ILAR Journal, 2015, Vol. 56, No. 1, 116-126

doi: 10.1093/ilar/ilv015
Article

Porcine Models of Muscular Dystrophy*

Joshua T. Selsby, Jason W. Ross, Dan Nonneman, and Katrin Hollinger

Joshua T. Selsby, PhD, and Jason W. Ross, PhD are associate professors of Animal Science at Iowa State University,
Ames, IA 50011. Dan Nonneman, PhD, is a research molecular biologist at the USDA?, ARS, U.S. Meat Animal
Research Center, Clay Center, NE 68933. Katrin Hollinger, PhD, was a graduate student in Genetics at lowa State
University, Ames, IA 50011

Address correspondence and reprint requests to Joshua Selsby, 2356 Kildee Hall, Ames, IA 50011 or email jselsby@iastate.edu

Abstract

Duchenne muscular dystrophy is a progressive, fatal, X-linked disease caused by a failure to accumulate the cytoskeletal protein
dystrophin. This disease has been studied using a variety of animal models including fish, mice, rats, and dogs. While these
models have contributed substantially to our mechanistic understanding of the disease and disease progression, limitations
inherent to each model have slowed the clinical advancement of therapies, which necessitates the development of novel large-
animal models. Several porcine dystrophin-deficient models have been identified, although disease severity may be so severe as
to limit their potential contributions to the field. We have recently identified and completed the initial characterization of a
natural porcine model of dystrophin insufficiency. Muscles from these animals display characteristic focal necrosis
concomitant with decreased abundance and localization of dystrophin-glycoprotein complex components. These pigs
recapitulate many of the cardinal features of muscular dystrophy, have elevated serum creatine kinase activity, and
preliminarily appear to display altered locomotion. They also suffer from sudden death preceded by EKG abnormalities. Pig
dystrophinopathy models could allow refinement of dosing strategies in human-sized animals in preparation for clinical trials.
From an animal handling perspective, these pigs can generally be treated normally, with the understanding that acute stress
can lead to sudden death. In summary, the ability to create genetically modified pig models and the serendipitous discovery of
genetic disease in the swine industry has resulted in the emergence of new animal tools to facilitate the critical objective of
improving the quality and length of life for boys afflicted with such a devastating disease.
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Introduction 427 kDa full-length protein is produced from 79 exons, although
The dystrophin gene, found on the X chromosome, is among several smaller transcripts can also originate from the same
the largest in the mammalian genome and is more than 2 gene (Koenig et al. 1987; Muntoni et al. 2003). The dystrophin
megabases in length. When fully transcribed and translated, a protein is a functional link between the actin cytoskeleton and
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the dystrophin glycoprotein complex (DGC). Through the DGC,
dystrophin transmits force produced during muscle contraction
to large extracellular proteins and ultimately to tendons and
bones. The dystrophin protein contains four hinge regions and a
long rod domain composed of spectrin-like repeats (for review
Le Rumeur et al. 2010) and helps to protect the sarcolemma from
injury, particularly during eccentric contractions. In the case of
dystrophin deficiency, this functional connection is lost, as is
the capacity to transmit force via this mechanism along with
DGC component abundance and complex assembly. Dystrophin
deficiency results in a disease called Duchenne muscular dys-
trophy (DMD).

DMD is most commonly caused by deletions in the dystro-
phin gene, although point mutations and duplications also con-
tribute to the DMD population (Aartsma-Rus et al. 2006). In total,
approximately two thirds of cases are inherited, with the re-
mainder resulting from de novo mutations (Laing 1993). Boys
lacking the dystrophin protein product are afflicted with deteri-
orating muscles and a devastating prognosis that is typically
observed with locomotor deficits in early preschool years,
progressing toward death as a result of the failure of muscles
supporting cardiac and respiratory function. Becker muscular
dystrophy (BMD) is also caused by dystrophin mutations, result-
ingin either a failure to accumulate sufficient full-length dystro-
phin and/or the accumulation of a truncated dystrophin gene
product. Often this is the result of a deletion that maintains
the open reading frame. Disease severity is highly variable
in boys with BMD and ranges from nearly asymptomatic to
severity that closely parallels that seen in DMD (Beggs et al.
1991; Nicolas et al. 2015).

Whether through increased sarcolemmal Ca?* permeability
(Liu et al. 2005; Lynch 2004; Moens et al. 1993; Morris et al. 2010;
Petrof et al. 1993; Selsby et al. 2010) or Ca®* channel dysfunction
(Franco and Lansman 1990; Lansman and Franco-Obregon 2006;
Tutdibi et al. 1999), itis clear that dystrophic muscle suffers a loss
of Ca?* homeostasis. In terms of cellular function, loss of Ca?*
control leads directly to increased proteolysis. Indeed, both in-
creased activation of calpains and the proteasome system are
widely reported in dystrophic skeletal muscle (Selsby et al.
2010; Spencer and Mellgren 2002). Further, mitochondria become
a secondary sink for Ca?* storage leading to mitochondrial and
metabolic dysregulation (Basset et al. 2006; Vandebrouck et al.
2006). Superoxide production and free radical injury are
increased in dystrophic muscle (Selsby 2011; Tidball and
Wehling-Henricks 2007), likely due to increased calpain activity
and mitochondrial dysfunction. The combination of increased
cytosolic Ca?*, free radical production, and mitochondrial dys-
function and apoptotic signaling (Basset et al. 2006; Tews 2006)
in dystrophic muscle unfortunately culminates in myonuclear
loss and muscle fiber death. This cellular stress contributes to
an inflammatory response, further contributing to muscle injury.
There is growing evidence that suppressed autophagy may also
be contributing to disease severity (De Palma et al. 2014; Hollinger
et al. 2013).

While there are numerous secondary pathologies contribut-
ing to disease severity, each represents a potential therapeutic
target. In addition, the goal of several novel treatment strategies
is to convert DMD patients to BMD patients and thereby mitigate
disease severity. In one such approach, protein abundance of
utrophin, a dystrophin-related protein, is elevated. Numerous
reports have established that utrophin and dystrophin are
structurally similar (Blake et al. 1996), although not identical
(Lietal. 2010), such that utrophin can serve as an adequate sub-
stitute for dystrophin in the absence of dystrophin (Tinsley et al.
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1998). In addition, utrophin may play a role in satellite cell func-
tion, DGC localization, smooth muscle function, and expression
of dystrophin splice variants, any one of which could potential-
ly affect muscle function and metabolism (Cohn et al. 2002;
Deconinck et al. 1997; Rafael et al. 2000). In another approach
called exon skipping, exons containing errors are artificially
spliced out, serving to reestablish the correct reading frame,
although it also results in the production of a truncated dystro-
phin protein product (Anthony et al. 2012; Mendell et al. 2013).
Lastly, gene therapy techniques attempt delivery of a miniatur-
ized utrophin or dystrophin gene to allow effective packaging
in adeno-associated viral particles. Termed micro-utrophins
(Odom et al. 2008) and micro-dystrophins (Shin et al. 2013),
these protein products have shown efficacy in animal models.
Hence, in addition to DMD, studies related to BMD are urgently
needed, as the BMD population seems likely to expand. A requi-
site requirement for the development of therapies for dys-
trophinopathies is animal models in which to test these
important therapeutic approaches.

Conventional Animal Models
of Dystrophinopathy

mdx Mouse

The mdx mouse is the research animal most commonly used to
study DMD. In the mdx mouse, dystrophic pathology is caused by
a point mutation in exon 23 leading to formation of a stop codon
and subsequently truncated protein (Bulfield et al. 1984). More re-
cently, mutagenesis techniques have generated at least four
novel mutations in the mouse dystrophin gene that are designated
mdx®"">%V (Cox et al. 1993; Im et al. 1996). In addition to these
models, two mouse dystrophin knockout models have also
been developed (Kudoh et al. 2005; Wertz and Fuchtbauer
1998). The mdx mouse is an extremely well characterized
model of DMD and has been invaluable in the understanding
of disease pathogenesis and improving our mechanistic under-
standing of the disease. Further, it is widely used in the develop-
ment of new therapies.

