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ABSTRACT 

 

Most materials are elastically anisotropic and exhibit additional anisotropy beyond 

elastic deformation. For instance, in ferroelectric materials the main inelastic deformation 

mode is via domains, which are highly anisotropic crystallographic features. To quantify this 

anisotropy of ferroelectrics, advanced X-ray and neutron diffraction methods were employed. 

Extensive sets of data were collected from tetragonal BaTiO3, PZT and other ferroelectric 

ceramics. Data analysis was challenging due to the complex constitutive behavior of these 

materials. To quantify the elastic strain and texture evolution in ferroelectrics under loading, 

a number of data analysis techniques such as the single peak and Rietveld methods were used 

and their advantages and disadvantages compared. It was observed that the single peak 

analysis fails at low peak intensities especially after domain switching while the Rietveld 

method does not account for lattice strain anisotropy although it overcomes the low intensity 

problem via whole pattern analysis. To better account for strain anisotropy the constant stress 

(Reuss) approximation was employed within the Rietveld method and new formulations to 

estimate lattice strain were proposed. Along the way, new approaches for handling highly 

anisotropic lattice strain data were also developed and applied.  

All of the ceramics studied exhibited significant changes in their crystallographic 

texture after loading indicating non-180° domain switching. For a full interpretation of 

domain switching the spherical harmonics method was employed in Rietveld. A procedure 

for simultaneous refinement of multiple data sets was established for a complete texture 

analysis. To further interpret diffraction data, a solid mechanics model based on the self-

consistent approach was used in calculating lattice strain and texture evolution during the 

loading of a polycrystalline ferroelectric. The model estimates both the macroscopic average 

response of a specimen and its hkl-dependent lattice strains for different reflections. It also 

tracks the number of grains (or domains) contributing to each reflection and allows for 

domain switching. The agreement between the model and experimental data was found to be 

satisfactory. 
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CHAPTER 1: GENERAL INTRODUCTION 

 

1.1 Introduction  

Ferroelectric materials are crystals with reversible, spontaneous, electric polarization. 

They can couple electrical and mechanical response making them viable in many 

technological applications. While many measurements have been conducted on the 

macroscopic (bulk) behavior of ferroelectrics, there is significant paucity of multiaxial 

internal strain and texture data. Yet, this information is critical to the development of 

accurate constitutive models, and it can only be provided by diffraction techniques which 

directly measure internal lattice strain and texture. 

Barium titanate (BaTiO3) and lead zirconate titanate (PZT) are the most widely used 

materials among ferroelectrics. In this study, these two materials were chosen in addition to a 

new lead-zinc-niobate and PZT alloy with optimized composition and properties. It is also 

worth noting that BaTiO3 has long been the favored model material in fundamental 

ferroelectric investigations [1].  

 

1.2 Dissertation Organization 

 This dissertation essentially consists of related studies concerned with the 

quantification of the micromechanical state and texture of bulk polycrystalline ferroelectric 

materials and the development of analysis techniques for these complex materials  

Chapter 1 gives a general introduction about ferroelectrics, their application, 

definition, previous studies, and equations governing ferroelectrics. It ends with the 

motivation for this study.   

In Chapter 2, the experimental methods are elaborated together with the challenges 

faced during analysis. The single peak fitting and the Rietveld methods of crystallographic 

data analysis as well as their advantages and disadvantages are discussed. Futhermore, an 

improved version of the Rietveld method (more suitable for anisotropic materials) is 

discussed. This method is currently implemented in the widely used Rietveld package GSAS 

(General Structure Analysis System) for a limited number of crystal structures. Guidelines on 

how to implement it for other structures are also provided in this chapter. Finally, some 
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general information on texture principles and related data interpretation are discussed in this 

Chapter 2. 

 Chapter 3 discusses a self-consistent model (SCM) for ferroelectrics that includes 

domain switching and has the ability to estimate lattice strains as a function of applied load. 

(Modeling results and their comparison to experimental data are presented later in Chapter 

5.)  

In Chapter 4, experimental results are detailed using the various crystallographic 

analysis methods mentioned above. Chapter 5 follows with the interpretation of data from 

polycrystalline BaTiO3 (obtained via synchrotron X-ray diffraction) with the help of 

theSCM. Chapter 6 does the same for Pb(Zr, Ti)O3 or PZT which was subjected to uniaxial 

compression and hydrostatic pressure.  

Finally, Chapter 7 summarizes the conclusions drawn from this work, and offers 

recommendations for future directions. The thesis ends with the Appendix where the details 

of the calculations used in the study are detailed.  

 

1.3 Background and Literature Review 

1.3.1 Ferroelectric Materials and Their Constitutive Behavior  

Piezoceramics are prominent candidates for actuators, capacitors, transducers and 

sensors due to their excellent dielectric, electrostrictive, and optical properties with short 

response times. Their ease of fabrication into complex materials also plays a crucial role in 

their application because, in general, these devices possess complex shapes [1-3]. 

Piezoelectricity is a coupling phenomenon where, e.g., a specimen exposed to an electric 

field exhibits strain proportional to the field. The constant of proportionality is called the 

piezoelectric constant [4]. This electrically induced strain may be an elongation or shortening 

depending on the direction of the electrical field. Ferroelectric materials are piezoelectric 

with only one unique polar axis. The main characteristic of ferroelectric materials is their 

spontaneous polarization developed below the Curie temperature where paraelectric-

ferroelectric transition occurs [2, 5-7]. Furthermore, an electric field with a magnitude above 

the coercive field will switch this spontaneous polarization of the unit cell along the direction 

of the field. 
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The unit cell of a material possessing a spontaneous polarization displays a permanent 

dipole due to the separation of the centers of positive and negative charges in the absence of 

any external loading. Such a material is called polar, and if the unit cell is exposed to a 

constant voltage, the positive and negative ions will be shifted further with respect to each 

other leading to a load-induced dipole. Mathematically, any relative displacement of the 

centers of positive and negative charges in a unit cell is described by the polarization vector 

whose magnitude is proportional to the charge separation [4]. An electric field acting along 

the direction of the spontaneous polarization will move the centers of the charges further 

apart from each other, while an opposite electric field will bring them together. The 

electromechanical coupling effect is caused by the fact that the shifting of the centers of the 

charges is accompanied by a corresponding elongation or shortening of the unit cell. So, an 

applied electric field will induce a proportional strain in the crystal which is called the 

inverse piezoelectric effect. On the other hand, a mechanical stress, too, will lead to a 

deformation of the unit cell, and thus, a relative displacement of the positive and negative 

centers of charges, i.e., a polarization change. This is called the direct piezoelectric effect. As 

a result of this effect, even small mechanical loads may lead to high electric voltage 

generation in the material, hence its suitability in sensor applications. In contrast, the inverse 

piezoelectric effect can be exploited in actuator applications by inducing controlled 

displacements via electric field application. 

The crystal structure of ferroelectrics is the basic determinant of the physical origin of 

their properties. Most useful ferroelectric materials such as barium titanate, BaTiO3, lead 

zirconate titanate, Pb(Zr1-xTix)O3 – referred to as PZT hereafter – have the perovskite 

structure. This structure is essentially a simple cubic unit cell with large cations at the 

corners, a relatively small cation in the body center and oxygen ions on the cube faces. 

Figure 1-1 illustrates the perovskite structure for the first ferroelectric developed in history: 

BaTiO3 [5, 8, 9]. 
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(a)             (b) 

 

 

 

1.3.2 Ferroelectric Domains and Domain Switching 

Although other crystal structures such as orthorhombic, rhombohedral and 

monoclinic [5, 9, 11] can also exhibit ferroelectric properties, only the tetragonal  structure is 

shown in Figure 1-2 for simplicity to explain piezoelectricity. In the cubic state, which is 

called the paraelectric phase, the centers of positive and negative charges coincide and the 

material exhibits no spontaneous polarization; thus no piezoelectricity may be observed. 

Below the Curie temperature (TC: 110-130C for BaTiO3 and 250-350C for PZT), the cubic 

configuration becomes unstable and the ion in the middle of the unit cell is displaced parallel 

to one of the edges. The unit cell is thus deformed to a tetragonal shape. In this ferroelectric 

phase, the unit cell possesses piezoelectric properties as a result of its spontaneous 

polarization. In BaTiO3, the previously centered Ti ion displaces towards one face of 

tetragonal cell which has a ratio of lattice parameters of c/a ~ 1.01. The direction of 

spontaneous polarization for this material is along this ion displacement and parallel to the c-

axis. Since the six <001> directions (including positive and negative orientations) along the 

three a-axes of the original cubic cell are equivalent, the spontaneous polarization may arise 

with equal probability along any of them when the crystal is cooled through its TC [4, 12, 13]. 

The piezoelectric, dielectric and elastic response of this material is illustrated on the first line 

of Figure 1-2. If a small load (stress or electric field) is applied along the polarization 

Figure 1-1 (a) A cubic ABO3 (BaTiO3) perovskite-type unit cell, and (b) the three-

dimensional network of corner sharing octahedra of O2
-
 ions in this structure [10]. 

Ba 

O 

Ti 
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direction, ferroelectric materials show reversible change due to relative displacement of 

charged ions resulting in crystal structure deformation which are linear piezoelectric effects 

[14, 15]. 

 

 

    

 

Figure 1-2 The perovskite structure common to many ferroelectric ceramics. For BaTiO3 the white ions are 

Ba
2+

, the black ions on the faces are O
2-

 and the central ion is Ti
4+

. The top set of figures illustrates the phase 

change below the Curie temperature, the spontaneous polarization, and the linear response of the crystal. The 

bottom set illustrates the spontaneous shape change of the crystal, and 180 and 90 switching due to applied 

electric field or stress [9]. 

 

Usually, the polycrystalline (―ceramic‖) ferroelectrics are sintered at temperatures 

above the Curie temperature. During cooling, the paraelectric-to-ferroelectric phase transition 

occurs where the tetragonal phase grows out of the original cubic. Here, the central ion is 

displaced along the axes of the original cube yielding six symmetry-related tetragonal 
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variants with six equivalent possibilities for the spontaneous polarization as shown in Figure 

1-3. 

 

 

Figure 1-3 At the paraelectric-to-ferroelectric phase transition, there are six equivalent directions for the central 

titanium ion to be displaced, resulting in six possible spontaneous polarization vectors that define the six 

tetragonal domain variants [4]. 

 

Ceramic processing techniques such as sintering usually lead to a polycrystalline 

structure with randomly oriented grains. Even though the direction of the lattice axes can be 

fixed within a grain, this does not imply that the orientation of the spontaneous polarization is 

determined uniquely. As Figure 1-3 demonstrates, there are six possible orientations for the 

polarization vector with respect to the original cubic lattice coordinate system. The cooling 

process below the Curie temperature, therefore, produces tetragonal grains that consist of 

small subregions (called ferroelectric domains), each with only one type of polarization 

vector. What is generally meant by a domain in a solid body is a physically bounded spatial 

region in which a vector quantity characterizing the state at a point in the solid body has the 

same direction everywhere. For a ferroelectric domain this characteristic quantity consists of 

the same alignment and absolute value of the spontaneous polarization. By developing 

ferroelectric domains, the crystal minimizes the electrostatic energy of depolarizing fields 

and the elastic energy associated with mechanical constraints to which the ferroelectric 

material is subjected as it is cooled through the paraelectric–ferroelectric phase transition 
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temperature. Domain size is established depending upon the minimum in energy to maintain 

the grain shape through transition [4, 9, 12].  

The existence of grains with multiple domains further complicates the 

electromechanical constitutive response of a ferroelectric. The region between two adjacent 

domains is known as a domain wall (a twin boundary) across which the spontaneous 

polarization is discontinuous.  

Two types of the domain walls are recognized: the walls which separate domains with 

oppositely oriented polarization are called 180 walls (anti-parallel), and those which 

separate regions with mutually perpendicular polarization are called 90 (more commonly 

non-180) domain walls [4, 8, 16]. Figure 1-4 shows a typical ferroelectric microstructure in 

BaTiO3 [17] and micrograph of tetragonal BaTiO3[5]. BaTiO3 is considered to have domain 

walls on the order of one unit cell thickness [16]. At room temperature, the 90 wall has the 

angle of 89.43 corresponding to the c/a ratio (1.01). Due to the 0.6 difference in orientation 

between crystal axes across a 90 twin plane, mechanical stress can move a 90 domain wall 

with a slip of one domain with respect to its neighbor [18, 19].  

The types of domain walls that can occur in a ferroelectric crystal depend on the 

symmetry of both the nonferroelectric and ferroelectric phases. For example, in the 

rhombohedral phase of PZT, the direction of the polarization develops along the body 

diagonals (<111> crystallographic directions) of the paraelectric cubic unit cell. This allows 

eight possible directions for the spontaneous polarization with 180, 71 and 109 domain 

walls in between [6, 12, 20]. 180 walls are purely ferroelectric, because they differ only in 

the orientation of the polarization vector. 90 walls are both ferroelectric and ferroelastic as 

they alter both orientation of the polarization vector and the spontaneous strain tensor. 
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Figure 1-4 (a) Schematic of ferroelectric domain structure in BaTiO3. (b) (101) twin planes where the exact 

angle between the 90 domains in BaTiO3 is 89.4º. (c) Polycrystal grains with a substructure of domains (the 

fine black and white stripes are 90 º domains). 

 

Ferroelectrics are often used as polycrystals made of grains each consisting of 

numerous domains. As a result of the domain structure, the average polarization of each grain 

is low [12, 21]. Combined with the usually random grain orientation which tends to cancel 

the grain polarizations, this leads to a polycrystal with nearly zero effective polarization. 

Such a polycrystalline ferroelectric can be brought into a polar state to make it useful in 

actuator and sensor applications by applying a strong electric field (Figure 1-5). This process 

is called poling and it tries to reorient domains along the direction of the field. The final 

poled ferroelectric exhibits piezoelectric properties, even though it contains many domain 

walls [21]. 

(c) 

(a) (b) 
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Figure 1-5 A ferroelectric ceramic consists of many grains which in turn consist of domains with random 

orientations. After poling, domain walls are still present, but the net remnant polarization is not zero anymore 

[21]. 

 

In an ideal material (i.e., one with no interactions between domains and grains), the 

effective remnant polarization of the polycrystal can be expected to approach the maximum 

value given by the spontaneous polarization, PS (the value of dipole moment per unit volume 

or the charge per unit area on the surface perpendicular to the axis of spontaneous 

polarization which is usually along a given crystal axis). However, in a real material, inter-

domain and inter-grain interactions and constraints prevent full realignment of all domains 

along the electric field and a lower effective polarization (called saturation polarization, Psat) 

is reached. This can be explained in more detail with another important characteristic of 

ferroelectrics: hysteresis loop, i.e., polarization, P as a function of applied electric field, E. If 

the applied electric field is small, domain structure is unchanged and the ions are shifted 

within the neighborhood of their equilibrium positions only and there will be a linear 

relationship between P and E. As the electric field increases, a number of domains with a 

polarization misaligned with the direction of the field will start switching along the field and 

average polarization will increase rapidly until the reservoir of ―switchable‖ domains is 

exhausted and saturation is attained. As the field strength decreases, the polarization will 

decrease but reach a certain point which is above zero when electric field is completely 

removed (remnant polarization, Pr) which can be removed only if a reverse electric field is 

applied. This value of electric field required to obtain zero polarization is called coercive 

field, Ec. By further increasing the reverse electric field, parallel orientation of the dipoles in 

this direction is achieved. Finally, reversing the field once again, a complete hysteresis loop 

is obtained [8, 22, 23]. Figure 1-6-a shows the polarization versus electric field hysteresis 

E 
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loop for BaTiO3 which has been used in this study. The measurement was conducted by a 

RT66A standard ferroelectric test system (from Radiant Technologies). Figure 1-6-b shows 

dielectric characterization which was performed with an LCR meter (HP-4284A) during 

cooling in conjunction with an environmental chamber for the same specimen. 
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Figure 1-6 (a) Hysteresis loop (dielectric displacement versus applied field) of BaTiO3 used in the present 

study. (The nominal coercive field is about 4.92 kV/cm). (b) The temperature dependence of dielectric constant 

of BaTiO3measured at 1kHz, 10 kHz and 100kHz. 

 

To explain non-linear behaviors observed in ferroelectrics such as hysteresis loops, it 

is necessary to expand state equations to higher orders. To solve these equations, it is 

assumed that initial state has no stress or polarization and that polarization arises along one 

of the crystallographic directions. The form of expansion of the free energy (neglecting 

higher order terms) can be given as a function of polarization (D) according to Landau 

theory:  

G (D, T) =  ½ 1 D
2
 +1/42 D

4
+1/63 D

6
+…    (1-1) 

Where, 1, 2 and 3  are coefficients and dependent on temperature at constant stress [23]. 

This series does not contain terms in odd powers since polarization reversal will not change 

free energy. Equation (1-1) may have multiple minima that represent energetically equivalent 

states of polarization and the equilibrium polarization gives minimum energy at electric field, 

E: 

(b) 
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    (1-2) 

The value of the maximum remnant polarization that may be achieved in a 

polycrystalline material depends on available domain states [24]. In a ferroelectric which 

exhibits only 180 domain walls the maximum remnant polarization, PR/max in the 

polycrystalline state is 0.25PS  (the spontaneous polarization). In a tetragonal ferroelectric 

with six available domain states, PR/max = 0.83PS while in a rhombohedral ferroelectric with 

eight possible domain states, PR/max = 0.87PS whereas for an orthorhombic ferroelectric with 

twelve possible domain states PR/max = 0.91PS. These are ideal values assuming all domains 

are reoriented along available directions dictated by the poling field. The actual polarization 

is in fact always lower, as many domains cannot be reoriented due to inter-domain and 

interganular constraints and because some domains will switch back after the poling field is 

removed [13].  

Since domain variants possess equal energy, it is possible to switch one domain to 

another. However, this switching is not homogeneous; instead it is a gradual process over a 

range of applied electric fields due to the variation in local electromechanical boundary 

conditions (inter-domain and intergranular constraints) [21]. This switching process occurs 

by domain wall movement through the crystal converting one domain variant to another [6, 

7]. Motion of domain walls can occur one atomic layer at a time and thus requires less energy 

than that of homogeneous switching [25]. This ferroelectric response of the material is 

illustrated on the second line of Figure 1-2. When applied electric field exceeds the coercive 

field, it moves the central ion to another of the six off-center tetragonal sites. Besides electric 

field, mechanical stress may also cause switching; this is the basis of ferroelastic behavior. In 

this case, a change in the direction of spontaneous polarization without a change in the 

dimension of the unit cell cannot release energy. Hence, 180 switching cannot take place 

and the central ion is moved to one of the side sites at 90 changing the polarization direction 

perpendicular to the stress [9, 15].  It was predicted that greater contribution to the total 

polarization is provided by 90° domains switching while only 33.3% is contributed by 180° 

domains switching and intrinsic piezoelectric effect.  It was also calculated that degree of 

non-switching in different crystal structures is equal to inverse of number of polarization 
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vectors allowed in the crystal symmetry (for example in tetragonal symmetry 6 polarization 

directions are possible) [26].   

The coupling of mechanical and electrical response and the presence of numerous 

domain variants in addition to grains results in a complex constitutive behavior for 

polycrystalline ferroelectrics. Efforts to model and predict this behavior have often been 

hindered by the lack of rigorous experimental data that quantifies internal stress/strain 

evolution and domain kinetics in ferroelectrics, especially in situ. Although many 

macroscopic studies have been conducted under electrical or mechanical loading, these 

experiments do not yield the desired data. On the other hand, diffraction techniques which 

directly measure internal lattice strains and material texture are uniquely suited to provide 

this information. 

 

1.3.3 Investigation of Ferroelectrics using Diffraction Techniques  

To predict device performance and durability, the formulation of models for 

ferroelectric materials requires knowledge of their crystallographic behavior under applied 

mechanical and electrical loading [3]. Specifically, it is desirable to obtain, as a function of 

applied electromechanical loads, quantitative data of the microscopic strain states and texture 

evolution which are functions both of single crystal elastic properties and domain switching. 

Many studies have been motivated to investigate stress-strain relationship in the macroscopic 

scale particularly in Pb-based perovskites due to their high cross-coupling between 

mechanical and electrical fields [1, 15]. Although most of these studies contribute to the 

understanding of material behavior, they only give an insight of the macroscopic 

homogeneous behavior. On the other hand, diffraction techniques are crystallographically 

sensitive methods to directly quantify internal crystal strains and texture effects of domain 

switching. This section presents a snapshot of some previous diffraction work on 

ferroelectrics. While it is not exhaustive, this literature review is intended to offer a sense of 

the state-of-the-art. 

Most recent diffraction work has concentrated on the PZT family of ferroelectrics. 

For instance, Noheda et al. demonstrated the presence of a monoclinic phase in the 

morphotropic region of the PZT phase diagram below room temperature [27, 28]. Electric-
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field-induced phase transitions have also been observed for the relaxor type ferroelectric 

92%Pb(Zn1/3Nb2/3)O3- 8% PbTiO3. High strain in a single crystal bulk sample was explained 

as a result of microscopic changes from rhombohedral to tetragonal structure indicating a 

correlation between in-situ crystallographic strain and macroscopically measured strain [29]. 

Tsurumi et al. collected in-situ X-ray diffraction (XRD) data to confirm 90 domain 

reorientation under electric field in some tetragonal PZT ceramics and compared the total 

electric-field-induced strain [18]. Saito discussed the process of domain wall motion and its 

effects on strain, dielectric and piezoelectric coefficients via XRD of tetragonal PZT 

ceramics [2]. Several other authors exploited XRD to measure the ferroelectric and 

piezoelectric crystallographic strains in PZT materials of rhombohedral, tetragonal, and 

morphotropic (dual-phase) microstructures induced by application of electric fields [30-33].  

The majority of existing literature presents data obtained using X-ray radiation on the 

order of ~8 keV, or the energy of Cu Kα – a typical laboratory source (except few studies 

such as the one performed by Noheda et al. at an energy of  67 keV [34]). Since most 

ferroelectrics contain significant quantities of heavy elements such as Pb and Ba, these XRD 

experiments are confined to near-surface regions due to the limited penetration depth 

achievable with low-energy X-rays [35]. For instance, Noheda et al. reported only a 1 µm 

penetration depth for X-rays of about 18 keV due to the high Pb content in 92% 

Pb(Zn
1/3

Nb
2/3

)O
3 

– 8% PbTiO
3
. In this case, the behavior of grains at or near surfaces tracked 

by XRD will not represent the bulk sample. It is also common to obtain an inhomogeneous 

distribution of strain within sample cross sections. This inhomogeneity, also called the “skin 

effect”, makes the results obtained with low-energy X-rays highly ambiguous.   

