticas(30,31,32) to the evaluation of transport cross sec

tions. Also, an analysis of the dynamical approximations in

herent in the model calculations of the type performed by 

Cooper, Dahler, Verlin, Matzen, and Hoffman(33) will be given 

in light of results obtained in this work, finally, wherever 

possible, comparison will be made with experimental results 

obtained by various workers. In summary, it is the intention 

of this Investigator to provide results which will afford 

valuable insight into the applicability of classical and 

guantal approaches to the evaluation of transport coeffi

cients and also add to the interpretational framework for 

assessing the value of model calculations. 
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2. A PARALLEL FOfiHALISH FOB THE CLASSICAL 

AND QUANTAL KINETIC EQUATIONS FOB DILUTE GASES 

2.1. A Derivation of the Classical Bcltzmann Equation 

The original development of Boltzmann's equation vas 

heuristically derived by considering the randomizing effect 

of intermolecular collisions on the temporal evolution of the 

velocity distribution in a dilute gas. In order to place the 

equation on a firmer theoretical basis, later attempts were 

made to derive it directly from Liouville's theorem (i.e. the 

conservation of extension in phase space). The first suc

cessful completion of this task was due to Bogoliubov(34) in 

1946 and was followed shortly thereafter by the work of 

Kirkwood(35). The method used in the present work is similar 

to the approach used by Hoffman and Dahler(36). 

The Boltzmann equation is a closed equation for a sin

glet phase space distribution function. Physically, it pro

vides a description of relaxation processes occurring in 

dilute gas systems. The relaxation of such a system to an 

equilibrium state can be understood in terms of processes 

occyrtiag on three vastly, different time scales. The decay of 

nonequilibrium distributions of molecular parameters 

which are not conserved in free flight (e.g. rotational phase) 

occurs on a short or ccllisional time scale which is 

characterized by the mean duration of a collision ((?(<10''^^) 
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sec,). In contrast, noneguilibrium distributions of free 

flight invariant parameter (e.g. momentum, kinetic energy) 

relax on a much longer kinetic time scale characterized by 

the mean interval between successive collisions 

sec. at STP). In a dilute gas, many orders of magnitude sep 

arate the collisional and kinetic time scales. A third very 

long hydrodynamic time scale describes the relaxation of 

nonequilibrium distributions of summational invariants (e,g. 

mass, total energy) via macroscopic flows (0(>10'"^) sec.). 

In the collisional regime, the time evolution of the system 

must be described by Liouville's equation incorporating a 

full set of boundary conditions. In contrast, the kinetic 

regime can be adequately characterized by a locally uniform 

singlet distribution function which is a function of free-

flight invariant parameters and time ("locally uniform" im

plies that the function is effectively constant over a 

distance of the order of a molecular mean free path). The 

hydrodynamic regime is completely characterized by the macro 

scopic fluid fields, Boltzmann's equation is appropriate to 

the description of processes occurring on the kinetic and 

hydrodynamic time scales but not on the collisional time 

scale. Unlike Liouville's equation, Boltzmann's equation ex 

hibits temporal irreversibility. This is true because the 

singlet distribution function which satisfies Boltzmann's 

equation can be viewed in a crude sense, as a temporal aver-
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age over the rigorous distribution function (which satisfies 

Liouville's equation) on the collisional time scale. Thus, 

the irreversibility of Boltzmann's equation stems directly 

from the loss of "fine-grained" dynamical information due to 

the averaging process (i.e. collisional randomization of 

nonconserved molecular parameters) . Here follows a develop

ment of Boltzmann's equation in classical mechanics beginning 

with the full microscopic description implicit in Liouville's 

theorem. For simplicity, a single component system is con

sidered. Generalization of the results obtained to 

multicomponent systems provides no difficulty and will be 

discussed later. 

Fundamental to the statistical mechanical development of 

gas kinetics is the concept of an N-molecule probability dis-

(N) 
tribution function, f . It is parameterized on time and on 

the coordinates and conjugate momenta of each of the N mole

cules. The coordinates and momenta can be thought of as 

comprising the components of a vector in a multidimensional 

Euclidean space (i^e^ N-molecule phase space or r-space.) 

Thus, denotes the probability density of a 

mechanical state, at time, t, where x(M) is a r-space 

vector and has the form, 

<2.1-1) 

Here, and denote generalized coordinates and conjugate 
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4" 
momenta of the i molecule. For future reference, it should 

also be noted that F-space can be thought of as the direct 

sum of N single molecule phase spaces. A point in the single 

molecule phase space for molecule i (y^ space) can be written 

as, 

where q. is the positional coordinate for the degree of 
~ip 

freedom of the i^^ molecule and is its conjugate momen

tum. Here, each molecule has v "thermally active" degrees of 

freedom. Within the context of gas kinetics, these always 

include translational degrees of freedom. In addition, for 

diatomic (or linear polyatomic) molecules, two rotational 

degrees of freedom are active and for a nonlinear polyatom 

all three rotational degrees of freedom are active. Other 

molecular degrees of freedom (vibrational, electronic, nucle

ar) are usually inactive and can be ignored. 

The Liouville theorem, which embodies the dynamical in

formation of the classical eguations of motion (Hamilton's 

equations), takes a differential form as a continuity equa

tion for f , 

3 f(N) 
If + . 0 (2.1-3) 

Here, H is the N-molecule Hamiltonian function and the 

braces are the Poisson bracket. For general functions of the 
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phase variables, $ and Y, the Poisson bracket has the explic

it form. 

" V ,9$ 3Ï 3» 8Ï , (2.,.,, 

The motion of a classical N-body system is characterized by 

nonintersecting trajectories in r-space. 

It is possible to describe the probability distribution 

for a set of s molecules, which is a subset of the N mole

cules comprising the system, by the definition of a reduced 

distribution function, f(s), The reduced distribution func

tion is obtained by integrating over the phase variables of 

the molecules not included in the s-fold cluster. It has the 

form. 

Here, fis taken to be normalized to N!. This 

normalization is assumed because for an N-fold set of identi

cal molecules there exi&t N! indistinguishable permutations 

of molecular labels. Integration of Eg. (2.1-3) over the 

phase points of the N-s molecules not included in the cluster 

yields the classical BBGKÏ hierarchy of coupled equations for 

which a general member can be written. 
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Here, { ,Y}, is a linear partial differential operator which 

when acting on a function, yields the Poisson bracket, 

{$,Y}. The derivation of Eq. (2.1-6) depends on the assump

tion that the potential energy, of an isolated s-fold 

molecular cluster can be expressed as a sum of pairwise in

teractions plus contributions from external fields. Thus, 

( a )  
V ' is assumed to have the form, 

=7! ! v.. + ! (2.1-7) 
I«lj=i ^ i=1 

where V.. is the interaction potential between the i^^ and 
1] 

jth molecules and is the potential energy of the i^h 

molecule due to external fields. Finally, one notes that the 

s-molecule Hamiltoniaa, is defined by the expression, 

s  2  
+1^^) + (2.1-8) 

where, is the contribution to the kinetic energy from 

internal degrees of freedom of the i^^ molecule and p?/2H is 

the i^^ molecule translational kinetic energy. For future 

reference, the symbol, will be defined here as the total 

kinetic energy due to molecule i (i.e. = p?/2H + K^^^). 

The first member of the BBGKY hierarchy gives the total 

time rate of change of the singlet distribution function, 
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{ 2  )  
as a functional of f^ . It has the form. 

||'"+ ( - -/dXji ,V, 2}f"' (2.1-9) 

( 2 )  
In a similar way, the time rate of change of f is a 

functional of f^^^ and so on up the hierarchy. It is clear 

that in order to find a closed expression for f(1), the hier

archy must be truncated at the lowest level. This may be ac

complished by assuming that any intermolecular potential 

which is realistically applicable to dilute gas phenomena 

falls off rapidly as the distance of separation of 

interacting molecules is increased. This implies that in 

( 2 )  
order to evaluate Eg, (2,1-9) a knowledge of f is needed 

only in the region where molecule 1 and molecule 2 are close 

and strongly interacting. Under this condition, many body 

interactions are negligible and can be ignored in a dilute 

gas, since having three or more molecules in close proximity 

is a rare event. This allows the equation of change for f ' 

obtained from the hierarchy to be replaced near the interac

tion region by a continuity equation independent of f^^l (j,e. 

the two molecule Liouville equation) which is of the form. 

One notes that Eg, (2,10) has the following formal solution. 

( 2 , 1 - 1 0 )  
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(2.1-11) 

which immediately yields the result ({ is a first 

order differential operator), 

f(2)(x(2),t) = f(2)(x(2)(t'),t^) (2.1-12) 
—  —  o  o  

(2) 
where x ' (t^) is the phase space position of a pair of mole

cules at a time, t^, which evolves dynamically to a phase 

( 2 )  
space position, x , at a later time, t. Equation (2.1-12) 

is the integrated Liouville equation which describes a system 

consisting of only two molecules. It implies that the numer

ical value of the pair distribution function simply trans

lates temporally in phase space as a result of the motion of 

the system. 

At this point, one may introduce the assumption of mo

lecular chaos, which is that for a time, t^, sufficiently 

remote in the past one can factorize f^^^ in the following 

way, 

f(2) (x(2) (t") ,t") = 
— o o 

(1 ) ( 1 ) (2.1-13) 

This is to say that prior to collision, the molecular states 

are uncorrelated so that the pair distribution can be regard

ed as a product of singlet distributions. In a dilute gas 
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regime it is possible to choose a time, which is short 

enough so that Eg. (2.1-11) is satisfied for t^ = t^ and long 

enough so that Eg. (2. 1-13) is satisfied for t^ = tj^. Such a 

t cannot be found for a dense fluid since isolated binary 
o 

encounters are rare events and Eg. (2.1-10) or equivalently, 

Eg. (2.1-12) becomes inapplicable. This is nothing more than 

a reaffirmation of the proposition that many body interac

tions are important in a dense molecular fluid, but not in a 

dilute one. Returning to the case of a dilute gas, it is 

clear that Eg. (2.1-11) and (2.1-13) yield the result, 

f ( 2 ) ( ^ ( 2 ) ^ t )  =  

(2.1-14) 

g-(t-t^){ }f(1) (t) ,tQ)f(') (Xg (t) rt^) 

Here, the pair distribution at a time, t, has been expressed 

in terms of singlet distributions at a prior time, t^. 

It is also possible to write a formal solution for Eg, 

(2.1-9). If the right hand side is abbreviated by the 

symbol, J(t), where the argument refers to the explicit time 

dependence of the collisional term, then f^^)(x^,t) has the 

form, 

t 

The first term appearing on the right can be interpreted as 
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arising from collisioaless molecular motion and the second 

term as containing the effect of molecular interactions. It 

is permissible to neglect the interaction since the time 

scale involved in this analysis is much less than a mean free 

time and approaches the time scale characterized by the dura

tion of a collision. On such a short time scale, one can 

regard the collisional rate of change of f^^) as negligible. 

This procedure yields the result, 

= ,2.1-16) 

u(2) (x. (t),t)f(T) (Xgtt) ,t) 
z O "^1 ^ 

since the object is to obtain an expression for f^^) terms 

of f^^^ which is valid in a region of phase space near the 

collision region, it is appropriate to neglect the effect of 

external potentials on the time evolution of f^^^ and f(1) 

{i.e. on a collisional time scale external potentials have 

little effect on molecular trajectories). Thus, U^^^(t ) is 

defined by the expression, 

. e-'t-tglt ,K,'"+K^'>) (2.1-17, 

Here, is taken to be ^ ^12' and 

( 1 ) 
Kg are the kinetic energies of molecule 1 and molecule 2, 
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respectively, 
( 2 ) 

It is clear that the effect of ^ is to 

transform the molecular pair backward dynamically along the 

two molecule phase trajectory a time interval, t-t^, before 

any significant Interaction occurs. The effect of the opera-

t i-•mi- \ f If ( 1 ) J. Tf C 1 ) I 
tor, e ̂ o' '1 2 is to transform the system 

forward dynamically to the original time, t, with the 

intermolecular potential "turned off". It can be established 

that the operator, defined by 

S (2) = lim u(2) J (2. 1-18) 
~ t ->-—00 ~ ® 

O 

is well-defined if it acts on nonbound regions of the two 

molecule phase space (In fact, for potentials with a finite 

cutoff length, (^Q) is independent of t^ if the interval 

t-t^ is sufficiently long so that t^ can be taken as 

precollisional). Hence, substitution of Eg. (2.1-16) into 

Eq. (2.1-9) assuming that t^ is in the precollisional past, 

results in the expression, 

11^ \ = -/dX2{ (2.1-19) 

where f^^^fP^ is an abbreviation of f ̂ ̂  ^ (x , t) f ̂ ̂  ̂  (x ,t) . 
^ 12 

If one considers intermolecular potentials which rapidly 

vanish asymptotically with intermolecular separation, the 

integral over the spatial position, r^/ of molecule 2 can be 
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limited without introducing significant error, to a simply 

connected region, R , about molecule 1 which is bounded by 
* 1  , 2  

a finite closed surface, a. _. This is to say that the 
1,2 

region, R , is defined such that it contains the spatial 
1,2 

volume within which molecules experience significant 

deflection due to intermolecular forces (i.e. the collision 

region) . Outside of R there is by definition, negligible 
*1,2 

contribution to the integral. The actual shape of o is 
1 / 2  

immaterial so long as R contains the collision region. 
* 1 , 2  

Thus, a "cutoff" function, defined to equal unity inside 

R and zero outside, can be introduced into Eg. (2.1-19) 
* 1 , 2  

as fellows, 

II'" + { . -/ax2Z,j{ 

Equation (2.1-20) can be further modified as follows. 

If'" + { -
( 2 . 1 - 2 1 )  

+ xj')} - { ,H^2)}]3(2)f(1)fj1) 

Here, use has been made of the definition of 

In a dilute gas, the distribution function can be taken 

to be effectively constant on a spatial scale commensurate 

with the effective range of the intermolecular potential 

(i.e. within the collision region)• This is to say that 

collisions can be thought of as occurring at a point. The 
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application of this assumption means that f ^ »t) f ^ (x^ ,t) 

in the right hand side of Eg. (2.1-21) is replaced with 

where r^ is the position of mole

cule 1» refers to the phase space variables of molecule i 

excluding the spatial position vector, and (defined by 

Eq, (2,1-18)) acts only on the dependence of f^^^. An al

ternate statement of this assumption is that the partial de

rivative, 3fj^)/Br^y is negligible in comparison to partial 

derivatives, 3fand 3fj1)/9t, within the kinetic 

regime. 

The dynamical parameters which comprise can be divid

ed into two groups. Ihese are the free-flight invariant and 

noninvariaat parameters symbolized by "vectors" and 

respectively. For a dilute gas, the singlet distribution 

function appropriate to the description of processes occur

ring on a kinetic time scale (i.e. an f^^^ which satisfies 

Boltzmann*s equation) has a weak time dependence which in the 

following analysis is approximated by zero. Thus, one can 

write, 

8fP' . at!" 

ii • + li" âïT •= ® (2-1-22' 

where the "dot above" denotes the total time derivative (e.g. 

= d2(^/dt)« Because varies on the collisional time 

scale, (i.e. it rapidly changes even while molecules are 
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widely separated) while varies on the kinetic time scale, 

(i.e. it changes only as a consequence of collisions), it 

follows that the components of are large in comparison 

with the components of Thus, is corresponding

ly small, (i^ei is phase averaged), and hence fj^^ is ef

fectively independent of nonfree-flight invariants. 

Conversely, fP^ exhibits a sensitive dependence on . 

Thus, f^^) can be regarded as an exclusive function of r^, 

Xi» and t. 

( 2 )  
One observes that S ' acting on some general dynamical 

parameter, of the two molecule phase trajectory gives 

seme well-defined function of y^g' Furthermore, if y^^ 

is a function of only single molecule free-flight invariants, 

then one obtains, 

(2. 1-23) 

t ->--00 O •^12 
o 

which yields, 

^ = lim e"(t-to){ v,} (2.1-24) 

O 

since V is short range, it follows that the right hand side 
1 2 

of Eg. (2.1-21) vanishes. Within the collision region, R 
" 1 , 2  
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Rg / the product, f f ̂ ^ (r^,t) f ̂ ̂  ̂  (r^ ,^2» ' is an exclu-
1 / 2  

sive function of free-flight invariants and, of course, time. 

Thus, in Eg. (2,1-21) the term involving { } vanishes. 

This yields the result, 

11^^^ + { = 
(2.1-25) 

;dx,Z,,{ ,Kr 

where f^^^fj^^ is now the abbreviation of f ̂^ ̂  (r^ ,t) x 

f^^^(r^,^2• One immediately obtains the result, 

II'" + I - fax^K ,K<" + 

where use has been made of the fact that { + Ki^^} is a 
1 ^ 

linear differential operator. 

The differential operator, { has the ex

plicit form, 

( + Kjl)} = 

(2.1-27) 

"4, " - è " il '4, ^2.'% 

where the relative position, r, is defined as £2"—i the 

velocities, v^ and v are defined as r^ and r, respectively. 

(The total time derivative is taken along a free-flight 

trajectory.) Because is defined as free-flight invariant. 
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terms of the form, not appear in Eg. (2,1-27) 

since is identically zero. Finally, one should note that 

since { is simply the total implicit time differ

ential operator appropriate to free flight motion. Eg. 

(2.1-27) is valid whether or not the coordinates and momenta 

appearing on the right are chosen to be canonical conjugate 

variables. 

In classical mechanics, a generalized coordinate which 

does not appear in the Hamiltonian is termed cyclic or 

ignorable. It follows directly from Hamilton's eguations 

that the conjugate momentum of a cyclic coordinate is 

conserved and that the time derivative of a cyclic coordinate 

is independent of the coordinate itself. Since it is always 

possible to choose conserved momenta to describe free-flight 

motion, it follows that can be chosen to be cyclic, thus 

allowing to be interchanged with 8/9^^ in Eg. (2.1-27). A 

nontrivial example of this is afforded by consideration of 

symmetric top molecules. In this case, ((). is comprised of 
—"i 

the Euler angles, a (angle about the space-fixed z-axis) and y 

(angle about the body-fixed z-axis). The Euler angle, g, 

(angle about the line of nodes) is free-flight invariant. 

Explicit expressions for the rotational Hamiltonian, &, and y 

are as follows(37), 

H = "2^(3^ + à^(sinB)^) + ̂ (Y + ôcomB)^ (2.1-28) 
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- L coa^ 
-5 21—_ (2.1-29) 

(sin6)^ 

i-Y - lyCOSg 
^ _ cose [-St J—7-1 (2.1-30) 
3 I,(sin6)^ 

where and are momenta conjugate to a and y ,  and and 

Ig are the two principal moments of inertia. One notes imme

diately that à and y are independent of a and y. 

If one substitutes Eg. (2.1-27) into the first term of 

Eq. (2.1-26)f interchanges the time derivatives and partial 

differential operators and integrates over 0^, one obtains, 

11^'^ + { /àiidt2/dX2/^£2 
^ (2.1-31) 

Here, the singlet distribution function has been renormalized 

with respect to integration over position and free-flight 

invariants (i.e. n = where n is the number 

density). The constant, B, is defined as (e.g. for a 

2ïï 27r - ~ ' 
symmetric top, B = J da J dy = 4n^). It appears in Eg. 

0 0 
(2.1-31) as a consequence of the fact that the orientational 

parameters, and , are now not included in the 

normalization of the distribution function. 
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Following Curtiss and Dahler(38), one can construct a 

set of curvilinear coordinates appropriate to the relative 

position space by means of a family of surfaces which are 

geometrically similar to o _ and are scaled by a non-
I  f  ^  

negative dimensionless parameter, p. Ey definition, a 
1 f 2 

corresponds to p equal to unity. If the scaling parameter is 

regarded as a function of positional and internal coordi

nates, can be given the following form as a limit of a 

continuous function. 

Z = lim (2.1-32) 

If one substitutes Eg. (2.1-32) into Eg. (2.1-26), one 

obtains, 

If'" + { 
® (2.1-33) 

The integral over r^ can be restricted to a spherical volume 

of radius, a, about molecule 1, such that the volume 

encompasses the region R . Since the "cutoff" function 

* 1 , 2  
has been expressed as the limit of a continuous function, the 

divergence theorem can be applied to the first term. One 

obtains the result. 
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0 - lim{a_/ai dlJdx, / (2.1-3») 
B unit 

sphere 

Here, df denotes a differential solid angle taken over the 

spherical surface. 

Recalling the definition of the Poisson bracket and 

making use of the result just obtained, one can modify Eg. 

(2.1-33) as fellows. 

II + { = lim{-îj 

(2.1-35) 

As before, the "dot above" denotes a total time derivative 

taken within the context of free-flight dynamics. The dif

ferential volume element dr^ takes the following form in 

terms of the previously introduced curvilinear coordinates, 

dTj « P^dp(_Ç*k)dA^ (2.1-36) 
1 , 2  

Here, ̂  is defined as a vector from the center of mass of 

molecule 1 to some point, Q, on the surface, a . In the 
1 / 2  

same context, K is the outwardly oriented unit vector normal 

to a. „ at Q, and dA^ is a differential area element taken 
'  1 , 2  

as 2 about Q. Equation (2.1-36) reduces to the usual 
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spherical polar form if o. _ is chosen to be a unit sphere. 
1 / Z 

In this case the scaling factor, p, reduces to the usual 

radial coordinate. Curtiss and Dahler (38) have given a 

rigorous justification of Eg. (2.1-36) for all convex choices 

" 1 . 2 -

Substitution of Eg. (2.1-36) into Eg. (2.1-35) followed 

fay integration over p, yields the result. 

11'" + ( = 
(2.1-37) 

d ^ 2 / ^ l 2 ^  2 P -5 ^^^ ^ ^ ^ f 2 ̂ ^ 

where one notes that 

limvp^ ^e ^ = 6(p-l) (2.1-38) 

Eguation (2.1-38) is easily established by the argument line. 

00 V 00 00 _ V 
Jdp(limvp^"1e"P )F(p) = lim I /dpvp^" e"^ 
0 v-»-® V-*» j=0 0 

-^F(p')| = F(1){lim Jdpvp^'U'P^} = 
^ ' dp'^ 'p' = 1 v-^-oo 0 (2.1-39) 

F(1)lim{-e"P T) = F(l) 
0 

Here, it is assumed that the arbitrary function, F(p), can be 
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written as a Taylor series and that the sum, integral, and 

limit can be arbitrarily permuted. 

a relative position, r, can be expressed in terms of the 

curvilinear coordinates as follows, 

r = (2.1-40) 

If one applies the differential operator, { to 

both sides of Eg. (2.1-40), one obtains, 

— I —2 

Here, and Og denote internal coordinates of molecule 1 and 

molecule 2. Contraction of both sides of Eq. (2.1-41) with 

the unit vector, k, yields the result, 

pU-k) » (V - Pii'lè- (2.1-42) 

If one recalls that p= unity on g, substitution of Eg. 

(2.1-42) into Eg. (2.1-37) yields the form of Boltzmann's 

equation obtained by Hoffman and Oahler(36). 

11^^^ +{ I ^ ± j d ± 2 J ^ X 2  
B 

(2.1-43) 

{ / dA k-gs'^'f'"fl" + / dA 

K.2>o '-2 ' R.a«) 

3 Ç 9 Ç 
where g = v - & ••5= - à • and is readily interpreted as 

- - 9ot^ - aotg 
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the relative velocity of an incident molecule l i ,e. molecule 

2) with respect to the surface, o . The surface integral 
1 / 2  

has been divided into precollisiooal (jc«g>0) and 

postcoliisional (#'g<0) contributions and it has been noted 

( 2 )  
that S ' is the identity on the precollisional region of a 

1 

If o is chosen to be a sphere of radius, b (i.e. 
1 / ̂  max 

maximum impact parameter) , and if one allows b to be 
max-

indefinitely large, then one obtains the usual form of 

Boltzmann's equation (2), 

H + { = 
(2. 1-44) 

Here, v appears because ç is independent of ot^ and 0^2 

the definitions of the impact parameter, b, and the angle,' e 

are the usual ones given by Chapman and Cowling(39) or 

Hirschfelder, Curtiss and Bird(40). 

It has been tacitly assumed throughout this development 

that 2 is differentiable, that is to say that a unique 

tangent plane can be found for each point on a . Hoffman 
I  f  ^  

and Dahler (36) have assumed the stronger condition of 

convexity in their development. For a convex a the 
1 f 2 

surface area element takes the form, 

dA„ =  d k S „  (k) (2.1-45) 
* 1 , 2  * 1 , 2  
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where âjc denotes a differential change in the unit surface 

normal (i. e. die is a differential solid angle) and S (K) 
1 ,2 

is the Jacobian deterninant which describes the topological 

deformation of the unit sphere into the surface 

In conclusion, the Boltzmann equation can be written in 

terms of a classical collision kernel, 0, 

•M (r,;j[, ,t) • 

® I a;a2>f ' ' ' (£'X; -1) f ' " (r 

where the collision kernel has the form, 

^ ; dA^ k-a6(Xi-Xj)MX2-Xi) + 
B k «gsO 1,2 

(2.1-47) 

k.g>0 1,2 

The classical scattering operator, is taken to act only 

on and and not and This expression behaves 

like a matrix element of a differential operator in a coordi

nate representation. 

Finally, for the sake of completeness, the collision 

kernel can be related to the specific transition rate defined 

by Hoffman and Oabler(36), 
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(2.1-48) 

Here, denotes the specific transition rate of 

the ccllisional process, x"» X" X » X • 
•^1 -^2 -^1 ^2 

2.2. A Derivation of the ialdmann-Snider Equation 

As noted in the Introduction, the Waldaann-Snider equa

tion was developed in crdec to treat dilute gas systems com

prised of molecules with degenerate quantum states. Like the 

Boltzmann equation, it is of an irreversible nature and has a 

closed form with respect to which is a singlet Wigner 

distribution function for the translational degrees of 

freedom and a singlet density matrix for the internal degrees 

of freedom. 

The Wigner distribution function was proposed in 

1932(41) as a real-valued form for a statistical mechanical 

phase space distribution function compatible with the 

Heisenberg Uncertainty Principle. It is a function on the 

classical phase space which gives the correct quantum 

mechanical ensemble averages, but unlike the classical dis

tribution function, it is not everywhere nonnegative (note 

that an ensemble average, <S>, is given in quantum mechanics 
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by a trace of the operator, Â, with the density matrix, p, 

<5> = Tr (Xp) ). Thus, one is cautioned that the Higner dis

tribution function should not be interpreted in a pointwise 

fashion as probability density, but rather in a coarser sense 

as probability per ainimum uncertainty phase volume. Howev

er, one should note that the Higner distribution function 

becomes the phase space distribution function in the corre

spondence limit. For more information on these interesting 

matters, one is directed to the work of Smith(42). 

As with classical kinetic theory, one begins the devel

opment with an equation describing the total temporal evolu

tion of the state of a gas composed of N-molecules (i^e^ the 

von Neumann equation). Again, for convenience, consideration 

will be limited to a single component. The N-molecule densi

ty matrix, p , is the quantal analog of the N-mclecule 

classical distribution function, f^^^, and satisfies the 

equation, 

||""+ - 0 <2-2-1) 

Here, is the N-molecule Hamiltonian operator and square 

brackets denote the operator ccmmutator. Ihe expression 

given is the guantal analog of the Liouville equation and 

follows directly from the quantum mechanical equation of 

motion (Schrodinger's equation) in the same way that the 

Liouville equation follows from the classical equations of 
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motion (Hamilton's equations). 

The reduced density matrix, can be defined in 

terms of traces over degrees of freedom associated with the 

molecules labeled fcy s+1,s+2,...N. This is in exact analogy 

to the integration over the degrees of freedom of molecules 

labeled by s+1,s+2,,..N in the definition of f^®) (çf\ Eg, 

(2.1-5)). Thus, the reduced density matrix is defined by the 

expression, 

= (N-sW Tr-'-Tr p"" (2-2-2) 
^ ' 6+1 N 

where is normalized to (i.e. has trace equal to) N! in 

analogy to the classical case. Taking the trace of Eg. 

(2.2-1) over the last N-s molecules yields the quantum 

mechanical BBGKY hierarchy of which a general member has the 

form, 

iR||^^^+ [ ,H(G)]p(s) = _ 2 Tr[ (2.2-3) 

i-1 s+1 

Here, the notation, [ ,?], defines a linear superoperator 

(i.e. a tetradic operator) which when acting on an operator, 

$, results in the operator commutator, [$,?]. Again, as in 

the classical case, it is assumed that the intermclecular 

interaction potential is pairwise additive. 
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IhoSf the s-molecule Haoiltonian operator is, 

= I (-5- + 3^5) (2,2-5) 
i« 1 

Here, is the kinetic energy operator appropriate to the 

internal degrees of freedom of the i^^ mciecule. 

In analogy to the classical development, the first mem

ber of the BBGKY hierarchy gives the total time rate of 

change of the singlet density matrix as a functional of the 

pair density matrix. This is explicit in the expression, 

I = -Tr[ (2.2-6) 

If the gas is dilute, the second member of the quantum 

mechanical BBGKY hierarchy can be approximated by a two par

ticle von Neumann equation near the interaction region <i.e. 

quantum mechanical Liouville equation). It has the form, 

[ ,H(2)]p(2) « 0 (2.2-7) 

As in the classical case, this expression can be formally in

tegrated to obtain the result, 

pC) (t) . (t-t;) I .fi"']p<2) (f) (2.2-8) 
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In this expression, is taken to be a linear operator and 
^ ( 2 ) 

g(i/R) (t-t^) [ ,H ] a linear soperoperator which can Jse 

written in terms of a direct product of linear operators. To 

do this, one considers the two particle Schrodinger equation, 

-iR^|Y> + H(2)|Y> * 0 (2.2-9) 

where jW> is the exact state vector for a two-molecule 

system. The formal solution of Eg. (2.2-9) is, 

|f(t)> « (t-t^)H^ ^ |V (t^) > (2.2-10) 

-  ( 2 )  
Here, (t-t^)!! is a linear operator which acts on a 

state vector. The density matrix can be written in a dyadic 

form, Ip^lipj^(t)><i|j^(t) 1, where lij^^(t)> is an eigenket of, p^2) 

and is a solution of the pair time dependent Schrodinger 

equation. The scalar, p^, is the real-valued eigenvalue of 

and can be given a physical interpretation as the prob

ability of state i}p^it)>. One obtains the following result 

f icm Eg. (2. 2-8) , 

By comparison of Eg. (2.2-11) and Eg. (2.2-8), one is able to 

make the connection. 
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(i/n)(t-t^)[ .8(2)] 

(2.2-12) 
-(i/h) (t-t/)8(2j 

here the symbol, &, implies a direct product o£ two linear 

operators to obtain a superoperator* If I, Ê, and C repre

sent arbitrary linear operators, the action of the direct 

product superoperator, Â®B, on C is given by 

Assuming Boltzmann statistics, the assumption of molecu

lar chaos in its quantum mechanical form states that for tj 

sufficiently remote in the past, can fce written in the 

factorized form, 

p(2)(t^;) . (t^)p2^^ (t;) (2.2-13) 

In Eg. (2.2-13), and (t^) are singlet density 

matrices describing the state of molecule 1 and molecule 2 at 

a time, t^, respectively. Again, one notes that in a dilute 

gas regime t = t' = t" can be found so that conditions im-
^  c o o  

plied by Egs. (2.2-8) and (2.2-13) are satisfied. One 

obtains the analog of Eq. (2.1-14) which is. 

,e(i/n>(t-t^)S"' (2.2-14) 
O 2 O 
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The formal solution of Eg. (2.2-5), analogous to the 

classical result is 

j|t,e(i/R) (f 

t 

where J(t') is the right hand side of Eg. (2.2-6). As be

fore, the first term oja the right arises from collisionless 

molecular motion and the last term contains the effect of in

teractions. Here, the superoperators have been written as 

direct products of operators by using the integral form of 

the free flight single molecule Schrodinger equation and the 

definition of 0. If one ignores the effects of collisions 

(for exactly the same reasons as in the classical case), it 

is possible to obtain the analog of Eg. (2.1-16), 

* û(2)(tQ)p(1)(t)p(*)(t)ù(2)(t^)t (2.2-16) 

Again, one defines as and the opera

tor 0(^)(t ) is of the form(%3). 

(t ) « 
® (2.2-17) 
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a(2) 
(i/Ii) (tQ-t)H^*' -(i/R) (t^-t) (K|"+K^") 

e ' o 

and the superoperatoc analog of the classical operator 

defined by Eg. (2.1-17) is Q (t^)0O . 

If t^ is allowed to tend toward the remote past in 

(t^) the Jauch-Mcller (ttU) wave operator, results. 

In formal guantuin mechanical scattering theory, the wave op

erator, is defined by. 

= 

lim e'i/A) <'V^' <^,"*+«^"',2.2-18) 

t -»-qF«> 
o 

If one substitutes Eg. (2.2-16) into Eg. (2.2-5) and takes 

the limit as t^ tends toward -<», one obtains the expression, 

infl'" + [ . -Trl 

This expression is the exact guantal analog of Eg. (2.1-19). 

When comparing Eg. (2,1-19) and Eg. (2.2-19) one notes that 

the action of on is analogous to the 

action of on The interpretation is 

complicated, however, by the fact that classical phase 

trajectories are nonexistent guantally. 

The action of the Jauch-Moller wave operators can be 

summarized by the expressions. 
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^(-)x = , ^(±)fy(±) g, X (2.2-20) 

Here, % denotes the noninteractive wavefunction and Y 

denotes a continuum scattering wavefunction. Physically, the 

wave operator, transforms the wavefunction, X' describ

ing interactionless molecular moticn (e^ai plane wave) to a 

continuum scattering wavefunction, with identical in

coming boundary conditions. Similarly, transforms the 

interactionless wavefunction, x» tc a continuum wavefunction, 

, with identical outgoing boundary conditions. The 

adjoint operators reverse the sense of the transformations. 

(The plus and minus superscripts specify incoming and 

outgoing plane wave boundary conditions respectively.) 

From Eys. (2.2-20) it might first appear that the Jauch-

Moller wave operators are unitary. However, this is not the 

case if the intermclecular potential admits bound states 

since, 

=  0  ( 2 . 2 - 2 1 )  

when 0^")^ operates on a bound state wavefunction, (j) (in the 

sense of a weak mathematical limit). By expanding any arbi

trary function in a complete set of interactionless wavefunc-

tions (i.e. {%}) and also in a complete set of interacting 

vavefunctions <i.e. {ij,} and {(j)}) and by making use of Eqs. 
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(2.2-20) and (2.2-21), the wave operators are seen to satisfy 

the following expressions, 

= Î (2.2-22) 

j5(±)j^(±)t = Y _ ^ (2.2-23) 

where the operator. A, is a projection operator for the bound 

states, {(j)}. The operator. A, is known as the unitary defect 

of the wave operators. If the intermolecular potential is 

purely repulsive, there are no bound states, and thus A = 0. 

A complete dynamical description of collision processes 

is given quantally by matrix elements cf the scattering oper

ator (i.e. S-matrix). The S-raatrix is defined in terms of 

the wave operators 2y the expression, 

§ = (2.2-24) 

The scattering operator transforms the incoming 

(precollisional) asymptotic wavefuncticn into the outgoing 

(postccllisional) asymptotic wavefunction. It follows from 

Eqs. (2.2-22) and (2.2-^3) that the relationship, 

. 0 (2.2-25) 

is valid. This insures the unitarity of the S-matrix, That 

is, 

§+§ = SS^ = T (2.2-26) 
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An S-matrix element between asymptotic states can be inter

preted physically as the probability amplitude of a 

collisionally induced transition from an incident state writ

ten as a ket, to a final state written as a bra. The squared 

modulus of an S-matrix element is just the probability of 

such a transition. This interpretation makes it desirable to 

write the right hand side of Eg. (2.2-19) in terms of the 

scattering operator rather than the Jauch-Moller wave opera

tors. 

In order to carry out this program, it is necessary to 

use some results from the formal theory of scattering. The 

continuum wave functions W and are exact solutions of 

the two molecule Schrodinger equation which can be written in 

the integrated form, 

ïi" = Xe + (2.2-27) 

which is known as the Lippman-Schwinger equation (28). Here 

is an asymptotic state with energy eigenvalue, E. The opera

tor, G^-), is the Green's function for noninteractive scat-
£i 

tering and is defined by the expression, 

= lim[E - - ajl) ± ie]"' (2.2-28) 

If one uses contour integration to evaluate a given matrix 

element of G^-), it is clear that it can be written as a 
E 
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Cauchy principal value integral plus an explicit essential 

singularity, in which case takes the form, 

T ni6(E-K(1)-Kj1)) (2.2-29) 

Using the definition of the Jauch-Mcller wave operators, and 

the Lippman-Schwinger equation one obtains an operator ex

pression, 

= Î + (2.2-30) 

which is appropriate to action on an asymptotic state with 

energy eigenvalue, E. 

The transition operator (i.e. T-matrix) is defined by 

the operator equation, 

(2.2-31) 

In order to express the quantal collision dyaamics in a form 

which corresponds to the classical cclJisicn dynamics, it is 

necessary to find an explicit relationship between f and §. 

With this objective in mind, one can easily establish the 

following identity. 

"o 
(2.2-32) 
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l2^(2) Z2^:(2) i.Kt2) 

(V,2® + e ^ ° ̂ 12^® 

Here, is defined as It fellows from Eqs, 

(2.2-18), (2.2-24), and (2.2-32) that the S-matrix can be 

written as. 

00 

An infinite series expression for S is obtained by successive 

substitution of Eg, (2.2-32) into Eg. (2.2-33) followed by 

evaluation of the integrals. After lengthy manipulation, the 

fallowing result is obtained, 

S = Î - 2ni6(E)V _ I (G^-^V ) (2.2-34) 
'2j»0 ® 

The operator series appearing on the right hand side is imme

diately recognizable as the well-known Born expansion of the 

T-matrix which is easily obtained from Egs. (2.2-30) and 

(2.2-31) by iterative substitution. Thus, the S-matrix is 

related to the forward scattering T-matrix by the identity, 

S » î - 2Triô(E)î (2.2-35) 

Hereafter, f will refer to the forward scattering T-matrix, 



48 

and the notation 6{E)T is explicity defined by the ex

pression, 

<m|6(E)T|n> = 6(E^ - E^)<m|T|n> (2,2-36) 

(E^ and are total energies of states |m> and |n>). The 

scattering operator has nonzero matrix elements only between 

states which have the same constants of motion (i.e. § is en

ergy diagonal, total angular momentum diagonal, etc.). An 

expression for the T-matrix in terms of the S-matrix can be 

obtained by defining operators, S and T, as follows, 

S = /dES + T = /dEÎ. (2,2-37) 

Here, is comprised of off-shell (i.e,, nondiagonal in 

total energy) T-matrix elements, the integral is taken over 

all possible energy eigenvalues, and the inverse relations 

for S and Î are, 

S = 6(E)S, 1 = 6(E)T . (2,2-38) 

From these definitions one easily obtains, 

T = -^(S - T) (2,2-39) 

One should note that T, and T have units of energy and 

that S and 1 are dimensionless. 

If one combines Eg. (2.2-39) and Eg, (2.2-30), one 

obtains the result. 
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6'+' - 2lp([E-a|' '-Kj' ' ]- ')(5-T) + |(S+î) (2.2-ltO) 

Here, E is the energy eigenvalue of the asymptotic state 

acted on by "S-T. Using the identities given in Egs. (2.2-39) 

and (2.2-40) allows one to simplify Eg. (2.2-19) in terms of 

the scattering operator. This yields the following expres

sion. 

: ( 1 )  
ip 
at 

5|(§---)p<"p^"(5'^-T)P+ + i(s-T)p'"p^"(s'^+î) + (2.2-41) 

|.(S+î)p<"p^'>(S+-T)} 

where Fg is the self-adjoint operator E([E- k | ^ ^ ^ .  

In order to simplify Eg. (2.2-41) further, one notes 

that the density matrix appropriate to the description of a 

single dilute gas molecule can be expressed in terms of sta

tionary states as follows, 

p'" - n 
nn ' 

One should note that satisfies the lowest order eguation 

of the BBGKY hierarchy and that the state vector, Jg^> is a 

solution of the single molecule time independent schrodinger 

equation. Here t^ is an arbitrary time origin. For a dilute 
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gas, the assumption of molecular chaos implies that the sin

glet density matrix is taken as temporally constant on the 

collisional time scale. Thus, the quantity, 

be replaced in Eg. (2.2-42) by its collisional time scale av

erage, ,. The resulting expression is averaged over an 

interval, Tg-T^, which is long compared to the mean duration 

of a ccllision Tgoii# but is short compared to the mean in

terval between collisions, that is to say, 

>> iT.-r, (2.:-«3) 

^coll« L 

From this it follows that is approximately proportional 

to (S (E^-E^,) (iigi it is approximately energy diagonal) . 

Ignoring energy nondiagonalities, one obtains the 

result. 

If + = ^ri((5-T)8(§ +Î) + 

(S+î)«(S' -T))p"'5j"j (2.2-l l l t) 

The first two terms cancel each other since application of 

approximate energy diagonality gives that Êg(S-?)p(1)pj1)(sf-T) 

is equivalent to (3^1)p(1)p(1)(sf-T)P in Eg. (2.2-41). This 
6 E 

expression can now be written in terms of a collision 
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superoperator in analogy to Eq. (2.1-46), 

||"'+ = TrSpO'p'^' (2.2-«5) 

The ccllision superopecator is of the form, 

Ô- ^(S0§ - T®î) (2.2-46) 

Due to the energy diagonality of the bar and tilde are 

interchangeable. Ihus the simple form of 0 follows directly 

from Eg. (3.2-44). The structure of the guantal collision 

superoperator bears an obvious similarity to the structure of 

the classical collision kernel given in Eq. (2.1-47). 

Before proceeding to the final stages of the derivation 

of the Haldmann-Snider equation, it is desirable to introduce 

a "double bra-ket" notation, Jn[n']^>>, which denotes a 

direct product basis appropriate to a Hilbert space in which 

the usual linear self-adjoint operators of quantum mechanics 

appear as vectors. A matrix element in this representation 

appears as a tetradic form (superoperator) in the usual 

formulation of quantum mechanics. For example, if 

superoperator. A, has a direct product form, B0£, it follows 

that a superoperator matrix element, <<m [m* ] ̂| ÂIn [n* ] ̂», 

equals a product of ordinary matrix elements, that is 

<m|B|n><n'|C^|m'>. The lower case letters, m and n, are used 

here as collective symbols for the appropriate quantum num
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bers. 

Continuing with the derivation, one next expresses Eg. 