However, for all of the many useful features of mdx mice,
there are a few significant drawbacks. For example, the disease
phenotype exhibited by mdx mice is much milder than that of
human DMD patients. These animals continue to be mobile, ex-
perience very little limb muscle fibrosis or adiposity, exhibit no
significant contractures, and have only a mildly reduced life
span (Banks and Chamberlain 2008; Chamberlain et al. 2007).
To date, several reasons explaining these observations have
been advanced, though little data supporting or refuting them
have been published. It could be that their small size and four-
legged means of locomotion spares muscles from continued
cycles of degeneration and regeneration (Wells and Wells 2005).
Alternatively, mice may have an inherently larger and/or faster
means of muscle regeneration than do humans (Wells and
Wells 2005). Further, in mdx mice, expression of utrophin is high-
er than in corresponding muscle from healthy mice and may be
better able to compensate for dystrophin deficiency in mice than
in humans (Law et al. 1994). As these were recognized as potential
confounding variables, an mdx/utrophin™~ mouse line was de-
veloped, which has a far more severe phenotype (Deconinck
et al. 1997). Indeed, a number of additional mutations have
been superimposed on the mdx model in an effort to increase
disease severity (e.g., Sacco et al. 2010). While the disease pheno-
type is typically far more severe in these models, they are no lon-
ger accurate genetic models of the human disease as these new
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knockouts often increase disease severity independent of the
dystrophin mutation.

Additionally, in many instances, there is a poor correlation
between effectiveness of therapies in mouse models to that
observed in human models (Duan 2011; Wells and Wells 2005).
Indeed, scaling up from a mouse to a dog or human presents a
number of challenges for conventional drug interventions as
well as gene and stem cell transfer-based approaches (discussed
below).

Golden Retriever Muscular Dystrophy (GRMD) Model

Identification and characterization of a larger dystrophin-defi-
cient animal model would contribute greatly to the advancement
of our understanding of the disease as well as our ability to treat
it. As aresult, the GRMD model has been used extensively among
some research groups. In the GRMD model, the dystrophin gene
has a mutation in the 3’ end of intron 6 that results in the aber-
rant exclusion of exon 7 during splicing, and a frame shift,
which introduces a stop codon in exon 8 (Sharp et al. 1992).
This model features a phenotype that is similar in severity and
selective muscle injury to that seen in human patients (Kornegay
et al. 2003). Finally, these dogs are more similar in size to human
patients, helping to ease issues related to project scale-up (Duan
2011; Wells and Wells 2005).

Despite these positive aspects of the GRMD model, several de-
ficiencies warrant consideration of new large-animal models of
DMD. GRMD dogs have a high degree of variability, despite an
identical causative mutation (Cooper et al. 1988; Shimatsu et al.
2003). It is likely that at the root of this issue is variation in the
expression of alternatively spliced dystrophin gene products
and expression of resultant truncated translational products in
the muscles of GRMD dogs, leading to great phenotypic range
(Banks and Chamberlain 2008; Schatzberg et al. 1998). This may
be indicative of other underlying differences between the canine
and human diseases. While identification of mediators of this
differential expression is important and has great potential for
large therapeutic impacts, the high phenotypic variability
makes determining end points difficult and confounds data in-
terpretation (Bretag 2007). For example, despite being dystrophin
deficient, Ringo, a member of a Brazilian GRMD colony, behaves
normally (running, jumping, opening a door while on hind
limbs, and breeding) (Ambrosio et al. 2008). Furthermore, dystro-
phic dogs treated with corticosteroids exhibited a greater fre-
quency of calcified necrotic fibers and impairment of some
measures of muscle function (Liu et al. 2004). This is of great im-
portance because corticosteroids have been routinely used in the
care of human DMD patients since the 1970s and have consis-
tently improved muscle function. As corticosteroids are the stan-
dard of care, it is important to determine how novel drugs may
interact with corticosteroids in an animal model. Because corti-
costeroids exacerbate the disease in the GRMD model, it is not
the ideal large-animal model in which to make these compari-
sons. Despite the many favorable attributes of the dog model of
DMD, several deficiencies remain, necessitating the continued
search for alternative large-animal models of DMD.

Other Dystrophinopathy Models

The hypertrophic feline muscular dystrophy (HFMD) cat analog
of DMD was first diagnosed in a companion animal. Different
spontaneously occurring mutations can lead to HFMD, however
these mutations appear to be located at the muscle and Purkinje
promoter of the dystrophin gene (Gambino et al. 2014; Winand

et al. 1994). The feline model is rarely used as a research animal
because tongue and diaphragm hypertrophy lead to feeding dif-
ficulties, animal welfare concerns, and death (Carpenter et al.
1989; Gaschen et al. 1992).

Two independent labs have recently employed genome edit-
ing tools to induce dystrophin mutations in rats (Larcher et al.
2014; Nakamura et al. 2014). Nakamura and colleagues used
clustered, interspaced short palindromic repeats (CRISPR)/Cas
to induce deletions in exon 3 and/or exon 16 in inbred Wistar—-
Imaichi rats. The rats showed muscle pathology consistent
with DMD; however, there was large variation in severity between
individual animals (Nakamura et al. 2014). A stop codon in exon
23, as found in the mdx mouse, was created in rats by Larcher and
colleagues utilizing transcription activator-like effector nucleas-
es (TALEN). The Dmd™%* rats have a phenotype similar to human
DMD patients including fatty infiltration and a cardiac defect. In
outbred Sprague-Dawley rats carrying this mutation, the pheno-
type is also consistent between animals. A benefit of rat models is
that rats are relatively easy to work with and have inexpensive
husbandry needs compared with large animals. However, issues
related to scale up, like in the mouse, would seem to limit the
usefulness of these models as translational tools.

Zebrafish dystrophinopathy models are commonly used non-
mammalian models of DMD. Two strains are available: sapje,
with a nonsense mutation in exon 4, and sapje-like, with a dele-
tion of exon 62 leading to a stop codon in exon 63 (Bassett et al.
2003; Guyon et al. 2009). Since zebrafish embryos are translucent,
muscle damage can be visualized and quantified using polarized
light (Berger et al. 2012). The straightforward quantification
facilitates high throughput screening of disease-modifying
compounds (Kawahara et al. 2011; Waugh et al. 2014), testing
the efficacy of potential treatments (Berger et al. 2011; Li et al.
2014), and studies of disease pathology (Alexander et al. 2013;
Bassett et al. 2003). Even though zebrafish have proteins ortholo-
gous to those in the mammalian DGC (Chambers et al. 2001),
there are limitations to using zebrafish models including differ-
ences in taxonomy class, locomotion, and size.

Rationale for Porcine Models
of Dystrophinopathy

Despite the fact that DMD remains the most common fatal,
X-linked disease, development of therapeutic interventions is
moving at an alarmingly slow rate. Certainly, current animal
models have been essential in aiding our understanding of
DMD and have made contributions as preclinical models. Howev-
er, their differences in body size, disease presentation, and
response to therapeutic interventions compared with humans
have hindered progress toward advances in patient care. With a
porcine model available, we anticipate that preclinical trials
would be far more representative and predictive of human out-
comes, because the pig genome is three times more similar to
that of the human than is the mouse (Wernersson et al. 2005)
and is much closer in anatomical size to humans than is the
mouse or dog.

As noted above, a significant hurdle is appropriately scaling
experimental medications from doses given to a mouse or dog
to those appropriate for a human patient. In many instances,
the dog is omitted from the translational pipeline, hence more
commonly the hurdle is scaling therapies from mouse to
human. In addition to differences in body size, there are also dif-
ferences in body composition, metabolic rate, and biological
chemistry that contribute to varied or underwhelming responses
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in humans despite strong preclinical data demonstrating efficacy
in mice. Failure to appropriately dose human subjects resultsin a
failure to accumulate sufficient drug-of-interest in the blood and/
or target tissues or to effect a desired modification of targeted
pathway activity. It may cause significant side effects leading to
failure of the clinical trial.

Similar to conventional intervention, scale up of gene therapy
approaches also faces significant challenges. Intramuscular gene
transfer and intravascular delivery of virus for whole-body trans-
fection have become routine in mouse models (Gregorevic et al.
2006, 2008; Zhang and Duan 2012). Unlike the mdx mouse, after
intramuscular viral delivery of microdystrophin to DMD patients,
no transgene was detected (Mendell, Campbell, et al. 2010). This
may be due, in part, to an immune response to the transgene. The
viral vector itself can also provoke an immune response in pa-
tients (Mendell, Rodino-Klapac et al. 2010; Mingozzi et al. 2007),
which could interfere with transgene expression. Because of
the immune response encountered with intramuscular delivery,
there is concern that the higher titers required for systemic per-
fusion could trigger a stronger immune response, which would
be counter to the efficacy of the intervention and well-being of
the patient. Further, delivering virus directly to the entirety of
the musculature is logistically impractical. Large-animal models
can facilitate the optimization of approaches for systematic viral
delivery while at the same time evaluating the immunological
responses in multiple species.