Recently, Vullum et al. studied the ferroelastic behavior of La0.8Ca0.2CoO3  via 

synchrotron X-rays under uniaxial compression[36]. The higher energy they employed 

allowed complete sampling of sample cross section. Vullum et al. analyzed the reorientation 

of domains with respect to angles between the hkl planes and the c-axes. They also showed 

that reorientation was less pronounced after several cycles compared to the observations after 

a single cycle. Another recent synchrotron X-ray diffraction work examined residual 

preferred orientation and lattice strain in multiphase PZT samples that had been pre-poled 
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[37-39]. However, these were ex-situ studies and did not monitor the evolution of internal 

stress/strain and domain switching during electromechanical loading. 

Neutrons penetrate much deeper into materials, especially ferroelectrics, and have 

been employed extensively in the past for phase analysis. Forrester et al., for instance, used 

neutron diffraction to investigate domain reorientation due to applied stress in polycrystalline 

BaTiO3 and its contribution to the toughening mechanisms in ceramics [40]. Changes in 

relative intensities of twin-related reflections were attributed to ferroelastic domain 

switching; on the other hand, the saturation of ferroeleasticity occurred at lower stresses than 

fracture stress suggesting domain switching might not be a useful mechanism to toughening.  

Two recent studies of ferroelectrics employed both synchrotron XRD and neutron 

diffraction and are worth examining here. In the first one, Rogan et al. employed multiple 

XRD and neutron diffraction techniques to study the multiscale behavior of ferroelectrics 

[41, 42]. They confirmed the complex constitutive behavior of ferroelectrics and identified 

high-energy XRD (at synchrotrons) using an area detector as the most appropriate technique 

to study this behavior in situ and along multiple directions. The same technique is also 

employed in the present study. In addition, Rogan et al. identified some shortcomings of the 

Rietveld method to analyze diffraction data, but did not offer solutions. The second study by 

Motahari et al. [43] used neutron diffraction exclusively. In addition to deep penetration, this 

method can monitor two specimen directions simultaneously: longitudinal (i.e., along 

loading) and transverse. Some disadvantages of neutron diffraction include the long data 

collection times (this is problematic during electrical loading as it increases the possibility of 

sample failure via arcing), large sample dimensions (again, a problem for electrical loading) 

and cumbersome specimen loading fixtures. For these reasons, Motahari et al. concentrated 

on uniaxial compression studies and monitored lattice strain and texture evolution in 

polycrystalline BaTiO3 and some PZTs. They did make an important contribution though: 

they developed a self-consistent model of ferroelectrics (described in the next section) and 

compared its predictions to diffraction data. This integration of diffraction experiments and 

mechanics modeling is the main approach of the present study, too. Multiaxial electrical 

switching behavior was investigated in another study by measuring electric displacement for 

poled polycrystalline PZT specimens [44].  This experiment required different samples cut at 
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several different orientations, followed by the repeated application of an electric field. On the 

contrary, in the present study only one measurement was taken on a single specimen and, due 

to the unique ability of the diffraction technique, multiaxial lattice strain information was 

obtained. 

 

1.4 Research Objectives 

There are several outstanding issues in the ferroelectric research relevant to the 

present study.  These include: 

 While a domain’s contribution to macroscopic ferroelectric behavior has been very 

well studied, detailed information on the effect of inter-domain and inter-grain 

interactions on constitutive behavior is lacking. 

  Mainstream multiaxial diffraction techniques are often slow, tedious, and unable to 

monitor the dynamic nature of the ferroelectric response. 

  Accurate crystallographic models are imperative in order to guide development, 

processing, and device design for ferroelectric materials.  However, most common 

models (e.g., those employed in the Rietveld method) are limited to isotropic 

materials with cubic unit cells. 

  Recent progress in modifying a ferroelectric a self-consistent model has expanded 

the scope of analysis to the microscopic level (e.g., domain behavior), but the 

versatility of these modifications to different testing conditions (e.g., stress modes and 

sample geometries) is unknown.  

To tackle these issues, the unique advantages of neutron and high energy X-ray 

diffraction were applied to ferroelectric materials. The samples were subjected to electrical 

field and/or mechanical loading while diffraction patterns were collected. The results 

presented here will clearly demonstrate the power of these techniques.  

The fundamentals of ferroelectric materials and the information on their domain 

structure were outlined in this chapter. In a polycrystal ferroelectric, complicated lattice 

strain and texture evolution due to an external stimuli are critical to understand while 

investigating material behavior, and in this sense diffraction techniques have already proved 

their efficiency in many studies.  The anisotropic mechanisms of the material under 
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investigation, however, can be better understood in a multiaxial approach offered by 

advanced diffraction techniques. The next chapter will elaborate quantitative analysis of 

diffraction data along with governing equations used in the field.   
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CHAPTER 2: DIFFRACTION DATA ANALYSIS: LATTICE STRAIN AND 

TEXTURE 

 

2.1 Lattice Strain 

Polycrystalline materials deform when subjected to external stimulus such as stress or 

electric field as in ferroelectrics. As long as the stress is small the deformation is reversible 

and leads to elastic strain. When a material is deformed, the lattice plane spacings in the 

grains change from their stress-free value to a new value corresponding to the magnitude of 

applied stress and this new spacing is (nearly) uniform from one grain to another for any 

particular sets of planes with similar orientations. The effect of strain on the position of a 

reflection is shown in Figure 2-1. On the contrary, if plastic deformation occurs, the lattice 

planes can become distorted at both the sub- and intergranular level. In general, diffraction 

strain measurements are thus limited to crystalline phases of materials where lattice spacing 

is used as an internal strain gage [45].  

The basic principle of strain analysis via diffraction is the measurement of the change 

in interplanar (d-) spacings as indicated in Figure 2.1.  d
0
 is the lattice plane spacing of the 

initial state (stress-free). Upon loading, the lattice plane spacing changes from its original 

position. For instance, applied tensile stress is expected to increase the spacing between 

planes perpendicular to the applied stress and decrease the spacing between the parallel 

planes (the Poisson effect). As Equation (2.1) shows, lattice strain along a given 

crystallographic direction (hkl) is essentially the relative change in the corresponding d-

spacing. 

 

0

0

hkl

hklhkl
hkl

d

dd 
        (2-1)  
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Figure 2-1 Basic principle of diffraction strain analysis:  Applied stress changes interplanar (d-) spacings which 

leads to a shift in Bragg peaks [adapted from Ref. 46]. 

 

The diffraction data is analyzed using a number of techniques. The following sections 

describe the two well known approaches and their comparison. Also, an alternative approach 

which is developed and applied in this study (to account for anisotropy) is elaborated in this 

chapter.    

 

2.1.1 Rietveld Method 

 The lattice parameters are directly proportional to the spacing of any particular set of 

lattice planes, and when the Bragg angle  is measured it can be used in Bragg’s law to 

calculate d-spacings and from this value one can obtain lattice parameters [45]. Knowledge 

of the accurate lattice parameters of the studied material is required in many applications of 

diffraction. In the Rietveld method, to extract detailed crystal structural information from 
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powder diffraction data, least-squares refinements are carried out until the best fit is obtained 

between the entire observed powder diffraction pattern taken as a whole and the entire 

calculated pattern based on the simultaneously refined models for the crystal structure(s), 

instrumental factors and other specimen characteristics such as lattice parameters.  

A powder diffraction pattern of a crystalline may be considered as a combination of 

individual reflection profiles with a peak height, a peak position and an integrated area which 

is proportional to the Bragg intensity Ihkl where hkl stands for Miller indices. Typically many 

Bragg reflections contribute to the observed intensity at an arbitrary point in the pattern. The 

calculated intensities are determined from the absolute value of structure factor |FK|
2
 which is 

the sum of contributions of neighboring Bragg reflections and the background. 

So the calculated intensity, yci is given by: 

 

 
K

biKKiKKci yAPFLsy )22(|| 2 
     (2-2) 

where, s is the scale factor, 

LK :  composed of Lorentz, polarization and multiplicity factors, 

 :  the reflection profile function, 

PK : the preferred orientation function, 

A:  an absorption factor, 

ybi :  the background intensity at the i
th

 step (for the effective absorption factor, A, 

although it depends on instrument geometry, and in general, it is considered 

constant for most X-ray diffractometers.  

 

Since the adjustable parameters and intensities are related to each other in a nonlinear 

way, the starting model must be close to the correct model or the non-linear least squares will 

not converge to a global minimum. Rather, the procedure will either diverge or lead to a local 

―false‖ minimum. The reflection profile function,  is effected by both instrumental features 

and specimen characteristics such as aberrations due to absorption, specimen displacement, 

crystallite size and microstrain. Analytical reflection profile functions such as pseudo-Voigt, 

Pearson VII, Gaussian, Lorentzian and modified Lorentzian functions are used in most 



21 

diffraction data analysis software. On the other hand,the preferred orientation (texture) 

produces systematic distortion in reflection intensities, and this can be modeled with 

functions having coefficients which are adjusted during crystal-structure refinement. 

In this study, the main data analysis was performed with the Rietveld technique [47] 

using the GSAS software [48]. Rietveld method is a full-pattern analysis which offers several 

advantages: 

1. All reflections in the pattern are included without considering overlap.  

2. The background is defined better since a continuous function is fitted to the whole 

pattern. 

3. The effects of preferred orientation and extinction are reduced since all reflection 

types are considered. And appropriate parameters can be refined as part of the 

analysis.  

4. Crystal structure and peak-profile parameters can be refined as part of the same 

analysis, so the physical and chemical details of the phases are adjusted. 

5. The calibration constants are computed rather than by laborious experimentation. 

The criteria of a fit can be quantified with several minimized residual (R) values. The 

most common of these R values are the minimum achievable pattern residual, Rp and the 

weighted pattern residual, Rwp; 
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where, yi(obs) and yi(calc) are the observed and calculated intensities at the i
th

 step, 

respectively, and wi = 1/yi. From a purely mathematical point of view, Rwp is more 

meaningful, because the numerator is the residual being minimized in Rietveld. For the same 

reason, it is also the one that best reflects the progress of the refinement. Another useful 
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numerical criterion, the ―goodness of fit‖, 2 
as given in Eq. (2-5), with a value of 1.3 or less 

is usually considered to be quite satisfactory [51].  

 

)( var

2

NN

M

obs 
                            (2-5) 

 

where, Nobs is the total number of observations in all histograms and Nvar is the number of 

variables in the least squares refinement, with an optimum value (=1.0). While the residuals 

obtained from a Rietveld fit may seem satisfactory, utmost care should be taken in their 

interpretation, because, as will be shown in the next section, results should also make 

physical sense. 

 

2.1.2 Single-Peak Analysis 

The first alternative diffraction data analysis method other than Rietveld is the single-

peak method. This technique does not consider the whole pattern as Rietveld does; therefore, 

it is the simplest in terms of the assumptions involved (essentially, it just fits a profile 

function to a reflection and does not build a complete crystallographic model). This approach 

offers certain advantages when estimating lattice strains. The crystallites contributing to an 

observed diffraction peak (hkl) in a powder diffraction pattern are those whose plane normals 

are parallel to the scattering vector [45]. Precise interplanar distances can be obtained from 

the Bragg’s law and the relative diffracted peak positions since (lattice) strain is calculated 

from the deviations in lattice spacings.  

The single-peak analysis in the present study employed the RAWPLOT module in 

GSAS such that the integrated intensity, the peak position, peak width and other profile 

parameters (in profile function number 2 which includes a convolution between the Ikeda-

Carpenter function and the pseudo-Voigt function – ref. W.I.F. David and R.B. Von Dreele, 

unpublished) were obtained in a selected 2-range. In the case of a doublet, the two 

reflections were refined simultaneously as they were close as shown in Figure 2.2 for the 

(002)/(200) planes. Peak position and intensity are then used in lattice strain calculation and 

texture analysis, respectively. The main drawback of this method occurs when the intensity 
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of certain peaks become very low and indistinguishable from the background as in 

ferroelectrics due to extensive domain switching from one variant to another. This of course 

makes the fitting difficult resulting in big errors in the single-peak analysis. On the other 

hand, Rietveld method avoids this problem since it is less sensitive to the contribution of 

low intensity peaks.  However, as will be shown in the next section, a new method is 

necessary to adequately account for strain anisotropy. 
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Figure 2-2 Single peak fitting for the (002)/(200) doublet of PZN-PZT along a  parallel direction to applied 

electric field. Raw data is shown as symbols and the fitted peak profile as solid lines. 

 

2.1.3 Constrained Rietveld Refinement  

This subsection first reviews the currently practiced method of whole pattern Rietveld 

analysis of diffraction data to extract lattice strains that are representative of elastic constant 

anisotropy.  It then proposes a new approach to improve such constrained Rietveld analysis 

for hexagonal and tetragonal symmetry. 

Consider a polycrystal composed of grains of cubic symmetry randomly oriented in 

different directions.  Also assume that the polycrystal has isotropic stiffness.  Stiffness of a 

single grain, however, is not isotropic (for most materials) and depends on the 
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crystallographic direction under consideration, i.e., it is anisotropic.  The diffraction elastic 

constants (i.e., the slopes of applied stress vs. lattice strain curves for different hkl’s) are, by 

the same reasoning, anisotropic because a diffraction experiment is looking at a subset of 

similarly oriented grains. 

 

2.1.3.1 Cubic Symmetry 

For a cubic material, the lattice spacings are given by (a is the lattice constant) [49]:  

2

222

2

1

a

lkh

dhkl


         (2-4) 

Combining this equation with (2.3), the resultant strain of a particular reflection will only be 

a function of the lattice parameter, and not hkl: 

0

0

a

aa
hkl


         (2-5) 

However, in actual polycrystalline materials subjected to a homogeneous stress on 

their surfaces, the strains vary from point to point within the material volume due to the 

inhomogeneous distribution of elastic constants along any given direction. Figure 2.3 

illustrates this problem. The three different grains depicted in the picture have different 

stiffness so they will undergo different lattice strains, hence εhkl should be a function of h, k, 

and l. Equation (2.5) needs to be modified in a way to include this hkl-dependent anisotropy. 
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Figure 2-3 Different grains have different lattice-plane-specific elastic moduli, hence they will experience 

different lattice strains under stress. 

 

The direction-dependent Young’s modulus Ehkl, for a cubic crystal can be expressed as  

hklhkl ASSSSE )
2

1
(2/1 44121111                       (2-6) 

where, Sij is the single crystal compliance tensor (reduced to matrix notation) and  

  

  (2-7) 

  

This quantity is zero for the directions along the cube axes <100> and has its maximum value 

of 1/3 in the <111> directions [50].  

When we assume that all the grains have the same stress state (the Reuss assumption), 

the elastic stress-strain relationship (Hooke’s law) becomes  hklhkl E/1  so that lattice 

strain is inversely proportional to the Young’s modulus. When Equation (2.7) is substituted 

for the Young’s modulus, we obtain the following equation; 

 hkl

isotropic

hkl ASSSS  )
2

1
(2 44121111         (2-8) 

The first part of this equation can be written in terms of d-spacings as explained 

above (see Eq. (2.1)). For the anisotropic part of this equation, a fitting parameter  is 
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introduced which shifts the position of each reflection in proportion to Ahkl. At the end, the 

following equation represents the total lattice strain in terms of isotropic and anisotropic 

components [51]: 


canisotropi

hkl

isotropic

hkl

hklhkl
hkl A

d

dd
 





0

0

                     (2-9) 

The parameter γ in Equation (2.9) is a measure of strain anisotropy.  When γ = 0 

Equations (2.9) and (2.5) will be the same, hence lattice strains will be hkl-independent again 

(the isotropic case).  The larger γ is, the bigger the discrepancy between values of lattice 

strains for different hkl’s.  Therefore, the refinement of  together with the lattice constant 

allows the inclusion of elastic strain anisotropy in Rietveld analysis; this has already been 

implemented in GSAS. 

 

2.1.3.2 Hexagonal Symmetry 

For a hexagonal material, the Young’s modulus is represented in a more complicated 

way as a function of l3 where l3 is the cosine of the angle () between the unit lattice vector 

and the hexagonal c-axis [50]: 

2 2 4 2 2

3 11 3 33 3 3 13 44

1
(1 ) (1 )(2 )

hkl

l S l S l l S S
E

      .   (2-10) 

Here, Sij are components of the single crystal elastic compliance tensor. Daymond et al. [52]
 

employed an approximation to simplify Equation (2.10) noting that since 1/Ehkl is a function 

of l3 (or cos), the anisotropic strain term should also be a function of cos [52]:  

                             (2-11)  

        

Here again the extra parameter refined in GSAS is the .  Instead of the approximation used in 

Equation (2.11) one can employ the complete form of Equation (2.10), and after 

simplification, obtain:  
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Refining the i parameters in this equation together with the lattice constants can be 

expected to yield lattice strains that correctly approximate elastic constant anisotropy in 

hexagonal crystals. This was checked for Zn and Mg as shown in Figure 2-4. When 

compared to the currently used approach (Eq. (2.1)), it is obvious that the new approach 

offers a better estimate of the elastic anisotropy of both materials. 
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Figure 2-4 Crystallographic-direction-specific Young’s modulus (Ehkl) of zinc (left) and  magnesium [53] 

(right) compared to its approximations by Equations (2.11) and (2.12). The i parameters in these equations 

were refined to obtain the best fit to the Ehkl curve. 

 

It should be recalled that this approach only works for the elastic case and with the 

Reuss approximation. Note that since the Reuss model assumes that stress is constant over 

the total volume of a polycrystalline body, it does not satisfy the compatibility condition at 

the grain boundaries. For instance, two points on the either side of a grain boundary would 

exhibit different displacements under the same applied stress. Despite this fundamental 

shortcoming, the new formulation still makes a significant improvement compared to the 

―regular‖ Rietveld method which does not include any strain anisotropy terms. 

 

2.1.3.3 Tetragonal Symmetry 

For the  tetragonal symmetry, the elastic anisotropy is dependent on all direction 

cosines li.  Here, the lattice spacing as a function of lattice constants a and c is given by: 
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The hkl-dependent Young’s modulus for the 4/mmm crystal symmetry class (e.g., BaTiO3) is: 
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1
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E

          (2-14) 

 

where, Sij are again components of the single crystal elastic compliance tensor for tetragonal 

symmetry (4/mmm) [50].  Therefore, the lattice strains εhkl in the tetragonal case need to be a 

function of both , the angle between the unit hkl vector and the c axis, and ρ, the angle 

between the component of the unit vector in the base plane and the a axis. Note the following 

relationships between the directions cosines li and these angles:  

  

1 2 3sin .sin ; sin .cos ; cosl l l         (2-15) 

 

Using the same approach described for the hexagonal case, one can rearrange 

Equation (2.14) to obtain a good approximation of hkl-dependent lattice strains in the 

tetragonal symmetry (specifically, for the 4mm, -42m, 422 and 4/mmm classes that are 

appropriate for this equation [50]): 

4 2 2 2 2 4 4

1 3 2 3 3 3 1 2 4 1 2(1 ) ( )hkl isotropic l l l l l l l               (2-16) 

 

One can therefore estimate hkl-dependent lattice strains by refining the i parameters 

in this equation.  Here, refining only the first three parameters (1, 2 and 3) was enough to 

yield a good approximation of elastic anisotropy (Figure 2-5).  Even a two-parameter 

refinement (not shown) was reasonably close; hence, the user may have some flexibility 

regarding the number of parameters to refine. 

 



29 

0
10

20
30

40
50

60
70

80
90 0

2
0

4
0

1

2

3

4

5

6

7

8

1/Ehkl

phi
rho

Original Formula for BaTiO3, Eq. (14)

7-8

6-7

5-6

4-5

3-4

2-3

1-2

    

0
10

20
30

40
50

60
70

80
90

0
10

20
30

40

1

2

3

4

5

6

7

8

1/Ehkl

phi rho

3-term fit to Eq. (16)
7-8

6-7

5-6

4-5

3-4

2-3

1-2

 

 

Figure 2-5 Lattice-plane-specific Young’s modulus (Ehkl) of BaTiO3 [53] (left) and its fit using Equation (2-16) 

with three refined i (right). 

 

It is recommended, therefore, that Equations (2-12) and (2-16) be adapted in GSAS so 

that a better estimate of elastic strain anisotropy can be attained during the Rietveld 

refinement of hexagonal and some tetragonal materials. This was communicated to GSAS 

developers, but the code has not been changed yet. The present study employed the existing 

function (Equation (2-9)) which is strictly valid only for the cubic symmetry. This 

approximation can be justified by the fact that the c/a ratio in the materials studied here is 

close to 1.  

 

2.2 Texture  

Quantitative texture knowledge is necessary to assess the evolution of domain 

switching from one variant to another due to external stimuli. In the crystalline state, atoms 

are arranged in periodic three-dimensional lattices and most of the materials are 

polycrystalline composed of many single crystals with different orientations [54]. The texture 

of a polycrystalline material can be quantified by the orientation distribution of its crystallites 

which is independent of their size, shape and location. In some cases this distribution is 

random, yet often there is preferred orientation of crystallites. Distribution of crystals and the 

intrinsic crystalline anisotropy is coupled to the macroscopic anisotropy of textured 

polycrystalline materials. Figure 2-6 represents the contribution of each crystal to 

3 term fit to Eq.2.16 Original formula Eq.2.14 
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macroscopic anisotropy of the polycrsytalline material. When all possible orientations occur 

with equal amount, the orientation dependence will disappear on the average and the material 

becomes isotropic [55, 56]. Some of the texture-inducing processes in materials, and 

ceramics especially, are as follows: hot pressing, hot forging, dislocation slip, and anisotropic 

grain growth [57]. In ferroelectrics, the reorientation of nonsymmetric domain structure 

either by applied mechanical or electrical loads induces texture.  

 

          

  

  micro anisotropy of             macro anisotropy of 

        the crystals        the polycrystalline material 

 

Figure 2-6 Contributions of each crystal anisotropy to macroscopic anisotropy in the material. If anisotropic 

crystals are not oriented at random, then the material as a whole may have a macroscopic anisotropy of its 

properties.  [58].  

