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Abstract 

Campylobacter jejuni has long been recognized as a main food-borne pathogen in many parts 
of the world. Natural reservoirs include a wide variety of domestic and wild birds and mam-
mals, whose intestines offer a suitable biological niche for the survival and dissemination of 
the organism. Understanding the genetic basis of the biology and pathogenicity of C. jejuni 
is vital to prevent and control Campylobacter-associated infections. The recent progress in 
sequencing techniques has allowed for a rapid increase in our knowledge of the molecular 
biology and the genetic structures of Campylobacter. Single-molecule realtime (SMRT) se-
quencing, which goes beyond four-base sequencing, revealed the role of DNA methylation in 
modulating the biology and virulence of C. jejuni at the level of epigenetics. In this review, 
we will provide an up-to-date review on recent advances in understanding C. jejuni genomics, 
including structural features of genomes, genetic traits of virulence, population genetics, and 
epigenetics.

Keywords: Campylobacter jejuni; Genomics; Virulence factors; Population genetics; Epi-
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1. Introduction

Campylobacter jejuni is a leading cause of bacterial food-borne gastroenteritis 
worldwide[1, 2], causing an estimated 400-500 million cases of diarrhea annually[3]. 
As reported by the Center for Disease Control and Prevention (CDC) FoodNet sur-

veillance program in 2013, Campylobacter ranked second (13.82 per 100,000 population), 
only next to Salmonella (15.19 per 100,000 population) among the causes of laboratory-
confirmed food-borne illnesses in ten U.S. states covering approximately 15% of the U.S. 
population[4]. A recent report estimates that Campylobacter is not only among the most 
common causes of domestically acquired food-borne illnesses in humans (over 800,000 
cases per year), but also is among the leading causes of hospitalization (over 8,000 annu-
ally) in the U.S.[5].  In the European Union, Campylobacter is the most commonly report-
ed bacterial gastroenteritis pathogen with an incidence rate of 55.5 per 100,000 population 
in 2012[6]. In developing countries, Campylobacter infections are also an important cause 
of childhood morbidity by diarrheal illness[7]. Due to the lack of national surveillance 
programs in developing countries, real incidence of Campylobacteriosis is generally un-
known, but case-control community-based studies have provided estimates of 40,000 to 
60,000/100,000 for children <5 years of age, significantly higher than the incidence of 
300/100,000 for the same age group in developed countries[8]. Most people who become 
ill with Campylobacteriosis develop a self-limiting diarrhea, cramping, abdominal pain, 
and fever within two to five days after exposure to the organism[9]. The diarrhea may be 
bloody and can be accompanied by nausea and vomiting. The illness typically lasts about 
one week. In persons with compromised immune systems, Campylobacter occasionally 
spreads to the bloodstream and causes a serious life-threatening infection. Some of acute 
infections can have serious long-term consequences, including the peripheral neuropa-
thies, Guillain–Barré syndrome (GBS) and Miller Fisher syndrome (MFS), and functional 
bowel diseases, such as irritable bowel syndrome (IBS)[10]. Despite its high importance as 
a human pathogen, our understanding of the mechanisms of Campylobacter-associated 
diseases is still relatively limited compared with other bacterial pathogens such as Salmo-
nella and E. coli. The rapid developments in the genomics era in the last two decades have 
contributed significantly to the increase in our knowledge on the genetic basis of Campy-
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lobacter biology. In this review, we summarize the most 
recent findings and provide an update on different as-
pects of C. jejuni genomics, made by advanced sequenc-
ing technologies, including the features of genomes, 
virulence factors, population genetics, and epigenetics of 
C. jejuni.