(2.2-15) in a momentum representation. If l£j> is a state 

appropriate to the molecule with definite momentum, pj, 

and definite internal state given by a set of quantum num

bers, cjj. Eg. (2.2-45) can be written out explicitly as 

follows. 

a,o»/aio-\+_ orOx/ofoM 

Now one applies Signer's îourier transform(41) which ex

changes one of the momentum variables (indices) of a matrix 

element for a coordinate variable (i.e., transforms to a 

phase space representation). For a matrix element of an ar

bitrary operator, a, in a momentum representation, 

<o(W{Â|r,£}|a'> = •£ (2.2-48) 

Here, w  denotes the Wigner transform, that is, W{ Â |r,j2} 

denotes the transformed image of operator, S. The inverse 

transform is. 
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<^1Â|°,>= ̂  ;dr<G |w{Â|r, } |o 

The image, W{Â|-}, is a function of the classical phase vari

ables, r and £, in the translational degrees of freedom but 

remains a quantum mechanical operator in the internal degrees 

of freedom. All quantum mechanical operators can be 

transformed in this way. For operators that correspond to a 

simple function of coordinates or momenta, but not both 

together, the image function-operator, is identical 

to the classical form. For operators which are functions of 

both position and momentum, the image function-operator is a 

power series in K, with the lowest term having the classical 

form. 

If Â is the singlet density matrix, then W{S|-} is a 

singlet fiigner phase space distribution function in the 

translational degrees of freedom, tut remains a singlet den

sity matrix in the internal degrees of freedom. Ihe wigner 

distribution function is defined as follows, 

'  (r.E't) - -!j<o|w(p'" |r,E,t}|o'> (2.2-50) 
h 

where the factor, h"^, is included to give f^^^, (£»£*t) units 

of probability per phase space volume. Using this expression 

and its inverse in Eg. (2.2-44) yields the result. 
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. I /ûE}dE^d£yd£5/d£;e^2i/n)£| .£, /drle" ' ̂Ei'-Ef ) 
2 ^ 1 ̂ 2 

Of a 
î"5 

^j!a{ (Z:l '^(Ei+Ri) 't) (2.2-51) 

Here refers to the classical singlet Haoiltonian function 

for the translational degrees of freedom and is a 

matrix element of the guantal singlet Hamiltooian operator 

for the internal degrees of freedom. The notation defined by 

the expression, 

= Î (-1)3(") (li ft)] (2.2-52) 
j=0 : Sg" ] 3r: " Sr" 3 @2^ 

occurs in the wigner transform of the commutator bracket, 

[A,E], and m^y he thought of a-s an extension of the defini

tion of the Poisson bracket to order, n. 

As in the classical development of Boltzmann's equation, 

one assumes that there is very little error introduced by re
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placing with the product, 

^a-o|^-r One can immediately integrate 

over r|, r^, £^, and Making use of the resulting delta 

functions, one obtains the following result, 

I/<lEîdE,/dEje'2^''«"Ei-H.l' (2.2-53) 

"2 °{°i 
°i°5 

E,+El EzlErEl E^" EÎESIEÎEJ/ 

Here, terms involving { , for n>1 have heen ignored. 

This is rigorous for the kinetic contribution to because 

the translational kinetic energy has the explicit form, p^/2M, 

which gives rise cnly to the usual Poisson bracket. It 

is only ai proximate for the external potential energy contri-

tllT 
bution to . However, it should be a very good approxima

tion because on a molecular scale external potentials can be 

expected to have a very slow spatial variation. 

Any binary collision process must conserve the overall 

momentum, which means that the scattering operator is 

rigorously diagonal in this quantity* Applying this 
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conservation property to the definition of the collision 

superoperator results in the expression. 

« *1*2  *1*2 

EiE2 E1E2 

6(£i+E2-Ei-E2)«^ 
°]°2 t 

*1*2 

£12 

Of O  
© 

Ei2 

i 

Eh 

G jo 
(2.2-54) 

» 

Here, the notation £ . . (and £'. .) denotes the relative momen-
3.3 13 

turn between the i^^ and molecules. That is. 

&iiEi (2.2-55) 

where M . and M . are the masses of molecule i and molecule j 1 ] 
and p.. is the reduced mass of the pair, N.M./(M.+M.). Sui-

1] i J X 3 

stitution of Eg. (2.2-54) into Eg. (2.2-53) and integration 

over and yields the Waldmann-Snider equation(26,27) , 

df 
It 

(I) 

,int int -(1) 

°1°2 
h^I/dEjI I/dE,-/aE2«a,a'«E, 

oL a i a l  2 2 *-l 

*T*2 

El 2 
» 

« (E, +E2-EÎ -Ej) t^o'E'E!'t) f J (r ,E2, t) (2.2-56) 
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which is the quantum mechanical analog of the classical 

Bcltznann equation. 

It is possible to write Eg. (2.2-56) in a form which 

very closely resembles the classical expression. To do this, 

one first defines the superoperator, 0, 

I = -  T@T) 
n 

(2.2-57) 

Ose of Eg. (2.2-37) allows the tetradic matrix element of 0 

appearing in Eg, (2.2-56) to be written in terms of 0, 

« *1*2 
El 2 

ajc-

£i2 

0-

^51 
0,02 

£i2 

1 ^ ^ « P \ E ) P ^ 2  £i2 

» " 
E î 2 i  

o,oj 

EîJ Eî5 

I X 

» 
(2. 2-58) 

where p^g is a unit vector parallel to (p^g P (E) eguals 

[2yi-,(E-E ]^. (E^^^*) denotes the energy of the inter-

nal quantum states, o^ and o^.) The integral over E can be 

changed to an integral over p as follows. 

« *1*2 
El 2 

. 
°1°2 

El 2 
*,ii s  

44 

Eli 

» = 

(2.2-59) 
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0,0-
/dp-B- «1 2 

12  PP 12 

G{*2 

El 2 Efs 
» 

where use has been made of the fact that dE/dp is 

It is possible to introduce an integration over definite 

impact parameter into Eg. (2.2-59) by means of the standard 

partial wave expansion. (/^ denotes a spherical Bessel func

tion and Y™ a spherical harmonic), 

= l,7rj I (2.2-60) 

£=0 m*B-£ 

which gives. 

|£> « I I (p) |p£in> 
J^mQ %n=-^ 

(2.2-61) 

If the impact parameter, b, is defined as. 

b = 
P 

( 2 . 2 - 6 2 )  

then |pZm> is related to Jb£m> via the expression (note that 

|db/dpl = R[Z(&+1)]^/p2) , 

|ptm> = [*^4 ̂ +1) |b6d> (2.2-63) 

This gives the result. 
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lE> = I 
£ssO 

I " Y™*(p) |bZm> (2.2-64) 

If one substitutes Eg. (2.2-64) into Eg. (2.2-59), regards p 

-1, h\ as a function of b and £ (i.e. p = Pj^£ = b lr[£(£+1) ] ), and 

changes the integration variable from p to b, one obtains. 

« *1 *2  

Hi 2 

h ' i  
'lêl 

" H  II 
E i 2 j  Eî5 ,E l 5 i  

i t 1 
Z=0 m=-Z 

ajojl 

El 2 J ' Eî2 

(2.2-65) 

EÎ5 

An expression for the inner product of a state of definite 

impact parameter and definite linear momentum is easily ob

tained from Eg. (2.2-64), 

<b£»|E-> = àdii£u|miiï^*(g.,6(b - (2.2-66) 

Osing closure and Eg. (2.2-66), the tetradic matrix element 

appearing on the right hand side of Eg. (2.2-65) is rewritten 

entirely in a momentum representation, 

.3 

« *1*2 

&12 

*i*2 
^12 '<1 212 / 0 ^«0 ^12 iiZ(I+1) 

(2.2-67) 
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a  . a .  

Here, use has keen made of the identity. 

/"l'ai 0}CJ\ 

EI2 '®'EÎ2 ^Ei2 
» 

where ?£(•••) is the Z order Legendre polyncmial, and is 

^hlPhV 

The tetradic matrix element can be expressed in terms of 

a phase space representation by means of Eg. (2.2-18), 

0,0. olai t = 0,0* ofoi t . 

«4 E^i2 I®Ieî5 EÎ5 »'r7l^^\^s.2 

«o,02(o;op'''|w^{h51r;,%(E^ + E^j) |rJ,%(E,2 + Eî5>' 

Here, W {•"|*"|~*} is an extension of the earlier notation (cf^ 

Eg. (2.2-48)) and denotes the "squared" Higner transform 

which is defined for a general superoperator, G, as follows. 

,2,2 
«Ei + E\ (E2 + 

(2.2-70) 

£1 - Ei (£2 - Elz )"^» e<2i/R) (E', 'E^+Pg 'E2) 

It is consistent with the previous localization assumption 
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(energy diagonality) to replace both r' and r' in W {h81'" |-} 
1 6 

with an asymptotic position, which is exclusively a func

tion of the impact parameter. This procedure allows one to 

evaluate the integrals over r' and r", 
- 1  - 2  

ajo'^ +|0|*1*2 

2I2 
1 

' H Î 5  

a'a' t 

(2.2-71) 

^<0,0^ (a;a • ) +1 w^{hS to-a • ) +» 

If one substitutes this result into Eg. (2,2-67) and notes 

that P^(1) = 1, one obtains. 

«% » = 

Jbab2i.|2l ,2.2-72) 

«a^a2(aja^)"'"lw^{hê|r^,gjg^} lo^a2(o}aJ)'''» *(PbfPi 2"&î5) 

where A(p^^) equals ir^(2£+1)/b^ and |v) is the magnitude of 

the relative velocity (i.e. v = £^2^^ 12^* 

If one compares Eg. (2.2-56) to Eg. (2.1- 4 6 ) ,  it is 

evident that the guantal analog of the collision kernel is 

obtained by combining h^W with the center cf mass momentum 

diagonality. Furthermore, from Egs. (2.2-72), (2.2-57), 

(2.2-56), and (2.1-47), it follows that the guantal analog of 

is W^{S®S}6 (here g denotes the center of mass momen-
= p p 
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turn diagonality). Using the form of 0 supplied by Eg. 

(2.2-72) f one finds that the quanta! collision kernel is, 

a.o\ 0,0' a<ai o.oi » * -

< i l  Ê 2  l ® l  =  2 % / b d b | v |  z  % A < p 2 f ) P b , ; a p b f  
1=0 

1 l o ^ a ^ ( a f a ^ ) ^ > 2 .  2 - 7 3 )  

- Ei2)}a(E:i + 22 - 2i - £5) 

In the usual case, translational motion is treated classi-

2 
cally, and thus the sum over £ becomes an integral over p^^ 

then becomes independent of b). 

The Waidmann-Snider equation can be written in a form 

analogous to Eg. (2.1-44), 

II'" + ^ . 
(2.2-74) 

Tr /d£2/bdb2TTlv| (W^{S«S}ôp -
int 0 ^ 

2 

Here, the tilde denotes an operator on the internal state 

Tr 
domain and i^t denotes a trace taken over the internal states 

of molecule 2. Because of the guantal nature of the internal 

states, (e.g. , rotational angular momentum and orientation 

cannot be simultaneously specified) the orientational inte

grals do not appear and the integral over' e trivially reduces 

to 2Tr, 
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Finally/ for the sake of completeness, it should be 

noted that W was originally expressed ty Waldmann and Snider 

in terms of the T-matrix, 

© » ̂ (ilGT"^ - iT®l + 2n6(E)T8T^) (2.2-75) 

If this form is substituted into Eg. (2.2-56) and only 

nondegenerate systems are considered, one obtains, 

MEI+Ej - E;-E2ia(E-E')f^]'(r,E;,tlf^!'(r,E4,t}. (2.2-76) 
1 2 

Here, n denotes a guantum number appropriate to molecular in 

ternal energy states and h denotes total energy 

(translational + internal). 

One easily obtains the following operator identity from 

Eqs. (2.2-29), (2,2-30), and (2.2-31), 

j(-) _ j(±)t _ = 
E E 

(2.2-77) 

-2niT(*)6(E-K(2))T(-)+ 

which results in the well-known optical theorem if matrix el 

ements of both sides are taken between energy diagonal 
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states. Substitution of Eg. (2.2-77) into Eg. (2.2-76) 

yields the Wang Chang-Uhlenbeck eguaticn(25). 

(£,#E^ ft) + {ff] ̂ ^ f t) } = 

/aEaî iTl >l=a(E,.Ea-p;-Ei. 

2 1 2 

6(E-E')] h^{f^l^ {£,£',,t)f^!Nr,£^,t) -

f,. ^ ^ (2.2-78) 

The quantity in the square brackets is a quantal expression 

for the specific transition rate, w ( «I ) , (cf. Eg. (2.1-48)) 

which is appropriate to the collisional process. 

2.3. Formal Correspondences and Symmetry Properties 

of the Generalized Collision Kernel 

In the preceding two sections of this chapter, the 

classical Boltzmann equation. Eg.(2.1-44) and the Waldmann-

Snider equation. Eg. (2.2-74), and its singlet density matrix 

counterpart. Eg. (2.2-45), which describe the temporal behav

ior of dilute gas under appropriate conditions have been de

veloped. In the light of demonstrated structural analogies 

between them, it comes as no surprise that one formal expres

sion can be written which embodies all. The purpose of this 

kind of approach is to reveal the underlying similarity of 
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the classical and yuantal kinetic equations without the cum

bersome mathematical machinery associated with the detailed 

dynamics. With this in mind, one can represent these three 

equations by a single expression as follcws, 

/dl '/d2/d2'<112><12 |0 h '2'XI ' |f><2' |f> 

Here, |f> stands for the singlet distribution function-

density matrix and can be thought of as a vector in a 

function-operator space, (j refers to molecular labels 1 

or 2). This is analogous to the usual construction of state 

vectors found in quantum mechanics. Basis vectors (function-

operators) appropriate to Hj are denoted in Eq. (2,3-1) by 

the symbols |j> and |j*>. This basis is assumed to be com

plete. The symbol, /dj» denotes integration-summation over a 

Continuous-discrete set of indices which label the basis 

vectors and the symbol, I, is the multiplicative identity-

operator. Finally, {{f,H^gives the implicit time deriv

ative of the singlet distribution function-density matrix. 

It is identified quantally as an operator commutator, 

and classically as a Poisson bracket. 

The collision operator-superoperator, g, can be regarded 

as an operator on a direct product function-operator space, 

Hj2 ~ follows that a complete basis appropriate 
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to is given by the direct products of bases for 

Hg. Thus, in Eg. (2.3-1), basis functions of are denoted 

by |12> = 11>12>. 

The function operator space, H. (cr # _), is defined to 

2 
have an L norm with regard to functions and a Hilbert-

Schmidt norm with regard to operators. This space is larger 

than necessary since any admissable distribution "state 

vector" must, in fact, converge under the l' norm and/or 

belong to the trace class of operators {i^e^ any physically 

realistic distribution has a finite normalization), In the 

present notation one obtains: 

N^-/dl<llf> (2.3-2) 

where is a scalar constant (conventionally is the local 

molecular number density of the gas, n, however other 

normalizations ace possible). The advantage of using the 

larger L^Hilbert-Schmidt norm instead of the lVtrace class 

norm lies in the fact that the former admits a well-defined 

inner product, finally, for future reference, one should 

note that the function-operator space appropriate to the 

usual Chapman-Enskog kinetic theory differs from as the 

result of the inclusion of a weight in the norm. 

It is well-known that physically realistic Hamiltonian 

function-operators are invariant with respect to any rotation 

of the external reference frame. Thus, the classical scat-



67 

taring operator, and the guantal scattering 

superoperator, are also rotationally invariant. As a 

consequence, G, exhibits rotational invariance which can he 

formalized in the following expression. 

G = R 6 (2.3-3) 
# # m 

Here, R is the unitary rotation operator defined on 

Similarly, if an isolated molecular system is composed 

of nonchiral molecules, it is mechanically invariant with re

spect to inversion through an arbitrary symmetry center or 

reflection through an arbitrary plane. Again, and S0S"^ 

exhibit this invariance and G obeys the expression, 

0 = P G (2.3-4) 
u m m 

In this case, P is the unitary parity operator defined on 

It can further be noted that P (unlike R) is a self-inverse 

operator (i.e. P = P^). 

The last symmetry principle to be considered in this 

discussion is that of time reversal invariance (microscopic 

reversibility). It is particularly important since it pro

vides the proof of the Onsager-Casimir reciprocity relations. 

The effect of time reversal is to replace or 

with its adjoint, that is or This is easily seen 

if one reverses tjie sense of time in the defining equations. 

Eg. (2.1-18) and Eg. (2.2-24). This yields the result. 
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0+ = T 0 T"^ (2.3-5) 
s s s s 

where T is the unitary time reversal operator defined on 
St 1 6 

As with parity, time reversal is also self-inverse (i^e^, T = 

T ). Thus, one can write, 

T G = T (2.3-6) 

which implies that the product operators, T0 and 07, are 

o 
self-adjoint under the L /Hilbert-Schmidt norm. 

2.4. Ihe Macroscopic Conservation Equations and the H-theorem 

The average value of single molecule physical parameters 

can be computed via the expression, 

<A> = <A|f> - /dt<A|l><l|f> (2.4-1) 

Here, A is a time independent function-operator corresponding 

to an arbitrary physical observable and <A> is its average 

value in an ensemble described by f. From the explicit form 

of <AJ1> and <f|1>. it follows that <A> is an average over a 

function. A, and a probability distribution function and/or a 

trace of an operator product of Â with a density matrix. An 

equation of change for <A> is obtained by contracting A into 

both sides of Ey. (2.3-1) and symmetrizing with respect to 

molecular labeling. It has the form. 
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<aI^ > » l0|ff> (2.4-2) 

where the total time derivative is defined by, 

^ ̂  (2.1-3) 

The definition of quantities appearing on the right hand side 

of Eg. (2.4-2) are, 

<l2tA{2)+A^2)> = <l|A><2|l> + <l|l><2|A> (2.4-4) 

and 

<12|ff> = <l|f><2|f> (2.4-5) 

Since â is not an explicit function of time, one obtains the 

result, 

|^<A> * + A(2)|G|ff> (2.4-6) 

In the case that A represents a sunmationally invariant 

physical parameter, then + A^) can be regarded as an ei

genvector of 0 with a zero eigenvalue. This results directly 

from the conservation properties implicit in or S0S^. 

Thus, one obtains a macroscopic conservation equation for 

<A>, 

|^<A> + » 0 (2.4-7) 
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Specific examples of Eg. (2.4-7) occur if A is mass, linear 

momentum or kinetic energy in which case one obtains the 

hydrodynamic equations of continuity, motion and energy bal

ance. 

The H-theorem gives a quantitative statement of the ir

reversible behavior of the kinetic equation applicable to the 

temporal description of a dilute gas. In particular, the H-

function is defined by the expression (£n is the natural 

logarithm) , 

H * <fnf|f> = /d1<enf |lXl |f> (2.4-8) 

Here, H is a real-valued function of time. The total time 

derivative of H is written as follows, 

^ = /d1<£nf+l|l>^l |f> (2.4-9) 

Osing Eq. (2.3-1) one can express the time derivative of H in 

terms of the collision kernel, 

H - + <l|e|ff> (2.4-10) 

Here, the right hand side has been symmetrized with respect 

to molecular labeling by making use of the identity, 

<12Unff> - <1 |^nf><2|l> + <1 |l><2Unf> (2.4-11) 

It should be noted that a function of an operator (e.g. Znt 
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where f is the density matrix) can be defined by transforming 

the operator to a diagonal representation via unitary 

conjugation, applying the function to the diagonal elements 

(i.e. eigenvalues), and then transforming back to the origi

nal representation. With this in mind, it is clear that Eg, 

(2.4-11) follows for a product of singlet distribution 

function-density matrices from the elementary definition of 

the logarithm of a product. Finally, one obtains the follow

ing expression from Eg. (2.4-10), 

II » l<fnff|0|ff> (2.4-12) 

since I is a zero eigenvector of 0 (and 0^) . 
« S 

In the classical case, it is easily shown (using inte

gration by parts) that can be regarded as a unitary op

erator. Quantally, an analogous property can be established 

for S0S^ directly from the unitarity of the usual S-matrix. 

If the symbol, S, is a generalized notation for and/or 

SOS^ (i.e. S is unitary on H,-) and if A(2) and repre-
S 12 

sent arbitrary g vectors (i.e. classical functions and/or 

guantum mechanical operators), then one can write, 

<A(2)|0|B(2)> . /dT<A^^h§-î (2.4-13) 

Here, the symbol, I, denotes the g identity operator and 

the symbol, Jdt, denotes the appropriate integrations over 

impact parameter or relative tcanslational energy 
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and orientational parameters (if appropriate). If one arbi

trarily adds zero (i.e. l<ff|0|I>) to the right hand side of 

Eg, (2,4-12) and substitutes Eg. (2.4-13), one obtains, 

dH 
at = 

^JdT[<tnS(ff) |ff> - <£ff |ff> - <S(ff) |l> + <ff |I>](2.4-14) 

The operator-superoperator, S, can be brought into the argu

ment of the natural logarithm due to the fact that it can be 

written as the limit of a product of exponential forms. 

If ff is a positive real and/cr positive definite self-

adjoint function-operator, it follows that S(ff) is also pos-
S 

itive real and/or positive definite self-adjoint. Thus, one 

can write, 

rîH 1 _ A . X • 
# = 4/aT ̂  B..[^n(^) - 1 + (2.'.-i5) 

where and A. are components of ff and S (ff), respectively. 

Classically, and A* are functional values (i^e^ non-

negative real numbers) of and and 

guantally, they are eigenvalues (ive^^ again nonnegative real 

n u m b e r s )  o f ,  a n d  T h e  q u a n t i t y , c a n  

be identified classically as a delta function, 6, awi 

guantally as a transition probability, |S,.j2. an immediate 

consequence of Eg. (2.4-15) and the fact that 

^nx - 1 + J is nonnegative for all real positive values of x. 
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it follows that, 

II < 0 (2.4-16) 

Thus, H is shown to be a nonincreasing real function of time. 

It can be shown that for any dilute gas system which has 

a finite average energy, the H-function must be bounded in 

time from below. This means that as such a system evolves 

temporally, it relaxes to a steady state. The time deriva

tive of the H-function vanishes. Thus, in eguilifcrium, Zxif 

must he a linear combination of summationally invariant 

physical observables. These are mass, linear momentum and 

total energy. The hydrodynamic parameters, mass density, p, 

(this should not be confused with density matrix) streaming 

velocity, u, and thermodynamic temperature are given by the 

ensemble averages, 

p » <I>M (2.4-17) 

^ = P~'<£> (2.4-18) 

T« (M/pC^) <p^/2M + (2.4-19) 

Here, M is molecular mass, £ is the linear momentum function 

operator, is the internal kinetic energy function opera

tor, and is the constant volume heat capacity per mole

cule. These ensemble averages can be used to fix the coeffi

cients of the linear combination of summational invariants 



appropriate to This yields the usual Maxwellian 

form. 

2(eg) ^ n g-(1/2MkT) (£-Mu)/kT (2.4-20) 

Here, Z is the molecular canonical ensemble partition func

tion, k is Boltzmann's constant, and n is the number density 

which is p/M, From tie above definition of the macroscopic 

parameters, it is clear that the singlet distribution 

function-operator can be regarded as being normalized to the 

number density. This will be assumed hereafter in this work. 

The definition of entropy in equilibrium statistical me

chanics is. 

This definition is readily extended for the dilute gas case 

under consideration to. 

where f is now not necessarily the equilibrium distribution 

function-operator. Thus, the H-theorem can be interpreted as 

a generalization of the Second Law of Thermodynamics (i,e. 

entropy can never decrease) in that the irreversible relaxa

tion of a molecular fluid to equilibrium is characterized by 

entropy production. 

(2.4-21) 

S = -kH = -k<^nf1f> (2.4-22) 
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3. THE KINETIC THEORY 

3.1. Linearization of the Kinetic Equation 

In the preceding chapter, it was shown that the 

Maldmann-Snider equation and the Boltzmann equation both 

could be formally expressed by Eq. (2.3-1). Furthermore, 

this formulation is easily generalized to mixtures by 

assigning a species index (hereafter denoted by a Greek 

letter) to the basis vectors of Hj (j = 1 or 2). Thus, one 

can generalize Eq, (2.3-1) as follows, 

^1a|f> + <1o|{{f,H(1)}}> = 

I f d l  • /d2/d2'<I l2a><la2B |eh 'a2'g><1 'a |f><2'3 |f>(3.1-1) 
e 

where explicit use has been made of the fact that molecules 

do not react during collisions (i^e^ <1a2310|1'a•2•3'> = 

<1a23l0i1•a2«3>6 ,6 Q,). The distribution function-
Z 0(06 p p 

operator, f (hereafter referred to simply as the "distribu

tion") can be thought of as a vector in a "composition space" 

which has components of the form, 

= /dl<lo|f> (3.1-2) 

It is clear from Eq, (3.1-2) that f can be thought of as a 

vector in a subspace, H? (of the full space, f/^) , which is 

appropriate to species, a-
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As stated in the Introduction, within the scope of this 

work, transport processes are described by a linear 

phenomenology. Accordingly, a suitable linearized form of 

Eg. (3.1-1) can be obtained via application of the standard 

Chapman-Enskog method. The method is based on the postulate 

that the spatial and temporal dependence of the distribution 

applicable to a dilute gas near equilibrium is implicitly 

contained in the hydrodynamic fields (i.^^ density, streaming 

velocity, and temperature) . 

Heuristically, one can gain insight into the approach of 

a dilute gas system to equilibrium by imagining that a volume 

of gas is divided up into cells, each of which has a volume 

that is negligible macroscopically but is of sufficient size 

microscopically so as to contain a large number of molecules. 

The cells can be imagined to have cyclic boundary conditions 

so that the system satisfies the usual mechanical 

conservation relations. Clearly, the only time dependence of 

the distribution in this hypothetical situation is due solely 

to molecular collisions. These have the effect of bringing 

the distribtuion rapidly (i.e. within just a few collision 

times) to a Maxwellian form (cf. Eq. (2.4-21)). 

The idealized situation just described is approximated 

by a real system for which the hydrodynamic field gradients 

are small (i.e. the system is near equilibrium) . In such a 

system, any given molecule suffers a large number of 
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collisions during a time interval sufficiently long so as to 

allow it to drift an appreciable distance due to random 

motion of the molecules. Thus, the time dependence of the 

distribution is dominated by the gradient independent contri

bution due to collisions. Accordingly, the time dependence 

of the distribution due to the existence of a hydiodynamic 

field gradient (1^6-. a macroscopic flux) can be viewed as a 

small perturbation on the collisional time dependence. 

One carries through with the Chapman-Enskog method by 

defining a dimensionless perturbation parameter, e, which 

"marks" any time dependence that is due to a gradient of a 

hydrodynamic field. Thus, one can write Eg. (3.1-3) as 

follows, 

j;/dl •/d2/d2'<I l26><la2B |e|l 'a2'G><1 •o|f><2'B|f> (3.1-3) 
6 

Here, the streaming term (i.e. the translaticnal part cf 

<1a|{{f,H^^^}}>) is marked by e since it describes the time 

rate of change of the distribution due to macroscopic forces. 

One should also note that is defined as a weak external 

force (e.q. gravitational) which has an appreciable effect 

only on the hydrodynamic motion of the system (i^e^ molecular 

trajectories between collisions are not appreciably affected 

by - The term <1ai{{f»H^'^^}}> contains the effect of 

externally applied fields on internal molecular motion (in 
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the present work, rotational). In contrast to the effect of 

^ext translational motion, an applied field can signifi

cantly alter internal motion during an intercollisional in

terval. (This is the source of the Senftleben-Beenakker 

effects,) Thus, {{f,H^"^}} is conveniently grouped with the 

collisional term (i.e. not "marked" by e) since its size 

depends only on the strength of the applied field and can 

become of the same order as the collisional term. 

To apply the Chafman-Enskog method, the following series 

expansions of f and 9/3t are proposed, 

f = + ... (3.1-4) 

3 ^0 2 ̂2 
3t = + G 2% + ... (3.1-5) 

where, f^^^ and 9^/9t denote contributions to f and a/at 

which are of total power k in the macroscopic gradient opera

tor (i.e. k^^ order in the hydrodynamic field gradients). If 

one substitutes Egs. (3.1-4) and (3.1-5) into Eg- (3,1-3) and 

eguates terms of like power in e» one obtains a hierarchy of 

equations of the form, 

^ J(f(k-k'),f(k')) (3.1-6) 

k'=0 

where. 
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p(k) _ WO for k = 0) 

k=0 
I m'f'k-k'-n + 

_k'=0 (3.1-7) 

v-^ f'k' + f (k) (for k / 0) 

and, 

J(f(k'),f(k)) = II /dT/d2/d2'<l|2B> 
ag 

<23 je 11'a2'6><1'a|f(k')><2'g|f(k)> (3,1-8) 

Equations (3.1-6), (3,1-7) and (3.1-8) are expressions of the 

standard Bnskog expansion applicable to quantum mechanical as 

well as classical kinetic theory. 

For the sake of completeness, it can be noted here that 

the Chapman-Enskog method fails in the case of a highly 

ratified gas (i.e., the Knudsen regime) in which molecules 

travel a large distance between collisions. 

For dilute gas systems in a linear phenomenological 

regime, the perturbation in e needs only to be carried to 

first order. With this in mind, one can define a distortion 

function-operator, (j), (hereafter termed simply as the "dis

tortion") as follows, 

(3.1-9) 

This general symmetrized form is due to Snider(43). However, 
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in the present work the simpler definition, 

(3.1-10) 

is adopted. To justify this in anticipation of later devel

opments, it is sufficient to state here that for a dilute 

gas, ^ is a function of space-fixed components of the 

translational and angular momenta. In contrast, f^®^ is a 

function of the total energy and thus commutes with <}>. 

(Classically, of course, commutation is not an issue.) 

From Egs. (3.1-6) and (3.1-10) one obtains the following 

zeroth and first order expressions, 

0 = + j(f(0),f(0)) (3.1-11) 

V  «  

+ J(f(0)*,f(0)) + J(f(0),f(0)$) (3.1-12) 

where for notational economy the superscript has been dropped 

from V, Equation (3.1-12) can be written in a explicitly 

linear form by means of the linear operators, F and r # which 

are defined by, 

[l$> = (3.1-13) 

r^*> = -|j(f(°)*,f(0))> - |j(f(°),f(°)*)> (3.1-14) 

Thus, one obtains the expression, 

I c c  — F  I ^  —  r  I ( 3 . 1 — 1 5 )  
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where F describes the effect of an applied external field and 

r describes the effect of collisions. These two operators 

can be combined to form a generalized linear collision opera

tor, A = -F-r, such that, 
S IV » 

\V> « AU> (3. 1-16) 
= 

The solution of Eq. (3»1-16) provides theoretical expressions 

appropriate to linear transport coefficients, 

3,2. The Zeroth Order Approximation to the Distribution 

and the General Force-Flux Relations 

In order to solve Eq, (3.1-16), a solution to Eq. 

(3,1-11) must be found. To do this, one first notes that Eg. 

(3.1-11) can be considered as an approximation of the more 

rigorous expression, 

0 = (3.2-1) 

where is defined in terms of a collision kernel, 0 , which 
sF 

rigorously includes the effect of an applied field on the 

collision dynamics (J_ and 0_ replace J and 0 in Eg. 
c ssi a 

(3,1-18)), One can establish an H-theorem for © using the 
sF 

same line of argument as in Section 2.4. It follows that, 

0 = (3-2-2) 
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where the a-species component of (cf. Eg. (3.1-2) is. 

= n e-'E-»„u)V2M 3.T ^ 

[2nM^kT]"3/2 2^ i t  

Here, is the contribution to the partition function for 

species a due to internal degrees of freedom. It is clear 

that f(^) satisfies the equation, 

0 = (3.2-4) 

since it is an analytic function of internal degrees of 

freedom exclusively through . Hence, f(0) satisfies Eg. 

(3-2-1), 

It is clear that in the absence of an applied field, 

-(E-M„U)2/2M kT -K^"^/kT 

= "a® ro.w .mi-3/2 " »int 
l27rM^kTl Zôo 

where. 

0 = J(f(°),f^°)) (3-2-6) 

Here, fi^^ and denote the field free limits of f  (0) 
0 Oa 

respectively. If it is valid to neglect the effect of 

applied fields on the collision dynamics, then it follows 

that can be replaced by f^®^ in Eg. (3.2-6). Thus, 
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is the general solution of Eg. (3.1-11). 

It will be shown explicitly in the subsequent develop-

iniz 
ment that the particular choice of H appropriate to this 

work has the property that {{}} vanishes. Under 

this condition, fg^^ is also a solution of Eg. (3.1-11). 

Noting this, f^^^ and fg^^ will be treated hereafter in this 

work as interchangeable and the five guantities, n , u , u , ^ y 
11 , and T (u , u , and u are cartesian components of u) will 
z X y z 

be taken as adjustable parameters depending on position and 

time. 

The local equilibrium approximation to the distribution 

is obtained if the following auxiliary conditions are 

imposed, 

« <l|fjO)> (3.2-7) 

-  "  =  I ( 3 . 2 - 8 )  

T = I(naC^*))"1<p2/2MQ + = (3.2-9) 

where the right hand sides of these expressions by definition 

correspond to local values of the number density for species 

a, the streaming velocity and the thermodynamic temperature, 

respectively. Here, is the molecular constant volume 

heat capacity for species The auxiliary conditions imply 

that the local values of the hydrodynamic fields are com-
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pletely determined by the zeroth order approximation tc the 

distribution and hence contain no contributions from the dis

tortion. 

Due to the collisional conservation of summational 

invariants, the operator. A, which appears in Eg. (3.1-16) is 

singular. This has been previously noted for the full 

collision kernel (i.e. 0 has zero eigenvectors corresponding 

to the summational invariants). It is well-known that a 

singular matrix equation can be termed as "consistent" or 

"inconsistent" which means, respectively, that solutions 

either do or do not exist. For a linear inhomogeneous matrix 

equation, consistency is guaranteed if all solutions of the 

corresponding homogeneous adjoint equation are orthogonal to 

the inhomogeneity. Thus, if one considers the expression, 

0 = A^|*> (3.2-10) 

it follows that Eq- (3.1-16) is consistent if and only if, 

<0|V> = 0 (3.2-11) 

where |ijj> represents an arbitrary solution vector of the ho

mogeneous adjoint equation. Equation (3.2-10) is satisfied 

if i j j  is identified as molecular mass, linear momentum, or  

kinetic energy (or any linear combination of these quanti

ties). If one evaluates Eq. (3.2-11) explicitly for each of 

the summational invariants, one obtains the expressions. 



an 

""at" = -Pgl'H (3,2-12) 

= -i vnkT + (3,2-13) 

3 

^4^= _nkT 7.y (3.2-14) 
at 

Here, is the mass density (p^ = n^M^) for species a, n and 

p are total number and mass densities for the mixture 

(u = I no, P = ^Pn) / and C is defined as the mclecular heat 
3 6 ^ —-

capacity for the mixture (C^ = Ihe differential 

operator, is the zeroth order substantial derivative, 

^0 ^0 
at - TE + U'l (3.2-15) 

These orthogonality conditions are immediately recognizable 

as the Euler or ideal hydrodynamic equations which means that 

n^^, u, and T must evolve temporally according to 

nondissipative hydrodynamics. This is, of course, consistent 

with their identification as macroscopic fields. 

The peculiar velocity of a molecule of component a is 

defined by the expression. 

C = p/M - u (3.2-16) 
"-A ft — 

This expression can be substituted directly into Eg. (3.1-7) 

to obtain. 
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h = + (ï+Sa)-(|î- - I 

"1^ -*l& 

y(ext) 

By using the identities 1 = g (0)^^(0)^-1 d^nf^^) = 

Eg. (3.2-17) can be rewritten as follows. 

2o = + (u+Ça); (&I -ZH'ic , ) 

T,(ext) 

where, from Eg, (3.2-5), £nf^^^ egnals, 

= fnn. - |tnT - «nz|f - M^c2/2kT 

- K^^^/kT + constants 

(3.2-18) 

(3,2-19) 

^0 3 
Dpon application of the differential operators, ~ and 

, ICgj 
— , to Eg. (3.2-19), one obtains the following results. 

- + m -1'^'® 

M C ^  
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f e - .  -  f e - c  •  S " - ' " • " "  

L ./-f(0) _ V 
a - - kT^ (3.2-22) 

Now, one notes that the molecular partition function for in

ternal degrees of freedom is an explicit function of the tem

perature. Thus, use of the chain rule allows the gradient of 

^nZgg^ to be written in terms of the temperature gradient. 

and the quantity, S^nZj^^/BT can be evaluated by the standard 

formula of equilibrium statistical mechanics. 

gint ^ (3.2-24) 

Here, is the canonical ensemble average of the energy 

per molecule of a, which is due to internal degrees of 

freedom. 

One can substitute Egs. (3.2-20), (3.2-21), (3-2-22), 

and (3.2-24) into Eg. (3.2-18) and use the Euler hydrodynamic 
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equations to eliminate the zeroth order time derivatives, 

thus obtaining, 

2a = + ESSaSo'IS. + + 
V 

where E is defined as, 
a 

(3.2-25) 

M , pint 

+ k# - I- EÏ 

The vector, d^, is defined as the diffusion driving force for 

component a. It has the explicit form, 

3a = ZG") + '5S5£<"^'> 

o n x(ext) (3.^-27) 

nkT^p 4 M ) 
P (X 

The three terms which comprise d^ can be given the following 

physical interpretations. The first term is the gradient of 

the mole fraction and corresponds to the driving force of or

dinary diffusion as defined by Pick's First Law. The second 

term describes a situation in which the hydrostatic pressure 

is not uniform. In such a case, lighter molecules tend to 

migrate preferentially toward regions of lew pressure. The 

third term describes a situation in which external forces 

acting on molecules of different species are unequal. This 
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implies that if the external forces are constant, the compo

nents tend to become stratified. 

The inhomogenity defined by Eq. (3.1-7) has been 

expressed explicity by Eg. (3,2-25) in terms of the 

thermodynamic forces, v«u, vu, v^nT and d^. The components 

of vu and v£nT are linearly independent; however, the 

diffusion forces form a linearly dependent set of vectors 

since. 

Jd = 0 
J-a (3.2-28) 

This expression follows directly from the definitions cf 

total number and mass densities as sums of number and mass 

densities of each component. 

It is desirable to remove the linear dependence inherent 

in Eg. (3.2-25) due to the diffusion forces. This is accom

plished by using Eg. (3.2-28) to formally add zero to d^. 

Sa -

Here, the factor p^/p has been included explicitly, because 

it combines with factors appearing in Eg- (3.2-25) in a par

ticularly desirable way upon substitution of Eg. (3.2-29) 

into Eg. (3.2-25). This will be discussed in more detail 

later. If one carries out this substitution, one obtains. 



69 

l)v.u + 2{W W -A) :vu + 
—. —• —<X*~vl j = —. 

(E^-l) [2fcT/M„]''WinnT + 
B p 

p. d. (3.2-30) 

where the dimensiorless peculiar velocity is defined fay the 

expression. 

and 0 denotes the identity tensor. The velocity gradient, 

V u, has been written explicitly in terms of its irreducible 

tation for the symmetric traceless component of a general 

second rank tensor, G.) 

It should be noted before proceeding that the method in 

which the linear dependence of the diffusion forces was 

eliminated will lead naturally to linear force-flux relations 

which explicitly exhibit the Onsager-Casimir reciprocity re

lations. Physically, this is a particularly satisfying 

result. However, this method of removing the linear depen

dence is not unigue, but is rather, one of an infinite number 

of methods. In particular, another useful way of removing 

the linear dependence is embodied in the expression. 

- [M/2kT] (3,2-31) 

components, (The symbol, G, is adopted here as a uniform no-

3a " 
(3. 2-32) 
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If Eq, (3.2-32) is substituted into Eq, (3.2-25) (instead of 

Eq. (3.2-29)), one obtains the force-flux relations which 

correspond to the usual formulation of Pick's First Law (but 

do not explicitly exhibit the Onsager-Casimir relations). 

If one substitutes Eq. (3.2-30) into Eq- (3.1-16) and 

takes note that the thermodynamic forces are linearly inde

pendent and that A is a linear operator, it follows that the 

distortion can be cast into the form. 

the distortion due to the presence of specific thermodynamic 

forces. If one substitutes Eq. (3.2-33) into Eq. (3.1-16), 

one obtains. 

(j) = DV'U + é + [2kT]̂ Â v£nT - n%C (3.2-33) 

Here, the symbols _A, B^, D, and ç specify contributions to 

= A|D> (3,2-34) 

(3.2-35) 

(3.2-36) 

(3.2-37) 

where the iuhomogeneities are defined. 

(3.2-38) 



91 

2 *  =  ( 3 . 2 - 3 9 )  

ï'*' = l2M^.kTl'\(^ - 6„g) (3.2-41) 

Thus, the evaluation of the distortion and hence the 

transport coefficients, is a well-posed problem which can be 

carried out by the construction of A in an appropriate basis 

followed by the solution of the resulting matrix equation 

(i.e. Eqs. (3.2-34) through (3.2-37)). The mechanics of this 

procedure are discussed in detail in Sections 3.4 and 3.5. 

In a dilute gas, the flux vector of seme physical 

quantity, x^, for species a, is given by the ensemble aver

age, <x C >, which is to say, 
^ a—a 

<x C > = <f|x C > (3.2-42) 
a-a ' a-a 

If the distribution is expanded via the Chapman-Enskog 

method, then any flux vector can be also written in terms of 

the expansion for which a general term of order k has the 

form, 

(3.2-43) 

The description of a linear phenomenology requires a knowl
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edge of <x C > only through first order. Thus, 
Ot~"Ot 

nondissipative (k = 0) and dissipative (k = 1) contributions 

can be written as follows, 

(3.2-Uit) 

<x^C^><" - <4,|f<'"xo.Ça> (3.2-45) 

where I and (p represent the identity and the distortion, re

spectively. Since f^^) is of a Maxwellian form (çf. Eg. 

(3.2-51)), any nondissipative flux vector, <XaCa>(0), 

vanishes unless x is an odd function of Ç (e.g. the 

" " ~ To) 
nondissipative partial pressure tensor, <M^Cg^C^> = n^kTO; 

nondissipative mass and heat flux vectors vanish). 

Linear force-flux relations can be established by sub

stitution of X equal to M C , M and (je. the 
-a ' a-a a 2 a a a 

summational invariants) into Eg. (3.2-45) to obtain expres

sions for the dissipative pressure tensor, component 

mass flux vector, J , and heat flux vector, n. One obtains, 
—a ^ 

a - - kT<()) (3.2-46) 

(f 

12^ " > (3.2-47) 

i = " [2k V]jpS (3.2-48) 
(X 

where use has been made of the explicit form of the 

inhoDogeneities (i^e^. Eg. (3.2-38) through (3.2-41)) and the 
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auxiliary conditions (i.e.. Eg. (3.2-7), (3.2-8), and 

(3,2-9)). One should note that there is the same number of 

force-flux pairs and hydrodynamic fields. Derivation of the 

force-flux relations is completed by substitution of Sgs. 