 

Quantitative texture analysis is crucial to understand the anisotropic properties of a 

material, and generally, X-ray and neutron diffraction offer very powerful tools to measure 

texture. Additionally, electron diffraction and polarized light microscopy are also used to 

evaluate texture [54]. It is known that the integrated area of a peak is directly proportional to 

the volume of diffracting material [45]. Within a textured polycrystal, changes in the fraction 

of certain crystal orientations will produce discrepancies in the observed intensity of hkl 

reflections with respect to a powder average in which grain orientations are completely 

random. The preferred orientation in a polycrystal is commonly represented by pole figures 

for selected crystal directions. In pole figures, symmetry is defined statistically by the 

distribution of poles on a projection sphere and they represent multilinear functions of 

directions [55]. The quantity of all crystallite orientations with respect to the sample 

reference axes is described by the orientation distribution function (ODF) in terms of 
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multiples of random distribution and is independent of experimental parameters. So, the ODF 

gives the relative presence of every possible crystal orientation relative to their presence in 

randomly oriented material.  

In order to quantify the ODF, orientation of a crystallite in the specimen (using x1, x2, 

x3 axes) is specified with a right-handed Cartesian coordinate system. In principle, the choice 

of the coordinate system is arbitrary. Also, another coordinate system - the crystal coordinate 

system (y1, y2, y3) should be chosen. The orientation of a crystallite in the sample is defined 

by the orientation of the crystal coordinate system with respect to the sample coordinate 

system which is proportional to each other by g (the location function). The schematic of 

these coordinate systems is shown in Figure 2-7 where the three axes of the sample 

coordinate system form 9 angles with the crystal coordinate system and the cosines of these 

angles (crystal orientation) can be written in a matrix form [54, 55]:   

    

          
systemcoordinatesample

yyy 321  



















333231
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Figure 2-7 Representation of sample (y1, y2, y3) and crystal coordinate systems (x1, x2, x3) within a cubic unit 

cell. 

 

Thus, an arbitrary point in crystal coordinate system is expressed by means of sample 

coordinates: 

y1 = a11x1 + a12x2 + a13x3     (2-18) 

y2 = a21x1 + a22x2 + a23x3     (2-19) 

y3 = a31x1 + a32x2 + a33x3     (2-20) 

or 



3

1j

jiji xay  and  



3

1j

ikkjijaa       (2-21) 

 

The ODF calculations are performed either in Fourier space (series expansion or 

Harmonic methods) or directly in orientation space. A description of a rotation suited for the 

harmonic method of texture analysis is via the Euler angles, illustrated in Figure 2-8.  

Although the orientation of a grain can be expressed as a transformation from the local 

coordinates into global coordinates, such a representation of the orientation is not practical 

when a multitude number of grains exist. Euler angles can be used to define the orientation of 

any object in three-dimensional space by applying three consecutive rotations to an object 

lying along the x-axis in a Cartesian system of coordinates. Whilst the crystal coordinate 

system is assumed to be parallel to the sample coordinate system, three rotations are applied 

in sequence: 

x1 

x2 

x3 

x1 

x2 

x3 

y1 

y2 

y3 
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I . about the crystal x3 axis through 1 

II. about the new axis x1 through  and  

III. about the new x3 axis through 2 where 1,, 2 are the Euler angles. The final 

rotated system is related to initial coordinate system by these Euler angles. 

 

 

 

Figure 2-8 Definition of the Euler angles in texture analysis. 

 

As a result, the rotation g is a function of the three Eulerian angles, g =f(1, , 2) 

which are periodic with 2. (The ranges for angles are: 0 1  2 ; 0    ; 0  2 2 .) 

The combined effect of these three successive rotations is given by this 

transformation matrix : 

 

g=Rz(1) Ry() Rz(2)      (2-22) 
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(2-24) 

and 

dggf
V

dV
)(      (2-25) 

 

where, dV: total volume with orientation g within the element of orientation dg, V: total 

sample volume. Thus, the texture can be revealed from orientations of single crystallites or 

continuous distribution function as contours [54, 55]. 

Harmonic functions are frequently used to describe texture in three-dimensional 

space. A harmonic function can be represented as a combination of sine and cosine functions. 

And texture distributions can be calculated as continuous functions which are the angular 

portion of an orthogonal set of solutions to Laplace’s equation in spherical coordinates [55]: 
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where, P is associated with the Legendre function and complex numbers,  

 

*, )1( mn

il

nmnm

il CC         (2-27) 

 

The preferred orientation produces systematic distortion in reflection intensities, and 

this can be also modeled with functions having coefficients which are adjusted during crystal 

structure refinement. With image plate recorders or CCD cameras, synchrotron diffraction 

images are widely used to analyze texture information. This information can be provided 

either by rotating the sample while radiating the specimen or combining images obtained 

from different specimens with different orientations. However, an intensity variation along 

several Debye rings has been shown to be ample to resolve ODF [59].  In this study, using 
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single two-dimensional images, Rietveld method was applied as implemented in the Material 

Analysis Using Diffraction (MAUD) software package. This software is freely available [60, 

61], is based on JAVA and provides sophisticated Rietveld analyses and algorithms for 

preferred orientation. Here, with a sufficient number of hkl reflections, the whole Debye ring 

pattern (the 360º image) was discretized by 10º steps into 36 grids to use as diffraction 

spectra in the analysis. The software utilizes a variety of iterative texture functions including 

spherical harmonics, the WIMV algorithm [62, 63] and its modified version the E-WIMV [54, 

63] which can process incomplete pole coverage, yielding outputs directly as pole figures and 

ODF. After other Rietveld parameters are established, texture refinement can be activated to 

refine texture parameters (e.g., the harmonic coefficients or the WIMV parameters). For the 

spherical harmonic model, the refinable texture parameters are the harmonic coefficients (22 

for a harmonic degree of 6, 110 for a degree of 12 - for each phase). MAUD evaluates the 

derivatives numerically: thus, somewhat slower but non-analytical models can be included 

into the analysis. An important example of such a discrete model is WIMV which assigns 

weights to discrete points in orientation space based on measured data in an iterative process 

and describes Bragg intensity for a reflection due to texture changes. According to the 

Friedel’s law, for diffraction patterns which are centrosymmetric irrespective of crystal 

symmetry (as is the case in 2-D diffraction via image plates) only even-order harmonic terms 

(l=2, 4, etc.) contribute to intensity. The odd-order cannot be determined because of the 

equivalence of Ihkl and I-hkl. For a randomly oriented case (i.e., a powder pattern), all the Cl
mn

 

terms are zero and the intensity change is unity. Figure 2-9 illustrates the pole figures and 

experiment geometry in transmission diffraction [55]. The orientation of a grain on an (hkl) 

plane can be represented as a vector starting from the origin of a sphere to the surface of the 

sphere. Using direction cosines, the corresponding polar coordinates of this unit vector will 

be: 
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Figure 2-9 (a) Orientation of an (hkl) plane within unit sphere (b) Experimental geometry for the transmission 

mode two-dimensional diffraction experiments at APS. A high energy monochromatic X-ray beam is normal to 

the sample surface while a digital image plate detector captures the full Debye rings. [62] 

 

(a) 

(b) 
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In MAUD, starting with a calibration data file (the instrument file describing 

experimental setup details) and a phase file including symmetry, atomic position refinement 

is carried out in Rietveld. Depending on data collection geometry, the sample position should 

be chosen; this step is especially important if any symmetry is applied to ODF (for example 

for axial symmetry, the [001] axis at the center of the (001) pole figure should be at the 

center).     

In the case of ferroelectrics, alignment of domains as a result of electromechanical 

loading induces a macroscopic material texture. For instance, all of the ceramics studied here 

exhibited significant changes in crystallographic texture after electrical poling. Usually the 

most considerable changes were observed in twin reflections (or doublets). For example 

Figure 2-10 indicates that due to domain switching, the relative integrated intensity of the 

(002) peak is increasing while that of the (200) peak is decreasing as one approaches the 

electric field direction. This variation of integrated intensity along the azimuth direction of 

Debye rings is a clear sign of texture, in this case due to electrical loading.  
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 (b) 

Figure 2-10 (a) The (200)/(002) doublet of BaTiO3 under electric field (30 kV/cm) as a function of azimuth 

angle, . The intensity ratio, I002 / I200 is higher along the field direction ( = 0º) compared to that at the 

perpendicular direction ( = 90º). This suggests the realignment of (002) domains along the field vector, as 

expected. (b) Intensity changes of (002)/(200) doublet in BaTiO3 after mechanical loading (60MPa). 
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In tetragonal symmetry, there are three possible domain orientations (see Chapter 1). 

For example, the volume fraction of (002) reflections, 002, along a given specimen direction 

is simply given by: 

 

200200002
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    (2-29) 

 

where, Ihkl is the integrated area of a given hkl peak. The multiplicity for (020) and (200) is 

accounted by the fraction f. Also note that, I200 = I020 due to symmetry. On the other hand, the 

volume fraction can also be represented by the ratio of integrated intensities to the integrated 

intensity of the same peak but in a randomly oriented sample (I'hkl), Equation 2-29 shows this 

for the (002)-(200) reflections in tetragonal symmetry:  

)(2

)1(

)1(
200002

002

'

200

200

'

200

200

'

002

002

'

002

002

002
RR

R

If

If

fI

fI

I

I

I

I

v









    (2-30) 

 

where, Rhkl = Ihkl/I'hkl. In the initial unpoled (random) state, 1/3 of all domains should be the 

(002) domains. Thus the percentage of switching domains can be defined as [58]; 

3

1

)(2 200002
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002 



RR

R
     (2-31) 

 

Another common parameter used to quantify texture is the Multiples of a Random 

Distribution (MRD) defined as [57, 58] : 

)(2
3
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002

002
RR

R
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     (2-32) 

 

The MRD values range from 0 to 3.  MRD = 1 indicates a randomly orientated 

specimen (i.e., no texture) where R002 = R200. It should be noted that this equation assumes 

that the initial state of samples is texture-free, and as such, it only predicts the texture 

induced during loading [58]. 
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In this chapter, diffraction data analysis methods both for lattice strain and texture 

evolution were explained. To calculate lattice strain data the single-peak fitting and Rietveld 

methods and their advantages and disadvantages were discussed. Also, an improved version 

of the Rietveld method was proposed to account for lattice strain anisotropy in most 

materials. Chapter 4 will provide an example use of these methods for two single phase 

ferroelectric specimens. Also, texture evolution in the same materials will be presented. 

Since the diffraction data was complex, a solid mechanics model was required for better 

interpretation. For this purpose a self-consistent model was employed, described in the next 

chapter. 
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CHAPTER 3: SELF-CONSISTENT MODELING OF FERROELECTRICS 

 

Micromechanical deformation models can be used to determine the overall stress 

state in a polycrystal, including residual and intergranular stress, by predicting the elastic and 

plastic deformation in individual grains. Either lower bound models [64] where the grains are 

subjected to the same stress or upper bound models [65] where grains are assumed to be 

subjected to uniform strain do not account for strain anisotropy. Micromechanical models 

can also be applied within the scheme of finite element modeling. Such a formulation 

requires knowledge of the orientation of each domain in terms of all three orientation angles; 

however, it is not easily applied where only the distribution of a single pole is known, for 

example, in a tetragonal perovskite crystal system for the c-axis pole figure. Therefore, whilst 

numerous alternative approaches are available to model the constitutive behavior of 

ferroelectrics [12, 44], the self-consistent model (SCM), which is based on Eshelby’s 

inclusion method [66], offers an opportunity to better compare diffraction data with its 

predictions. In the SCM, the polycrystal is made of ellipsoidal grains that are embedded in a 

matrix, called the homogeneous equivalent medium (HEM), which derives its properties 

from the integration of individual grain responses. The self-consistent scheme includes the 

elastic-plastic interaction between grains that are regarded as spherical inclusions in an 

infinite homogenous matrix with the overall modulus of the polycrystal and the grains are 

modeled as single crystals with a specific orientation. [66]. The grains and hence the domains 

are assumed to be uniformly distributed in Euler space which quantifies the relation between 

the grain coordinate system and  global axes as described in Chapter 2.  

For a tetragonal structure, each grain has six variants (domains) in three perpendicular 

directions (1 to 6). Since these six variants are energetically equivalent, each one of them can 

transform (switch) to any other five variants resulting in thirty transformation systems (1 to 

30). When an anisotropic ferroelectric solid is subjected to an electric field Ei and to a 

mechanical stress ζij, (assuming the stress and electric field in each variant are constant 

within a grain) the total strain εij and the total electric displacement Di can be separated into 

their linear (L) and remanent (R) parts: 
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L R

ij ij ij       and  
L R

i i iD D P     (3-1) 

Strain (ε) and electric displacement (D) of the grain becomes the volume average of 

ε
L
 and D

L
 over the variants, in addition to the remnant strain and polarization due to 

switching. 

Assuming quasi-static and small strain conditions: 

 

E   and 2/)u)( u( T       (3-2) 

 

where, E is electric field from the scalar electric potential  and  is the strain obtained from 

displacement field.  

Linear response (ε
L
 and D

L
) in each variant can be related to σ and E on the variant 

(which is the same as in the grain) by the following equation: 
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 Hence, for a ferroelectric ceramic containing M distinct crystal variants, the average 

response may be written in terms of tensors of elastic, piezoelectric and dielectric modulus of 

the I
th

 crystal variant: 









































R

RM

I

III

II

P
c

Ed

dS

D







1

                                      (3-4) 

so that : kkijkl

E

ijkl

R

ijij EdS         (3-5) 

and  

kikklikl

R

ii EdPD          (3-6) 

 where,  



43 

( )

1

( )

1

( )

1

I M
E I E I

ijkl ijkl

I

I M
I I

ijk ijk

I

I M
I I

ij ij

I

S c S

d c d

c  













   

   

   







                                      (3-7) 

 

Here, ε and D are the strain and electric displacement of the grain, respectively. S
E
, d, κ

ζ
: 

compliance, piezoelectricity coefficient, and electric permittivity, respectively are the grain’s 

electromechanical properties which are the volume averages of the corresponding domain 

properties (S
E(I)

, d
(I)

, κ
ζ(I)

) as defined by Equations (3. 7).  Equation (3.4) can be inverted into 

the form: 
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where, the tensors (C, h and ) are related to (S, d and ) by tensor inversion. 

So, the linear response is given by: 
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kkkij
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and  
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kkik

R

klklikli PDhE       (3-10) 

 

where, D

ijklc is elastic stiffness tensor, hijk is the piezoelectric tensor and 
 ik is the dielectric 

permeability tensor. 

c
I
 are the volume fraction of each domain present in the grain which is 1/6 for 

tetragonal symmetry. Initial domain fraction, c
I 
= 1/6 changes when domain switching starts. 

A schematic of domain switching is illustrated in Figure 3-1 where the grain is assumed to 

have two variants for simplicity and loading occurs via only shear stress. 
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Figure 3-1 The progressive ferroelectric transformation within a crystal due to domain wall motion within a 

simplified example having only 2 domains, and one-dimensional loading. [12] 

 

In ferroelectrics, in addition to six stress components, three components of the electric 

field vector exist. Domain walls move when the driving force on the corresponding 

transformation, G
α
, reaches a critical value, Gc

α
 which may vary from one transformation 

system to another and due to hardening at a rate of
f . 

Increments in the average remnant strain and polarization of the crystal is due to 

ferroelectric transformation and dissipated work rate (the difference between total energy rate 

and elastic energy rate) due to transformations on all systems: 
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ii sEE         (3-21) 

where, ηi and Ei are resolved shear stress and electric field on each transformation, 

respectively. si and ni are vectors specifying the orientation of different variants, and μij is the 

Schmid vector. A
iα

 matrix defines variant transformation. 

Thus the equation of the driving force on each transformation system would be: 

1 1

2 2
ij ij i iG E P E D                  (3-22) 

(with work hardening which contains sufficiently small values to give a stable hysteresis): 




 fHGc
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A switching system is potentially active only if the driving force reaches a positive critical 

value: 
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The SCM approach was originally developed to study polycrystalline plasticity via 

dislocation slip [12, 66] and provides an incremental model to predict the response of a single 

grain to any loading path and independent of the magnitudes of the applied load rates. Since 

it estimates both the macroscopic average response of a specimen and its hkl-dependent 

lattice strains, all in multiple orientations, it has been a powerful tool to investigate 

deformation mechanisms when integrated with diffraction experiments. 

Recently, Huber et al. [12] proposed an SCM for ferroelectrics based on domain wall 

motion and predicted macroscopic behavior of ferroelectrics. A FORTRAN code provided by 

one of the developers of that model, C. Landis was further improved by Motahari et al. [43] 

who added the capacity to track the number of domains contributing to a selected reflection, 

the ability to input texture, a mechanism that enables to lock domain switching, and so on. 

They also compared the model’s predictions to neutron diffraction data from polycrystalline 

BaTiO3. The model and its application are discussed in detail in ref. [43]. Here, only a key 

feature, namely grain selection will be described for brevity. To study hkl-dependent 

properties of the material (e.g., lattice strains), the domains which satisfy the reflection 

condition should be selected to be averaged over. To select a domain contributing to a 

specific reflection, the hkl vector of the domain should lie within an acceptance angle of the 

scattering vector of the diffractometer. Figure 3-2 shows a schematic of the grain selection 

process in the modified SCM. 

If the hkl under study is, for example (002), domains 1 and 4 need to be selected, as 

long as the c-axis of domain 4 is within the acceptance angle of the scattering vector. 

Similarly, if the hkl of interest is (200), domains 2 and 3 will be selected and so on. In the 

SCM, a full set of linear elastic, piezoelectric and dielectric coefficients are required since the 

constraint imposed on each crystal by surrounding material needs to be calculated [44]. The 

material properties used in the model are given in Table 3.1. In addition to these parameters, 

the critical driving force for each transformation (Gc) - which is equal to the product of the 

electric field at which transformation occurs, and the total polarization change due to 

switching (spontaneous polarization) – the change in strain due to switching (spontaneous 

strain), and a reasonable hardening modulus (h) are required to stabilize the calculation. 

These parameters were modified to provide a good fit to the measured data but remain close 
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to the initial values. For instance, by varying Gc, the electric field at which substantial 

ferroelectric switching occurs in the model can be controlled. 
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Figure 3-2 The domain selection mechanism incorporated into the self-consistent model. The [002] direction in 

domain 1, the [200] direction in domain 2, the [113] direction in domain 5, and the [311] direction in domain 6 

are perfectly aligned with the scattering vector. The [200] and [002] directions in domains 3 and 4 are not 

exactly aligned with the scattering vector, but they lie within a small angular cone of it; so they also contribute 

to the diffraction pattern. If these were the only grains in the material, lattice strain along [002] would be the 

average of the strains in domains 1 and 4, the strain along [200] would be the average of domains 2 and 3, the 

strain along [113] would be equal to the strain of domain number 5, and the strain along [301] would be equal to 

that of domain number 6. 
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Table 3-1 Input data (elastic and piezoelectric constants) for the self-consistent program to model the BaTiO3 

experiment [12, 53]. 

 

Parameters Values 

S
E

1111 

S
E

3333 

S
E

1122 

S
E

1133 

S
E

1212 

S
E

1313 

d311 

d333 

d131 

κ
ζ
11 

κ
ζ
33 

7.4  x  10
-12

 m
2
N

-1 

13.1 x  10
-12

 m
2
N

-1
 

-1.4 x 10
-12

 m
2
N

-1
 

-4.4 x 10
-12

 m
2
N

-1
 

1.9 x 10
-12

 m
2
N

-1
 

4.1 x  10
-12

 m
2
N

-1
 

-33.4 x 10
-12

 m
2
N

-1
 

90 x 10
-12

 CN
-1

 

282 x 10
-12

 CN
-1

 

4400 εo 

129 εo 

  

 

Here, S
E

ijkl are the elastic compliance tensor and dijk are the piezoelectric tensor components, 

respectively, whereas κ
ζ
 is the permittivity of the material in terms of εo (=8.85x10

-12
 F/m, 

permittivity of free space).  

  

The SCM described above was employed in the present study to interpret diffraction 

data and determine the deformation mechanisms of ferroelectrics in the bulk, i.e., within a 

polycrystalline average. The study also aimed at further validating the model with diffraction 

data. In Chapter 5, the results of the model will be discussed and compared to those from 

diffraction experiments.  
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CHAPTER 4: HIGH ENERGY XRD INVESTIGATION OF MULTIAXIAL 

CONSTITUTIVE BEHAVIOR OF 0.1Pb(Zn1/3Nb2/3O3) – 0.9PB(Zr1/2Ti1/2)O3 and 

BaTiO3 CERAMICS UNDER ELECTRIC FIELD 

 

4.1 Introduction 

 Piezoelectricity is a coupling phenomenon where a specimen exposed to an electric 

field exhibits strain proportional to the field. This electrically induced strain may be an 

elongation or shortening depending on the direction of the electrical field. Conversely, 

mechanical stress will lead to a deformation of the unit cell, and thus, a relative displacement 

of the positive and negative centers of charges (i.e., a polarization change) [5]. Ferroelectric 

materials are special piezoelectrics with only one unique polar axis, and they are capable of 

changing polarization direction with application of external mechanical or electric fields. 

Thus, due to their excellent dielectric, electrostrictive, and optical properties, ferroelectric 

materials have found a multitude of applications (notably vibration control, sensors, 

transducers, and MEMS devices). Knowledge of the multiaxial response of these materials is 

crucial to predicting their performance and durability [1-5].  

Characterized by a frequency-dependent dielectric response and a narrow hysteresis 

loop near the dielectric maxima, relaxor ferroelectrics exhibit high strain relative to normal 

ferroelectrics [5]. One such ferroelectric ceramic called lead zinc niobate, Pb(Zn1/3Nb2/3O3) 

(referred as PZN hereafter), is an important relaxor with a rhombohedral structure at room 

temperature that undergoes a phase transition from a ferroelectric state to a paraelectric state 

when raised above its Curie temperature (Tc) of 140°C. Although the high dielectric and 

electrostrictive properties of the perovskite rhombohedral phase are promising, the 

interaction between Pb
2+

 and Zn
2+

 cations tends to favor formation of a secondary pyrochlore 

phase (PbxNbyOz) during processing. This results from the low tolerance factor and the small 

electronegativity difference between the cations which destabilizes the perovskite phase. On 

the other hand, Pb(Zr1-yTiy)O3 (referred as PZT hereafter) is a well-known ferroelectric 

material with good piezoelectric properties and a higher Tc value, which permits its use at 

elevated temperatures[5, 34, 35]. Since both PZT and PZN have a perovskite structure and 

properties ideal for dielectric and piezoelectric applications, Vittayakorn et al. alloyed PZN 
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with PZT in a composition that stabilizes the PZN phase and optimizes its material properties 

[68]. A specific alloy of xPb(Zn1/3Nb2/3O3)–(1-x)Pb(Zr1/2Ti1/2)O3 [xPZN-(1-x)PZT] exhibited 

a tetragonal structure only when x=0.1, above which a phase transformation from the 

tetragonal to rhombohedral phase was observed.  