2. Genome of C. jejuni

The first reference strain NCTC11168 of C. jejuni was 
sequenced in 2000 by the whole-genome shotgun se-
quencing approach utilizing standard Sanger sequencing 
technology [11], followed by sequencing of three other 
reference strains (81116, 81-176, RM1221) within sev-
eral years [12-14]. However, in the recent several years, 
with the advent of next-generation sequencing technol-
ogy, many more C. jejuni genomes have been exten-
sively sequenced. Up to the writing of this review, 674 
C. jejuni genomes, 96 of which are complete, have been 
sequenced and deposited in GenBank (http://www.ncbi.
nlm.nih.gov/genome/genomes/149), and over 7000 draft 
genomes are available from the PubMLST database 
(http://pubmlst.org/). The total genome size of C. jejuni 
is relatively small, with a median size of 1.68Mb, and 
has a relatively low G+C content (median GC%: 30.4) 
(Figure 1). C. jejuni is among the densest bacterial ge-
nomes known, with coding sequence in >90% of the ge-
nome, encoding a median number of ~1,665 proteins. As 
with other bacteria, C. jejuni has a core genome that is 
shared by all members of the species, plus an accessory 
genome composed of partially shared and strain-specific 
genes. The core genome of C. jejuni was estimated to be 
around 800 genes, while the pan-genomes (e.g., core ge-
nome plus all accessory genomes) assessments reach be-
yond 4,000 genes[15-18]. However, it should be noted that 
the size of both the core genome and pan-genome has not 
reached a clear plateau yet. When more diverse genomes 
are added, even fewer genes would be shared and more 
diverse accessary genes may be observed, as seen in oth-
er bacteria[19]. The genes of the core genome are predict-
ed to be mainly involved in vital bacterial functions such 
as energy metabolism, cell division, protein and peptide 
secretion, and synthesis of macromolecules including 
DNA, RNA, and proteins[20]. However, many core genes 
remain uncharacterized. The accessory genome consists 
of plasmids, integrated elements, hypervariable regions, 
and single or paired variable genes, accounting for at 
least 21% of the total genes in C. jejuni strains[21, 22].

pVir and pTet are the main plasmids present in C. je-
juni strains[23-25]. The pVir plasmid has been suggested to 
contain some genes of a potential type IV secretion sys-
tem, but the contribution of the pVir plasmid to C. jejuni 
virulence is still under debate[26]. The pTet plasmid con-
fers tetracycline resistance and contains genes encoding 
for a type IV secretion system, which is thought to func-
tion in conjugative transfer[27, 28]. A microarray screening 
for the presence of the pVir and pTetin C. jejuni isolates 
indicated that pTet is more prevalent than pVir[28]. How-
ever, both plasmids are not very common in C. jejuni, as 

shown by the genomes deposited in GenBank database 
(pVir 6/674; pTet 6/674). Integrated elements are another 
contributor to C. jejuni accessory genome, which may 
be introduced by prophages or plasmids. In the refer-
ence strain C. jejuni RM1221, four integrated elements, 
CJIE1-CJIE4,  have been characterized[22], and recently a 
fifth integrated element was described in ST-677 clonal 
complex[29]. Three of these integrated elements carry 
genes for production of extracellular DNAases, while 
most of the genes correspond to phage-related and hy-
pothetical proteins. Several variable regions, referred to 
as hypervariable plasticity regions[20], hypervariable re-
gions[30], and/or regions of divergence[31], were identified 
in the C. jejuni genome. Unlike integrated elements and 
pathogenicity islands, hypervariable regions in Campylo-
bacter do not have a markedly different G+C content to 
the bulk of the genome and they are not associated with 
mobile elements important in horizontal DNA transfer[20]. 
These regions are mainly involved in the biosynthesis 
of cell surface structures such as flagella, lipooligosac-
charide (LOS), and capsular polysaccharide (CPS), as 
well as restriction-modification systems, and metabo-
lism[20, 21, 30, 32, 33]. 

3. Virulence factors of Campylobacter jejuni

Despite the availability of genomic information of dif-
ferent C. jejuni strains from various sources, our under-
standing of the virulence of C. jejuniis still far from com-
plete. Unlike other bacterial pathogens[34], C. jejuni does 
not encode a large number of classical virulence factors. 
However, several bacterial traits (Figure 1), including the 