(3.2-33) through (3.2-37) into the preceding expressions(45), 

V  = - [2k^T^]^_y£nT*<:A|A ij> - kOV *u:<J|A 1B> -

kT_v.u<D|A|B> + nKT][âfl. •<ç^°'^|a||> 
= Q p a  -  = 

TT = - [2k^T^]^v&nT'<A|A |D> - kTv*u:<| 1A 1D> -

d f 

kT_v-u<D|A|D> + nkT^~-<£^°''|A |d> 
" o^a " 

(3.2-49) 

(3. 2-50) 

Jg = [2kT]^v^nT.<A|^|;(^)> + + (3.2-5 1) 

d 
Z'U<D|A|;(^)> - |A|ç(G)> 

a ' ^ a  

Q  »  - 2 k ^ T ^ v £ n T - < A | A l A >  -  [ 2 k ^ T ^ ] 1 A  1 A >  
" (3.2-52) 

-[2k^T^]'^v.u<DlA|^ + [2k^T^]^n^ 
a 

Here, the tensor, has been decomposed into a symmetric 

traceless component, £, and a trace, tt , where ̂  ^ 

(for dilute gases ̂  has no antisymmetric component). 

Equations (3,2-49) through (3.2-52) are the linear 

phenomenological relationships, as given generally in Eg. 
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(1-1), which are appropriate for dilute gases- If the matrix 

elements of are transposed so that the Egs, (3.2-49) 

through (3.2-52) are written as conventional matrix equa

tions, one can identify the phenomenological coefficients ex

plicitly as matrix elements of A^/ 

^ij = (3.2-53) 

where (f)^ is the part of the distortion characteristic of the 

force-flux pair 

3.3. Diffusion, Thermal Conduction, Soret and Dufour Effects 

in a Binary Mixture of atoms and Diatoms 

The formalism developed in Chapter 2 and the first two 

sections of this chapter is completely general to mixtures of 

any number of components with arbitrary internal degrees of 

freedom and in the presence of an applied field. Here, and 

for the remainder of this work, consideration is limited to a 

binary mixture of a monatomic species, a, and a diatomic spe

cies (more generally, linear), 3, in the presence of a mag

netic field. The diatom will be treated kinematically as a 

rigid rotor. 

A monatom-diatom-magnetic field system exhibits 

invariance with respect to coordinate inversion. Thus, the 

collision operator. A, commutes with parity, P, implying that 
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A cannot couple distortions which have different parity ei

genvalues. Immediately, from Egs. (3.2-51) and (3,2-52) one 

obtains, 

J&a.<._(Y) I A I r(Y)' 
= f2kT] '^^nT'<A|A i; ^ - n— <; 

-Ï 
J = [2kT]^^ZnT'<A|A > -

, (3.3-1) 

Pe -

q  = -2k^T^v£nT-<A|A |a> + [2k^T^]^n~-<ç |A |A> + 
Pa - - - (3.3-2) 

I2k^T^]^n|^-<ç^®^ |A |A> 
3 

The phenomenological coefficients appear here as second rank 

tensors. One can write Egs- (3.3-1) and (3.3-2) 

conventionally in terms of the thermal conductivity, x, 

m 
thermal diffusion (Soret) coefficient, D , diffusive thermal 

T 
(Dofour) coefficient, and diffusion coefficient, ,, as 

follows, 

4 = 4 4 ^ ^ SyG-a* (3-3-J) 

1= (3.3-4, 
a e 

where A# D^, K^, and ^ , have the explicit definition, 
= 5=Y ar**y ='y "Y ' 

X = 2(kT)^<A|A"^|^ (3.3-5) 

Dy = -[2kT]%<;/Y)|Af|A> (3.3-6) 
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= -[2kT]%<A|A"|ç/Y)> 

(3.3-8) 

(3.3-7) 

Digressing momentarily, it is interesting to note that the 

usual binary diffusion coefficient, D ,, is related to n 
' ssy y • ' =y 

as follows. 

Matzen has given a detailed discussion of the general rela

tionship between £yyi and iii a multiccmponent mixture 

in his dissertation (45). 

Explicit relationships (i.e. the Onsager-Casimir rela

tions (19,20,21) ) can be found between some of the previously 

mentioned phenoraenclogical coefficients as a consequence of 

microscopic reversibility. If one notes first that F = -F^ 

due to its definition as a Poisson bracket or an operator 

commutator, and if is taken as proportional to the 

field, then the identity. 

is easily established via Egs. (2.3-5), (3.1-8), and 

(3.1-16). Here, T is the time reversal operator, 2 -I-S the 
* 

applied field, and t is the time reversal eigenvalue of F. 

If one notes that the thermal and diffusive distortions have 

= -nkT(— (3.3-9) 

T A (F) = A"''(TF) T (3.3-10) 
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the same time reversal eigenvalue. Eg. (3,3-10) immediately 

yields, 

£ y - £ y  Cl.J-ll) 

fiyY** ^y'y (3.3-12) 

where H denotes an applied magnetic field. 

In addition to the Onsager-Casimir relations, further 

relationships between the diffusion and thermal diffusion co

efficients can be found as a consequence of the linear depen

dence of the diffusion forces. One finds fccm Egs. (3.2-37) 

and (3,2-41) that vanishes in general (i.e. ç = 

( 6 )  ^  
in the present case). Thus, it follows that, 

T , T (3.3-13) 
«a *8 

and, 

2oa ° ° ̂ee ° "''eo o.a-nt) 

Again digressing, it is interesting to note that Egs. 

(3,3-13) and (3.3-9) yield the result, 

£.8 - (3.3-15, 

where D . = D_ and C and vanish. 
=a3 =3a =aa =33 

In conclusion, it is clear from the preceding develop

ment that the phenomenological coefficients describing ordi
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nary diffusion, the Soret effect, the Eufour effect and heat 

conduction are all embodied in the three second rank tensor 

quantities, X, gg, and In the absence of an applied 

m 
field, the isotropy of space requires that X, D^r and are 

all proportional to the isotropic second rank tensor, U. 

However, the application of a field destroys three dimension

al spatial isotropy although one still observes two dimen

sional isotropy in a plane perpendicular to the direction of 

the field, K (R = H/|H|). If T is adopted as a general nota

tion for X, D^, or , in the presence of a field it takes 
— —p —ap 

the form, 

T = Tj^(jy-kic) + Tjjkk + T^p(Gxg) (3.3-15) 

where T^, and are scalars. Specifically, and T|| 

describe transport which is, respectively, perpendicular and 

parallel to the field direction. The "transverse" 

phenomenological coefficient, describes transport which 

is both perpendicular to the field direction and to the 

thermodynamic stress (field gradient) giving rise to the 

flux. 
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3-U- Formal Inversion of the Generalized Linear 

Collision Operator 

It follows frcm Egs. (3.3-5) through (3.3-8) that the 

T 
phenomenological coefficient/ T (i^e^ or £^g) can be 

written formally as, 

Ï = C^<F|A"'"|G> (3.4-1) 

where is a numerical coefficient and F and G are distor

tions (i^e_. in the present case. A, ç , or ç ̂ ^^ ). If use 

is made of Egs. (3.2-34) through (3,2-37) one obtains, 

T = C^<£^|G> (3.4-2) 

where is the inhomogeneity conjugate to the distortion, F 

(i.e., is tf or As stated in Section 3.2, 

the phenomenological coefficient (i.e., T) can be evaluated 

explicitly by construction of the appropriate distortion 

(iiêi/ G). However, because A is a singular operator the ex

pression (i. e. Eg- (3.1-16)), 

= A|G> (3.4-3) 

cannot be inverted directly. As stated previously, this 

singularity arises from mechanical conservation principles 

and is manifested in the fact that the summational invariants 

are zero eigenvectors of A. To remedy this, one can define 

the nonsingular operator, L, as the sum, A+A» where. 
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(J.4-4) 

Here, /t„ = Pq/2Mq + - 3kT/2 - and h = p2/2M 3  3 3 3  3  a  a a  
3kT/2, and and aj;^) are arbitrary scalar and 

tensor constants which will be specified later, and the sums 

are taken over a,and g. Thus, the nonsingularity of L is 

guaranteed by the auxiliary conditions (i.e., Egs. (3.2-7), 

(3.2-0), and (3.2-9)) which reguire that the only nonzero ei

genvalues of A must be linearly independent combinations of 

the summational invariants. Thus, an appropriate number of 

additional linearly independent conditions (one for each 

summational invariant) are provided by the auxiliary condi

tions and are combined with the singular operator. A, to con

struct the nonsingular operator, i.. It follows explicitly 

from the auxiliary conditions (i.e., gives no contribu

tion to hydrodynamic fields) and Eg. (3.1-16) that 

\ V >  -  1 | * >  (3.4-5) 

or in particular. 

l£°> - tl» (3.4-6) 

Thus, % can be written. 
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T = C^<£^jL"M£^> (3.4-7) 

where is well-defined as the inverse of L-
« » 

A formal expression for L ~ ^  can be obtained if L  is 
S â 

written as an operator sum (46), 

L = i. + W (3.U-8) 
S * 0 u 

where L .  is defined as the "spherical" contribution to I and 
s 0 s 

the remainder, W, is defined as the "nonspherical" contribu

tion. (The motivation behind these designations will become 

clear in later development.) It is assumed that L is 
fS 0 

nonsingular and thus one obtains, 

I = iô'io = lô'l - iô'ïl 

Repetitive substitution of Eg. (3.4-9) into itself yields, 

L'^ = lV I (3.4-10) 
=0 j«0 ==° 

Equation (3.4-10) is useful only if is easily constructed 

and if W can be considered as a small perturbation (in the 

"nonsphericity") on Iq (îiêi the series converges rapidly). 

It will become evident in later development that both of 

these criteria are met for cases of interest in this work. 

If one defines a dimensionless ordering parameter, ri# 

(ultimately to be set equal to unity) which marks the diatom 
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density, then L can be cleanly separated into a sum of 

operators, and which involve, respective" 

only atom-atom, atom-diatom, and diatom-diatom collisions. 

t = i"» + nt'" + 

,G 

(3.4-11) 

Likewise, the inhomogeiieity, and the distortion, G, can 

be written as power series in n (or equivalently in the 

diatom density), 

pG = pG(0) + ̂ pG(l) + ̂ 2pG(2) 

G = G^o) + nG^i) + n^G^^) + ... 

(3.4-12) 

(3.4-13) 

If one substitutes Egs. (3.4-12) and (3.4-13) into Eg. 

(3.4-11) and equates coefficients of like power in ti, one 

obtains a hierarchy of equations, 

G(j-l) 
-CL 

^(0) 
0 

-au 

0 0 

0 0 

0 ' 
, (2) 

.33 

,(1) 
saa 

i/l) 
sa3 

[(1) 
= 3a 

[(1) 
;33 

(3.4-14) 

where Eg. (3.4-14) has been written explicitly in terms of 

"composition space" components. This expression can be 

rearranged to yield. 



103 

G(j) 
— a 

—a 
0 0 

0 

s a a  
[(1) 
saB 

[(1) 
:6 a 

'
 

!
 

o
 

(3.4-15) 

where one notes that t and pG^k+1) ^11 vanish if k 

is less than zero. Thus, G has been constructed as a series 

of successive approximations of increasing power in the 

diatom density. Before proceeding, one should note that the 

operator, T, defined as 

L  =  

^(0) 
:aa 

o
 

1 

I 
o
 (3.4-16) 

can be inverted formally to obtain the inverse operator, L  ^  ,  

1-1 
'iâa''" 0 

0 
(3.4-17) 

by means of the same "nonsphericity" perturbation technique 

(cf. Egs. (3.4-8) through (3.4-10)) outlined previously 
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(where and are defined in complete analogy to L  and ft/) . 
» U « U s » 

One can write £ as a series in ri by substitution of Egs-

(3.4-12) and (3.4-13) into Eg. (3.4-2), 

00 00 3 

T = I = Cm z I  (3,4-18) 
j=0 j=0 k=0 

The utility of this kind of expansion can be appreciated in 

the analysis of the effect of interactions between unlike 

molecules (i^e., atoms and diatoms). Specifically, in

volves the effect of atom-diatom interactions but does not 

involve diatom-diatom interactions and can be written in 

terms of a limiting slope, 

= lim T) = ̂ im (3.4-19) 

Here, Xg is the diatom mole fraction, n^/n. 

To conclude this section. Eg. (3.4-18) will be applied 

specifically to the thermal conductivity, to illustrate 

its utility. Thus, one obtains. 

2 = 1  ( 3 . 4 - 2 0 )  
j-0 

Now, using simple collision number arguments, it is possibile 

to write an empirical expression for the thermal conductivity 

of an atom-diatom mixture as follows. 
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^ - ̂ a^aa + ''Wc.6 + ==^66 

where X is the atom mole fraction. The tensor quantities, 
a  

X and Aoof are pure component thermal conductivities for =aa =pp 

the a and g species, respectively, and thus involve only in

teractions between like molecules. In contrast, X „ involves 

only interactions between unlike molecules and can be viewed 

physically as the thermal conductivity of an equimolar mix

ture of a and g species for which the a'a and 3-3 interac

tions have been hypothetically "turned off" (i.e., only 

collisions occur). If one notes the definition of the mole 

fractions, X and Xq, in terms of the densities, n and n , 
Ok P 01 p 

and assumes that the atomic species is the major component, 

then one can use the geometric series to write Eg. (3.4-21) 

in the form, 

a = 4.0 + - •iaa'̂  + ''' ( 3 - ' > - 2 2 )  

Here, the marking parameter is inserted explicitly. Compari

son of this expression to Eg. (3-4-20) allows the identifica

tions, 

(3.11-23) 

P 
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Thus, the effect of unlike collisions can ba directly inves

tigated by means of the diatom density expansion. 

3.5. Expansion of the Thermal and Diffusive Distortions 

Using Irreducible Tensors, Scnine and 

Wang Chang-Ohlenbeck Polynomials 

One begins this discussion by investigating the concret 

form for the LVHilbert-Schmidt inner product appropriate to 

an atom-diatom mixture. If X and Y denote arbitrary composi 

tion vectors, the components of which are real functions of 

the free-flight invariants exclusively, then classically 

<X|Y> can be defined (36), 

<xly> = (3.5-1) 

where H and W„ are dimensionless peculiar velocities as 
-a -g 

defined by Eg. (3.2-31) and e is the unit vector parallel to 

the diatomic internuclear axis. The variables, and Og ac 

defined as, 

0^ = f^/[2IgkT]% (3.5-2) 

«2 = (3.5-3) 

where and are components of the diatomic rotational 
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angular momentum appropriate to the two thermally active 

rotational degrees of freedom and Ig is the diatomic moment 

of inertia. Because Xg + are independent of i, one can 

make a change of integration variable to obtain, 

, 2ti dfifl 
<x|ï> = ïV / 

where <p is a phase angle describing the position of the 

diatom internuclear axis relative to a space-fixed coordinate 

system. The reduced rotational angular momentum, Q , is 
—p 

defined in analogy to and 

gg = Z^/[2IgkT]t (3.5-5) 

where is the space-fixed diatom rotational angular momen-
—p 

turn. Since (j) is not a free-flight invariant. Eg. (3.5-4) 

gives, 

1 dOg 
<x|Y> . Xgïg + /aw^x„y„ (3.5-6) 

Quantally, <XJY> is defined ("Xg and îg ccmmute) , 

TT8_ « i 
<X|ï> = -^fdW Ï I <ym|x Y |ym> + to X Y (3.5-7) 

j=0 m=-j —u, « u 

2 
where 0^ equals S /2IgkT and iym> is an eigenfunction of the 

reduced rotational angular momentum magnitude and z component 

operators ^ and ^. 
P Zp 
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Digressing briefly one notes that an analytic function, 

P, of a three dimensional vector, x, can be written as the 

following series, 

P(x) = % [%](") (3.5-8) 
n=0 * 

Here, F(x) is an n-rank tensor function of the magnitude 

of X and [x] is by definition, the n-rank irreducible com

ponent of the n-ad, (x)^. The symbol, ®, denotes n succes

sive scalar contractions taken between pairs of indices 

starting with the last index (i.e. on the right) of F^^^(x) 

a n d  t h e  f i r s t  i n d e x  ( i . e .  o n  t h e  l e f t )  o f  [ x ] a n d  

proceeding in order to the first index of (x) and the 

last index of [x] . This is the so-called "adjacent" 

tensor contraction convention and will be uniformly adopted 

throughout this work unless otherwise stated. 

The irreducible tensor, [x], is symmetric and 

traceless on all pairs of indices. It is easily shown that 

the [x]are mutually orthogonal under integration over the 

angles of x. Also, the expansion given in Eg. (3.5-8) 

remains valid in the case that x is a vector operator. In 

this case, the resulting irreducible tensor operators now 

form a mutually orthogonal set under the trace operation. A 

brief discussion of the properties and form of the irreduc

ible tensors appears in Appendix A. 
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The normalized Sonine polynomials, sftx) , satisfy the 

following orthogonality condition. 

/ax xSgjb)(x,sjb')(x,e-x . (3.5-9) 

and have the explicit form. 

sf'(x) = lb!r(a+b+1)]':j^ (b-jll'jTna^j^l) 

similarly, the normalized Naag Chang-Uhlenbeck polynomials, 

S(Hq), satisfy a corresponding orthogonality condition, 
a p 

-f Ju ,252, |ym> = 6^,^, (3.5-11) 
6' bb' 

The coefficients of the Wang Chang-Uhlenbeck polynomials are 

easily determined using an appropriate orthogonalizaticn 

scheme fe.q. Schmidt orthogonalization). The zeroth and 

first order polynomials are. 

S^'>(52, 

'=8' " 

E  ( a )  
e ( a + 2 ) e ( a ) - ( e ( a + 1 ) )  

e ( a + 1 )  
e  ( a )  

(3,5-12) 

(3,5-13) 

where. 
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s(al - TT .% i <ym|g2= e"^B|ym> (î-S-l") 
y«*o me-y ^ 

It is easily shown that the correspondence limit of e(a) is 

r(a+1) from which it follows that the Sonine polynomials are 

the correspondence limit of the Wang Chang-Ohlenheck 

polynomials. 

The Sonine and/or Wang Chang-Uhlenbeck polynomials can 

be combined with irreducible tensors to construct a general 

set of basis function-operators which are given by the fol

lowing expressions, 

y^PS) = [2^r(p+3/2)]'^ (3,5-15) 

^ ( p q s t )  =  [ 2 ^ + 9 + ^  A ( p + 3 / 2 ) r ( q + 3 / 2 ) ] ^  ( 3 . 5 - 1 6 )  

(w2)S^+) («2) (P)[Og] (9) 

Here the classical form of Y^PS^t) been given. For com-
p 

parison, the quantal form can be written, 

y^Pqst) ^ [gP+S+l n%T(p+3/2)r(g+3/2)Ngt]%sj^^ 

(Gg) IWgl 'P' [fig] 

where the constant N . is a quantal correction for the 
qt 

normalization constant (e^g^ = 1/e(0)). Clearly, Ég, 
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(3.5-16) is the correspondence limit of Eg. (3,5-17). 

The preceding basis function-operators by definition, 

satisfy the following orthogonality relations. 

-W? 

and 

V'ss 

dn -Wg-Og 
w(pqst)u, (POST) e ^ ^ 

«3 3 57T~ 

(3.5-18) 

tt 
(3.5-19) 

or 

-2 -W^ 

f/aw, Z i . 
j=0 m=-y TT 

Here, is defined as a three-dimensional isotropic tensor 

of rank 2p which has the tensor symmetry of [x] on its 

first and last p indices. If one notes that the tensor,[x] 

forms a basis for an irreducible representation of the 

three-dimensional rotation group, c"^(3), it follows that the 

tensor, is the identity element in this representation 

glx] (i^ej. A(P)m[x](P) = [x]^^^). Dsing this definition of A , 

the tensor, is defined as an isotropic tensor of rank 

2(p+g) which has the tensor symmetry of the direct product 
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tensor, Ix][%], on its first p+g indices and of 

I^] [x]on its last p+g indices. It can be constructed 

from and ty "sandwiching" between the first 

and last sets of g indices of A(9). Accordingly, A(P'9) is 

the identity element of this direct product representation, 

(i.e. a/P'Sip^gEx] (9) [y;] = (x] ̂9) [^] (P) ) . The prop

erties and form of these isotropic tensors are discussed in 

Appendix B. 

A distortion, G, can be written in terms of the basis 

function-operators as fellows(17,48) , 

S» = X X slo 

where X is defined as f^®^/n . By convention, when a basis 
"Y Y Y 

function-operator, y^PQSt)^ appears to tie right of a con

traction or within a bra it will undergo a bulk transposition 

of tensor indices (iz.e^ [Wg] [flg] Ifi^] ̂ 9) (P) ). 

Equations (3.5-21) and (3.5-22) lead immediately to the 

matrix equation. 

( P Q B t ) =  
V • — 

(3.5-23) 



113 

I |i,|y(POST)^^ç^^(POST) ^ 
POST V - y y y_ 

• V 

By convention, the angular momentum indices q,t or Q,T are 

ignored if v or y, respectively, is a. Clearly, Eg. (3.5-23) 

is a concrete representation of the abstract expression Eg. 

(3.4-6). Thus, the solution of the linearized 

Boltzmann/Waldraann-Snider equation is now embodied in the 

evaluation of the matrix elements of the operator, L, and 

construction of its inverse in an irreducible tensor Sonine 

or Wang Chang-Ohlenceck polynomial representation. 

The thermal and diffusive inhomogeneities given in Egs. 

(3.2-40) and (3.2-4 1) can be written explicitly in terms of 

the basis function-operators as follows, 

° (3.5-24) 

,3.5-25, 

(3.5-26) 

0^1^) = [MgkTl^(^ - (3.5-27) 

where e* = (e (2) - (e ( 1) )^/e (0) ) . It follows from these ex

pressions, Egs. (3.3-5) through (3.3-8) and Eg. (3.1-16) that 

the phenoraenological coefficients can be written explicitly 

in terms of the coefficients of the expansion of the distcr-
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tion (i.e. Egs. (3.5-22) and (3.5-23)) ,  One obtains, 

(3.5-28) 
6 

JDg = [2Mg]%ngkTa^1°00) (3.5-29) 

&a6 = ^(a)(1000) (3.5-30) 

Where, A^Ps) is CYjPs'ld.Af, AP9*t i; <Y(Pgst)|4pa>, a»* 

Ç (a) (pqst) (pqst) I ^ (a)^^ Also, use has been made of 
— P p p— 

the auxiliary condition. 

One can conclude from Egs, (3,  5-28),  (3,5-29) and (3.5-30) 

that the complete construction of the distortion is not nec

essary since the phencnenological coefficients have been 

written explicitly in terms of just a few of its components. 

Thus, the full basis can be truncated to a manageable finite 

size with little error. To be specific, in this work the 

truncated basis consists of the seven function-operators, 

m(10), ^(11), w(1000), *(1010), m(1001), «;(1100) and u/(1200) 
' a ' ̂6 B B B B 

The first five explicitly appear in the thermal and 

diffusive inhomogeaeities and are of obvious importance. The 

remaining two are anisotropic in the rotational angular mo

mentum and are included in order for the Senftleben-BeenaJcker 
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effects to be treated. 

The task of constructing matrix elements of now 

remains. To do this, first an explicit form appropriate to 

must be given. It obviously vanishes for the atomic 

species. For the diatomic species in an applied magnetic 

field, H, one can write, 

(J.5-32) 

where Y is the gyrcmagnetic ratio of a 3 molecule. This 
p 

form is applicable in both quantum and classical mechanics 

with and being linear operators or dynamical vari

ables as is appropriate. Considering the guantal case, from 

Eg. (3.1-13) it is clear that a matrix element of f takes the 

form, 

<Yjpgst)|p|y(POST)> ^ 

^^(pgst) I f  10) i^(PQST) , 3 . 5 . 3 3 ,  

Here, is the space-fixed rotational angular momentum oper

ator. Clearly, fj^) ccmmutes with £.•H and the basis 
p —p ~ 

function-operators and thus can be taken outside of the 

commutator. Angular momentum operators obey the well-known 

commutation relation. 

[Ig'Ag-H] = -iafgXH (3.5-34) 

If one combines this expression with the following commutator 
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identity, 

[ÂB,C] = Â[B,C] + IÂ,C]B (3.5-35) 

where Â, B, and C are general quantum mechanical operators, 

one obtains the result, 

= -iRKg)"x^H (3.5-36) 

The symbol is defined in relation to the sum as by 

Cooper(46). That is to say that denotes a sum of n terms 

obtained by crossing a vector (in this case H) into each of 

the n right hand indices of a tensor (in this case (£_)")-
—p 

From the above result and its definition as the symmetric 

traceless part of the polyad, (^g)# one can easily establish 

that [f.] obeys a similar expression, 
—p 

- -iKUgl<"'x„H (3.5-37) 

Thus, a matrix element of has the explicit form, 

= (3.5-36) 

In the correspondence limit, Eq. (3.5-37) becomes, 

(3-5-39) 

where the braces denote the Poisson bracket. This is identi-
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cal to the result ottained by Cooper(46). In conclusion, one 

should note that for as defined by Eg. (3.5-32), the 

quantity vanishes as was stated at the begin

ning of the chapter. 

Next, one should note that the operator, A» (defined in 

Eg. (3.4-4)) can be written exclusively in terms of direct 

products of the basis function-operators, Y^^O)^ , 

w(10) m(OOOO) ,^(1000) ^(0010) ang ^(0001 ) where 
a ' ̂3 3 3 6 

p = [M kTjtyflOPO) + M ̂ (0000)% (3.5-40) 
«-v v v v v 

h = -2kT (0010) _ rE*]%kTw(000') + r^VitytlOOO). 
V V ^ ^ 'kT^ V ~ 

. .,,(0000) (3. 5-41) 

tïcf" v 

Thus, A has nonzero matrix elements only in the subspace 

spanned by the above seven basis functions of which only two, 

and Y(TOGO) ̂ are in common with the truncated basis 
ot p 

used in the present work. In principle, the arbitrary scalar 

and tensor constants, a^^) , and a(v) must be 
1 =2 3 

nonvanishing if the nonsingularity of L is to be guaranteed. 

However, in practice, one needs L to be nonsingular only in 

the subspace spanned by the truncated basis. Thus, under 

this less stringent condition, it is convenient to set all of 

the constants equal to zero except for . Now, so that A 

will have the same dimension as r  (i.e. cm~^ sec""') a^^^ is 

explicitly defined as 
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= 1-' (3.5-42) 

where V is the macroscopic volume of the system. Thus, in 

the truncated basis, A has the explicit form, 

'  '  I f < o ) ï t . o )  I + 

This expression is obtained by substitution cf Eg. (3.5-4) 

into Eq. (3.4-4) and retention of the appropriate terms. 

As a consequence cf the three dimensional rotational 

invariance of the full collision kernel, it is easily demon

strated that r is also rotationally invariant. This implies 

that any matrix element of r forms a basis for the totally 

symmetric representation of the three dimensional rotation 

group, 0"*'(3) . Thus, all matrix elements of P are three di

mensional isotropic tensors. Furthermore, since the domain 

and range of r are the scalar field, its action preserves 

tensor symmetry. This is to say that the tensor symmetry of 

<^^pgst)|p|y(POST)^ j^g identical to that of the direct prod

uct, [g^] (9) ] (P) [w^] (P) [0^] (0). 

If a molecular system interacts through a spherically 

symmetric intermolecular potential, it follows that 

rotational angular momentum is collisionally conserved. 
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Thus, in this case, the matrix elements of r  are nonvanishing 

i f  a n d  o n l y  i f  t h e  d i r e c t  p r o d u c t s ,  I w ^ ]  [ w ^ ] a n d  

[0^] independently form bases for a representation 

of 0^(3) which contains the totally symmetric irreducitle 

representation. In this case, the matrix elements are of the 

following form, 

<^^pgst) |^|Y^PQST)> , -gjP'gl (3.5-114) 

where is a scalar coefficient. 
^vy ST' 

Now one observes that in general matrix elements of F 

and A vanish unless [w ] [W ] and [o ] [SÎ ] form 
z -V —y —V —y 

bases which contain the totally symmetric representation, 

which suggests that matrix elements of (cf. Eg. (3.4-8)) 

should be defined by the expression, 

<y(p<3st) |, |^(PQST)> ^ .^(P.q) <y(pgst)|r|YlPQST)> 
V '=0 y p+q V '=' y 

pÎ(ji'^'°'«pP«gQ - <YjP9St)|f,|yjPQST)> ^ 

^^(pqst) (PQST)^ (3.5-45) 
' s ' y 

From this it follows that matrix elements cf W are, 

<yjpgst)|w|y(POST)> = 

<y(pqst) j^(PQST)> _ (pqst) jy(PQST)^ (3,5-46) 

Here, the isotropic tensors, ^ act as projection opera

tors for the direct product representation. The above defi
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nition explains the motivation for the designation of as 

the "spherical" part of L since it rigorously contains all 

contributions to L which do not vanish for a spherical inter

action potential. In contrast, W» is the remaining 

"nonspherical" contribution and rigorously vanishes for 

spherical potentials. 

Now if one notes that. 

-A<P'9) e <Y(Pqst)|r_A|yPqST)> (p,q) _ 
P+q V 's s' y p+q (3.5-47) 

„(p,q) ,st..(p,q) 
vy ^ST'A 

It follows that a matrix element of must satisfy the ex

pression , 

y y y <w<pgst)1,-1|y(pnqm). (p,q).(p,q).nm. 

nia nio mio V ' 1" 'ST' 
(3.5-48 

.here (™) is defined as (This 

follows directly frcm Eg. (3.5-38). 

Equation (3.5-48) can be formally inverted if one 

defines a new set of orthonormal basis function-operators 

which explicitly diagonalize, Lq+F (iiSi the eigenvectors of 

Lq+F). If these function-operators are denoted by the 

symbol, , where i is an appropriately chosen label, one 

obtains the following expression due to Cooper(46), 
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9 (A(P'9)f(P'9) + A'P'S'x H bÇP'S)) = 
i % u X p+g 1 q— 1 

A(P'q) (3.5-49) 

Here, is the eigenvalue of L.+F approfriate to the ei-
1 m O  m  

genvector, gjP'S). 

In order to construct <$ I {."M $ it is neces-
1 s 0 i 

sary to introduce a linearly independent set of tensors of 

rank 2g which have the tensor symmetry of fO.] ̂*3) on the 
—p 

first and last sets of y indices and which are isotropic with 

respect to two dimensional rotations about the field direc

tion. These tensors are denoted by where m ranges from 

-g to g. A brief discussion of their form and properties is 

given in Appendix E. It suffices to say here that the 

are isomorphic with the usual three dimensional spherical 

harmonics and satisfy the following relations. 

= y(9)6 , (3.5-50) 
m g m' m mm' 

A (s) = 2 y (s) (3.5-51) 
m=-q 

A<9lx H = -|H| ? (3.5-52) 
9- -mi-g ® 

where i in Eg. (3.5-52) is (45). 
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Thus, the matrix element of appearing in Eg. 

(3.5-49) can be written as follows, 

<t|P'9) Ï (3.5-53) 
m=-g 

where is of rank 2(p+q) and is defined by 

"sandwiching" between the first and last g indices at 

(p,q) 

dwi 

" If one combines Egs. (3.5-53) and (3.5-49) and makes 

use of Egs. (3.5-50), (3.5-51), and (3.5-52), one obtains. 

m 

which can be substituted into Eg. (3.5-53) to obtain an ex

plicit expression for the inverse collision operator. 

It is often the case that the off-diagonal!ties of Lq 

can be ignored in Eg.(3.5-48) and thus, that the tasis 

function-operators, , can themselves be considered to 

be eigenfuctions of L . In this case Eg. (3.5-53) becomes, 
« 0 

. (pqst)1,-1|w(pqst)> _ 

where ajpqst) _ ' ' G T G ' I t'' result will be 

used to obtain explicit expressions for the transport coeffi

cients. 
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3.5,  The Effective Cross Sections and Some Specific Besults 

At the end of the last section, a general method appli

cable to the approximate inversion of L was developed. The 

same method can be applied to the inversion of the operator, 

r, defined in Eg. (3.4-15). In either case, the inverse op

erator, hence, the transport coefficient, are ultimately 

evaluated in terras of effective ccllisicn cross sections. 

The effective collision cross sections can be defined in 

terms of the operators, and which in the atom-

diatom case are related to r  as follows, 
« 

r  = r^)  ^ (3.6-i)  

The matrix elements of and have the explicit def-3 » ^ 

initions, 

(pqst) |p(2) |y(POST)> ^ 
V 

_<yjpgst) 
(3.6-2)  

and 

<w(pqst)| - ( i , n ) | m (  
V '= ' y 

(POST). 

_<y(pqst) |j(f(0)y(POST) f (O)j^g (3.6-3) 
V '  p  u n vy 

where one notes that they are equivalent to the standard 

tensor collision integrals or bracket integrals, 

r-(pgst) y (POST) , (1 ,r) _ 
V  '  y  v , n  ( 3 . 6 - 4 )  
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Ir"'"' |Y^(fOST)> 

Here, r is 1 or 2 aad is just The effective 
«I S 

cross section, , is a scalar, and is defined as JrSJoX f) vT| 
follows(49), 

^vn"v"n * 'nw®2r' (.3.6-5) 

(P+Q) 

where Is an isotropic tensor of rank p+g+P+Q with 

the tensor symmetry of the tetradic direct product, 

I tw„l IMy 

thermal velocity. 

[ n 1 [W ] [W , and V is the relative 
—v —V —y ~V Jin 

which is appropriate to collisions between v and n species. 

A field free transport coefficient, T, is isotropic and 

can be written as a scalar (i.e. î = T^). In terms of effec

tive collision cross sections, one obtains from Eg. (3.5-54) 

5(nkT)2 

2UF 
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One notes that D „ is related to ft „ by Eg. (3.3-15). 
a3 ag 

Expressions appropriate to the description of the 

Senftleben-Beenakker effects are obtained via Eg. (3.5-54). 

Retaining terms of no greater than second order in ft/ yields. 

"""" 

~S~ " " 2^12 —^ (3.6-13) 
1+4g^2 

where the field parameter, €pq» is, 

5pq * 

^1? ^ I (3.6-14) 

Here, P is the hydrostatic pressure, nkl, is the diatom 

rotational g-factor, and y is the nuclear magneton. The po 
N 

T 
larizations, Y , can be written in terms of the field parame 

ter and other effective cross sections, 

cs (3,6-15) 
P9 

" * "«'p/gz' MgggWg <|)*aVciB®''oÔolB'a$''^ 
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Y. '6 _ 

P9 
(1 - ^pqOO 

x!v_ [G (1000,6)  ,2  

^^E2.(P) (3.6-17) ..°a3 

^Pq = (T - ̂ *p1*g2) SgWNkT'H' G(1000|*) 
p "  Mooo 'e '  

oB 

where. 

P = 
E 
int 

kT (Ves^Cile 
l«> + X V .G('°°l|®) 

[^B'^bs^'IOO! 'e' 

ee 

1001  

a aB pgOO'B aB 

„ * V.l"lODl , 
-1 

1010,6 
lS)gg + X .v.,G(i;iO|G) 

BB"'pqOO'B'QQ " "a^aB^^pqOO'B'^gJ ^ 
aB! 

C 

[t]'' |v 

VoB® ' 1010 ' a ' "  * o JĤ ''ee® ' '0!0 '6' „J 

1010 |B 
^B^BB® ̂ 010 'B I:) 

BB 

* Voe®'loîolB'„̂ '[Vaa®'lo!olâ'^^ + VaÊ® ' 1 ol 0'a'^ J 

- V6'-a6«<'SlSl?'„/j 
(3.6-18) 

Comparison of Eqs. (3.6-15), (3.6-16), and (3-6-17) yields 

the result. 
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= [ (3.6-19) 

Thus, the cross polarization is seen to be proportional to 

the geometric average of the direct polarizations. Similar 

expressions have been given by t'Hooft et al.(50,51). 

To zeroth order (i.e. infinite dilution) in the diatomic 

species. Eg. (3.4-15) gives. 

As stated previously, T (defined in Eg. (3,4-16)) can Jbe 

inverted by the same method (i.e. expansion in the 

nonsphericity) as used to invert In fact, the inversion 

of r is less complicated than the inversion of L since T is 

already block diagonal in the components. However, construc

t s . 6 - 2 0 )  

and. 

) (3.6-21) 

tion of is complicated by the complex form of the 

inhomogeneity vector acted on by (Lp^)"^ in Eg, (3.6-21). 

From these expressions, one obtains the result. 

A (3.6-22) 

where A^®^ is the pure component thermal conductivity, A 
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and vanish). Since the thermal diffusion coeffi-
3 a3 

cient is of special interest due to its sensitivity to the 

anisotropy of the molecular interaction, an explicit expres-

m / 1 \ 
sion for ' is given, 

(3.6-23) 

where, 

(3.6-2-.) 

5(kT)^ 

The matrix elements which appear can be written in terms of 

effective cross sections appropriate to the a-g interaction. 

m 
Thus the limiting form of is directly determined by the 

thermal conductivity of the pure monatomic gas and the scat

tering dynamics of a-3 collisions. The field dependence is 

wholly contained in the matrix element of 
s pp 

since the matrix elements of which appear in the 

definition of the bracket integrals and effective cross sec

tions fi.e. Egs. (3.6-4) and (3.6-5)) are isotropic tensors, 

they are completely determined by their scalar contractions. 

Each of these, in turn, can be written as a linear combina

tion of the scalar contractions of their irreducible parts 

which have the form. 
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J<[<j/(p'q's't') Jjjj,(r,n) I fy(pgst),j> 
y y = O y 

where ig the componeat of the irreducible con

tribution of rank J in . The coefficients of the 

linear combination depend upon the specific contraction of 

<^(pqst)ip(r, )|^(PQST)^ under consideration. Since the 
V ' = ' a 

basis function-operators are direct products of irreducible 

tensors of rank p and g, it follows that J can only assume 

values |p-q| < J < p+g. Likewise, constrains J by 

IP-QI < J < P+G, and a nonzero scalar contraction exists 

only if both relations are satisfied simultaneously. 

The scalar contraction of Eg. (3.6-25) can be partially 

evaluated by performing the center of mass integration. To 

do this, it is necessary to express the basis explicitly in 

terms of center of mass and reduced relative momenta. One 

can proceed by first considering the Sonine polynomials. 

From Eg. (3-5-10), one can write. 

S^i(W^) e Z 9"P®(W^)" (3,6-26) 
P+« n u.o n 

where. 
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The reduced momentum, W , is related to the reduced center of 
~n 

mass momentum, r, and reduced relative momentum, y, as 

follows, 

= X^I - (-1)^ (1-X^)^ 1 (3.6-28) 

where v = M /(M +M„) and r is the molecular label of species 
n  a g '  

2 
n. It follows from this that depends on the angles of y 

and £ only through the dot product x = y«r and hence, the 

Sonine polynomials can be written as an expansion in the 

Legendre polynomials. 

The last equality is established by making use of the addi

tion theorem for spherical harmonics and the relationship be

tween spherical harmonics and irreducible natural tensors. 

Using Egs. (3.6-27) and (3.6-28), the expansion coefficient, 

(w^) can be evaluated as follows, 
P+h n 
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_ ^i±Ll y r a%;r p2(u-w)-v 2w+v 

• I 2 j u-O v'„  ̂
/ dx P. (x) 
-1 * 

where the coefficient. 

»psuvw = 

^ups 
• wl(Slv-w). t-X^l ̂  12M)-',v 

2 
results from a trinomial expansion of W^, Substitution of 

Eg, (3,6-30) into Eg. (3.6-29) yields. 

V+WCU 

X (3.6-32) 

where, 

4  =  " w i '  ̂ 
- 1 

(2&+1)!v! ¥] ' 
(U)2 !(v+£+l)! 

(3.6-33) 

The standard formula for the irreducible tensor compo

nents of the direct product of two (commuting) irreducible 

t e n s o r  o p e r a t o r s ,  [ A ]  a n d  [ B ] i s .  
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[[A] = 

r  (2J+,)t .J) [AJ^  IB l^ :  (3.6-34) 
mm ' ' 

and the inverse relation, 

laC - (3.6-35) 

I (-l)*'-'+W(2J+,)% t', . 
J,y ,10 m -VI - - li 

For the special case of A = B, the latter reduces to. 

'aC: -

m' c(l,l'.J)a*+%'-J|*lJ (3.6-36) 

where, 

c(&,&',J) = 

n%(A+A'-J),^,.,\ &!&'! I (2J)! \ fjL A' J 1 
• (2J+1) J! [jmrurTTj to o oL.g.ay, 

if the vector operator. A, commutes with itself. Equation 

(3.6-36) can be easily established by relating [A]^ to and 

using the standard expression for the expansion of the prod

uct of two spherical harmonics in terms of spherical harmon
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ics. 

One now proceeds by using Eg. (3.6-34) to express the 

irreducible tensors [fB in terms of rw i and 
n -n n 

[Si Making use of Eg. (3.6-28), one can write [w ] 
—n —n 

in the binomial expansion, 

'""'"p " k 'P"*' lip <3-6-38) 

where, 

(X^)k{(-l)r+l(l-x2)%}P"k . (3.6-39) 

One then carries out the seguence of steps: 

a) One first couples the £ dependence of Egs. (3.6-32) 

and (3-6-38) using Eg. (3.6-36). 

b) Next one couples the ̂  dependence of Egs. (3-6-32) 

and (3-6-38) using Eg. (3.6-36). 

c) Finally one couples the ̂  dependence of b) to the 

d e c o u p l e d  0  d e p e n d e n c e  o f  I [ W ^ J ^ P ^ .  

Having carried out these three steps together with standard 

recombinations of 3-j symbols, one obtains the following ex

pression, 

[y(pgst)]J ̂  (_,)* J (2K+1)% 

^ ^ G K 
Mg Q 

(3-6-40) 

f = [i] 
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X I AÏ(J,G,K) r2u-G-2w+k-V[p^G 

u,v,w G 

9 , k , &  

(M)iK' 
Q 

where the coefficient Aj^(J,G,K) is defined by, 

AÏ(J,G,K) = (-l)9+9+P+k[(2J+l)(2p+l)]% 

^psuvw a%c(4,k,G)c(&,p-k,g) 

[2P+9+1-w%r(p+3/2)r(q+3/2)Ng^]^ 
G J K' 

q g pj 

(3.6-41) 

and the basis function-operator, is defined. 