BaTiO3 was the first piezoelectric transducer ceramic ever developed and exhibits 

reasonable piezoelectric properties [5]. One rationale behind choosing BaTiO3 for this study 

is the availability of a large literature body and the prior expertise developed within the group 

[43].  

With domains controlling their constitutive behavior (e.g., electro-mechanical 

coupling, hysteresis, memory effects, anisotropy, saturation of strain and electric 

displacement, etc.), ferroelectric materials are complicated and cannot be described with 

simple constitutive models [44]. Adding to this complication, grains within a polycrystal 

interact under electromechanical loading, and domain motion may be constrained by 

neighboring grains and local boundary conditions. This necessitates a thorough study of the 

multiaxial in-situ internal strain and texture response in order to adequately develop models 

describing the behavior of these materials, but comprehensive studies of this nature are 

lacking in the literature. Diffraction techniques, which directly measure internal lattice strains 

and material texture, are well suited to these types of studies. 

 Diffraction techniques, in particular X-ray diffraction (XRD), have proven most 

useful in determining both in-situ and ex-situ material behavior under electrical or 

mechanical loading. Although conventional X-ray diffraction is more commonly used, most 

important ferroelectrics have a high concentration of heavy elements (e.g., lead) with high 

absorption coefficients, which leads to low penetration depths [34]. On the other hand, high 

energy X-ray diffraction is a more valuable technique to probe the material properties of 

these ferroelectric materials, owing to its stronger penetrating capability. As a result, this 

diffraction technique is the most advantageous in developing an accurate constitutive 

behavior model for ferroelectric switching, which is a requisite to guide the processing, 

developing, and designing of ferroelectrics and predicting responses of ferroelectric devices. 

The motivation of the present work is to obtain non-linear constitutive responses of 

ferroelectric materials in multiple orientations to predict the polarization and piezoelectric 
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behavior of practical devices. Specifically, it is desirable to obtain quantitative data of the 

microscopic strain states and texture evolution, which are functions of applied electrical 

loads, elastic properties and domain switching. Since ferroelectrics are both elastically 

anisotropic and they exhibit additional anisotropy after domain switching, an advanced 

diffraction method enabled a quantitative measurement (from as much angular space as 

possible) of this anisotropy by investigating average sample cross section response [41]. The 

overall objective of this study is then to obtain a better appreciation of the multiaxial 

constitutive behavior of polycrystalline ferroelectrics and to initiate the development of a 

robust diffraction data analysis methodology to study these materials. 

 

4.2 Experimental Procedure 

4.2.1 Specimen Preparation and Diffraction Experiments 

Its low coercive field, large piezoelectric response and single phase makes PZN-PZT 

a good model system for the purpose of the present investigation. Electric-field-induced 

polarization was recorded with a ferroelectric test system (RT-66A, Radiant Technologies) at 

room temperature resulting in a spontaneous polarization of 16 µC/cm
2 

and a coercive field 

of ~20 kV/cm for PZN-PZT and a coercive field of ~4.74 kV/cm and a spontaneous 

polarization of ~12 μC/cm
2 

for BaTiO3. Additional details about PZN-PZT can be found 

elsewhere [68].The samples were obtained in the unpoled state and diced using a diamond 

saw to produce specimens with uniform dimensions of 1×1.5×10 mm
3
 and 1.12×1.5×5 mm

3
 

for PZN-PZT and BaTiO3, respectively. Specimen surfaces were polished and sputter-coated 

with gold on the two 1×10 mm
2
 and 1x5 mm

2
 faces. Subsequently, thin wires were attached 

to sample electrodes with a small drop of conducting epoxy (Chemtronics, CircuitWorks, 

4002A&B). BaTiO3 samples were placed in the set-up as shown in Figure 4-1-b, the wired 

PZN-PZT samples were placed in a Plexiglas sample holder filled with a dielectric fluid (3M 

Flourinert) to avoid arcing discharge. The X-ray beam was directed through the sample 

thickness (1 mm and 1.12 mm for each material) and a cyclic electric field was applied 

parallel to the width (1.5 mm). 

In-situ experiments were conducted using a beam spot size of approximately 

0.5(width)×1mm
2
 at beamline 6-ID-D (MU-CAT) of the Advanced Photon Source (Argonne 
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National Laboratory, USA). The sampling area was fixed about the center of the sample to 

prevent any interference from the gold electrodes. High energy X-rays (~80 keV, wavelength 

=0.15513 Å) were employed in order to effectively determine strain state averaged through 

the cross section of the sample. Due to this high energy, the Bragg angles were small 

(typically  < 4) for most reflections. As a result, the scattering vector (the direction of 

lattice strain measurement) was nearly within the sample plane and almost perpendicular to 

the beam direction as illustrated in Figure 4-1-a. 

 

 

 

 

Figure 4-2 (a) Schematic of experimental geometry during electrical loading studies (not to scale). A typical 

―caking‖ is shown to illustrate how the Debye rings are converted into multiple ―detectors‖, allowing the 

complete characterization of specimen response within the sample plane perpendicular to the X-ray beam. (b) 

Schematic of the fixture used in the BaTiO3 experiment. 

 

Voltage was applied with an external power supply (Trek Model 610D high-voltage 

power supply/amplifier/controller, Trek Inc., Medina, NY) in quasi-static mode with 

increments of ~ 0.5 kV through a complete polarization cycle of ±5 kV for PZT-PZN, then 
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±7 kV for a second cycle and ±4.5 kV for BaTiO3. When the electric field was applied, it 

acted orthogonally to the beam direction so that the sample plane probed in the experiment 

contained the field vector. Diffraction patterns were recorded at a constant voltage for 

approximately 5 minutes at each step resulting in an effective cyclic frequency of ~3x10
-3

 

Hz.  The patterns were collected with a Mar345 digital image plate detector (MarUSA, Inc., 

1840 Oak Ave., Evanston, IL 60201 USA) with an active area diameter of 345mm (and 

effective pixel size of 0.100 x 0.100 mm
2
). The detector was placed approximately 1 m (to be 

exact, 1096 mm for BaTiO3 and 1037 mm for PZN-PZT) from the sample in order to 

completely capture all Debye-Sherrer rings. For an accurate strain measurement, proper 

calibration of images with a strain-free reference powder was performed using the Fit-2D 

program [69] with CeO2 powder as an internal standard, which was spread in a thin layer on 

the top face of the specimen using Vaseline to prevent any mechanical effect. Diffraction 

rings of CeO2 were used to calibrate the geometric parameters of the experiments assuming 

that the wavelength of the X-ray beam is stable. Fitting these series of ellipses (diffraction 

rings) in Fit-2D, the non-orthogonality of the detector with respect to beam was corrected by 

calculating the eccentricity of a measured pattern. Thus, the sample-to-detector distance, the 

image center and the detector tilt angle were calibrated [70]. Ceria patterns were also taken 

during electrical loading to track sample movement, and it was observed that there were 

distance changes within 2 mm after first few load steps, (0.2% relative variation); however, 

when the applied field reached 1kV, the sample-to-detector distance remained stable 

throughout the rest of the experiment. 

 

4.2.2 Data Analysis 

Lattice strain and texture evolution (domain switching) were measured in multiple 

sample directions simultaneously. Captured Debye rings for each electric field were divided 

into azimuthal angles at 10 intervals to estimate intensity as a function of d-spacing for each 

angle [69] and thus obtain the multiaxial response of the material (the caking procedure is 

depicted in Figure 4-1). Since the electric field was applied along the η = 0º vector, the data 

obtained from the slice with its center along this direction represents the longitudinal 

specimen response. (Of course, the same can also be said for the η = 180º slice since its data 
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originates from essentially the same sample grains.) By a similar reasoning, the η = 90º and η 

= 270º slices yield the transverse response. Both whole-pattern Rietveld method [47] (using 

the GSAS software [48]) and single peak fitting were used in data analysis, the details of 

which are described in the following two sections.  

 

4.2.2.1 Rietveld Analysis 

In the Rietveld method, a least-squares refinement of a crystallographic model is 

performed until a satisfactory fit is achieved with the experimental data. This is a full-pattern 

analysis which offers several advantages over other methods.  For example, crystal structure 

and peak-profile parameters can be refined as part of one analysis, allowing for the 

determination of physical and chemical details of phases.  Also, fitting problems typically 

caused by peak overlap are nonexistent since all reflections are constructed independent of 

each other’s position on the diffraction pattern [49].  

The PZN-PZT [0.1Pb(Zn1/3Nb2/3O3)–0.9Pb(Zr1/2Ti1/2)O3] sample was characterized as 

a tetragonal structure with the P4mm (no.99) space group  [30, 41]. Assigning the Pb atom to 

the unit cell’s origin, (0,0,0), the position of Zr, Ti, Zn and Nb atoms were defined at (½, ½, 

zZr), (½, ½, zTi), (½, ½, zZn) and (½, ½, zNb), respectively, while the positions of the two 

oxygen atoms (O1 and O2) were (½, ½, zO1) and (½, 0, zO2). Thus, only variation in the z 

component was allowed during analysis. All possible permutations of the crystallographic 

parameters were systematically screened in the initial state (at electric field E = 0) in order to 

optimize the fitting pattern; a sample pattern is shown in Figure 4-2 (for η = 0º and at electric 

field E = 0 kV). After obtaining low fitting residuals, the same structure approximations were 

applied to the diffraction patterns for subsequent electric loads. 
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Figure 4-3 Observed and calculated diffraction patterns for the unpoled PZN-PZT sample (η = 0° at E = 0 kV). 

The crosses in the figure indicate the experimental data while the solid line is the Rietveld fit. The short vertical 

markers represent the positions of the predicted peaks. The lower plot is the difference curve between the 

observed and calculated diffraction profiles. The fitted background has been subtracted from both the observed 

and calculated intensities for clarity. The fitting residuals are Rwp = 7.3 % and Rp = 5.2 %, where Rwp is the 

weighted pattern residual and Rp is the minimum achievable pattern residual, respectively, both of which are 

satisfactory values. 

 

A similar methodology as explained above was also used in the analysis of BaTiO3. A 

sample diffraction pattern for this material is displayed in Figure 4-3.  
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Figure 4-4 Observed and calculated diffraction patterns for the unpoled BaTiO3 sample (η = 0° at E = 0 kV). 

The fitted background has been subtracted from both the observed and calculated intensities for clarity. The 

fitting residuals are Rwp = 5.4 % and Rp = 3.6 %, where Rwp is the weighted pattern residual and Rp is the 

minimum achievable pattern residual, respectively, both of which are satisfactory values. 

 

4.2.2.2 Single-Peak Analysis  

As an alternative to the Rietveld method, the single-peak method was also used to 

analyze the diffraction data. This technique does not take into account the whole pattern as 

does the Rietveld method; therefore, it is simpler in terms of the assumptions involved as it 

essentially just fits a profile function to a diffraction peak without building a complete 

crystallographic model. However, this approach offers distinct advantages when estimating 

lattice strains. Strain analysis using diffraction techniques involves measuring the change in 
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interplanar (d-) spacings so that lattice strain along a given crystallographic direction (hkl) is 

equivalent to the relative change in the corresponding d-spacing. Thus, the relative lattice 

strains for each reflecting plane (hkl) were calculated using Equation (4-1):  

0

0

hkl

hklhkl
hkl

d

dd 
         (4-1) 

where, hkld and 
0

hkld  are the strained and initial interplanar spacings of the corresponding 

plane, respectively. To prevent d-spacing error due to slight differences in reference peak 

locations, strain values were calculated independently for each azimuthal angle, with the 

initial interplanar spacing at each angle determined from the zero electric field diffraction 

patterns. 

 

4.3 Results and Discussion 

4.3.1 Rietveld and Single-Peak Methods 

Figure 4-4 shows the intensity changes of selected reflections in the longitudinal 

direction (parallel to the electric field) in response to applied field (35 kV/cm) compared to 

the initial state (0 kV/cm), indicating that domain switching occurs along the electric field. 

For example, as domains switch to reorient their c-axis along the field vector, the intensity of 

the (002) peak increases at the expense of the intensity of the (200) peak. The opposite 

behavior was observed in the transverse direction (not shown here). Although the (002) and 

(200) reflections are easily distinguishable from each other, an overlap region of abnormally 

large intensity exists between them. At first thought, this region could be related to a third 

peak amid the (002) and (200) reflections, which might correspond to a rhombohedral phase. 

This seems reasonable considering the fact that xPZN - (1-x)PZT is known to have a 

morphotropic phase boundary above x=0.2 [68]. However, when a tetragonal and 

rhombohedral dual-phase refinement was employed, the fitting did not improve, making the 

existence of a second phase unlikely. Additionally, the (111) peak did not show the splitting 

expected for a rhombohedral phase.  

Tetragonal crystals have {110} type domain walls and the ideal {110}-type twinning 

angle in a tetragonal structure is directly related to its c/a ratio [17]. However, domain 

evolution during the paraelectric to ferroelectric phase transition may be affected by certain 
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physical constraints such as dislocation/defects, causing a deviation from the ideal twinning 

angle and, consequently, strained regions [71, 72]. These strain fields cause diffuse scattering 

where for a single crystal, this scattering appears like a ―dog-bone‖ in reciprocal space 

between reflections of each domain. In case of a polycrystal, for all possible grain 

orientations, this scattering takes place concurrently and becomes one-dimensional, which 

manifests itself in the diffraction pattern as a broadening effect, presumably causing the 

observed increased intensity in the overlap region [37, 72, 73] between the tetragonal (h00) 

and (00h) peaks. Therefore, further data analysis was done using the single tetragonal phase, 

which yielded the best data fits. 

 

 

Figure 4-5 Excerpts from the PZN-PZT diffraction patterns parallel to the applied field in the (a) initial state (0 

kV); and (b) under electric field (35 kV/cm). 

 

Due to positive and negative charge center displacement, tetragonal ferroelectrics 

possess polarizations along {002} cubic unit-cell directions. Electric fields interact with these 

dipoles through the piezoelectric effect to stimulate large strains for domains with the 

orientation where their c-axis is parallel (or close to being parallel) with the field direction. 

Above the coercive field, ferroelectric domains will realign their c-axis with the electric field, 

so we would expect to observe large tensile strains during the electric loading. Lattice strain 

evolution in both the longitudinal and transverse directions during poling of the PZN-PZT 

specimen is shown in Figure 4-5. After unloading, some domains switch back (as evidenced 

by the decreasing strain values and relative intensity changes in the diffraction patterns), but 
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a typical hysteresis is observed as some failed to revert to their original state, leading to a 

remnant strain. Similar behavior was observed with successive poling cycles, with each 

subsequent cycle resulting in a higher remnant strain [74] and a smaller hysteresis loop than 

the previous.  

The trend in lattice strain along the c-axis in the parallel and perpendicular directions 

fall within general expectations for piezoelectric materials: the strain along the c-axis parallel 

to the field is positive and increasing with field, and the average strain along the c-axis 

perpendicular to the field is negative and decreasing with decreasing field.  Along the a-axis, 

however, lattice strain perpendicular to the field is positive.  This is in contradiction with 

what would normally be expected from piezoelectrics, with strain in the transverse direction 

generally being negative (compressive).  However, at close inspection it can be observed that 

the lattice strain of the a-axis perpendicular to the field is decreasing with increasing electric 

field.  So while the absolute strain values are not actually negative, the sample is indeed 

compressing to some extent.  Therefore, the reason for the absolute values of lattice strain 

being positive is most likely due to an error in the analysis. Furthermore, data associated with 

the a-axis perpendicular to the field is quite close to zero strain, meaning that it is reasonable 

to assume that a small erroneous shift in the data could move the entire small butterfly loop 

from the negative-strain range to the positive-strain range.  

Comparing the results of the poling strains for η = 0° and η = 90°, it is evident that the 

nature of the material response parallel to the electric field is quite different than that 

perpendicular to the field. The relative order of strains exhibited by each pseudo-cubic 

diffraction peak in the tensile η = 0° data are not reproduced in the compressive η = 90° 

results, suggesting significant strain anisotropy. The strain anisotropy of the material was 

found to be amplified by 90º domain switching that begins just above the coercive field. 

Similarly, strain evolution was also shown in Figure 4-6 for BaTiO3 along its a- and c-axes. 

While both materials exhibit the expected tensile strain along the field , the transverse data 

for c-axis is rather ambiguous. This was the first indication that there might be problems with 

the use of the Rietveld method in ferroelectrics. This observation led to further diffraction 

data analyses to be discussed in the following sections. 
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Figure 4-6  Lattice strain evolution along the (a) a-axis and (b) c-axis of PZN-PZT unit cells as a function of 

applied electric field in the directions parallel (η = 0º) and perpendicular (η = 90º) to the electric field. The 

arrows indicate the progression of the poling process. Note the discrepancy in lattice strains in (a) vs. (b) by 

their different y scales. 

(b) 

(a) 
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Figure 4-7 Lattice strain evolution in the electric field direction for BaTiO3. 

 

Although only the poling loops parallel and perpendicular to the applied field vector 

are shown in Figure 4-5, 18 different poling loops were actually obtained from only one 

sample with the two-dimensional XRD technique employed in this study. This means strains 

are measured simultaneously along 18 independent scattering vectors. As an example, strain 

data for PZN-PZT along the a-axis of the crystal from the initial poling process is displayed 

in Figure 4-7-a. Each curve represents the angle with respect to the direction of the applied 

field.  It was seen that, strain moderately increases at low fields, and begins to rapidly 

increase above the coercive field (when domain switching accelerates), with more prominent 

increases occurring at angles towards which the domains are switching. As explained above, 

lattice strain along the a-axis is tensile in perpendicular (and close) directions to the applied 

field. 

The maximum tensile strain in the poled PZT-PZN was 0.065% and along the electric 

field, whereas the minimum strain was along the perpendicular direction, suggesting the 

electric field was well aligned with respect to the sample and beam coordinate systems. 



62 

Induced strain along the c-axis was also measured as shown in Figure 4-7-b.  For η < 

40°, the electric field leads to tensile strains corresponding to the elongation of the unit cell c-

axis. The maximum tensile strain observed in the poled material was 0.20% and occurs along 

the electric field at η = 0°. Grains with c-axes at angles η > 40° experience compressive 

strains. Note that the curve corresponding to η = 90° does display the maximum compressive 

strains achieved after poling.  

Multiaxial electrical switching behavior was investigated in other studies, for 

example, by electric displacement measurement of poled polycrystalline PZT specimens cut 

at several different orientations [44] and by ex-situ diffraction experiments while several PZT 

specimens of different compositions were rotated around the incident X-ray beam direction 

[37]. On the contrary, in the present study only one measurement was taken on a single 

specimen and, due to the advantage of the two-dimensional diffraction technique, multiaxial 

in-situ lattice strain information was obtained at once. Therefore, as can be seen in Figure 4-

7, the prominent feature of this technique is its ability to quickly and conveniently investigate 

multiaxial crystallographic changes in ferroelectrics during poling. 
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Figure 4-7 Distribution of lattice strains (in PZN-PZT as a function of angle with respect to the electric field 

along (a) the a-axis, and (b) the c-axis of the unit cell, showing orientation dependence of the sample response.   

 

Figure 4-9-(a) and (b) compares results from the Rietveld and single-peak fitting of 

PZN-PZT and BaTiO3, respectively during the application of electric field, where scattering 

vector was parallel to the applied field. If both methods were to yield identical results, then 

―Rietveld a‖ would be identical to ―sp 200,‖ ―Rietveld c‖ would be the same as ―sp 002,‖ 

―Rietveld 111‖ to ―sp 111,‖ and so on. While this was indeed the case at low electric fields, 

(a) 

(b) 
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significant discrepancies between the Rietveld and single-peak data developed at higher 

fields. For instance, the ―sp 002‖ strain in PZN-PZT is quite different than the ―Rietveld c.‖ 

In fact, the former becomes negative at high fields, which is counterintuitive considering the 

piezoelectric effect. One reason for the observation of negative strain is the fact that, at 

higher electric fields, the intensity of certain peaks becomes very low and indistinguishable 

from background. This, of course, increases the fitting error in the single-peak analysis. 

Rietveld, on the other hand, avoids this problem since it is not ignorant to the rest of the 

diffraction pattern and reduces the contributions of low intensity peaks to the refined 

crystallographic model. As such, the Rietveld method is more robust in dealing with 

substantial peak intensity fluctuations. Nevertheless, at low fields, Rietveld method also gave 

relatively low negative strain values due to high anisotropy in the material, and a new 

approach was needed to properly account for strain anisotropy while employing Rietveld: a 

modified (or ―constrained‖) Rietveld method, which includes an elastic anisotropy term, was 

used for further analysis of diffraction data as explained in §4.3.2.  

Another important observation is that the largest non-linear lattice strain was 

measured along the (111) planes, during which time the (002) plane strains were measured to 

be relatively weaker than other planes; this behavior is consistent with what was found in 

other studies [37, 76].  
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Figure 4-8 Lattice strain evolution under electric field where scattering vectors of the (111), (200) and (220) 

planes of (a) PZN-PZT and (b) BaTiO3 are parallel to the field. Strains were calculated using two methods: 

single-peak fitting (labeled ―sp‖) and standard Rietveld (labeled ―Rietveld‖). 

 

(b) 

(a) 
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4.3.2 Constrained Rietveld 

It is known that, for a polycrystal with any crystal symmetry, stiffness may be 

isotropic at the macroscopic level. However, individual grains in the polycrystal are not 

elastically isotropic for most materials, including PZN-PZT and BaTiO3. When these 

materials are subjected to a homogeneous stress on their surfaces, the strains vary from point 

to point within the material due to the different elastic constants along any given crystal 

direction. Hence εhkl is a function of h, k, and l. To include this hkl-dependent anisotropy, a 

fitting parameter γ is introduced into Rietveld, which shifts the position of each reflection by 

a factor of γAhkl, where for a cubic structure )/()( 222222222 lkhlklhkhAhkl  from 

the cosines of the angle for the unit vector of a given (hkl) [51, 52]. The following equation 

represents the total lattice strain in terms of both isotropic and anisotropic components: 

 


canisotropi

hkl

isotropic

hkl

hklhkl

hkl A
d

dd
 





0

0

    (4-2) 

 

The parameter γ in Equation (4-2) is a measure of strain anisotropy. When γ = 0 

lattice strains obtained from Rietveld analysis will be hkl-independent again (i.e., isotropic). 

The larger the value of γ, the larger the discrepancy will be between the values of lattice 

strains for different hkl’s. Therefore, the refinement of γ together with the lattice constants 

allows the inclusion of elastic strain anisotropy in the Rietveld analysis using the GSAS 

software. However, in GSAS this function is only applicable for materials of cubic symmetry. 

This assumption can be justified in the present work in lieu of the fact that the c/a ratio in 

PZN-PZT and BaTiO3 are close to 1 (1.1 and 1.03, respectively). Although it involves a 

strong assumption, this modified (constrained) Rietveld method, with the exception of c-axis 

strains at very low fields, yielded significant improvements in the results (Figure 4-10) 

compared to those from the regular Rietveld method. In conclusion, the new constrained 

Rietveld analysis of tetragonal PZT-PZN and BaTiO3 offers a useful compromise between 

the robustness of the whole-pattern Rietveld method and the strain anisotropy inherent in 

single-peak fitting. 
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Figure 4-9 Field-induced lattice strain evolution in (a) PZN-PZT, and (b) BaTiO3 in the direction parallel to the 

applied electric field. (For clarity only some representative values are shown.) Lattice strains were estimated by 

the single-peak fitting (labeled ―sp‖) and constrained Rietveld (labeled ―c-Rietveld‖) methods. 

(a) 

(b) 
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Another advantage offered by the constrained Rietveld method is that it provides a 

single quantitative measure of the evolution of strain anisotropy during loading. Figure 4-11 

shows the change in γ as a function of electric field for the PZN-PZT sample. It is clear that 

the anisotropy reflects the same trend as lattice strain evolution and the anisotropy increases 

with the applied field, esp. during domain switching, and decreases when the applied field is 

gradually decreased. Upon returning to the initial state (0 field), increased anisotropy 

observed – remnant polarization and reverse loading causes domains contributing to remnant 

polarization to ―switch back,‖ followed by increasing anisotropy (presumably in the opposite 

polarization direction). 

 



 

 

Figure 4-10 The evolution of the Rietveld anisotropy parameter () in PZN-PZT, along a direction parallel to 

the applied electric field. (The results shown here were obtained during the second loading cycle.) 

 

4.3.3 Texture Evolution 

In ferroelectric materials, alignment of domains during electromechanical loading 

induces a macroscopic material texture. For instance, the ceramic material studied here 

exhibited significant changes in crystallographic texture after electrical poling. Generally, the 
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most drastic changes were observed in twin reflections (doublets). Figure 4-12 indicates that 

for a given applied field, due to domain switching, the relative integral intensity of the (112) 

peak is increasing while that of the (211) peak is decreasing as the azimuthal angle 

approaches the electric field direction. 
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Figure 4-11 XRD spectra for PZN-PZT under electric field (35 kV/cm) showing relative intensities of the 

(211)/(112) doublet of as a function of the azimuthal angle, η, from 0º to 90º. 

 

This change in integrated intensity along the azimuth direction of Debye rings is a 

clear sign of texture evolution. In this study, one texture indicator, Multiples of Random 

Distribution (MRD), was used to more explicitly track the texture evolution [58]. MRD is 

defined as the quantity of a specific orientation relative to the presence of the same 

orientation in a random (grain) distribution. For example, in the initial unpoled (random) 

state, 1/3 of all domains should be of the (002) type; therefore, the MRD for (002) is defined 

as: 

)(2
3

200002

002

002
RR

R
MRD


      (4-3) 

where, Rhkl is the ratio of integrated area of a given hkl peak from a textured sample to the 

integrated intensity of the same peak in a randomly oriented sample. MRD values range from 
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0 to 3, where R002 = R200 (resulting in MRD = 1) indicates a randomly orientated specimen 

(i.e., no texture). It should be noted that this equation defines the intensities relative to the 

samples’ texture-free state, and as such, assuming that the samples used in the present study 

were initially randomly oriented, only predicts the texture induced during loading. To ensure 

this assumption is valid, initially unpoled specimens were employed in this study. Peak 

intensity changes were extracted from single peak fitting. At the maximum electric field (~35 

kV/cm), the fraction of the switched domains was calculated to be around 0.05-0.07. This 

value is somewhat lower than that previously reported for PZT under similar electric fields: 

0.16-0.23 [37] or 0.13 [41]. This result suggests that the PZN-PZT sample underwent limited 

domain switching and hence developed limited texture. When the electric field was removed, 

the sample exhibited remnant texture, which was even higher after applying the second 

electric loading cycle (Figure 4-13).  
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Figure 4-12 Texture evolution in PZN-PZT induced by electric field during the second cycle of electrical 

loading. The field was parallel to the η = 0º azimuth. The MRD (multiples of random distribution) values were 

obtained from the ratio of the integrated peak areas in single-peak (SP) analysis. (Solid trend lines were fitted to 

each data set to guide the eye.) 

 

Figure 4-12 shows that the amount of non-180º domain reorientation is dependent on 

the applied electric field. With increasing electric field, the (002) domain volume fractions 

increase at angles near the poling axis (η < 45°). At the angle where MRD002 = 1, the fraction 

of (002) domains is equal to that of a random distribution, and this point is defined as a 

critical angle [58, 76], which was found to be approximately 47° (Figure 4-13) for PZN-

PZT. The theoretical critical angle for a tetragonal perovskite structure was calculated 

between 45° and 54.7° for a completely polarized polycrystalline material [76]. This angular 

dependence indicates that non-180º domain wall motion is energetically favorable when the 

polar axis and electric field are parallel. Above 47º the MRD values gradually decreased with 

increasing angle from the electric field.  
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In addition to indicating the extent of domain switching, MRD can also be considered 

a fairly accurate metric for the degree of anisotropy in a bulk material (i.e. the further MRD 

departs from a value of 1.0, the more anisotropic the material). Calculated MRD values 

shown in Figure 4-14 indicate a behavior qualitatively similar to that of the lattice strain 

evolution. The fact that the degree of switching monitored by MRD and the strain anisotropy 

predicted by Rietveld so well corroborate each other (Figure 4-14-b) at all field values is 

especially interesting and gratifying, considering these two approaches are based on 

fundamentally different methods of calculation. We view this as further evidence that the 

constrained Rietveld method using a cubic approximation is applicable to PZN-PZT’s near-

cubic tetragonal unit cell (c/a = 1.1).  
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 Figure 4-13 (a) Texture evolution as a function of applied electric field in PZN-PZT, both parallel 

(longitudinal) and perpendicular (transverse) to applied electric field, during the second loading cycle. (b) 

Texture and strain anisotropy evolution from two different methods.  

(b) 

(a) 
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Texture evolution in BaTiO3 obtained via a similar approach is exhibited in Figure 4-

14. Domain switching appears to start right above 6 kV/cm, a lower value when compared 

with that for PZN-PZT (~8 kV/cm) indicating that domain switching requires a smaller 

driving force in BaTiO3. At the electric field value of ~45 kV/cm, the MRD is above 1.4 

which is again higher than that of PZN-PZT at the same field. Another discrepancy between 

the two materials is in the pace of texture evolution. A more gradual progression of domain 

switching occurs until 20 kV/cm in BaTiO3. Lastly, upon removal of the applied field, more 

residual texture was observed in BaTiO3 in comparison to PZN-PZT. Note that Figure 4-

15shows only one cycle for BaTiO3 as compared to a second cycle in PZN-PZT. A larger 

amount of domain wall motion in BaTiO3 as compared with PZT-PZN can be explained from 

the crystallographic lattice aspect ratios of these materials. Domain wall motion creates 

additional stress in the material as a result of the reorientation of crystallographic unit cells. 

A larger lattice aspect ratio (1.1 for PZN-PZT compared to 1.03 for BaTiO3) is expected to 

result in greater local stress during domain wall motion and will therefore restrict domain 

wall motion in PZN-PZT.  
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Figure 4-14 Texture evolution in BaTiO3 induced by electric field during the second cycle of electrical loading. 

The field was parallel to the η = 0º azimuth. The MRD (multiples of random distribution) values were obtained 

from the ratio of the integrated peak areas in single-peak (SP) analysis. (Solid trend lines were fitted to each 

data set to guide the eye.) 

 

The texture data presented so far employed single-peak fitting to extract peak 

intensities. Alternatively, one can obtain pole figures. To quantify texture with pole figures, 

the orientation distribution function (ODF) was refined using a fourth-order spherical 

harmonics function and a single phase tetragonal (space group: P4mm) unit cell model using 

the Materials Analysis Using Diffraction (MAUD, Version 2.075-2009) software. From the 

results of this analysis, initial texture prior to electric field was found to be indeed random 

with MRD values varying between 0.98 and 1.01. Pole figures were extracted from the ODFs 

for the (002) and (200) crystallographic directions (Figure 4-16), depicted in the units of 

MRDs, where the center of the figures corresponds to the longitudinal direction, which is 

parallel to applied field direction. (111) pole intensity remained close to 1, as in a random 

oriented material.  
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(a) (b)
 

 

Figure 4-15 Pole figures for (002) and (200) planes of PZN-PZT at (a) 35 kV/cm, and (b) 49 kV/cm showing 

increment in texture at high loading levels (Each was determined from a single detector image. Prior to analysis 

the images were first processed by Fit2D and data was integrated into 36 single patterns with 10º intervals. 

These patterns represented various angles to the electric field direction.)  

 

4.4 Conclusions 

High energy X-ray diffraction was employed to probe the complex constitutive 

behavior of polycrystalline ferroelectric materials in various sample orientations. PZN-PZT 

and BaTiO3 ceramics were subjected to a cyclic bipolar electrical field while diffraction 

patterns were taken. The ability to measure domain switching and lattice strain evolution 

simultaneously along multiple material axes was a tremendous advantage, since ferroelectric 

materials exhibit significant anisotropic behavior. The results presented here offer a unique 

coupled strain/domain switching dataset on the multiaxial constitutive behavior of 

ferroelectric ceramics, PZN-PZT and BaTiO3. In addition, texture analysis suggests that non-

180° domain switching is coupled with lattice strain evolution during uniaxial electrical 

loading.   

Both materials exhibited significant changes in crystallographic texture due to 

changing domain populations during poling. These changes were ascertained to be dependent 

on sample orientations with respect to applied field. When two materials are compared, it 

was observed that domain switching in PZN-PZT was activated at higher electric fields 

resulting in lower MRD values compared to BaTiO3 indicating ―harder‖ domain switching.  

Complete structural characterization was challenging due to the lack of an appropriate 

diffraction pattern analysis method — single-peak analysis fails at low peak intensities, 

especially after domain switching at higher load levels, while the Rietveld method does not 
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adequately account for lattice strain anisotropy, although it overcomes the low intensity 

problem due to its whole-pattern analysis. To better account for the elastic anisotropy of 

ferroelectrics, the constant stress (Reuss) approximation was employed within Rietveld, and 

although this approach has its flaws, the results were greatly improved.  Therefore, it was 

concluded that this new approach offers a better estimate of the elastic anisotropy of both 

materials. 

A full characterization of ferroelectric constitutive behavior requires both electrical 

loading and mechanical loading. To achieve this, another study employed four-point bending 

experiments. Chapter 5 describes these experiments conducted under synchrotron radiation 

and compares the results obtained from experiments with the mechanics model (SCM) 

described in Chapter 3. Building upon the recent work of Rogan et al. and Motahari et al. [9, 

11]  (which employed mostly uniaxial compression), the present study chose four-point 

bending as a more attractive mechanical loading method. 
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CHAPTER 5: IN-SITU FERROELASTIC DOMAIN SWITCHING EVOLUTION 

STUDY OF POLYCRYSTALLINE BaTiO3 USING SYNCHROTRON X-RAY 

DIFFRACTION AND SELF-CONSISTENT MODELING 

 

5.1 Introduction 

Ferroelectric materials, with their unique electro-mechanical coupling properties, are 

widely used in a number of technological applications (e.g., as sensors, actuators, etc.), most 

notably those that require short response times, high-precision positioning and considerable 

actuation forces. BaTiO3 is one of the most ubiquitously studied ferroelectric materials due to 

its simple structure, easy manufacturability into complex geometries, and good piezoelectric 

properties [5, 23].  

BaTiO3 is typically manufactured via conventional ceramic processing techniques, 

which results in a polycrystalline microstructure containing a large number of grains with 

numerous domains [5]. The existence of such a large number of grains and domains, coupled 

with the effects of neighboring grains and boundaries, produces a unique and complex 

electro-mechanical constitutive material response. As a result of the randomized domain 

structure the average polarization in each grain is relatively low [12, 21] and randomly 

oriented grains in a polycrystal impart negligible effective polarization on the bulk material. 

However, with BaTiO3, as in most polycrystalline ferroelectric ceramics, the application of a 

strong electric field can reorient domains along the direction of the field and bring the bulk 

material into a polar state, resulting in a final poled ferroelectric with enhanced piezoelectric 

properties [21]. Under an applied electric or mechanical field in a different direction, this 

remnant polarization direction will gradually switch—a result of microscopic domain 

switching. More specifically, when domain switching initiates in one grain, local 

electromechanical boundary conditions change due to grain interactions, and this change 

occurs until a more stable configuration is reached [21]. Hence, the ability to switch 

polarization direction is closely related to domain wall motion and mechanical strain of 

domains that are not oriented 180° from the field (180° switching in a unit cell has no effect 

on a domain’s physical structure since reorientation is simply based on polarization 

inversion). 
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Ferroelectric materials are subject to complex loading conditions with combined 

electrical and mechanical forces in their technological implementations. Therefore, a 

complete characterization of the ferroelectric constitutive behavior has to employ 

electromechanical stimuli to approach real life conditions. While many measurements have 

been conducted on the macroscopic (bulk) behavior of ferroelectrics [4, 8, 12, 16, 17, 21], 

there is a significant paucity of multiaxial in-situ internal strain and texture data. Yet, this 

information is critical to the development of accurate constitutive models, and it can only be 

provided by diffraction techniques that directly measure internal lattice strain and texture. 

Past work of this kind mostly applied uniaxial loading to investigate the mechanical response 

of materials [41-43], but in the present study a four-point bending geometry was employed, 

which offers several distinct advantages. For example, this geometry involves multiaxial 

loading, which is advantageous in characterizing deformation behavior. In addition, 

stress/strain gradients along the sample height can be measured using a narrow X-ray beam, 

yielding copious amounts of data at small stress increments that can give insight into the 

initiation of domain switching, something that is nearly impossible to achieve under uniaxial 

compression. Bending geometry has indeed been used elsewhere to study mechanical and 

electromechanical properties of ferroelectric materials [77-80].  

Often, low energy XRD experiments were conducted which are confined to near-

surface regions of the sample due to limited penetration depth, giving an incomplete 

description of the electromechanical response and potentially flawed data since sample 

preparation may alter the surface of the ferroelectric material. On the other hand, high energy 

synchrotron X-rays achieve maximum penetration and can probe crystallographic 

information in multiple sample directions, thus potentially providing further insight into the 

in-situ constitutive behavior of polycrystalline ferroelectrics, like BaTiO3.  

Detailed data interpretation can be achieved using mechanics models, and numerous 

such approaches are available to describe the constitutive behavior of ferroelectrics (e.g., the 

finite element method). But the self-consistent model (SCM) is best suited for 

crystallographic modeling as many output can be directly compared to diffraction data (e.g. 

plane-specific lattice strain and grain orientation distribution or texture). SCM is based on 

Eshelby’s inclusion method, which assumes a polycrystal made of ellipsoidal grains 
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embedded in a matrix, called the homogeneous equivalent medium (HEM), that derives its 

properties from the average of individual grain responses [66]. Recently, Huber et al. [12] 

proposed a SCM for ferroelectrics. This model was further improved by Motahari et al. [43] 

who added the capacity to, among other things, study hkl-dependent properties and track the 

number of domains contributing to a selected reflection. Therefore, this improved SCM was 

employed in this study to interpret diffraction data. To consider hkl-dependent properties of 

the material (e.g., lattice strains); the domains which satisfy the reflection condition should 

be selected to be averaged over. In this model a full set of linear elastic, piezoelectric and 

dielectric coefficients are required since the constraint imposed on each crystal by 

surrounding material needs to be calculated to determine the deformation mechanisms of 

ferroelectrics at the bulk, i.e., within a polycrystalline average. 

 

5.2 Experimental 

5.2.1 Materials 

BaTiO3 was chosen in this study as a robust and versatile material with well-known 

elastic and dielectric constants [53]. Tetragonal phase BaTiO3 specimens (ITT Corporation, 

Salt Lake City, Utah; grade: EC-55) were obtained in bulk form (Figure 5-1 shows average). 

Samples were cut using a diamond saw to uniform dimensions of 3 x 3.4 x 25 mm
3
, polished 

to obtain flat and debris-free surfaces, and annealed at 650 C for 2 hours to relieve residual 

stresses. All samples were gold sputtered prior to applying an electric field. Three specimens 

were poled with an electric field of 2 kV for 40 min perpendicular to the specimen length 

axis to determine the effect of electrical poling on the specimens (vide infra).  

 

5.2.2 Experimental Procedure and Data Analysis 

In-situ diffraction experiments were performed by mounting samples in a four-point 

bending jig, which was positioned (Figure 5-2) in the beam path of ~80 keV (yielding a 

wavelength of ~0.155 Å [81]) synchrotron X-rays. All experiments were done at Station 1-

ID of the Advanced Photon Source (APS), Argonne National Laboratory, Argonne, IL. 

Mechanical loading was applied perpendicular to the poling axis with a load cell (MLC-2K 

Transducer Technologies) and a millivolt source meter (Kiethley 2400).  
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Experiments were conducted in multiple steps: samples were loaded at various 

increments up to 45 MPa, unloaded to a preload stress of 2-3 MPa, and loaded again at 

increments until fracture, which varied from 70 to 94 MPa. In-situ diffraction data was 

collected with an X-ray beam (collimated to area of 0.150x0.150 mm
2
) at a fixed position, 

directed perpendicular to the applied stress direction.  The vertical position of the sample 

stage was adjustable, allowing diffraction data to be collected from the top (tensile) to the 

bottom (compressive) edge of a BaTiO3 sample at the given stress intervals. At the same 

time, the samples were exposed to X-rays for 3-4 seconds and diffraction patterns were 

collected with a digital image plate detector (effective pixel size of 0.150 mm) that was 

located 1607 mm from the sample. Macroscopic sample strain was measured with a strain 

gauge (OMEGA Engineering, INC., Stamford, Connecticut; KFG Series) attached to the top 

(tensile) face of the samples. 

A CeO2 powder standard was used to calibrate the detector orientation and beam 

center position [70]; careful calibration was especially critical in this study as maximum 

strain was often very low. CeO2 was also used as an ―internal standard‖ during experiments 

by attaching it to sample surface so that any sample movement (which would change the 

sample-to-detector distance, a major source of systematic error) could be quantified. Both the 

calibration analysis and data reduction were processed in the Fit-2D software [69], and these 

were analyzed at each loading level with a Pseudo-Voigt profile function and an optimization 

routine [82] within MATLAB software (Ver. 7.6, The Math Works, Inc.). An iterative 

refinement of the relevant material and instrument parameters was employed until the 

differences between the calculated spectra and the observed spectra were minimized.  

Characterization of the multiaxial specimen response perpendicular to the X-ray beam 

was done by dividing the Debye rings into azimuthal ―cake slices‖ to obtain directionally-

dependent diffraction patterns (Figure 5-2). For example, the data obtained from the slice 

with its center along the η = 0º direction represents the longitudinal specimen response 

(parallel to the loading axis), while the η = 90º slice yields the transverse response 

(perpendicular to the loading axis). The mechanical load-induced lattice strains were then 

calculated from the change in interplanar (d-) spacing for corresponding planes, relative to 

the lattice plane spacing of the initial state (i.e., stress-free). For symmetrically equivalent 
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azimuth angles, which differ by 180 (for example 30 and 210), strain values were 

averaged.  

 

 

 

 

 

Figure 5-1 Optical microscopy image of specimen with grain size of ~10micron. A mixture of HCl, HNO3 and 

water was applied to etch the sample by. 
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Figure 5-2 Schematic of the four-point bending geometry employed at APS: bending fixture as it faced the X-

ray beam. Strain gauge is on the top surface where tensile strain is expected. 

 

Elastic compliance parameters used in this study for single crystal BaTiO3 (in Voigt 

notation) are: S11= 8.05 x 10
-12

 m
2
/N, S12= -2.35 x 10

-12
 m

2
/N, S33 = 15.7 x 10

-12
 m

2
/N, S13 = -

5.24 x 10
-12

 m
2
/N, S66 = 8.84 x 10

-12
 m

2
/N, S44 = 18.4x 10

-12
 m

2
/N, and S16 = 0 m

2
/N  (S16 

parameter is always 0 for the tetragonal P4mm structure) [50, 53]. The bending stress (bend) 

on the outer surfaces of the sample was computed from beam theory using the applied load 

(F), the inner and outer spans of the fixture (l1 = 20 mm, l2 = 40 mm, respectively), and the 

sample cross section (width, b and height, h) [83], expressed as: 

 

2

12

2

)(3

bh

llF
bend


          (5-1) 
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Evolution of elastic strain with applied load for each plane was also calculated from the  

Hooke’s law (where, Sijkl is the compliance tensor of BaTiO3 [50]):                  

 

klijklij S                                 (5-2) 

 

Domain switching was observed from relative changes in diffraction peak intensities. 

For each azimuthal angle, the Multiples of a Random Distribution (MRD), shown in Equation 

(5-3), was calculated from integrated intensities of the (002) and (200) peaks at a given load 

(Ihkl) relative to the integrated intensity of the same peak in a randomly oriented sample (Ihkl
R
)  

[24]. An MRD value of 1 would indicate a random grain distribution or equal probability of 

all domain orientations, and an MRD of 3 would indicate that all c-domains are oriented 

parallel to the measured direction. 
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         (5-3) 

 

Another important and more rigorous texture analysis method by spherical harmonics was 

applied and the results were compared in terms of MRD values resulting representative 

aspect. 