Figure 1. Circular presentation of the genome of C. jejuni and the 
virulence factors, represented by strain C. jejuni NCTC11168. The 
outer circle shows the genome scale; the second and third circles 
display predicted coding regions on the plus and minus strands, 
respectively; the fourth circle shows genes related to virulence 
factors, and the classification of the virulence is shown by differ-
ent colors as in the box; the fifth circle shows the GC content; the 
sixth circle depicts the GC skew.
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presence of polysaccharide capsule (CPS) and Lipooli-
gosaccharide (LOS), flagella-driven motility and chemo-
taxis, colonization of mucus, infection of mucosal cells, 
and toxin production have been found to be important for 
C. jejuni virulence. A brief description of these factors is 
provided below.
3.1 Adhesion and invasion factors 
Several studies have shown that C. jejuni requires adhe-
sion and binding factors to colonize hosts. These experi-
ments have led to the identification of several putative 
adhesins or binding factors of C. jejuni, including the 
periplasmic binding protein PEB1[35], and several surface 
exposed proteins such as fibronectin-binding outer mem-
brane protein CadF[36], the lipoprotein JlpA[37],the auto 
transporter CapA[38], and the major outer membrane pro-
tein MOMP[39, 40]. Surface-exposed bacterial molecules 
directly interact with host cells and play major roles in 
mediating mucosal adhesion and invasion. PEB1 is a 
periplasmic protein and crucial for adherence to HeLa 
cells in vitro[41, 42]; however, it is still unclear how peri-
plasmic proteins contribute to host-cell adherence in C. 
jejuni in vivo. Surface-exposed proteins CadF, JlpA, 
and CapA were demonstrated to be critical in adher-
ence to epithelial cells and colonization in animal 
models[37, 38, 43, 44]. MOMP is a member of the bacterial 
porin family and forms voltage-sensitive cation-selective 
ion channels[45]. In addition to its porin functions, MOMP 
has also been shown to bind to the surface of human 
epithelial cells and to the basement membrane protein 
fibronectin[40, 46]. Our recent findings demonstrated that 
MOMP is critical for systemic infection and abortion 
induction(Wu et al, 2016, PNAS, under revision). Cel-
lular invasion is an important pathogenic mechanism for 
C. jejuni. The invasion of epithelial cell in vivo results in 
cellular damage and function loss, which leads to stimu-
lation of host inflammatory responses and diarrhea[47]. C. 
jejuni secretes a protein, CiaB, which is required for the 
invasion of cultured epithelial cells[48, 49]. Mutants that 
lack ciaB exhibit reduced chick colonization levels [50], 
implying that cell invasion might be an underappreciated 
factor in chick colonization.
3.2 Flagella and chemotaxis factors
Flagella and flagellar motility are vital to many aspects of 
C. jejuni pathobiology, including host colonization, host 
cell invasion, and protein secretion. Non-flagellated mu-
tants were demonstrated to be non-motile and unable to 
colonize the intestine of experimental animals, indicating 
that flagella and/or the associated motility is absolutely 
required for the colonization [51]. Furthermore, aflagel-
lated C. jejuni mutants show a significant reduction of 
internalization by host cells, suggesting the importance 
of flagella in invasion[47]. Over 40 genes are involved in C. 
jejuni flagella biogenesis and assembly[52]. Structurally, the 
flagellar filament consists of flagellin subunits FlaA (major 
subunit) and FlaB (minor subunit)[53]. The two-component 
signal transduction system, FlgS/FlgR, is central for the 
regulation of the Campylobacter flagellum[52]. Several 
other genes including fliA (sigma28), rpoN (sigma54), 
and the rpoD (sigma70) of C. jejuni regulate the flagel-

lar biosynthesis and flagellar motility[52, 54]. In addition, 
two proteins, FlgP and FlgQ, are essential for flagellar 
motility in C. jejuni[55]. Although flagella facilitate Cam-
pylobacter to move and have a prime importance in che-
motactic behavior, signal sensing and transduction are 
mediated by chemotaxis genes cheA, cheW, cheV, cheY, 
cheR, and cheB[56]. Signal transduction pathways that 
regulate motility and chemotaxis of C. jejuni still remain 
open areas for further investigations.
3.3  Capsule and Lipooligosaccharide
Capsular polysaccharide (CPS) and Lipooligosaccharide 
(LOS) are two predominant cell surface structures impor-
tant for C. jejuni virulence. They are involved in epithelial 
cell adherence, invasion, and serum resistance [57, 58]. The CPS 
region in C.jejuni is a large gene cluster and  composed 
of three regions: two conserved regions encoding the 
proteins involved with assembly and transport, which 
flank the central variable region composed of the genes 
involved in polysaccharide biosynthesis[59]. The CPS 
region varies in size from 15 to 34Kb with the central 
variable region consisting of 11–34 ORFs. Recently, 
mosaicism in the CPS locus was reported, with the pres-
ence of CPS genes elsewhere on the genome of C. jejuni, 
which was thought to add to the antigenic variability of 
the CPS[60].The LOS clusters in C. jejuni strains are also 
hypervariable. The conserved LOS biosynthesis genes 
waaC and waaF were considered the first and last genes 
of the cluster, respectively[61]. Genes between them are 
considered as part of the LOS cluster, which are variable 
from 11 to 30 ORFs[62]. Specific LOS gene clusters con-
taining sialylation genes are associated with the develop-
ment of GBS in human patients [63]. Structural variation 
of the CPS and LOS may represent important C. jejuni 
strategies for evading the host immune response, and 
genetic characterization of C. jejuni CPS and LOS genes 
have suggested multiple mechanisms responsible for 
such variation[61, 62], including(i) lateral gene transfer, (ii) 
gene inactivation, duplication, deletion, and fusion, and 
(iii) phase variable homopolymeric tracts.
3.4  Cytolethal distending toxin
Cytolethal distending toxin (CDT) is the only Campy-
lobacter toxin identified so far. It causes diarrhea by in-
terfering with the division and differentiation of cells in 
intestinal crypts[64, 65]. The toxin activity is encoded by the 
cdt gene cluster, consisting of three adjacent genes: cdtA, 
cdtB and cdtC[66]. All the three subunits are required for 
the full toxin activity; CdtB is the active/toxic component 
of the toxin, while CdtA and CdtC are involved in bind-
ing to and internalization into the host cell[67, 68]. CdtA 
and CdtC interact with CdtB to form a tripartite CDT 
holotoxin necessary for the delivery of the enzymatically 
active subunit, CdtB[69]. CdtB is translocated into the host 
cell cytoplasm and is transported via the Golgi apparatus 
to the endoplasmic reticulum and from there it finally 
reaches the nucleus by a retrograde transport mechanism. 
CdtB shows activity similar to the enzyme deoxyribo-
nuclease (DNaseI)[70] and causes cell cycle arrest in the 
G2/M transition phase through blocking of CDC2 kinase 
involved in the entry into mitosis[71].
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4. Population genetics of C. jejuni