Given these current problematic issues of scale-up, a model of
human size would seem to be an invaluable tool. Minipigs (i.e.,
NIH minipig, Yucatan) can be managed to reach a size of
~150 lbs at one year of age and ~200 pounds at two years of age.
Domestic pigs used for agriculture can reach nearly 300 pounds
by six months of age and may exceed 500 pounds by one year of
age. An advantage of the larger size makes biopsies possible
such that longitudinal studies could be performed on the same
animal. Furthermore, logistics of scale-up, including dosages, ti-
ters, injection sites, dosing regimens, etc., could be better defined
prior to use in DMD patients. This has the cumulative benefit of
reducing the cost of clinical trials because (1) a very thorough pre-
clinical trial featuring pigs would be much cheaper than most
human clinical trials, (2) clinical trials could contain fewer groups
as dose determination and scale-up methods have already been
determined, and (3) interventions that would fail because of lim-
itations to scale-up or other toxicities discovered in moving to
large animals could be halted at the preclinical stage.

In addition to skeletal muscle dysfunction, dystrophinopathy
patients suffer a progressive cardiomyopathy. Indeed, respiratory
support therapies have been so successful in protecting respirato-
ry function that cardiomyopathy is growing in frequency as the
cause of death for DMD patients (McNally 2007). Hence, it is imper-
ative that models of DMD have a cardiovascular system compara-
ble to the human cardiovascular system so that interventions will
be in the appropriate physiological context. In that regard, porcine
and human hearts are similar in terms of cardiac output, stroke
volume, mean arterial pressure, heart rate, and perfusion (Crick
et al. 1998; Thein and Hammer 2004). Moreover, the porcine
heart is so similar to the human heart that, in preparation for xe-
notransplantation, transgenic pigs designed to reduce rejection
have been developed (Ezzelarab et al. 2009; Lai et al. 2002; Weiss
et al. 2009), while pig xenographs are currently being used in hu-
mans for valve replacements as well as aortic root replacements
(Kon et al. 1999; LeMaire et al. 2009). Finally, a model with a cardio-
myopathy provides an opportunity to study the mechanism of this
feature of dystrophinopathy as well as a platform to test potential
interventions.
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Transgenic Porcine Models
of Dystrophinopathy

A tremendous amount of progress has been made in the last
decade with respect to genetically engineering pigs with specific
defects to recapitulate human disease phenotypes in a desirable
pig genetic background (Prather et al. 2013; Yang and Ross 2012).
The ability to make pigs carrying specific genetic modifications
has been accomplished through somatic cell nuclear transfer
(Rogers et al. 2008; Ross et al. 2012) and through the implementa-
tion of new gene-editing technologies such as TAL effector nucle-
ases (TALENS) (Prather et al. 2013) and the use of the CRISPR/Cas9
system (Whitworth et al. 2014).

We and others have pursued this genome modification
approach, resulting in the emergence of several new models of
dystrophinopathies in pigs. In 2013, Klymiuk and colleagues re-
ported a transgenic pig model with the exon corresponding to
human dystrophin exon 52 replaced with a neomycin selectable
marker cassette. The deletion of the exon resulted in a +1 frame
shift after the splicing of exon 51 to 53 (Klymiuk et al. 2013). The
model produces some of the cardinal features of DMD in humans,
such as absence of dystrophin protein, a reduction in the abun-
dance and localization of DGC components, elevated serum cre-
atine kinase activity, and progressive fibrosis of muscle. The
model though is not without some significant drawbacks. At a
molecular level, the model appears to express significantly great-
er utrophin than wild-type counterparts, a shortcoming of the
mdx mouse. Further, the severity of the disease in this pig
model is so great as to significantly limit its use as a research
tool as the majority of affected offspring died within the first
week of life. Hence, the opportunity to identify biomarkers
prior to an observable physical phenotype is greatly reduced, as
is the ability to introduce a therapeutic intervention early enough
in the course of the disease to curb disease progression and
severity over time.

Information regarding another porcine model of muscular
dystrophy is available only through the U.S. patent office (Exem-
plar Genetics Patent US 20140223589 A1). The patent claims that
these miniature pigs possess an exon 52 deletion and demon-
strate several characteristics consistent with DMD phenotypes
observed in boys with the disease, such as elevated serum crea-
tine kinase activity and lack of a functional dystrophin protein.
While several key features of this model still require further
characterization to determine its full potential, this model is
promising. Of potential concern is that the genetics of this
model appears to cause the same mutation (exon 52 deletion)
as the transgenic dystrophin knockout model above (Klymiuk
et al. 2013). Hence, there is the expectation that the severity of
the disease would be similar, although until the details of the
model are peer reviewed this is speculative.

We have also pursued the development of a miniature pig
model of muscular dystrophy. Our modification, accomplished
by the introduction of a neomycin selectable marker cassette
via homologous recombination, results in the in-frame deletion
of an exon in the rod domain of the dystrophin protein (Ross
et al., unpublished observations). We have recently begun pro-
ducing males carrying the modification. Anecdotally, they ap-
pear to develop fairly normally for the first two months of life.
Both phenotypic and molecular characterizations at multiple
time points in the first year are underway to determine the extent
to which this model recapitulates fundamental features of dys-
trophinopathies. Our expectation is that an in-frame dystrophin
mutation in the pig would result in a milder dystrophinopathy in
comparison with other existing transgenic pig models, such as

120z Aenuep 2z uo 1sanb Aq 61.G199/91 L/1/9G/1o11e/jeuinolie|/wod dnoojwapede//:sdjy woly papeojumoq



120 | Selsbyetal.

the one developed by Klymiuk and colleagues (2013). An addi-
tional advantage of a miniature BMD-like model would be their
research importance in the event of successful deployment of
exon-skipping drugs, which would dramatically increase the
number of boys with a BMD-like phenotype.

While genetic modification of the pig genome offers the abil-
ity to create and utilize important animal models, the use of
transgenic pig models is hampered by federal regulations limit-
ing rapid, widespread use and distribution of the animals
(Maxmen 2012). Alternatively, the U.S. swine industry produces
over 100 million pigs per year. While the swine industry does
not actively pursue the identification of phenotypes for use as
biomedical models, some mutations have been identified, such
as pigs with malignant hyperthermia (MH) (Fujii et al. 1991),
severe combined immunodeficiency (SCID) (Ewen et al. 2014), and
our porcine BMD model (see below) (Hollinger et al. 2014;
Nonneman et al. 2012). These discoveries of spontaneously
occurring disease models are capable of making an impact on the
biomedical research community without the complications of
regulatory efforts associated with monitoring transgenic animals.

A Spontaneous Porcine Dystrophinopathy
Model

Discovery

A porcine stress syndrome symptomatically similar to ryanodine
receptor 1 (RYR1)-mediated porcine stress syndrome was discov-
ered in the U.S. Meat Animal Research Center’s swine research
population when two male siblings died of apparent stress after
transport at 12 weeks of age (Nonneman et al. 2012). Because the
population was free of the RYR1 mutation, it was initially thought
it could be an allelic form of porcine stress syndrome or MH. To
evaluate candidate genes associated with the stress syndrome,
the coding regions of porcine orthologs of human MH genes
RYRI, calcium channel, voltage-dependent, L type, alpha 1S sub-
unit (CACNA1S), carnitine palmitoyltransferase 2 (CPT2), and rya-
nodine receptor 2 (RYR2) were sequenced for SNP discovery and
mutation detection in the proband’s family. There were no obvious
mutations identified when normal and affected siblings were com-
pared, and the syndrome did not cosegregate with SNP alleles in
any of the human MH candidate genes. Matings were made with
the original sire, dam, and daughters to generate additional off-
spring to characterize the genetic basis of this syndrome. A pedi-
gree of 250 animals that included 49 affected pigs was genotyped
with the Illumina PorcineSNP60 beadchip (Ramos et al. 2009), and
a single region on the X chromosome (29-32 Mb) was associated
with the stress syndrome. The two most significant markers on
the beadchip (ALGA0099513 and ALGA0099514) are located in
intron 44 of the dystrophin gene (Nonneman et al. 2012).