 

5.3 Results and Discussion 

5.3.1 Strain Evolution 

In Figure 5-3, the lattice strain gradients for the (111), (200) and (002) planes are 

plotted as a function of the sampling location along the loading axis (sample height) from the 

top (tensile) to the bottom (compressive) edge of the BaTiO3 sample. An interesting 

observation in Figure 5-3 (positive and negative values denote tension and compression, 

respectively) is the nearly 2:1 strain anisotropy between the tensile and compressive edges of 

the sample for lattice strains in the (002)/(200) doublet while any significant anisotropy in the 

(111) lattice strains was not seen.  
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The tension/compression strain anisotropy has been observed in ferroelectrics before 

[77-80] (similar to the present case: more strain under tension than compression) and has 

been explained by the fact that more domains are expected to switch under tensile stress. A 

simple explanation for this anisotropy is as follows. When a tensile stress is applied, domains 

switch and tend to align with the stress direction; under compression, the domains switch in 

the direction perpendicular to the loading direction. For a tetragonal material, such as BaTiO3 

with six possible ferroelectric domain orientations, tension will affect four domain 

orientations perpendicular to the loading axis. Under compression, on the other hand, the two 

orientations parallel to the load can change to a direction that is perpendicular to the loading 

direction. Thus, more deformation is expected in tension than in compression. 

 

 

 

Figure 5-3 Lattice strain variation along the applied stress (94 MPa) direction from the top (tensile, 

distance=0.2 mm) to the bottom (compressive, distance = 3.1 mm) edge of a BaTiO3 sample in bending. 
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Lattice strain evolution in BaTiO3 under stress was obtained from: (i) Hooke’s law 

(the lattice strains for domains with different hkl reflections were calculated as if the system 

behaved elastically throughout the loading), (ii) macroscopic stress-strain data from strain 

gages (tensile) and (iii) diffraction data (tensile and compressive). Results are depicted in 

Figure 5-4 following the first loading/unloading cycle so that initial strain starts from non-

zero values. The macroscopic strain was measured to be 0.048% in response to an applied 

stress of 42 MPa and upon removal of load the strain did not relax and the specimen retained 

remnant strain of 0.025% indicating hysteresis behavior (not shown here). It is also intriguing 

as shown in Figure 3 that the residual strain after removing load is different for macroscopic 

compared to lattice strain values. An evidence of domain switching was observed since the 

initial elastic region was found to be very small, below 15 MPa. As in Figure 5-3, lattice 

strain evolution along the loading axis for the compressive and tensile zones of the specimen 

was nonsymmetric. 
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Figure 5-4 Strain evolution in BaTiO3 in bending obtained from (i) using Hooke’s law (―e‖), (ii) macroscopic 

(tensile) stress-strain data from strain gages, (iii) diffraction data (via single-peak, SP, analysis) for (a) (002); 

(b) (200); and (c) (111) planes. The plots exhibit both the tensile (―t‖) and compressive (―c‖) strain versus the 

applied (absolute) stress. (The lines connecting the data points are added to guide the eye data points represent 

second loading after first loading/unloading cycle.) 
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The nonlinear behavior of macroscopic strain above 25 MPa suggests the onset of 

domain switching at these low stress values. In comparison, under pure elastic deformation 

(using the BaTiO3 elastic constants [53]), the same lattice planes were estimated to exhibit 

the following strain values at 94 MPa: εelas(111) ~ 580, εelas(002) ~ 1240, and εelas(200) ~ 700 

strain (= 10
-6

). These values are significantly larger than the measured  lattice strains. The 

latter are also less than the macroscopic strain (= 1200 strain for an unpoled sample) 

obtained from the strain gauge. It is also seen in Figure 5-4-c that domains contributing to the 

(111) reflection exhibit minimal changes under both tensile and compressive forces 

compared to the elastic calculation suggesting not apparent domain switching due to 

geometrical considerations. For other hkl’s, elastic (calculated) strain is much higher than 

lattice strain. This suggests that the domains that switch experience ―hardening‖ (i.e., 

increasing strain-stress curve slopes or apparent stiffness) under increasing applied stress. 

This hardening is even more pronounced under compressive load. The stress in each domain 

is linearly related to the lattice strain of those domains, so in some sense this figure shows the 

evolution of domain stress as a function of applied stress.  

When the material was subjected to poling prior to mechanical loading (where poling 

and mechanical loading axes were perpendicular to each other), compared to a non-textured 

(unpoled) specimen, a higher degree of domain switching was observed at the early stages of 

loading since some domains were already oriented in the loading direction. For instance, the 

measured strain for prepoled and unpoled specimens was ~400 and ~200 strain, 

respectively, along an applied stress of 70 MPa.  

 

5.3.2 Texture Formation with Non-180º Domain Switching 

Sections of diffraction patterns around the (002)/(200) peaks from unpoled and pre-

poled samples are redrawn in Figure 5-5 as a function of mechanical loading and at different 

sample directions or locations. The integrated peak intensities for each position and load 

were determined from single-peak fitting. For the initially unpoled sample, the ratio of (002) 

to (200) peak intensities was found about to be approximately 1/3, leading to MRD values of 

approximately 1 and confirming a random distribution of domains prior to the loading. When 

the loading was applied, the intensity of the (002) peak increased at the expense of the 
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intensity of the (200) peak for tensile stress side of the sample while it decreased for the 

compressive side along the loading direction. However an opposite relationship was observed 

for the perpendicular direction. These observations can be attributed to reorientation of 

domains whose c-axis was closest to the loading direction under tensile stress and they 

oriented perpendicular to the loading axis due to compressive stress. 
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Figure 5-5 Intensity changes as a function of applied load along different axes of the (a) unpoled and (b) 

prepoled samples. Parallel to the loading axis: Increasing tensile load results in domain switching towards the 

loading direction, as evidenced by the changing intensities of the (200)/(002) doublet. Switching away from the 

loading direction observed under compression and perpendicular to the loading axis shows the expected, 

opposite domain switching behavior. Notice also that for the poled sample, the initial intensity ratios are a 

function of sample orientation. 

(a) 

(b) 
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For the prepoled specimen, the initial relative intensities exhibited a stronger 

dependency on the sample direction and the intensity of (002) reflection seemed much lower 

along the loading axis than that of the perpendicular direction. This proves a preferred 

orientation in the sample prior to mechanical loading. It was seen that the degree of domain 

switching is significantly increased in the poled sample compared to the random (as-

received) state of the sample. Comparing the behavior for η = 0° and η = 90° (along the 

loading axis/scattering vector and the perpendicular direction, respectively) material response 

parallel to the electric field is quite different than that in the perpendicular direction. This is 

further evidence of the anisotropic nature of ferroelectric ceramics. 

MRD values of both samples were calculated for different loading levels, and to better 

observe the evolution of domain texture, changes in both samples are represented as a 

function of sample directions in Figures 5-6-a and 5-6-b, respectively. Orientation space is 

shown only up to   = 90º due to sample symmetry. 

It is expected that the fraction of (002) orientations increases parallel to the applied 

load and decreases perpendicular to the loading axis. The results clearly indicate that, 

(Figures 5-6-a and 5-6-b) the change in domain fractions increases with mechanical load for 

the tensile zone in the vicinity of the loading axis and reaches a maximum of 1.48 (at 94 

MPa). Smaller changes are observed in the compressive zone. Moreover, in the transverse 

direction (=90º) the opposite behavior is seen. Upon removal of load, only a certain amount 

of domains switch back while the rest keep the new configuration, leading to a remnant 

texture. It was also observed that poling prior to mechanical loading resulted in higher 

residual texture. 

When a tetragonal material is poled perpendicularly to the loading axis, if the 

polarization is complete, all six orientations may be expected to switch their directions close 

to the loading direction. However, in real materials the poling is never complete since inter-

domain and inter-grain constraints prevent full realignment of all domains along the electric 

field and give a lower effective polarization [8, 21, 22, 23, 34]. Thus, deformation is 

expected to be larger in the poled sample than the unpoled sample. The results are in a good 

agreement with this statement as presented in Figure 5-6-b. On the other hand, prepoling 

procedure led to a higher material response under similar load conditions. 
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Figure 5-6 Texture evolution as MRD (multiples of random distribution) of unpoled (a) and (b) and poled (c) 

and (d) BaTiO3 samples induced by mechanical loading in four-point bending. The load was parallel along the η 

= 0º azimuth. MRD values were obtained from the ratio of the integrated peak areas-(a) and (c) denote tensile 

and (b) and (d) denote compressive part of the specimen, respectively. (The fit lines are added to guide the eye). 

 

For instance, more switching was observed in the prepoled sample (MRD = 1.52) than 

in the unpoled one (MRD = 1.39) at 72 MPa. The diffraction data analysis software Materials 

Analysis Using Diffraction (MAUD, Version 2.075-2009) was also used to quantify texture. 

Prior to analysis the images were first processed by Fit-2D and CeO2 standard spectra were 

used to calibrate peak profile parameters. 36 diffraction patterns representing various azimuth 

angles in 10 degree steps and covering completely the sample space were obtained. Then a 

(d) (c) 

Unpoled-tension Unpoled-compression 

Poled-tension Poled-compression 
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tetragonal single phase (space group: P4mm) was employed in the analysis and the 

orientation distribution function (ODF) was refined using a fourth order spherical harmonics 

function with fiber symmetry. Pole figures were extracted from ODFs for the [002] and [200] 

crystallographic directions and are shown in Figure 5-6 in units of MRDs.   

 

 

 

 

Figure 5-7 Comparison of pole figures from single-peak (―t-94MPa, tension‖ and ―c-94MPa, compression‖) 

and spherical harmonics (denoted with ―SH‖) texture analyses in Rietveld. (Solid trend lines were added to each 

data set to guide the eye.) The pole figures obtained from spherical harmonics method for the tensile (top) and 

compressive (bottom) regions of the sample are also shown on the right. 

 

The center of the figures corresponds to the longitudinal direction. The pole figures 

exhibit a reverse distribution in the compressive relative to the tensile direction for the 

(002)/(200) doublets. The texture results show a maximum in MRD along the tensile 

direction confirming single peak results of texture as shown in Figure 5-7. The (111) 

reflection does not show any pronounced deviation from MRD = 1 (not shown here) where 

the minimum and the maximum values varied from 0.95 to 1.03 (in units of MRD). 

Recalculated (002) pole density distributions obtained from single peak analysis and from 

spherical harmonics in Rietveld are also compared in Figure 5-7. These two different 
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approaches do not show any extreme difference in any given direction (e.g., the maximum 

MRD in the (002) pole figure value are 1.39 and 1.48, respectively). Having been obtained 

with more data points, spherical harmonics method is expected to be more accurate and it 

was found that texture evolution with these two methods follows a very close trend with a 

highest difference of ~10% between values. 

 

5.3.3 Self-Consistent Model Results 

Based on the experimental data, domain switching started at low values of applied 

stress and gradually increased with loading. With the exception of the (111) reflection, a 

change in slopes (―hardening‖) occurred for the (002) and (200) doublets. These properties 

such as driving force at which domain transformation  occurs were used as comparison for 

inputs in the self-consistent model (SCM) in addition to elastic and piezoelectric constants 

given in §2.2. Also, since this model is a rate-independent formulation; and the degree of 

hardening after switching starts is required to stabilize the calculation. These parameters 

were modified to provide a good fit to the measured data but remain close to the initial 

values. The model can track the number of domains contributing to each reflection explained 

in Chapter 3 and can pinpoint the onset of domain switching in a given domain family 

(Figure 5-8). Switching in the (002) and (200) doublet is predicted to start at an early stage of 

compressive loading (~10 MPa), and as load increases, the number of domains contributing 

to the (200) peak increases at the expense of the same amount of (002) domains. A reverse 

relationship is observed under tensile loading. However, a larger amount of domain 

switching under tensile stress is noticed as expected and is consistent with experimental 

results. It is also observed that, due to a larger resolved stress, the closer the c-axis of a 

doublet with respect to the loading axis, the earlier its switching started. For example in 

Figure 5-8, (002) and (200) doublets start to switch at lower stress values compared to (202) 

and (220) doublets. Also similar to diffraction data, the number of domains contributing to 

the (111) reflection remain constant throughout loading without any significant switching.  

To investigate the effect of unloading, a complete loading/unloading cycle was 

estimated (Figure 5-9). Here, the number of domains decline when the load is reduced but 

fail to reach its starting value leading to remnant texture (also seen in the diffraction data).  
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Another big advantage of SCM is its ability to estimate lattice strain evolution as a 

function of hkl (Figure 5-10-(a)). In these figures, the strain values are obtained from the 

second step of the loading cycle, and hence, do not start from zero. The SCM is seen to offer 

a reasonable match to experimental data, including macroscopic strain (Figure 5-10-b). The 

lattice strains from (111) domains are nearly all linear since no significant switching is 

expected in that direction.  

 

 

 

 

Figure 5-8 BaTiO3 domain switching under applied tensile (left) and compressive (right) stress predicted by the 

self-consistent model. The vertical axis shows the number of domains selected for each reflection (i.e., those 

that diffract into the longitudinal direction). 
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Figure 5-9 Domain switching in BaTiO3 predicted by SCM for some reflections during a loading/unloading 

cycle. The calculations were conducted up to 75 MPa to allow better observation of the initial domain switching 

region.  

 



97 

      

 

 

            

0.0000 0.0004 0.0008 0.0012
0

20

40

60

80

100

 

 

A
p

p
lie

d
 S

tr
e

s
s
 (

M
P

a
)

Strain

 Macroscopic -SCM

 Macroscopic - measurement

                   

 

Figure 5-10 Strain evolution in BaTiO3 under applied stress predicted by the SCM in comparison to 

experimental data:  (a) lattice strain (―c‖) in (200), (002) and (111); (b) macroscopic strain in the sample. 

(a) 

(b) 
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5.4 Summary 

In this study, strain and texture evolution (domain switching) of BaTiO3, a 

polycrystalline ferroelectric ceramic, was investigated using a four-point bending geometry. 

Simultaneous measurements of tensile and compressive responses of the material were 

determined by in-situ X-ray diffraction, revealing highly non-symmetric behavior between 

the tensile and compressive sample sides. The hkl-dependent strain measured by X-ray 

diffraction was found to be lower relative to both bulk strain measured by a conventional 

strain gauge and elastically computed strain, and reasons for this inconsistency are discussed.  

It was also observed that the initial texture contributed to a greater extent of domain 

switching. This implies strong anisotropy, which was confirmed by higher strain values at 

increasing angles from loading axis.  

Two samples were employed: an unpoled one, and another electrically prepoled. Both 

samples underwent domain switching and hence developed significant changes in 

crystallographic texture after mechanical loading. The presence of electrical prepoling 

influenced the degree of domain reorientation and mechanical loading caused more domain 

switching compared to that in the unpoled specimen. Domain orientation distributions in 

samples were quantitatively evaluated in terms of MRD values and tracked during loading 

and loading. The initial state of domain texture was found to have a profound influence on 

subsequent domain switching since stronger initial texture led to more domain switching and 

larger lattice strain. The data indicates a complicated effect of domain switching on lattice 

strain evolution and the self-consistent model was employed to aid with the interpretation. 

The model predictions were found to be in reasonable agreement with the experimental 

results. 
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CHAPTER 6: EFFECT OF UNIAXIAL COMPRESSION AND HYDROSTATIC 

PRESSURE ON THE FERROELASTIC SWITCHING OF A SOFT Pb(Zr, Ti)O3 

CERAMICS VIA NEUTRON DIFFRACTION 

 

6.1 Introduction 

An electromechanical device converts an input of electrical energy to an output of 

mechanical energy (actuating application) or an input of acoustic signal or mechanical energy 

to an output of electrical energy (sensing application). However, most ferroelectric ceramics 

were developed based primarily on considerations of their electrical responses, and 

consequently, many of them display rather poor mechanical properties, such as low fracture 

toughness and high susceptibility to slow crack growth. When driven repeatedly under 

electrical loading over long periods, these ceramics may accumulate enough mechanical 

damage to cause catastrophic failure. On the other hand, development of crack-like flaws 

under mechanical loading may generate severe local field concentrations, which may result 

in serious degradation of their electrical performance. Hence, a fundamental constitutive 

model for electromechanics must provide relationships between the stress, strain, electric 

field and electric polarization/electric displacement [9]. In X-ray diffraction experiments, 

transmission geometry and a two-dimensional detector captured full Debye rings of 

specimens and thus yielded complete two-dimensional strain and texture information. On the 

other hand, time-of-flight (TOF) neutron diffraction was also employed to measure 

ferroelastic domains switching under multiaxial loading. In this technique, basically neutrons 

are produced from collisions of high energy particles such as protons with nuclei in heavy 

element targets. Neutrons have wave-like characteristics and can be diffracted by crystalline 

objects by virtue of nuclear interactions. Neutron scattering is different for isotopes of one 

element, and because of their spin, the neutrons interact with magnetic moments which also 

makes them viable for magnetic structures.  

If neutron flight path length is L and time-of-flight is t, the diffraction angle is related 

to a particular d-spacing by de Broglie relation  

Lm

th

vm

h
       (1-3) 
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and Bragg’s law: 

 sin2d      (1-4) 

 
h

dmL 


sin2
      (1-5) 

where, m and v are mass and velocity of neutron and h is Planck’s constant [84, 85]. 

A massive amount of research has been directed towards ferroelectric ceramics, in 

particular lead zirconate titanate, PZT, which has been of great importance in applications 

due to its superior piezoelectric properties. Below the Curie temperature itsunit cell displays 

a transition from a paraelectric phase to a ferroelectric phase where final structure varies 

depending on chemical composition [5, 86]. To internally accommodate strain formation 

during this phase transition, and to lower the energy of the system, domain formation 

(twinning) takes place in a polycrystal where the regions between domains are called 

(domain) walls. When they are subjected to loads above a certain (coercive) value, 

ferroelectric ceramics exhibit high nonlinear behavior due to domain switching via domain 

wall motion. PZT is generally used in doped compositions where the addition of donor ions 

reduces the energy barrier, which leads to easier domain wall motion. On the other hand, 

ferroelectric ceramics are usually fragile with low fracture toughness values which results in 

failure and degradation in their applications [5, 12, 86]. These property degenerations are 

often attributed to the effects of domain switching. Given that ferroelectric ceramics are 

usually in polycrystalline form, a domain switching in one grain affects others resulting in a 

complex stress/strain state. Therefore, a proper quantification of in-situ internal strain and 

texture evolution in ferroelectric materials entails a non-destructive technique competent in 

measuring material responses at inter- and intragranular level.  In this sense, it has been 

shown that domain reorientations by non-180º domains can be probed with diffractions 

techniques where the interchangeable peak intensities for certain reflections are used to track 

the switching process [38, 41, 43, 58]. Lattice strains for specific hkl’s can be calculated from 

relative shifts in interplanar distances of corresponding peaks which are sensitive to induced 

stress and act as internal strain gages.   

The effects of uniaxial loading on the ferroelastic behavior of ceramics have been the 

point of interest for numerous advanced X-ray or neutron diffraction studies [36, 41, 43]. 
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Although these studies provide invaluable contribution to the understanding of material 

behavior, a well documented analysis of the relationship between multiaxial mechanical 

loading and stress induced non-linear behavior has not been established, especially with 

ferroelectrics, due to the complex experimental arrangement required. There are only a few 

studies which have examined ferroelectric materials under different loading conditions. One 

such study utilized diffraction techniques under high pressure and demonstrated that high 

pressure stabilized the monoclinic phase in Pb(Zr0.52Ti0.48)O3 [87]. Similarly, an updated 

pressure-temperature phase diagram for the morphotropic composition of PZT was proposed; 

and pressure - just like temperature and external electric field was found to induce 

polarization rotation [88]. In their study, Zeuch et al. [89] performed hydrostatic and constant 

shear stress experiments to quantify the rhombohedral-to-orthorhombic phase transformation. 

In another work, the effect of temperature on strain and polarization evolution was studied 

under compressive loading; the conclusion was the existence of a strong temperature 

dependence of domain switching of soft PZT specimens [90].  

When there is only pure tension or compression, the normal stress acts only in a 

single direction and in diffraction experiments this direction is generally parallel to the 

scattering vector. Under hydrostatic pressure, p is given in terms of the principal stresses ζi 

by: 

 

)(
3

1
321  p       (6-1) 

 

And when additional uniaxial stress along the (3) axis is applied, the stress state becomes: 
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where, 3 corresponds to the applied uniaxial stress. In this case, the normal stress acting on 

a twin (domain) system may be increased. Diffraction data in the direction of the uniaxial 
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loading axis then gives the convolution of these two affects. Many devices are used under 

hydrostatic pressure and subjected to additional restraints. So it is of practical interest to 

understand the material behavior in such an environment. 

In the present study, the in-situ time of flight (TOF) neutron diffraction technique was 

employed due to its deep penetration through the sample and container walls. PZT specimens 

were placed in a complex loading fixture, which allowed the application of hydrostatic 

pressure and uniaxial compression simultaneously. It is believed that this kind of multiaxial 

loading study of ferroelectrics has never been conducted before. The results presented here 

provide an extensive insight into the characteristic relationships between structural changes 

and multiaxially applied stress amplitudes. 

 

6.2 Materials and Experimental Procedure 

Nb
5+

- doped soft, tetragonal lead zirconate titanate with the nominal composition of 

Pb(Zr0.48Ti0.52)O3 was used in the form of ceramic cylinders of 20 mm length and 8 mm 

diameter (type K350; from Piezo Technologies, Indianapolis, IN). The ENGIN-X beamline 

[91-93] at the ISIS Neutron Facility (in Rutherford Appleton Laboratory, Didcot, UK) was 

employed to collect in-situ time-of-flight neutron diffraction data.  

Figure 6-1 shows the experimental setup where the test specimen is positioned at 45° 

with respect to the incoming neutron beam. Two detector banks are placed at ± 90° to the 

beam with scattering vectors parallel (Q//) and perpendicular (Q) to the uniaxial loading 

axis, monitoring the longitudinal and transverse sample responses, respectively. Due to the 

polychromatic incident beam, this experiment geometry allows the collection of complete 

diffraction patterns in each detector; thus a two-dimensional measurement of the 

micromechanical response of crystalline materials under applied loads can be obtained. 
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(b) 

Figure 6-16 Schematic of the TOF neutron diffraction geometry where two detectors measure the longitudinal 

and transverse strain.  The upper figure (a) illustrates the combined hydrostatic pressure and uniaxial 

compression used in the present study. 

 

A PZT specimen was first subjected to a compressive uniaxial loading/unloading 

cycle. Two different PZT specimens were then subjected to 65 MPa and 130 MPa hydrostatic 

pressure using a special fixture while they were subjected to the same uniaxial 

loading/unloading [91, 92]. The load experienced by the sample was monitored by an 

internal gauge eliminating possible error in total load measurement. A thin neutron beam 

(4x6 mm
2
) was used to collect diffraction patterns from the sample. Lattice strains were 

calculated using Equation 4-1.  