Asa zoonotic pathogen, C. jejuni infection in humans 
has been epidemiologically linked to contact with pets 
and farm animals and to consumption of contaminated 
water, milk, and meat (particularly poultry[72]. Reservoirs 
of C. jejuni include a wide variety of birds and mam-
mals, both domesticated and wild, with poultry being 
the prime source for human infections. Their intestinal 
mucosa serves as the amplification site of C. jejuni and 
the carriage is usually asymptomatic. The diverse intesti-
nal environment of different hosts represents a variety of 
niches for C. jejuni to adapt. However, questions remain 
about the genetic basis of host specificity and niche ad-
aptation in Campylobacter. Population genetic analyses 
can be used to correlate the presence of new genetic de-
terminants or changes within existing determinants that 
enable a given lineage to persist and thrive in a popula-
tion. C. jejuni is composed of a genetically diverse popu-
lation, represented by the MLST data in the pubMLST 
database (http://pubmlst.org/campylobacter/) and the 
large number of accessory genes between strains. The 
MLST data collected to date show that C. jejuni is highly 
diverse with a total of 3,501 distinct sequence types (STs) 
(Figure 2) from 31,288 isolates. The STs were clustered 
into 44 clonal complexes (CC) and 1045 singletons (STs 
that could not be assigned to any CC). Population genet-
ics analysis using MLST data also indicated that recom-
bination is extensive and the main driver of diversity in 
C. jejuni, generating eight times as much diversity as de 
novo mutation[73]. The high levels of recombination in 
C. jejuni were demonstrated in several ways[73-75]. First, 
the tree based on concatenating multiple genetic regions 
from each strain (MLST data) has little evidence of 
deep genetic structure that would indicate long periods 
of independent evolution of different groups. Second, 
the continued discovery of new genotypes, when the 
discovery of new alleles has reached an asymptote, sug-
gests that the majority of genetic variation is generated 
by the reassortment of existing alleles, not the generation 
of new ones. Finally, C. jejuni strains that are distantly 
related on the global tree often share the same allele at 
individual MLST loci, which provides strong evidence 
of genetic exchange. Extensive recombination signifi-
cantly impacted the population structure and evolution of 
C. jejuni, blurring the boundaries between the different 
clusters of related genotypes. As a consequence of this, 
C. jejuni strains do not exhibit a highly clonal population 
structure[76], but are partially clonal[77], and their popu-
lations are dominated by clusters of related genotypes 
which are recognized by MLST as clonal complexes. 
Clonal complexes reflect the genealogy of C. jejuni [74, 78] 
and have become major units of analysis for Campylo-
bacter populations[79]. The 44 clonal complexes of C. je-
juni populations have little evidence of any phylogenetic 
relationship among them. Although there are several 
groups of phylogenetic relationships among some clonal 
complexes, there is little evidence of a clonal frame link-

ing all clonal complexes[80].
Genetic analysis using MLST data revealed that C. je-