Genetics

After discovering that the dystrophin gene was associated with
the stress syndrome, the exons and flanking intron boundaries
of DMD were sequenced from normal and affected pigs, and no
polymorphisms were identified near splice sites. Amplification
and sequencing of skeletal muscle cDNA from normal and affect-
ed animals revealed no evidence of alternative splicing or dele-
tion of exons in the affected animals. Polymorphisms in the
promoter regions (P1, P2, and the muscle-specific promoter) did
not segregate with the disease. Six nonsynonymous polymor-
phisms were found in the coding region (Table 1), and only one
of these nonsynonymous changes, 85890_783, which causes the
amino acid change arginine to tryptophan at amino acid 1958
(R1958W) in exon 41, was significantly associated with the stress
syndrome. This SNP was as highly associated with the stress re-
sponse as the two most significant SNPs in intron 44 on the Illu-
mina PorcineSNP60 Beadchip. The C allele (arginine) was found
in all unaffected animals, and the T allele (tryptophan) was hemi-
zygous in affected males and heterozygous in carrier females.
This change was predicted by PolyPhen-2 (http:/genetics.bwh.
harvard.edu/pph2/) to be damaging with a probability score of
0.983 (Nonneman et al. 2012).

To further characterize this variant, additional sequencing
of the locus in this population was performed. Because of the
size of the dystrophin gene, a DNA capture array (Agilent,
Santa Clara, CA) was designed for 2.33 Mb of pig genomic se-
quence spanning the DMD gene and included 146 kb upstream
of the first exon and 20 kb downstream of the last exon. The var-
iation between affected and normal pigs and two normal pools
of Duroc/Yorkshire and Landrace boars showed that affected
pigs shared a common haplotype that extended for about
750 kb. corresponding to a region ranging from intron 40 to in-
tron 59 of the dystrophin gene (DJ Nonneman, GA Rohrer, un-
published observations). This region includes the arginine to
tryptophan substitution in exon 41 and the two most significant
[llumina Beadchip markers. This shared haplotype implies that
the mutation resides in this interval, and no other mutations
were found in this region. Thus the hypothesis that the Arg-
Trp mutation is responsible for the phenotype is strongly sup-
ported by the genetic evidence.

Phenotype

In affected pigs, dystrophin abundance was decreased in all mus-
cles by ~70% when assessed by Western blot; however, using an
immunohistochemical approach, the reduction in dystrophin
localization was noted in the diaphragm (70% reduction) and
the longissimus (90% reduction) but not the psoas (45% numeri-
cal reduction) (Hollinger et al. 2014; Nonneman et al. 2012).

Table 1. Nonsynonymous polymorphisms in pig DMD and their associations with the stress-induced phenotype

Marker Nucleotide Polymorphism? Amino Acid Location p-value
84000_82 1349 CRA R396G Exon 11 0.002
84002_411 1629 CAS H489Q Exon 12 0.0002
84339_200 2102 ARC N647S Exon 16 0.406
84339_333 2235 ACR T691T Exon 16 0.559
85890_783 6034 YGG R1958W Exon 41 1.06 x 10723
ALGA0099513 Intron 44 2.19x107%
ALGA0099514 Intron 44 2.19x107%
85904_613 7274 CYG 12371P Exon 49 0.005

#Polymorphisms are shown by their IUB code within the codon.
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Likewise, o-sarcoglycan and dystroglycan abundance and locali-
zation followed a similar pattern in these muscles (Fortunato
et al. 2014; Hollinger et al. 2014). Litter size and sex distribution
of offspring were consistent with that found in a typical produc-
tion line, suggesting that dystrophin insufficiency does not affect
in utero survival. Further, growth of affected pigs and healthy lit-
termates was similar throughout the first 12 months of life. Visu-
ally, pigs containing the polymorphism causing dystrophin
insufficiency appear similar to their unaffected littermates
throughout the first 12 months of life. Consistent with disease-re-
lated muscle injury, serum creatine kinase activity is increased in
affected animals compared with healthy littermates. At two
months of age, a detailed histological study using several mus-
cles was conducted, which revealed focal necrotic lesions in
some, but not all, muscles selected for investigation (Hollinger
et al. 2014). For example, the diaphragm and longissimus con-
tained necrotic lesions; however, the psoas did not. It is unclear
if the muscle-specific response is due to frequency and type of
muscle use, where the diaphragm and longissimus are used reg-
ularly and the psoas is used sparingly. Alternatively, the fiber-
type distribution may also affect muscle injury because the
psoas is largely type I, which has been shown to be resistant to
dystrophic injury relative to other fiber types (Webster et al.
1988). Indeed, a novel therapeutic approach is to increase the fre-
quency of type I fibers within a muscle group as the complement
of proteins associated with the type I phenotype appears protec-
tive to dystrophic injury (Hollinger et al. 2013; Ljubicic et al. 2011,
Selsby et al. 2012). It is also unclear if the dystrophic psoas
contains less injury as a cause or an effect of the higher degree
of dystrophin and DGC localization.

Cardiomyopathy is another important consideration for ani-
mal models of dystrophinopathies because it is quickly becoming
the leading cause of death for dystrophinopathy patients. In this
pig model, the myocardium appears free from lesions at two
months of age despite dystrophin insufficiency (JT Selsby,
JW Ross, D] Nonneman, K Hollinger, unpublished observations).
At 12 months of age, foci of necrosis are apparent. indicating a de-
teriorating myocardium, which is consistent with the human
disease (Nonneman et al. 2012). Regardless of age, these pigs
are susceptible to a stress-mediated sudden death. Early experi-
ments implicated the ryanodine receptor because inhalation of
isoflurane also caused this sudden death (Nonneman et al.
2012), although it is unclear if the death was due to the
isoflurane, per se, or the stress of forced breathing of isoflurane.
Regardless, immediately prior to death during isoflurane inhala-
tion, electrocardiogram (EKG) abnormalities were reported
(Nonneman et al. 2012). Similarly, we found EKG abnormalities
immediately prior to death resulting from acute stress (Figure 1).
Itis unclear if the ryanodine receptor is affected by dystrophin in-
sufficiency in this model; however, recent evidence (Bellinger
et al. 2009; Fauconnier et al. 2010) and a similar susceptibility to
sudden death in BMD patients (Nigro et al. 2002) leads to the spec-
ulation that there may be post-translational ryanodine receptor
modification due to dystrophin insufficiency. Importantly,
hyperthermia was not present during stress-mediated death
(unpublished observations).

Current Approaches

While histological experiments provide compelling evidence that
dystrophin insufficiency leads to disease-related injury in dystro-
phin-insufficient pigs, we are currently working to determine the
extent to which it leads to impaired muscle function. This will pro-
vide an objective outcome measure so that disease progression can
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be clearly tracked and establish a basis on which to evaluate inter-
ventions at the preclinical stage. Further, because it is clear in other
species that dystrophin insufficiency causes lesions in skeletal
muscle and leads to impaired muscle function, establishing this
in the porcine model is critical. Currently, we are using changes
in gait to objectively measure locomotor function. To accomplish
this, pigs are observed as they walk on an ~15-meter linear track
that contains an ~5-meter mat with embedded force transducers
(Xeno, ProtoKinetics, Havertown, PA; Figure 2). While this is an on-
going study, our preliminary data indicate that, at three months of
age, stride length is decreased (Figure 3) in affected pigs, and affect-
ed pigs do not roll through a step (strike to toe off) in the same
fashion as healthy littermates (Selsby, Ross, Nonneman, Kaiser,
unpublished observations). Such changes would be indicative of
disease-related modifications to gait and locomotion much like
those observed in human patients.

Future Directions

To more fully characterize the model, we intend to measure
respiratory function in these pigs because respiratory failure is
a serious clinical concern for these patients. That these pigs
have such a powerful and repeatable stress-induced death cre-
ates some hurdles that we are working to overcome. In an early
attempt to measure respiratory function, we used respiratory
inductive plethysmography in which bands are placed around
the chest and abdomen of the pig. While we were successful in
recording a signal, we were not able to calibrate the system due
to fears that this process would trigger stress sufficient to kill
the animal. We also considered surgical techniques; however,
that precludes the possibility of longitudinal studies. We are cur-
rently exploring the possibility of using whole-body unrestrained
plethysmography and have successfully performed this tech-
nique in mice (Selsby et al. 2014).

Of equal importance are changes in cardiac function, and the
possibility of using the working heart or Langendorff approaches
to measure cardiac function is foreseeable. We may also pursue
in vivo imaging using magnetic resonance imaging (MRI) and
have recently performed this measure in mice (Ballman et al.
2015; Beyers et al. 2015).