[$  (M) jK ^ (fi2jYP-g+2w-k+Vj (g) (q)]K (3.6-42) 

Here, "M is a collective notation for the set of variables, 

{p,q,s,t,u,v,w,g,k,^} which are the original basis function-

operator indices (i.e. pgst) plus the indices introduced in 

the reduction of %(P9st) that are not final tensor indices 
n 

fi.e. {u,v,w,g,k,£}), and M represent the subset of these 

indices, g, j = p-g+2w-k+v, g and t which are indices of 

analogous to the indices pgst in the definition of y(Pgst)^ 
n 

Making use of the fact that 

/ dr e-^\r]g in^' (-1)"^ 
G G 

results in the expression. 



136 

[M'l 

<[,(«*)lK|r<r,n)|[,(M),K> 

where, 

ci;'„^(j,K). 

i '^2G): A2(J,G,K)A^.(J,G,K) (3.6-1.5) 

where, 

% ... I ... (3.6-46) 
[Ml uvwgk^ 

That is, a sum over all dummy indices of M, and is 

u+u—w-w*+ (k+k'-v-V) which is always an integer for nonzero 

values of G^*'[(J,K). 

In conclusion, the resulting form of Eg. (3.6-44) 

prompts the introduction of the notation, » to 

denote a general scalar contraction or scalar collision inte

gral. Here, and are tensor functions of dynamical var

iables and are of the same rank. Thus, 

{T'oY 5- —Î— <"^1 |p(r,n) >®u (3.6-47) 
V, y v,Tî n n v'= ®. 

V T| 

where U is an isotropic tensor defined such that ©U = 

' (The symbol @ means that all possible contractions 

are taken.) 
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The effective collision cross section appropriate to the 

above scalar collision integral is defined. 

Finally, the reader should note that if and are func

tions of translational momenta only through y, then the (l,r) 

superscripts become superfluous and can be ignored. 
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a. EVALUATION OF SCALAR COLLISION INTEGRALS ANC 

PHENCMENOLOGICAL CROSS SECTIONS 

4.1. General Considerations 

In order to obtain numerical values for the previously 

developed expressions appropriate to the phenomenological co

efficients, one must evaluate appropriate effective cross 

sections (i.e. scalar collision integrals). This is accom

plished by the explicit construction of the collision kernel, 

followed by the application of analytic or numerical methods. 

In this chapter, effective cross sections applicable to 

the description of atom-diatom systems will be evaluated by 

application of a number of different dynamical approaches. 

The scalar collision integrals, hence, the effective 

collision cross sections, can be viewed as thermal averages 

of energy-dependent cross sections under a Maxwellian distri

bution. Explicit evaluation of the energy-dependent (or 

phenomenological) cross sections is of interest since these 

quantities provide detailed information concerning the role 

of rotational degrees of freedom in collisional processes. 

The preceding statement is especially true of cross sections 

which are appropriate to the description of Senftleben-

Beenakker effects. 
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4.2. Centrai Potentials in Classical Mechanics 

Evaluation of scalar collision integrals and 

phenomenological cross sections assuming a spherically sym

metric interaction potential from a classical mechanical 

point of view has already been extensively studied (52). If 

one approximates an atom-diatom interaction with a central 

potential, there is no possibility for the description of 

inelastic interactions. This feature, of course, makes such 

a potential inappropriate to the description of Senftleben-

Beenakker effects. However, a brief discussion of central 

potential dynamics is included here as a reference for later 

development (also central potentials are completely adequate 

to the description of atom-atom collisions). 

For molecular systems which are adequately described by 

classical mechanics, the collision kernel can be written 

using Eq. (2.1-46). In this case, only the linear momenta 

are meaningful dynamical parameters so that , X2/ Xjt and 

X2 can be identified as individual molecular momenta, , Pg 

p|, and If one assumes that the convex surface, is 

spherical with a radius of b^^^, (i.e. maximum impact parame

ter) , the collision kernel takes the explicit form, 

<EiE2f0(E*Ei> -

/dkk.2/w{6(E'-E*) " 6(E'-E)}6(P-P') (4.2-1) 

k'E>0 
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Here, £ and P are defined as relative and center of mass 

momenta derived from and (i.e. £ = ~ ) % 

1/(M^ + Mg) and P = #2 + 2,) and p is the reduced mass. The 

momenta £' and P' are related to £| and in exactly the 

same way. The vector quantity, £* is defined as the 

precollisional relative momentum which is dynamically related 

to the postcollisional momentum, £. 

Equation (4.2-1) is substituted into Eq. (3.6-4) and 

then integrals over total momenta, P and P', are performed. 

One obtains the following expression, 

(4.2-2) 
nw w 

where Y' and Y are tensor functions of the dimensionless 
V T 

relative momentum, y-

The scalar collision integral, {Y'®"? } » can be written 
V / T VO) 

in terms of Chapman-Cowling omega integrals which are defined 

as follows (39, 40) , 

n(^'S)(T) „ (E) (4.2-3) 
^ n v  0 

( Z )  
The quantity Q (E) has units of area and can be identified 

as a phenomenological cross section (referred to hereafter as 

the "Q-cross section"). It is a function of the relative 



141 

2 
kinetic energy, E = kly , and has the form, 

0*^^(E) = 27rb^^^/(1-(cosx)'^)cos6d(cose) (4.2-4) 

Here, 0 is the angle between the surface normal, K, and the 

relative momentum (iig-. cos0 = k 2/|y|). The scattering 

angle, x» is defined iy the expression, 

X(E,cose) = 

' - '4-2-SI 

In this expression, V(r) is the intermolecular potential and 

r is the distance of closest approach. (r is a function of 
m m 

E and cos8.) 

These expressions can be evaluated analytically for a 

few simple types of intermolecular potentials (e^g^ a "hard" 

potential) but in general they must be calculated by a 

suitable numerical technique. An efficient algorithm using a 

Curtiss-Clenshaw quadrature technique has been developed by 

O'Hara and Smith(53). 
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4.3. Hard Convex Ovaloid Potentials in Classical Mechanics 

In the last section, it was noted that scalar collision 

integrals can be evaluated analytically for hard sphere po

tentials. This is because of the inherent simplicity of 

impulsive collision dynamics. Making use of this simplicity, 

Hoffman(54) was able to greatly reduce the complexity of the 

scalar collision integrals for any hard convex interaction 

under the assumption that contributions from collisions with 

multiple impulses (chattering collisions) can be neglected. 

This assumption is valid for interactions which have a 

predominantly spherical component, but breaks down fox sig

nificantly nonspherical interactions. A quantitative discus

sion of this point appears in Section 4.5. 

An explicit expression for the collision kernel, using 

this approach can be obtained from Eg. (2.1-46) by construc

ting the convex surface, a , so as to enclose an appropri-
1/2 

ate "excluded volume". The surface, o -, is defined as the 
1 f A 

locus of points occupied by the center of mass of an incident 

molecule (molecule 2) if the point of contact between 

interacting molecules is allowed to range over the whole 

surface of the target (molecule 1) with both molecules having 

a fixed orientation and the center of mass of the target 

being fixed. It can be shown geometrically that the 

convexity of molecules 1 and 2 guarantee that 0 is also 
1,2 

convex. 
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Any convex surface is conveniently described in terras of 

a supporting function, h, which is defined as follows, 

h = £'k (4.3-1) 

Here, & is a vector from a fixed origin {in this case, the 

center of mass of the target molecule) to a point on the 

surface, and R is a unit vector perpendicular to the surface 

at the point- Equation (4.3-1) can be inverted to yield the 

explicit expression for the radius vector, 

Ç = hlc + — (4.3-2) 
SK 

Here, the differential operator ̂  is explicitly defined as 

"-w • 
rif where r = rk. 

Since a. _ is convex, it follows that a differential el-
1 , 2  

ement of surface area on a, _, dA , is related to a dif-
1,2 a, 2 

ferential solid angle, dE, by the expression, 

dA„ = S dJc (4.3-3) 
"1,2 "1,2 

where S is defined in Eg. (2.1-45). The tensor, 2&/9K, 
* 1 , 2  

has nonzero components only in the two dimensional subspace 

perpendicular to K. From the definition of the determinant 

in terms of the Levi-Civita density, it follows that 

can be written in the form. 

^0, 2 -
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When the molecules are in contact* it follows that the 

radius vector of o. ^ can be defined as fellows, 
i  f  ^  

3h, ah, 

i - il - «2 - h,G, IT" " ̂2^2 * ikl 
oK^ 2 

Here, h^ and h^ denote supporting functions for molecule 1 

and molecule 2, respectively, and 1c^ and are corresponding 

unit surface normals taken at the point of contact. At this 

point, the convex todies representing the interacting mole

cules share a common tangent plane. Since and Ic^ must 

both be normal to this plane, it is clear that 

Thus the unit vector, !k = , is perpendicular to o^ ^ at the 

endpoint of ̂  and the supporting function, h, appropriate to 

a. ~ can be regarded as a sum of the molecular supporting 
I  ,  z  

function (i.e. h = h^ + h^). 

For an atom-diatom system, the atomic species will be 

modeled by a hard sphere and the molecular species by an 

ellipsoid of revolution. The spherical and axial symmetries 

implied by these models require the supporting functions to 

have the forms, 

» Tg ; hg = hg(Jc»e) (4,3-6) 

where r^ is the radius of the sphere and ë is the unit vector 

parallel to the molecular symmetry axis. Ihe collision 
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kernel appropriate to atom-atom interactions retains the same 

form as given in Eg. (4.2-1). The atom-diatom collision 

kernel then is, 

1 1  2 IT 
= -r /ân{. / dkj (k)k•£«(£•-£)6Uj-i,) 

0 k'g<0 1, 2  
u n i t  

h e m i s p h e r e  
(4,3-7) 

+ / dGSp (l^)k-£6 (E'-E^)<S 6(P-P') 

R.g>0 
un i t 

h e m i  s p h e r e  

Here, £, £^, P, and P ' are defined as in Eg. (4.2-1) and 

is defined as the precollisional rotational angular mo

mentum (i.e. is related to £, in the same way that is 
— —] —I 

related to g). The Jacobian of the surface transformation, 

S (k), is given by, , 
1 , 2  

'k) . Sh + Zrghg + rg (4.3-8) 
1 , 2  3  

which results from substitution of Eg. (4.3-5) into Eg. 

(4.3-4). Here, is defined such that a unit surface area 

on the diatom ovaloid, dA ., is related to a unit solid 
np 

angle, dk, by 5^^ (i-e., dA^^ = S^gdR). 

The velocity relative to the surface, g, is defined in 

Eg. (2.1-41) as • 3ç_^/3a^• 3ç_2/3a2 • In Eg. (4.3-7) the 

diatomic molecule is arbitrarily labeled by 1 and the atom is 
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labeled by 2 which implies that can be identified as e and 

«2 can be ignored (i.e. there are no orientation angles for 

the atom). Furthermore, ç is not a function of ê. The only 

internal degree of freedom of the system consists of the ro

tation of the diatom with angular velocity, £ /I . It is 
—1 p 

well-known that the time derivative of any body-fixed vector 

due to the rotation of the body can be obtained by the cross 

product of the angular velocity with this body-fixed vector. 

Thus, c[ has the form, 

a = (4-3-9) 

^aB -^6 

where u „ is the reduced mass of the atom-molecule pair. If 
aB 

one substitutes Eg. (4.3-2) into Eq. (4.3-9) and evaluates 

ic>g, one obtains the following expression. 

^ * 4îr (1.3-10) 

This expression and Eg. (4.3-8), when substituted into Eg. 

(4.3-7), yield a Boltzman collision kernel from which the 

following form of the scalar collision integral 

/dSs" (E)(E-Y - A.n)TgT + . /aEs„ (E) 
E-2<0 "1,2 - -- k-2>0 °l,2 
unit hemisphere unit hemisphere (4.3-11) 
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(k-x -

is obtained. The vector quantity, a, is defined by the ex

pression, 

dhp 
- ̂ ^ ̂  (4.3-12) 

where z is defined as k*e. 

Following Hoffman(54), it is possible to define a 

vector, e, in a five dimensional Euclidean space, E^, in 

which £ is comprised of the three body-fixed components of 

and the two active body-fixed components of (The body-

fixed 2-axis is assumed to parallel to ê.) In addition, a 

unit vector, ic, can be defined in by the expression, 

K = (lc,-a)/D (4.3-13) 

where D is defined as [1 + a^]^. This is consistent since a 

has only two nonzero body-fixed components, both of which are 

in the same plane as g. 

One can define two 3x5 rectangualr "projection" opera-

3 C n c 
tors, and which are functions of the components of ê 

and act between the abstract 5-space, and the usual 

physical 3-space, E^, as follows(55): 
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^P^'G -  %; ^P^-e « fi  («4.3-14) 

where e = (y#^) • Since the tensor quantities, and are 

exclusive functions of y and it follows that and ^p^ 
— — Y i2 

can be used to construct composite operators which act be-

5 1 
tween E and E as follows. 

'P|, gW" . ?• ; ç(e )V = y (4.3-15) 
T 

Here, u and v are the total powers of and in the 

dynamical variables. If one contracts ̂ p^, with ^p^ in the 

V ^3 5 
three dimensional manifold, one obtains an operator, 

such that, 

(1.3-16) 

Thus, Eq. (4.3-11) takes the form, 

vw unit *v T 
hemisphere 

(4-3-17) 

V <iî)D(£)"(ç)^.jc + /dki (R)D(c)"(c*)Tc.K 
k-^<0 1,2 Jc-g>0 *1,2 . ~ " -

^ .""'t unit 
hemisphere hemisphere 

The operator be abbreviated as P in subsequent 
V T 

expressions. 
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In the case of a hard anisotropic potential, the unit 

vector, K, can be interpreted as a generalization of the apse 

vector one encounters in the dynamics of elastic interac

tions. For an elastic interaction, all components of the 

relative momentum are conserved in collision except for the 

component of the relative momentum parallel to the apse 

vector which reverses sign. Correspondingly, for hard aniso

tropic molecules, the collision dynamics are quantitatively 

described by a reversal of the sign of = ic'ê while the 

other components remain unchanged. Thus, if ç is defined as 

E-e^K (i.e. ̂  = c + E^K) , then e* = c - e^i<. This allows 

the expression for the scalar collision integrals to be writ

ten as follows, 

-

/as /a£s (Ic)dp ® (u,v), (1.3-18) 
"vw unit unit °r,2 ^ 

Sphere sphere 

Here, (u,v) is a tensor quantity of rank u+v defined by the 

expression. 

(u,v)n 

2 «0 -e^ 

/dee"® /de e [ (c-e^K)" - (c+e^i5)"l (c-e^lî)\^ (4,3-19) 
gH-l .0 K K 
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In the expression for (u,v)^, c is treated as a vector in an 

space orthogonal to < where K is a basis vector of 2*^. 

(For the case in point, n equals 5.) Equations (4.3-18) and 

(4.3-19) are obtained from Eq. (4,3-17) by noting that the 

conditions previously placed on the integration over k can be 

replaced by equivalent conditions cn the integration over . 

Following this, the integration variable, in the 

precollisional term is exchanged for -e^ so that all integra

tions over E^ are between limits of 0 to oo. 

Equation (4,3-19) can be simplified by noting 

(cc±E K)* = I  (±1)ic""iejt(c)*"i(K)i} (4,3-20) 
K j=0 K 

where c is the magnitude of c, c is c/c and =fc(c) (i<) is 

defined as the sum of all distinguishable permutations of the 

tensor indices of the direct product (c)'^"^(k)^. If one sub

stitutes Eg. (4.3-20) into Eq. (4.3-19) and makes use of the 

following identity for arbitrary integers n and s, 

/a6(£)-;acc—e-' " 
unit ° - 0 s odd (4.3-21) 

n-1 sphere 

(Here, I , is the identity tensor on E"^"^), one obtains the 
•="n— 1 
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result. 

(UfV)_ = 
n 

r 1 ,U+V TT 

2^/\r(9.)P„ ^[(K)JlXln-KK) 
6 U f V 23* 

Z\]: 

n-1 
2 n v+j 

j h  Jj 
j odd k even if u+v even 

k odd if u+v odd 

l(u+v-k) . . 
;(e)K ]] 

(4.3-22) 

Here, P f-l means "the sum of all distinct permutations of 
u,v^ ^ 

the first u and last v tensor indices of the tenser appearing 

in the brackets." 

Equation (4.3-18) can be reduced to a single quadrature 

if one notes that the S (k), D, and p ® (u,v)_ are func-
^1,2 

tions of Ic and ê only through the dot product, Jc.e. One 

obtains the result. 

3-23) 

One can evaluate "^^^9 Eg. (4.3-14) and the 

following identities. 

SpS-ig = H ; 3p5.K = E/D (4.3-24) 

- y-êê ; 3pQ.K « -a/D (4,3-25) 

where, U is the usual identity operator. Proceeding in 
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this way and noting that a-It vanishes, one finds that the 

scalar collision integrals for an atom-diatom interaction can 

be written as linear combinations of the following basic in

tegrals, 

x'"' = }dzS„ (2)0-° ( 1 . 3 - 2 6 )  
- 1  * 1 , 2  

T(n,m) ̂  jd2S_ (2)2^0"" (4.3-27) 
- 1  * 1 , 2  

G = /dzS®'^(z>2lLLz|i) (4.3-28) 
- 1  = 0  hgo r  

These integrals can be evaluated numerically by use of Gauss

ian quadrature techniques. 

4.4. Realistic Anisotropic Potentials in Classical Mechanics 

In the two sections immediately preceding this one, dis

cussion is given which concerns the evaluation of the scalar 

collision integrals (and hence the effective cross sections) 

using very restricted classes of molecular interactions 

(ij.9i, central and/or "hard" convex intermolecular poten

tials) . These limitations were imposed because the simplic

ity of the dynamics implied by these potentials allow partial 

analytical evaluation of the scalar collision integrals. In 
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order to evaluate the scalar collision integrals for 

realistic anisotcogic potentials, one must resort to numeri

cal techniques such as Monte Carlo or Eiophantine integra

tion . 

Before discussing the numerical techniques, appropriate 

expressions for the atom-diatom collision kernel and atom-

diatom scalar collision integrals must be given. The evalua

tion of realistic atom-diatom scalar collision integrals is 

complicated by the infinite interaction range of a realistic 

interaction potential which means that a _ cannot be chosen 
1 / Z 

in such a way as to represent a physically meaningful "ex

cluded volume" as was the case in the discussion of hard 

ovaloids. Thus, <7^ g conveniently chosen to be spherical 

since there is no advantage to be gained in exchange for a 

preferential nonspherical choice. This results in the fol

lowing form for the atom-diatom collision kernel, 

• 2 

<E,i,E2lelEii.;EP -

- 6(£'^£)6U;-£^) }6(P-P') (4.4-1) 

Here, b denotes the radius of a (i.e. maximum impact 
lUaX 1 f 2 

parameter.) An expression for an arbitrary atom-diatom 

scalar collision integral has the form. 
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2Tr , . 
/ dn ^dJc Jc-yV®^? -?*) (4.4-2) 
0 Jc-x>0 V T T 

This expression is analogous to Eq. (4.3-11)-

The expression given in Eq. (4,4-2) is formulated in 

terms of integrals over postcollisional parameters. It can 

be eguivalently formulated ia terms of integrals over 

precollisional parameters. In fact, such a formulation is 

perhaps more appealing since it involves scattering out of 

rather than into a dynamically prepared state. The transfor

mation from a postcollisional to a precollisional expression 

proceeds as follows. 

A dynamical trajectory through the region contained 

within G can be symbolized as follows, 
1/2 

z* + Z (4.4-3) 

Here, and Z denote the sets of dynamical parameters, 

and {y, fi, n* k}. In order for this 

trajectory to exist, must be negative and îc*y must be 

positive (i.e. Z^ must be precollisional and Z must be 

postcollisional). The time reversal symmetry of classical 

mechanics implies that the time reversed image of any given 

trajectory is mechanically allowed. Thus, one can write the 
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following expression, 

Z 4. (4.4-4) 

where Z and denote the time reversed sets, and 

respectively. It should be noted that 

n^/ n, k% and k are evaluated at the peint where the 

trajectory pierces g. 

One can define the following functional relations, 

Z^(Z) = Z* (4.4-5) 

Zf(Z*) = Z (4.4-6) 

In a similar way, one obtains the expressions, 

Zj^(Z^) = Z, Z^(Z) « Z* (4.4-7) 

from which it follows that. 

Z^(Z) » Z^(Z) (4.4-8) 

The quantity appearing in Eg. (4.4-2) can be thought of as 

a function of Z^. Hence, "Z^ÇÏ) can be substituted for Z^. 

If one exchanges tie integration variatles y,^ for one 

obtains the result, 

(4.4-9) 
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/dn /aE 
0 E'I<0 V t  T 

Here, n equals 1 if changes sign under time reversal 

and it equals 0 if does not change sign. The solid 

star denotes a postccllisional quantity, ¥*, which is dynami

cally related to a precollisional quantity, . 

The impact parameter, b, can be defined as 1 k.y/Y» 
m a x  —  

From this definition, it follows that the double integral 

over the angles of k appearing in Eq. (4.4-9) can be replaced 

by integrals over the impact parameter, b, and an angle, e. 

One obtains the result, 

= 1^1 T *-7/:7oane-G^]\3aYe-Y^;da 
-VW 4 0 0 unit 

V, sphere 
2 f (  ^max 2Tr _ _  _  

J d y  /dn/bdb jdeW (? (-1)" (4.4-10) 
unit 0 0 0 V T T 

sphere 

The angle, e, is taken about an axis defined by the direction 

of the precollisional linear momentum, y. 

The Q-cross section, Q(Y'@Y ) can be defined in a manner 
V T 

analogous to that given in Eg. (4.2-4) by 

P 

-s-s* 2 v  max 2ir , (4.4-11) 
^ 6  J à y  f d H  / d n / b d b  / d e ? ® ( 7  - t1 ) ( - 1 )  
32 7f"^unlt  unit  0 0 0 * 

spKere sphere 

where s and s' are taken respectively as the order of and 
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in |YJ. Thus, in analogy to Eg. (4.2-3), 

l^/dye"^ Y®"^®*'^^Jndne'"^[16Q (¥•©¥)] (4, a-12) 
0 0 

It is clear that Q() can te regarded as a function of 

two independent variables, namely the reduced translational 

and rotational kinetic energies. 

Evaluation of scalar collision integrals and/or Q-cross 

sections for a realistic anisotropic interaction requires 

evaluation of nontriviai nine-fold or seven-fold quadratures 

respectively. The standard numerical techniques which are 

well-suited for the efficient evaluation of a single 

quadrature are impractical in these cases due to the sheer 

number of times a particular integrand must be evaluated in 

order to attain a reasonably accurate result. In particular, 

the number of points. A, at which an arbitrary integrand is 

sampled in order to obtain a given accuracy rises roughly as 

where N is the multiplicity of the Quadrature. 

Additionally, this problem is exacerbated by the fact that 

realistic collision dynamics in general are very complicated 

and can be evaluated only with much effort. These difficul

ties can be partially overcome by the use of Monte Carlo 

techniques. 
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An integral of an arbitrary function, G, of a vector, 

in an n dimensional Euclidean space, e'^, over limits 

defined by an n-cube of unit volume, obeys the following 

inequality, 

i > /-/diGU) > 1 iG(d^) (4.4-13) 
j=l J 0 0 j=1 J 

n-cube 

Here, the n-cube is taken to be divided into N partitions of 

equal volume. The vectors, and define particular 
—] —]  

points (not necessarily unique) in the partition for 

which the value of G (^) is maximum and minimum respectively. 

From the mean value theorem, it follows that a vector, ̂ ^, 

can be found within each partition such that the following 

equality is valid, 

, N _ 11 
N.Z GU.) = f - f à l G i a  (4.4-1*) 

' nScSb. 

The Monte Carlo estimate, S^, of the above quantity can 
C j  

be defined by evaluating G (^) at N points randomly chosen 

within the unit n-cube followed by a summation over the se

lected points. It has the form(56), 
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If each term appearing in the sum on the right hand side of 

Eg. (4.4-15) is written as a Taylor series expanded about on^ 

of the corresponding values, ^, (where the index, j, is as

signed so that is minimized) one obtains the 
j 

result. 

N - N 00 (Ç.-L)\ . k 
k! G(gj) (4.4-16) 

Clearly, one notes that the first term of the Taylor series 

is just I where I symbolizes the integral appearing on the 
G G 

right hand side of Eg. (4.4-14). 

If the number of partitions, N, (i^e^ the number of 

randomly chosen points, Ç.) is allowed to increase without 
~ 3  

limit, it follows that the quantity, |^.-%.| tends to zero. 

This is to say that as N tends toward infinity that the 

distance between an exact integrating point. T., and a 
—J 

randomly chosen point, , becomes indefinitely small. 

An important adjunct to the direct Monte Carlo estimate, 

, is a reliable estimate of the random error inherent in 

It follows from the central limit theorem of statistics 

that the probability distribution followed by any observable 

quantity which is derived from measurements which are subject 

only to random fluctuations is a normal Gaussian. The Honte 
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Carlo estimate, can te regarded as just such an observa

tion (i.e. subject to random fluctuations). Thus, the sguare 

root of the variance of this quantity as it is normally 

defined by statisticians is a suitable measure of the expect

ed error in S^. The variance, , is defined as follows. 

Here, each of the integrals are taken over the usual unit n-

cube. 

If one substitutes the explicit form of from Eg. 

(4.4-15) and performs the integrations, one obtains the 

result, 

Na^ = Og = }-/d5(G(^) - Ig)2 (4.4-18) 

n-cube 

Thus, the expected error in the Monte Carlo estimate is pro

portional to . A suitable estimator for the expected 

error is 6^ where 4^ is defined by the expression, (i.e., 4^ 
U G G 

is the Honte Carlo estimate of o ), 
G 

In practice, Sg and 4^ can be evaluated simultaneously for 

some set of N randomly chosen points. 
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Both the scalar collision integrals and the 

phenomenological cross sections for a realistic potential can 

be evaluated as Monte Carlo estimates. Explicit forms for 

the estimators are obtained if one defines the following set 

of variables. 

St = ' S; ° 5? («.*-201 

Ç5 = , Sg = (4,4-22) 

Ç7 = 5 (4.4-23) 
max 

_o2 
Gg = 1 - e (4.4-24) 

2 -Y^ 
Gg = 1 - (1+Y )e ̂  (4,4-25) 

Here, 8^, 8^, and (p^ denote the angles of Ô and y. If 

one defines a seven dimensional vector, ̂ , and a nine di

mensional vector, as being comprised of components 

given by through and through ^g, respectively, Egs. 

(4.4-10) and (4.4-11) take the following forms, 

} 
V T v,a, J J (4.4-26) 

t^l's -¥*) C-D" 
^vw 0  0  V T I  

9-cube 
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^ (-1)* (4.4-27) 

7-cube 

Algorithms designed to evaluate Egs. (4,4-26) and (4.4-27) as 

Monte Carlo estimates consist of three stages. First, a 

randomly chosen set of integration points (i.e. ) 

is generated by an appropriate pseudo-random number 

generator. Second, these are converted to dynamical parame

ters by inversion of Egs. (4.4-20) through (4.4-25) and 

is evaluated by numerical integration of Hamilton's equations 

within the collision region. Third, the resulting set of 

collision trajectories is used to compute Monte Carlo esti

mates via Eg. (4.4-15). 

It should be noted here that is defined as h/h 
^7 max 

2 2 
rather than b which causes the integrands appearing in 

Egs. (4.4-26) and (4.4-27) to contain the impact parameter, 

b, as a weighting factor. The result of this procedure is 

that the evaluation of these integrands is biased toward 

regions oa the precollisional hemisphere characterized by low 

values of the impact parameter. This bias is desirable be

cause the strongest and hence most significant interactions 

occur precisely for this case. This is an example of a gen

eral technique known as importance sampling which can fce used 
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to improve simple Monte Carlo estimates by biasing the random 

sampling of a particular estimand toward regions which con

tain the most significant contributions to the overall esti

mate (56) . 

4,5. The Method of Control Variates and a Quantitative 

Discussion of the Effect of Chattering Collisions 

In the last section the Monte Carlo estimate of a multi

dimensional definite integral was given. It was found that 

such an estimate converges at a rate which is inversely pro

portional to the square root of the number of random points 

at which the integrand is evaluated. While this convergence 

rate represents a vast improvement over alternative 

quadrature methods, in practice, an integrand characterized 

by a moderate variation must still be evaluated at a large 

number of points (usually several thousand) in order to 

obtain a reasonably accurate result. 

It seems likely that if a significant correlation exists 

between a "difficult" problem which requires the application 

of a Honte Carlo technique and a "simpler" problem which can 

be solved either analytically or with seme efficient numeri

cal technique, that this correlation can be exploited to im

prove the convergence of the simple Monte Carlo estimate. 

This idea can be quantitatively applied to the evaluation of 
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definite integrals fcy modification of Eg- (4.4-15) as 

follows, 

- G'(lj)) + Ig, (1.5-1) 

Here, G*(^) is termed a "control variate" of G(%) and is a 

function of ̂  which exhibits a positive correlation with the 

functional behavior of G(^)(56). It should be emphasized 

that G and G' are evaluated over the same set of randomly 

chosen points. The quantity, 1^,, is defined by the expres

sion, 

I_, = }-}aiG- (£) ("-5-2) 
G 0 0 

n-cube 

and must be able to be evaluated to an arbitrary accuracy via 

an appropriate analytic or numerical method. 

It is found in the cases considered in this work, that 

the method of control variates improves typical Monte Carlo 

estimates of scalar collision integrals or energy-dependent 

cross sections by reducing expected error estimates, 

typically, by a factor of two to four for a given set of N 

randomly chosen integration points. The degree of improve

ment is a measure of how closely the primary and control in

tegrands are correlated. It is useful to give as an example 

of the control variate method a calculation of the Chapman-
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Cowling omega integral, for a Lennard-Jones 6-12 po

tential as a Monte Carlo estimate for a reduced temperature 

of 1.824 and using the value of appropriate to hard 

sphere models of varying radius, E, as a control variate. 

The expected error estimates are plotted in Fig. 4.1 versus 

the reduced hard sphere radius, R/a. (a is the usual 

Lennard-Jones force constant,) The actual deviations of the 

control variate Monte Carlo estimates appear as isolated 

points. Both quantities are evaluated for two sets of 10,000 

randomly chosen integration points. The obvious minimization 

of the expected error at R/a equal to 0.95 illustrates the 

applicability of the control variate technique. The expected 

error estimate is reduced for the optimum hard sphere radius 

by a factor of three over the corresponding uncorrected 

value. Since the expected error converges as this 

three-fold improvement of precision corresponds to a primary 

uncorrected Monte Carlo estimate obtainable by a nine-fold 

increase in the number of integration points evaluated (i.e., 

90,000 versus 10,000). 

One possible choice for a control variate which is ap

plicable to the evaluation of scalar collision integrals or 

phenomenological cross sections of a realistic anisotropic 

potential is the corresponding integral evaluated for a 

spherically symmetric potential. A shortcoming of this 

choice is that no significant improvement can be expected in 
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estimates of quantities which.involve only the anisotropy of 

the interaction. Accurate values of the control variate can 

be easily obtained by suitable analytic or numerical 

techniques. 

another possible choice for a control variate applicable 

to the above situation is the corresponding quantity evaluat

ed for a hard ovaloid interaction. One should be able to 

obtain improvement of all estimates since anisotropic contri

butions to the interaction potential are explicitly taken 

into account. However, as was noted previously, the 

"projection" operator techniques developed to evaluate the 

scalar collision integrals for hard ovaloid interactions in 

Section 4.3 possess a systematic error due to the neglect of 

"chattering" collisions. In principle, it is undesirable to 

ever introduce systematic error deliberately into a Monte 

Carlo calculation. In practice, systematic errors which are 

negligible compared to the probable random error inherent in 

the calculation will not affect the numerical result. The 

utility of hard ovaloid control variates can be judged on 

this criterion. 

For hard intermolecular potentials, chattering interac

tions are unambiguously defined as binary collision events 

which involve more than a single impulse. Chattering cannot 

occur for hard sphere interactions. The frequency of 

chattering is, as expected, directly related to the degree of 
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anisotropy inherent in the intermolecular potential. 

The chattering frequency can be approximated by a 

suitable Monte Carlo estimate which consists of the ratio of 

the number of chattering collisions to the total number of 

collisions for some set of randomly chosen classical 

trajectories. A description of the algorithm used to con

struct hard sphere-hard ellipsoid trajectories is given in 

Appendix C. Results obtained by this method for hard sphere-

hard ellipsoid interactions are summarized in Fig, 4.2. 

Here, the kinematic parameters are appropriate to an Ar-COg 

system. Of the potential parameters, the sphere radius, r^, 

and ellipsoid semimajor axis, b, are held fixed with values 

of 1.91 & (3.6 bohrs) and 4.23 % (8.0 bohrs) , respectively, 

O 
and the semiminor axis, a, is allowed to vary from 1.59 A 

(3.0 bohrs) up to b. The collision frequency is evaluated as 

a function of impact parameter and ellipsoid eccentricity, e. 

It is evident from the results appearing in Fig. 4,2 that the 

chattering frequency can become significant for moderately 

eccentric ellipsoids. Figure 4.3 illustrates the definition 

of the hard sphere-hard ellipsoid potential parameters. 

To assess the systematic error inherent in the 

"projection" operator technique applicable to the evaluation 
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IMPACT PARAMETER 
(ANGSTROMS) 

Fig. 4.2. Chattering Freyueacy for a Hard Sphere-Hard-
Ellipsoid Interaction 
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Fig- 4.3. Geometry of an Ellipsoid of Révolution 
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of hard ellipsoid-hard sphere effective collision cross sec

tions, Monte Carlo estimates of a selected few of these cross 

sections have been obtained. Again, Ar-COg kinematics is 

O O 
assumed and r^ and b are held constant at 1.91 A and 4.23 A, 

respectively. A summary of results based on 10,000 

trajectories is given in Tables 4.1, 4.2, and 4.3, and Figs. 

4.4, 4.5, 4.6, and 4.7. In each case Monte Carlo estimates 

are compared with values obtained via Egs. (4.3-26), 

(4.3-27), and (4.3-28), In the plots, Monte Carlo estimates 

(isolated points with appropriate error bars) and 

"projection" operator results (solid curves) are given versus 

eccentricity. Deviates which are significantly greater than 

the expected random error become apparent at an approximate 

value of e = 0.55. If one defines E = b/a, this value of e 

corresponds to an R of about 1.2. Finally, as expected, 

chattering has a greater effect on cross sections which have 

no spherical contribution. 

It has been found fay Cooper, Hoffman, Matzen and 

Verlin(33) that typical values of E appropriate to the calcu

lation of transport coefficients for hard ellipsoidal models 

of first row diatomics range from approximately 1.1 to 1.3. 

Thus, the use of the effective collision cross sections for 

hard ellipsoid-hard sphere potentials as a control variate is 

marginal at best when applied to the estimation of realistic 

Ar-Ng cross sections and is unwarranted when applied to the 
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Table 4.1. Hard Sphere-Hard Ellipsoid Effective Cross 
Sections: Comparison of Monte Carlo Estimates 
and Projection Operator Results 

Cross Monte Carlo Projection Percent 
Section® Estimate® Operator Result Deviation 

®<l000l^c.6 36.5(1.8) 32.9 -9.6 

g.lOtOiB, 
"M200 '3'a3 

(5 /1 200 I 3\ 
M010 '3'a3 

6(1001 ,3) 
"M200 '3'a3 
G/1200 I 3& 
"moOI '3' a3 

®<!!ool^a6 31.9(3.2) 36. 1 13.2 

®'l200l^cc6 119.5(5. 1) 229.6 53.6 

«'MOol^aB 71.8(3.7) 111.6 55.» 

g ,1000 | 6 ,  
^M200'3^a3 
^,1200i3. 1.32(14.3) 0-318 -75.9 
^ MOOO '3'a3 

-2.79(7.9) -8.49 204.3 

-1.99 (5.6) -1.68 -15.6 

^ Sphere radius = 1.91 ellipsoid semimajor axis = 4.23 & ; 
ellipsoid semiminor axis = 2.12 

^ All cross sections given in angstroms squared. 

Values in parentheses are percent relative standard 
deviation. 
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Table 1.1. (continued) 

Cross MoBte Carlo Projection Percent 
Section Estimate Operator Result Deviation 

® ( [ X ! î  ! X l 2 6 2 . 8 ( 3 . 2 )  2 6 1 . 2  - 0 . 6 1  

'  ' o 6  - 2 9 . 3 ( 4 . 5 )  - 8 0 . 5  1 7 1 4 . 7  

GdS-ïx [g] <2') 
(2).vn\ 10.8(11.3) 16-0 -4.8 G(%x[n] ;lfl) 

a3 

Table 4.2. Hard Sphere-Hard Ellipsoid* Effective Cross 
Sections: Comparison of Monte Carlo Estimates 
and Projection Operator Results 

Cross Monte Carlo Projection Percent 
Section^ Estimate® Operator Result Deviation 

52.3(1.6) 50.2 -1.0 

^'noo'e'os 11.5(3.5) «1.5 0.01 

^ Sphere radius = 1.91 ellipsoid semimajor axis = 4.23 
ellipsoid semiainor axis = 3.06 A. 

^ All cross sections given in angstroms squared. 

® Values in parentheses are percent relative standard 
deviation. 
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Table 4-2. (contiaued) 

Cross Monte Carlo Projection Percent 
Section Estimate Operator Result Deviation 

r ,1200,6. 
^M200'3'ap 145.8(4.7) 170.4 16.9 

r/0200|6. 
^^0200 '3^a6 61.1  (2 .6)  71.3 16-7 

r,1000|B. 
^M200 'B'a3 
r,1200,6. 
^  M o o o  ' a ' a e  

0. 743(30-2) 0.204 -72.5 

G/1010|6. 
M 200 'e'aB 

«,1200 iB. 
M010 'e'ae 

-3. 59 (7.2) -5.32 48.5 

r,1001 |3. 
^M200 'B'a3 
r,1200,6. 
^MOOI 'B'aG 

-7.73(2.5) -7.20 - 6 . 8 6  

6([l]'^'i[X]'^')^g 357.7 (2.7) 361.9 1 - 2  

GiSi^,yh 

aB 

a3 

-50.3(3.7) -68.5 36.2 

G(vS;ïxtn)'^')„g 

G(IXtni'^'-ïSlag 
23-2(16.4) 2 1 . 6  •6-9 
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Table 4,3, Hard Sphere-Hard Ellipsoid Effective Cross 
Sections: Comparison of Monte Carlo Estimates 
and Projection Operator Results 

Cross Monte Carlo Projection Percent 
Section^ Estimate^ Operator Result Deviation 

p, 100010. 
^M200 'e'ctg 
r/IZOOie. 
^Mooo'e'ae 

g/l0l0|3. 
M200 'B'aB 

g,120013. 
M010 'B'a3 

G'ISSgle'ae 69.Ml.5) 71.3 2.7 

67.9 (3.2) 70.0 3.1 

®'!2oSl^aB 109.2 (..7) 115.9 6.1 

®'Sl^a6 t.34(3..) 4.47 3.0 

0. 586(32.0) 0.259 -55.8 

-0.379 (29.7) -0.271 -28.5 

^ Sphere radius •= 1.91 K ; ellipsoid semimajor axis = U. 23 & ; 
ellipsoid secaioinor axis = 4.02 S. 

^ All cross sections given in angstroms squared. 

^ Values ia parentheses are percent relative standard 
deviation. 
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Table 4.3. (continued) 

Cross Monte Carlo Projection Percent 
Section Estimate Operator Result Deviation 

G(1001,6 
^M200 '3'a$ 
g(1200|3. 
MOOl . 

-1.69(21.6) -1.18 -30-2 

G([%] ; [y] 
a3 

436,9(3.0) 452.7 3.6 

6(^2,02) a3 
G(n2,Y2)^g 

G<Yn:%x[0,(2))^g 

-4.96 (4.0) 

7.25(6.4) 

-5.08 

7.66 

2.4 

5.7 
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estimation of realistic Ar-CO_ and He-CO„ cross sections 
2 2 

since such a procedure would likely introduce systematic 

errors which are larger than the random errors inherent in 

Monte Carlo integration. 

In contrast, the effective cross sections obtained from 

a Lennard-Jones 6-12 potential can be used as control 

variates since the Curtis-Clenshaw quadrature techniques of 

C'Hara and Smith(53) can be used to evaluate them accurately. 

Optimum values of the two Lennard-Jones force constants, e 

and cj, appropriate to the control variate can be found by 

treating the expected error estimate as a function of the 

force constants. The optimum values occur when the expected 

error estimate is simulaneously minimized in both e and a. 

This procedure is illustrated by Fig. 4.8. It is generally 

found that the optimal values of the force constants are ob

tained when the difference between the primary Monte Carlo 

estimate and the ccntrcl variate is at (or very near) a mini

mum. This does not come as a great surprise since Eg. 

(4-5-1) shows that SQ(G«) is comprised primarily of an exact 

result, Ig,, plus a small Monte Carlo correction. 
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0.01 

0.0 0.00 

Fig- 4.8. Variance of the Monte Carlo-Control Variate Esti
mates of {Y;Y} as a Function of Lennard-Jones 
Force Constants 
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4.6. Realistic Anisotropic Potentials in Quantum Mechanics 

The quantum mechanical expressions for the scalar 

collision integrals and phenomenological cross sections can 

be obtained using the expression for the Waldmann-Snider 

collision kernel which appears in Eq. (2.2-48). In this ex

pression, the internal state quantum numbers are denoted 

collectively as and . Within the Born-Oppenheimer and 

rigid rotor approximations, the only internal state quantum 

numbers for an atom-diatom system are j and m where 

\/ii j (j+l)* is the rotational angular momentum and Rm is the 

component of rotational angular momentum along a space-fixed 

quantization axis. Thus, the collision kernel can be written 

as follows. 

gh^/ap,j« 
0 

sGs^-T® 

Here, the "prime" denotes precollisional quantities and 

"unprime" denotes postcollisional quantities. The subscripts 
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"i" and "f" are conventionally defined as by Ben-Seuven and 

other workers(57,58) and denote initial and final states of 

spectroscopic transitions which occur during a collision. 

(Obviously, if j.m. = and jîm! = j'm' no transition 
' -"i 1 -'f f 1 ^f f 

takes place.) Such notation is appropriate to the descrip

tion of dilute gas interacting with a radiation field (e.g. 

pressure broadening of spectral lines). Although radiation 

fields are not considered in the usual description of gas 

transport phenomena, the "i" and "f" provide a convenient 

means of keeping track of indices. 

The scalar collision integrals are defined as follows. 

(4.6-2) 

Here, W and Y , are tensor functions of y and 
V n — — 

It follows from Eg. (3.6-44) that } can be 
V' n V/O) 

written as follows. 