juni population contains both specialist lineages and gen-
eralist lineages. Specialists are considered host-adapted 
and strongly associated with certain hosts. For instance, 
clonal complexes ST-257 and ST-61 are specialists with 
chicken and ruminants, respectively [81]. Generalists are 
regularly isolated from multiple animal species. Clonal 
complexes ST-21 andST-45 are generalists frequently 
associated with human infections. They are frequently 
isolated from a wide variety of reservoirs such as chick-
en, cattle, sheep, wild birds, and starlings [82]. A recently 
population genetics study further confirmed these clonal 
complexes as genuine generalist strains based on whole 
genome sequencing data[83], indicating that they have 
adapted to transmit between and live within multiple host 
species. Generalist lifestyle is advantageous for rapid 
transmission between different hosts. The structuring of 
the C. jejuni population, with many clonal complexes 
associated with particular host species, highlights the po-
tential role that natural selection also plays in determin-
ing the population structure of the species [74]. 

Although MLST studies provided evidence for the 
presence of specialists and generalists in C. jejuni, the 
detailed molecular mechanisms for these classifications 
remain unclear. Recent advances in high-throughput se-
quencing technologies and the increasing availability of 
genome sequenced isolate collections provide opportuni-
ties for investigating the genetic basis of complex traits. 
Genome-wide association studies, which have been 
widely used in human genetics, can identify statistical 
associations between causal genetic variation and pheno-
type [84]. The techniques have considerable potential for 

Figure 2. Population snapshot of the 3501 MLST sequence types 
(STs) listed on the Campylobacter jejuni PubMLST database as of 
May 2016. Black dots represent STs, and lines connect single-locus 
variants. The snapshot shows all BURST groups (connected STs), 
singleton STs, ancestral founders (red STs), and subgroup founders 
(yellow STs). The main clonal complexes (CC) are indicated.
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enhancing the understanding of how genetic variation in 
natural bacterial populations may influence their ecol-
ogy. Sheppard et al. investigated the genetic basis of host 
specificity by analyzing the genome sequences of 192 
C. jejuni isolates from cattle, chickens, clinical samples, 
and other sources[85]. The isolates belonged to single-host 
lineages or the host generalist ST-21 and ST-45 clonal 
complexes. In the study, a genome-wide association map-
ping approach was developed, which identified 30-bp 
DNA sequences (words) associated with colonization of 
particular species and has the potential to identify host-
adapting evolutionary events, including point mutation, 
homologous recombination, and lateral gene transfer. 
The method identified the words that are more strongly 
associated with a particular host than would be expected 
based on neutral patterns of evolution, given the clonal 
relationships of the bacteria in the sample and their dis-
tribution among hosts. By using the association mapping 
method, the gain and loss of the panBCD genes encoding 
the vitamin B5 biosynthesis pathway were found to be 
one factor driving rapid host adaptation of the isolates [83].
Contrastively, another population genetics analysis study 
did not reveal any lineages closely correlated with any 
specific clinical presentations in humans for C. jejuni [86]. 
The strains of C. jejuni with a specific clinical presenta-
tion (i.e., pathovars) usually do not belong to a defined 
lineage, but are phylogenetically distributed across the 
species. The virulence genes associated with the disease 
causation were frequently recombined between lineages, 
which might have blurred a potential genotype-pheno-
type correlation in the C. jejuni population [87]. However, 
the only exception to this overall observation is our re-
cent work that has demonstrated the predominance of an 
emergent C. jejuni clone (ST8) in the etiology of sheep 
abortions in the United States [88-90].

5. Epigenetics in C. jejuni

Methylation of DNA widely occurs in bacteria and is 
the only known mechanism by which prokaryotes might 
achieve epigenetic inheritance. Base methylation can 
modulate the interaction of DNA-binding proteins with 
their cognate sites, and controls chromosome replica-
tion, correction of DNA mismatches, cell cycle-coupled 
transcription, and formation of epigenetic lineages by 
phase variation [91-93]. DNA methylation in bacteria is 
controlled by restriction-modification(R-M) and ‘solitary’ 
DNA methyltransferases. R-M systems are generally 
believed to have an ‘immune’ function, protecting cells 
from invading foreign DNA. R-M systems in general are 
made up of methyltransferases (MTases) and restriction 
endonucleases that recognize a target sequence (motif) 
and catalyze specific base methylation on the motif or 
cleave the sequence, respectively [94]. In addition, ‘soli-
tary’ MTases, which occur in the genome without an 
associated restriction enzyme (RE), have been found to 
play important regulatory roles in global gene expression 
and other biological processes[95, 96]. Furthermore, the 
ability of such MTases to target their recognition motifs 

for methylation often depends on competitive binding at 
the target site between several DNA binding proteins[95]. 
These epigenetic regulators of gene expression, including 
both MTases and competing DNA-binding proteins, are 
a source of phase variation that increases the robustness 
of the population and provides opportunities to modulate 
transcription in response to changing environmental con-
ditions [97].