Aside from disease characterization, understanding the mo-
lecular mechanism leading to dystrophin insufficiency is impor-
tant because it will help us to better understand the disease in
this model but may also help us better understand similar causes
in human patients. The reduction in dystrophin abundance is
greater than was anticipated given the identified mutation. Full
sequencing of the dystrophin gene did not reveal additional mu-
tations (Nonneman et al. 2012). The mutation did not cause a new
microRNA binding site, although the molecular properties of ar-
ginine and tryptophan differ. It is reasonable to suggest that this
amino acid substitution changed the tertiary structure, making
proteolytic attack more likely. Indeed, in silico digests suggest in-
creased susceptibility to calpain (Hollinger et al. 2014). Even this,
however, seems inadequate to explain the 70%-90% reduction in
dystrophin protein abundance, suggesting that some other
mechanism(s) are contributing to decreased dystrophin abun-
dance. These may include decreased stability of the transcript,
increased transcript degradation, or decreased protein stability.

Summary

A variety of animal models have contributed to our under-
standing of dystrophinopathies and to therapy development.
Deficiencies in these models necessitate the development of
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Figure 1. Dystrophic pigs have EKG abnormalities after acute stress. Fifteen minutes after a routine injection, a pig with dystrophin insufficiency collapsed and exhibited
rapid, shallow breathing. EKG pads were applied within a few minutes to record electrical activity in the heart. Ultimately, the rhythm degraded to ventricular fibrillation
and asystole. The entire duration from the onset of breathing abnormalities to death was less 15 min. Similar recordings, along with an example from a healthy animal
have been previously reported (Nonneman et al. 2012). These panels (in order) were taken over the final 8 min.
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Figure 2. Gait analysis. The track is ~15 meters with the central 5 meters
containing 33,000 embedded force transducers (Zeno, Protokinetics, Havertown,
PA). The pigs walked back and forth across the track, and data are collected
bidirectionally.
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Figure 3. Gait abnormalities in dystrophic pigs. Using the system indicated in
Figure 2, data were collected on ~10 walks/pig, which were generally
accomplished in a total of 14 walks over ~15 min/pig. At 3 months of age, stride
length was decreased in dystrophic (n=8) pigs compared with healthy
littermates (n=9). In this preliminary analysis, factors including body weight
and limb length were not included in the statistical model but did not differ
between groups. * indicates significantly different from healthy; p <0.05.

novel, large-animal models as preclinical tools. The pig repre-
sents a human-sized animal that shares many anatomical and
physiological features with humans, including the cardiovascu-
lar system, which is of importance in the study of dystrophinopa-
thies. Several pig models are being developed by different groups,
and we have recently described work characterizing a porcine
model with a dystrophin insufficiency and associated muscle in-
jury. We are in the process of characterizing disease progression
and are developing techniques to objectively measure physiolog-
ical outcomes. We are also pursuing the measurement of respira-
tory and cardiac function. In total, porcine dystrophinopathy
models hold tremendous promise as preclinical models in the
drug and therapy development pipeline for the treatment of
boys afflicted with dystrophinopathies.

ILAR Journal, 2015, Vol. 56, No. 1 | 123

Acknowledgments

Work was supported by grants NS079603 (JTS) and RR030232
(JWR) from NIH and by the USDA.

References

Aartsma-Rus A, Van Deutekom JC, Fokkema IF, Van Ommen GJ,
Den Dunnen JT. 2006. Entries in the Leiden Duchenne muscu-
lar dystrophy mutation database: an overview of mutation
types and paradoxical cases that confirm the reading-frame
rule. Muscle Nerve 34:135-144.

Alexander MS, Kawahara G, Motohashi N, Casar JC, Eisenberg I,
Myers JA, Gasperini MJ, Estrella EA, Kho AT, Mitsuhashi S,
Shapiro F, Kang PB, Kunkel LM. 2013. MicroRNA-199a is in-
duced in dystrophic muscle and affects WNT signaling, cell
proliferation, and myogenic differentiation. Cell Death Differ
20:1194-1208.

Ambrosio CE, Valadares MC, Zucconi E, Cabral R, Pearson PL,
Gaiad TP, Canovas M, Vainzof M, Miglino MA, Zatz M. 2008.
Ringo, a Golden Retriever Muscular Dystrophy (GRMD) dog
with absent dystrophin but normal strength. Neuromuscul
Disord 18:892-893.

Anthony K, Feng L, Arechavala-Gomeza V, Guglieri M, Straub V,
Bushby K, Cirak S, Morgan ], Muntoni F. 2012. Exon skipping
quantification by quantitative reverse-transcription polymer-
ase chain reaction in Duchenne muscular dystrophy patients
treated with the antisense oligomer eteplirsen. Hum Gene
Ther Methods 23:336-345.

Ballman C, Beyer R], Denney TS, Selsby JT, Quindry JC. Effect of
chronic dietary quercetin enrichment on cardiac function in
dystrophic mice. Experimental Biology, March 2015, Boston,
MA.

Banks GB, Chamberlain JS. 2008. The value of mammalian mod-
els for duchenne muscular dystrophy in developing thera-
peutic strategies. Curr Top Dev Biol 84:431-453.

Basset O, Boittin FX, Cognard C, Constantin B, Ruegg UT. 2006. Bcl-
2 overexpression prevents calcium overload and subsequent
apoptosis in dystrophic myotubes. Biochem ] 395:267-276.

Bassett DI, Bryson-Richardson RJ, Daggett DF, Gautier P,
Keenan DG, Currie PD. 2003. Dystrophin is required for the for-
mation of stable muscle attachments in the zebrafish embryo.
Development 130:5851-5860.

Beggs AH, Hoffman EP, Snyder JR, Arahata K, Specht L, Shapiro F,
Angelini C, Sugita H, Kunkel LM. 1991. Exploring the molecu-
lar basis for variability among patients with Becker muscular
dystrophy: dystrophin gene and protein studies. Am ] Hum
Genet 49:54-67.

Bellinger AM, Reiken S, Carlson C, Mongillo M, Liu X, Rothman L,
Matecki S, Lacampagne A, Marks AR. 2009. Hypernitrosylated
ryanodine receptor calcium release channels are leaky in dys-
trophic muscle. Nat Med 15:325-330.

Berger J, Berger S, Jacoby AS, Wilton SD, Currie PD. 2011. Evalua-
tion of exon-skipping strategies for Duchenne muscular dys-
trophy utilizing dystrophin-deficient zebrafish. ] Cell Mol Med
15:2643-2651.

Berger J, Sztal T, Currie PD. 2012. Quantification of birefringence
readily measures the level of muscle damage in zebrafish.
Biochem Biophys Res Commun 423:785-788.

Beyers RJ, Ballman C, Selsby JT, Salidi N, Quindry JC, Denney TS.
Whole-heart T2-mapping at 7T quantifies dystrophic myocar-
dial pathology in mdx/utrn+/- mice. International Society for
Magnetic Resonance in Medicine; May 30-31 2015; Toronto,
Ontario, Canada.

120z Aenuep 2z uo 1sanb Aq 61.G199/91 L/1/9G/1o11e/jeuinolie|/wod dnoojwapede//:sdjy woly papeojumoq



124 | Selsbyetal.

Blake DJ, Tinsley JM, Davies KE. 1996. Utrophin: a structural and
functional comparison to dystrophin. Brain Pathol 6:37-47.

Bretag AH. 2007. Stem cell treatment of dystrophic dogs. Nature
450:E23; discussion E23-5.

Bulfield G, Siller WG, Wight PA, Moore K]J. 1984. X chromosome-
linked muscular dystrophy (mdx) in the mouse. Proc Natl
Acad Sci USA 81:1189-1192.

Carpenter JL, Hoffman EP, Romanul FC, Kunkel LM, Rosales RK,
Ma NS, Dasbach JJ, Rae JF, Moore FM, McAfee MB. 1989. Feline
muscular dystrophy with dystrophin deficiency. Am ] Pathol
135:909-919.

Chamberlain JS, Metzger J, Reyes M, Townsend D, Faulkner JA.
2007. Dystrophin-deficient mdx mice display a reduced life
span and are susceptible to spontaneous rhabdomyosarco-
ma. FASEB ] 21:2195-2204.

Chambers SP, Dodd A, Overall R, Sirey T, Lam LT, Morris GE,
Love DR. 2001. Dystrophin in adult zebrafish muscle.
Biochem Biophys Res Commun 286:478-483.