Prior to detailed structure refinements, diffraction patterns, in particular (002) and 

(200) spectra were scrutinized more closely to ascertain the consistency of tetragonal 

structure. From diffraction patterns within the resolution of neutrons (3%), no secondary 

phases or impurities were observed. Complete structure refinements were performed with 

Rietveld refinement [47] program GSAS [48] with space group of tetragonal single phase, in 

particular P4mm with an exponential convolution of Pseudo-Voigt peak profile function. In 

the refinements, several parameters such as the lattice dimensions, atomic positions, scale 

factor, background parameters and peak profile coefficients were varied  until least-squares 

resulted in a well suited model for experiment data observing the fit and the residual [49]. All 

calculations were performed designating powder sample with no preferred grain orientation 

before loading course. In time-of-flight neutron diffraction, a DIFC parameter for detectors 

were calibrated and used for further Rietveld analysis. The sample lattice parameters were 
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used to calculate relative strains at varying stress states. The incident beam height was 

reduced to 6 mm to prevent overlapping diffraction peaks from Al in the pressure apparatus.      

 

6.3 Results and Discussion 

The macroscopic strain (averaged over data collection time ~30 minutes) of the 

specimen at uniaxial compression is given in Figure 6-2 where the strain was measured via 

an extensometer. A nonlinearity resulting from domain switching is clearly seen at low stress 

values. To compare ferroelastic behavior between pressures, the strain evolution in different 

axes were compared and the results showed that strain in the polycrystalline PZT evolved 

unevenly with increasing stress due to anisotropy. Figure 6-3-(a-c) illustrate stress induced 

lattice strain in longitudinal direction for different crystallographic directions as a function of 

applied uniaxial compressive stress under different hydrostatic pressure values differing from 

0 to 130 MPa. The deviations in the plots were calculated from fitting errors in Rietveld 

analysis and varied within ±1% of experimental data and removed for clarity.  

 

 

Figure 6-2 Macroscopic stress-strain hysteresis measured by strain gageunder uniaxial compression. After 

unloading the specimen exhibits remnant strain of 0.3% indicating mechanical hysteresis in PZT. 
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Figure 6-3 Lattice strain evolution in parallel and perpendicular direction as a function of applied compressive 

stress under hydrostatic pressure. ―a‖ represents a-axis, ―c‖ represents c-axis, ―111‖ represents (111)-axis lattice 

strains. 

 

The strain begins increasing with increasing compressive stress and it was seen that 

the initial elastic region is conspicuously very small and displaying increased nonlinearity 

due to domain wall motion when applied uniaxial stress is larger than approximately 

−10 MPa (as demonstrated in Figure 6-2). This nonlinear behavior continues until the 

number of switchable domains is exhausted at stresses beyond –160 MPa; then the material 

again exhibits nearly linear elastic effect.  There is a large non-linear compressive strain 

change in domains oriented their c-axis parallel to the loading axis during loading as 

measured in the longitudinal detector bank. Moreover, there is a significant change in 

compliance between -10 and ~ -160 MPa. This can be interpreted that lattice contraction due 

to the domain switching along c-axis. After saturation occurs, the remaining domains 

continue to deform elastically and contribute to the c axis strain (linearly). The deformation 

in perpendicular direction was captured by transverse detector banks and applied stress along 

the bar is expected to increase the lattice spacing between planes perpendicular to the applied 

stress and decrease the lattice spacing between planes parallel to the applied stress because of 
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the Poisson’s effect and Figure 6-3 demonstrates this with positive strain values in transverse 

direction. It is shown that, domains with their c-axis perpendicular to the loading direction 

(contributing a-axis strain) appear to exhibit higher strain with relatively linear trend. The 

change in the c-axis longitudinal direction is expected to stimulate a corresponding change in 

other lattice parameter (a-axis) of the same grain due to Poisson’s effect. Also, Figure 6-3 

shows the domains that are aligned with their c-axis perpendicular to loading axis 

(contributing transverse direction response of the specimen) experience mostly elastic since 

the orientations of these domains are already a low-energy configuration such that no enough 

driving force to switch under applied load. Except for c-strain in longitudinal direction, stress 

doesn’t induce an effect for a significant compliance change.  

Stress has an influence on the internal stress-state of c direction in tetragonal 

domains. As domains switch due to applied stress, the remaining domains undergo a 

significant load transfer resulting from this switching. It is interesting when the observations 

here are compared to results with study of Rogan et al. [41], the extent of domain 

realignment as a function of loading was found to be significantly higher for a single phase 

tetragonal PZT.  

For transverse direction it was also noteworthy that all planes were highly affected by 

increasing hydostatic pressure exhibiting much lower strain values for similar magnitudes of 

stress compared to longitudinal direction. The material is also found to exhibit relatively 

smaller macroscopic strain compared to lattice strain values when Figure 6-2 and Figure 6-3-

a are compared. Existing intergranular constraints in a bulk ceramic prevents a complete 

switching of orientations and thus single domain formation.    

Figure 6-3 also represents the effect of applied hydrostatic pressure onto strain 

evolution and suggests a significant effect on behavior of the material under compressive 

load. These results reveal that hydrostatic pressure reduces the strain and the slope of the 

curves (compliance) increase with increasing compressive load. Applied hydrostatic pressure 

mostly affected c-axis strain in the material resulting in much lower strain values compared 

to uniaxial compression alone. By definition, multiaxial compressive stress is applied in all 

directions, including the direction perpendicular to the mechanical, unaxial stress. This 

perpendicular component of the multiaxial stress is partially offsetting the uniaxial 
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compression. Shear stress seems to be more effective in domain switching. Initially the 

specimen displayed no evidence of preferred orientation prior to uniaxial loading. Since 

polarizations in tetragonal PZT are aligned along the [001] direction (crystallographic dipole) 

of the unit cell, the intensities of related reflections are used to measure magnitude of domain 

switching. According to Friedel’s law, the 180º polarization change can’t be detected by 

diffraction method [38, 41, 43, 58], domain realignment was tracked from the intensity 

variations between doublets, particularly (200)–(002) doublet as a function of applied load. If 

domains are oriented with their c-axis along the loading direction, information on the c-axis 

is available to the longitudinal detector for these particular domains and a-axis in these same 

domains doesn’t contribute to the intensity. Upon loading, if these domains reorient and their 

a-axis satisfy the diffraction condition, they enhance the intensity in the longitudinal detector 

spectra. Thus, a decrease in (002) peak and increase in (200) peak is observed.  Since 

longitudinal and transverse detectors measure only the crystal planes fulfilling the diffraction 

condition for that specific detector (Figure 6-1), a reverse relationship is observed in spectra 

obtained from transverse detector. An example of this behavior is given in Figure 6-4 

demonstrating peak intensity interchanges. During the course of uniaxial loading, it was 

observed that (200) peak intensity started to increase at load levels as low as -10 MPa and 

kept increasing during the loading process. It was also observed that at high loads (100 MPa), 

(002) peak almost disappeared corresponding the alignment of the polar axes along the 

applied load direction.      
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Figure 6-4 Diffraction spectra for several multiaxial loading levels in (a) longitudinal direction and (b) 

transverse direction. The interchanges in diffraction intensities demonstrate domain switching. Notice (002) 

peak intensity almost disappeared at high load (in parallel direction). 

 

The effect of multiaxial mechanical loading onto amount of domain switching was 

quantified with March-Dollase coefficient which was obtained within Rietveld refinement 

[48, 94]. For a better comparison between the uniaxial and confined pressure, March 

coefficient is plotted opposed to gradually increasing compressive stress (Figure 6-5). There 

seems a clear domain switching due to the presence of radial mechanical stress. The ability to 

be poled by mechanical stress thus the amount of 90 domain switching has been activated 

with a similar success during loading by both uniaxial and multiaxial stresses.  
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Figure 6-5 March coefficient (normalized with respect to initial state) as a function of applied uniaxial stress 

under hydrostatic pressure of 0 and 130 MPa.   

 

6.4 Conclusions 

The longitudinal and perpendicular strain of a commercially available soft PZT has 

been measured in response to compressive mechanical loading at confined pressures. Large 

non-linear strain change was observed during compressive loading due to domain switching. 

Applying pressure multiaxial loading was simulated and it was found that an increase in 

hydrostatic pressure reduces the ferroelastic strain in specimen. Pressure appears to have 

little effect on domain switching; rather it is more sensitive to deviatoric stress. While (111) 

plane and a-axis strain seemed to be mostly insensitive to pressure, multiaxial stress seemed 

to partially negate the c-axis’ uniaxial compressive strain. Although small variations exist 

among nominally identical samples, the onset of domain switching initiation was found to be 

insensitive to increasing pressure. c-axis strain curve was found to be largely susceptible to 

mechanical poling, and due to domain switching an apparent softening in the compliance was 

observed. 
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CHAPTER 7: GENERAL CONCLUSIONS 

 

7.1 General Discussions 

Most materials, e.g., ferroelectrics are both elastically anisotropic, and they exhibit 

additional anisotropy after domain switching and/or plastic deformation. To quantify this 

anisotropy, we employed advanced diffraction methods because: 

 

a. They measure sample response in multiple directions. 

b. They are penetrating (average whole sample cross section).  

 

As an important contribution of the present work, an in-depth investigation of the 

multiaxial constitutive behavior of polycrystalline materials, in particular ferroelectrics was 

initiated using high energy XRD and neutron diffraction. Multiaxial strain and texture 

response of model ferroelectric materials were captured. It was also noted that the analysis of 

diffraction data is complicated and requires special care due to the strain anisotropy and 

extensive peak intensity changes where the latter specifically makes single peak refinement 

erroneous due to texture evolution. Both whole-pattern Rietveld analysis and single-peak 

fitting offer advantages in this regard, but neither provides a satisfactory solution. For this 

reason, a new, constrained Rietveld method was used which allowed incorporating 

anisotropy into tetragonal symmetry. Further improvements were suggested for different 

crystal structures to account for anisotropy and whilst these methods involve some 

presumptions, such as elastic behavior and constant load sharing in grains, yet they are still 

useful to obtain more accurate results. 

The inhomogeneity of deformation behavior was pointed out in this study. 

Complicated behavior due to non-180º domain switching above a coercive load, an integrated 

mechanics model with experiment was necessary to use. Self-consistent model for 

ferroelectrics was used for a better interpretation of data. Exploiting the improved version of 

SCM by Motahari [43] which allows tracking number of domains and strain evolution as a 

function of load, nonsymmetric behavior of ferroelectric materials predicted by the model 

was found to be in agreement with diffraction data. Although this model neglects direct 
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interaction between grains but rather simply assumes that the grains interact with each other 

by means of an equivalent homogeneous media, still the results are found to be satisfactory. 

 

7.2 Recommendations for Future Research 

The analysis of the performance and dependability of devices manufactured from 

ferroelectric ceramics demands a method to estimate of the constitutive behavior in such 

assemblies. In this, micromechanical models are of a great value and they are especially ideal 

for conducting numerical constitutive testing with complex electromechanical loading 

histories that would not be very easy to repeat experimental observations so it is possible to 

reproduce material response with reasonable accuracy via models. 

The current SCM is only valid for tetragonal symmetry where there are merely 3 

domain variants. In order to get a more complete picture of the versatility of SCM to 

adequately predict diffraction data, the model should be optimized to reflect the parameters 

of structures with higher degrees of freedom. Current studies in the group are focused on  

rhombohedral symmetry.  

Also, another interesting study would be alteration of improved Rietveld method for 

different symmetries in GSAS and other load sharing schemes (e.g., the Voigt or equal-strain 

assumption) and/or incorporating inelastic regime by coupling with a mechanics model with 

appropriate profile function modifications. 

Although the models are very helpful to represent discrete mechanism of domain 

switching, they should not be taken in lieu of experimental observations. Multiaxial loading 

experiment presented in this study has been already provided useful insights into 

understanding and analyzing behavior of ferroelastic domain switching. One possible and 

more thorough future experiment would be investigating ferroelectric ceramics under 

multiaxial electromechanical loading. Our attempts to conduct in-situ electromechanical 

loading in a bending geometry allowed only low values of electric field due to sample failure, 

and even at low levels the changes in strength with a changing electric field were significant. 

In this effort, with a better insulation coating material to prevent leakage currents and electric 

discharges at the surfaces; in addition to repeating these experiments with BaTiO3 other 

ferroelectric materials such as hard PZT would provide more insight into understanding the 



114 

behavior of these materials under electromechanical loadings. Increased number of data 

points in the elastic regime and combined with diffraction data interpretation which was 

introduced in this study will help to calculate single crystal elastic compliances for PZT. 

Moreover, pressure and temperature induced phase transitions can be found in the literature, 

however, multiaxial loading conditions have not been studied. In this study, it was shown 

that multiaxially applied load lowers the experienced strain by different crystal orientations. 

Since the phase transformations of PZT has been known (Chapter 6) hydrostatic pressure 

values can  be applied at higher levels along with uniaxial compression and the diffraction 

data might be useful to further investigation of polarization rotations in PZT ceramics. 

The initial elastic regime was found to be very smaller in BaTiO3 which is generally 

used as model material with its simple structure. To better validation of coupled refinement 

of diffraction data and mechanics model, we initiated the following procedure and used a 

material with relatively wider elastic regime compared to BaTiO3 according to the following 

steps with the assumption that the structure of the material is known beforehand: 

 

1. Single peak fit (no Rietveld)  dhkl   

a. Need to know profile function 

b. Need to identify peaks that belong to sample 

2. Elastic constant calculation  Sij  

a. Use dhkl and measured diffraction constants to obtain Sij  

b. Employ weighting based on peak intensity 

3. Constrained single peak fit  dhkl   

a. Calculate dhkl from elastic constants found in Step 2  

b. Modify dhkl found in Step 1 to minimize the difference between dhkl 

and dhkl   

4. Repeat until convergence is achieved 

 

The details for steps 1 through 2-a was already completed for a sample hexagonal 

material where stress-strain data ws obtained from neutron diffraction and obtaine values 

wera compared with literature values. Elaborated flowchart can be found in Figure 7-3. To 
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exploit the modularity of MAUD software, single peak code is implemented and 

collaboration with software developer is underway to incorporate all steps into MAUD. 

Intially only Reuss assumption was applied, however, it is planned to extend to all important 

models/cases: 

a. Elastic anisotropy for cubic, hexagonal and tetragonal crystals 

b. Different load sharing models – Voigt, etc.  

c. Inelastic anisotropy – SCM, etc. 

The following section offer further details on these calculations. 

 

7.2.1 Case Study of Hexagonal Zr with Neutron Diffraction 

Z1

Y2

X1

Y1

Z2

X2





Y1

Y

X(X1 )

Z(Z1 )

 

Figure 7-1 Representation of Crystal (X,Y,Z) system coordinate axes and orthogonal coordinate system axes 

 

The transformation matrix at from the orthogonal coordinate systems (X1, Y1, Z1) to 

grain coordinate systems (X2, Y2, Z2) can be obtained by rotation with angle  about Z1 axis 

and another rotation by  about Y2  axis.   
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For hexagonal systems, the interplanar angle is given by [45]: 
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where, K = (h+2k)/3 and L = (a/c) [84].  

 

Elastic compliance constants in the grain coordinate systems obtained from the 

compliance of single crystals are given by: 

 

Sijkl' = aim ajn ako alp  Smnop      (7-4) 

 

For hexagonal materials [50]: 
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Sijkl'  =    s11 * [ai1* aj1 * ak1 * al1 + ai2 * aj2 * ak2 * al2]   

           + s12 *[ai1 * aj1 * ak2 * al2 + ai2 * aj2 * ak2 * al2]  

           + s13 * [ak3* al3* δik +ai3* aj3 *  δkl]   

           + (s33-2s13-s44) * (ai3 * aj3 *  ak3*  al3)  

        + (1/4)s44 *  [aj3*  al3 * δik+aj3*  ak3 * δil+ai3* al3 * δjk+ai3* ak3 * δjl]  

        +(1/4)s66* [aj1* aj2*  ak1* al2+ai1* aj2* ak2* al1+ai2* aj1* ak1* al2+ai2* aj1* ak2* al1] 

           (7-6) 

where, δij = 1 (i=j) and 0 (i j). 

 

7.2.2 Discussion 

Diffraction elastic constants for Zr were obtained from diffraction data for individual 

reflections. For compliance calculations initial (elastic) portion of the stress-strain curves 

(Figure 7-2) were used and these values were exploited to form compliance matrix. Then 

evolution of elastic strain with applied load for each plane was calculated from Eq. (5-2),  

where, Sijkl is the compliance tensor in the Voigt notation.Using the strain-stress data in 

Figure 7-2 and following flow chart as shown in Figure 7-3, the elastic compliance matrix 

was calculated for hexagonal Zr: 

 

Sijkl  =



























2.80580           0              0    0              0   

0          0      2.9674         0                0              0   

0          0      2.9674          0    0             0        

0           0        0       1.0107   0.3025-   0.3025-

0           0        0        0.3025-   1.0355    0.3674-

0          0        0        0.3025-       0.3674-1.0355  

 x 10
-11 MPa

-1 

 

This compares reaonably well with the compliance matrix from literature (at room 

temperature [53]: 
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Sijkl =



























2.8330       0           0              0             0              0    

0          0      3.1250          0             0              0    

0          0      3.1250          0             0             0     

0           0         0         7977.0      0.2409-   0.2409-

0          0         0         0.2409-      1.0355    0.4042-

0          0         0         0.2409-     0.4042-   1.0123  

 x 10
-11 MPa

-1
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Figure 7-2 Zr (under compression) neutron data (from single-peak fitting analysis): (a) Along the transverse; 

(b) along the longitudinal direction. [data care B.Clausen].  

(b) 
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Figure 7-3 Flowchart for elastic compliance calculation from diffraction data.  
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APPENDIX A: TRUE SURFACE (TENSILE AND COMPRESSIVE) STRESSES IN 

BENDING FROM SURFACE STRAINS 
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Figure A-1 Four-point bending geometry with moment distribution and sample cross-section. 

 

At a distance,  from neutral axis (NN’) a length L undergoes an extension L; 

therefore the unit strain     
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pure bending which causes the curvature of bending bar:  
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                      (A-2) 

where *: outer fiber bending, :distance from the middle axis, W: specimen height.  
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Figure A-2 Resultant total strain distribution: pure bending part and homogeneous strain contribution. 

 

So, the total strain (pure bending + unit tensile or compressive strain) becomes   
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where, * : outer fiber bending strain 
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Figure A-3 Stress-strain for compressive and tensile forces. 
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)()( bendcbendt fandf   are obtained from stress-strain curves to calculate outer fiber 

compressive stress, c and  then t is calculated. 

For soft PZT (K350-Piezotechnologies) tensile and compressive stress-strain data 

(courtesy of J. Jones): Figure A-4-(a) shows the experimental data of bend  versus strain, 

while Figure A-4-(b) depicts the same strain data versus outer fibre compressive (Eq. A-14) 

and tensile stress.  

(a) (b)

 

Figure A-4 Stress-strain behavior (a) and failure stress (b) of the compressive and tensile surfaces of soft PZT 

specimen. 
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APPENDIX B: MATLAB CODE FOR CALCULATION OF DIFFRACTION 

ELASTIC CONSTANTS AND LATTICE STRAINS 

 

clear all; 

close all; 

 lattprms = [3.236873; 5.169658]; 

%lattprms{1,1}{1,1} 

 hkls{1,3}= {{0,0,2},{1,1,0}, {1,0,3}, {1,0,0}, {1,0,1}} 

%hkls{1,3}{1,3}{1,3}= 3 

n=length (hkls); 

N=n-2; 

S ={{8.9966e-12}, {9.6865e-12}, {9.5156e-12}, {-3.0696e-12}, {-3.4874e-12}}  

for i=1:n; 

      H(i)=hkls{1,3}{1,i}{1,1} 

    K(i)=hkls{1,3}{1,i}{1,2} 

    L(i)=hkls{1,3}{1,i}{1,3} 

end 

    for i=1:n; 

    HH(i)=H(1,i)/(lattprms(1,1)) 

    KK(i)=K(1,i)/(lattprms(1,1)) 

    LL(i)=L(1,i)/(lattprms(2,1)) 

end 

  

for i=1:N; 

    A(i)=(HH(1,i)^2)+(HH(1,i)*KK(1,i))+(KK(1,i)^2) 

    B(i)=4*(HH(1,i)^2)+4*(HH(1,i)*KK(1,i))+4*(KK(1,i)^2)+3*(LL(1,i)^2) 

    a(i)=16*(A(1,i)^2)/(B(1,i)^2) 

    b(i)=9*LL(1,i)/(B(1,i)^2) 

    c(i)=12*(LL(1,i)^2)*A(1,i)/(B(1,i)^2) 

 end 

 for i=1:n; 

    S(i)= [S(1,i)] 

    m(1,i)=a(1,i) 

    m(2,i)=b(1,i) 

    m(3,i)=c(1,i) 

end 
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 S1K=m\S 

S11K=S1K(1) 

S33K=S1K(2) 

StotalK=S1K(3) %2S13+S44 

%% 

%perpendicular equation from Kisi-Howard 

for i=N+1:n; 

        A1(i)=(HH(1,i)^2)+(HH(1,i)*KK(1,i))+(KK(1,i)^2) 

    B1(i)=4*(HH(1,i)^2)+4*(HH(1,i)*KK(1,i))+4*(KK(1,i)^2)+3*(LL(1,i)^2) 

    

C(i)=8*(HH(1,i)^4)+16*(HH(1,i)^3)*KK(1,i)+24*(HH(1,i)^2)*(KK(1,i)^2)+16*HH(1,i)*(KK(1,i)^3)+8*(KK(

1,i)^4)+6*(HH(1,i)^2)*(LL(1,i)^2)+6*HH(1,i)*KK(1,i)*(LL(1,i)^2)+6*(KK(1,i)^2)*(LL(1,i)^2)+9*(LL(1,i)^4) 

    a1(i)=6*A1(1,i)*(LL(1,i)^2)/(B1(1,i)^2) 

    b1(i)=2*A1(1,i)*B1(1,i)/(B1(1,i)^2) 

    c1(i)=2*C(1,i)/(B1(1,i)^2) 

 end  

 %%  

 AK1=S4-((S11K+S33K)*6*(L4^2)*(H14)/(K14^2)) 

AK2=S5-((S11K+S33K)*6*(L5^2)*(H15)/(K15^2)) 

 Snew=[StotalK; AK1; AK2] 

    mnew=[1 2 0; 

        -6*(L4^2)*(H14)/(K14^2)  L14/(K14^2)   2*H14/K14;      

        -6*(L5^2)*(H15)/(K14^2)  L14/(K14^2)   2*H14/K14; 

     ] 

   SKnew=mnew\Snew 

 S44K=SKnew(1) 

S13K=SKnew(2) 

S12K=SKnew(3)  

 % %% Calculated Value of Compliance Tensor S1 

%  

Sfinal=zeros(3,3,3,3) 

Sfinal(1,1,1,1)=S11K 

Sfinal(2,2,2,2)=Sfinal(1,1,1,1) 

Sfinal(1,1,2,2)=S12K 

Sfinal(2,2,1,1)=Sfinal(1,1,2,2) 

Sfinal(3,3,3,3)=S33K 
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Sfinal(2,3,2,3)=S44K 

Sfinal(1,3,1,3)=Sfinal(2,3,2,3) 

S66A=2*(S11K-S12K) 

Sfinal(1,2,1,2)=S66A 

Sfinal(1,1,3,3)=S13K 

Sfinal(3,3,1,1)=Sfinal(1,1,3,3) 

Sfinal(2,2,3,3)=Sfinal(1,1,3,3) 

Sfinal(3,3,2,2)=Sfinal(1,1,3,3) 

% Sfinal=Sfinal/10 

 % Sfinal=zeros(3,3,3,3); 

%  

% %% Calculating Strain for hkl for Zr 

% % The load is 1 Pa you can change it here or in excel as I did. 

% % The only thing you need to change is h0, k0, l0 to do the hkl you want. 

%  

% clear; 

sig=zeros(3); 

sig(3,3)=1; 

%  

% %% Input the desired hkl 

% % and normalize them 

h0=1; 

k0=1; 

l0=0; 

hn=h0/sqrt(h0*h0+k0*k0+l0*l0); 

kn=k0/sqrt(h0*h0+k0*k0+l0*l0); 

ln=l0/sqrt(h0*h0+k0*k0+l0*l0); 

% %% Input the Value of Compliance Tensor S1 

 %  

% %% Find the rotation angle 

% % The rotation angle (t) is the angle between 001 and hkl: 

 % %                 (001).(hkl) 

% % Cos(t)=  ----------------------- 

% %          length(001).length(hkl) 

t=acos(ln); 

 % %% Find the rotation axis 
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% % The rotation axis (n) is the vector product of (001) and (hkl), 

% % normalized. 

n=[-kn hn 0]; 

%  

% %% Find the rotation matrix (R) 

% % From Rodrigues' formula R= I + J sint + J^2(1-cost) 

%     0 -nz ny 

% J=  nz 0 -nx 

%    -ny nx 0 

J=[0 -n(3) n(2); n(3) 0 -n(1); -n(2) n(1) 0]; 

R= eye(3)+ J*sin(t) + J*J*(1-cos(t)); 

%  

% %% Rotate the compliance tensor from Sfinal to S2 

S2=zeros(3,3,3,3); 

for i=1:3 

    for j=1:3 

        for e=1:3 

            for f=1:3 

                for a=1:3 

                    for b=1:3 

                        for c=1:3 

                            for d=1:3 

                                S2(i,j,e,f)=S2(i,j,e,f)+Sfinal(a,b,c,d)*R(a,i)*R(b,j)*R(c,e)*R(d,f); 

                            end 

                        end 

                    end 

                end 

            end 

        end 

    end 

end 

 % %% Calculate Strain 

% % we only need to calculate eps(3,3) 

eps=0; 

for k=1:3 

    for l=1:3 
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        eps=eps+S2(3,3,k,l)*sig(k,l); 

    end 

end 

eps 

 

Figure B-1 demonstrates a sample output from this code; each line corresponds to a 

different set of hkl plot obtained from ―.txt‖ file provided into the code. Lines indicate the 

least squares fitting to find slopes (diffraction elastic constants) and fit1 matrix give the 

results from this fitting as first line of parameters are used into further calculation steps.  
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Figure B-5 Stress-strain data output from the code given above for case study of Zr sample 

 

 

 fit1 = [ 1.0000   15.7199    8.0602   22.7339   20.3589   18.8900   20.5561   18.6559 

             -0.0000   -0.0794   -0.0409   -0.1187   -0.1052   -0.0970   -0.1052   -0.0983] 
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APPENDIX C: JAVA MODULE FOR SINGLE-PEAK FITTING IN MAUD 

 

(D. Weldon, LANSCE, Los Alamos National Laboratory, Los Alamos, NM and G.Tutuncu) 

 

GUI version is not available at the time being, code gives only values. 

/** 

 * To change this template, choose Tools | Templates 

 * and open the template in the editor. 

 */ 

package dot.foo; 

import java.io.*; 

import java.lang.String.*; 

import it.unitn.ing.rista.util.*; 

import it.unitn.ing.rista.diffr.*; 

import it.unitn.ing.rista.diffr.rta.PoleFigureOutput; 

 

/** 

 * 

 * @author 224397- David Weldon  

 */ 

public class Dspacing { 

 

  public static void main(String args[]) { 

    (new Dspacing()).performAnalysis(args); 

  } 

  private void performAnalysis(String args[]) { 

 Misc.println("This is the Mautomat!"); 

 Misc.println("calling Dspacing!"); 

 Misc.println("Arguments: <"+args[0]+"> <"+args[1]+">"); 

 long time = System.currentTimeMillis(); // get starting time 

 //Constants.testing = true; // debug messages on 

 // initialize relevant Maud constants and variables, loading preferences and 

    // checking models and plugins 

 Constants.textonly = true; // no graphical interface running 

 Constants.stdoutput = Constants.NO_OUTPUT; // no console output, default 
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 // is with output 

 Misc.println("Calling initConstants()!"); 

 Constants.initConstants(); // load all preferences and models 

 

    // here we prepare the analysis file and output files 

 String srcfile = args[0]; // the template or source 

 String[] srcfolderAndName = Misc.getFolderandName(srcfile); 

    String outfile = srcfolderAndName[0]+args[1]; 

    String[] outfolderAndName = Misc.getFolderandName(outfile); 

    String delim = "[.]+"; 

    String[] baseandext = outfolderAndName[1].split(delim); 

    String basename = baseandext[0]; 

 

    Misc.println("Source file is:" + srcfile); 

    Misc.println("New file is:" + outfile); 

 

    FilePar analysis = new FilePar(srcfolderAndName[1]); 

    // create the analysis oject 

 analysis.setDirectory(srcfolderAndName[0]); 

 // read all the data in the source file 

 analysis.readAll(); 

    // we force a refresh of the analysis to check out everything 

 analysis.refreshAll(); 

 // set number of iterations 

 analysis.setNumberofIterations(0); 

    // getLabel() returns the name of the parameter file we are working with 

    // xxxxx.par, setTitleField() is the title put in the output file 

    analysis.setTitleField(analysis.getLabel()); 

    Misc.println("Label is: " + analysis.getLabel()); 

    analysis.fixAllParameters(); // fix all the parameters 

    java.util.Vector parametersV = analysis.parametersV; 

    Object[] parametersA = parametersV.toArray(); 

    for (int i = 0; i < parametersA.length; i++) { 

        Misc.println("Parameter " + i + " is: " + parametersA[i]); 

    } 
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    int[] cyclesA = {1,2,3,5,6}; 

    int j; 

    for (int i = 0; i < cyclesA.length; i++) { 

        j = cyclesA[i]; 

        Cycles(j, analysis); //Choising which cycle and exicuting it 

    } 

    Misc.println("Object analysis second time is: " + analysis); 

 

    // created DataFileSet from the analysis object so that we can extract the 

    // peak list 

    Phase phasezr = analysis.getPhase(0); 

    // created Phase from the analysis object to extract the D-spacings 

 

    DiffrDataFile data = analysis.getDatafile(0); 

    // create data object to access total intensity 

 

    int numhkls = phasezr.gethklNumber(); 

    double dspace; 

    int[][] hkls = {{0,0,0},{0,0,0}}; 

    for (int i = 0; i < numhkls; i++) { 

        dspace = phasezr.getDspacing(i); 

        hkls[i][0] = phasezr.geth(i); 

        hkls[i][1] = phasezr.geth(i); 

        hkls[i][2] = phasezr.geth(i); 

        // here we gather the d-spacing information for each peak in the peaklist 

        Misc.println("Peak " + i + " is: " + hkls[i][0]+hkls[i][1]+hkls[i][2] + "with d-spacing " + dspace); 

    } 

 

    double totalint = data.getTotalIntensity(); 

    // here we gather the total intensity and print it out to see what it is 

    Misc.println("The total intensity is: " + totalint); 

 

    // here we prepare the output file 

 Misc.println("Time for computation was: " + (System.currentTimeMillis() - time) + " millisecs."); 

 Misc.println("Writing to "+analysis.getFileName()); 

 BufferedWriter src = Misc.getWriter("", srcfile); 
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 analysis.writeall(src); 

    BufferedWriter out = Misc.getWriter("", outfile); 

    appendResultsTo(out, true, analysis, false); 

 

    //Create a new output file that contains the D-spacings 

    //BufferedWriter doutput = Misc.getWriter("",basename + ".dout"); 

  } 

 

  private void Cycles(int cycle, FilePar analysis) { 

    java.util.Vector parametersV = analysis.parametersV; 

    switch (cycle) { 

        case 1: { 

            Misc.println("******************************Starting  

Cycle 1*********************************"); 

            // Create an array of the parameters we want to change 

            int[] ar = {14}; 

            // use the method setParameters to set all the parameters in 

            // the ar array.  setParameters method is private to this 

            // class 

            setParameters(ar, parametersV, "free"); 

            analysis.freeAllScaleParameters(); 

            analysis.freeAllBackgroundParameters(); 

            // every time we do something with all___parameters, we have 

            // to reload the parameter list 

            parametersV = analysis.parametersV; 

            break; 

        } 

        case 2: { 

            Misc.println("******************************Starting  

Cycle 2*********************************"); 

            analysis.freeAllBasicParameters(); 

            parametersV = analysis.parametersV; 

            int[] ar = {22,23,24,25,26}; 

            setParameters(ar, parametersV, "fix"); 

            break; 

        } 



141 

        case 3: { 

            Misc.println("******************************Starting  

Cycle 3*********************************"); 

            analysis.freeAllMicroParameters(); 

            parametersV = analysis.parametersV; 

            break; 

        } 

        case 4: { 

            Misc.println("******************************Starting  

Cycle 4*********************************"); 

            analysis.freeAllStrainParameters(); 

            parametersV = analysis.parametersV; 

            break; 

        } 

        case 5: { 

            Misc.println("******************************Starting  

Cycle 5*********************************"); 

            parametersV = analysis.parametersV; 

            break; 

        } 

        case 6: { 

            Misc.println("******************************Starting  

Cycle 6*********************************"); 

            parametersV = analysis.parametersV; 

            int[] ar = {31,32,33,34,35}; 

            setParameters(ar, parametersV, "free"); 

            parametersV = analysis.parametersV; 

            break; 

        } 

        case 7: { 

            Misc.println("******************************Starting  

Cycle 7*********************************"); 

            analysis.fixAllParameters(); 

            parametersV = analysis.parametersV; 

            int [] ar = {14,21}; 

            setParameters(ar, parametersV, "free"); 
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            parametersV = analysis.parametersV; 

        } 

    } 

    analysis.launchrefine(null); 

  } 

  private void setParameters(int[] pararray, java.util.Vector parvector, String ff) { 

        // loop to change the parameters in the array 

        for (int i = 0; i < pararray.length; i++) { 

 

            int j = pararray[i]; 

            // take the parameter we want from the parameter vector and turn it into 

            // an Parameter object 

            Parameter newpar = (Parameter) parvector.elementAt(j); 

            // Print the name of the parameter about to be refined 

            Misc.println("parameter " + j + ", " + newpar + ", is now " + ff); 

            // Now we set the parameter we want to be refined 

            if (ff == "fix") { 

                newpar.setNotRefinable(); 

            } else if (ff == "free") { 

                newpar.setRefinable(); 

            } 

        } 

    } 

  // this routine was extracted from the FilePar object so it can be customized 

  private void appendResultsTo(BufferedWriter out, boolean newFile, FilePar analysis, boolean simpleOutput) { 

    try { 

      if (out != null) { 

        if (simpleOutput) { 

          if (newFile) { 

            analysis.writeSimpleResultsFirstLine(out); 

            out.write(Constants.lineSeparator); 

          } 

          analysis.writeSimpleResults(out); 

        } else { 

          if (newFile) { 

            analysis.writeResultsFirstLine(out); 
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            out.write(Constants.lineSeparator); 

          } 

          analysis.writeResults(out); 

        } 

        out.write(Constants.lineSeparator); 

        out.flush(); 

      } else { 

        Misc.println("Not able to open the file for append"); 

      } 

    } catch (IOException ioe) { 

      ioe.printStackTrace(); 

    } 

  } 

} 
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APPENDIX D: FERRO ELASTIC (ELECTRIC) STRAIN CALCULATION 
 

 

Induced strain can also be calculated from induced texture using the following formula [1]: 

 






2/

0

2 sin)(cos)(



 dMRD
a

ac
SFE    (D-1) 

 

In situ diffraction provides information about the total amount of non-180 domain 

wall motion in the material, while only irreversible extrinsic contributions are determined 

from the field (stress) dependent macroscopic piezoelectric strain.  

 

For BaTiO3: 

 

 

Figure D-6 Ferroelastic strain calculated from texture information is compared with macroscopic strain and 

lattice strain is shown on the same plot. ―t‖ represents tensile strain. Note that y-axis includes absolute stress 

values.  
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Similarly for PZN-PZT at 30 kV/cm electric field the induced strain was found as 

3.5x10
-3

 although for the same electric field the calculated ferroelastic strain was found to be 

higher than this value (7.4x10
-3

) and during second cycle of this value was even higher as 

shown in Figure D-2. 

 

            

            

            

            

            

            

            

            

            

            

         

 

 

Figure D-2 Measured electric field induced strain (upper figure), Strain calculated from diffraction data 

(lower).  

Reference 

[1] Jones, JL., M. Hoffman, M. and K.J. Bowman, Saturated domain switching textures and strains in 

ferroelastic ceramics. J. Appl. Phys. 98, 024115-1-024115-6. 
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APPENDIX E: COMPLEMENTARY DATA - COMPARISON BETWEEN PZN-PZT 

AND BaTiO3 TEXTURE EVOLUTION USING THE MARCH-DOLLASE 

FUNCTION 

 

The texture data presented so far employed single-peak fitting to extract peak 

intensities or pole figures via spherical harmonics (see Chapter 4 for details). Prior to 

electrical loading, all samples had random grain orientations. The preferred orientation axis 

was chosen to be [001] as is common for tetragonal materials. Alternatively, one can also 

employ the Rietveld method to quantify texture evolution. A commonly used texture analysis 

technique, the March–Dollase approach has been incorporated into the GSAS Rietveld code 

[1, 2]. For rod-shaped cylindrical (axial) crystals, the total intensity diffracted by a lattice 

plane is proportional to the product of the structure factor (Fhkl) and the March-Dollase 

function, Phkl(α) where, α is the angle between the lattice plane normal [hkl] and the pre-

defined preferred orientation vector: 

 

2)( hklhklhkl FPI        (E-1) 

 

For a cylindrically symmetric specimen under a volume-conserving compression or 

extension along the cylindrical axis, the March-Dollase function is given by: 

 

2/3222 )sin)/1(cos()(   rrPhkl  (E-2) 

 

This March function is a true probability distribution function in the range of 0 ≤ α ≤ 

π/2 and it is flexible so that it may result in maximum pole density at α = 0 for r < 1 or α = 

π/2 for r > 1 (r is the refinable March coefficient) . The unity of the March coefficient 

implies random distribution (i.e., no texture) and that a specific (hkl) pole does not prefer one 

direction vs. another. March coefficients less than unity indicate a preferred orientation 

toward the cylindrical axis while values greater than unity imply a heavy distribution of poles 

normal to the cylindrical axis. The deviation of the coefficient from unity determines the 

strength of texture. The preferred orientation axis was chosen to be [001] as is common for 
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tetragonal materials. The Rietveld analyses using GSAS then tracked the March coefficient as 

a function of electrical loading. These coefficients are then compared for PZN-PZT and 

BaTiO3. For instance, the March coefficient value starts at 1 (random case) and reaches 0.95 

at the maximum field value in PZN-PZT, MRD002 was found to be 1.08 which in turn 

indicates that the fraction of switched domains is ~0.05. All of these values are quite 

comparable to those obtained from single-peak fitting.  

 

 

 

Figure E-7  Texture evolution in PZN-PZT and BaTiO3 as quantified by the March coefficient as a function of 

electrical poling along directions perpendicular (left) and parallel (right) to the field vector. The decrease of the 

March coefficient along the field vector indicates the re-alignment of (002) domains. 

 

When these results were compared with single phase tetragonal PZT [3,4] significant 

domain switching wasn’t observed and attributed to lack of enough degrees of freedom (the 

polarization direction is controlled by constrained by Ti atom moving direction) similar to 

slip systems in crystal plasticity. Due to their observation of a secondary hysteresis, Burcsu et 

al. [5] suggested the existence of phase transformation from tetragonal to orthorhombic 

under applied stress in single crystal BaTiO3. However, the attempt to use orthorhombic 

phase in the Rietveld analysis significantly amplified the fitting residuals even worse in the 

higher stress region in which the phase transformation to occur were suggested. Within the 

resolution of diffraction technique used in this study, any proof wasn’t found to confirm 

existence of orthorhombic phase. In another model study, it was suggested that the tetragonal 
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phase is obtained by combining an FE-AFE coupling along [100] and [010] to yield a net 

polarization along [001] as is traditionally known [6]. This implies that it might be possible 

to induce significant domain switching in tetragonal BaTiO3 by forcing polarization changes 

(or domain switching) along different combinations of the FE-AFE structure. However, in 

our experiments we didn’t observe structural changes in BaTiO3.  
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APPENDIX F:  PENETRATION DEPTH OF 80 keV X-RAYS IN CERAMICS  

 

When x-rays, with incident intensity I0, penetrate through a material, they are partly 

absorbed and the decrease in intensity is proportional to the distance, x as in Equation F-1 

[1]:  

I/I0 = exp [-( x)] = exp [-(/) x)]     (F-1) 

where  is linear absorption coefficient which is related to the density,  while I is diffracted 

intensity. Value of / is called mass absorption coefficient and given in Table G-1 for 

several elements used in this work. The lower bound on the beam energy was determined for 

BaTiO3 by the attenuation length of the specimen. Thus, the absorption coefficient can be 

calculated from the weighted average of absorption coefficients of its constituent elements:   

i

i

iw )/(/         (F-2) 

Consequently, for BaTiO3 : 

   x ])/( + )/(  + )/( [ =  
33 BaTiOOOTiBaBaBaTiO  www Ti  (F-3) 

Since, density of BaTiO3 in this work is 5.55g/cm
3
 (ITT Corporation, Salt Lake City, Utah; 

grade: EC-55) 


3

BaTiO =5.55g/cm
3
x[(0.589x3.963(cm

2
/g)+(0.205x0.405(cm

2
/g))+(0.206x0.168(cm

2
/g))=13.6cm

-1 

20% transmission is assumed to be enough to get a quality image for diffraction patterns the 

maximum sample thickness can be calculated as; 

1.09mm ≥ x 

Table F-2 X-Ray Mass Attenuation Coefficients at 80 keV [http://physics.nist.gov/PhysRefData/XrayMassCoef] 

Elements Absorption coefficient(cm
2
/g) (/)  

a (Barium) 

Ti (Titanium) 

O(Oxygen) 

Pb (Lead) 

Zr (Zirconium) 

Ti (Titanium) 

3.963
 

0.405 

0.168 

2.419 

1.721 

0.405 

[1] Cullity, B.D., Elements of X-Ray Diffraction. 1978, Reading, Mass.: Addison- Wesley Publishing Co. 545. 
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APPENDIX G:  THE SENSITIVITY OF MEASURED STRAINS TO INSTRUMENT 

GEOMETRY CORRECTION 

 

 

Figure G-8 Schematic of diffraction geometry for a polycrystalline sample. Figure shows the relationship of 

incident, transmitted and diffracted beam in transmission geometry, which is used to obtain lattice strain.  

 

Strain-induced Bragg peak shifts are calculated with Rietveld (least squares) method in GSAS 

(MATLAB) for samples under applied mechanical and electrical load in this study.  Since 

strain values in ferroelectrics are generally at low values (1%) a proper calibration of 

diffraction images is necessary for an accurate data reduction method.CeO2 was chosen to 

correct geometrical parameters such as the sample-to-detector distance and image center and 

the detector tilt angle, where the energy of the X-ray beam was assumed to be stable.  

Diffraction rings of strain-free standard material were fitted in Fit-2D and the non-

orthogonality of the image plate detector (Figure G-1 depicts typical diffraction geometry 

where diffracted beam is collected by a two-dimensional detector) with respect to incoming 

beam was corrected by calculations of elliptical rings.  Then data were divided into 10º bins 

and integrated as shown in Figure G-2-a for parallel direction with respect to scattering 

beam. Figure G-2-a and -b shows the example of peak splitting due to miscalculated beam 
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center and calculated d-spacings for an example diffraction peak. After correcting diffraction 

geometry parameters in Fit-2D, the data was binned and each spectrum is fitted to a 

continuous function in GSAS (and/or MATLAB) and the positions of hkl peaks were extracted 

to be used in strain calculation.   
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Figure G-2  (a) Intensity spectrum along azimuthal angle over an interval of 10º, (b) Distribution of d-spacing 

as a function of angle from scattering vector (applied load) along (222) showing orientation dependence of the 

standard due to misinterpreted beam geometry. 

(a) 

(b) 
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 In GSAS, a parameter file is created by standard diffraction spectra for each azimuthal 

angle to minimize systematic errors. Figures G-3-a through G-3-c show the refinement steps 

(background and scale factor; difractometer zero; profile parameters and finally isotropic 

thermal motion parameters) to prepare an appropriate parameter file for further data analysis 

as a function of applied load.    

 

   

 

   

 

(a) 

(b) 
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Figure G-3 Refinement steps of calibration material (Cerium oxide) to create parameter file required in GSAS. 

(a) After background and scaling factor refinement (wRp = ~7%), (b) Diffractometer zero refinement (wRp = 

~5%), (c) Profile function (Profile function 2 in GSAS, a multi-term Simpson’s rule integration of the pseudo-

Voigt) parameter refinement (wRp = ~2%). Final refinements resulted in wRp =~ 1.6%. 

(c) 