In C. jejuni, the first description of an R-M system 
was in the first sequenced genome of C. jejuni strain 
NCTC11168[11]. As of recently, four types of R-M sys-
tems (Type I through IV, including orphan MTases) have 
been identified in various C. jejuni strains [98-101]. These 
R-M system types are based on the composition of the 
protein complex, sequence specificities, cleavage posi-
tion, cofactor requirements, symmetry of the motif on 
the double-stranded DNA, and regulation of their expres-
sion[102, 103]. Information about these R-M systems and 
their components are all available on a comprehensive 
web-based database named Restriction Enzyme dataBASE 
(REBASE: http://rebase.neb.com/rebase/rebase.html)[104]. 
The R-M systems found in C. jejuni display strain-specific 
differences. For example, NCTC11168 contain fewer 
R-M systems than C. jejuni ATCC 43431 [105]. Secondly, 
81116, 81-176 and several other C. jejuni strains possess 
highly divergent or lack the R-M systems that are found 
in NCTC11168 [106]. Several studies also observed differ-
ent G+C content in the R-M genes compared to the rest 
of the genome, which suggest that C. jejuni may have 
acquired these systems through horizontal gene transfer 
(HGT) events [105, 106].

In recent years, C. jejuni methylation studies have 
greatly advanced since the advent of next-generation 
sequencing technologies like Pacific Biosciences’ Single 
Molecule Real-Time (SMRT) [107-110] and Illumina’s 
DNA sequencing systems [99, 100]. Edmonds et al. de-
scribed adenine base methylation in C. jejuni [111]. More 
recent studies confirmed the same observation (i.e., ad-
enine methylation) in strains NCTC11168, 81-176, and 
IA3902, and specifically found N6-methyladenine (m6A) 
base modifications that were catalyzed by N-6 adenine 
MTases [107, 109, 112]. Another type of base methylation, N4-
methylcytosine (m4C), was also identified in C. jejuni 
F38011 isolate and postulated to be catalyzed by N-4 
cytosine MTase [108]. The authors found m4C motifs in 
NCTC11168, 81-176 and RM1221, but remarked that 
the cytosine methylation observation will need to be con-
firmed.

Comprehensive methylome (i.e, methylation on the 
whole genome scale) profiles of C. jejuni have been rela-
tively few. However, of the few, two studies showed that 
the motifs and associated MTases of several commonly 
studied C. jejuni strains [112] and C. jejuni F38011 isolate 
[108] were similar or even shared across these different 
strains. The most comprehensive comparison of C. je-
juni methylome profiles to date involved strains IA3902, 
NCTC11168 and 81-176 [109]. Bioinformatic analysis gen-
erated methylation distribution plots that showed hypo- 
and hypermethylated regions of the genome. IA3902 
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belongs to an emergent hypervirulent clone of C. jejuni, 
and is associated with systemic infection and abortion 
induction in ruminant animals [88]. The locations of the 
hypomethylated regions in IA3902 were clearly distinct 
from its gastroenteric counterparts 11168 and 81-176. 
In addition, the genes found at these hypomethylated 
areas were extraordinarily similar between NCTC11168 
and 81-176, while IA3902 had a completely different 
and much more diverse set of genes. Hypermethylated 
regions varied between the three strains and the genes 
found in these areas were even less similar among the 
genomes. The findings from this study led to the postula-
tion that restriction and modification activities may play 
a stronger role in expression of IA3902 genes more so 
than NCTC11168 and 81-176. In addition, such activi-
ties might also correlate with the hyper virulence and 
abortion-causing phenotype of IA3902.

A recent review article pointed out that Campylo-
bacter have an abnormally higher number of R-M sys-
tems compared to other organisms in the 1.5-2Mbp ge-
nome size class[94]. As some of these R-M systems seem 
to have been acquired through HGT, and with Campy-
lobacter being naturally competent, it is no surprise that 
Campylobacter possess a higher number of R-M systems 
in their genome. Characterization of these R-M systems, 
along with their respective MTases, may reveal their 
unique roles in phenotypic expression of pathogenesis-
associated factors in C. jejuni. This may be a reason for 
why Campylobacter maintain so many R-M systems in 
their genome.