Cohn RD, Henry MD, Michele DE, Barresi R, Saito F, Moore SA,
Flanagan JD, Skwarchuk MW, Robbins ME, Mendell JR,
Williamson RA, Campbell KP. 2002. Disruption of DAG1 in dif-
ferentiated skeletal muscle reveals a role for dystroglycan in
muscle regeneration. Cell 110:639-648.

Cooper BJ, Winand NJ, Stedman H, Valentine BA, Hoffman EP,
Kunkel LM, Scott MO, Fischbeck KH, Kornegay JN, Avery RJ.
1988. The homologue of the Duchenne locus is defective in
X-linked muscular dystrophy of dogs. Nature 334:154-156.

Cox GA, Phelps SF, Chapman VM, Chamberlain JS. 1993. New mdx
mutation disrupts expression of muscle and nonmuscle iso-
forms of dystrophin. Nat Genet 4:87-93.

Crick SJ, Sheppard MN, Ho SY, Gebstein L, Anderson RH. 1998.
Anatomy of the pig heart: comparisons with normal human
cardiac structure. ] Anat 193(Pt 1):105-119.

Deconinck AE, Rafael JA, Skinner JA, Brown SC, Potter AC,
Metzinger L, Watt DJ, Dickson JG, Tinsley JM, Davies KE.
1997. Utrophin-dystrophin-deficient mice as a model for Du-
chenne muscular dystrophy. Cell 90:717-727.

De Palma C, Perrotta C, Pellegrino P, Clementi E, Cervia D. 2014.
Skeletal muscle homeostasis in duchenne muscular dystro-
phy: modulating autophagy as a promising therapeutic strat-
egy. Front Aging Neurosci 6:188.

Duan D. 2011. Duchenne muscular dystrophy gene therapy: Lost
in translation? Res Rep Biol 2011:31-42.

Ewen CL, Cino-Ozuna AG, He H, Kerrigan MA, Dekkers JC,
Tuggle CK, Rowland RR, Wyatt CR. 2014. Analysis of blood leu-
kocytes in a naturally occurring immunodeficiency of pigs
shows the defect is localized to B and T cells. Vet Immunol
Immunopath 162:174-179.

Ezzelarab M, Garcia B, Azimzadeh A, Sun H, Lin CC, Hara H,
Kelishadi S, Zhang T, Lin YJ, Tai HC, Wagner R, Thacker J,
Murase N, McCurry K, Barth RN, Ayares D, Pierson RN,
Cooper DK. 2009. The innate immune response and activation
of coagulation in alphal,3-galactosyltransferase gene-knock-
out xenograft recipients. Transplantation 87:805-812.

Fauconnier J, Thireau J, Reiken S, Cassan C, Richard S, Matecki S,
Marks AR, Lacampagne A. 2010. Leaky RyR2 trigger ventricu-
lar arrhythmias in Duchenne muscular dystrophy. Proc Natl
Acad Sci USA 107:1559-1564.

Fortunato MJ, Ball CE, Hollinger K, Patel NB, Modi )N,
Rajasekaran V, Nonneman DJ, Ross JW, Kennedy EJ,
Selsby JT, Beedle AM. 2014. Development of rabbit monoclo-
nal antibodies for detection of alpha-dystroglycan in normal
and dystrophic tissue. PLoS One 9:e97567.

Franco AJr., Lansman JB. 1990. Calcium entry through stretch-in-
activated ion channels in mdx myotubes. Nature 344:670-673.

Fujii J, Otsu K, Zorzato F, de Leon S, Khanna VK, Weiler JE,
O’Brien PJ, MacLennan DH. 1991. Identification of a mutation
in porcine ryanodine receptor associated with malignant hy-
perthermia. Science 253:448-451.

Gambino AN, Mouser PJ, Shelton GD, Winand NJ. 2014. Emergent
presentation of a cat with dystrophin-deficient muscular dys-
trophy. ] Am Anim Hosp Assoc 50:130-135.

Gaschen FP, Hoffman EP, Gorospe JR, Uhl EW, Senior DF,
Cardinet GH 3rd, Pearce LK. 1992. Dystrophin deficiency
causes lethal muscle hypertrophy in cats. ] Neurol Sci
110:149-159.

Gregorevic P, Allen JM, Minami E, Blankinship MJ, Haraguchi M,
Meuse L, Finn E, Adams ME, Froehner SC, Murry CE,
Chamberlain JS. 2006. rAAV6-microdystrophin preserves
muscle function and extends lifespan in severely dystrophic
mice. Nat Med 12:787-789.

Gregorevic P, Blankinship MJ, Allen JM, Chamberlain JS. 2008. Sys-
temic microdystrophin gene delivery improves skeletal mus-
cle structure and function in old dystrophic mdx mice.
Molecular Therapy 16:657-664.

Guyon JR, Goswami J, Jun SJ, Thorne M, Howell M, Pusack T,
Kawahara G, Steffen LS, Galdzicki M, Kunkel LM. 2009. Genetic
isolation and characterization of a splicing mutant of zebra-
fish dystrophin. Hum Mol Genet 18:202-211.

Hollinger K, Gardan-Salmon D, Santana C, Rice D, Snella E,
Selsby JT. 2013. Rescue of dystrophic skeletal muscle by
PGC-1alpha involves restored expression of dystrophin-asso-
ciated protein complex components and satellite cell signal-
ing. Am ] Physiol Regul Integr Comp Physiol 305:R13-R23.

Hollinger K, Yang CX, Montz RE, Nonneman D, Ross JW, Selsby JT.
2014. Dystrophin insufficiency causes selective muscle histo-
pathology and loss of dystrophin-glycoprotein complex as-
sembly in pig skeletal muscle. FASEB J 28:1600-1609.

Im WB, Phelps SF, Copen EH, Adams EG, Slightom ]JL,
Chamberlain JS. 1996. Differential expression of dystrophin
isoforms in strains of mdx mice with different mutations.
Hum Mol Genet 5:1149-1153.

Kawahara G, Karpf JA, Myers JA, Alexander MS, Guyon JR,
Kunkel LM. 2011. Drug screening in a zebrafish model of Du-
chenne muscular dystrophy. Proc Natl Acad Sci USA
108:5331-5336.

Klymiuk N, Blutke A, Graf A, Krause S, Burkhardt K, Wuensch A,
Krebs S, Kessler B, Zakhartchenko V, Kurome M, Kemter E,
Nagashima H, Schoser B, Herbach N, Blum H, Wanke R, Aarts-
ma-Rus A, Thirion C, Lochmaller H, Walter MC, Wolf E. 2013.
Dystrophin-deficient pigs provide new insights into the hier-
archy of physiological derangements of dystrophic muscle.
Hum Mol Genet 22:4368-4382.

Koenig M, Hoffman EP, Bertelson CJ, Monaco AP, Feener C,
Kunkel LM. 1987. Complete cloning of the Duchenne muscu-
lar dystrophy (DMD) cDNA and preliminary genomic organi-
zation of the DMD gene in normal and affected individuals.
Cell 50:509-517.

Kon ND, Cordell AR, Adair SM, Dobbins JE, Kitzman DW. 1999.
Aortic root replacement with the freestyle stentless porcine
aortic root bioprosthesis. Ann Thorac Surg 67:1609-1615; dis-
cussion 1615-6.

Kornegay JN, Cundiff DD, Bogan DJ, Bogan JR, Okamura CS. 2003.
The cranial sartorius muscle undergoes true hypertrophy in
dogs with golden retriever muscular dystrophy. Neuromuscul
Disord 13:493-500.

120z Aenuep 2z uo 1sanb Aq 61.G199/91 L/1/9G/1o11e/jeuinolie|/wod dnoojwapede//:sdjy woly papeojumoq



Kudoh H, Ikeda H, Kakitani M, Ueda A, Hayasaka M, Tomizuka K,
Hanaoka K. 2005. A new model mouse for Duchenne muscu-
lar dystrophy produced by 2.4 Mb deletion of dystrophin gene
using Cre-loxP recombination system. Biochem Biophys Res
Commun 328:507-516.

Lai LX, Kolber-Simonds D, Park KW, Cheong HT, Greenstein JL,
Im GS, Samuel M, Bonk A, Rieke A, Day BN, Murphy CN,
Carter DB, Hawley RJ, Prather RS. 2002. Production of alpha-
1,3-galactosyltransferase knockout pigs by nuclear transfer
cloning. Science 295:1089-1092.

Laing NG. 1993. Molecular genetics and genetic counselling for
Duchenne/Becker muscular dystrophy. Mol Cell Biol Hum
Dis Ser 3:37-84.