(4.6-3) 
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K K,K;W 
Here, C [ , •{,, ] is a scalar coefficient of the type defined 

Z J K ,K-
in Eg. (3.6-45) and is equivalent to 

defined by Eg. (3,6-42) for which g=K_, gsK., and 
A- J 

The sum over [M] is defined. 

I ... 
[M]  

I , 
uwk£ 

(4,6-4) 

which is equivalent to Eg. (3.6-46) with the sum over g fi.e. 

K^) left out. Thus, in order to construct the effective 

collision cross sections appropriate to the evaluation of the 

transport coefficients, one must evaluate scalar collision 

integrals of the form. 

{[$ 

. I- .Z e'^i^exp (i^+l ) 

ii™i if*f 

j!mî j'm' 

,ii*i 

'li I I I I ' 
Tei-ses^ 

If Ui 
» 

If 

K;,K) K jîm! 

'1Q ii > 
(4.6-5) 

Here, the matrix elements are given in terms of a dimension* 

less plane wave representation. 
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It is advantageous to convert the expression in terms of 

plane wave states appearing as Eg. (t.6-5) to one in terms of 

spherical waves. This can be accomplished by using the stan

dard plane wave expansion. 

Here, is a spherical Bessel function of order, If 

one assumes a Dirac delta function normalization for continu

ously indexed state vectors. Eg. (4.6-6) can be written with

out as follows. 

Here, a phase convention for spherical wave states which 

gives rise to symmetric S-matrix elements as defined by 

Arthurs and Dalgarno(59) has been adopted. For the sake of 

completeness, one notes that Egs- (4.5-6) and (4.6-7) are re 

lated by the identities. 

eik'E = j i^j^(kr)Y%(f)Y%*(k) (%'6-6) 
£=0 

|b> = Î I i'^fe'^Yj*(Ê) |feZy> (4.6-7) 
£«0 y»-£ 

<r|^> » 2ir 
-3/2^ife.r (4.6-8) 

<T\kl]x> - [|]'̂ feŷ (fer)Yj(r) (4.6-9) 

Equation (4.6-7) yields the expression. 

|ir> = Î I C-E-io) 
JL ' ImQ y»-Z 
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where one notes that the dimensionless relative linear momen

tum, % equals Efe/I2y^gkT]and the relative transiational 

2 
kinetic energy, E equals kTy . If one substitutes Eg. 

(4.6-10) into Eg. (4.6-5), one obtains an expression in terms 

of an uncoupled transiational energy-spherical wave represen

tation as follows. 

Kp,K.j K K;,K} K 

/ e \ KafK. K+ j-m. 

exp(-E!/kT)exp [ - ^3^ ( j -+ l ) ]  I 1% 1q  

^Q'E!£!y 

(4.6-11) 

The irreducible tensor operators are explicitly diagonal in 

the relative transiational kinetic energy. 

The matrix elements of the irreducible tensor operators 

can be written in terms of standard spherical components 

using Eg. (4.6-4). One obtains an expression in which con
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tributions from rotational and translational motion are 

neatly separated. Thus, the irreducible tensor matrix ele

ments have the explicit form, 

j m K»,K. K j.m. K.-K.+Q , 

^ J (4.6-12) 

K |3 (t) (Ji2, 

Q£ Qy "Qj " i 

As a consequence of the Migner-Eckart theorem(60), the tensor 

operator matrix elements appearing on the right hand side of 

Eg. (4.6-12) have a simple geometrical dependence on magnetic 

quantum numbers, m., m^, y. and y.. If the matrix element of 
K 1 r 1 t 

"1 
Y [Yin is expressed in a relative mcmentum representa-
~ Qf 

tion, it can te evaluated directly. One obtains the result, 

. K, W.+M 
|Eiiiyi>= (Ej/kT) 

(4.6-13) 
(-1) U-W£Qi]\" ° °J 

(2£j+1) (2K^+1)l'®«(Ej^-Ej) 

The scalar quantity, N(K^), comes from the definition of 

standard spherical tensor components in terms of spherical 

harmonics. (This definition appears explicitly as Eq. (8-9) 

in Appendix A.) It has the form. 
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N(K^) = 2^/2[ (4.6-14) 

It follows directly from the Wigner-Eckart theorem that a 

standard reduced matrix element which is independent of mag

netic quantum numbers. If "reduced" or "double-bar" matrix 

elements are defined as by Edmonds(60), one obtains the ex

pression. 

The scalar collision integrals can be formulated in 

terms of the rotationally invariant Arthurs and Dalgarmo S-

written in an appropriate totally coupled basis. If one uses 

the coupling scheme given by Ben-Reuven(57), one obtains ex

pressions for the following rotational and translational 

basis vectors. 

(4.6-15) 

The reduced tensor operator matrix elements, 

<"" I [g] I |-> are scalar quantities. 

matrix elements if the tetradic matrix element of Î0Î-§0§^ is 
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(4.6-16) 

f.+Ka-p 
^ ^ f (2X^+1)% 

(4.6-17) 

One notes here that these couplings can Jbe summarized 

vectorially as 2f ~ 2^ ~ and = K^. The basis 

vectors defined by Eqs. (4,6-16) and (4.6-17) can be further 

combined in order to form a totally coupled basis as follows. 

This "K-K" basis set defined by Eg. (4,6-18), does not 

provide a convenient basis in which to construct rotationally 

invariant quantities. It is, however, related by a unitary 

transformation to a totally coupled basis set which does pro

vide a suitable basis. This "J-J" basis set can be con

(2KH 

(4.6-18) 

The coupling can be summarized vectorially as K„ + K. = K. 
•j 
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structed according to the following vector coupling scheme, 

-if —f ~ —f ji + Ai = ^i» jf - Ji = j(. The unitary trans

formation relating the K-K basis set to the J-J basis set can 

be written in terms of the Wigner 9-j symbols as follows, 

|EfE]^, (jf£f)Jf, [(ji£i)Jij''];KQ» = % [ (2J^+1) (2J^+1 ) 

(Tf Jjj (4.6-19) 

(2Ky+1)(2K^+1)]%Jj^ j A i E ^ E ^ r  ( Z ^ Z p K ^ ; K Q »  

IK.. K„ K I 
I  J  ^  J  

In terms of the J-J basis, the tetradic matrix element of 

Î01-S0S^ has the particularly simple form, 

, ( j , [ ( j . ̂ ) J. ] + ; KQ IT0Î 

- S9i\  E'Ej,(j^£|)J^,[(j|£|)J|]''',K'Q'» = 

(4,6-20) 

J- J.* 
S . 

Here, and E| represent the total energies (translational 

plus rotational) of the system in states "i" and "i'", and 

S. „ ,.,n, and S. « .,«, are S-matrix elements as defined by 

Arthurs and Dalgarno. The superoperator, Î0l-S®S is diago

nal in K, Q, and due to the overall rotational 

invariance of physical systems. The energy diagonality comes 
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from the "hatted" operators and has been thoroughly discussed 

previously. 

Equation (4.6-11) can be written in terms of a 

generalized phenomenological cross section by using Egs. 

(4.6-12), (4.6-13), (4.6-14), and (4.6-15) to simplify the 

trial tensor function-operators in terms of scalar reduced 

tensor operator matrix elements and Higner 3-j symbols. This 

is followed by use of Egs. (4.6-16), (4.6-17), (4.6-18) and 

(4.6-19) in order to transform the uncoupled basis appearing 

in Eg. (4.6-11) to a totally coupled one. Use of Eg. 

(4.6-20) allows the evaluation of the tetradic matrix element 

as discussed in the last paragraph and results in the final 

expression. 

e f4. \  0 (Ky) (4.6-21) 
I I exp(-|^ jMjf + DXj. 1 [nl Mljf> 

<j^ l  I s 'V  (S^)  I  I jp  
t  q  1  0 J i^ f ' J iJ f  

E : E ! ,& 
Here, y' is defined as and thus Y ~ "" where 

E' is defined as E| + -ij|(j|+i). The integers s and s' are 

defined as j+K^ and j'+K^ respectively. (j and j' are 

indices appropriate to the basis and should not be confused 

with angular momentum quantum numbers.) The generalized 
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phenomenological cross section which is independent of Q, is 

defined as follows. 

j.jf 

(2J^+1)(2J^+1)t(2Z^+1)(2^2+1)(2£|+1)(2£^+1)]^ 

/ l .  K»\ f l \  I* k;\  pf ^ F j  n ^ f  I  (4-6-22) 

The partial wavenumb&r, (c| is defined as [2ij^gE^/R]The 

Arthurs and Dalgarno S-matria elements are evaluated at total 

energies of E^ and E^. 

For the sake of completeness, it should be noted that 

the generalized phenomenological cross section as defined by 

Eg. (4.6-22) has a wider application than the evaluation of 

transport coefficients as is proposed in this work, in par

ticular, to the description of collisionally induced 

radiative processes. (Pressure broadening of spectroscopic 

line shapes is a good example(57).) As mentioned previously, 

the effects of a radiation field are not considered in the 

usual description of gas transport phenomena. In this case 

the "i" and "f" subscripts are ignored. 
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The generalized phenomenological cross section exhibits 

the following symmetry relations. 

K !  2  K - + K 1  K - K . ; K i K )  
-— (-1) J . ̂ » J I (Kf E L, E Î ) (4.6-23) 

K.K. ;K ;K}  

K l  2  K . + K . +K'.+K; K,K.;K1K'.» 
^  ( - 1 )  ^  ^  ( 4 . 6 - 2 4 )  

These relations are obtained by using parity, the symmetric 

nature of the Arthurs and Dalgarno S-matrix, and certain 

properties of the Signer 3-j symbols. Further inspection 

shows that if and j| = as for the construction of 

transport coefficients, then must be even or the cross 

section vanishes. Furthermore, for this case, if K.+K*. IS  
i J 

odd, the cross section is imaginary and if K , + K', is even, it 
J J 

is real. If ^ and j| ̂  then the cross section can 

be complex. 

The scalar collision integral defined by Eg. (4.6-21) 

can be written in terms of a "Q" cross section which is anal

ogous to the classical expression given by Eg. (4.4-11). One 

obtains the result. 
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v,w Vu 

2|E .1., exp(4 I. 
]i:i ^ j 

3fif 

If one compares this expression to Eg. (4.6-21) one can 

define the Q cross section in terms of the generalized 

phenomenological cross section as follows. 

K K •M 
( K )  . V j ' ^  .  _  „  2 ^  ^ -,h (2K+1) 
° ^K|Kj;M'^ Î6K^.K^. I (2K^) l (2K^) C2j\ + 1) 

(K •) (K') 6-26) 

(S^) tâ) ' lljfXjillSqV (â^llSl ' ibp 

This expression is a direct generalization of the cross sec

tion, Q(^). 

It is possible to obtain the spherical limit of the 

generalized phenomenological cross section if one notes that 

the S-matrix elements can be written in terms of a phase 

shift as follows, 

Jf 
/ fi'f'tEf) = fi.ij 6.,. exp[-2in« ] (4.6-27) 

]f^f ]f^f ^ ]f]f Vf 

Substitution of this expression into Eg. (4.6-22) yields the 
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result. 

K.K.;Kpj ^ 

(4.6-28) 

r (2Z. + 1) (2f_+1) I I .  K.\2 

(2KY+1) (2K^+1)  YO 0  0 /  [1  EXP[2 I (N^^ -N^^ ) ]  

For the cross sections appropriate to transport phenomena, 

the "i" and "f" subscripts can be ignored which results in 

the expression. 

K.K- ;K ;K ; .  

/ \, (4.6-29) 

(2^1+1)(2ff+1) Kf 2 

/_ j^&f.l2Ky+1)(2Kf+1) \0 0 o j  1 

Clearly, the cross section is exclusively real valued in this 

case. 

4.7. Approximate Quantum Mechanical Generalized 

Phenomenological Cross Sections 

Recent work has resulted in some very useful guantal ap

proximations for use in treating rotational excitation in 

atom-molecule collisions(31,32). Of these, the coupled 

states (CS) and infinite order sudden (lOS) seem to hold the 
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most promise for application to transport phenomena. This is 

because 10S and CS cross sections can be computed reasonably 

fast (as compared to close coupling (CC) cross sections) but 

yet compare well with accurate CC or classical trajectory 

(CT) cross sections. 

Briefly, all sadden approximations arise by the applica

tion of a suitable angular momentum decoupling assumption to 

the set of coupled, exact quantum dynamical equations de

scribing atom-molecule collision dynamics. Such decoupling 

represents a great simplification because it reduces the 

large number of coupled equations which arise for even 

modestly energetic collisions. 

One obtains the CS approximation by replacing the orbit

al angular momentum operator appearing in the centrifugal po

tential of the atom-molecule Schrodinger equation by an aver

age orbital angular momentum eigenvalue. The validity of 

this approximation is related to the rate of change of the 

classical turning point with respect to orbital angular mo

mentum. This can te seen if one recalls that the underlying 

assumption of the CS approximation is that the relative 

kinetic energy is sufficiently large so that the precise 

value of the centrifugal potential is unimportant, (i.e., 

just the case for which the rate of change of the classical 

turning point with respect to angular momentum tends to 

become small.) Indeed, it is found that the CS approximation 



198 

is quite good for steep, repulsive single turning point 

regions of an interaction potential, but should be considered 

suspect in the three turning point region for potentials with 

wells. 

The lOS approximation is a further approximation of the 

CS approximation. It is valid in tne case that both the 

centrifugal potential and the rotational kinetic energy are 

unimportant when compared to the relative kinetic energy. 

Further discussion of the sudden approximations and other ap

proximation techniques is beyond the scope of this work. For 

a more complete discussion of approximate quantum mschanical 

scattering techniques the reader is referred to the work of 

Kouri(61). The results of this work will be used to simplify 

the generalized phenomenological cross section appearing in 

the last section. 

The generalized phenomenological cross section given in 

Eg. (4.6-22) can be readily converted to its CS form by stan

dard techniques. The first step in this conversion requires 

substituting the CS expression for the Arthurs-Dalgarno S-

raatrix into Eg. (4.7-1) , 

f-f.jf^f 
I [(2^2+1)(2f^+1)]% 

(4,7-1) 
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Here, can be chosen to be any function of and 

(However, to preserve time reversal symmetry should be 

symmetric in and Z^.) The phase convention used here has 

been shown to be correct by Khare(62). This convention gives 

the proper behavior for degeneracy-averaged differential 

cross sections. If one expresses the Wigner 9-j symbols in 

Eg, (4.6-22) in terms of Wigner 6-j symbols using the follow

ing relation. 

Df I f  J f  

h 
KJ K 

g(-1)28(25+1) 

r. 
3 f  Di K . 

H  K : 

£f i. 

ji s 

iJf K 

S jf 

(4.7-2) 

and recombines appropriate pairs of 3-j and 6-j symbols ac

cording to the relation. 

=  ( -1  )  
K+J^+S+Y 

•f 'i 
0 p. -y 

s 

(4,7-3) 

one is able to sum over J . The Secrest labeling scheme, 
f 

(i.e., the so-called "L-average" labeling Z = 
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results in the following expression for the generalized 

phenomenological cross section evaluated within the CS ap

proximation. 

K»K.;K;K'. ^ r Kl+S+S' 
(K,EL,EM = -2L. i (.,)•' (2S+I) (2S'+1) 

K S 
,pf 3i "J I I  ( ^Mi+Zi-Zf 

Ji 

(2Jj+l)(2fj+1)(2fj+l)(ZZj+l)(2f'+t) 

' 4  h  
0 0 

V. ^ 

0 0 
"'t 

!£• £1 K| 

'ii S' 'i 

Î  k  n ^i\  K •'i s'' 

"^1/ r 'W 1° "i "N 

I K S'\ 

f i-̂ f ''f "ij ° H i  

[ 6  (4,7-4) 

From a computational viewpoint, this expression does not 

appear to hold any great advantage over calculation of S-

matrix elements using Eg- (4.7-1) followed by direct substi

tution into Eg- (4.6-22). 
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If instead of choosing L-average labeling, one chooses 

^f ~ and Zg = (this is termed the "L-initial" labeling 

scheme), considerable simplification results. By 

appropriately applying expression similar to Eg. (4.7-3) and 

(4,7-U), the summations over 3^, S and s' can be 

performed and the much simpler form of the generalized 

phenomenological cross section. 

is obtained. It should be noted that had Z. = Z. and 
11 f f 

(iiSi» the "L-final" labeling scheme) been chosen, an expres

sion analogous to Eg. (4.7-5) with and replaced by 

and would result. These two expressions are the same only 

if and are egual. 

The CS expression given in Eg. (4.7-4) for "L-average" 

labeling can be reduced easily to the corresponding lOS ex

pression by noting that the lOS approximation to ^ Cj^lj^) 
£ £ 

(4,7-5) 
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is given by the following expression. 

Sy . (ifli:) = I (-l)^f[(2. +1) (2.• + !)] 
Z : Lf ]f 

(4.7-6) 

£f 
Here, is the Legendre polynomial expansion coeffi

cient of the S-matix for the fixed-angle uncoupled radial 

equation having orbital parameter, If one substitutes 

* I 
Eq. (4.7-6) and its eguivalent form for ^ (jj j|) followed 

by appropriate recombinations of 3-j and 6-j symbols using 

expressions similar to Eq. (4.7-3), one is able to perform 

the summations over J^, s, and S' which appear in Eg. 

(4.7-4). The resulting lOS form of the generalized 

phenomenological cross section is, 

K-K.;KiK} , u'+X+A'+K.+Kl 

pi Ft 4 ̂  Kj K 

\-M X'+y' y-y'-X'l I A -X-y • y'/lx' -X'-y' y'j 

I  pf jf ji ji ̂ i jf jf 

LiLf \ 0 0 oM 0 0 0 M y -y 0 

(4.7-7) 
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K» I  'i 
0 0 0 

1 1 1  
0 0 0 

"i l f 
X -X  0 ,  

( 
This expression simplifies further only for special choices 

of Ky, Kj, K^, and K^. As with the "L-average" CS expres

sion, it would appear that this expression affords little if 

any improvement over numerical evaluation of the generalized 

phenomenological cross section via calculation of the 

S-matrix elements using Egs. (U.7-6) and (1.7-1) followed by 

direct substitution into Eg. (4.6-22). In fact, it was found 

by this worker that in practice, the indirect method is 

actually more efficient from a computational viewpoint than a 

direct numerical evaluation of Eg. (4.7-7). 

Considerable simplification of Eg. (4.7-7) results if 

instead of an "L-average" labeling, one chooses and "L-

initial" labeling (i.e.. and = £^). The summa

tions over and Z.^ can be performed which results in the 

following lOS expression for the generalized phenomenological 
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cross section, 

^  k  f i ,  j f  K y .  \  
( ( 2 j f + 0 ( 2 j ^ + 1 ) ( 2 j ' + l ) ( 2 j :  +  1 ) l »  L " .  x j  X . 4 J  

/J! KJ W K KY \ 

f  K ^  I  h i  h  I  n  ^  
|X^-X. 0 X.-Xjj 0 oj^o 0 Oj (,.7.,, 

(? f • vv - 44'' 

As was the case with the CS "L-initial" expression, an analo

gous expression for "L-final" labeling can be derived which 

has the same form as the expression given above except that 

and are replaced by and respectively and in 

the last 3-j symbol is replaced by k^. It should be noted 

that the lOS "L-initial" and "L-final" expressions are equal 

only if is equal to K^. The transport coefficient cross 

sections for which and j| = also do not simplify 

further(63). 
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5. NUMERICAL RESOUS 

5.1. Introduction 

As an introduction to the numerical results obtained by 

use of the preceding theory, a short, qualitative discussion 

of the Senftleben-Beenakker effects is given. This is fol

lowed by a discussion of the convergence of the perturbation 

expansion in the nonsphericity parameter and finally a summa

ry of the numerical results is to be presented. 

The Senftleben-Beenakker effects on the thermal 

conductivity, Soret, Dufour, and diffusion coefficients are 

quantitatively characterized by parallel, perpendicular, and 

transverse components as shown in Eq. (3.3-16). In the low 

field limit, the parallel and perpendicular components are 

equal. Conversely, in the high field limit, saturation 

occurs with the parallel and perpendicular components ap

proaching different limiting values. The transverse compo

nent vanishes in both high and low field limits. It reaches 

a maximum value at an intermediate field strength for which 

molecular precession and collision frequencies are of the 

same order of magnitude. If one allows J to represent any 

one of the above-mentioned transport coefficients, one can 

define the following dimensionless parameters. 
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T Tg-Tg 
Vw = ^TsT:;- (5.1-2) 

1 0 

T ^tr 

Here, the scalar coefficients, T ,, T,,, and T , are 
X II tr 

defined as in Eg- (3.3-16). The quantity, is the 

saturation limit of Tj^, and is given by, 

T. = lim T| = lim Tu (5.1-4) 
" Hh-G ^ H-^0 " 

m 
where H is the magnetic field strength. The quantities v^, 

T T 
VII, and are universal functions of H/P (P is the 

hydrostatic pressure) and can be plotted versus this quantity 

as is shown in Fig 5.1. This plot is representative of the 

Senftleben-Beenakker effects observable in a dilute atom-

diatom mixture. 

If one includes only the dominant W[fl] polarization 

in the expansion set used to construct the collision opera

tor, then one finds that the saturation limit of is 2/3. 

(vj has been defined such that it has a saturation limit of 

unity.) Under the same conditions, one finds that reach-
tr 

es a maximum of 0-175059 at a critical value of the magnetic 

field strength, The value of in an atom-
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Fig. 5.1. Seaftlebea-Beeaakker Effects Characteristic of a Dilute Atom-Diatom 
Mixture 
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diatom mixture which is infinitely dilute in the diatomic 

species is given by the formula, 

where is the diatom rotational g-factor and is the nu

clear magneton. The constant, is a dimensionless num

ber which to six decimal places has a value of 0.615795. In 

the case of systems considered in this work, the inclusion of 

and/or other polarizations changes the preceding values at 

most by only a few percent. 

In order to assess the rate of convergence of the 

nonsphericity perturbation expansion, the collision operator 

was directly inverted. This result was compared to the first 

few low order (up to fifth) results obtained using the 

perturbation approach. The perpendicular component of the 

thermal diffusion coefficient for an Ar- CO^ system at 300°K 

is plotted versus Fig. 5.2. The parallel and trans

verse components exhibit similar behavior. As can be seen, 

there is a significant deviation in second order which is 

markedly improved in third order. Curves for orders higher 

than third are indistinguishable from the exact inversion. 

It should be noted that the Ar-CO^ system at 300° K is given 

here because it involves the most anisotropic interaction 

dealt with in this work. In contrast, if one considers an 
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Ar-Ng system (i.e., the least anisotropic interaction inves

tigated) f one finds that even the second order results do not 

differ significantly from exact results. 

In Chapter 3, expressions for various transport coeffi

cients of interest are given in terms of effective collision 

cross sections. Thus, comparison of the various theoretical 

approaches taken in this work with each other and with exper

iment is conveniently made In terms of these cross sections 

themselves rather than in terms of actual transport coeffi

cients. furthermore, the effective cross sections are 

expressed in Chapter 4 as averages of energy dependent 

phenomenologlcal cross sections over a Haxwellian energy dis

tribution. Comparison of the uaaveraged phenomenological 

cross sections obtained from the various methods is thus an 

even more rigorous test of the efficacy of the theoretical 

approaches developed in the preceding chapters. 

The remainder of this chapter consists of five sections. 

The first is a presentation of results obtained for some 

specific model systems using the techniques of Chapter 4. 

The second is a comparative discussion of various numerical 

values of generalized phenomenological cross sections. The 

third section is a comparative discussion of various numeri

cal values of effective collision cross sections. The fourth 

section is a presentation and discussion of results obtained 

using the Klhara model methods previously employed by Verlin 
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et al^(64) and the last section is a brief survey of future 

areas of study related to the present work. 

5.2. A Presentation of Monte Carlo and lOS Results 

The Monte Carlo methodology was applied to four specific 

molecular potential energy surfaces. These included two dif

ferent Ar-COg interactions due to Parker, Snow and ?ack(65) 

(denoted by I and II) , an He-CO^ interaction due to the same 

authors, and an Ar-Ng potential surface due to Pattengill, La 

Budde, Bernstein, and Curtiss{66)- The Ar-C02(I) surface and 

the He-COg surface were employed in the calculation of effec

tive cross sections for these systems at 300°, 900°, and 1800° 

K. The àr-CO^(II) surface was used to calculate effective 

cross sections at 300°K only (for comparison with the Ar-C02 

(I) results), finally, the Ar-N2 surface was employed to 

calculate effective cross sections at 300°K and 

phenomenological (energy-dependent) cross sections at three 

different initial relative translational energies (0-00500 

eV, 0,02585 eV, and 0.05000 eV) and a single initial 

rotational energy (0.0105 eV). The rotational energy chosen 

corresponds to a rotor quantum number of six. The author was 

greatly aided in this work by Dr. E- K. Preston(67), (cf. 

Goldflam at al. (68)), formerly of Lawrence Livermore Labora

tory, Liveroore, California, who generated the original 11 
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sets of classical trajectories appropriate to the 11 cases 

listed above. He used a very efficient Adams-Moulton 

predictor-corrector algorithm in conjunction with a CDC 7600 

computer to perform the necessary integrations of the 

classical equations of motion with randomly chosen initial 

conditions. 

The precollisional conditions appearing in the original 

sets of classical trajectories (appropriate to the thermally 

averaged cross sections) were used by the author to generate 

control variate trajectory data as discussed in Chapter % 

(i.e., based on a Leonard-Jones 6-12 interaction with 

optimized force constants). These trajectories were combined 

with the original trajectories (via Eg. (4.5-1)) to obtain 

the values of the effective collision cross sections which 

appear in Tables 5-1 and 5.2. These quantities are reported 

in squared angstroms along with estimates of the relative 

standard deviation (in percent) which appear in parentheses. 

These data (especially for the âr-C02 and Ar-N2 surfaces) 

will be compared subsequently to corresponding lOS and Kihara 

model results. The reader should also note that effective 

cross sections at 300°K are given for the two Ar-C02 poten

tial surfaces in the first two columns of Table 5-1. One can 

conclude from comparison of corresponding quantities that the 

Ar-C02(I) potential surface is more anisotropic than the Ar-

CO2(II) potential surface. 



Table 5.1. Monte Carlo Estimates of Effective Ccllision Cross Sections for Ar-CO, 

Cross Section 'Vsî°oiP 

G (  

G (  

G (  

G (  

G (  

G (  

G (  

G (  

G (  

G (  

G (  

G (  

G (  

1000 
1000 
1010 
1010 
1010 
1010 

1001 
10C1 
1100 
1100 

1200 
1200 
0200 
0200 
1000 
1010 
1010 
1000 
1000 
1001 
1001 
1000 
1010 
1001 
1001 
1010 

) 

3 

aB 
I 
cB 

I 
a B  

I 

a B  
B  

b 
s 
B'aB 

G) 
B'aB 

) 
B ' a B  
B  
B  
B  

B) 
B'aB 

B^aB 

B ' a B  

26.2(1.0) 26.2(1.3) 19.6(1.6) 17.4(1.6) 

43.8(2.0) 44.0(2.8) 32.6(3. 5) 28.8 (3.5) 

45.8(2.0) 45.8(2.8) 34. 1 (3.5) 30.0(3.5) 

57.2(2.6) 63.1 (2.5) 36.5(4.0) 30.5(3.8) 

23.2(2.3) 23.7(2.1) 16.4(3.0) 14.4(3.0) 

103.5(3. 4) 86.2(3.0) 61.3(4. 8) 48.6(4.7) 

50.5(4.2) 36.2(3.6) 26.2(6.6) 19.3(7.1) 

-1. 13(1.4) -0.658(1.9) -1.69(2.4) -1.36(2.4) 

> 0.359 (2.0) -1.92 (1.8) -0. 120 (2.8) 0.0974(2. 

-7.57(4.3) -7.84 (3.0) -4. 25(5.0) -3.31 (4.8) 

3 Cross sections are in square angstroms and the quantity in parentheses is percent 
relative standard deviation. 



Table 5.1, (continued) 

Cross Section 

,1010 
1000 
1000 
1010 
1010 
1010 
1010 
1010 
1010 
1001 
1001 
1010 
1000 
1200 
1200 

-1.30(1.4) 6'aB 

13. 0 (2.0) 

B'aB 

-4.49 (4. 3) 

3'aB 
0.558(14.2) 

1000 

1010  

-2.62(6.3) 
200 

1010 

1200 -3.13(11.0) 
1200 

-0.76(1.9) 

1  1 .2 (2 .8 )  

-7. 70 (3.0) 

0.554 (24.6) 

-2. 12(7.7) 

-3.52 (9.8) 

-1.95(2.4) 

-10.0(3.5) 

-2. 84 (5.0) 

0. 614(16.6) 

-0. 838 (14.7) 

-1.77(14.6) 

Ar-C0 2{I) 
I8GO0R 

-1 .57(2.4) 

-9.01 (3.5) 

-2.31(4.8) 

0.606 (14. 9) 

-0.579(18.8) 

-1.79(12.8) 



Table 5.2. Monte Carlo Estimates of Effective Collision Cross Sections 
for H€-CC2 and Ar-Ng^ 

^ ,1010.a, 
GtlOIO'a'ag 39.4(3.6) 32.6 (3.6) 28. 8 (3. 8) 34.4(5.9) 

. 1001  ,B  
^MOOl'P'aB 17.8(5.8) 12.4(3.4) 10.3(3.7) 35.0(8.6) 

^^llOo'e^aB 2.13 (3. 2) 2.03(2.7) 1.83 (2.8) 28. 1(3.4) 

®^l200l3^a3 18.3(5.8) 13.0(3.9) 10.8(4.2) 53.8(8.6) 

®^0200l3^a6 7.31(7.0) 4.71(7.7) 3.80(8.5) 7.12(3.7) 

PiJOOO |g 
GX 1010 

.6(1001 |g. 
MOOO '3^aB 

Cross Section He-CO? He-ÇOo He-CO? Ar-N2 300°K 900*K^ ieOO°K 300°K 

^/1000.3. 
^^lOOO'B^aB 3.08(2.0) 2.58(1.7) 2.27(1.7) 29.1 (1.8) 

r,1010,G 
^MOlO'B^aB _ 8.25(3.6) 6.92(3.6) 6.09 (3.8) 39.7(5.9) 

-0.0*53(2.5) -0.0395 (2.6) -1.66 (3.2) 

g , 1000 , 6  .  
M001 'e/ag 

-0. 134(2.9) -0.153(2.4) -0. 129 (2.5) -0.653 (2.9) 

a Cross sections are in squared angstroms and the quantity in pareatheses is percent 
relative standard deviation. 



Table 5.2. (continued) 

Cross Section He-CO 
300° 

Q /-I 01 016. > 
^MOOl 'îB'aB ̂  -0.615(3.8) 

G( 

G( 

1 0 0 1 , 8  |G) X I ft' niR' 1010'B'a3 
1010,a. 
1000'3 -2.01(2.5) 
,1000.3. / 

' rv rv R / G (1010'a) a3' 

® ̂ 1010'3^03""^ -1.67(3.6) 

G(:2 ;2 l^ )a6/  

G( 1 0 0 1  , 3  |G) // 
^  r w  r v  f t  /  1010 'a'a3 

1000 la 
G (1200 (3^33 

1200,3, y  
'aB/ 

1010,3 
1000'3 
1000,3, 
1010 '3' 
1001,3. 

0.0890(18.0) 

p,1010|3v ^ 
" M000 '3'a3> -0.281 (6.9) 1nnn . o /  

^MOIO '3^3^ 
p r 1 UU1 I p. n 
G (l200'3)0^ "^-0.306 (13.2) 

G (  1200I3 I * )  / /  I  r '  ntR/  1001'3 a3 

He-CO? 
900°K^ 

-0.401 (3.7) 

-1.65 (2.5) 

-1.39(3.6) 

-2.22 (3.7) 

0.0661 (20.2) 

0.184 (8.8) 

0.176 (19.3) 

H€-C02 
1800°K 

Ar-N2 
300°K 

-0.326(3.9) 

-1.44 (2.6) 

-1.21 (3.8) 

-1.79 (3.9) 

-1.16(4.9) 

-0.974(3.2) 

-14.0(5.9) 

-1.02 (4.9) 

0.0632(18.6) 0.111 (56.6) 

-0.148 (9.6) 0.292(44.2) 

-0. 156(19. 1) 0.0264 (1400.) 
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The three remaining sets of classical trajectories 

(which are appropriate to energy-dependent cross sections) 

were used to generate estimates of quantum mechanical 

generalized phenomenological cross sections. These quanti

ties are not rigorously defined in a classical sense owing to 

the continuous nature of the classical rotational energy 

spectrum. However, one obtains good high energy estimates of 

the guantal values by means of the following modified form of 

Eg. (4.4-27), 

Q(?(,•? Ij'+j) = 

where for a homonuclear diatomic molecule, 

j* - iWzigkT + ||}. (5.2-2) 

Here, the curly brackets denote the "greatest integer" func

tion. It is clear that the role of the Kronecker delta is to 

divide the postcollisional domain of into subdomains or 

"bins" which correspond in an average sense to rotational 

quantum states. Similarly, the precollisional domain of 

can be divided into a similar set of "bins" (i.e. j* and 0* 

are replaced by j* and in Eg. (5.2-2)). Finally, it should 

be noted that the subdomains have been defined so as to be 

centered on j*+l^ This formulation has been adopted because 

j*+i corresponds more closely to Ij*(j*+1)]^ than either j* 
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or j*+1. Thus, from Eg. (5.2-1), one obtains the result. 

) = Io(y/#Y li'+j) 
 ̂ n j n 

(5.2-3) 

It is clear that Q 1 j •-> j) is easily evaluted as a Monte 

Carlo estimate. 

One then obtains an expression for the scalar collision 

integrals in terms of the "binned" Q-cross sections as 

follows, 

vto 0 0 j V n 

This expression follows from the substitution of Egs. ( 5 . 2 - 3 )  

and (4.4-11) into Eg. (4.4-10). Finally, a classical esti

mate of the generalized phenomenological cross section can be 

written, 

K +K * 

° '.(24) 1 (2K|) 

<j 1 (S^) I IjXj- I ISqV (5^) [Sl'S' I I3'>1('5.2-5) 

Kj:;j j'-j' 

This expression is obtained by equating the integrands ap

pearing on the right hand sides of Eg. (5-2-4) and Eg. 

s ft) -2 (Kf) . (K.) 
( 4 . 6 - 2 1 )  where t '  is y  ) Iy ]  ^  [f i ]  ^ and V  is 

<3 — — V 

^ [%] ^[Ô] 1 Monte Carlo estimates of these 

quantities appear in Tables 5.3, 5.4, and 5.5. These data 
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Table 5.3. Classical Estimates of the Generalized Pheaomeno-
logical Cross Sections^ 

Cross Section 
indices Final fiotor State 

K» 
J  

K j=0 3=2 j=4 j=6^ j=8° 

0 0 0 0 0 -9.20 -21. 3 -35.7 51.5 -4. 83 

1 0 1 0 1 0.10 -1.59 -4.01 46.9 -0. 38 

0 1 0 1 1 -3.27 -5.47 -10.5 74.9. - 1.07 

2 0 2 0 2 0. 11 -0.62 -1.88 29.6 -0. 17 

0 2 0 2 2 -0. 17 -2. 10 -4.61 15.9 -0. 45 

1 1 1 1 p -0.7% -0.86 -0.85 20.4 -0.01 

1 1 1 1 1 -0.03 -0.51 -1.46 13.4 -0. 16 

1 1 1 1 2 -0.35 -0.69 -1.15 16.3 -0. 10 

1 2 1 2 1 -0.68 -0. 40 -0.54 10. 9 -0.02 

1 2 1 2 2 -0.10 -0.37 -0.72 8.46 -0.07 

1 2 1 2 3 -0. 44 -0.43 -0.53 10. 1 -0.05 

^ Initial rotor state = 6; initial translational kinetic 
energy = 0.00500 eV. Cross sections are in squared 
angstroms. The 6 6 cross sections are accurate to within 
10%. All others are accurate to vithin a sign and an order 
of magnitude. 

^ The average of mixed cross sections appears in parentheses. 

^ at this energy, the 6-»-8 channel is closed. However, the 
structure of the "bins" includes a small contribution to 
the 6 8 cross sections for an energy less than the 
classical cutoff. 
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Table 5.3. (continued) 

Cross Section 
Indices 

K. K , K« K«. K 
l J l J 

3=0 

Final Rotor State 

3=2 j=4 3=6 

1 0 1 2 1 0.65 1. 13 0.32 

12 10 1 0.56 -0.19 -0.42 

-3.91 
(-3.94) 
-3.97 

2 0 0 2 2 -0.56 -0. 59 

0 2 2 0 2 0.15 1.39 

-0.19 -0.05 
(0.09) 

-0.06 0.22 

0 

1 

2 

1 

2 

1 

1 1 0.39i -O.Oai 

0 1 0.17i -0.21i 

1 1 -1.40i -0.85i 

2 1 -O.lli -0.041 

1 2 0.92i 0.25i 

2 2 0.15i 0.051 

•0.7C1 -0 .051 
(-0. 131) 

• 0 . 6 6 1  - 0 . 2 1 1  

•1.131 -1.131 
(-1. 281) 

•0.881 -1.421 

0.231 0.681 
(0.601) 

0.081 0.521 
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Table 5.4, Classical Estimates of the Generalized Phenomeno-
logical Cross Sections^ 

Cross Section 
Indices 

Kf Ky %% K} K j = 0 

Final Rotor State 

j=2 j=4 j=6^ j = 8 j=10 

0 0 0 0 0 -5.98 -10.1 -14.7 36.5 -11.5 -i. 20 

1 0 1 0 1 -0.21 -0. 56 -1.89 19.5 -1.50 0.09 

0 1 0 1 1 -1.06 -1.50 -3.70 13.2 -3.17 -0.80 

2 0 2 0 2 0. 12 -0.15 -0.93 17,7 -0.65 0.09 

0 2 0 2 2 -0.97 -0.80 -1.57 8.81 -1.47 -0.41 

1 1 1 1 0 -0. 17 -0.41 -0. 44 8.02 -0.37 -0.09 

1 1 1 1 1 -0.06 -0.33 -0.78 5.69 -0.54 0.09 

1 1 1 1 2 -0.21 -0.34 -0.62 6.73 -0.45 0.007 

1 2 2 1 -0.49 -0.21 -0.32 4.32 -0.24 -0.02 

1 2 1 2 2 0.06 0.33 -0. 34 3.57 -0.28 0.04 

1 2 1 2 3 -0. 17 -0. 16 -0.33 4.16 -0.24 0.001 

1 0 1 2 1 0. 38 0.68 0.35 -1.26 -0. 16 0.03 
(-1.23) 

1 2 1 0 1 0. 12 0.07 -0.26 -1.20 0.10 0. 16 

Initial rotor state = 6; initial translational kinetic 
energy = 0.025E5 eV, Cross sections are square angstroms. 
The 6->-6 cross sections are accurate to within 10%. All 
others are accurate to within a sign and an order of 
magnitude. 

b The average of mixed cross sections appears in parentheses. 
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Table 5.4. (continued) 

Cross Section 
Indices 

h  " 

2 0 0 

0 2 2 

2 

0 

Final Rotor State 

j-0 j=2 j=U j=6 

2 0.22 0.14 -0.03 0.03 
(0.05) 

2 -0.14 -0.13 -0.20 0.07 

j = 8 j=10 

-0.04 0.005 

0.008  0 .10  

1 0 

1 1 

1 2 

1 1 

1 2 

1 1 

0.19i O.C2i -0.291 
(-0.301) 

1 -0.09i -0.12i -0.091 -0.311 

1 1 0.C9i 

0 

1 1 -1.011 -0.121 -0.151-0.191 
(-0.211) 

2 1 -O.C5i -0.061 -0.111 -0.231 

-0.071 0.051 

0.051 0.071 

-0.061 -0.004 

- 0 . 1 0 1  - 0 . 0 1 1  

1 2 1.351 

2 2 -0.031 

0.641 0.051 0.0321 0.041 0.021 
(0.0351 

0.021 0.051 0.0371 0.031 0.011 



Table 5.5. Classical Estimates of the Generalized Phenomenological Cross Sections^ 

Cross Section 
Indices 

Ky Kj K j=0 j=2 

Final Botor State 

3=6" j=8 j=10 j=12 

0 0 0 0 0 -3.82 -7.60 -14.1 37. 1 11.2 -4.32 -0.96 

1 0 1 0 1 -0.17 -0.62 -2.00 16.5 -1.43 -0.06 0. 15 

0 1 0 1 1 -0. 15 -1.03 -3.25 13.3 -3.06 -1.24 -0.26 

2 0 2 0 2 0.C01 -0.09 -1.01 11.2 -0.56 0.06 -0.005 

0 2 0 2 2 -1.18 -0. 60 -1.64 6.91 -1.34 -0.58 -0. 13 

1 1 1 1 0 0.05 -0.11 -0.50 6.60 -0.34 -0.12 -0.02 

1 1 1 1 1 -0.04 -0.26 -0.89 4. €6 -0.58 0.02 0.08 

1 1 1 1 2 -0.02 -0.27 -0.73 5.66 -0.44 -0.05 0.04 

1 2 1 2 1 -0.16 -0.094 -0.39 3.57 -0.27 -0.04 0.006 

® Initial rotor state = 6; initial translational kinetic energy = 0,05000 eV. 
Cross sections are in square angstroms. The 6-»-6 cross sections are accurate 
to within 10%. All others are accurate to within a sign and an order of 
magnitude. 

P The average of mixed cross sections appears in parentheses. 



Table 5.5. (contiaued) 

Cross Section 
Indices 

Final Rotor State 

K. Kî 
i 

K 

1 

o
 

II •
m
 

1 1 

i=2 j=4 3=6 3=8 j=10 3=12 

1 2 1 2 2 0.09 -O.OOC6 -0.36 3.54 -0.30 -0.004 0.04 

1 2 1 2 3 -0.04 -0.10 -0.37 3.66 -0.25 -0.04 0.C2 

1 0 1 2 1 0.29 0.46 0.42 -0.849 -0.25 0.04 -0.04 1 
(-0.66) 

0.07 1 2 1 0 1 -0.36 -0.02 -0.24 -0.871 0. 15 0.1S 0.07 

2 0 0 2 2 0.08 0. 12 -0. 10 0.040 -0.09 0.007 0.03 
(0. 12) 

0.05 0 2 2 0 2 0.38 0.04 0.09 0. 201 -0.07 0.10 0.05 

1 0 1 1 1 0.08i 0.09i 0.07i -O.C7i -0.091 0.111 0.021 
(-O.C85i 

0.151 0.031 1 1 1 0 1 0.06i 0.04i -0. 16i -0.lOi -0. 041 0.151 0.031 

1 2 1 1 1 -0.22i -0.23i -0.411 -0.319i -0.231 -0.021 0.0021 1 -0.22i 
(-0.321) 

-0.0081 1 1 1 2 1 -0.22i -0.03i -0.30i -0.3221 -0.321 -0.091 -0.0081 

1 2 1 1 2 0.25i 0.17i 0. lOi 0.091 0.101 0.1C1 0.011 0.25i 
(0.0901) 

0.101 1 1 1 2 1 0.02i 0.02i 0.121 0.091 0.101 . 0.081 0.011 
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will be discussed in detail in Section 5.3. 

Quantum mechanical calculation of generalized 

phenomenological cross sections and selected effective cross 

sections was carried out within the lOS (infinite order 

sadden) approximation for the Ar-Ng potential surface 

mentioned previously. Calculations were not attempted for 

the Ar-COg and He-COg surfaces because of the large number of 

open scattering channels possessed by these systems. Also, 

the author had hoped to include CS (coupled states) and CC 

(close coupling) calculations in the present work. However, 

limitations of time and computational resources made this im

possible. It is hoped that the lOS results presented will 

provide a convenient reference point appropriate to future 

work involving CS and CC approaches. 

As with the classical trajectory work, the author 

received invaluable aid from a collaborator, namely Dr. Dale 

E. Fitz of the University of Houston, who provided a series 

of computer programs appropriate to lOS L-average calcula

tions. 

Values of L-average, L-initial, and L-final generalized 

phenomenological cross sections appear in Tables 5.6, 5.7, 

5.8, and 5.9. As in the classical trajectory calculations, 

the initial rotor energy was chosen to correspond to a 

rotational quantum number of six. Similarly, three initial 

values of the relative translational kinetic energy were 



227 

Table 5.6. ICS L-average Values of the Generalized 
Phenomenclogical Cross Sections^ 

Cross Section 
Indices 

^ "y ^ 

Final Botor State 

j=2 j=4 j=6b j=8 

0 0 0 0 0 -3.14 -9.69 -18.5 60.5 -18.0 

1 0 1 0 1 0.0365 -0.540 -3.22 30.2 -3.21 

0 1 0 1 1 0.0 -1.98 -5.06 21.0 -5.4 

2 0 2 0 2 -0.0102 -0.157 -1.21 22.5 -1.20 

0 2 0 2 2 0.0 -0.812 -2.30 13.4 -2.79 

1 1 1 0 0.0 -0.324 -0,996 11.4 -1.06 

1 1 1 1 0.0 -0.124 -1.05 9.49 -1.04 

1 1 1 2 0. 0 -0.204 -1.03 10. 3 -1.05 

2 1 2 1 0.0 -0.193 -0.611 6.47 -0.632 

2 1 2 2 0. 0 0.0331 -0.482 5.84 -0.552 

2 1 2 3 0.0 -0.112 -0.565 6.25 -0.604 

0 1 2 1 0.0 -0.0688 -0.224 -1.04 -0. 189 

2 1 0 1 0.0 0.617 -0.217 -1.04 0. 380 

^ Initial rotor state = 6; initial translatioual kinetic 
energy = 0.01550 eV. All cross sections are in square 
angstroms. 

This is a rigorously closed chaanel. 
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Table 5,6. (continued) 

Cross Section 
Indices 

Kf Ky %% K} K 1=0 

2 

0 

Final Rotor State 

j=2 j=6 j = 8 

0 0 2 2 

o
 

o
 -0.0540 -0.164 0. 178 -0.199 

2 2 0 2 0.0936 0.0947 -0.217 0.178 -0. 230 

0 1 1 1 

o
 

o
 o

 

o
 o

 

o
 

o
 

o
 

o
 

•
 

o
 

1 1 0 1 

o
 

o
 

o
 

o
 O

 

o
 o

 

o
 0.0 

2 1 1 1 

o
 

o
 -0.106i -0.2491 -0.1081 -0.203i 

1 1 2 1 o
 

o
 

-0.297i -0.364i -0.1081 -0.266i 

2 1 1 2 

o
 

o
 -0.0474i O.llli 0.0514i 0.0906i 

1 1 2 2 

o
 •
 

o
 0.133i 0.163i 0.0514i 0. 1191 



Table 5.7. lOS L-initial/L-final Values of the Generalized Phenomenological 
Cross Sections^ 

Cross Section 
Indices 

Final Rotor State 

H  
K j=0 3=2 j=4 j=6 

0 0 0 0 0 -3.46 -9.72 -18.5 60.5 -18.0 

1 0 1 0 1 0.0336 -0.547 -3.22 30. 2 -3.21 

0 1 0 1 1 0.0 -1.98 -5.06 21.0 -5.48 

2 0 2 0 2 -0.G116 -0.161 -1.21 22.5 -1.21 

0 2 0 2 2 0.0 -0.813 -2.30 13.4 -2.79 

1 1 1 1 0 O.C 1 o
 

• o
 

C
h
 -J -0.660 9.21 -0.668 

1 1 1 1 1 O.C -0.257 -1.22 10.6 -1.23 

1 1 1 1 2 0. 0 -0.179 -0.994 10.0 -1.01 

b 

c 

Initial rotor state = 6; initial translational kinetic energy = 0.01550 eV 
All cross sections are in squared angstroms. 

This is a rigorously closed channel. 

0220(2% and 2002(2) have different L-initial and L-final values. The 
L-inxtxal results appear first followed by the L-final results. 



Table 5.7. (continued) 

Cross Section 
Indices Final Botor State 

Kf Ky n n 
K 3=0 j=2 3=4 j=6 

1 2 1 2 1 0.0 -0.0442 -0.427 5.90 

1 2 1 2 2 0.0 -0.117 -0.667 6.41 

1 2 1 2 3 0.0 -0.0702 -0.513 6.08 

1 2 1 0 1 0.0107 -0.152 -0.593 0.860 

1 0 1 2 1 0.0 -0.0194 -0.114 0.830 

0 2 2 0 2C 0.349 
0.0058 

0.834 
0.070 

0.882 
0.360 -0l512 

2 0 0 2 2 0.C058 
0.0 

0.0032 
0.0434 

0.0834 
-0.207 

1 0 1 1 1 0.0 0.0 0.0 0.0 

1 1 1 0 1 0.0 0.0 0.0 0.0 

1 1 1 2 1 0.0 0.01351 0.1471 -0.09101 

1 2 1 1 1 0.0 0.04811 0.1011 -0.09101 

1 1 2 2 O.C -0.00601 -0.06601 0.04071 

1 2 1 1 2 0.0 -0.00221 -0.0451 0.04071 

j=8 

0.474 

•0.712 

0.55S 

• 0 . 1 8 8  

•0.535 

•0.142 
0.120 

0.322 
0.673 

0 . 0  

0 . 0  

0.07591 

9.979 (-2) 

•0.03401 

•0.04461 



Table 5.8. lOS L-initial/L-final Values of the Generalized Phenomenological 
Cross Sections^ 

Cross,Section Final Rotor State 

n 
K 3=0 3=2 j=4 j=6 3=8 

0
 

1 

1
 

i 1 ! 

0 0 0 0 0 -3.53 

1 
1 0
0
 .
 

U
l o
 1

 1 1 1 

-14. 1 53.2 -13.6 -7.51 

1 0 1 0 1 0.032 -0.518 -2.61 23.8 -2.61 -0.531 

0 1 0 1 1 0.0 -1.48 -3.75 18. E -4.25 -2.39 

2 0 2 0 2 -0.024 -0.101 -1.08 16.7 -1.07 -0.105 

0 2 0 2 2 0.0 -0.635 -1.67 11.6 -2.01 -1.13 

1 1 1 1 0 0.0 -0.058 -0.555 6.94 -0.563 -0.039 

1 1 1 1 1 0.0 -0.270 -0.998 8.20 -1.02 -0.249 

1 1 1 1 2 0.0 -0.181 -0.827 7.70 -0.827 -0.165 

1 2 1 2 1 0.0 -0.045 -0.362 4.62 -0.415 -0.069 

^ Initial rotor state = 6; initial translational kinetic energy = 0.02585 eV. 
All cross sections are in squared angstroms. 

^ 0220(2% and 2002(2) have different L-initial and L-finai values. The 
L-initial results appear first followed by the L-final results. 



Table 5.8. (continued) 

Cxoss Section 
Indices Final Rotor State 

"y K 
j=0 3=2 j=4 j=6 j=8 j=10 

1 2 1 2 2 0.0 -0.116 -0.557 5.04 -0.605 -0.14 

1 2 1 2 3 0.0 -0.064 -0.425 4.78 -0.470 -0.094 

1 2 1 0 1 -0.080 -0.150 -0.474 0.742 -0.141 -0.075 

1 0 1 2 1 0.0 -0.018 -0.075 0.742 -0.427 -0.142 

0 2 2 0 2^ 0.360 
-0.017 

0.729 
0.130 

0.683 
0.326 

-1.22 
-0.472 

-0.17C 
0. 131 

-0.055 
0.021 

2 0 0 2 2 
C.O 
0.0 

0.009 
-0.005 

0.096 
-0.182 

-0.472 
-1.22 

0.319 
0.489 

0.026 
0.524 

1 0 1 1 1 0.0 0.0 0.0 0.0 0.0 0.0 

1 1 1 0 1 0.0 0.0 0.0 0. 0 0.0 0.0 

1 1 1 2 1 0.0 0.017i 0.1321 -0.1031 0.0651 -0.0031 

1 2 1 1 1 0.0 0.003i 0.0901 -0.1031 0.0861 -0.0041 

1 1 1 2 2 0.0 -0.0081 -0.0591 0.04851 -0.0291 0.0011 

1 2 1 1 1 0.0 -0.0011 -0.0041 .0.04851 . -0.0391 0.0201 



Table 5.9 • ICS 
Cro 

L-initial/L-final 
£s Sections^ 

Values of the Generalized 

Cross Section 
Indices Final Botor State 

K*. 
i 

K i=o j=2 j=4 j=6 j = 8 

0 0 0 0 0 -3.30 -6.62 -10.6 42.5 -10.0 

1 0 1 0 1 -0.056 -0.532 -1.79 16.8 -1.79 

0 1 0 1 1 0.0 -0.892 -2.39 15.7 -2.85 

2 0 2 0 2 0.049 -0.060 -0.879 11.4 -0.881 

0 2 0 2 2 0.0 -0.399 -1.04 9.58 -1.32 

1 1 1 1 0 0.0 -0.051 -0.415 5.06 -0.413 

1 1 1 1 1 0.0 -0.286 -0.714 6.01 -0.712 

1 1 1 1 2 O.C -0.197 -0.588 5.64 -0.591 

1 2 1 2 1 0.0 -0.040 -0.247 3.24 -0.285 

j=10 

• 6 . 8 1  

•0.541 

1.64 

-0.085 

•0.938 

-0.041 

- 0 . 2 6 1  

-0.180 

•0.72 

3  =  1 2  

•3.68 

0.049 

•1.25 

0.072 

•0.580 

•0.025 

-0.056 

•0.058 

-0.007 

Initial rotor state = 6; initial translational kinetic energy = C.050 eV. 
All cross sections are in squared angstroms. 

0220(21 and 2002(2) have different L-initial and L-final values. The 
L-initial results appear first followed by the L-final results. 



Table 5.9. (continued) 

Cross Section 
Indices Final Rotor State 

K . 
V  " é  

K*. 
j 

K j=o j=2 j=4 j=6 

00 II •
n

 j=10 j = 12 

1 2 1 2 2 0.0 -0.091 -0.346 3.34 -0.394 -0.141 -0.023 

1 2 1 2 3 0.0 -0.065 -0.279 3.57 -0.323 - 0 i 1 0 1  -0.012 

1 2 1 0 1 -0.030 -0.151 -0.301 0.609 -0.047 -0.071 -0.040 

1 0 1  2 1  0.0 -0.009 0.001 0.609 -0.275 -0.142 -0.085 

0 2 2 0 2^ 0.327 
0.026 

0.582 
0.026 

0.509 
0.272 

-0.847 
-0.429 

-0.159 
0. 125 

-0.06C 
0.035 

0.040 
-0.100 

2 0 0 2 2 0.0 
0.0 

0.019 
-0.040 

0.093 
-0.120 

-0.429 
-0.847 

0.251 
0.331 

0.040 
0.320 

-0.025 
0.280 

1 0 1 1 1 0.0 0.0 0.0 0.0 0.0 0.0 0 . 0  

1 1 1 0 1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 

1 1 1 2 1 0.0 0.048i 0.119i -0.089i 0.0561 -0.0021 -0.0101 

1 2 1 1 1 0.0 0.0181 O.OBli -0.0891 0.0731 0 . 0 0 1 1  -0.020i 

1 1 1 2 2 0.0 -0.021i -0.052i 0.04321 -0.0261 -0. 0 0 1 1  0.0051 

1 2 1 1  2 0.0 -0.013i -0.037i 0.04321 -0.0341 -0.0111 0 . 1 0 0 1  
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chosen as 0.01550 eV, 0.02585 eV, and 0.0500 eV. It should 

be noted that the lowest energy, 0.01550 eV, was used in this 

case intead of 0.00500 eV as in the classical case. The 

reason for this is twofold. First, the WKB phase shifts cal

culated using Pack's method(69) cannot be obtained since 

0.00500 eV falls near an extremum of the potential for some 

partial waves. Second and more importantly, the lOS approach 

is likely to be greatly in error for this energy anyway, 

since the collisional rotational energy change is a large 

fraction of the relative translational energy. A detailed 

comparison of lOS and classical trajectory results will be 

given in the next section. 

Values of selected effective cross sections within the 

lOS approximation were obtained via the following equation. 

<il|s^t)(ô2) [H] (Ky) I IjXj' 1 (n^) [S] (Ky) | |j. > (5.2-6) 

Z ' H '  [(2K^) ! (2K^) ! Yy3^ I exp[:^ j' (j' + l)] 
} '  J J ,  T  

"  _ E ,  %S' %S 
/de' e E' E 

0 

This expression follows directly from Eg. (4.6-21) where one 

2 2 
notes that e = y and e* = y' and one drops superfluous sub-
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scripts, "i" and "f." The integral over the translational 

energy is easily evaluated as a Gauss-Laguerce quadrature. 

Values of the generalized phenomenological cross sections at 

the appropriate quadrature points were obtained by graphical 

interpolation between values obtained at the three test 

translational energies. A thaee point quadrature was found 

to converge sufficiently for the purposes of this work. 

These results will he presented and discussed in Section 5.4. 

5.3. Comparison of the Numerical Values of the Generalized 

Phenomenological Cross Sections 

The generalized phenomenological cross sections appro

priate to the kinetic theory of gases (i.e. spectroscopic 

subscripts "i" and "f" are ignored) can be classified as 

"unmixed," "mixed real," and "mixed imaginary." The unmixed 

cross sections are characterized by K» = K i  and K. = K!, the 
^ L J J 

mixed real cross sections are characterized by K^+K^ and 

+KJ, both even, and the mixed imaginary cross sections are 

characterized by K„+K' even and K.+K* odd. Only the unmixed 
^ 1 1  j  j  

cross sections have nonvanishing spherical limits. 

To begin detailed comparison of the numerical values, 

one should investigate lOS values of the cross sections ob

tained using each of tie three labeling schemes (i.e. 1-

average, L-initial, and L-final). Appropriate data has been 
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presented in Tables 5,6, 5,7, 5,8, and 5.9. 

At the outset, one should note that L-initial and L-

final results are identical if = K^. (This point is dis

cussed in Section 1.7.) Thus, of the quantities evaluated, 

only the 2002(2) and 0220(2) mixed real cross sections can 

have different L-initial and L-final values. The results 

given in Tables 5.7, 5.8, and 5.9 show these values to be in 

very poor agreement. 

It is more profitable to compare L-average with 

L-initial/L-final results. One finds excellent agreement 

(to three decimal places) between values of the 0000(0), 

1010(1), 0101 (1), 2020(2), and 0202 (2) cross sections. Only 

fair agreement is found between the remaining unmixed cross 

sections (1111 (K) and 1212 (K)). Finally, the mixed cross 

sections (both real and imaginary) show very poor agreement 

(disregarding the 1011(1) and 1110(1) cross sections for 

which all lOS values trivially vanish). 

Digressing briefly, it is possible in general to relate 

the usual degeneracy averaged integral cross section to the 

0000(0) cross section via the expression. 

(5.3-1) 

Equation (5,3-1) is easily obtained from Eg. (4.6-22) by sub-
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stitution of the appropriate tensor indices and rotor quantum 

numbers followed by use of the optical theorem. The 

degeneracy averaged integral cross section has the explicit 

form, 

a(j ' - j )  =  -4  Z (^%-)  I  (5 .3-2)  
Kj, J=0 ' tl' 

where is an Arthurs and Dalgarno T-matrix ele

ment. 

Pack(70) has used the same Ar-Ng potential as used in 

this work to calculate CC and lOS values of Direct 

comparison of Pack's lOS results to this work via Eg- (5.3-1) 

for an initial relative translational energy of 0-02585 eV 

results in virtually exact agreement. Pack's data appear in 

Table V of the above reference. Furthermore, Pack has found 

that classical trajectory and CC degeneracy averaged integral 

cross sections exhibit excellent agreement for an initial 

translational energy of 0.03878 eV. Thus, it is the opinion 

of this worker that guantal corrections are negligible for 

the cases considered and that the Monte Carlo results are 

good estimates of the rigorous cross sections. 

Detailed numerical comparisons will now be drawn between 

the classical trajectory and lOS data. Here it is important 

that the reader take notice of the inherent random error as

sociated with Monte Carlo methods and the low freguency of 

strongly inelastic collisions for this Ar-Ng potential 
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surface. It follows that Monte Carlo values of the 

rotationally "off-diagonal" ri.e. j^j') cross sections should 

be regarded as providing estimates only gocd to within an 

order of magnitude and as having the correct sign. The Monte 

Carlo values of the rotationally "diagonal" cross sections 

(i.e. j=j) are much more accurate (within 10 percent) owing 

to the larger number of trajectories used to construct the 

estimate- Table 5-10 presents Monte Carlo and lOS values of 
K„K.; K;K'. 

Ogg.gô (K) for comparison. It is evident that the 

agreement between Monte Carlo and lOS results improves with 

increasing energy. This is, of course, the expected result. 

More importantly, it is clear that the L-average labeling 

scheme gives better agreement with the Monte Carlo results 

than does the L-initial/L-final results differ in sign from 

the L-average and Monte Carlo results. Also, the L-average 

results show better agreement with Monte Carlo results than 

do the L-initial/L-final results for unmixed cross sections, 

1111(K) and 1212(K). One also observes that diagonal values 

of unmixed cross sections with = 0 are systematically too 

large. In contrast, for unmixed cross sections with K , = 0 
J  

and ^ 0, there is very good agreement between the classical 

trajectory and los results. 

The reader should note that nonzero values of the 

1110(1) and 1011(1) cross sections are given by Monte Carlo 

methods. A plot of the Monte Carlo contribution to the "di-



Table 5.10. Comparisoa of Monte Carlo and lOS Values of the 
6-^6 Generalized Phencmenolcgical Cross Sections^ 

Cross Section 0.0155 eV = E, 0.02585 
Indices 

K . K». K CT lOS ICS L CT 

0 0 0 0 0 42.4 60.5 60.5 36.5 

1 0 1 0 1 27.2 30.2 30. 2 19. 5 

0 1 0 1 1 20. 1 21.0 21.0 13. 2 

2 0 2 0 2 25. 1 22.5 22.5 17.7 

0 2 0 2 2 11.4 13.4 13.4 8.81 

1 1 1 1 0 11.2 9.21 11.4 8.02 

1 1 1 1 1 8.25 10.6 9.49 5.69 

1 1 1 1 2 9.95 10.0 10.3 6.73 

1 2 1 2 1 6.4C 5.90 6.47 4. 32 

1 2 1 2 2 4.77 6.41 5. 84 3.57 

1 2 1 2 3 5.89 6.C8 6.25 4. 16 

1 0 1 2 1 -2. 25 0.830 -1.04 -1.23 

1 2 1 0 1 -2.25 0.830 -1.04 -1.23 

2 0 0 2 2 0.C55 
-1.551 
-0.512 

0.178 0.050 

0 2 2 0 2 0.055 -0.512 
-1.551 

0. 178 0.050 

1 0 1 1 1 -0.266i 0.0 0.0 -0.300i 

1 1 1 0 1 -0.266i 0.0 0.0 -0. 300i 

a Ail cross sections are la squared angstroms and the 
values are accurate to within 10%. 
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eV = E, 
k 

0.0500 eV = E, 
k 

lOS lOS L CT ICS lOS L 

53.2 53.2 37.1 42.5 42.5 

23.8 23.8 16. 5 16.8 16.8 

18.6 18.6 13.3 15.7 15. 7 

16.7 16.7 11.2 11.4 11.4 

11.6 11.6 6.91 9.58 9.58 

6.94 8.70 6.60 5.06 6. 48 

C
O
 

to
 o
 

7.52 4.66 6.01 5.31 

7.70 7.93 5. 66 5.64 5.79 

4.62 5.06 3.57 3.24 3.61 

5.04 4.57 3.54 3. 34 3. 30 

4.78 4.82 3.66 3.57 3.47 

0.742 -0.764 -0.860 0.609 -0.442 

0.742 

-1 .22 
-0.472 
-0.472 
-1 .22 

0.0 

-0.764 

0.195 

0. 195 

0.0 

-0.860 

0. 120 

0. 120 

-0.0651 

0.60 9 

-0.847 
-0.429 
-0.429 
-0.847 

0.0 

-0.442 

0. 196 

0. 196 

0.0 

0.0 0.0 -0.0651 0.0 0.0 



Table 5.10 (continued) 

Cross Section 

t m  «Mfc*  —w.*—A.  

0.0155 eV = E, 
k 

0.0258 
Indices 

eV = E, 
k 

K CT lOS lOS X  CT 

1 2 1 1 1 -0.5111 0.09101 -0. 1081 -0.2101 

1 1 1 2 1 -0.5111 0.09101 -0. 1081 -0. 2101 

1 2 1 1 2 0.2011 0.04071 0.05141 0.0351 

1 1 1 2 2 0.2011 0.04C71 0.05141 0.0351 
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eV = Ej^ 0.0500 eV = 

ICS ICS L CT lOS 10S L 

-0.103i -0.1041 -0.320i -O.C89i -O.IOBi 

-0.1031 -0.104i -0.320i -0.089i -0.1081 

C.0485 0.05001 0.0901 0.04521 0.05351 

0.0485 0.05001 0.0901 0.04521 0.05351 
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agonal" 1110(1) cross section versus impact parameter appears 

in Pig- 5-3. From this plot, it is clear that the "diagonal" 

1110(1) cross section is the difference of two nearly equal 

contributions (which are exactly equal withia the lOS approx

imation) . 

In conclusion, it should be mentioned that the magni

tudes of lOS values of cross sections which involve an in

crease in rotational energy (i.e. j'->j where j>j*) are 

systematically too large- In fact, the lOS approach gives 

nonvanishing contributions in energetically closed channels. 

This obviously incorrect behavior is characteristic of the 

lOS approximation and is also observed in lOS calculations of 

degeneracy averaged integral cross sections. Thus, if one 

makes use of lOS results to evaluate physical quantities 

(e.g. transport coefficients), one should ignore such 

unphysical cross sections. 

This section can be summarized by the following conclu

sions- First, the I-average lOS calculations are in better 

agreement with the Monte Carlo results than the lOS 

L-initial/L-final calculations. This is not surprising be

cause L-average labeling preserves time reversal invariance 

while L-initial/L-final labeling does not. Second, the lOS 

approximation gives poor results for cross sections which are 

most sensitive to angular momentum reorientation (i.e. the 

mixed cross sections). This is especially true for 



IMPACT PARAMETER 
CANGSTROMS) 

Fig. 5.3. Convergence of a(11lO;l) as a Function of Impact Parameters 
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L-initial/L-final labeling. Finally, material disagreement 

between 10S and classical trajectory results in the cases 

considered are overwhelmingly due to the approximate nature 

of lOS dynamics rather than to quantum effects. Complete 

verification of this last conclusion must await accurate CC 

calculations. 

5-4, Comparison of the Numerical Values of the 

Effective Collision Cross Sections 

As stated previously, it is convenient to compare theo

retical and experimental results at the level of the effec

tive collision cross sections rather than that of the actual 

transport coefficients. In fact, results of experimental 

studies of gas phase transport processes are now customarily 

reported in terms of effective cross sections. 

One source of experimental data which can be used for 

comparison with theoretical results is embodied in published 

values of Lennard-Jones force constants which are then used 

to evaluate the appropriate Chapman-Cowling integrals. Such 

data, of course, can only be profitably applied to effective 

cross sections which possess a dominant spherical contribu

tion. Table 5.11 gives Lennard-Jones values in squared 

angstroms for the predominantly spherical cross section, 

^^looo's^ag * These values agree well with the Honte Carlo 
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results. Thus, one can conclude that the theoretical poten

tial surfaces considered in this work are realistic in a 

spherical sense (at least). 

Table 5.11. Comparison of Values of 

Potential àr-C02 Ar-C02 Ar-CO? Ke-CO? He-COn He-C02 Ar-N? 
Surface 300°K 900°K 1800®K 300°K 900 °K^ 1800°K 300°K 

Jones^6-12 29.3 22.1 19.5 2.96 2.47 2.22 29.8 

Realistic^ 26.2^ 19.6 17.4 3.08 2.58 2.27 29.1 

^ Force constants obtained from data given by Hirschfelder, 
Curtiss, and Bird(40) via the usual combination rules. 

b 
Mcnte Carlo estimates from Table 5.1. 

^ Both Ar-CO^d) and Ar-CO^^II) give the same value. 

However, the nonspherical contribution to a molecular 

interaction is much more difficult to investigate than the 

spherical contribution. As stated in Chapter 1, analysis of 

Senftleben-Beenakker effects (on the thermal diffusion coef

ficient in particular) is one means of obtaining rather 

direct information of this kind. t*Hooft(51) has given ex

perimental values of depolarization cross sections obtained 

from measurements of thermal diffusion Senftleben-Beenakker 

effects in an Ar-Ng mixture at 300°K, Specifically, experi-
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«entaX values of S (J °°°l of 0.66 4^ and 

-5.4 respectively, have been given. These values do not 

at all agree with the theoretical values of 0.111 and 0.292 

(given in Table 5.1). In contrast, experimental values of 

the diagonal cross sections, G(]joolg)gg ~ 26.0 and 

^^loio'g^ag ~ 46.7 A^ are in much better agreement with the 

theoretical results (28.1 and 53.8 respectively). 

These cross sections, however, have a significant spherical 

contribution which makes this agreement not surprising. Fi

nally, t'Hooft observes a value of 24.0 A^ for the cross sec

tion G(0200jg) . The theoretical value is 7.12 A^. The 
0200 3 a3 

reader should note that G(0200|B) is highly sensitive to 
0200 g ag 

the gross anisotropy of the potential surface in the direc

tion parallel to the symmetry axis of the diatom. Comparison 

of the theoretical and experimental results suggests that the 

Ar-Ng surface considered in this work is much too spherical 

and not at all realistic. 

Unfortunately, it appears that no experimental measure

ments of Senftleben-Beenakker effects appropriate to Ar-COg 

and He-COg systems have been made to date. This makes it im

possible to determine if the Ar-C02(I) surface or 

Ar-C02(II) is more realistic. 

Table 5.12 presents IOS values of selected effective 

collision cross sections. In agreement with results given 

previously for the generalized phenomenological cross sec-
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Table 5,12, Values of Effective Cross Sections: 
ICS and Classical Trajectory Results for 
the Pattengill et alj. Ar-Ng Potential Surface 

Cross 
Section^ 

Classical lOS Percent 6PCS 
Trajectory^ Deviation used 

p.ioooie. 
^ MOOO '3^a3 

^(1010.3) 
^ MOlO 

29 .  1 (1 .8 )  

39 .  7 (5 .9 )  

30 .  1  

43 .1  

3 .4  1010 (0 )  

8.6 
2 0 2 0  ( 2 )  
1010 (1) 
0000 (0 )  

.,1001 |3v 
® M001 I3 a3 

6(0200,3) 
^^0200'3'a3 

G ( [ Y ]  :  [ Y ]  ( % ) )  a3 

35 .0 (8 .6 )  

7 .  12 (3 .7 )  

159 .9 (3 .4 )  

- 4 .68 (3 .7 )  

49 .8  

35 .6  

144 .  4  

42 .3  

400 .  

- 9 . 7  

-22 .  1  372 .  

1 0 1 0 ( 1 )  
0 0 0 0  ( 0 )  

0202 (2)  

2 0 2 0 ( 2 )  

0 0 0 0 ( 0 )  

^ All cross sections are given in units of sguared angstroms. 

^ An estimate of the percent relative standard deviation 
appears in the parentheses. 

^ Generalized phenomenological cross section. 
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tions, one finds that the effective cross sections which con

tain thermal averages over the 0000(0) or 0202(0) cross sec

tions show a significant positive deviation. Conversely, 

those which depend on thermal averages over the 1010(1) 

and/or 2020(2) cross sections but not the previously 

mentioned ones, agree well with the Monte Carlo results. 

5.5. Comparison of Hard and Soft Spherocylinder Models 

to Classical Trajectory Results 

Expressions for scalar collision integrals appropriate 

to hard convex ovaloid interactions were given in Section 

4.3. Verlin, Matzen, and Hoffman(64) have extended this ap

proach to an approximate treatment of soft nonspherical mo

lecular models. The essence of this technique involves the 

modification of Eg- (4.3-7) to obtain a collision kernel ap

propriate to convex core soft interactions. It has the fol

lowing form, 

, ,  2 %  
-1 /dn{ I  dUS (G)K (E'-R) ̂  )  + 
^ 0 k-g<0 *1,2 

unit 
hemisphere 

/ dkS (E) 6 

k*a>Q 1/2 (5.5-1) 
unit 

hemi sphere 
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Here, a dinensionless scaling factor, K# has been included 

within the integrand and the surface, o _ , is given a more 
1 /Z 

general definition than in Section 4.3. Thus, o is iden-
\ f ^ 

tified as the convex equipotential surface upon which the mo

lecular interaction energy vanishes. In the limiting case of 

a "hard" interaction it becomes the surface containing the 

"excluded volume." All other quantities appearing in Eg. 

(5.5-1) retain the same definitions as given earlier. 

If one carries through with the operator method given by 

Eqs. (4.3-9) through (4.3-17), one obtains an expression 

identical to Eg. (1.3-18) where the tensor quantity (u,v) 
n 

has the form, 

(u,v)^ = 

2«o -E^ 
/ dee /dc e <)" - (c+e ic) (c-e k) ̂e (5.5-2) 

_n-l 0 ~ ^ -KK 
& 

Equation (5.5-2) is identical to Eq. (4.3-19) except for the 

appearance of K in the integrand. 

Following Verlin, Hatzen, and Hoffman(64), one can argue 

that since the component of the generalized momentum, c# 

along the generalized apse vector, k , (ic = (K^ -a) /D) changes 

sign on collision, it follows that e is orthogonal to K for 

an odd number of times during a molecular encounter. The 
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temporally central perpendicular configuration defines the 

apse point of the collision. 

In general, K is a very complicated function of orienta

tion and momenta and the integrals indicated in Eg. (5.5-2) 

cannot be carried out analytically. However, one class of 

models exists for which K can be simplified approximately. 

These are designated as "Kihara models" after Kihara who in

troduced them in 1951(71). A Kihara interaction potential 

models molecular interactions as impenetrable hard cores 

which interact via a potential, ̂ , which is solely a function 

of the shortest distance, 6 , between the cores (i.e. ^(4) is 

of spherical form) . Thus, molecular forces are directed 

along a vector connecting points of closest approach of the 

cores and molecular torques can be thought of as arising from 

the application of the force on a given molecule at the 

closest approach point on its core. It follows that the di

rection of forces and "moment arms" for the torques are inde

pendent of the magnitude of the molecular separation and 

depend only on molecular orientations and the direction of 

the unit vector, E, which is perpendicular to the surface of 

each core at its point of closest approach. Examples of a 

Kihara interaction are afforded by soft spherical potential 

models and rigid ovaloids. 

Again, following Verlin, Matzen, and Hoffman, it is 

assumed that for a Kihara interaction, the generalized force 
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de 
(defined as _f = g=) is parallel to the apse vector at the 

apse point of a collision. Such an assumption is rigorously 

valid for both soft spherical models and rigid ovaloids under 

the assumption that chattering collisions can be neglected. 

One further assumes that for a Kihara potential, the scaling 

factor has the explicit form. 

Here is the spherical differential cross section appropri

ate to the intercore potential, tj). The distance, r^, is 

characterized by #(r^^ = 0, This form of K depends on % 

solely through the quantity k» e and reduces to the soft 

spherical and rigid ovaloid expressions in the appropriate 

limits. Physically, the assumed momentum dependence of k is 

that appropriate to a spherical model but with a sphere radi

us and sphere center which depend on the molecular orienta

tions and the closest approach surface normal at the apse 

point. 

These assumptions allow the "u,v tensors" to be evaluat

ed, when u+v is even, in terms of the usual reduced Chapman-

Cowling omega integrals appropriate to the intercore poten

tial, (j). If u+v is odd, the spherical integrals obtained can 

be thought of as a generalization of half-integer 

values of s. Substitution of these forms into Eg. (4.3-23) 
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yields expressions for the scalar collision integrals which 

involve the Chapman-Cowling omega integrals and the surface 

integrals, and G which are defined in Eqs. 

(4.3-26), (4.3-27), and (4.3-28). 

For several reasons within the context of this analysis 

a spherocylinder proves to be an advantageous choice of core 

shape appropriate to the linear species, g. First and 

foremost, the shapes of the inner repulsive parts of poten

tial surfaces, Ar-COgCI) and Ar-CC2(II), are closely 

approximated i>y a spherocylinder. (Here one notes that the 

excluded volume appropriate to a rigid spherocylinder-sphere 

collision is also a spherocylinder.) Second, surface area 

integrals for spherocylindrical excluded volumes can be eval

uated analytically. Last, a large body of literature exists 

which details the evaluation of transport properties using 

spherocylindrical models(72,73)• 

It should be noted here that a spherocylinder is not 

convex (i.e. surface points and normal unit vectors cannot be 

uniquely associated). This presents no problem (as expected 

since convexity was assumed just for mathematical 

convenience) and thus spherocylinder surface integrals can be 

performed in a piecewise fashion over spherical and 

cylindrical regions. The basic surface integrals, 

^(n,in)^ and G take the spherocylinder forms. 
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^(n) , [^i_z2]-n/2 + r^R/dz (5.5-4) 

^(n,in) _ 2A^o yaz (5.5-5) 

r" 0 R^ 

G = ̂ /2^l } dz z(l-z^) [^l-z^]'^ (5.5-6) 
R^/^ 0 R 

where k is a length defined by [Zg/^ag]^' the spherical 

radius and R is the cylindrical dimension. Figure 5.4 illus

trates the geometry of spherocylindrical molecular models. 

For this work, explicit expressions for X^^^» 

X^^^r and G are needed. These are given 

below in terms of the dimensionless parameter n (equal to arc 

si] .n(B/-\|A^+R^') which ranges from 0 to • j t /2.  

x ' " =  +  ̂ ( _Li..Lfn(tann+=&r) ))(5-5-7) 

.2 

— {n + Znftann + 
COST! 

"o sinncosT) cosrj tann cosn 

2r 
x'" - <n(tann + ̂ )) (5.5-8) 

= 2r^ cosnfcosn + (5.5-9) 
o 

2 
(5)= (cosn)1 + 2(cosn)^)+ ̂ osn( (cosn)^4 2) )(5-5-i0) 

3 o 
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\ VT 

vX 

Geo fflet Cy 0£ 

*def 
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T(3,2) ̂  
^ 

(tann) 
tann 

(5.5-12) 

(tann) (tann) 
-—2-£n(cosn)} (5.5-13) 

These are easily evaluated by means of a hand calculator. 

It is stated in Chapter 1 of this dissertation that one 

of the motivations for this work is the assessment of 

strengths and weaknesses of model calculations in the light 

of rigorous trajectory studies. In particular, siace the 

Kihara model approach just developed represents the greatest 

sophistication achieved using the "projection" operator 

techniques, the assessment of its applicability is of partic

ular interest. 

The primary deficiency characteristic of model calcula

tions can be summarized as an oversimplification of the rele

vant molecular dynamics. This oversimplification is embodied 

in the choice of an inherently unrealistic interaction poten

tial for which rigorous dynamics are easily considered and/or 

the application of an approximation which results in a 

simplification of the dynamics appropriate to a more 

realistic interaction. Examples of the former case are 

afforded by the application of soft spherical or rigid 

ovaloid models to the description of atom-linear molecule in
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teractions. As previously noted in Chapter 4, the 

"projection" operator techniques, when used in conjunction 

with the rigid ovaloid models, introduce an approximate 

simplification in the rigorous impulsive dynamics 

characterized by the neglect of "chattering," The term 

"chattering" can be generalized to soft nonspherical interac

tions in which case it denotes collisions in which the 

strongly repulsive region of the interaction is encountered 

more than once. One expects that the application of 

projection operator techniques to Kihara models neglects 

chattering as defined in this more general sense. In addi

tion, the form of the differential cross section embodied in 

Eq. (5.5-3) is approximate and is correct only in the sense 

that it gives the appropriate limiting forms. 

The usual procedure employed in model calculations is to 

fit the model parameters to known experimental values of 

transport coefficients. One then supposes that the resulting 

optimal values reflect the true nature of the intermolecular 

interaction. The degree to which optimal values of the model 

parameters obtained by consideration of different transport 

properties are commensurate allows one to make a critical 

appraisal of the model. Indeed, Verlin, Hoffman, and 

Matzen(64) have found that within the context of the Kihara 

approach (employing a Lennard-Jones 6-12 interaction) the 

values of the optimal model parameters appropriate to the 
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thermal conductivity and shear viscosity differ widely. This 

is unsatisfying since the same intermolecular potential must 

describe both kinds of transport. 

A more stringent test of the Kihara model approach is 

afforded by fitting the Kihara effective cross sections to 

the effective cross sections obtained from the Monte Carlo 

calculations. Here, the model parameters can be compared di

rectly to the realistic potential surfaces. The following 

three figures (Figs. 5.5, 5.6, and 5.7) on the right half 

show the realistic potential surfaces and on the left half 

show spherocylindrical Kihara interactions. In this work, 

has been chosen to be of a Lennard-Jones 6-12 form. The en

ergy contours are in hartree units (1 hartree = 27.212 eV). 

Values of Ar-COg effective cross sections appropriate 

for comparison with the Monte Carlo control variate results 

for Ar-CO (I) , Ar-CO (II), and Ar-N at 300°K have been ob-
6 2, 2 

tained by fitting Kihara model results (spherocylinder core) 

to classical trajectory results. These quantities appear in 

Tables 5.13, 5.14, and 5.15. 

The quantities, AG(^^^^ 1^)^^, which are collected in 

Table 5.16, give the number of standard deviations of the 

Monte Carlo estimate (G(^3klj3\ % which are contained in the 
pgst 3 ag 

magnitude of the difference between the Kihara model and 

classical trajectory values. Thus, if AG(ijklj3) is less 
pqst P  ap 

than unity, the Kihara model value of G(iikl|B) ^ lies within 
pqst 3 ot3 
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Fig. 5-5. Kihara and "Realistic" Ar-COgfl) Potential Surfaces 
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•2-10" 

Fig- 5.6. Kihara and "fiealistic" Ar-CC2(II) 

Surfaces 

Potential 
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(>N 

(•N 

f (y  -z/ift 

Fig. 5.7. Kihara and "Realistic" Ac-Ng Potential Surfaces 
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Table 5.13. Values of Effective Cross Sections: Comparison 
of Classical Trajectory and Kihaca Model 
Results for Ar-C02(I) 

Cross 
section' 

pJOOOig. 
^MOOO '3 

a3 

Classical 
Trajectory" 

26 .2  (1 .0 )  

Kihara 
Modeic 

26. 1 

Percent 
Deviation 

-0.4 

r ,1100 I 3. 
100 '3' a3 

23.2(2.3) 2 1 . 1  -9.1 

G(  

G(  

G(  

G(  

G(  

G(  

G(  

G(  

1200  
1200  

0200 
0200 

1000  
1200  

1200 
1000 

1 0 1 0  
1 2 0 0  

1 2 0 0  
1 0 1 0  

1 0 0 1  
1 2 0 0  

1200  
1 0 0 1  

a3 

a3 

a3 

a3 

a3 

a3 

a3 

) 

a3 

103.5 (3. 4) 

50.5(4.2) 

0.958 (14.2) 

-2.62(6.3) 

-3. 13(11.0) 

90.7 

40.9 

1.09 

-3.65 

-4.28 

-12.4 

-19.0 

13.8 

39.3 

36.8 

^ All cross sections given in units of squared angstroms. 

^ Percent relative standard deviation appears in parentheses, 

^ Potential Parameters: T* = 1.60, r^^ = 3.07&, a = 1.19&. 
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Table 5.13. (ccntiaucd) 

Cross Classical Kihara Percent 
section Trajectory Model Deviation 

G{y_n)^^ 82.5(1.0) 82. 1 -0.4 

G([Y](2):[y](2))^ 190.7 (1.5) 209.9 10.1 

2 2 .  *9 -22.9(4.2) -44. 8 95.6 
, Y  

G (Yfl;YX [SÎ] ) o -9.17(10.9) -8.30 -9.5 
(2). 9.17(10.9) 8.30 -9.5 

G ( y x [fi] ;lO) 
a3 
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Table 5.14. Values of Effective Cross Sections: Comparison 
of Classical Trajectory and Kihara Model 
Results for Ar-CO (II) 

Cross 
section^ 

Classical 
Tra jectory' 

Kihara 
Model^ 

CD
 

O
 O

 
o
 o

 j
 

o
 o

 

6'.6 
26.2(1.0) 25. 8 

CJ
 

o
 o

 
o

 o
 

^'c.6 
23.7(2.1) 20.9 

p,1200 
^M200 

€€.2(3.0) 74.2 

CD
 

O
 O

 
to

 to
 

o
 o

 
o

 o
 

36.2(3.6) 30.5 

p/1000 
^M200 

p/1000 
^M200 

«Le 0.554 (24.6) 0.920 

r/1010 
^M200 

r/1200 
G ( l 0 1 0  ^ ag 

-2.12(7.7) -2.56 

p.1001 
^M200 

p/1200 
^MOOI 

^ a3 

^ a3 

-3.52(9.8) -4. 10 

Percent 
Deviation 

-1.5 

- 1 1 . 8  

-13.9 

-16.4 

6 6 . 1  

2 0 . 8  

15.8 

^ All cross sections given in units of squared angstroms, 

b Percent relative standard deviation appears in parentheses, 

c T* = 1.60, r = 3.07A, R = 0.938Â. 

\ 
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Table 5.14. (continued) 

Ccoss 
section 

Classical 
Teajectory 

Kihara Percent 
Model Deviation 

G ( Y ; Y )  8 2 . 6  ( 1 . 0 )  81.3 -1.5 

G([Y](^^;[Y]^^h^g 192.5(1.6) 2 0 1 .  6  4.7 

G(Y^,n^) 

G(n^fY^) 
a3 

a3 

-28.9(3.6) -35.0 21.1  

G(ïx[Sl 

-9.15(9.9) 
9.15(9.9) 

-8. 33 
8.33 

-9.0 
-9.0 
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Table 5.15. Values of Effective Cross Sections: Comparison 
of Classical Trajectory and Kihara Model 
Results foe Ar-N 

Cross . 
sect ion' 

Classical 
Ira jectory^ 

G( 

G( 

G( 

G{ 

G( 

G( 

1000  
1 000 

1 0 1 0  
1 0 1 0  

1 0 0 1  
1 0 0 1  

1  100  
1  100  

1200  
1200  

0200 
0200 

a3 

a3 

a3 

a3 

a3 

a3 

S(X.-Ï)„3 

'Y')ae 

G(in;lx[S]<2)) 

29.1 (1.8) 

39.7(5.9) 

35.0(8.6) 

28.1 (3.4) 

53.8 (8.6) 

7.12(2.7) 

74.4(1.8) 

159.9(3.4) 

-4.68(3.7) 

-8.05(6. 1) 
8.05(6.1) 

Kihara 
Modeic 

28.3 

40.4 

37.9 

25.8 

50.9 

10.4 

72.2 

166.6  

-12 .8  

-9.52 
9.52 

Percent 
Deviation 

- 2 . 8  

1.8  

8.3 

8 . 2  

-5.4 

46. 1 

- 2 . 8  

4.2 

174.0 

18.3 
18.3 

® All cross sections given in units of squared angstroms. 

^ Percent relative standard deviation appears in parentheses. 

^ T = 3.50, r^ = 3.49 A, B = 0. 269 A. 
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Table 5,16. Deviations of Classical Trajectory and Kihara 
Model fiesults 

Cross 
Section 

Deviation' 

Ar-COg (I) 

to Kihara 

AG (  

A G ( 

A G ( 

A G ( 

A G (  

A  G  (  

A  G  (  

A  G  (  

AG (  

AG (  

1000  
1000 

1  1 0 0  
1 1  0 0  

1  200  
1200 

0200 
0200 

1 0 0 0  
1 2 0 0  

1 2 0 0  
1000 

1 0 1 0  
1 2 0 0  

1 2 0 0  
1 0 1 0  

1 0 0 1  
1 2 0 0  

1 2 0 0  
1 0 0 1  

ag 

a3 

a3 

a3 

a3 

a3 

ag 

ag 

ag 

-0 .40  

-4.0 

-3.7 

-4.5 

12 .  7  

10. 8 

8. 6 

Ar-CCg (II) 

to Kihara 

- 1.5 

Ar- N, 

to Kihara 

- 5.6 

4.6 

_ 4.6 

2.7 

2.7 

1.6 

-  1.6  

2.4 

0 .63  

12. 5 

- 0.40 -1.5 -  1.6 

^ Deviations are expressed in terms of the number of Monte 
Carlo standard deviations. 



268 

Table 5.16. (continued) 

Cross Ar-CC (I) Ar-CO (II) Ar-N 
Section 12. ^ 

Deviation to Kihara to Kihara to Kihara 

A G  ( [ y ]  6 . 7  2 . 9  1 . 2  

AG 
9  2 ,0P  22 .8  5 .9  47 .0  

A G  ( n  ,Y  )Qg  

AG (%g;%x[g] -0.67 - 0.91 3.0 
AG (IX [g] 
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one standard deviation of the "realistic" Monte Carlo esti

mate. 

One can consider errors in the Kihara model approach as 

having one or more of the following four sources. The first 

is the neglect of "chattering." This point has been dis

cussed extensively with regard to rigid ovaloids in Section 

4.5. A second source is embodied in the ad hoc assumption of 

a factorized form for the differential cross section as is 

implied by Egs. (5.5-1) and (5.5-3). Third, the "realistic" 

potential surfaces are only approximated by a Kihara poten

tial form, and finally, the statistical nature of Monte Carlo 

methodology introduces a source of random errors. Of these 

four sources of error, only the last can be guantitively 

appraised. To see this, one recalls from statistical theory 

that an isolated observation of a quantity subject to random 

fluctuations has a probability of 0.813 of being within one 

standard deviation of its mean value. Thus, random error 

contributes on the order of one standard deviation to 

ijkl,3. 
pqst'3 'a3 ' 

If one averages the values of "columnwise" 
pqst 3 a3 

with respect to Table 5.16, one finds that the kfCO^(I) data 

gives 6.9, the Ar-COgCII) data gives 3.1 and the Ar-N^ data 

gives 8.7. This "average deviation" can be interpreted as a 

crude measure of the closeness of the "fit" between the 

Kihara surface and the "realistic" surface. It is evident 
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that the Ar-COgtll) interaction is best approximated by a 

Kihara interaction. This conclusion is also indicated by the 

close correspondence of the shapes of the Kihara and 

Ar-COgfll) equipotential contours shown in Fig. 5,6. 

Digressing briefly, one should recall that in Chapter U, 

it was observed that some rigid ellipsoid-rigid sphere effec

tive cross sections are more strongly influenced by the 

neglect of multiple collisions than others. This is summa

rized in Table 5.17 which presents values of „ ap-
pqst 3 op 

propriate to the comparison of Monte Carlo and projection op

erator cross sections based on rigid ellipsoid-rigid sphere 

interactions. (The corresponding effective cross section 

values were given previously in Section 4,6.) It is evident 

2 2 
that the energy exchange cross sections, (? (y and 

G ( 0 ^ , a r e  t h e  o n e s  m o s t  s t r o n g l y  a f f e c t e d  ( a l w a y s  

overestimated) by the neglect of chattering. The cross sec-

tions, <5(lo?o'^cS' G'S'SS'e'ae' 

are also affected, though not as strongly as the energy ex

change cross sections. In addition, the energy exchange 

cross sections do not depend on angular momentum polarization 

and are thus likely to be more sensitive to the gross 

anisotropy of the potential surfice rather than its detailed 

nature. The other "chattering sensitive cross sections" do 

depend on angular momentum polarization. 
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Table 5.17. Deviations Between Honte Carlo Estimates and 
Projection Operator Values of Effective Collision 
Cross Sections for Hard Sphere-Hard Ellipsoid 
Models^ 

Cross Semiminor Semiminor Semiminor 
Section i. axis = axis = axis = 
Difference 4.02 A 3.06 a 2.12 A 

a3 

aG(!S»°|6) 
1200 'g'o 

.p,1200|3v -1'7 -2.4 -5.3 
AG<1000Ig) 

AS(]J°g|®) ^ 0.97 0.061 ».1 

AG(g2%g|e, 0.87 6.4 15.0 

a3 

^ Sphere radius = 1.90505 A ; ellipsoid semimajor axis = 
4.23344 I 

^ Deviations are expressed in terms of the number of Monte 
Carlo standard deviations. 



272 

Table 5.17. (continued) 

Cross Semiminor Semiminor Semimlnor 
Section axis = axis = axis = 
Difference 4,02 K 3.06 A 2.12 A 

1 . 2  0.43 -0. 19 

AG(y2,o2) 

AG(o2,y2) 
a3 
«3 

0.60 9.8 38.9 

AG(%x[a](2):ig)^g 0.89 - 1 . 2  -0.42 
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Continuing to digress, it is of interest to speculate as 

to the reason why the energy exchange effective cross sec

tions are strongly affected by the neglect of chattering. If 

one visualizes a collision between a rigid ellipsoid fi» e. 

diatom) and a rigid sphere (i.e. atom), chattering can occur 

if nearly all of the relative translational energy is trans

ferred by the initial impulse to the rotational degrees of 

freedom of the rotor. In such a case, the atom "hovers" 

within the spherical volume swept out by the rotor and re

ceives a second impulse. When this occurs, much of the ener

gy originally transferred to rotation is transferred back to 

translation. Thus, the neglect of chattering overestimates 

the rate at which rotational and translational energies can 

be exchanged and thus leads to overestimation of the energy 

exchange effective cross sections. 

Returning to the previous discussion, one notes that the 

Kihara methodology systematically overestimates the energy 

exchange cross sections relative to "realistic" Monte Carlo 

estimates. In addition, the cross section 6^0200'3 ̂a3 

overestimated. It seems likely that this behavior is due to 

the neglect of chattering in the Kihara approach. 

In this work, the spherical potential, ̂ J^), used to 

construct the Kihara surface was chosen as the usual Lennard-

Jones 6-12 interaction. This choice of ̂ (a) was convenient 

due to the availability of the necessary omega integrals. 
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However, it is evident from Figs. 5.5, 5.6, aad 5.7 that the 

Lennard-Jones-Kihara potential surfaces have more repulsive 

cores and much simpler well structure than the corresponding 

"realistic" surfaces. It appears, however, that these dif

ferences are not too critical since it is possible to attri

bute a significant part of the deviation in the results to 

the neglect of chattering. Also, and perhaps more important

ly, the Kihara values of the effective collision cross sec

tions which give rise to the Senftleben-Beenakker effects are 

reasonably close to the Monte Carlo values. 

It is of interest, however, to investigate how one might 

go about obtaining the "best fit" of a Kihara potential to a 

"realistic" potential surface. To begin, one should note 

that any potential surface appropriate to an atom-diatom in

teraction can be written as a series of Legendre polynomials, 

V = J v . (r)P . (cos0) (5.5-14) 
j»0 3 J 

If r is defined as the vector distance between molecular 

centers and e is defined as a unit vector parallel to the in-

ternuclear axis, then r is |r| and 0 is arc cos(r~^r*e). One 

is at liberty to define a reference convex surface, de

scribed by a supporting function, h(z), and a scale factor, 

p, so that r has the form, 

r = p[ (h-zh')k+h'êl (5.5-15) 
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Here, one notes that p~^r has its endpoint on and that k 

is the unit vector normal to at that point. The quantity 

z is defined as &'ê. This immediately yields, 

r = p[(h-zh')2+2zh'(h-zh')+h'2]% (5.5-16) 

cose = ! (h-zh')2+h' (5.5-17) 

[ (h-zh')^+2zh' (h-zh')+h*^]^ 

where h and h' (derivative of h) are understood to be func

tions of cosz. 

Now, the "realistic" potential can be written in the al

ternate form, 

00 

V = l w. (p)P.(cos*) . (5.5-18) 
j»0 ] ] 

where (j) = arc cos z. It is clear that the Kihara potential 

can be identified as ^^(p). From this, one obtains, 

1 » 
Wq(p ) = %/d(cos<|)) I v.(r(p,*))P.(cos8(p,*)) (5.5-19) 

—1 i=o ^ ^ 

This integral can be evaluated via Gauss-Legendre quadrature. 

Finally, it should be noted that for "best" results, 

should be chosen so as to closely correspond with an 

eguipotential surface of the "realistic" potential. 
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In conclusion, it is interesting to note that the lOS 

and Kihara calculations shov interesting correspondences. 

In particular, values of G(o2oolg)gg, and 

are strongly overestimated relative to the Monte Carlo 

results. The appropriate values of appear in 

Table 5.18. It will be left to future study to determine how 

or if dynamical approximations characteristic of the Kihara 

and lOS methodologies are related. 

5.6. Some Proposals for Future Work 

It is commonly the case in the course of scholarly re

search for one to produce more questions than one is able to 

answer. This work falls in that category. However, out of 

the many possible proposals for future work that could be put 

forward, the author will give only the following three. 

First, the lack of CC and CS calculations are obvious gaps 

that need filling. This work is straightforward and can be 

pursued as resources are made available. Second, it would be 

interesting to know if factorization formulae for the 10S 

generalized phenomenological cross sections can be developed. 

Although this subject is not the province of the author, it 

is his opinion that such formulae hold the promise of produ

cing more economical computation methods which would allow 

more ambitious problems to be attacked. Third, it appears to 
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Table 5. 18. Deviations Between Honte Carlo Estimates and lOS 
Values of the Effective Collision Cross Section 
for the Pattengill et al. Ar-Ng Potential Surface 

Cross 
Section 

Deviation® 

Ar-N2 Classical Ar-N2 Classical 
Trajectory Trajectory 
to Kihara to lOS 

a3 
- 1 . 6  1.9 

a3 
0.30 1-5 

a3 
0-97 4.9 

AG ([y] : [y] 

12.5 

1.2 

108.2 

-2.9 

AG (yZ fOf )  
A G  

a3 
a3 

47.0 100.5 

3 Deviations are expressed in terms of the number of Monte 
Carlo standard deviations. 
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the author that the lOS and Kihara model methodologies are 

related in some fundamental way. It would be satisfying to 

know the nature and extent of such a connection. It is the 

author's opinion that this connection is involved with the 

neglect of chattering. It would then be interesting to try 

to devise some means of explicitly treating multiple impulse 

collisions. If this could be achieved, these methodologies 

(the lOS and Kihara model) might even become of practical use 

in an engineering context since grossly unrealistic rigid 

rough sphere models are currently applied for such purposes. 
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"And further, by these my son, be admonished: 

of making many books there is no end; 

and much study is a weariness of the flesh." 

Ecc, 12;12 
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8. APPENDIX A: IIIREDUCIBLE TENSORS 

The irreducible tensors used in this work can be defined 

by considering a Taylor series expansion of a general func

tion, G, of a three dimensional vector, x 

G(x) = I 1^=0 (8-1) 
j=0 — 

Clearly, the polyads, (x)form a nonorthogonal complete 

basis under the norm, 

(G,G') = /dx G(x)G(x') (8-2) 

If one orthogonalizes the polyads under the above norm, one 

obtains the irreducible tensors 

[Ki "" = (x)" .'T 
3=1 ? (2(n-j)+l) 

i=i 

Here, the notation^A^: means "the tensor formed by the sum of 

all distinguishable perturbations of the tensor indices of A" 

(e.q- ±xyyi = xyy+yxy+yyx) and the notation {n/2} means "the 

greatest integer contained in n/2." If one "traces" any pair 

of indices of it follows directly from Eg. (8-3) that 

the result is zero. Thus, [x]is the n-rank "traceless 

and symmetric" component (x)^. 
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It can be shown by direct substitution that Jx] obeys 

the following differential equation, 

À, *Â, = -n(n+1 )[%](*) (8-4) 
3*|x **|x -

which is immediately recognizable as the angular part of the 

Helmholtz equation. Thus, the cartesian components of [x] 

are linear combinations of the spherical harmonics, Y^(x), 

( x ) ,  ... Y~^(x) multiplied by x^. Like the spherical har-
n 

monies, the tensors, [x] , form irreducible representations 

of the rotation group, o"*" (3) , which leads to the designation 

of the Ix] as irreducible tensors. 

The spherical harmonics have the conventional orthonor

mal definition. 

m+|m| 

ï"(x) = (-1) ^ 

2 

(n- m ) ! 
Jn+ m )U 

H 
elm*(sine, 

{^mij 

(cose)""!""! + I ( - l|S( c o s 8 l"^jm|-2s 

s=1 2®s!(n-|m|-2s)I(2(n-j)+1) 

where 0 and cp are the angles of x (i.e., x = isin0cos(|)+3sin0 

sin(j)+]ccos0). Also, the associated Legendre function, 

(COS0) , has been explicitly written as a series. Now, if 

one evaluates the "zz...z" cartesian component of [x]^^), one 

finds. 
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In evaluating [x] , one must note that ^•x=cos6 and that 
—— - • - z z • # • z 

(n) 
zz. 

J(x) Sj jjg^g n!/2^s! (n-2s) ! terms. 

It follows from Eq. (8-3) that the scalar product 

[%](*) is. 
n — 

= -TSHTT" (8-7) 

One can define a standard spherical component, of the 

irreducible tensor, such that 

= I (8-8) 
m=-n ~ ̂  

where it follows that [ï]^ can be given the explicit form in 

terms of spherical harmonics, 

lï'm - • <®-" 

One can show that Eg. (8-7) is satisfied by the above defini

tion of [x]" if one notes that Y™ (x) equals (-1)™Y~"*(S) and 
""HI n n 

makes use of the addition theorem for spherical harmonics 

(i.e., 2n+1/# = I (-1)"'y:"^(x) Y^(x)) . 
m=-n " " 
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If one uses the standard definition of the Wigner 3j co

efficients and the expression for the integration of three 

spherical harmonics as given by Edmonds (60)# it is possible 

to obtain an expression for a spherical component, Ix]*^ , in 
n. 

terms of the cartesian components, x, y, and z. 

E(J,s)J — 

1 J—s J—s+1 

' "s -"s-1 

+ z 
1 J-s J-s+1 

lo Hg -ng_. 

1 J—s J—s+1 

-*8-1 

1 J-s J-S+1\ ^ II J-s J-S+11 

"s -*8-1 V "s -"s-l/ 

(8-10)  

where. 

E(J,s) = 
2(2J-2s) ! 
(2J- 2 S+2)! 

(J-s+1)! 
(J-s)I I 1 J-s J—s+l' 

0 0 0 

-1 
(8-11)  

In conclusion, some useful identities are listed. 

[X] (0) = 1 

= X 

[X] = XX - yx̂ jj 

( 0 )  1  
[x^] = x'Z 

( 8 - 1 2 )  

( 8 - 1 3 )  

( 8 - 1 4 )  

( 8 - 1 5 )  

[x%] ( 1 )  

'J-"-

( 8 - 1 6 )  
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[jQj] = ^(XY+Ï2) ~ "Jï'ïl Ï (8-17) 

(x'YZ-jxy^) (8-18) 

( X X Y Y - Y Y X X )  ( 8 - 1 9 )  

2 
= jp(xyv+yxv+vyx) - ̂  (xU+ [ x j +Dx) - (8-20) 

1% x'%(ZD+ +Uï) 
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9. APPENDIX B: ISOTROPIC TENSORS 

An isotropic tensor, by definition, is totally symmetric 

with respect to 0^(3) and thus must consist of direct prod

ucts of the unit tensor, g, and the Levi-Civita density, e . 

Since this admits a great many possibilities, the present 

discussion will be limited to the presentation of results 

which are useful within the scope of this work. 

Two particularly useful identities are, 

2n ,,„.2ru, ..2n /ax(x)^" - (9-1) 

and. 

/ d x [ x ] [ X ] »  r"n+3/2^ 0-2) 

where an explicit expression for follows immediately 

from Eg. (8-3) via Eg. (9-1) 

= ——2 ti IÎ + ^ f 
(n!) ̂ [^J .. s=1 2®s! [(n-s) !] 4l ̂2(n-j) + 1) 

(9-3) 

tijJ) 
s 

: n-2s 

(2) 
s 

Here, is constructed by an n-fold nesting of U's (i.e. 

1--2n = 4,,2n *2,2n-, -*n,n-,'' specific examples are. 
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(0 )  

= U 

( 2 )  _  1  
ï'yyiMJ' • 7™ 

( 1 , 1 )  _  = 0 

( 1 , 2 )  _  1  
) - Y 

(9-4) 

(9-5) 

(9-6) 

(9-7) 

(9-8) 

Cooper(46) has given explicit expressions for 

A(2'2\ aad 6(2''). 

In Chapter 3, the inverse collision operator is written 
;; 

in terms of tensors which are isotropic with respect to the 

group of two dimensional rotations about the direction of the 

field. Following Cooper(46) one can define the linearly in

dependent tensors. 

By (g) = (k)9- '» ,u (2 )  

m 

(2)  

= lk)9-™ %-
u 
: m 

( 2 )  (2)(^)g-m 

(9-9) 

(9-10) 

where k is a unit vector parallel to the field, H, and 

r,(2) 
if - kk (9-11) 
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Y s -Rxy (9-12) 

The tensors B (q) and can be used to construct 
m ^ m ^ 

tensors ê(q) and B(g) which are symmetric and traceless 
m m 

on tJie first and last g indices. 

( 2 )  

kLja. 

(2)(h)S-m3: 
(9-13) 

trace terms] 

C '9) = 

V' ej 
( 2 )  

v_ 
m 

(2)(g)q-m 
(9-14) 

- trace terms] 

where. 

N = 2'̂ ""*(q+m) 1 (q-m) 
qm m!(2g)! (9-15) 

The tensors defined in Egs. (9-13) and (9-14) satisfy the re

lations. 

(9-16) 

si"'(91# Sj,7'(g) . <9"") 

(9-18) 

Using these relations, Hatzen(45) has defined a linearly in

dependent set of tensors here denoted by » as follows. 
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(9-19) 

where. 

<'> = ! C> <q) = ! ( 0 )  

m=0 m=-g 

(q) = - f im/ 
9 m:l m 

(g) 
m=-g 

(q) 
m 

(9-20) 

(9-21) 

Specific examples of y^' pertinent to this work are. 

§(+) (0) = 1 (9-22) 

&(+)  (1) .  =  (9-23) 

a^+)(1) = kk (9-24) 

& ( - ) ( 1 )  =  Y  (9-25) 

8^+)(2) (9-26) 

B (*^(2) = j(£u^^^k + k(^ + |^(^)k + ̂ GGj ) (9-27) 

B^+) (2) = |(ickkjc - 1%^^) - (9-28) 

(9-29) 
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B,'-' (2) = + K\&/ + Xg/E + \W) 

B^->(2, = .W ,9-30, 
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10. APPENDIX C: HARD SPHERE-HARD ELLIPSOID ALGORITHM 

An efficient hard sphere-hard ellipsoid trajectory algo

rithm was developed by this worker only after a considerable 

number of approaches were tried and discarded. For this 

reason, this appendix is included here so that future workers 

can benefit from the experience of this author. 

A complete description of a "hard" interaction is ob

tained if one locates both temporally and spatially the 

"point of impact" (or "points of impact" for chattering 

collisions). The most efficient algorithm found by the 

author for doing this is summarized in the following steps: 

1. The atom (sphere) and molecule (ellipsoid) are 
advanced via free flight dynamics from the initial configura
tion to a configuration in which the center of the sphere is 
the distance of r^+b from the center of the ellipsoid. 

2. The interval necessary for the atom to traverse a 
"collision" sphere of radius r^+b about the center of the 
molecule is calculated under the assumption that no interac
tion occurs (i.e. the sphere and ellipsoid are able to 
"penetrate" each other). 

3. The time interval in step 2 is divided into an inte
gral number of subintervals. A convenient number was found 
to be 50. 

4. The atom is advanced via free flight dynamics 
through the first subinterval. 

5. Using an appropriate criterion (this will be dis
cussed later) the algorithm checks to determine if an impact 
occurs during this interval. If none occurs the atom is 
advanced to the second interval and step 5 is repeated. If 
the atom is advanced outside of the collision sphere (i.e. 
after 50 repetitions with no impact) it is obvious that no 
collision has occurred. Thus, the postcollisional values of 
the dynamical parameters follow trivially from the 
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precollisional values. 

6. If an impact is found to occur, the subinterval is 
partitioned (four partitions are found to he optimal) and the 
searching process is repeated on these finer divisions. 

7. When the impact point is determined to within a 
predefined tolerance, postimpact values of the dynamical pa
rameters are determined from the preimpact values. 

8. The interval necessary for the atom to escape from 
the collision sphere after impact is calculated via free 
flight dynamics assuming no subsequent impacts. 

9. This new interval is divided into subintervals. 
(Twenty was found to be appropriate.) The entire process is 
repeated to check for subsequent or "chattering" impacts. 

10. The process is repeated until the atom finally 
escapes from the collision sphere. 

The above procedure is easily generalized to more 

complicated "hard" interactions. The criterion used in step 

5 can take several forms but basically follows frcm the 

nature of the geometry of the sphere and ellipsoid when in 

contact. Defining K as the unit vector normal to the 

surfaces at the point of contact, ê as the unit vector along 

the symmetry axis of the ellipsoid, and r as the unit vector 

parallel to the relative position vector, r, between the 

sphere and ellipsoid centers, one finds that îc-e is an ana

lytic function of r*i when the sphere and ellipsoid are in 

contact. Using this fact, at any point along the trajectory, 

one can calculate a hypothetical value of 1c* i from the cur

rent value of r-e. Now, it is also true that the distance, 

between the centers of the sphere and ellipsoid when in 

contact is aa analytic function of %'ê. Thus, a hypothetical 
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value of ^ can be computed from the value of E*ê. If one 

compares this computed value of /l to the current value of 

|r|, one finds |rl>/L implies that there is no contact, |r | 

implies that the sphere and ellipsoid have penetrated each 

other, and !rj=a implies that the surfaces just touch. Thus, 

an impact point can be located using the preceding condi

tions. 
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11, APPENDIX D: TABLES OF NUMERICAL DATA APPROPBIATE 
TO THE SPHEBE-SPHEROCÏLINDEE KIHAEA 
CROSS SECTIONS 

The scalar collision integral appropriate to a sphere-

spherocyliader Kihara interaction can be written in terms of 

the quantities given explicitly in Eg. (5.5-7) through 

(5.5-13). These can be decomposed into the dimensionless 

quantities, y ^ and G where, 
•^s sc sc 

^ (11-1) 
o 

rp(i,j) = i (11-2) 
3 O 

SC 

G = rl (11-3) 

These quantities and necessary omega integrals are given in 

the following tables as functions of n and I* (reduced temp

erature) . 

Table 11.1. Lennard-Jones 6-12 Chapman Cowling Omega 
Integrals 

(1,1)* (1,2)* (2,2)* (1,3)* (2,3)* (3,3)* 
T* n n 

0.05 5.074 4. 506 5,163 4,125 4,734 4, 755 
0. 10 4-012 3. 552 4.099 3,239 3.759 3, 750 
0,15 3.481 3. 066 3.588 2,774 3.295 3, 235 
0. 20 3. 130 2. 731 3.267 2.439 3.001 2, 881 
0,25 2.865 2, 469 3-034 2. 176 2.775 2. 613 
0.30 2.649 2. 256 2.844 1.966 2,581 2. 40 0 
0.35 2.468 2, 080 2,680 1. 799 2,409 2, 225 
0.40 2.314 1, 932 2.533 1,665 2.257 2. 079 
0,45 2-181 1. 810 2.402 1.558 2,124 1. 958 
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Table 11,1. (continued) 

. a''-"* n"'"* n"'"* 

0. 50 2.066 1.707 2.286 1. 469 2-007 1. 852 

0. 55 1.965 1.618 2.182 1. 397 1.905 1. 762 

0. 60 1.876 1. 545 2.085 1. 336 1.816 1. 682 

0. 65 1.798 1.481 1.999 1-265 1.736 1-6 13 

0. 70 1.729 1.425 1-922 1. 242 1.668 1. 554 

0. 75 1.667 1.375 1.854 1, 205 1.607 1. 501 
0. 80 1.610 1-332 1.792 1. 172 1.552 1. 455 

0. 85 1.561 1, 293 1.736 1. 144 1.505 1. 412 

0, 90 1.518 1. 260 1.685 1. 118 1.462 1. 374 

0. 95 1.477 1.231 1.637 1. 096 1.424 1. 340 

1, 00 1.440 1. 204 1.593 1. 076 1.389 1-30 9 

1. 05 1.406 1. 180 1.554 1-058 1.358 1. 281 

1. 10 1.375 1. 158 1.518 1. 041 1-330 1. 255 

1. 15 1.347 1. 138 1.465 1, 027 1.305 1. 23 2 

1, 20 1.320 1- 120 1.454 1. 013 1.281 1. 21 1 

1. 25 1.295 1. 103 1.427 1 . 009 1.260 1. 191 

1. 30 1.272 1. 087 1.402 0. 9895 1-240 1. 173 

1. 35 1.252 1.072 1.378 0-9789 1.222 1- 157 
1-40 1.233 1.058 1.356 0-9691 1.205 1- 141 

1. 45 1.216 1.046 1.335 0. 9599 1.189 1- 127 

1. 50 1.199 1.035 1.316 0. 9514 1-175 1. 113 

1. 55 1. 183 1.024 1.297 0. 9430 1.161 1. 10 1 

1. 60 1.168 1.014 1.280 0 .  9359 1. 149 1. 089 

1. 65 1.154 1.005 1.264 0. 9288 1.137 1. 078 

1. 70 1.141 0.9958 1. 249 0. 9221 1. 126 1-068 

1. 75 1. 128 0.9870 1.235 0. 9158 1.116 1. 058 

1. 80 1.116 0.9790 1.222 0. 9098 1. 106 1-04 9 

1. 85 1.105 0.9715 1.210 0. 9040 1.097 1-040 

1. 90 1.095 0.9644 1.198 0. 8986 1.088 1-03 2 

1. 95 1.085 0.9580 1.187 0. 8933 1.080 1. 024 

2. 00 1.075 0.9513 1. 176 0. 8883 1.072 1. 017 

2. 10 1.058 0-9394 1.156 0,. 8790 1.058 1. 003 

2. 20 1.042 0-9285 1.138 0. 8704 1.045 0. 9903 

2. 30 1.027 0.9185 1.122 0. 8625 1.033 0-9788 

2, 40 1.013 0.9092 1.107 0. 8551 1.022 0. 9683 

2. 50 1-001 0.9005 1.093 0, 8481 1.011 0. 9586 

2. 60 0.9889 0.8924 1.081 0-8417 1.002 0-9496 

2. 70 0.9781 0.8849 1.069 0. 8356 0.9934 0. 9412 

2. 80 0.9681 0.7780 1.058 0. 8300 0.9853 0-9334 

2. 90 0.9587 0.8711 1.048 0. 8245 0-9778 0. 9261 

3, 00 0.9500 0.8649 1.039 0. 8193 0.9706 0. 9193 

3. 10 0.9418 0-8590 1.030 0. 8145 0.9640 0. 9129 
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Table 11.1. (continued) 

(1,1)* (1,2)* (2,2)* (1,3)* (2,3)* .(3,3) 

T * n fi n U H H 

3, 20 0. 9341 0. 6534 1. 022 0-8098 0. 9576 0-9068 
3. 30 0-9267 0. 8461 1. 014 0. 8054 0. 9517 0-9010 
3. 40 0. 9198 0. 8430 1-007 0-8011 0. 9460 0^ 8956 
3. 50 0. 9132 0. 8382 0. 9998 0. 7971 0-9406 0. 8903 
3. 60 0. 9069 0. 8336 0. 9932 0-7932 0. 9355 0. 8854 
3. 70 0. 9009 0. 8292 0. 9870 0. 7894 0. 9306 0« 8807 
3, 80 0. 8952 0. 8250 0. 9810 0-7858 0. 9260 0. k761 
3. 90 0-8898 0. 8209 0-9754 0. 7823 0. 9215 0« 8718 
4. 00 0. 8846 0. 6170 0. 9700 0. 7790 0. 9172 Ow 8677 
4, 10 0. 8797 0. 8133 0. 9649 0. 7757 0-9131 0-8637 
4, 20 0. 8748 0. 8097 0. 9600 0. 7726 0. 9092 0- 8599 
4. 30 0. 8703 0. 8062 0. 9552 0-7696 0. 9054 0. 8562 
4. 40 0. 8659 0-8029 0-9507 0-7666 0_ 9018 0. 8527 
4. 50 0. 8617 0. 7996 0. 9463 0. 7638 0-8982 0. 8493 
4. 60 0-8576 0. 7965 0. 9421 0. 7614 0. 8948 0. 8460 
4. 70 0. 8537 0. 7935 0. 9381 0. 7586 0. 8915 0-84 28 
4. 80 0. 8499 0. 7905 0. 9342 0. 7557 0, 8880 0-8397 
4. 90 0. 8463 0. 7876 0. 9304 0. 7532 0. 8853 0. 8367 
5. 00 0. 8427 0. 7849 0. 9268 0. 7507 0. 8820 0-8228 
5. 10 0. 8393 0. 7822 0. 9233 0. 7483 0. 8794 0-8310 
5-20 0. 8360 0. 7796 0. 9199 0-7460 0-8766 0. 8283 
5. 30 0-8328 0. 7770 0. 9166 0-7437 0, 8728 0. 8256 
5-40 0. 8297 0. 7745 0. 9134 0. 7414 0. 8712 0. 823 1 
5. 50 0. 8267 0. 7721 0. 9103 0. 7393 0. 8686 0. 8205 
5. 60 0. 8238 0. 7698 0-9073 0. 7372 0. 8660 0-8181 
5. 70 0. 8210 0. 7675 0-9044 0-7351 0. 8636 0. 8157 
5. 80 0. 8182 0- 7652 0„ 9016 0. 7331 0-8612 0- 8124 
5. 90 0. 8155 0-7630 0-8988 0. 7312 0. 8588 0. 81 11 
6. 00 0. 8127 0. 7609 Ow 8962 0. 7291 0. 8565 0-8089 
6- 10 0. 8103 0-7588 0. 8936 0. 7272 0. 8543 0-8068 
6, 20 0. 8078 0. 7567 Ow 8910 0. 7253 0. 8521 0. 8046 
6. 30 0-8054 0. 7547 0-6886 0. 7235 0. 8500 0-8026 
6. 40 0. 8030 0-7528 0. 8861 0. 7217 0. 8479 0-8006 
6. 50 0. 8006 0. 7508 0-8838 0-7200 0. 8459 0-7986 
6, 60 0. 7984 0. 7490 0. 8815 0. 7182 0. 8439 0. 7966 
6. 70 0. 7962 0. 7471 0. 8792 0. 7165 0. 8419 0-7974 
6. 80 0. 7940 0. 7453 0. 8770 0. 7149 0-8400 0-7929 
6. 90 0. 7919 0. 7435 0-8748 0-7132 0. 8381 0-7911 
7. 00 0. 7900 0-7418 0-8727 0. 7116 Ow 8362 0-7893 
7- 10 0. 7877 0, 7401 0-8707 0. 7101 0. 8344 0. 7875 
7, 20 0-7857 0. 7384 0. 8686 0. 7085 0. 8326 0. 7856 
7. 30 0. 7838 0-7368 0. 8666 0. 7070 0. 8309 0. 7841 
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Table 11.1. (continued) 

(1,1)* (1,2)* (2,2)* (1,3)* (2,3)* (3,3)1 

T 
* 0 a Q. 0 

7-40 0.782 0. 7351 0. 8647 0. 7058 0. 8292 0. 7325 
7. 50 0-7800 0-7336 0. 8628 0-7040 0-8275 0-73 0 8 
7. 60 0-7782 0-7320 0- 8609 0. 7026 0-8258 0-7792 
7. 70 0.7762 0-7305 0-8591 0. 7011 0-8242 0-7777 
7. 80 097744 0. 7289 0-8573 0. 6997 0. 8226 0- 7761 

7. 90 0.7727 0-7275 0. 8555 0. 6983 0. 8210 0-7746 
8. 00 0-7710 0. 7260 0. 8538 0-6970 0. 8195 0. 7731 
8. 10 0.7693 0. 7246 0. 8521 0. 6956 0. 8179 0. 7716 
8. 20 0.7677 0-7231 0. 8504 0. 6943 0-8164 0. 7702 
8. 30 0.7661 3- 7217 0. 8488 0. 6930 0-8150 0. 7687 
8. 40 0-7645 0. 7204 0. 8472 0. 6917 0-8135 0. 7673 
8. 50 0-7629 0. 7190 0. 8455 0. 6904 0-8120 0. 7659 
8. 60 0-7614 0. 7177 0. 8440 0. 6891 0-8106 0-7645 
8. 70 0-7599 0-7164 0. 8424 0. 6879 0-8092 0. 7632 
8. 80 0.7584 0. 7151 0-8409 0. 6867 0. 8078 0-7618 
8, 90 0.7569 0, 7138 0-8394 0. 6855 0. 8064 0. 7605 
9. 00 0.7555 0. 7125 0. 8379 0. 6843 0. 8051 0. 7593 
9. 10 0-7540 0. 7113 0. 8365 0. 6832 0. 8038 0-7598 
9. 20 097526 0. 7100 0. 8351 0. 6820 0. 8025 0. 7567 

9, 30 0-7513 0-7088 0-8337 0-6809 0. 8012 0. 7555 
9. 40 0.7499 0-7076 0-8323 0-6798 0. 7999 0-7543 
9. 50 0.7486 0-7065 0. 8309 0. 6786 0. 7987 0„ 7531 
9. 60 0.7473 0. 7053 0. 8296 0-6775 0. 7974 0. 7519 
9. 70 0-7460 0-7042 0-8282 0-6765 0-7962 0-7507 
9. 80 0-7447 0. 7030 0. 8269 0. 6754 0. 7950 0. 7495 
9. 90 0-7434 0. 7019 0-8256 0-6743 0-7938 0. 7484 
10, 00 0.7421 0- 7008 0. 8243 0. 6733 0. 7926 0- 7472 
10. 20 0-7397 0. 6986 0. 8218 0-6712 0. 7903 0. 7456 
10. 40 0-7373 0. 6965 0. 8194 0. 6692 0-7881 0-7429 
10. 60 0.7350 0-6944 0-8170 0. 6673 0-7859 0. 7408 
10. 80 0.7328 0. 6924 0-8147 0. 6654 0-7837 0-7387 
n. 00 0-7305 0. 6904 0. 8124 0. 6635 0. 7816 0. 7367 
11. 20 0.7284 0. 6885 0. 8132 3. 6616 0. 7796 0. 7347 
11. 40 0.7263 0. 6866 0-8081 0. 6598 0. 7776 0. 7328 
11. 60 0.7242 0. 6848 0. 8059 0. 6581 0. 7759 0-7309 
11. 80 0-7222 0-6829 0. 8039 0. 6564 0-7736 0. 7290 
12. 00 0-7232 0-6811 0. 8018 0. 6547 0. 7718 0. 7272 
12. 20 0.7183 0. 6794 0. 7999 0. 6530 0. 7699 0. 7254 
12. 40 0-7164 0. 6777 0. 7979 0. 651 4 0. 7681 0-7237 
12. 60 0-7143 0. 6760 0. 7960 0. 6498 0. 7663 0-7220 
12. 80 0-7128 0-6743 0. 7941 0. 6482 0- 7645 0- 7203 

13-00 0.7110 0. 6727 0. 7923 0. 6467 0-7629 0. 7187 
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Table 11-1- (continued) 

T* 
„(1,2)* jj(2,2)* a (1,3)* ^(2,3)* a W.3i* 

13. 20 Û- 7092 0. 6711 0. 7905 0. 6451 0- 761 1 0. 7170 
13. 40 0. 7075 Û-6696 0. 7887 0. 6437 0. 7594 û-7164 
13. 60 0-7058 0. 6680 0. 7670 0. 6422 0. 7578 0-7138 
13. 80 0. 7042 0. 6665 0-7853 0-6408 0, 7562 0„ 7123 
14. 00 0-7026 0. 6620 0-7837 0. 6393 0-7546 0, 7108 

14. 20 0. 7010 0. 6636 0-7820 0-6379 0-7531 0„ 7093 
14, 40 0. 6994 0. 6622 0- 7804 0-6366 0. 7515 0. 7078 

14, 60 0. 6979 0. 66C7 0. 7788 0-6352 0. 7500 0» 7064 
14. 80 û 6964 0. 6594 0. 7772 Ow 6339 0„ 7485 Ow 7050 
15. 00 0-6949 0-6580 0. 7757 0-6326 0- 7471 0„ 7036 

15. 50 0-6913 0. 6547 0-7719 0-6294 0-7435 0-7002 
16. 00 0. 6878 0. 6515 0. 7683 0-6263 0. 7401 0-6969 
16. 50 0. 6845 0. 6484 0. 7649 0-6234 0-7368 0. 6937 
17. 00 0-6812 0. 6454 0. 7615 0-6205 0. 7336 0-6907 

17, 50 0. 6781 0. 6425 0. 7583 0. 6178 0. 7305 0. 6677 
18. 00 0-6751 0. 6397 0. 7552 0-6151 0-7275 0-6849 

18. 50 0. 6722 0-6370 0. 7522 0-6125 0-7246 0. 6821 

19. 00 0. 6694 0. 6344 0. 7492 0-6100 0. 7218 0-6794 

19. 50 0-6667 0. 6319 0. 7464 0. 6076 0-7191 0. 6768 

20. 00 0-6641 0. 6294 0. 7436 0, 6052 0- 7164 0-6743 

21. 00 û. 6590 0. 6247 0. 7383 0-6007 0, 7114 0-6694 

22. 00 0. 6543 0. 6203 0. 7333 0- 5964 0. 7065 0-66 48 

23-00 0-6497 0. 6160 0. 7286 0-5923 0-7020 0. 6605 

24. 00 0-6455 0. 6120 0. 7241 0. 5884 0. 6976 Ow 6563 

25. 00 0-6414 0-6082 0. 7198 0-5647 0-6934 0-6524 
26. 00 0-6375 0. 6045 0. 7156 0. 581 1 0. 6895 0. 6486 

27. 00 0. 6338 0-6010 0. 7117 0-5778 0. 5856 0. 6449 
28. 00 0-6302 0- 5976 0. 7080 0- 5745 0. 6820 0-6415 

29. 00 0. 6268 0- 5944 0. 7043 0. 5714 0. 6785 Ow 6381 
30. 00 0. 6235 0. 5913 0-7008 0. 5684 0-6751 0- 63 4 9 
35. 00 0. 6088 0. 5773 0. 6851 c. 5549 0. 6598 0-6204 
40. 00 0. 5963 0. 5654 0. 6717 0, 5435 0. 6468 0-6081 

45. 00 0. 5855 0. 5552 0. 5601 0-5335 0. 6355 0-5S73 
50. 00 0-5760 0- 5461 0. 6498 0- 5248 0. 6255 0. 5679 

55, 00 0-5675 0. 5380 0-6406 0-5170 0. 6166 0- 57 94 

60, 00 0. 5598 0. 5300 0. 6323 0. 5099 0. 6085 0. 5718 
65. 00 0. 5529 0. 524 1 0. 6248 0. 5035 0. 6012 0. 5648 
70-00 0-5465 0. 5180 0. 6178 0. 4976 0. 5944 0- 5584 

75. 00 0-5407 0. 5124 0. 6114 0-4922 0. 5882 0. 5525 
BO00 0. 5352 0. 5072 0. 6054 0. 4872 0. 5824 0- 5470 

SS. 00 0. 5301 0. 5024 0. 5998 0, 4828 0. 5770 0-5419 
90. 00 0. 5254 0. 4979 0. 5946 0. 4782 0. 5797 0- 5372 
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Table 11.1. (continued) 

1 1* 
(1,1)* „(2,2)* 

n 
(1,3)* 

a'-"-'' 

95. 00 0 -5210 0-4936 0. 5898 0 -4741 0. 5672 0- 5327 
100. 00 0 .5168 0. 4897 0- 5851 0 .4702 0, 5627 0. 5285 
150. 00 0 .4847 0. 4590 0-54 97 0 .4407 0. 5284 0- 4960 
200. 00 0 .4630 0. 4383 0. 5256 0 .4207 0. 5050 0. 4740 
300. 00 0 -4338 0. 4106 0-4931 0 -3940 0-4736 0-4444 
400. 00 0 -4142 0, 3919 0-4711 0 -3760 0-4523 0. 4244 
500. 00 0 -3995 0- 3779 0'- 4546 0 -362 6 0-4364 0- 4094 
600. 00 0 .3878 0- 3669 0-4415 0 .3519 0. 4238 0. 3975 
700. 00 0 .3783 0. 3578 0. 4307 0, -3432 0- 4133 0. 3877 
800. 00 0 .3701 0- 3500 0-4215 0 .3357 0-4045 0-3794 
900. 00 0 .3631 0- 3434 0. 4136 0 -3293 Ow 3968 0- 3722 

1000-00 0 -3569 0. 337 5 0. 4066 0 -3237 0-3901 0-3659 



Table 11.2. A Compilation of Hard Spherocylinder Pro
jection Operator Integrals 

(-1) (-1) (1) (1) (3) 

n .X X X X X" 
s c s c s 

0. 00 2-00000 2, 00000 2 .00000 2 .00000 2 .00000 
0. 01 2. 00007 2. 00003 1 .99 993 1 .99997 1 .99980 
0. 02 2, 00027 2. 00013 1 .99 973 1 - 99987 1 .99920 
0. 03 2. 00060 2. 00030 1 .99940 1 ,99970 1 .99820 
0. 04 2. 00107 2. 00053 1 .99893 1 .99947 1 .99680 
0, 05 2, 00167 2. 00083 1 .99833 1 .99917 1 .99500 
0- 05 2. 00240 2. 00120 1 .99760 1 .99880 1 ,99281 
0. 07 2. 00327 2. 00 164 1 .99673 1 .99836 1 .99022 
0, 08 2-00428 2. 00214 1 .99573 1 .99786 1 .98723 
0. 09 2. 00542 2. 00271 1 .99460 1 .99730 1 .98384 
0. 10 2. 00670 2. 00335 1 .99333 1 .99666 1 .98007 
0. 11 2. 00811 2-00406 1 .99193 1 .99596 1 .97590 
0. 12 2. 00966 2. 00484 1 .99039 1 .99518 1 .97134 
0. 13 2-01136 2. 00568 1 .98872 1 .99435 1 .96339 
0. 14 2-01319 2. 00660 1 .98692 1 -99344 1 .96106 
0- 15 2. 01516 2, 00 7 59 1 .98498 1 .99246 1 .95534 
0. 15 2_ 01727 2. 00 865 1 .98290 1 .99142 1 .94924 
0. 17 2-01953 2. 00978 1 .98070 1 .99031 1 ,94275 
0. 18 2. 02193 2. 01098 1 .97835 1 .98912 1 .93590 
0. 19 2. 02448 2. 01226 1 .97588 1 .98787 1 .92866 
0- 20 2. 02717 2. 01361 1 .97326 1 .98655 1 .92106 
0. 21 2-03002 2. 01504 1 .97051 1 .98516 1 -91309 
0-22 2-03301 2. 01655 1 .96763 1 .98370 1 .90475 
0. 23 2-03616  ̂«• 01813 1 .96461 1 .98216 1 .89505 
0. 24 2-03946 2. 01979 1 .96145 1 .98056 1 .88699 
0. 25 2. 04291 2, 02153 1 .95816 1 .97888 1 .87738 
0. 26 2-04653 2. 92334 1 .95473 1 .97713 1 .86782 
0. 27 2. 05031 2. 02525 1 .95116 1 .97531 1 .85771 
0. 28 2. 05424 2. 02 723 1 - 94746 1 ,97342 1 .84726 
0. 29 2. 05635 2. 02930 1 .94362 1 .97145 1 .83646 
0. 30 2. 06262 2. 03145 1 .93954 1 .96940 1 .82534 
0. 31 2. 06706 2. 03370 1 .93552 1 .96729 1 .81338 
0. 32 2. 07168 2. 03603 1 .93126 1 .96509 1 .80210 
0. 33 2. 07647 2. 03845 1 .92687 1 .96282 1 .78999 
0. 34 2, 08144 2. 04095 1 .92233 1 .96048 1 .77757 
0. 35 2. 08659 2. 04357 1 .91766 1 .95805 1 .75484 
0. 36 2-09193 2. 04627 1 .91284 1 .95555 1 .75181 
0. 37 2. 09745 2. 04907 1 .90789 1 .95297 1 .73847 
0. 38 2. 10317 2. 05197 1 .90279 1 -95031 1 .72484 
0. 39 2. 10909 2. 05497 1 .89756 1 .94757 1 .71091 
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_(3) J 5) J 5) 
X X X  
c s c 

2 . 0 0 0 0 0  
1.99990 
1.99960 
1.99910 
1.99840 
1.S9750 
1.99640 
1.99510 
1.99360 
1.99191 
1-99001 
1.98791 
1.98562 
1.98312 
1.98043 
1 .97754 
1.97445 
1.97117 
1.96769 
1.96401 
1.96013 
1.95606 
1.95179 
1 .94733 
1 .94268 
1.93782 
1.93278 
1.92754 
1.92211 
1 .91649 
1.91067 
1.90467 
1.89847 
1.89208 
1.88551 
1 .87875 
1.87179 
1.86465 
1.85733 
1 .84982 

2 .00000  
1-99967 
1.99867 
1.99700 
1.99467 
1-99168 
1.98803 
1-98373 
1.97877 
1.97316 
1.96691 
1-96002 
1.95250 
1.94436 
1.93560 
1.92623 
1.91625 
1.90568 
1.89453 
1 .88280  
1. 87051 
1.85767 
1.84428 
1.83036 
1.81591 
1.80097 
1.78552 
1.76960 
1.75320 
1.73635 
1.71906 
1.70134 
1.68321 
1.66469 
1.64578 
1.62650 
1 . 6 06 88  
1.58691 
1. 56663 
1.54605 

2 . 0 0 0 0 0  
1.99963 
1.99933 
1,99850 
1.99733 
1.99584 
1.99401 
1.99185 
1.98936 
1-98654 
1. 98340 
1-97993 
1.97613 
1.97201 
1.96758 
1.96268 
1.95775 
1.95236 
1.94666 
1.94066 
1.93434 
1.92773 
1.92081 
1.91360 
1.90609 
1.89829 
1.89020 
1.88183 
1.87318 
1.86425 
1.85505 
1.84558 
1.83585 
1.82586 
1.81561 
1.80511 
1.79437 
1.78338 
1.77215 
1.76069 

J1.2) 
T 
sc 

2.O0D00 
1-99999 
1.99986 
1.99964 
1.99936 
1-99900 
1-9985b 
1.99804 
1. 99744 
1.99675 
1- 99599 
1.99515 
1.99422 
1. 99321 
1.99212 
1.99095 
1.98970 
1.98836 
1.98694 
1.98544 
1.98385 
1. 98 217 
1.98041 
1. 97857 
1.97664 
1.97462 
1.97252 
1.97033 
1.96805 
1.96568 
1.96322 
1.96066 
1.95802 
1.95529 
1.95246 
1. 94954 
1.94652 
1. 94 341 
1.94020 
1.93689 

J 3,2) 
T 
sc 

2 .00000  
1.99978 
1.99947 
1.99891 
1.99807 
1.99700 
1.99568 
1, 99412 
1.99232 
1.99023 
1.98801 
1.98549 
1.98273 
1.97974 
1.97650 
1.97303 
1.96932 
1.96537 
1.96118 
1.95676 
1.95209 
1. 94719 
1.94206 
1.93668 
1.93107 
1.92523 
1.91915 
1.91283 
1.90628 
1.89950 
1.89248 
1.88523 
1.87774 
1.87003 
1.86208 
1.85390 
1.84549 
1.83685 
1.82798 
1.81888 

G 
sc 

0 . 0 0 0 0 0  
0.05266 
0.07076 
0.08653 
0.09991 
0.11167 
0 . 1 2 2 2 6  
0. 13196 
0-14097 
0. 14939 
0. 15732 
0. 16483 
0.17196 
0.17875 
0.18525 
0. 19147 
0.19744 
0. 20318 
0.20869 
0.21401 
0.21913 
0.22408 
0.22884 
0.23345 
0.23789 
0.24219 
0.24633 
0.25033 
0.25420 
0.25793 
0. 26153 
0.26501 
0.26836 
0.27158 
0. 27 469 
0.27768 
0.28055 
0.28331 
0.28596 
0.28849 



Table 11.2. (continued) 

(-1) (-1) (1) -(1) _(3> 
n X Y X X X 

s G s c s 

0. 40 2- 11521 2. 05808 1 .89218 1 .94475 1.69671 
0. 41 2. 12153 2, 06129 1 .88666 1 .94185 1.68222 
0. 42 2. 12806 2. 06462 1 -88099 1 .93887 1.66746 
0. 43 2. 13480 2. 06805 1 .87519 1 .93580 1.65244 
0. 44 2 • 14176 2. 07160 1 .86924 1 .93264 1. 637 1 5 
0. 45 2. 14895 2. 07526 1 .86314 1 .92941 1.62161 
0, 46 2- 15636 2. 07905 1 .85690 1 .92608 1.60582 
0. 47 2. 16400 2. 08295 1 .85052 1 .92267 1-58979 
0-48 2, 17189 2. 08699 1 .84399 1 ,91917 1. 57352 
0. 49 2. 18002 2. 09 115 1 .83731 1 .91558 1. 55702 
0. 50 2. 18840 2. 09544 1 .83049 1 .91190 1.54ÛJ0 

0, 51 2. 19703 2. 09988 1 .82352 1 .90813 1.52337 
0. 52 2. 20593 2. 10445 1 -81640 1 .90427 1.50622 
0. 53 2-21510 2. 109 16 1 .80913 1 .90031 1.48887 
0. 54 2. 22455 2-11402 1 .80171 1 .89626 1.47133 
0. 55 2-23428 2. 11904 1 .79415 1 .89211 1 .45360 
0- 56 2. 24431 2 .  12421 1 .78643 1 .88786 1. 43368 
0. 57 2. 25463 2. 129 54 1 .77856 1 .88351 1.41759 
0. 58 2. 26527 2. 13504 1 .77054 1 .87907 1.39934 
0. 59 2. 27622 2. 14071 1 .76236 1 .87452 1.33092 
0. 60 2-28750 2. 14656 1 .75404 1 .86987 1.36236 
0. 61 2 . 29912 ^ m 15259 1 .74555 1 .86511 1.34365 
0-62 2_ 31108 2- 15881 1 .73692 1 .86025 1.32480 
0. 63 2. 32340 2- 16522 1 .72812 1 .85528 1.30592 
0. 64 2. 33609 2- 17183 1 .71917 1 .85020 1.28u72 
0-65 2-34917 2. 17865 1 .71007 1 .84501 1.26750 
0. 66 2. 36263 2- 13569 1 .70080 1 .83970 1.24818 
0. 67 2-37650 2. 19294 1 .69138 1 .83428 1.22875 
0. 68 2-39078 2. 20043 1 .68179 1 .82874 1.20924 
0. 69 2. 40550 2. 208 15 1 .67 205 1 .82309 1.18964 
0-70 2. 42067 2-21612 1 .66214 1 .81731 1. 1o997 
0-71 2-43630 2-22434 1 .65207 1 .81141 1.15023 
0. 72 2. 45241 2. 23283 1 .64183 1 -80539 1. 13042 
0, 73 2-46901 2. 24159 1 .63144 1 .79924 1. 11057 
0. 74 2 .  48612 2- 25063 1 -62087 1 .79296 1.09067 
0. 75 2. 50377 2-25997 1 .61014 1 .78654 1.07074 
0. 76 2- 52196 2- 26962 1 .59924 1 .78000 1,05077 
0. 77 2. 54073 2- 279 59 1 .58617 1 .77331 1 .03079 
0. 78 2. 56001 2. 28989 1 .57693 1 .76649 1.01080 
0. 79 2- 58001 2. 30053 1 .56552 1 .75952 0.99080 
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(3) (5) (5} (1,2) (3,2) 
X X X T T G 
c s c se se se 

1 .84212 1. 52517 1 .74900 1.93349 1 .80956 0. 29092 
1 .83424 1. 50 403 1 .73709 1.925:8 1 .80001 0. 29323 
1 .82618 1. 48263 1 .72497 1.92638 1 .79023 0. 29544 
1 .81793 1. 46100 1 .71262 1.92267 1 .78022 0. 29754 
1 .80950 1. 43914 1 .70007 1.91886 1 .76999 0. 29954 
1 .80089 1. 41708 1 .68732 1.91494 1 .75954 0. 30143 
1 .79210 1. 39483 1 .67437 1.91092 1 .74886 0. 30322 
1 .78314 1. 37240 1 .66123 1.90679 1 .73797 0. 30490 
1 .77399 1. 34983 1 .64789 1.90256 1 .72685 0. 30648 
1 .76467 1. 32711 1 .63438 1.89821 1 .71551 0. 30796 
1 .75517 1. 30428 1 .62069 1.89376 1 .70395 0. 30934 
1 .74549 1. 28134 1 .60683 1.88S19 1 .69217 0. 31061 
1 .73564 1. 25831 1 .59280 1.88451 1 .68018 0. 31179 
1 .72561 1. 23520 1 .57861 1.87971 1 .66796 0. 31286 
1 .71542 1. 21205 1 .56427 1.87480 1 .65554 0. 31384 
1 .70505 1. 18885 1 .54977 1.86977 1 .64290 0. 31471 
1 .69451 1. 16562 1 .53514 1.86462 1 .63005 0. 31548 
1 .68380 1. 14239 1 .52036 1.85934 1 .61699 0. 31616 
1 .67293 1. 11916 1 .50545 1.85335 1 .60372 0. 31673 
1 .66188 1. 09596 1 .49041 1.84843 1 .59024 0. 3 1721 
1 .65067 1. 07279 1 .47525 1.84278 1 .57655 0. 31759 
1 .63930 1. 04968 1 .45997 1.83700 1 .56266 0. 31787 
1 .62776 1. 02663 1 .44458 1.83109 1 .54657 0. 31805 
1 .61606 1. 00366 1 .42908 1.82505 1 .53427 0. 31813 
1 .60419 0. 98078 1 .41348 1.81887 1 .51S77 0. 31811 
1 .59217 0. 95802 1 .39779 1.81256 1 .50508 0. 31800 
1 .57998 0. 93537 1 .38201 1.80611 1 .49019 0. 3 1779 
1 .56764 0. 91286 1 .36614 1.79951 1 .47510 0. 31748 
1 .55515 0. 89050 1 .35019 1.79278 1 .45982 0. 31707 
1 .54249 0. 86830 1 .33416 1.78589 1 .44435 0. 31656 
1 .52968 0. 84626 1 .31807 1.77886 1 .42869 0. 31596 
1 .51672 0. 82441 1 .30191 1.77168 1 .41285 0. 31526 
1 .50361 0. 80276 1 .28569 1.76434 1 .39682 0. 31446 
1 .49035 0. 78131 1 .26942 1.75685 1 .38060 0. 31357 
1 .47694 0. 76008 1 .25310 1.74920 1 .36421 0. 31257 
1 .46338 0. 73907 1 .23673 1.74139 1 .34764 0. 31144 
1 .44967 0. 71830 1 .22033 1.73341 1 .33090 0. 31030 
1 .43582 0. 69777 1 .20389 1.72526 1 .31399 0. 30902 
1 .42183 0. 67750 1 . 18741 1.71695 1 .29690 0. 30764 
1 .40769 0. 65749 1 .17092 1.70856 1 .27965 0. 30616 



Table 11.2. (continued) 

(-1) _(-1) _(1) _(1) _(3) 

n X X X X X 

s c s c s 

0. 80 2, 60068 2.31153 1. 55394 1.75241 0. 97080 
0. 81 2. 62196 2.32291 1-54219 1.74516 0. 95082 

0- 82 2. 64393 2.33467 1.53026 1-73775 0-93085 

0. 83 2. 66663 2-34685 1.51815 1.73019 0-91091 
0- 84 2. 69007 2.35945 1.50 587 1-72247 0. 89101 
0. 85 2. 71429 2.37249 1.49341 1.71459 0. 87116 

0, 86 2. 73932 2.38599 1.48077 1.70655 0-85135 

0- 87 2-76521 2.39998 1.46795 1.69834 0-83160 

0. 88 2. 79198 2.41447 1.45495 1.68997 0. 8119 2 

0. 89 2-81968 2.42949 1.44176 1.68141 0. 79232 
0. 90 2, 84834 2.44507 1.42839 1.67268 0- 77280 

0. 91 2. 87801 2.46123 1.41483 1.66377 0- 75337 

0, 92 2-90675 2.47799 1-40109 1.65467 0. 73404 

0. 93 2, 94059 2.49540 1.38716 1-64539 0. 71481 

0. 94 2. 97360 2.51348 1.37303 1-63591 0. 69570 

0. 95 3. 00782 2.53226 1.35871 1.62622 0. 67671 
0. 96 3-04332 2.55179 1-34420 1.61634 0-65785 

0. 97 3. 08017 2.57210 1.32949 1.60624 0-63913 

0. 98 3. 11843 2.59323 1-31459 1-59594 0. 6^055 
0- 99 3. 15818 2.61523 1.29949 1.58541 0. 60212 
1- 00 3. 19950 2.63814 1.28419 1.57466 0. 53385 

1-01 3. 24247 2.66203 1.26868 1.56367 0-56575 
1. 02 3. 28718 2.68694 1.25297 1.55245 0. 54782 

1. 03 3. 33373 2.71293 1-23706 1.54099 0- 5 3008 

1. 04 3-38223 2.74006 1-22093 1-52928 0- 51252 
1. 05 3. 43278 2.76842 1-20460 1.51761 0. 4:515 

1. 06 3. 48552 2.79807 1-18806 1.50508 0- 47799 

1. 07 3-54057 2.82908 1-17130 1.49258 0-4cl04 
1-08 3-59808 2.86156 1-15433 1.47980 0. 44430 

1. 09 3. 65820 2.89560 1- 13714 1.46673 0. 42779 

1. 10 3. 721 10 2.93129 1-11973 1.4533 7 0. 41150 
1. 11 3. 78696 2.96876 1. 10210 1-43971 0. 39545 

1. 12 3. 85599 3.00812 1.08424 1-42573 0-37964 

1. 13 3-92840 3.04950 1.06616 1-41143 0, 36408 
1. 14 4. 00442 3.09307 1,04785 1.39680 0. 34877 

1. 15 4. 08433 3.13897 1.02931 1.38183 0- 33372 
1. 16 4. 16840 3.18738 1.01054 1.36650 0. 3 1894 
1. 17 4. 25694 3-23851 0.99153 1-35080 0- 30444 

1- 18 4. 35032 3.29256 0.97229 1.33473 0- 2^021 

1. 19 4-44890 3.34977 0,95280 1.31827 0. 27626 
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(3) (5) ( 5) (1,2) ,(3,2) 

X X X T T G 

c s c se se se 

1.39341 0. 63775 1. 15440 1 .69980 1. 26224 0. 30459 

1.37900 0. 61829 1. 13786 1 .69095 f f • 24467 0. 30 29 2 

1.36444 0. 5991 1 1. 12131 1 .68192 1. 22694 0. 30116 

1 .34975 0. 58023 1. 10475 1 .67271 1. 20905 0. 29930 

1.33493 0. 56164 1. 08819 1 .66330 1 . 19102 0. 29734 

1.31997 0. 54336 1. 07163 1 .65370 1. 17284 0. 29529 

1.30487 0. 52538 1. 05507 1 .64390 1 . 15451 0. 29314 

1.28965 0. 50772 1. 03852 1 .63 390 1. 13605 0. 29090 

1.27430 0. 49038 1. 02197 1 .62370 1 . 11745 0. 28857 

1.25882 0. 47336 1. 00545 1 .61328 1. 09872 0. 28614 

1.24322 0. 45667 0. 98894 1 .60266 1. 07986 0. 28362 

1.22749 0. 44031 0. 97245 1 .59181 1. 06089 0. 28100 

1.21164 0. 42428 0. 95599 1 .58074 1. 04179 0. 27829 

1.19567 0. 40859 0. 93956 1 .56544 1. 02258 0. 27549 

1.17958 0. 39323 0, 92316 1 .55792 1. 00326 0. 27259 

1.16337 0. 37822 0. 90679 1 .54615 0. 98383 0. 26961 

1.14704 0. 36354 0. 89046 1 .53415 0. 96431 0. 26653 

1.13060 0. 34920 0. 87417 1 .52189 0. 94470 0. 26337 

1.11405 0. 33521 0. 85792 1 .50939 0. 92500 0. 26011 

1.09738 0. 32156 0. 84171 1 .49663 0. 90521 0. 25677 

1.08060 0. 30825 0. 82556 1 .48360 0. 88535 0. 25333 

1.06372 0. 29528 0. 80945 1 .47031 0. 86543 0. 24981 

1.04673 0. 28264 0. 79339 1 .45674 0. 84544 0. 24621 

1.02964 0. 27035 0. 77739 1 .44289 0. 82539 0. 24252 

1.01244 0. 25840 0. 76144 1 .42675 0. 80529 0. 23874 

0.99514 0. 24678 0. 74555 1 .41433 0. 78515 0. 23488 

0.97774 0. 23549 0. 72972 1 .39960 0. 76498 0. 23094 

0.96025 0. 22453 0. 71395 1 .38456 0. 74478 0. 22692 

0.94266 0. 21390 0. 69824 1 .36921 0. 72456 0. 22282 
0.92497 0. 20360 0. 68260 1 .35354 0. 70433 0. 21864 

0.90719 0. 19361 0. 66701 1 .33755 0. 68410 0. 21439 
0.88932 0. 18394 0. 65150 1 .32121 0. 66387 0. 21006 

0.87136 0. 17459 0. 63604 1 .30453 0. 64366 0. 20565 

0.85332 0. 16554 0. 62066 1 .28750 0. 62348 0. 20118 

0.83519 0. 15680 0. 60534 1 .27012 0. 60333 0. 19663 

0.81697 0. 14837 0. 59009 1 .25236 0. 58323 0. 19202 

0.79868 0. 14022 0. 57491 1 .23422 0. 56319 0. 18734 

0.78030 0. 13237 0. 55979 1 .21570 0. 54321 0. 18 260 

0.76185 0. 12481 c. 54475 1 .19678 0. 52331 0. 17780 
0.74332 0. 1175 3 0. 52977 1 .17745 0. 50350 0. 17294 



Table 11,2. (continued) 

(-1) (-1) (1) (1) (3) 

n X 
S 

X 
c 

X 
s 

X 
c 

X 
s 

1.20 4. 55312 3. 41040 0. 93307 1. 30140 0. 26261 

1. 21 4. 66344 3. 47476 0. 91340 1. 28411 0. 24925 

1.22 4. 78040 3. 54317 0. 39287 1-26639 0, 23618 

1. 23 4. 90457 3. 61599 0. 87240 1. 24822 0. 22343 
1.24 5. 03663 3. 69364 0. 85167 1-22958 0. 21099 

1. 25 5. 17730 3. 77658 G .  83068 1. 21045 O u  19886 
1.26 5. 32744 3. 86534 0. 80944 1. 19082 18705 

1.27 5. 48798 3. 96051 0. 78793 1. 17066 0- 17556 

1.28 5. 66001 4. 06276 0. 76616 1. 14995 0. 16441 

1.29 5. 84475 4. 17287 0. 74412 1. 12867 0. 15349 

1.30 6. 04363 4. 2:) 173 0. 72180 1. 10680 0. 14311 

1.31 6. 25828 4. 42037 0. 69921 1. 08430 0. 13297 

1.32 6. 49059 4. 55998 0. 67634 1. 06114 0. 12318 

1.33 6. 74277 4. 71194 0. 65319 1. 03730 0. 11374 

1.34 7. 01741 4 .  87790 0. 62976 1. 01274 0. 10466 

1.35 7. 31756 5. 05978 0. 60603 0. 98742 0. 09593 
1.36 7. 64689 5. 25988 0. 58201 0-96130 0. 08756 

1.37 8. 00974 5. 48097 0-55770 0. 93434 0. 07956 

1.38 8. 41440 5. 72637 0. 53308 0. 90649 0-07193 

1.39 8. 85834 6. 00018 0. 50816 0. 87770 0-06467 

1.40 9. 35850 6. 30744 0. 48293 0. 84789 0. 05778 

1.41 9. 92185 6. 65444 0. 45739 0. 81702 0. 05127 
1.42 10. 5610 7. 04916 0. 43154 0. 78500 0. 04514 

1. 43 11. 2920 7. 50185 0. 40536 0. 75174 0-03939 

1.44 12. 1361 8. 02589 0. 37886 0- 71715 0. 03402 

1.45 13. 1212 8. 639 13 0. 35202 0. 68112 0-02904 
1.46 14-2858 9. 36582 0. 32486 0-64352 0. 02445 

1.47 15. 6831 10. 2399 0. 29735 0. 60420 0. 02025 
1.48 17. 3902 11. 3103 , 0. 26950 0-56296 0. 01644 
1.49 19-5219 12. 6501 0. 24130 0. 51959 0. 01303 

1.50 22. 2585 14. 3737 0 .  21274 0. 47381 0. 01001 
1.51 25. 8983 16. 6711 0. 18383 0, 42526 0 .  00738 
1.52 30. 9750 19. 8817 0. 15455 0. 37346 0. 00516 
1.53 38. 5450 24. 6777 0. 12491 0. 31775 0 .  00333 
1-54 51. 0376 32. 6051 0-09488 0. 25713 0-00190 

1.55 75. 5539 48. 1839 0. 06448 0. 18994 0 -00086 
1.56 145. 505 92. 6823 0. 03369 0. 11275 0. 00023 

3 (10-G) 1. 57 1972. 55 1255. 77 0-00250 0. 01247 1. 
00023 
3 (10-G) 

• % 00 00 0 -00000 0. OOOOO 0. OOOOO 
2 



312 

(3) (5) (5) (1,2) (3,2) 

X X X T T G 
c s c se se se 

0. 72472 0. 11052 0. 51486 1. 15771 0. 48380 0. 16802 
0. 70604 0. 10379 c. 50002 1. 13754 0. 46421 0. 16306 
0. 68729 0. 09732 0. 48525 1. 11693 0. 44475 0. 15804 
0. 66848 0. 09112 0. 47054 1. 09588 0. 42544 0. 15297 
0. 64959 0. 08517 0. 45590 1. 07436 0. 40628 0. 14787 
0. 63064 0. 07947 0. 44133 1. 05238 0. 38730 0. 14272 
0. 61163 0. 07401 0. 42682 1. 02991 0. 36850 0. 13754 
0. 59256 0. 06880 c. 41238 1. 00694 0. 34991 0. 13233 
0. 57343 0. 06381 0. 39800 0. 98347 0. 33154 0. 12709 
0. 55424 0. 05906 0. 38368 0, 95947 0. 31341 0. 12182 
0, 53500 0. 05453 0. 36943 0. 93493 0. 29553 0. 11654 
0. 51570 0. 05022 0. 35523 0. 90985 0. 27793 0. 11125 
0. 49635 0. 04612 0. 34109 0. 88420 0. 26063 0. 10595 
0. 47695 0. 04223 0. 32701 0. 85797 0. 24364 0. 10065 
0. 45751 0. 03854 0. 31298 0. 83114 0. 22698 0. 09535 
0. 43801 0. 03504 0. 29901 0. 80370 0. 21069 0. 09007 
0. 41848 0. 03174 0. 28509 0. 77563 0. 19477 0. 08480 

0. 39890 0. 02863 0. 27122 0. 74692 0. 17926 0. 07956 
0. 37928 0. 02570 0. 25740 0. 71754 0. 16417 0. 07435 
0. 35963 0. 02295 0. 24363 0. 68747 0. 14954 0. 06919 
0. 33993 0. 02037 0. 22990 0. 65671 0. 13539 0. 06408 
0. 32021 0. 01797 0. 21621 0. 62522 0. 12175 0. 059 03 
0. 30045 0. 01572 0. 20256 0. 59299 0. 10864 0. 05405 
0. 28066 0. 01365 0. 18895 0. 55999 0. 09610 0. 04915 
0. 26085 0. 01173 0. 17538 0. 52620 0. 08416 0. 04435 
0. 24101 0. 00996 0. 16184 0. 49161 0. 07285 0. 03965 
0. 22114 0. 00835 0. 14833 0. 45618 0. 06220 0. 03508 
0. 20125 0. 00689 0. 13485 0. 41990 0. 05225 0. 03065 
0. 18134 0. 00557 0. 12139 0. 38273 0. 04303 0. 026 38 
0. 16142 0. 00440 0. 10796 0. 34465 0. 03459 0. 02228 
0, 14147 0. 00337 0. 09455 0. 30563 0. 02696 0. 01838 
0. 12152 0. 00248 0. 08116 0. 26565 0. 02019 0. 01471 
0. 10155 0. 00173 0. 06779 0. 22468 0. 01431 0. 01129 
0. 08157 0. 00111 0. 05443 0. 18267 0. 00937 0. 00816 
0. 06158 0. 00063 0. 04107 0. 13961 0. 00542 0. 00537 
0. 04159 0. ,00029 0. 02773 0. 09546 0. 00251 a. 00299 
0. 02159 0.00008^ 0. 01440 0. 05018 0. 00069 0. 00112 
0. 00159 4. .2(10-') 0. 00106 0. 00375 3. 8(10-6) 0. 00002 

0. 00000 0. OC 000 0. 00000 0. 00000 0. 00000 0. ffooea 
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12. APPENDIX E: SCALAR COLLISION INTEGRALS 

Table 12.1. Central Potential Scalar Collision Integrals 

^^*^ÎItegril^^°" Explicit Form 

2 {y;yy }  

{YY^;Y} 

{yxfl/'fly 'fl} 

{ y ; y }  '  D *  

'2)* 

{Yy^;YY^} (1 ,3)* 

{YZlO^} . 

{ (y'g)0;y} \ y j 3 

{Y-S,Y-n) (2iST\V%„2jj(l,r)* 
v y / 3  

a y is the atom-diatom reduced mass. 
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Table 12.1. (continued) 

«Plicit Por. 

{yxflfl;YQ} 

'ïS;ï2> 

{ï5=ni} f2kTl\ % 2„(1,1)* /2kr 
l y / 

411 a n 

{%gg:gg%} 'T )* 

{Sî;fi} 
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Table 12.1. (continued) 

Scalar Collision 
Integral 

Explicit Form 

{Y;nn;Y02} /2kT\^8^%^2^(l,1)* 

{Yxfl;Y} 

{yG^zyxO} 
— — y 

{Yx£;Yfi > 

{YY^;Yxfi} 
~ ~ T {Y><^;yy } 

{YY:Op} 

{00:YY} 

n,Y^) 



Table 12,2. Selected "u,v" Tensors 

••u,v" Tensor 

( 0 , 0 )  

( 1 , 0 )  

( 1 , 1 )  

( 1 , 2 )  

( 2 , 1 )  

(3.0) 

( 2 , 2 )  

(3.1) 

(1,3) 

Explicit Form 

"2 ih<U + KKK) ^ 

-J (%KU + ÎsIK; - iciCK) 

^hq 
(Ky + W+UK) 

hiq- ' i)  
2 (icUic + + licic] - 'ticKicK) 

î$(q-l) 
•J (icUic + \^i< + UKK + icicicic) 

"2 (cuk + i%) 4- kku + kkkk) 

CTi 



Table 12.2. (continued) 

«u,v" Tensor Explicit Form 

(3.2) + tcw + <\g) + \Kjy +i|y ++ y^y + ipi) +\® + 2k\jKK -

2KKUi< + 2yKKK - 2k\k}k -  2kk-\^ + 2]§kk -  2<\^ -  2\^i^ -  2\g^ +  

UiCKici^K] 

!sq 
(2.3) -J [kUU 4- icW + icM + l|]y + \sy + - 2<Ki<y + 2i<yicic - 2icKyi< + 

2K\Kji< - 2kkIk} + 2(^KK + 2k\^ + 2l^K + 21k|kJ - 12KKKKK] 

3(q-D 
(3,3) ^ [icyyK + wm + yeyc + i<yigj + + yfc^p + eycy + igRy + 

Uicicy + k W k + I^Uk + ic + + 

+ K©i< + \^K + + UKpJ+ + VKUKJ + + 

+ icyKKK + ^gJiciCK + yiciciCK + Kicicyic + KKK\g) + 

icicKKy - ^icWicic - 4K^8^K - -

^-iKKjC; _ 4gKyKK - + 27KKKKKK] 

Uj 

-J 
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Table 12.3. Rigid Sphere-aigid Ovaloid Scalar Collision 
Integrals 

Scalar Collision ,. . 
Integral Explicit Form 

.k  

(YY^lY'} (?f)y(55x<" - 34'^' + 27x'^') 

{^y - 54% 

{Y;g(y.O)} /2kT\%n%(_(1) _ 7(1,2)) 

{(Y-n)n;Y> I  

{rg.i'g} 

{y^Yg} 

MiSl) (2S)\^(3x<-" - 5x<" + 4x<'b 
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Table 12.3. (continued) 

explicit for. 

/2kT\\ ^ g^fl) _ 44% + 27x^^^) 

{ ^ j y g g }  •  \  V  J  ^  

{yggjygg} + lOx^') - 4x(3) -

{yy%; (^)y(x(^)+5x(3)_5T(^'2)_,(3.2)^ 

{g;0} 

{O^n^} _ x("h 

{nn-M} + X^^) - 2x^^^) 

S:S 

{rv;^} 

{m;yy) 

(Y^Y^) (^jVMx"> - x'^') 

tam> (^)V'^(2X<'> - x'^'i 
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Table 12.3, (continued) 

'"'Êutefraf'"" Bxplicit For. 

u l  

{x-£S;«Ï-5) 

2 
im.'Y' l''%9v<" - 5ï<3' - 5T(''2) + 

{ynZ.yxn} 

{y • ;y xfl} 

{yxfi;nfi.y} 

G  

0 

{yfl-fiyxfi} 

{yxfifizoïy} 

{y f l  •  y  x f l f l }  —/2kT\^  
—, + ÏÏG 
{yxggzyg} \ V / 

{yx£;yY^} 
0 



Table 12.4. Kihara Model Scalar Collision Integrals 

2 {Y;YY }  

{XîV} 

J F I jiff [5«'2'2)*x(') + (6,(1.2)*. 5„(2,2)*,^(3)J 

{Xy2,x>'> (2^ + 55«<2'3>* + + 

( 1 7 , -  3 4 « < 2 ' 3 ) *  -

{^02,^} 0^^ ^ 6 0  (1'2)* _ 5 o(2,2)*)^(1) ̂  (-Go/l'Z)* + 

^ Note that in the spherical limit, = 2o^ and where a 
is a reference hard sphere radius and also in the rigid limit, o(l'S)* = 1, 



Table 12.4. (continued) 

Scalar Collision „ 
Integral Explicit Form 

2 2 

X 
( 1 )  + (12o(1'2)* _ 100(2,2)* _ 123^(1'3)* _ 6o(2'3)* + 

,7,a(3,3)*)x(3) + (8^a(''3)* + 210^^'^'* _ ITZG/^'^)*)*^^)] 

x'-" + (8!i"'"* + 2W"'2>* - + 3f!'2,3)* ̂  

'  )x'" + (-aliSî"'^'* + 36s'^'^'* + 99S!"'^'* + 

30n'^'^'* - 195!2'^'^'*)x'^' + ' ' - 210*2,3)* ̂  



Table 12.%. (continued) 

Scalar Collision „ 
Integral Explicit Forn 

{%;g(l'g)} /2kT\^ % (1,1)*. (1) _ -(1,2) 

tX-a-ra) . a(2.2)*,x(') . a(l,l)*T(',2)J 

tïBaÈ) + (!!<''"* - a(2'2)*)x''l - a'''2^1 

{ïS|2ï} - 7n'2'2>*)x''> + 

{xgnionx) - isn'^'^'*) 

x'"" + (sn"'"* + '  + 

3n(2.3)* + 2^'^'^'*,/I) + (_,2o('.2)* + 3W'2.2)* + 

99Ji<''3)* + 30«(2'3'* - 195Ï!<^'3>*)X"' + -



Table 12.4. (continued) 

Scalar Ccllisicn ,. . 
Integral Explicit Form 

tlOO-lOO} [(20^^'^^* + 60 '3)* - 4 0  (2,3)* _ 6fi ̂  ̂  x ^ ^ + 

(40 - 20 (2,2)* _ 1 20^1'3)* + 8o(2'3)* + 1 20 x ̂ ̂  ̂  + 

(60(1'3)* _ 4^(2,3)* _ 6n(3'3)*)x(3) + (-4o(''')* + 40(2'=)*) 

7(1,2) _ 4Q(2,2)*y(3,2)] 

{x-^;iy') /2M\Mr,5jj(2,2)* ̂  ( 1 ,3) * . (2,3) * . ^^13.3)* U) + 

{lY^yOl-O} \ y ; 2 J-

(60 '2)* - 5o(2'2)* _ 6^(1'3)* + 4^(2,3)* + 60 / 3 ) ^  ( 3 )  +  

-50(2'2)*T(1'2) + (-60 '2)* + 5o(2'2)*)T(3,2yj 



Table 12.4. (continued) 

Scalar Collision _ „ 
Integral Explicit Form 

{00:00} 

.2  ^2  

{£,«) f2f)^ 2A" ' " * ( X < - "  -  x'") 

-.A'2'2'*(x"> - x<3l) 

( 2 ^ ) ^ 2 T I ^ [ ( 3 ! ! " +  ( - 3 ! ! " ' " *  +  

40(2'2I*)X<'' + -2a(2'2)*xl3l] 

+ x"'. 

{^IjOO} 

{ 0 0 ; Y Y }  

(,2,,2) (2^)\A'2-2>*(2X'" - x"') 

w 
X) 
in 



Table 12,4. (continued) 

Scalar Collisicn 
Integral Explicit Fora 

w 

{ïï-ïï' 

fï-S2 = Sï-S} (^f f 6Î!'2'2'* + . 6n(3,3)*)^(-l) + 

(iiSi"'"* - lon'^'^** - i2Sî"'^'* + + 

(W<2'2>* + -  m(2,3)* . 5 j j(3,3)*,^(3) + + % 

«(2,2)*,^(1,2) ̂  . „(2,2)*^(3,2)J 

(2ff + 6."'3'* - 4=(2.3)* - + 

(«"'"* + «p(''2)* - 9!2'2.2)* . ,2a I''31* + 8!i<2'3)* + 

I2n"'3)*)x'" + (-60 (''2)* + So(2'2)* + - w(2'3)* _ 

6jj(3,3)»J^(3) ^ (-l,!i'^''>* - 6n"'^'* + 5n*2'2)*)Tt1'2) + 
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Table 12.5. Effective Cross Sections in Terms of Scalar 
Collision Integrals (Field-Free Transport 
Coefficients) 

^xpucit 

G (  

G (  

G (  

6( 

G (  

1 0 0 0  
1 0 1 0  

1010  
1000  

1000  
1001  

1001  
1000  

1 0 1 0  
1 0 1 0  

a3 

6'ag 

a3 

a3 

ae 

r(lOlO,B. 
^MOOI 'g' 

rflOOl |3x 
G(ioiolg) 

a3 

a3 

,5^" [{YY^/'YY^} - |{I;YY^} - §{YY^;Y} 
a3 

+ ^^ zf ) {y;y} + + 2{yy;Yy}) j 

i I? f°L r{YY^;YO^} {xy^;y} _ 

3^5 3SaBL{Yn2;YY2} (Y;??:) 

g{Y;YO^} 5Cg {Y^.nf} ,n i 1 
,y^} i 

a 

Ç = LEn_ 
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Table 12.5. (continued) 

Effective Cross 
Section 

.,1001,B, 
^MOOI ' B'ag 

G (  

G (  

G (  

G (  

G (  

G (  

1 0 1 0  
1 0 0 0  
1 0 0 0  
1 0 1 0  

1 0 1 0  
1 0  0  
1 0 1 0  
1 0 1 0  

1 0 1 0  
1 0 0 1  
1 0 0 1  
1 0 1 0  

a. 

ot, 

a 

a. 

a 

a3 

a3 

a3 

a3 

a3 

a3 

Explicit Form 

2Ç 
- {yîî^;I} + W;i> 

«3 ̂  
2 

3Ç 

'a 
.3.3 

-KV 
15V [{YY^/'YY^} - - §tYY^;Y} 

+ 4p{Y;i} jCY^fY^} - 2{YX;rY>j 

-2 g Mâ _ 5^1'X" 
3-15 V o [{YÎÎ ;YY } 2{Yfi ;Y 

a3 

5 {Y^/fi^} 

{Y;Yfi } {%Y ;Y} 
Y} {Y;yy^} 

] 

p/IOIO.av ^^3 [{YY^TYY^} - |{Y;1Y^} - f^YY^/'Y} + 
T5^ L 

isr c  
+ ip)ti;Y} + + 2{%Y:YY})j 

2s; Gg 
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Table 12.6. Effective Cross Sections in Terms of Scalar 
Collision Integrals (Senftleben-Beenakker 
Effects—Critical Field) 

Effective Cross ,. . 
Section Explicit Form 

g . 1 1 0 0 . 3 )  
Mloo'e^aa 

+ 4{yn:0Y} - {Y'0,y"n} -
aB*- ~ 

11 
.2  
'a 

aB 

3Ç a 
2v 

aB 

- ${YOO:YOO} + 

+ ̂ {yY^;gg'Y} + -

i{Yn^;YÎÎ^}] 

0 2 0 0 . 3 )  
G^0200 'b' 

a B  
[{00:00} - 1{0^,0^}1 
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Table 12.7. Effective Cross Sections in Terms of 
Scalar Collision Integrals (Senftleten-
Beenakker Effects-Saturation Values) 

Effective cross explicit Foc» 
Section 

g.1000,3) 
M200 '3 

r f1200,6, 
^  M O O O  > 3  

a6 

a3 

r(1010|3x 
"^200 '3' 
(1200,3) 
^ M 01 0 ' 3 ' 

a3 

a3 

5v 
a3 

5  {Y;gy 0} _ > 

{Y*îîfi;Y} ; y} 

•*• 3{yo2. y y 2 }  +  - 2  {n^,y^}J 

'3 

{ y y  ; f i y • }  

{ynO;yy^} 

.,1001 ,3\ 
G<1200 Ig) 

G( 1200,3 
1010'3 I:) 

a3 

a3 
5V^3 Ul'gR;!} 

+ j{Yfi^;yn^} 

{yn^;nyfi} ,{y;yfi^} 

{X*^;yîî } " 3{Yfi'^;Y} 