One role that MTases play is in the form of a phase 
varion, which is a novel mechanism to generate phase 
variation and consists of a set of genes regulated by 
phase variable MTases[107]. It has been postulated that 
these phase varions and phase variable R-M systems may 
be an evolutionary response to pressures of the environ-
ment and serve as an adaptive strategy. The first studies 
to suggest the role of R-M systems in C. jejuni pathogen-
esis advocated a greater functional role of R-M proteins 
in host colonization and survival in the environment [101, 

113]. When characterizing Type I R-M systems in 73 C. 
jejuni strains, Miller et al. found that the length of the 
polyG tract in the Type I R-M specificity subunit gene 
varied among several C. jejuni strains [101]. This length 
depended on the strain and that some strains carried mul-
tiple types of G-tract populations. The authors suggested 
R-M genes that carry these homopolymeric tracts are 
subject to slipped strand mispairing which then introduce 
gene variations that may be beneficial for their survival 
in the host environment. 

More recent studies have identified several phase vari-
able MTases in C. jejuni, but the mechanisms and roles 
of these MTases in the pathobiology of C. jejuni have 
yet to be defined. In NCTC11168, cj0031 was character-
ized as a phase variable MTase, containing a phase vari-
able polyG tract and postulated to behave like a phase 
varion [114, 115].  A majority of Campylobacter cells with 
this MTase in the phase ON state from chicken and mice 
infection studies suggests the importance of this MTase 

in C. jejuni colonization [114, 116]. However, methylome 
profiling of the cj0031 deletion mutant provided no clear 
picture to correlate the distribution of cj0031 methylation 
sites with gene expression profiles or reductions in adher-
ence, invasion, and biofilm formation that were observed 
in the mutant [107]. 

Subsequent studies found two other MTase homo-
logues with cj0031, but all displayed drastic differ-
ences in gene structure. cjsa_rs00180(formerly known 
as cjsa_0032) from IA3902 has the exact same gene 
sequence as cj0031, but contained no homopolymeric 
tract, leaving this gene and the resulting MTase in a con-
stitutive phase ON state. Though the mutation had no 
effect on growth, motility or mucin penetration, it is hy-
pothesized that mutation of this gene would affect colo-
nization, which remains to be tested [117]. cjh00185 was 
identified from a clinical isolate C. jejuni F38011 strain 
and shares homology with cj0031but contains a shorter 
polyG tract. However, the main difference between this 
MTase gene and cj0031 is the presence of a frame shift 
mutation that splits cjh00185 into two potential protein-
encoding open reading frames. The authors suggested 
that this may or may not be a new class of split DNA 
MTases consisting of 2 or 3 subunit enzymes required for 
full activity [118]. It is speculated that these unique chang-
es are a function of the physiology of the organism and 
may have ecological benefits for adaptation and survival 
in the host intestinal environment [117].

Several studies have also found phenotypic evidence 
suggesting C. jejuni MTases’ epigenetic regulatory role 
in phenotypes critical to pathogenesis of this organism. 
For example, epigenetic regulation of motility and ad-
hesion was suggested in three studies after changes in 
these two phenotypes were observed in several different 
MTase mutants. In 81-176, the mutation of the cj1461M-
Tase caused a defective flagellar structure that may be 
responsible for the mutant’s hyper-adherence and severe 
invasion defect [119]. cj0588 in 81-176 is an RNA MTase 
involved in 23S rRNA methylation, and the mutant strain 
of this gene displayed loss of motility and reduced adhe-
sion to Caco-2 cells [120]. In 81116, a cj0588 mutant also 
showed reduced adherence and invasion to Caco-2 cells [121].

Changes in antimicrobial resistance phenotypes of C. 
jejuni in association with R-M systems were found in two 
studies. In the first study  involving cj0588rRNAMTase 
mentioned earlier, it was shown that increased resistance 
to the antimycobacterial drug capreomycin was observed 
in the MTase mutant C. jejuni strain [120]. A second study 
characterized the erm(B) rRNA MTase gene, which con-
fers resistance to macrolides and found in multiple Cam-
pylobacter species including C. jejuni[122]. Though at this 
stage the rate of C. jejuni carrying erm(B) is relatively 
low, it is a major concern  because erm(B) confers high-
level resistance to macrolide antibiotics (important for 
clinical treatment of campylobacteriosis), is associated 
multidrug resistance genomic islands, and can be readily 
transferred between strains via natural transformation [123].

Growth in laboratory media, on the other hand, does 
not seem to be affected by the lack of a functional MTase 



115

Genomic insights into Campylobacter jejuni virulence and population genetics

in three C. jejuni strains that were studied. Growth 
was comparable between wildtype and their respective 
MTase mutants in three different studies: IA3902 (cjsa_
rs00180mutant), F38011 (cjh00185 mutant), and 81-176 
and 81116 (cj0588 mutant) [108, 117, 120, 121]. Even with the 
addition of deoxycholate, growth rate and survival over 
time did not change in the cjh00185 mutant compared to 
wildtype F38011[118].

Just as phenotypic characterization of individual 
MTases and their R-M systems on C. jejuni pathobiol-
ogy are beginning to emerge, so too are the tools used to 
analyze the genetic impact of methylation on C. jejuni 
genomes. The study of methylation patterns using cur-
rent SMRT sequencing methods rely on a population-
level consensus, which lack the resolution to analyze 
epigenetic heterogeneity within a sample. This past year, 
a powerful new tool, single-molecule modification analy-
sis of long reads (SMALR), provided the framework to 
analyze methylation at the single-molecule resolution [110]. 
This method is amenable to modifications to accommo-
date changing sequencing techniques, has diverse appli-
cations beyond study of a single culture, and can be used 
for sequences with low coverage and analyze methyla-
tion patterns in a mixed population of bacteria. With this 
new tool, future studies will likely reveal a more detailed 
picture of methylation and its role in the adaptability, bi-
ology and disease pathogenicity of C. jejuni.

6. Conclusion

The rapid development of genomic techniques in recent 
years provides unprecedented opportunities for us to un-
derstand the genetic basis of biology and pathogenicity 
of Campylobacter at the level of both single strain and 
population. Although C. jejuni does not encode a large 
number of classical virulence factors, genome sequenc-
ing coupled with gene mutation experiments has revealed 
the genetic basis of several genetic factors associated 
with the pathogenesis of C. jejuni in colonization, adher-
ence and invasion, and immune evasion[124, 125].Addition-
ally, recent studies also revealed that DNA methylation 
(bacterial epigenetics) modulated the virulence and 
pathogenesis of Campylobacter[119, 121], but the underlying 
molecular mechanisms remain unknown. As a bacterial 
pathogen implicated in multiple clinical diseases and 
adapted to a wide range of hosts, C. jejuni displays high 
population diversities in both phenotypes and genotypes. 

Population genetics analysis using MLST data identified 
both specialists and generalists in C. jejuni population. 
Whole genome based population genetics analyses dis-
covered panBCD genes driving rapid host adaptation of 
some C. jejuni isolates.

Currently, there are a large number of complete and 
nearly complete genome sequences for various Cam-
pylobacter species and strains available in public data-
bases. The new generation of methylation determination 
tool (SMALR) will also likely foster the generation of 
more data on methylation and epigenetics. How to make 
sense of these BIG data is the next biggest challenge. 
The omics approaches, in most cases, can only unravel 
correlation and association, which is not sufficient for 
determining the causative effect for a disease phenotype. 
Thus, omics approaches should be augmented and em-
powered by other approaches in future research efforts. 
By combining genomics with other tools, we will be 
able to precisely elucidate the genetic basis of C. jejuni 
host adaptation and pathogenesis. A good example is the 
recent identification of a few specific SNPs in MOMP 
that are responsible for the hypervirulence (abortion in-
duction) of C. jejuni clone SA (Wu et al, 2016, PNAS, 
under revision). In this particular case, the novel strategy 
involved natural transformation between two genetically 
similar but phenotypically different (abortifacient and 
non-abortifacient) strains, positive selection in an ani-
mal model for the transformants that gained virulence, 
and subsequent whole-genome sequence analysis of the 
transformants responsible for the disease phenotype. Ap-
plication of this strategy allowed us, in one experiment, 
to identify the specific target mutations in a single gene 
out of more than 8,000 SNPs spanning the entire ge-
nomes of the two closely related strains. This example il-
lustrates the power of and need for creative integration of 
omics approaches with traditional methodologies as well 
as model systems. With these innovations in mind, it is 
entirely possible that we will be able to discover novel 
targets for effective prevention and control of C. jejuni 
infections in both animals and humans. 
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