Lansman JB, Franco-Obregon A. 2006. Mechanosensitive ion
channels in skeletal muscle: a link in the membrane patho-
logy of muscular dystrophy. Clin Exp Pharmacol Physiol
33:649-656.

Larcher T, Lafoux A, Tesson L, Remy S, Thepenier V, Frangois V, Le
Guiner C, Goubin H, Dutilleul M, Guigand L, Toumaniantz G,
De Cian A, Boix C, Renaud JB, Cherel Y, Giovannangeli C,
Concordet JP, Anegon I, Huchet C. 2014. Characterization of
dystrophin deficient rats: a new model for duchenne muscu-
lar dystrophy. PLoS One 9:e110371.

Law DJ, Allen DL, Tidball JG. 1994. Talin, vinculin and DRP (utro-
phin) concentrations are increased at mdx myotendinous
junctions following onset of necrosis. ] Cell Sci 107
(Pt 6):1477-1483.

LeMaire SA, Green SY, Sharma K, Cheung CK, Sameri A, Tsai PI,
Adams G, Coselli]S. 2009. Aortic root replacement with stent-
less porcine xenografts: early and late outcomes in 132 pa-
tients. Ann Thorac Surg 87:503-512; discussion 512-3.

Le Rumeur E, Winder SJ, Hubert JF. 2010. Dystrophin: more than
just the sum of its parts. Biochim Biophys Acta 1804:1713-1722.

Li D, Bareja A, Judge L, Yue Y, Lai Y, Fairclough R, Davies KE,
Chamberlain JS, Duan D. 2010. Sarcolemmal nNOS anchoring
reveals a qualitative difference between dystrophin and utro-
phin. J Cell Sci 123(Pt 12):2008-2013.

Li M, Andersson-Lendahl M, Sejersen T, Arner A. 2014. Muscle
dysfunction and structural defects of dystrophin-null sapje
mutant zebrafish larvae are rescued by ataluren treatment.
FASEB ] 28:1593-1599.

Liu JM, Okamura CS, Bogan DJ, Bogan JR, Childers MK,
Kornegay JN. 2004. Effects of prednisone in canine muscular
dystrophy. Muscle Nerve 30:767-773.

Liu M, Yue Y, Harper SQ, Grange RW, Chamberlain JS, Duan D.
2005. Adeno-associated virus-mediated microdystrophin ex-
pression protects young mdx muscle from contraction-in-
duced injury. Mol Ther 11:245-256.

Ljubicic V, Miura P, Burt M, Boudreault L, Khogali S, Lunde JA,
Renaud JM, Jasmin BJ. 2011. Chronic AMPK activation evokes
the slow, oxidative myogenic program and triggers beneficial
adaptations in mdx mouse skeletal muscle. Hum Mol Genet
20:3478-3493.

Lynch GS. 2004. Role of contraction-induced injury in the mech-
anisms of muscle damage in muscular dystrophy. Clin Exp
Pharmacol Physiol 31:557-561.

Maxmen A. 2012. Model pigs face messy path. Nature 486:453.

McNally EM. 2007. New approaches in the therapy of cardiomyop-
athy in muscular dystrophy. Annu Rev Med 58:75-88.

Mendell JR, Campbell K, Rodino-Klapac L, Sahenk Z, Shilling C,
Lewis S, Bowles D, Gray S, Li CW, Galloway G. 2010. Brief Re-
port: Dystrophin Immunity in Duchenne’s Muscular Dystro-
phy. N Eng ] Med 363:1429-1437.

ILAR Journal, 2015, Vol. 56, No. 1 | 125

Mendell JR, Rodino-Klapac LR, Rosales XQ, Coley BD, Galloway G,
Lewis S, Malik V, Shilling C, Byrne BJ, Conlon T. 2010. Sus-
tained Alpha-Sarcoglycan Gene Expression after Gene Trans-
fer in Limb-Girdle Muscular Dystrophy, Type 2D. Ann Neurol
68:629-638.

Mendell JR, Rodino-Klapac LR, Sahenk Z, Roush K, Bird L,
Lowes LP, Alfano L, Gomez AM, Lewis S, Kota J, Malik V,
Shontz K, Walker CM, Flanigan KM, Corridore M, Kean JR,
Allen HD, Shilling C, Melia KR, Sazani P, Saoud JB, Kaye EM.
2013. Eteplirsen for the treatment of Duchenne muscular dys-
trophy. Ann Neurol 74:637-647.

Mingozzi F, Maus MV, Hui DJ, Sabatino DE, Murphy SL, Rasko JEJ,
Ragni MV, Manno CS, Sommer ], Jiang HY, Pierce GF, Ertl HC,
High KA. 2007. CD8+ T-cell responses to adeno-associated
virus capsid in humans. Nature Medicine 13:419-422.

Moens P, Baatsen PH, Marechal G. 1993. Increased susceptibility
of EDL muscles from mdx mice to damage induced by con-
tractions with stretch. ] Muscle Res Cell Motil 14:446-451.

Morris CA, Selsby JT, Morris LD, Pendrak K, Sweeney HL. 2010.
Bowman-Birk inhibitor attenuates dystrophic pathology in
mdx mice. ] Appl Physiol 109:1492-1499.

Muntoni F, Torelli S, Ferlini A. 2003. Dystrophin and mutations:
one gene, several proteins, multiple phenotypes. Lancet
Neurol 2:731-740.

Nakamura K, Fujii W, Tsuboi M, Tanihata ], Teramoto N,
Takeuchi S, Naito K, Yamanouchi K, Nishihara M. 2014. Gen-
eration of muscular dystrophy model rats with a CRISPR/Cas
system. Sci Rep 4:5635.

Nicolas A, Raguenes-Nicol C, Ben Yaou R, Ameziane-Le Hir S,
Cheron A, Vie V, Claustres M, Leturcq F, Delalande O,
Hubert JF, Tuffery-Giraud S, Giudice E, Le Rumeur E. 2015.
Becker muscular dystrophy severity is linked to the structure
of dystrophin. Hum Mol Genet 24:1267-1279.

Nigro G, Nigro G, Politano L, Santangelo L, Petretta VR,
Passamano L, Panico F, De Luca F, Montefusco A, Comi LI.
2002. Is the value of QT dispersion a valid method to foresee
the risk of sudden death? A study in Becker patients. Heart
87:156-157.

Nonneman DN, Brown-Brandl T, Jones SA, Wiedmann RT,
Rohrer GA. 2012. A defect in dystrophin causes a novel porcine
stress syndrome. BMC Genomics 13:233.

Odom GL, Gregorevic P, Allen JM, Finn E, Chamberlain JS. 2008.
Microutrophin delivery through rAAV6 increases lifespan
and improves muscle function in dystrophic dystrophin/utro-
phin-deficient mice. Mol Ther 16:1539-1545.

Petrof BJ, Shrager JB, Stedman HH, Kelly AM, Sweeney HL. 1993.
Dystrophin protects the sarcolemma from stresses developed
during muscle contraction. Proc Natl Acad Sci USA
90:3710-3714.

Prather RS, Lorson M, Ross JW, Whyte JJ, Walters E. 2013. Geneti-
cally engineered pig models for human diseases. Ann Rev
Anim Biosci 1:203-220.

Rafael JA, Townsend ER, Squire SE, Potter AC, Chamberlain JS,
Davies KE. 2000. Dystrophin and utrophin influence fiber
type composition and post-synaptic membrane structure.
Hum Mol Genet 9:1357-1367.

Ramos AM, Crooijmans RP, Affara NA, Amaral AJ, Archibald AL,
Beever JE, Bendixen C, Churcher C, Clark R, Dehais P,
Hansen MS, Hedegaard J, Hu ZL, Kerstens HH, Law AS,
Megens HJ, Milan D, Nonneman D], Rohrer GA,
Rothschild MF, Smith TP, Schnabel RD, Van Tassell CP,
Taylor JF, Wiedmann RT, Schook LB, Groenen MA. 2009.
Design of a high density SNP genotyping assay in the pig

120z Aenuep 2z uo 1sanb Aq 61.G199/91 L/1/9G/1o11e/jeuinolie|/wod dnoojwapede//:sdjy woly papeojumoq



126 | Selsbyetal.

using SNPs identified and characterized by next generation
sequencing technology. PLoS One 4:e6524.

Rogers CS, Stoltz DA, Meyerholz DK, Ostedgaard LS, Rokhlina T,
Taft P, Rogan MP, Pezzulo AA, Karp PH, Itani OA, Kabel AC,
Wohlford-Lenane CL, Davis GJ, Hanfland RA, Smith TL,
Samuel M, Wax D, Murphy CN, Rieke A, Whitworth K, Uc A,
Starner TD, Brogden KA, Shilyansky J, McCray PB, Zabner J,
Prather RS, Welsh MJ. 2008. Disruption of the CFTR gene pro-
duces a model of cystic fibrosis in newborn piglets. Science
321:1837-1841.

Ross JW, Fernandez-Castro J, Zhao ], Samuel M, Walters EM,
Rios C, Bray-Ward P, Wang W, Zhou L, Noel JM. 2012. Genera-
tion of an inbred miniature pig model of retinitis pigmentosa.
Invest Ophthalmol Vis Sci 53:501-507.

Sacco A, Mourkioti F, Tran R, Choi J, Llewellyn M, Kraft P,
Shkreli M, Delp S, Pomerantz JH, Artandi SE, Blau HM.
2010. Short telomeres and stem cell exhaustion model
Duchenne muscular dystrophy in mdx/mTR mice. Cell
143:1059-1071.

Schatzberg SJ, Anderson LV, Wilton SD, Kornegay JN, Mann CJ,
Solomon GG, Sharp NJ. 1998. Alternative dystrophin gene
transcripts in golden retriever muscular dystrophy. Muscle
Nerve 21:991-998.

Selsby J, Pendrak K, Zadel M, Tian Z, Pham J, Carver T, Acosta P,
Barton E, Sweeney HL. 2010. Leupeptin-based inhibitors do
not improve the mdx phenotype. Am J Physiol Regul Integr
Comp Physiol 299:R1192-R1201.

Selsby JT. 2011. Increased catalase expression improves muscle
function in mdx mice. Exp Physiol 96:194-202.

Selsby JT, Ballman C, Quindry JC. 2014. Dietary Quercetin
Enrichment Improves Respiratory Function in mdx Mice.
FASEB J 28 Suppl 1: 884.17.

Selsby JT, Morine K]J, Pendrak K, Barton ER, Sweeney HL. 2012. Res-
cue of dystrophic skeletal muscle by PGC-1alpha involves a fast
to slow fiber type shift in the mdx mouse. PLoS One 7:e30063.

Sharp NJ, Kornegay JN, Van Camp SD, Herbstreith MH, Secore SL,
Kettle S, Hung WY, Constantinou CD, Dykstra MJ, Roses AD.
1992. An error in dystrophin mRNA processing in golden
retriever muscular dystrophy, an animal homologue of
Duchenne muscular dystrophy. Genomics 13:115-121.

Shimatsu Y, Katagiri K, Furuta T, Nakura M, Tanioka Y, Yuasa K,
Tomohiro M, Kornegay JN, Nonaka I, Takeda S. 2003. Canine
X-linked muscular dystrophy in Japan (CXMD]J). Exp Anim
52:93-97.

Shin JH, Pan X, Hakim CH, Yang HT, Yue Y, Zhang K, Terjung RL,
Duan D. 2013. Microdystrophin ameliorates muscular dystro-
phy in the canine model of duchenne muscular dystrophy.
Mol Ther 21:750-757.

Spencer MJ, Mellgren RL. 2002. Overexpression of a calpastatin
transgene in mdx muscle reduces dystrophic pathology.
Hum Mol Genet 11:2645-2655.

Tews DS. 2006. Characterization of initiator and effector caspase
expressions in dystrophinopathies. Neuropathology 26:24-31.

Thein E, Hammer C. 2004. Physiological barriers to xenotrans-
plantation. Curr Opin Organ Transplant 9:186-189.

Tidball JG, Wehling-Henricks M. 2007. The role of free radicals in
the pathophysiology of muscular dystrophy. ] Appl Physiol
102:1677-1686.

Tinsley J, Deconinck N, Fisher R, Kahn D, Phelps S, Gillis JM,
Davies K. 1998. Expression of full-length utrophin prevents
muscular dystrophy in mdx mice. Nat Med 4:1441-1444.

Tutdibi O, Brinkmeier H, Rudel R, Fohr KJ. 1999. Increased calcium
entry into dystrophin-deficient muscle fibres of MDX and
ADR-MDX mice is reduced by ion channel blockers. J Physiol
515(Pt 3):859-868.

Vandebrouck A, Ducret T, Basset O, Sebille S, Raymond G,
Ruegg U, Gailly P, Cognard C, Constantin B. 2006. Regulation
of store-operated calcium entries and mitochondrial uptake
by minidystrophin expression in cultured myotubes. FASEB J
20:136-138.

Waugh TA, Horstick E, Hur J, Jackson SW, Davidson AE, Li X,
Dowling JJ. 2014. Fluoxetine prevents dystrophic changes in
a zebrafish model of Duchenne muscular dystrophy. Hum
Mol Genet 23:4651-4662.

Webster C, Silberstein L, Hays AP, Blau HM. 1988. Fast muscle fi-
bers are preferentially affected in Duchenne muscular dystro-
phy. Cell 52:503-513.

Weiss EH, Lilienfeld BG, Muller S, Muller E, Herbach N, Kessler B,
Wanke R, Schwinzer R, Seebach JD, Wolf E, Brem G. 2009. HLA-
E/human beta2-microglobulin transgenic pigs: protection
against xenogeneic human anti-pig natural killer cell cytotox-
icity. Transplantation 87:35-43.

Wells DJ, Wells KE. 2005. What do animal models have to tell us
regarding Duchenne muscular dystrophy? Acta Myol
24:172-180.

Wernersson R, Schierup MH, Jorgensen FG, Gorodkin J, Panitz F,
Staerfeldt HH, Christensen OF, Mailund T, Hornshoj H,
Klein A, Wang J, Liu B, Hu S, Dong W, Li W, Wong GK, Yu ],
Wang ], Bendixen C, Fredholm M, Brunak S, Yang H,
Bolund L. 2005. Pigs in sequence space: a 0.66X coverage pig
genome survey based on shotgun sequencing. BMC
Genomics 6:70.

Wertz K, Fuchtbauer EM. 1998. Dmd(mdx-beta geo): a new allele
for the mouse dystrophin gene. Dev Dyn 212:229-241.

Whitworth KM, Lee K, Benne JA, Beaton BP, Spate LD, Murphy SL,
Samuel MS, Mao J, O’Gorman C, Walters EM, Murphy CN,
Driver J, Mileham A, McLaren D, Wells KD, Prather RS. 2014.
Use of the CRISPR/Cas9 system to produce genetically engi-
neered pigs from in vitro-derived oocytes and embryos.
Biology of Reproduction 91:78.

Winand NJ, Edwards M, Pradhan D, Berian CA, Cooper BJ. 1994.
Deletion of the dystrophin muscle promoter in feline muscu-
lar dystrophy. Neuromuscul Disord 4:433-445.

Yang CX, Ross JW. 2012. Genetic modification of domestic animals
for agriculture and biomedical applications. In: Ghista DN, eds.
Biomedical Science, Engineering and Technology. Rijeka, Croa-
tia: InTech Publishing.

Zhang Y, Duan D. 2012. Novel mini-dystrophin gene dual adeno-
associated virus vectors restore neuronal nitric oxide synthase
expression at the sarcolemma. Hum Gene Ther 23:98-103.

120z Aenuep 2z uo 1sanb Aq 61.G199/91 L/1/9G/1o11e/jeuinolie|/wod dnoojwapede//:sdjy woly papeojumoq




<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /PageByPage
  /Binding /Left
  /CalGrayProfile ()
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.5
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.1000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 524288
  /LockDistillerParams false
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo false
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments true
  /PreserveOverprintSettings false
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Preserve
  /UCRandBGInfo /Remove
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
    /Courier
    /Courier-Bold
    /Courier-BoldOblique
    /Courier-Oblique
    /Helvetica
    /Helvetica-Bold
    /Helvetica-BoldOblique
    /Helvetica-Oblique
    /Symbol
    /Times-Bold
    /Times-BoldItalic
    /Times-Italic
    /Times-Roman
    /ZapfDingbats
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 175
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50286
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG2000
  /ColorACSImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 20
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 175
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50286
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG2000
  /GrayACSImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 20
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages true
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 175
  /MonoImageDepth 4
  /MonoImageDownsampleThreshold 1.50286
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects true
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /ENU ()
  >>
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice


