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ABSTRACT 

 

The main subjective of this dissertation is to analyze three issues of current interest in 

agricultural economics. Chapter 1 investigates the lead-lag relationships among soybean prices 

in U.S., Brazilian, and Chinese futures markets by using threshold co-integration 

methodologies. The empirical results indicate the influence of U.S. market in the long-term, 

and also show that overnight return of U.S. soybean futures and the daytime return of Chinese 

No. 1 soybean futures contemporaneously affect each other in the short-term. A weak temporal 

seasonal causality between U.S. and Brazilian soybean futures prices exists. Chapter 2 

examines the impact of feedstock supply mechanisms under conditions of spatial monopoly on 

the supply of cellulose to the plants. The model shows that, in the absence of competition, the 

processor is indifferent between processor collection and supplier delivery, but that societal 

welfare is higher under supplier delivery. By using a repeated Nash Equilibrium, this paper 

shows that processor collection is first best for both incumbent and entrant. By comparing the 

slope of marginal cost curve for this monopsonistic processor with the slope of cost curve 

across other feedstocks, substantial quantities of other feedstocks may be required to meet the 

mandate. Chapter 3 investigates a change in the market power of the U.S. nitrogen fertilizer 

industry by examining the causal linkage between fertilizer, its main feedstock (natural gas), 

and output (corn) by using a Bayesian-based Kalman filter algorithm. The results of the time-

varying estimation show that the U.S. nitrogen fertilizer price follows the value of its marginal 

productivity closer than its marginal cost of production, indicating a less competitive market 

structure. The estimation from the error correction model supports these results. 
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CHAPTER 1.  PRICE DISCOVERY ON INTERNATIONAL 

SOYBEAN FUTURES MARKETS: A THRESHOLD CO-

INTEGRATION APPROACH 

Abstract 

        This paper investigates the lead-lag relationships among soybean prices in U.S., Brazilian, 

and Chinese futures markets. We focus on both long-run price co-movements and on short-run 

price relationships. Various co-integration methodologies and causality tests are applied to 

examine the changes in price relationships over time. The empirical results indicate the 

following: (a) the soybean futures market in the U.S. is still the most important and influential 

market, and the U.S. price, in the long-term, leads price changes in Brazil and China; (b) in the 

short-term, the overnight return of U.S. soybean futures and the daytime return of Chinese No. 

1 soybean futures contemporaneously affect each other, but there is no significant causality 

between U.S. overnight return and the daytime return of Chinese No. 2 soybean futures; and, 

(c) a weak temporal seasonal causality between U.S. and Brazilian soybean futures price exists 

and more often than not Brazilian futures lead U.S. futures during the Brazilian growing 

season.  

1.1 Introduction 

        The U.S., Brazil, and Argentina account for over 90% of the world’s soybean exports. 

China, which imported 71.4 million tons of soybeans in 2014, is by far the largest importer and 

gets approximately 50% of its soybeans from the U.S. and 40% from Brazil.  
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        The U.S., Brazil, and China all have active soybean futures. China has two different 

markets, one for non-GMO soybeans and the other for imported GMO soybeans. In the Dalian 

Commodity Exchange (DCE), the No. 1 contact is for non-GMO soybeans that are used for 

human consumption, and the No. 2 contract allows delivery of imported GMO soybean crops, 

which are used for soy oil and animal feed. Figure 1.1 shows soybean futures prices in all four 

markets. There is visual evidence of strong co-movements among these prices, and we 

investigate whether this co-movement is due to a stable long-run price relationship and 

examine the price lead-lag relationship across the four markets.  

 

 

Figure 1.1: Soybean futures prices in the US, Brazil and China from 2005 to 2015 

 

        This paper is the first to investigate the long-run lead-lag relationship among the U.S., 

Brazilian, and Chinese markets, and explores the seasonal relationship between U.S. and 

Brazilian futures markets and the influence the Globex overnight trading platform in the U.S. 
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has on the daytime return of soybean futures in China.1 Overnight trading in the U.S. and 

daytime trading in China occur contemporaneously, so we apply an autoregressive distributed-

lag model to address this problem.  

        The paper is organized as follows: Section 1.1.1 provides a brief literature review. Section 

1.2 describes the methodology that characterizes the price lead-lag relationships using linear 

and non-linear co-integration. Section 1.3 describes the data. Section 1.4 exhibits and explains 

empirical results of co-integration and demonstrates two short-run causality relationships. 

Section 1.5 presents conclusions. 

1.1.1 Previous Theoretical Work 

        Granger (1981) introduced the most widely used methodology to study long-run price 

causality co-integration. He showed that two variables may have a long-run equilibrium 

relationship even if they are non-stationary. Engle and Granger (1987) extended this concept 

and showed that co-integrated variables can be represented by a vector error correction model 

(VECM) and provided test methodology for this framework. Balke and Fomby (1997) 

introduced the threshold concept to explain possible non-linear long-run equilibrium 

relationships. Hansen and Seo (2002) and Seo (2006) provided two methods to test a threshold 

and a method to estimate the parameters of a threshold vector error correction model 

(TVECM). 

        Wahab and Lashgari (1993) and Ghosh (1993) investigated the forecasting power of the 

S&P 500 index spot and futures prices changes using co-integration. Their results indicated a 

                                                 

1 Globex is the electronic trading system in the U.S. 
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stable long-run equilibrium relationship between the index and its futures price. Chu et al. 

(1999) investigated the price discovery function in three S&P 500 index markets: the spot 

index, index futures and S&P Depositary Receipts markets. They found that the three price 

series are a co-integrated system with one long-run stochastic trend and the futures market 

serves the dominant price discovery function when the common stochastic trend is 

decomposed. Martens et al. (1998) applied a threshold error correction model to study index-

futures arbitrage and found that the impact of futures market on the spot market is larger when 

the mispricing error is negative and that the impact of the mispricing error increases with the 

magnitude of that error.  

        Booth, Brockman, and Tse (1998) investigated the relationship between U.S. and 

Canadian wheat futures prices and showed that both of them are integrated of order one and 

that they are co-integrated. Fung et al. (2013) used daily data for 16 commodity futures 

contracts traded in China and the corresponding foreign markets to analyze price linkages 

among markets. They also studied the impact of Chinese futures daytime returns on the U.S. 

overnight returns using a regression of one return on the other; however, their study ignored 

the effect of the previous return on the current return. For soybeans, their results showed that 

the price causality between U.S. soybean futures contracts and both Chinese No. 1 and No. 2 

contracts are statistically significant but not economically significant. Peri and Baldi (2010) 

employed the threshold co-integration approach to analyze the long-run relationship between 

vegetable oil prices and conventional diesel prices in the EU and suggested a two-regime 

threshold co-integration relationship for the rapeseed oil and diesel price pair. Natanelov et al. 

(2011) examined price linkages between crude oil futures and a series of agricultural 
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commodities futures using the VECM method and showed that co-movement of commodity 

prices is a temporal seasonal concept and should be treated accordingly. 

        In the literature regarding soybean futures price discovery between U.S., Brazilian, and 

Chinese markets, Han et al. (2013) examined the role that the DCE plays in the global 

discovery of soybean futures. They used a structural vector autoregressive model (SVAR) and 

VECM on the returns of the DCE and the CBOT soybean futures during trading and non-

trading hours. The results indicate a bi-directional causality between the two markets with the 

CBOT leading the DCE. Han et al. did not include the Chinese No. 2 soybean futures contract 

due to a liquidity problem. Our paper employs more recent data to capture the role of Chinese 

No. 2 contracts and focuses on threshold co-integration analysis. Han et al. used a different 

approach than the one described below when rolling the price data when the nearby contract 

expires. This may help explain the difference between the results presented in this paper and 

those in Han et al. (2013). Christofoletti et al. (2012) examined the price linkage between 

soybean futures contracts in China, U.S., Brazil, and Argentina using VECM. The results 

indicated that the U.S. price has a dominant role. Liu et al. (2015) used a generalized 

autoregressive conditional heteroskedasticity (GARCH) model based on generalized error 

distribution (GED) and exponential GARCH-GED models and found that the spillover from 

CBOT soybean futures to DCE No. 1 soybean futures has weakened through time, indicating 

a more influential Chinese soybean market. Merener (2015) investigated how local supply 

shocks in the globally distributed production of commodities are incorporated into CME 

futures prices and found that CME soybean futures prices have become increasingly sensitive 

to supply shocks outside of the United States. 
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1.2 Theoretical Issues 

1.2.1 Co-Integration and the Vector Error Correction Model 

        In time-series econometrics, a price series that has a stationary, invertible, ARMA 

representation after differencing d  times, is said to be integrated of order d , denoted by 

( )tp I d . If both series tx  and ty  are ( )I d  processes, their linear combination t t tx yε β= −  

is also an ( )I d  process. However, if there exists a vector, [1, ]β− , such that ( )t I d bε − , 

where 0b > , then these two series are said to be co-integrated and the vector [1, ]β−  is called 

the co-integrating vector. In appendices A1-A3, two types of unit root tests indicate that all 

futures prices studied in this paper can be characterized as (1)I  processes. Therefore, we 

concentrate our study on the case when 1d b= = . As a result, the co-integrated system can be 

simply characterized as a VECM 

                                          
1

k

t t k t k t
i

x x A x vµ −
=

∆ = +Γ + ∆ +∑                                                     (1.1) 

where tx  is a 1n×  vector of (1)I  processes, µ  is a 1n×  vector of constant, Γ and kA are n n×  

coefficient matrices, and tv  is a 1n×  vector of Gaussian white noise processes. Johansen 

(1988; 1991) demonstrated that the rank of matrix Γ represented the number of co-integration 

relationships in vector tx . Thus, Johansen’s co-integration test estimates matrix Γ  through an 

unrestricted VAR and tests possible rejection of the restriction implied by the reduced rank of 

Γ . There are two test statistics, one using the trace and the other using the maximum 

eigenvalue, and inferences can be different.  
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        The null hypothesis for the trace test is that the number of co-integrating vectors is less 

than or equal to r . The test statistic is given by  

 

2

1
ln(1 )

n

itrace
i r

Tλ λ
= +

= − −∑  

where T  is the sample size actually used for estimation and iλ  is the estimated values of the 

ordered eigenvalues from the estimated matrix. For the maximum eigenvalue test, the test 

statistic is given by  

                                                       

1max ln(1 )rTλ λ += − −  

which tests the null hypothesis that the number of co-integrating vectors is exactly r  against 

the alternative of 1r +  co-integrating vectors. 

        When there is a co-integration relationship between time series, Granger causality can be 

tested by a Wald test. Specifically, a linear VECM of order 1r +  can be compactly represented 

as 

                                                      1' ( )t t tx A X vβ−∆ = +                                                        (1.2) 

with 

1

1
1

2

1
( )

( )

t

t
t

t

t r

w
x

X
x

x

β

β

−

−
−

−

−

 
 
 
 ∆

=  
∆ 

 
  ∆ 


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where tx  is a n-dimensional (1)I  time series, which is co-integrated with one 1n×  co-

integrating vector β , 1( ) 't tw xβ β −=  is the error correction term (ECT), and 

( )1 2' rA A A Aµ α=    is a ( 2)n nr× +  matrix of coefficients.  

        Thus, the bi-variate co-integrated time series can be written as 

                            1, 1, 1,1 1
1

12, 2, 2,2 2

( )
r

t t i t
t i

it t i t

x x v
w A

x x v
µ α

β
µ α

−
−

= −

∆ ∆        
= + + +        ∆ ∆        

∑                               (1.3) 

where 1 1, 1 2, 1( )t t tw x xβ β− − −= −  determines the ECT. The optimal length of lag r  is determined 

by Akaike Information Criterion (AIC) or Schwarz Information Criterion (SIC). 

        Intuitively, parameter iα  measures the long-run causality relationship and parameter β  

characterizes the long-run equilibrium between these two series. By testing the null hypothesis 

of 0iα =  against the alternative of 0iα ≠ , three different results may be obtained: (a) 1 0α =  

and 2 0α = ; (b) 1 0α ≠  and 2 0α ≠ ; and (c) 0iα ≠  but 0jα = . The first case indicates no co-

integration exists, the second case indicates bi-directional long-run causality, and the last case 

indicates a unidirectional long-run causality relationship. 

1.2.2 Threshold Co-Integration 

        The above traditional VECM assumes the adjustment process to the long-run equilibrium 

is continuous and linear. In reality, the influence of transaction costs, adjustment costs, or other 

market frictions makes it likely that movement toward the long-run equilibrium may only occur 

when the deviation from equilibrium exceeds a critical threshold level. It is also possible that 

the speed at which the system returns to long-run equilibrium differs under regimes. Balke and 
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Fomby (1997) introduced the concept of threshold co-integration to analyze this type of 

discrete adjustment process. 

        As an extension of model (1.2), we propose the following specification of a two-regime 

threshold co-integration model: 

                                     
'
1 1 1
'
2 1 1

( ) , if  | ( ) |
( ) , if  | ( ) |

t t t
t

t t t

A X v w
x

A X v w
β β γ
β β γ

− −

− −

 + ≤
∆ = 

+ >
                                             (1.4) 

where one regime is close to the equilibrium regardless of the sign of ECT and the other regime 

is far from the equilibrium, and γ  is the threshold parameter. Equation (4) can be rewritten as  

                                    ' '
1 1 1 2 1 2( ) ( , ) ( ) ( , )t t t t t tx A X d A X d vβ β γ β β γ− −∆ = + +                            (1.5) 

with 1 1( , ) 1(| | )t td wβ γ γ−= ≤ , 2 1( , ) 1(| | )t td wβ γ γ−= > . The coefficient matrices 1A  and 2A  

determine the dynamics in each regime. The advantage of this specification captures the idea 

that adjustment speed to long-run equilibrium would be lower when the deviation is banded. 

With the absolute value of 1tw −  above or below the critical threshold value, this TVECM model 

allows all coefficients, except the co-integrating vector, β , to switch between two regimes. 

The estimated coefficients of 1tw −  measure different adjustment speeds of price moving back 

towards the long-run equilibrium. 

        The hypothesis test for threshold co-integration involves four different cases: (a) co-

integration with no threshold effect; (b) co-integration with a threshold effect; (c) no co-

integration with a threshold effect; (d) no co-integration and no threshold effect. Thus, given 

the bi-variate Johansen co-integration test results, we apply two kinds of threshold tests, 

developed by Hansen and Seo (2002) and Seo (2006). 
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        If two series have shown a co-integration relationship using Johansen’s co-integration 

test, we further determine whether or not this co-integration is linear using the maximum 

likelihood method developed by Hansen and Seo (2002), which involves a joint grid search 

over the co-integrating vector β  in the region [ , ]L Uβ β  and a threshold parameter γ  in the 

region [ , ]L Uγ γ . In our empirical applications, we set the number of grid searches for both 

threshold parameter and co-integrating vector at 300.  

       Since the threshold effect is only valid when 10 (| | ) 1tP w γ−< ≤ < 2, it is imposed by 

assuming that  

        0 1 0(| | ) 1tP wπ γ π−≤ ≤ ≤ −  

where 0 0π >  is a trimming parameter and set equal to 0.05. 

         Hanson and Seo (2002) test the null hypothesis of linear co-integration (no threshold 

effect) against the alternative hypothesis of threshold co-integration by developing two SupLM 

tests for a given or estimated β  using a parametric bootstrap method to calculate asymptotic 

p-value. The first test is used when the true co-integrating vector 0β  is known to be a priori 

and the test statistic is denoted as   

 

0
0

[ , ]
SupLM sup ( , )

L U

LM
γ γ γ

β γ
∈

=
 

The second test is used when the true co-integrating vector is unknown and the test statistic is 

denoted as  

                                                 

2 Otherwise, the model reduces to a linear co-integration model. 
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         

0

[ , ]
SupLM sup ( , )

L U

LM
γ γ γ

β γ
∈

=  

where β  is the null estimate of the co-integrating vector. 

        If two series fail to show a co-integration relationship by Johansen’s co-integration test, 

we alternatively apply a supreme test developed by Seo (2006). This tests the null hypothesis 

of no co-integration against the alternative hypothesis of threshold co-integration using a Band-

TVECM, 

            1 1 1 2 1 1( ) 1(| | ) 1(| | )t t t t t tL x w w w w vµ α γ α γ− − − −Φ ∆ = + ≤ + > +  

where 1,...,t n= , and ( )LΦ  is a th-orderq polynomial in the lag operator defined as 

1
1( ) q

qL I L LΦ = −Φ − −Φ . When threshold parameter γ  is fixed, the least-squares 

estimators for the coefficients are the OLS estimators. Thus, equation (1.5) can be specified as 

                            1 1 1 2 1 2

1 1

( ) ( ) ( ) ( , ) ( ) ( ) ( , )
        ( ) ( ) ( )

t t t t t

t q t q t

x w d w d
x x v

µ γ α γ β β γ α γ β β γ
γ γ γ

− −

− −

∆ = + +

+Φ ∆ + +Φ ∆ +

    

and the supreme Wald test statistic is defined as  

 
[ , ]

Sup sup ( )
L U

nW W
γ γ γ

γ
∈

=  

where nW  is the Wald statistic from testing the null of no co-integration with a fixed threshold 

parameterγ . 

1.2.3 Autoregressive Distributed-Lag Model 

        To study the temporal causal effect of soybean futures prices among different markets, 

we employ an autoregressive distributed lag model (ARDL). Specifically, the autoregressive 

distributed lag model of order p and q , ARDL( , )p q , defined as follows: 
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1 0

p q

t k t k k t k t
k k

y c a y b x ε− −
= =

= + + +∑ ∑  

where ty  and tx  are stationary variables, and tε  is white noise. More strictly, we assume that 

tε  is stationary and independent of 1, ,t tx x − and 1, ,t ty y −  , so that this ARDL model can be 

estimated consistently using ordinary least squares. The estimated contemporaneous parameter 

coefficient 0b  is the impact multiplier that characterizes the temporal price relationships. 

1.3 Data Description and Timelines 

       Our empirical analysis uses daily nominal prices of soybean futures contracts traded in the 

Chicago Mercantile Exchange (CME), the Dalian Commodity Exchange (DCE) and the 

Brazilian Mercantile and Futures Exchange (BM&F). All data is collected from a Bloomberg 

terminal, and the date range is from 03/01/2005 to 06/30/2015. A close-to-maturity method is 

employed to rollover data across contracts and all data is proportionally modified to eliminate 

the price jump across contracts.  

        Owing to differences in national holidays, data in all three markets are not automatically 

matched. We have eliminated mismatched data and the whole sample size is reduced to 2377 

observations. We standardize the price quotation unit and convert all prices into the natural log 

of prices measured in U.S. cents per bushel. 

        The Chinese futures market is open from 9:00 a.m. to 11:30 a.m. and from 1:30 p.m. to 

3:00 p.m. The trading hours in Brazil are from 9:00 a.m. to 3:15 p.m. The trading floor in the 

U.S. operates from 8:30 a.m. to 1:15 p.m., and the Globex overnight trading runs from 7:00 

p.m. to 7:45 a.m. Figure 1.2 illustrates the timeline of these trading hours.  
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Figure 1.2: Timeline of the U.S., Brazilian, and Chinese futures markets 

 

        China is 13 hours ahead of the U.S. during the U.S. daylight saving period and 14 hours 

ahead during standard time. During daylight saving time, the Chinese market and U.S. Globex 

open at the same time, and the Chinese market closes 6.75 hours earlier than the Globex. 

During standard time, the Chinese market opens one hour later than U.S. and closes 5.75 hours 

earlier than the Globex. In other words, the Globex is always open when the Chinese market 

is open. Therefore, we do not need to adjust the data for this time change. The difference in 

daylight periods between the U.S. and Brazil does not impact the close-to-close return in each 

trading day in either market. Therefore, we do not need to account for the effect of daylight 

saving time in the empirical work.      

        In the following empirical applications, we focus on the close-to-close returns of soybean 

futures in each market, the open-to-close (daytime) returns of soybeans futures in the Chinese 

market, and the overnight return of soybean futures in the U.S. market. Detailed variable 

notations are provided in the appendix. 
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1.4 Empirical Results 

1.4.1 Long-Run Lead-Lag Relationship 

       Here, we present results pertaining to the long-run causality relationship between soybean 

futures prices in the three examined markets. Given the stationary test results in appendices, 

all closing prices can be regarded as an (1)I  process in every sub-period. Thus, we apply the 

Johansen co-integration test to investigate whether there is a long-run linear relationship 

between the closing prices in each market. As shown in figure 1.1, the co-movements among 

the price series are quite strong from the beginning of the data period, but the relationship 

weakens after several years, suggesting a structural break in the relationship. 

        The traditional approach to test structural change would be picking an arbitrary sample 

breakpoint, often the midpoint of the sample, and using Chow’s (1960) F-test. The result using 

this approach is very sensitive to the prior choice of break dates, and Hansen (2001) suggests 

that the Quandt-Likelihood Ratio (QLR) test is superior for detecting structural change with 

unknown timing. In our analysis, we are interested in whether the U.S. soybean futures market 

is still a world price leader, and we concentrate on the bi-variate causality relationship between 

soybean futures prices in the U.S. and elsewhere. Therefore, we employ this QLR structural 

change test and divide every pair-wise data sample into two sub-periods based on the test 

results. The results suggest that in July 2012 a structural break between soybean futures prices 

in the U.S. and Brazil occurred. Also, in October 2008 a structural break between the U.S. and 

Chinese No. 1 contracts occurred, and in August 2009 a structural break between U.S. and 

Chinese No. 2 contracts occurred as well. 
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       Table 1.1 reports trace statistics ( )traceλ  and maximum eigenvalue statistics max( )λ  from 

the bi-variate Johansen test for each sub-period of the sample, and shows that a linear co-

integration relationship between U.S. and Chinese No. 1 contracts does not exist in any period. 

Our result contradicts with Han et al. (2013) finding co-integration between U.S. and Chinese 

No. 1 contracts. A difference in data sample and modification approach may help explain the 

difference between the results in our paper and those in Han et al. (2013)—we employ more 

recent data to capture the price relationship and we proportionally modify futures prices to 

eliminate the influence of price jump across contracts when rolling price data when the nearby 

contract expires.  

        The underlying commodity for the Chinese No. 1 contract is non-GMO soybeans destined 

to be used for food. The underlying commodity for the U.S. and Chinese No. 2 contracts 

potentially contain GMO soybeans. Intuitively, the price relationship between U.S. and 

Chinese No. 2 soybean futures should be much closer than that between U.S. and Chinese No. 

1 futures contracts. This is shown in panel C of table 1.1 with a co-integrating relationship 

prior to 2009 and for the entire period. The co-integration relationship also exists between the 

U.S. and Brazil.   

Table 1.1: Bi-variate Johansen co-integration tests 

Panel A: U.S. and Brazil soybean futures contract 

 
03/01/2005-07/31/2012 08/01/2012-05/30/2015 03/01/2005-06/30/2015 

traceλ  maxλ  traceλ  maxλ  traceλ  maxλ  

0r =  19.91** 19.41*** 9.96 7.83 26.03*** 22.92*** 

1r ≤  0.50 0.50 2.12 2.12 3.11 3.11 
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Table 1.1 continued 

Analysis Co-integrated Not co-integrated Co-integrated 

Panel B: U.S. and Chinese No. 1 soybean futures contract 

 
03/01/2005-10/31/2008 11/01/2008-06/30/2015 03/01/2005-06/30/2015 

traceλ  maxλ  traceλ  maxλ  traceλ  maxλ  

0r =   10.41 10.21 12.38 8.20 13.55 10.97 

1r ≤  0.19 10.21 4.18 4.18 2.58 2.58 

Analysis Not co-integrated Not co-integrated Not co-integrated 

Panel C: U.S. and Chinese No. 2 soybean futures contract 

 
03/01/2005-08/31/2009 09/01/2009-06/30/2015 03/01/2005-06/30/2015 

traceλ  maxλ  traceλ  maxλ  traceλ  maxλ  

0r =  20.32** 19.83*** 10.28 9.25 26.74*** 24.03*** 

1r ≤  0.48 0.48 1.03 1.03 2.71 2.71 

Analysis Co-integrated Not co-integrated Co-integrated 

The VAR specification is estimated by applying up to 12 lags. The optimal lag length is 
determined by means of Schwarz information criterion (SIC). *,**,*** denotes statistical 
significance at the 10%, 5%, and 1% levels, respectively. 
 

        In order to find the direction of long-run lead-lag relationships, we apply a weak 

exogeneity test to the co-integrating pairs of prices. Table II shows the results of these tests. 

Parameter α  in table 1.2 characterizes the long-run causality relationship in equation (3). 

When soybean futures price in Brazil is treated as the dependent variable, α  is significantly 

positive. This suggests that U.S. soybean futures price leads the price in Brazil. For the prices 

of U.S. and Chinese No. 2 futures contracts, the test results indicate a bi-directional causality 
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relationship, implying the soybean futures prices in U.S. and Chinese No. 2 contracts are 

influenced by each other. 

Table 1.2: Weak exogeneity test for co-integrated price pairs 

Panel A: Lead-lag relationship between soybean futures in U.S. and Brazil 

03/01/2005-07/31/2012 03/01/2005-06/30/2015 

0 1H : =0α  0 2H : =0α  0 1H : =0α  0 2H : =0α  

1.03 4.02** 0.01 8.64*** 

US Brazil⇒  US Brazil⇒  

Panel B: Lead-lag relationship between U.S. and Chinese No. 2 soybean futures 

03/01/2005-08/31/2009 03/01/2005-06/30/2015 

0 1H : =0α  0 2H : =0α  0 1H : =0α  0 2H : =0α  

12.27*** 4.13** 9.79*** 8.53*** 

2US ChinaNo⇔  2US ChinaNo⇔  

*,**,*** denotes statistical significance at the 10%, 5%, and 1% levels, respectively. 
 

        Table 1.3 presents the parameter estimates that characterize the long-run equilibrium 

relationship and the speed of adjustments to the long-run equilibrium. 1tECT −  is the error 

correction term of the VECM model, and its coefficient represents the adjustment speed to 

long-run equilibrium. tUS∆  is the close-to-close return of soybean futures in the U.S. tBR∆  is 

the close-to-close return of soybean futures in Brazilian market. 2tCH∆  is the close-to-close 

return of Chinese No. 2 soybean futures. 
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Table 1.3: Estimated results of linear error correction model (ECM) 

 Panel A: U.S. and Brazilian soybean futures contracts 

 
03/01/2005-07/31/2012 03/01/2005-06/30/2015 

tUS∆  tBR∆  tUS∆  tBR∆  

1tECT −  -0.0089 0.0138* -0.0005 0.0149** 

1tUS −∆  0.0565 0.192*** 0.0485 0.1615*** 

1tBR −∆  -0.0685 -0.0774* -0.0731 -0.0577* 

Constant -0.0002 0.0019* 0.0001 0.0033** 

 1.008t t tECT US BR= − ∗  1.023t t tECT US BR= − ∗  

 Panel B: U.S. and Chinese No. 2 soybean futures contracts 

 03/01/2005-08/31/2009 03/01/2005-06/30/2015 

 tUS∆  2tCH∆  tUS∆  2tCH∆  

1tECT −  -0.0296*** 0.0122* -0.0128*** 0.0089** 

1tUS −∆  0.0139 0.1143*** 0.0102 0.1096*** 

12tCH −∆  0.0362 0.0199 0.0156 -0.0078 

Constant -0.0016* 0.0014* -0.0061** 0.0046** 

 0.955 2t t tECT US CH= − ∗  1.014 2t t tECT US CH= − ∗  

*,**,*** denotes statistical significance at the 10%, 5%, and 1% levels, respectively. 
 

        The implication of estimation results in table 1.3 coincide with the test results in table 1.2. 

The significance of estimated coefficients for ECT implies that U.S. soybean futures prices 

lead the price in Brazil and that the prices of U.S. and Chinese No. 2 futures influence each 
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other. The significant positive sign of 1tUS −∆  in each estimated equation suggests an increasing 

price change in other markets when the soybean futures price increases in the U.S. market. 

Finally, the adjustment speed to deviations from the long-run equilibrium is characterized by 

the magnitude of significant coefficient of ECT, and the long-run equilibrium relationship 

between prices is characterized by a co-integrating vector in ECT expression. 

        Turning to the analysis of a non-linear long-run causality relationship, we test whether or 

not the soybean futures prices in different markets are threshold co-integrated. For the pairs of 

linear co-integrated prices, the presence of a threshold is tested and estimated via the 

application of a SupLM test by Hansen and Seo (2002). This tests the null hypothesis of linear 

(Johansen) co-integration against the alternative hypothesis of threshold co-integration. Table 

1.4 displays the test statistics and their bootstrapped p-values out of four data samples. Only 

the whole period pair of prices between U.S. and Chinese No. 2 soybean futures supports a 

threshold co-integration at a bootstrapped p-value of 0.035.  

Table 1.4: Test of linear co-integration against threshold co-integration 

 Test Statistic P-value 

US and Brazil (03/01/2005-07/31/2012) 13.66 0.384 

US and Brazil (03/01/2005-06/30/2015) 16.10 0.181 

US and CH No. 2  (03/01/2005-08/31/2009) 16.54 0.109 

US and CH No. 2  (03/01/2005-06/30/2015) 20.70 0.035 

 

        Compared to the linear estimation in table 1.3 above, the co-integrating coefficient for 

this threshold co-integrated price pair decreases from 1.023 to 0.97. This again shows a strong 

co-movement between Chinese No. 2 soybean futures price and the U.S. soybean futures price. 
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The estimated critical threshold value is 0.26 cents per bushel, which divides the whole data 

set into two regimes. There are 86.9% observations that fall into the usual regime 

| 0.97 2 | 0.26t tUS CH− ∗ ≤ , while the remaining 13.1% of observations belong to the unusual 

regime | 0.97 2 | 0.26t tUS CH− ∗ > . The estimated TVECM model is fully represented as  

tUS∆ =
* *

1 1 1 1
** * *

1 1 1 1

0.0016 0.0084 0.0366 0.0237 2 ,| | 0.26
0.0158 0.0394 0.0773 0.0512 2 ,| | 0.26

t t t t

t t t t

ECT US CH ECT
ECT US CH ECT

− − − −

− − − −

− − + ∆ + ∆ ≤


+ − ∆ − ∆ >
 

2tCH∆ =
*** ** ***

1 1 1 1
***

1 1 1 1

0.0016 0.0083 0.1108 0.0162 2 ,| | 0.26
0.0061 0.0153 0.0986 0.0658 2 ,| | 0.26

t t t t

t t t t

ECT US CH ECT
ECT US CH ECT

− − − −

− − − −

 + + ∆ − ∆ ≤

− − + ∆ + ∆ >

 

where 0.97 2t t tECT US CH= − ∗  

        The adjustment parameters of ECT in the U.S. equation are -0.0084 and 0.0394 in the 

usual and unusual regime, respectively. This difference in the statistically significant 

magnitude of ECT coefficient indicates a faster adjustment speed toward long-run equilibrium 

when the absolute value of price deviation from equilibrium exceeds the critical threshold. In 

both the usual and the unusual regimes, the estimated coefficients of 1tUS −∆  are significantly 

different from zero in the Chinese No. 2 equation, while the estimated coefficients of 12tCH −∆  

are not statistically significant in the U.S. equation. This suggests that there is a significant 

short-run response of the Chinese No. 2 soybean futures price to the price change in the U.S. 

When the U.S. soybean futures price changes by 1%, the Chinese No. 2 soybean futures price 

changes by 0.1108% and 0.0986% in the same direction when deviation from equilibrium 

belongs to the usual and unusual regime, respectively. These short-run adjustment parameters 

provide evidence that prices in the U.S. typically lead prices for the Chinese No. 2 soybean 

futures contract. 
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        Turning to the remaining five pairs of futures prices, which do not exhibit linear co-

integration relations, we apply a SupWard test by Seo (2006) to test whether or not they are 

threshold co-integrated and to demonstrate parameter estimates. Specifically, we implement 

threshold co-integration analysis for the post-break period prices of U.S. and Brazilian soybean 

futures, the post-break period prices of U.S. and Chinese No. 2 soybean futures and each sub-

period of U.S. and Chinese No. 1 soybean futures. 

        Table 1.5 shows the results of the test of no co-integration versus threshold co-integration. 

Two pairs of prices reject the no co-integration null hypothesis at a less-than 10% significant 

level. This provides evidence of threshold co-integration between these prices. The 

bootstrapped p-value is 0.001 and 0.076 for the pre-break period and the whole period of prices 

between U.S. and Chinese No. 1 contracts, respectively. The test results for the other three 

pairs of soybean futures prices are not significant at conventional levels. 

Table 1.5: Test of no co-integration against threshold co-integration 

 Test Statistic P-value 

US and Brazil (08/01/2012-05/30/2015) 15.20 0.103 

US and CH No. 1  (03/01/2005-10/31/2008) 16.36 0.001 

US and CH No. 1  (11/01/2008-06/30/2015) 19.39 0.551 

US and CH No. 1  (03/01/2005-06/30/2015) 13.15 0.076 

US and CH No. 2  (09/01/2009-06/30/2015) 10.67 0.316 

 

        The co-integrating coefficient is estimated as 0.94β =  for the pre-break period data of 

U.S. and Chinese No. 1 soybean futures, showing a strong responsiveness of the Chinese No. 

1 contract price to the U.S. soybean futures price. The estimated threshold point is 0.09 cent 
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per bushel, which divides the observations into two regimes. Of the observations, 84.3% fall 

into the usual regime | 0.94 1 | 0.09t tUS CH− ∗ ≤ , and the remaining 15.7% of observations 

belong to the unusual regime | 0.94 1 | 0.09t tUS CH− ∗ > . The estimated TVECM model is fully 

represented as 

tUS∆ =
*

1 1 1 1
**

1 1 1 1

0.0011 0.0134 0.0135 0.0590 1 ,| | 0.09
0.0035 0.0511 0.1678 0.3792 1 ,| | 0.09

t t t t

t t t t

ECT US CH ECT
ECT US CH ECT

− − − −

− − − −

 − − ∆ ∆ ≤


− + ∆ − ∆ >
 

1tCH∆ =
***

1 1 1 1
** ** *** ***

1 1 1 1

0.0002 0.0008 0.2650 0.0850 1 ,| | 0.09
0.0031 0.0407 0.3589 0.3176 1 ,| | 0.09

t t t t

t t t t

ECT US CH ECT
ECT US CH ECT

− − − −

− − − −

 − + ∆ + ∆ ≤

− + + ∆ − ∆ >

 

where 0.94 1t t tECT US CH= − ∗  

        The long-run adjustment parameters of ECT in Chinese No. 1 equations are significantly 

different from zero in the unusual regime, while the long-run adjustment parameters of ECT 

in U.S. equations are not statistically significant. This indicates that the U.S. soybean futures 

price drives the Chinese No.1 soybean futures price toward the equilibrium level. In particular, 

the adjustment parameters of ECT in the Chinese No. 1 equation are 0.0008 and 0.0407 in the 

usual and unusual regime, respectively. This difference in the magnitude of ECT coefficient 

demonstrates a faster adjustment speed toward long-run equilibrium when the absolute value 

of deviation from equilibrium exceeds the critical threshold. In both the usual and the unusual 

regimes, the estimated coefficients of 1tUS −∆  are significantly different from zero in the 

Chinese No. 1 equation. This suggests that there is a significant short-run response of the 

Chinese No. 1 soybean futures price to the price change in U.S. When the U.S. soybean futures 

price changes by 1%, the Chinese No. 1 soybean futures price changes by 0.2650% and 

0.3589% in the same direction when deviation from equilibrium belongs to the usual and 

unusual regime, respectively. These short-run adjustment parameters provide evidence that 
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prices in the U.S. typically lead prices for the Chinese No. 1 soybean futures contract, this 

result coincides with the results from the long-run adjustment parameters of the ECT. 

        For the whole period data of U.S. and Chinese No.1 soybean futures price, the co-

integrating coefficient is estimated as 0.98β = , showing a strong responsiveness of the 

Chinese No. 1 contract price to the U.S. soybean futures price. The estimated threshold point 

is 0.41 cents per bushel, which divides the observations into two regimes. Of the observations, 

92.5% fall into the usual regime | 0.98 1 | 0.41t tUS CH− ∗ ≤ , and the remaining 7.5% 

observations belong to the unusual regime | 0.98 1 | 0.41t tUS CH− ∗ > . The estimated TVECM 

model is fully represented as 

tUS∆ = 1 1 1 1
*** **

1 1 1 1

0.0011 0.0065 0.0296 0.0443 1 ,| | 0.41
0.0073 0.0147 0.2369 0.2729 1 ,| | 0.41

t t t t

t t t t

ECT US CH ECT
ECT US CH ECT

− − − −

− − − −

− − + ∆ − ∆ ≤
 + − ∆ − ∆ >

 

1tCH∆ =
*** ** ***

1 1 1 1
** **

1 1 1 1

0.0012 0.0049 0.2189 0.0112 1 ,| | 0.41
0.0181 0.0387 0.0651 0.1274 1 ,| | 0.41

t t t t

t t t t

ECT US CH ECT
ECT US CH ECT

− − − −

− − − −

 + + ∆ − ∆ ≤


+ − ∆ + ∆ >
 

where 0.98 1t t tECT US CH= − ∗   

        The long-run adjustment parameters of the ECT in the Chinese No. 1 equations are 

significantly different from zero in both the usual and unusual regimes, while the long-run 

adjustment parameters of ECT in the U.S. equations are not statistically significant. This 

indicates that the U.S. soybean futures price drives the Chinese No. 1 soybean futures price 

toward the equilibrium level. In particular, the adjustment parameters of the ECT in the 

Chinese No. 1 equation are 0.0049 and 0.0387 in the usual and unusual regimes, respectively. 

This difference in the magnitude of the ECT coefficients suggests a faster adjustment speed 

when the absolute value of the deviation from equilibrium exceeds the critical threshold. In the 

usual region, the estimated coefficient of 1tUS −∆  is significantly different from zero in the 
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Chinese No. 1 equation while the estimated coefficient of 11tCH −∆  is not statistically 

significant in the U.S. equation. This suggests that there is a significant short-run response of 

the Chinese No. 1 soybean futures price to price changes in the U.S. When the U.S. soybean 

futures price changes by 1%, the Chinese No. 1 soybean futures price changes by 0.2189% in 

the same direction. These short-run adjustment parameters provide evidence that prices in the 

U.S. typically lead prices for the Chinese No. 1 soybean futures contract, coinciding with the 

results from the long-run adjustment parameters of the ECT. 

        In summary, the co-integration results demonstrate unidirectional long-run price causality 

from U.S. to Brazilian and U.S. to Chinese No. 1 soybean futures markets, and a bi-directional 

long-run causality relationship between U.S. and Chinese No. 2 soybean futures markets. 

However, the estimation results that indicate Chinese soybean futures prices leading the price 

of soybean futures in U.S. are only significant in the unusual sample regime, indicating that 

soybean futures prices in Brazil or China are still led by futures prices in the U.S.  

1.4.2 Short-Run Causal Effect 

        We are interested in two different short-run causal effects. One is the contemporaneous 

effect of U.S. Globex overnight return on the daytime returns of soybean futures in China’s 

market. The other is the seasonal harvest effect on U.S. and Brazilian soybean futures returns. 

        Since U.S. soybean futures contracts can be traded through the Globex overnight 

platform, the Chinese soybean futures daytime return may be affected by this synchronous 

trading. Our analysis of the short-run causal effect concentrates on how daytime returns in 

China are affected by the information content of U.S. overnight prices. For simplicity, we set

1p q= =   and derive the unstructured estimation of the ARDL(1,1) model by ordinary least 
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squares.3 In particular, the impact of U.S. overnight returns on Chinese daytime returns is 

examined by the following regressions: 

 1 1 1 1 1 1* * *D N N D
t t t t tCH US US CHα β η γ ε− −∆ = + ∆ + ∆ + ∆ +  

 2 2 2 1 2 1* * *N D D N
t t t t tUS CH CH USα β η γ ε− −∆ = + ∆ + ∆ + ∆ +   

        Table 1.6 reports the estimation results for different sub-period samples. It shows that 

U.S. soybean futures overnight returns and Chinese No. 1 soybean futures daytime returns 

significantly affect each other in five out of eleven years, while estimation results of U.S. 

soybean futures overnight returns and Chinese No. 2 soybean futures daytime returns are not 

statistically significant at conventional levels. These results indicate that information about 

U.S. Globex overnight trading influences the price change of Chinese No. 1 soybean futures 

contracts rather than No. 2 soybean futures contracts. This is mainly because Chinese No. 1 

contracts are more active in the market. Thus, the short-run market price of No. 1 contracts 

would be more sensitive to the price in other markets due to no arbitrage theory. Therefore, the 

soybean futures price in Chinese No. 1 contracts are not only threshold co-integrated with those 

in the U.S. in the long-run, its short-run price change is also influenced by the information 

from overnight price changes in the U.S. market as well. Except for 2015, all significant 

coefficients of iβ s are positive, indicating that the price increase in U.S. overnight trading will 

stimulate the trading of Chinese No. 1 soybean futures contracts and tend to increase daytime 

return.  

                                                 

3 Imposing no structure on the relationship of the coefficients of the lagged explanators may cause 

multicollinearity, leading to high variance of the coefficient estimates. 



26 

 

Table 1.6: U.S. overnight and Chinese daytime return 

  
Column A: U.S. and Chinese 

No. 1 Contract 

Column B: U.S. and Chinese 

No. 2 Contract 

Year 
Dependent 

Variable 
iβ   iβ  

2005 
DCH   0.2117*** 0.1109 

NUS  0.5859*** 0.1151 

2006 
DCH  0.1390* -0.0658 

NUS  0.1951* -0.0359 

2007 
DCH  0.0499 0.0208 

NUS  0.1125 0.0152 

2008 
DCH  0.0759* 0.0530 

NUS  0.1933* 0.0939 

2009 
DCH  0.0669 0.0694 

NUS  0.1656 0.0689 

2010 
DCH  -0.0002 -0.0256 

NUS  -0.0001 -0.0339 

2011 
DCH  0.0899* -0.0071 

NUS  0.1514* -0.0076 

2012 
DCH  0.0717 -0.0225 

NUS  0.1516 -0.0835 
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Table 1.6 continued 

2013 
DCH  -0.0424 0.1245 

NUS  -0.0514 0.0907 

2014 
DCH  0.0084 -0.0356 

NUS  0.0063 -0.0572 

2015 
DCH  -0.3805* 0.0916 

NUS  -0.1151* 0.0910 

*,**,*** denotes statistical significance at the 10%, 5%, and 1% levels, respectively. 
 

        The other temporal causal effect we are interested in is the seasonal harvest effect on U.S. 

and Brazilian soybean futures. From the long-run analysis above, we conclude that soybean 

futures prices in the U.S. market lead those prices in the Brazilian market. In the short-run, 

however, this may not always be the case. The U.S. peak harvest period extends from May to 

October, while peak harvest period in Brazil extends from November to April. As a result, it 

is likely that the Brazilian soybean futures price leads the price in the U.S. in its harvest period 

when a strong seasonal effect exists. Table 1.7 illustrates the results of a causality test in each 

year, where expected seasonal causality exists in five out of ten years, suggesting a weak 

seasonal causal effect between U.S. and Brazilian soybean futures prices over time.  

Table 1.7: Causality test of U.S. and Brazilian seasonal production effect 

US vs. Brazil 

Nov-April Period 

Causality Test 

0 1H : =0α  0 2H : =0α  
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Table 1.7 continued 

Year 2005 7.34*** 0.07 

Analysis Brazil US⇒  

Year 2006 2.39 1.56 

Analysis - 

Year 2007 0.01 4.00** 

Analysis US Brazil⇒  

Year 2008 3.37* 8.58** 

Analysis Brazil US⇔  

Year 2009 1.81 0.77 

Analysis - 

Year 2010 3.51* 3.51* 

Analysis Brazil US⇔  

Year 2011 0.16 7.62** 

Analysis US Brazil⇒  

Year 2012 6.31** 0.29 

Analysis Brazil US⇒  

Year 2013 0.25 2.58 

Analysis - 

Year 2014 5.28** 0.23 

Analysis Brazil US⇒  

- indicates insignificant causality. *,**,*** denotes statistical significance at the 10%, 5%, and 
1% levels, respectively. 
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1.5 Discussion and Conclusion 

       This paper offers a comprehensive study on price causality between soybean futures prices 

in different markets from 2005 to 2015. Both long-run and short-run price relations are 

examined by various time-series methods. The long-run empirical results in section 4 indicate 

that the U.S. soybean futures market is the most influential market, and soybean futures prices 

in other markets like Brazil and China are led by the price change in the U.S. However, some 

sub-period co-integration tests show that there is no directional causality between U.S. and 

Chinese No. 2 soybean futures prices, and that there is a unidirectional causality between U.S. 

and Chinese No. 1 soybean futures prices. Intuitively, the rapid growth of both Chinese 

soybean spot and futures markets make them more influential to futures prices in the world. 

Thus, the lead-lag relationship between U.S. and Chinese soybean futures has been changed in 

recent years. If we form a liquid trading strategy based on whole period lead-lag relationship 

between U.S. and Chinese soybean futures prices,4 we find in appendix A4 that the return for 

trading strategy beats the real return in only four out of eleven years, showing that the 

directional causality between U.S. and Chinese soybean futures markets is not always robust. 

        This paper also investigates two types of temporal price causalities. One is the effect of 

overnight price changes of U.S. soybean futures through the Globex electronic trading system 

on the daytime return of Chinese soybean futures, the other is the seasonal harvest effect 

between U.S. and Brazilian soybean futures prices. The results indicate that the Globex 

                                                 

4 The strategy is to purchase and sale of the Chinese soybean futures contract at time t when the 

U.S. soybean futures return was positive at time t-1. Otherwise, keep the asset and earn risk-free 

interest return. 
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overnight price change in soybean futures affects, to some extent, the daytime price of Chinese 

No. 1 soybean futures, but there is no significant evidence indicating that overnight trading 

affects Chinese No. 2 soybean futures. Moreover, half of empirical tests about seasonal harvest 

effect match with our intuitive expectation, indicating a week seasonal causality between U.S. 

and Brazilian soybean futures prices according to their harvest periods. 

        In general, we can conclude from this paper that the U.S. still plays an important role in 

the worldwide soybean market, and the price changes in U.S. soybean futures will affect the 

futures price in other markets like China and Brazil. However, with the development of 

soybean markets in Brazil and China, this long-run unidirectional price causality from the U.S. 

to Brazil or from the U.S. to China has been weakened, and the opposite direction of price 

causality has begun to emerge. 

1.6 Appendix 

Table 1.8: Unit root tests for U.S. and Brazil contracts in each sub-period 

 
03/01/2005-07/31/2012 08/01/2012-06/30/2015 03/01/2005-06/30/2015 

ADF Test PP Test ADF Test PP Test ADF Test PP Test 

US  1.2643 -0.8794 0.4349 -1.5024 0.537 -1.8268 

US∆  -29.5422*** -40.8397*** -23.1862*** -30.7071*** -34.4713*** -48.3848*** 

BR  1.5526 -0.7508 0.2979 -1.4684 0.6031 -1.87 

BR∆  -27.8188*** -37.3443*** -21.275*** -29.5627*** -32.3528*** -44.5508*** 

*,**,*** denotes statistical significance at the 10%, 5%, and 1% levels, respectively. 
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Table 1.9: Unit root tests for U.S. and Chinese No. 1 contracts in each sub-period 

 
03/01/2005-10/31/2008 11/01/2008-06/30/2015 03/01/2005-06/30/2015 

ADF Test PP Test ADF Test PP Test ADF Test PP Test 

US  0.6333 -0.961 0.1158 -1.8888 0.537 -1.8268 

US∆  -21.1003*** -29.2323*** -26.9963*** -38.4172*** -34.4713*** -48.3848*** 

1CH  1.2178 -0.5078 0.41 -1.3797 1.1877 -1.5633 

1CH∆  -17.3573*** -25.8864*** -28.2249*** -37.3029*** -31.5805*** -44.6086*** 

NUS∆  -18.7024*** -27.9519*** -25.0827*** -38.2538*** -31.2631*** -47.4886*** 

1DCH∆  -13.518*** -25.9058*** -16.6432*** -27.8649*** -21.0603*** -37.7819*** 

*,**,*** denotes statistical significance at the 10%, 5%, and 1% levels, respectively. 
 

Table 1.10: Unit root tests for US and Chinese No. 2 contracts in each sub-period 

 
03/01/2005-08/31/2009 09/01/2009-06/30/2015 03/01/2005-06/30/2015 

ADF Test PP Test ADF Test PP Test ADF Test PP Test 

US  0.8018 -1.0523 -0.0632 -1.4082 0.537 -1.8268 

US∆  -23.1492*** -32.1139*** -25.2243*** -36.1708*** -34.4713*** -48.3848*** 

2CH  1.1567 -0.8125 -0.3902 -1.0234 0.6177 -1.7365 

2CH∆  -31.3313*** -31.0776*** -26.1722*** -37.7651*** -33.3303*** -48.3886*** 

NUS∆  -20.7158*** -31.3953*** -23.3838*** -35.3627*** -31.2631*** -47.4886*** 

2DCH∆  -13.8916*** -23.822*** -12.8969*** -20.0804*** -18.9965*** -32.6365*** 

*,**,*** denotes statistical significance at the 10%, 5%, and 1% levels, respectively. 
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Table 1.11: Forecasted trading strategy vs. real return 

Year 
% of correct forecast 

direction 
Strategy return Real return 

2005 48.74% 94.47% 104.73% 

2006 46.90% 90.58% 117.01% 

2007 56.28% 158.22% 168.04% 

2008 52.79% 102.14% 83.23% 

2009 50.22% 132.64% 116.55% 

2010 50.44% 164.62% 109.95% 

2011 50.00% 95.80% 109.63% 

2012 48.00% 94.25% 105.61% 

2013 53.78% 66.91% 96.07% 

2014 42.61% 48.35% 76.74% 

2015 62.50% 135.55% 92.09% 
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CHAPTER 2.  THE SUPPLY CURVE FOR CELLULOSIC 

ETHANOL 

Abstract 

        This paper examines the impact of feedstock supply mechanisms under conditions of 

spatial monopoly on the supply of cellulose to the plants and by implication on the supply of 

cellulosic ethanol. we show the minimization problem for cellulosic processors under three 

different collection mechanisms and provide optimal pricing rule and the optimal collection 

radius needed to meet feedstock supply requirements. These show that in the absence of 

competition the processor is indifferent between processor collection and supplier delivery, 

but that societal welfare is higher under supplier delivery. We then use a repeated Nash 

Equilibrium game to show that processor collection is first best for both incumbent and 

processor and is an effective deterrent against an entrant locating a plant within the draw area 

of the incumbent. We support the theoretical results with a numerical simulation showing the 

optimal premium and draw area under each mechanism. Third, we use the result of the 

simulation show the rate at which stover collection costs increase for a monopsonistic stover 

processor constrained to the original draw area. The slope of the marginal cost curve for this 

monopsonistic processor is then compared with the slope of the cost curve across other 

feedstocks. These results suggest that substantial quantities of these other feedstocks may be 

required to meet the mandate. 
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2.1 Introduction 

        Management at the first two commercial cellulosic ethanol producers have been willing 

to accept low feedstock supplier participation and a large draw area as an alternative to 

increasing the premium they pay for stover. This behavior is optimal if the plants are treated 

as monopsonistic buyers. The existing plants have also arranged to collect stover from some 

or all suppliers. This processor collection model is shown to be an effective way to deter future 

entrants from building plants within the draw area of the initial plants. As the cellulosic 

mandate causes more plants to come on line, these new plants will be close to, but will not 

overlap with, existing plants. All plants will be able to increase production within their original 

draw areas by increasing the premium offered for stover. However, the slope of the marginal 

cost function is steep due to monopsonistic competition. This situation was not anticipated by 

the original literature on the availability of cellulosic feedstock, where 100% participation was 

implicitly assumed. This low participation rate among stover producers puts in doubt the ability 

of the industry to meet the cellulosic mandate from agricultural residues alone and increases 

the likelihood that other more expensive feedstocks, such as perennial grasses will be required. 

        The cellulosic mandate written into the US renewable Fuel Standard (RFS) requires the 

use of almost 16 billion gallons of transportation fuel produced from grasses, trees, and 

agricultural and municipal waste (Bracmort 2015). If the law is implemented as originally 

proposed, mandated parties (blenders) will be required to purchase and use a specific quantity 

of cellulosic biofuels or to purchase Cellulosic Renewable Identification Numbers (CRINs) 

from another blender that has blended more cellulosic fuel than required. The market value of 

CRINs will rise to ensure that the combined value of the fuel and CRINs to cellulosic fuel 

processors is sufficient to cover the full production costs of the marginal fuel producer. This 
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law effectively creates a vertical demand curve for cellulosic ethanol at the quantity that is 

mandated for use each year. This means that the price and welfare implications of this policy 

will be determined at the intersection of the marginal cost curve and this mandated demand 

curve. As the annual mandate increases, the CRIN value will rise to ensure that the costs of the 

marginal supplier are fully met.  

        The existing literature on the availably of cellulosic feedstock, US DoE (2011), Ogden 

and Anderson (2011), Graham et al. (2007) and Archer and Johnson (2012), focused on 

whether sufficient cellulosic feedstocks would be physically available to meet the mandate. In 

a market based system, physical availability is not equal to quantity supplied. Individual 

owners of the feedstock must receive a price that is greater than their reservation price. 

Operators of cellulosic fuel plants may not be willing to pay a feedstock price that results in 

100% participation.  

        Earlier work by Ogden and Anderson (2011) and Dumortier (2015) found that the supply 

of corn stover and other agricultural wastes would be sufficient to meet the mandate. However, 

these authors assumed either 100% participation or homogenous processors. The supply curve 

for cellulosic ethanol will be different than that for corn ethanol in two important ways. First, 

feedstock suppliers are not homogenous with respect to the price at which they will supply. 

Second, the cellulosic ethanol producer will, at least initially, have monopsony power in the 

draw area near their plant.  

        This study draws on the experience of two of the first large scale cellulosic ethanol 

processors, both of which are located in Iowa and use corn stover as a feedstock. One of these 

plants collects all of the stover and pays each farmer in the draw area the same price. The other 

uses a mixed collection model where it accepts some farmer delivered stover and collects the 
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rest at a distance from the plant. The experience with these plants indicates that, under the 

current price structure, less than 20% of farmers are willing to participate (Pieper 2015). Corn 

farmers with the lowest reservation price typically grow continuous corn and use animal 

manure as fertilizer. Farmers in a corn-soybean rotation who use chemical fertilizer on erodible 

soils are much less likely to participate. The first group of feedstock suppliers view stover as a 

waste product that can actually reduce yields if it is not removed. Suppliers with high 

reservation prices value the carbon and fertilizer value of the stover that is removed. As a result 

of this heterogeneity, and the low participation rate, both plants have collection areas that are 

larger than originally anticipated and which can reach as far as 50 miles from the plant (Pieper 

2015; see also Swoboda 2014).  

        Cellulosic biofuel processors could increase the feedstock price in order to increase 

participation, but they are aware that they would be required to pay this additional price for 

those suppliers who are willing to deliver at the lower price. Instead, the processors have been 

willing to incur the additional transportation cost associated with very large draw areas. In 

essence, these processors are acting as monopsonistic buyers even though there is no barrier to 

entry other than the $200–$300 million construction cost.  

        The collection mechanism at both plants is unusual in that it depends on the use of plant-

owned transportation equipment and labor to collect stover from corn fields. This processor 

collection mechanism runs counter to that used for grain where grain suppliers deliver to a 

central location.  

        The objective of this article is to examine the impact of feedstock supply mechanisms 

under conditions of spatial monopoly on the supply of cellulose to the plants and by implication 
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on the supply of cellulosic ethanol. The theoretical underpinnings of the model are based on 

French (1960) and Melvin L. Greenhut et. al. (1987).  

        This cost structure is provided for: (a) a processor who can perfectly price discriminate; 

(b) a collection mechanism where all feedstock suppliers receive the same price and the 

processor pays all collection costs (processor collection); and, (c) a feedstock supplier delivery 

mechanism with a single price at the plant (supplier delivery). The assumption of perfect price 

discrimination is unrealistic and is provided only as a benchmark against which the other two 

systems can be evaluated. It is shown that the processor is indifferent between processor 

collection and supplier delivery, total costs are lower under supplier delivery, and that welfare 

is higher under supplier delivery. It is then shown that processor collection is an effective tool 

to prevent new plants from locating within a collection area that overlaps with that of the 

original plant.  

        If existing processors have an effective tool to prevent poaching from within their draw 

areas, then the mandate can only be met with stover if existing processors offer higher 

premiums to increase participation to expand capacity within existing draw areas. The slope of 

the marginal cost curve in this situation is much steeper than the cross feedstock supply curve 

presented in Ogden and Anderson. In other words, the mandate will be met only if other, more 

expensive feedstocks are used.  

        The article proceeds as follows: first, we show the minimization problem for processors 

under each of the three different collection mechanisms and provide optimal pricing rule and 

the optimal collection radius needed to meet feedstock supply requirements. Second, we 

develop and prove three propositions related to the delivery system. These show that in the 

absence of competition the processor is indifferent between processor collection and supplier 
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delivery, but that societal welfare is higher under supplier delivery. We use a repeated Nash 

Equilibrium game to show that processor collection is first best for both incumbent and 

processor. We then show that processor collection is an effective deterrent against an entrant 

locating a plant within the draw area of the incumbent. We support the theoretical results with 

a numerical simulation showing the optimal premium and draw area under each mechanism. 

Third, we use the result of the simulation show the rate at which stover collection costs increase 

for a monopsonistic stover processor constrained to the original draw area. A key parameter is 

the degree to which stover suppliers will respond to higher prices. This parameter can be 

uncovered if we assume it is known to the processors and that they are optimizing based on 

this value. The slope of the marginal cost curve for this monopsonistic processor is then 

compared with the slope of the cost curve across other feedstock. These results suggest that 

substantial quantities of these other feedstock may be required to meet the mandate. 

2.2  The Model 

2.2.1 Single Processor Model 

        Our model assumes that corn stover suppliers are heterogeneous and have different 

reservation values for their feedstock. Only when price received by suppliers exceed their 

reservation value are they willing to sell. As a result, the participation rate varies depending on 

the net price received for the feedstock. As long as the plant offers a positive price, some 

farmers will supply.  

        Suppose each unit of land produces one unit of corn stover. Land is uniformly located 

along a line with one land unit per unit distance. The processor is located at one end of the line. 

The fraction of each land unit that supplies stover is given by the participation rate function 
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( )s p bp= , where p is the net price received by the farmer and parameter b  characterizes 

supplier’s willingness to supply5. 

Collection Mechanism I, Perfect Price Discrimination 

        The first collection mechanism allows for perfect price discrimination and processor 

collection. From the processor perspective, this is an ideal case where the processor can elicit 

each supplier’s reservation value. We include this scenario because the outcomes mimic the 

radius the processor would choose if it did not behave in a monopsonistic fashion (Varian 

2009). In this scenario there is no deadweight loss and the system reaches a competitive 

equilibrium (Varian 2009).  

        Let R be the distance between the processor and the marginal farmer and p  is the highest 

reservation value in the collection region. Since each land unit supplies bp , the total supply 

received by the processor is bpR . The total requirement to reach capacity is Q  and so, 

Q bpR= . This implies that /R Q bp=  .  

        Here, the processor will pay each supplier their unique reservation value and the amount 

paid to each land unit is 2 2

0

0.5
p

bp bxdx bp− =∫ . If processor lacks the ability to discriminate 

farmers, it has to pay each land unit 2bp . Thus, 2

0

0.5
p

bxdx bp=∫  is the collection cost advantage 

                                                 

5 An alternative model that allows for a circular draw area and which allows for an optimal 

response when 100% participation is reached is available from the authors. Key results are 

identical.  
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by the processor’s price discrimination ability. In addition to the transportation cost, the total 

expenditure for processor to collect Q  amount of corn stove is given as  

Expenditure = 2 2 2

0
(0.5 ) 0.5 0.5

R
bp bptr dr bp R bptR+ = +∫  

Substitute in /R Q bp= to obtain  

Expenditure = 
2

0.5 0.5 tQpQ
bp

+  

        Minimizing total expenditure respect to price provides optimal price and collection 

distance 
0.5

* tQp
b

 =  
 

 and 
0.5

* QR
bt

 =  
 

. The larger the capacity, the higher the required price 

and the longer the collection distance. Substituting the equilibrium price and distance to 

processor’s expenditure function, the total expenditure for the processor is ( )0.5 1.5/t b Q  . It is 

useful to separate equilibrium payments and equilibrium transportation costs for the 

processor, where  

Payment =
*

2 2 0.5 1.5

0
0.5 0.5 0.5( / )

R
bp dr bp R t b Q= =∫  , 

Transportation cost =
*

2 0.5 1.5

0
0.5 0.5( / )

R
bptrdr bptR t b Q= =∫  

        As can be seen, half of money paid by processor is received by suppliers, and the other 

half is spent on transportation. 

Collection Mechanism II, Processor Collection 

        In this model the processor is responsible for the cost of stover transportation and pays 

every supplier the same price. Given price p  , the supply is Q bpR= . Thus, the required 



41 

 

distance to collect Q  is 
QR
bP

=  . If the distance between the supplier and processor is r R≤ , 

the total amount paid by the processor for each unit corn stover is p tr+ . Thus, total 

expenditure is given by 

Expenditure = 2 2

0
( ) 0.5 ( )

R
bp p tr dr bp R bpt R+ = +∫  

Substitute in /R Q bp=  to obtain  

Expenditure = 
2

0.5 tQpQ
bp

+  

Minimizing total expenditure with respect to price results in the optimal price and collection 

distance 
0.5

*

2
tQp

b
 =  
 

 and 
0.5

* 2QR
bt

 =  
 

. The collection distance in this scenario is larger than 

under perfect price scenario because processor does not have the ability to discriminate. 

Substituting the equilibrium price and distance into the expenditure function, total expenditure 

is ( )0.5 1.52 /t b Q .  

Separating the equilibrium payments and equilibrium transportation costs, the payment to 

suppliers is  

Payment =
*

2 2 0.5 1.5

0

2 ( / )
2

R
bp dr bp R t b Q= =∫  , 

and transportation cost is  

Transportation cost =
*

2 0.5 1.5

0

20.5 ( / )
2

R
bptrdr bptR t b Q= =∫  

Again, half of cost paid by the processor is received by farmers and the other half is spent on 

transportation. 
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Collection Mechanism III, Supplier Delivery 

        Under supplier delivery, the processor pays a price of p  at the plant when stover is 

delivered. In this case, the net price received by a supplier r  miles away is p tr− . Those who 

are closer to the processor will receive higher net prices and are more likely to participate. As 

a result, the participation rate is no longer constant within the collection area, that is 

( ) ( )s p b p tr= − . Assuming the marginal supplier is a distance R  from the processor, the total 

supply received by the processor is  

2

0
( ) 0.5

R
Q b p tr dr bpR btR= − = −∫   

Thus, the price offered by processor can be expressed in term of Q  as  

20.5 0.5Q btR Qp tR
bR bR

+
= = + . 

The total expenditure in this case is given by 

Expenditure = 2 2

0
( ) 0.5 0.5

R Qb p tr pdr bp R btpR tR Q
bR

 − = − = + 
 ∫  

Minimizing total expenditure with respect to collection distance results in 
0.5

* 2QR
bt

 =  
 

, which 

is the same as that for processor collection. Substitute this expression into 0.5Qp tR
bR

= +  to 

obtain 
0.52* tQp

b
 =  
 

.  

The expression for expenditure of the processor is: 

Expenditure = ( )0.5 1.50.5 2 /QpQ tR Q t b Q
bR

 = + = 
 

, which is the same as the expression for 

processor collection case. Total transportation costs can be expressed as  
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Transportation cost = ( )0.52 2 3 1.5

0

1 1 2( ) /
2 3 3

R
b p tr trdr btpR bt R t b Q− = − =∫  

The model above indicates that the optimal collection distances are the same under processor 

collection and supplier delivery. 

Proposition 1. If transportation costs are identical for processor and supplier, the biofuel 

processor is indifferent between processor collection and supplier delivery and the optimal 

collection distance and resulting collection expenditure are the same for both mechanisms.  

Proof  

In processor collection mechanism, the expenditure minimization problem for processor to 

collect Q  amount of corn stover is expressed as 

2

{ }
min  0.5

p

tQpQ
bp

+  

The F.O.C is 
2

2 0
2
tQQ
bp

− = , which implies the solution 
0.5

*

2
tQp

b
 =  
 

 and 
0.5

* 2QR
bt

 =  
 

. 

Substituting the equilibrium price and distance to processor’s expenditure function, the total 

expenditure is given as ( )0.5 1.52 /t b Q .  

In the supplier delivery mechanism, the expenditure minimization problem for processor to 

collect Q  is expressed as 

{ }
min 0.5

R

Q tR Q
bR

 + 
 

 

The F.O.C is 
2

2

1 0
2

QtQ
bR

− = , which implies 
0.5

* 2QR
bt

 =  
 

. Thus, the optimal collection 

distance between processor collection mechanism and supplier delivery mechanism are both 
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given as 
0.52Q

bt
 
 
 

. Substitute this expression into 0.5Qp tR
bR

= +  to obtain optimal price 

0.52* tQp
b

 =  
 

. Total expenditures by the processor can be expressed as:

( )0.5 1.5* 2 /p Q t b Q=  which is the same as expenditure in the processor collection 

mechanism. Q.E.D. 

            The key reason makes processor is indifferent with processor collection and supplier 

delivery is because processor can’t price discriminate. This makes the processor can’t capture 

the supply efficiency, while the welfare for suppliers and society is higher in the supplier 

delivery mechanism.  

Proposition 2. Supplier welfare is higher and total transportation costs are lower under 

supplier delivery.  

Proof  

In either mechanism, the welfare, or, payment to the supplier is the difference between the total 

expenditure of the processor and the cost of transportation. In the processor collection 

mechanism, payment to suppliers is
*

2 2 0.5 1.5

0

2 ( / )
2

R
bp dr bp R t b Q= =∫ , which is half of the 

total expenditure. In supplier delivery mechanism, total expenditure 

( )0.5 1.50.5 2 /Q tR Q t b Q
bR

 + = 
 

 is needed to collection Q  amount of corn stover, while the 

transportation cost is ( )0.52 2 3 1.5

0

1 1 2( ) /
2 3 3

R
b W tr trdr btWR bt R t b Q− = − =∫ . Thus, the 

payment to suppliers is  

Payment = Expenditure – Transportation cost = ( )0.5 1.52 2 /
3

t b Q ,  
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which is two thirds of the total expenditure. As shown in Proposition 1 total expenditures are 

the same under both mechanisms. Participation under supplier delivery is highest near the 

plant. This reduces overall transportation costs The single price rule prohibits the plant from 

capturing the efficiencies associated with supplier delivery. Instead, these benefits are captured 

by suppliers located near the plant due to their locational advantage. Costs for processors are 

the same under both mechanisms and therefore societal welfare will be higher in the supplier 

delivery mechanism. Q.E.D. 

        Proposition 1 and 2 are similar to the spatial monopoly pricing results shown in Greenhut 

et. al. (1987) that a spatial monopolist's market boundaries and profit in the case of linear 

demand are identical for mill pricing and uniform delivered pricing, where mill pricing is 

similar to processor collection mechanism and uniform delivery pricing is similar to supplier 

delivery mechanism. Like the analysis in the standard spatial monopoly pricing model, the 

assumption of linear supply is critical in our model. The collection boundary for processor 

collection should be smaller than that of supplier delivery when supply function is more 

convex, and vice versa. These propositions help to explain why supplier delivery dominates in 

the grain system. This system leads to lower transportation costs and higher overall welfare. 

Why then has processor collection emerged for corn stover? 

2.2.2 Collection Mechanism as a Barrier to Entry 

        This section examines the impact of potential competition on the choice of collection 

strategy and on the total collection costs of the initial processor and potential entrant. Assume 

two homogenous processors, one an incumbent and the other a potential entrant. Both 

minimize total collection costs while meeting their capacity constraint. The degree of 

competition will be influenced by the distance between processors. If cellulosic fuel prices are 
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high and there are no untapped draw areas, then the second processor may choose a location 

that puts them within the draw area of an existing processor. If this were to occur, then it is 

likely the two plants would compete to attract suppliers and that the premium and participation 

rate would increase.  

In order to characterize the competition behavior between incumbent and entrant, we 

use a line model where incumbent and entrant be positioned at each end. The two processors 

are assumed to be identical in their production technology and capacity. They can choose either 

processor collection or supplier delivery. Thus, the optimization problem is the same for both. 

Each processor’s pricing and collection strategies, and therefore total collection cost will 

depend on the distance between them. When the distance between the two processors is greater 

than or equal to two times the optimal single collection distance, there is no competition and 

supplier delivery and processor collection results in the same collection distance and 

expenditure for both incumbent and entrant.  

            Let d  be the distance between two processors, competition exists when 

0.5
* 22 2 Qd R

bt
 < =  
 

. In this situation, the entrant chooses its optimal collection mechanism 

based on the incumbent’s strategy, then the incumbent reacts, and the entrant reacts again and 

so on. The four competitive outcomes in a Nash Equilibrium framework are: 

  Entrant 

  Processor  Collection Supplier Delivery 

Incumbent 
Processor Collection ( )( ), ( )PP PP

I EC d C d   ( )( ), ( )PS SP
I EC d C d  

Supplier Delivery ( )( ), ( )SP PS
I EC d C d  ( )( ), ( )SS SS

I EC d C d  
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where d  is the distance between processors, ( )jk
iC d  denotes the total cost in equilibrium for 

processor i  using strategy j  when the other processor using strategy k . Here ,i I E=  

represents Incumbent and Entrant, respectively, and , , Sj k P= represents processor collection 

and supplier delivery, respectively. The optimal collection mechanism and total collection cost 

for plants in each case are derived by solving a repeated game Nash Equilibrium.  

        Specifically, we start with the incumbent’s pricing strategy (1) (1) (1)( , )I I IS p R= . Given this 

strategy, the entrant picks its best response while meeting its capacity needs at minimum cost, 

defined as (1) (1) (1) (1)( ) ( , )E I E ES S p R= . The incumbent then has to increase its collection distance or 

collection price to (2) (1) (2) (2)( ) ( , )I E I IS S p R=  because some suppliers located at the edge of the 

incumbents draw area will receive a higher net prices from entrant. The entrant has to respond 

to the incumbent’s response which is defined as (2) (2) (2) (2)( ) ( , )E I E ES S p R= . This procedure will 

continue until an equilibrium strategy (*) (*) (*) (*)( ) ( , )I E I IS S p R=  and (*) (*) (*) (*)( ) ( , )E I E ES S p R= is 

achieved.  

        There are three different strategy combinations: (a) both incumbent and entrant use 

processor collection; (b) both incumbent and entrant use supplier delivery; (c) incumbent and 

entrant use a different mechanism. 

 Case 1: Both incumbent and entrant use processor collection. 

        Let ( , )I Ip R  and ( , )E Ep R be the pricing strategy for incumbent and entrant, respectively. 

The resulting collection amounts are I I IQ bp R=  and E E EQ bp R= . Since both the incumbent 

and the entrant use processor collection, the one that offers the higher price will capture all 

suppliers in the overlapping collection area. If I Ep p>  , the incumbent will capture all 
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suppliers in the overlapping collection area and its optimal strategy should be the same as for 

the single processor case. That is * *( , ) ( , )I Ep R p R= . Since both processors require the same 

amount of corn stover, I Ep p>  implies that *
I ER R R= < . Thus, the distance between two 

processors is *2I Ed R R R= + > . This contradicts the assumption that *2d R<  (this 

assumption ensures the existence of competition). On the other hand, if  I Ep p< , the entrant 

will capture all suppliers in the overlapping collection area and its optimal strategy will be the 

same as for the single processor case. That is * *( , ) ( , )E Ep R p R= . Since both processors require 

the same amount of stover, I Ep p<  implies that *
I ER R R> = , and the distance 

*2I Ed R R R= + > . This again contradicts with the assumption that *2d R< . As a result, 

I Ep p p= =  in equilibrium. The collection distance in this scenario can be illustrated as 

follows: 

 

Therefore, the amount collected by incumbent is given as  

( ) 0.5 ( ) 0.5 0.5 ( )I E I E I EQ bp d R bp R R d bpd bp R R= − + + − = + −   

Similarly, the amount collected by entrant is given as  

( ) 0.5 ( ) 0.5 0.5 ( )E I I E E IQ bp d R bp R R d bpd bp R R= − + + − = + −  
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From I EQ Q Q= =  , it obtains to I ER R R= = . Thus, 0.5Q bpd=  implies that * 2Qp
bd

= . The 

total cost for each processor is then expressed as 

0

1( ) ( )
2

d R RPP
I d R

C bp p tr dr bp p tr dr
−

−
= + + +∫ ∫  

                    2 2 2 21 1( ) ( ) (2 ) (2 )
2 2 4

bptbp d R d R bp R d bpt R d= − + − + − + − . 

Substituting * 2Qp
bd

=  and minimize the total expenditure respect to R  implies that * 0.5R d= . 

Thus, each processor collects from those suppliers close to it and they both increase the 

collection price and participation to avoid a price war in the overlapping area. The equilibrium 

collection distance looks as follows 

 

And total collection cost is given by 

2/2

0

2( )
4

dPP
I

Q tdQC bp p tr dr
bd

= + = +∫  and 
2/2

0

2( )
4

dPP
E

Q tdQC bp p tr dr
bd

= + = +∫  

Case 2: Both incumbent and entrant use supplier delivery mechanism 

        Let ( , )I Ip R  and ( , )E Ep R be the pricing strategy for incumbent and entrant, respectively. 

If the corn stover producer locates Ir  distance to incumbent and Er  distance to entrant (

I Er r d+ = ) , he will receive I Ip tr−  net price if he supplies to incumbent and receive E Ep tr−  
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net price if he supplies to entrant. The supplier will always prefer supplying the processor from 

where he can receive higher net prices. As a result, the marginal supplier for both processors 

should be indifferent between supplying either incumbent or entrant. The collection distance 

for each processor can be represented in the following figure: 

 

Since IR  and ER  are the collection distance for incumbent and entrant, respectively, the 

marginal supplier located IR  miles away from incumbent and ER  miles away from entrant 

should receive the same net prices from two processors. That is, I I E Ep tR p tR− = − . Since 

I Ed R R= + , it obtains the collection distance for incumbent is
2 2

I E
I

p pdR
t
−

= +  and the 

collection distance for entrant is 
2 2

I E
E

p pdR
t
−

= − . Given the collection distance IR  and ER

, the amount collected by incumbent is 2

0
( ) 0.5IR

I I I I IQ b p tr dr bp R btR= − = −∫ . Similarly, the 

amount collected by entrant is 20.5E E E EQ bp R btR= − . 

        Since I EQ Q Q= = , it implies that 2 20.5 0.5I I I E E Ebp R btR bp R btR− = − . Substituting the 

expressions of IR  and ER  into this equation, we get 
2( ) 0

2
I Ep p

t
−

= , which implies 

I Ep p p= = . Thus, 
2I E
dR R= = . The equilibrium collection distance looks as follows: 
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Substituting 
2I E
dR R= =  into the expression of Q  to obtain 

2

2 2 2
bpd bt dQ  = −  

 
. Thus, the 

price offered by processor is  
2

4
Q tdp

bd
= +   and the total cost is: 

2/2

0

2( )
4

dSS
I

Q tdQC b p tr pdr
bd

= − = +∫   

2/2

0

2( )
4

dSS
E

Q tdQC b p tr pdr
bd

= − = +∫  .  

        This is the same as the case where both processors use processor collection. In this case, 

both processors increase the offer price so as to collect more from those suppliers close to them 

and to avoid the price war in overlapping area. 

Case 3: one uses processor collection and the other uses supplier delivery 

        Without generality, we assume the incumbent use processor collection and entrant use 

supplier delivery mechanism. Let ( , )I Ip R  and ( , )E Ep R be the pricing strategy for incumbent 

and entrant, respectively. For incumbent using processor collection mechanism, I I IQ bp R=  , 

which implies I
I

I

Qp
bR

= . For the entrant who uses supplier delivery mechanism, the amount it 

collected is 2

0
( ) 0.5ER

E E E E EQ b p tr dr bp R btR= − = −∫ , which implies that 
20.5E E

E
E

Q btRP
bR
+

= . 
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This is equivalent to 0.5 0.5 ( )
( )

E E
E E I

E I

Q Qp tR t d R
bR b d R

= + = + −
−

. Since the collection 

distances are IR  and ER , the supplier located IR  miles away from processor collection plant 

and ER  miles away from supplier delivery plant should be indifferent between these two 

processors as he receives the same net prices from them. That is, 

( )I E E E Ip p tR p t d R= − = − − . Since I EQ Q Q= = , substituting Ip  and Ep  into this equation 

obtains 1( ) ( )
( ) 2I E I I

I I

Q Qp p t d R t d R
b d R bR

= − − = − − =
−

. This relationship is equivalent to 

1 ( ) 0
( ) 2 I

I I

Q Q t d R
b d R bR

− = − >
−

, which is I Id R R− < . Thus, ( )
2I I E
dR d R R> > − >  must 

holds. Therefore, the collection radius for the incumbent who uses processor collection is 

always larger than the collection radius for entrant who uses supplier delivery. 

 

        Solving the above equation, the optimal collection distance can be expressed as function 

*( , )IR d Q  and * ( , )ER d Q . And the prices offered to supplier in each mechanism can be 

expressed as *( , )Ip d Q  and * ( , )Ep d Q . The total cost for processor collection incumbent is 

2
*

*0.5PS
I I

I

tQC p Q
bp

= + . And the total cost for supplier delivery entrant is *SP
E EC p Q= . 

Proposition 3. The incumbent processor can use processor collection as a way to add costs to 

an entrant who is considering an overlapping collection area. In this case, both incumbent and 
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entrant will use processor collection to lower total expenditure when there is competition for 

suppliers. 

Proof  

We first show both incumbent and entrant will use processor collection mechanism under 

competition. Let pR  be the collection distance for processor using processor collection 

mechanism and sR  be the collection distance for processor using supplier delivery mechanism. 

As shown above, the total cost for processor using supplier delivery is a function of collection 

distance sR ,which can be expressed as
2

( )
2
s

s s
s

tR QQf R p Q
bR

= = + , where sp  is the price 

offered by processor using supplier delivery mechanism. The F.O.C of this equation is

2

2'( ) 0
2s

s

Q tQf R
bR

= − + = , which implies 
0.5

*2
s

QR R
bt

 = ± = ± 
 

. When *0 sR R< <  , 

2

2'( ) 0
2s

s

Q tQf R
bR

= − + < , indicating shorter collection distance results in higher collection 

expenditure.  

            When the incumbent uses processor collection mechanism, the total cost for the entrant 

is 
22

4
Q tdQ
bd

+  if it also uses processor collection. This expenditure is the same as ( )
2
df . If the 

entrant uses supplier delivery, its total expenditure is
*2

*
*( )

2
s

s
s

tR QQf R
bR

= + . Notice that the 

collection radius for processor using processor collection is always larger than the collection 

radius for processor using supplier delivery which implies *

2s
dR < . Therefore, it must be true 

that
*2

*
*( ) ( )

2 2
s

s
s

tR QQ df R f
bR

= + > =
22

4
Q tdQ
bd

+ . As a result, the entrant will always use 
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processor collection to lower it collection expenditure when the incumbent uses processor 

collection.  

        When the incumbent uses supplier delivery, the entrant’s total collection expenditure is 

22
4

Q tdQ
bd

+  if it also use supplier delivery. If the entrant use processor collection, the 

expenditure is 
*2 2

*
* *0.5 ( )

2
p

p
p

tR QtQ Qp Q g R
bp bR

+ = + = . Similar to function *( )sf R , function 

( )pg R is decreasing in *(0, )R . Since the collection radius for processor using collection 

processor is always larger than the collection radius for the processor using supplier delivery, 

* *

2p
dR R≥ >  holds. Thus, 

*2 2
*

*

2( ) ( )
2 4 2
p

p
p

tR QQ Q tdQ dg R g
bR bd

= + < + = . Thus, the entrant will 

always choose processor collection to lower its total collection expenditure when the 

incumbent uses supplier delivery.  

        In general, the best strategy for entrant is to use processor collection, no matter what 

strategy the incumbent uses. Given entrant’s best response, the incumbent will always use 

processor collection. That is because the total cost under processor collection, 
22

4
Q tdQ
bd

+ , is 

lower than the cost supplier delivery mechanism, 
*2

* 2
s

s

tR QQ
bR

+ , when *

2s
dR <  holds. On the 

other hand, incumbent processor can use processor collection as a way to add costs to an entrant 

who is considering an overlapping collection area. By using the processor collection 

mechanism, the incumbent processor can increase the cost of entrant from a lower level to 

22
4

Q tdQ
bd

+ .Q.E.D. 
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        Proposition 3 may explain why has processor collection has emerged for corn stover. It 

also shows that the incumbent can increase the entrant’s collection cost using processor 

collection. This increase in collection cost can be treated as the penalty for moving into the 

draw area of the incumbent. This penalty increases as the two plants get closer. The extra cost 

to the entrant occurs because both plants receive only one half of the stover sold in the area 

where they compete. As a result, both plants must increase premium in areas to attract 

suppliers.  

2.3 From Theoretical Analysis to Practical Simulation 

       Realistically, the collection region for a processor will better resemble a circle than a line. 

However, the line model can be generalized to a circle model by thinking of the line as a radius 

connecting the center of the circle to a point on the circumference. Integrating the line from 0 

to 2π , the quantity collected in the circle model can be obtained. Since the expenditure and 

collection distance are the same for processor collection and supplier delivery mechanism in 

the line model, it generalizes that the optimal collection radius (collection region) and 

collection expenditure are the same for processor collection and supplier delivery mechanism 

in the circle model as well. 

A Numerical Example  

        Table 2.1 compares the optimal collection costs per ton across three collection 

mechanisms in a circle model and under different assumptions about the feedstock supplier’s 

response to price change. These results are based on a transportation cost of $0.65 per ton per 

mile, a plant requirement for 300,000 MT/year of feedstock, and a 2 MT/acre corn stover 

removal rate—all of these values are based on Darr et al. (2013) which in turn are based on the 
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Du Pont plant located in central Iowa where corn is planted on one third of the total area 

(USDA NASS 2015).  

Table 2.1: Comparison between different collection mechanisms 

Comparison Between Different Collection Mechanism 

Response 

to price 

change 

Perfect Price 

Discrimination 
Processor Collection Supplier Delivery 

Radius 
% of 

supply 
Price Radius 

% of 

supply 
Price Radius 

% of 

supply 
Price 

0.005 43.4 12.0% 24.0 54.7 7.5% 15.1 54.7 22.6% 45.3 

0.0075 37.9 15.7% 20.9 47.8 9.9% 13.2 47.8 29.7% 39.6 

0.01 34.5 19.0% 19.0 43.4 12.0% 12.0 43.4 35.9% 35.9 

0.015 30.1 24.9% 16.6 37.9 15.8% 10.5 37.9 47.1% 31.4 

0.02 27.3 30.2% 15.1 34.5 19.0% 9.5 34.5 57.1% 28.5 

0.03 23.9 39.6% 13.2 30.1 24.9% 8.3 30.1 74.8% 24.9 

0.04 21.7 47.9% 12.0 27.4 30.2% 7.5 27.4 90.6% 22.6 

0.05 20.2 55.6% 11.1 25.4 35.0% 7.0 25.4 100% 21.0 

Notes: 1. Collection radius is 15 miles when participation rate is 100%.  

            2. Participation rate for supplier delivery indicates the maximum value in the collection 

area. 

 

        The simulation results show that optimal collection price and collection radius are 

decreasing with the increase in suppliers’ responses to price change. This table also provides 

evidence that the optimal collection radius between the processor collection and supplier 
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delivery are the same. Giving a 15% of land with this feedstock will participate and assuming 

that the processor is optimizing and knows the response rate, our estimation for parameter b  

is 0.015 and the optimal collection radius is 38 miles. The collection radius under 100% 

participation is 15 miles. 

        Given the deterrent effect of processor collection and a preference on behalf of both 

parties to avoid bidding up the price paid for stover, it can be assumed that the entrant will 

select a plant location that is close to, but not overlapping with the incumbent. Once all suitable 

locations have been used, any additional expansion will come from processors who increase 

capacity and supplier participation within their original draw area. In fact, the cost increase for 

entrant when the incumbent use processor collection is represented by 

21/22 2
3/22 22

4 2 4
Q tdQ t Q tdQQ
bd b bd

  + − = −       
. 

 

 

Figure 2.1: Collection cost increase as the distance between two processors change 
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        Given the same parameter used in simulation above, figure 2.1 below illustrates how the 

collection cost change as the distance between two processors change. It demonstrates a 

significant cost increase when competition exists. 

Marginal Cost for a Processor Expanding within an Existing Draw Area  

        As the mandate incentivizes additional production, competition for stover should ensure 

that all suitable locations are used. Further increases in ethanol produced from stover will 

therefore arise only if existing firms increase production from within the original draw area.  

        Figure 2.2 illustrates how costs increase as existing plants increase capacity, prices, and 

supplier participation within their original draw area. A doubling of capacity from 30 million 

gallons to 60 million gallons increases costs from $41.84 to $62.71—a 50% increase. Ogden 

and Anderson (2011) show that the marginal cost of ethanol made from agricultural residue 

rises from $2.80 per gallon of gasoline equivalent to $3.00 per gallon, at which time the 16 

billion mandate (equal to 10.5 billion gallons of gasoline equivalent) is met. Expanding beyond 

the mandate, Ogden and Anderson (2011) also show that perennial grasses enter the mix at a 

price range of $3.30 to $3.80 and that pulpwood enters at $3.60. At $3.50 per gallon, production 

doubles from approximate 10 billion gallons of gasoline equivalent to 20 billion gallons of 

gasoline equivalent. The 16.6% increase from the $3 to the $3.50 double production using 

other feedstocks is much lower than the 50% increase in costs for monopsonistic stover 

processors who double production. This suggests that these alternative feedstocks will be used.  
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Figure 2.2: Marginal cost when the collection radius is fixed 

2.4 Conclusion 

         The production of cellulosic energy involves bulky raw material, capital-intensive 

processing plants, and feedstock producers who are heterogeneous with respect to the price at 

which they are willing to sell raw material. These circumstances are very different to those that 

existed as the corn ethanol industry emerged. The first two commercial scale pilot plants have 

both shown a willingness to accept very large draw areas and low feedstock producer 

participation. They have also introduced a collection mechanism that relies on the use of plant-

owned equipment, this runs counter to the mechanism used in the grain industry where grain 

producers deliver to plants. Results presented in this article show that plants are behaving 
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collection mechanism is a deterrent to new plants who are considering siting a plant with a 

draw area that overlaps the incumbent plant. The intuition behind this is that under supplier 

delivery, feedstock producers at the edge of the draw area for plants are easily poached. Under 

processor collection, these producers can only be poached if the entrant enters into a costly 

price war with the incumbent. If entrants locate away from the draw area for incumbent plants, 

then these plants will retain their monopsonistic status and will be able to expand capacity only 

if they increase feedstock prices so as to expand participation among feedstock suppliers. 

Taken together these results suggest that it will not be possible to meet the cellulosic mandate 

with stover alone and that other feedstock sources will be required.  
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CHAPTER 3. THE EXAMINATION OF MARKET POWER OF 

U.S. NITROGEN FERTILIZER INDUSTRY: A BAYESIAN 

BASED APPROACH 

Abstract 

         This paper investigates a change in the market power of the U.S. nitrogen fertilizer 

industry by examining the causal linkage between fertilizer, its main feedstock (natural gas), 

and output (corn) price from 1999 to 2011. A time-varying parameter model has been 

established in our analysis and estimation is done by a Bayesian-based Kalman filter algorithm. 

We also utilize a single-equation error correction model to determine if there is a long-run 

equilibrium price relationship when the co-integrating vector is no longer constant over time. 

The results of the time-varying estimation show that the U.S. nitrogen fertilizer price follows 

the value of its marginal productivity closer than its marginal cost of production, indicating a 

less competitive market structure. The estimation from the error correction model supports 

these results. 

3.1 Introduction 

        Nitrogen, phosphate, and potash play important roles in the ability of crops to develop 

proteins and enzymes, which in turn, help improve crop yields. Commercial fertilizer 

consumption increased rapidly before 1980 as more acreage was devoted to high-yield crop 

varieties and hybrids that responded favorably to more intensive fertilizer use. Since the mid-

1980’s, the consumption of phosphate and potash remains stable, while the consumption of 

nitrogen fertilizer has increased more rapidly due to the development of seed varieties with 
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more favorable yield responses to nitrogenous fertilizers. This increasing annual usage shows 

the importance of nitrogen fertilizer to U.S. agricultural production. In fact, U.S. farmers are 

moving away from using multiple-nutrient fertilizers toward using single-nutrient fertilizers or 

fertilizers with a high level of nutrient concentration. This is because single nutrient fertilizers 

with high nutrient concentration allow farmers to apply precise amounts of a specific nutrient 

for plant use at the least cost. Figure 3.1 shows that the annual usage for all types of nitrogen 

fertilizers has nearly quadrupled from 2.73 million tons to 12.84 million tons from 1960 to 

2011; whereas the annual usage of phosphate and potash has only increased roughly two-fold 

during the same period.  

 

 

Figure 3.1: U.S. consumption of nitrogen, phosphate, and potash 1960–2011. 

 

        In 2011, nitrogen fertilizer accounted for 59% of total U.S. agricultural nutrient usage. 

Thus, research on price behaviors and the market structure of U.S. nitrogen fertilizer industry 

is pertinent; and yet, literature on this field is very limited. 
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        Among all nitrogen fertilizer usage, corn production accounted for the largest share at 

over 45%. Figure 3.2 illustrates nitrogen use by main crops in the United States from 1964 to 

2010, and indicates increasing nitrogen use by corn and wheat during that time.  

 

 

Figure 3.2: U.S. plant nitrogen use by corn, soybeans, cotton, and wheat, 1964–2010 
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crop price—the key factor of a farmer’s ability to pay. In competitive markets such as grains 

and meat, output prices tend to revert to production costs in the long run. Under perfect 

competition circumstances, firms face perfectly elastic demand and have no power to increase 

prices higher than the industry marginal cost.  
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        Among all inputs used to produce nitrogen fertilizer, such as anhydrous ammonia and 

urea, natural gas is the single most important and accounts for the largest share of the cost 

structure. Depending on plant technology, 75% of total urea production cost is from natural 

gas, of which 25% is through direct use in the production process and 50% is through the use 

of ammonia as a feedstock, of which natural gas is also the most important cost component. 

This cost structure implies that, under a competitive market and with all else being equal, urea 

price changes should follow closely to natural gas price changes. However, figure 3.3 shows 

that natural gas prices have fallen to historically low levels since early 2009, due to the latest 

discovery of shell-rock natural gas reserves in the United States and improved technology to 

ensure a sustainable supply, while urea prices have increased after a sharp decrease in 2008. 

In fact, urea price follows closer to corn prices, both of which have increased in recent years. 

 

 

Figure 3.3:  Monthly price of urea, natural gas, corn and % of capacity utilization 
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        Another way to look at the problem is though the correlation coefficients between the 

mentioned price variables. We analyze the period 1999-2011 in two sub-periods, one from 

1999 to 2005 and the other from 2006 to 2011 (Galbraith 2010). As table 3.1 shows, in the first 

period we observe a strong correlation between urea and natural gas prices and a weak 

correlation between urea and corn. The picture is exactly the opposite between 2006 and 2011; 

a very weak correlation of urea with respect to its own and main feedstock, but strong with one 

of its main demand factors. 

Table 3.1: Correlation coefficients between urea, natural gas and corn 

Period 1999-2005 Period 2006-2011 

  

Natural 

Gas Corn Urea  

Natural 

Gas Corn Urea 

Natural 

Gas 1.0     

Natural 

Gas 1.0   

Corn 0.3 1.0   Corn -0.1 1.0  

Urea 0.8 0.3 1.0 Urea 0.4 0.6 1.0 

 

        Natural gas is also the main feedstock of ammonia and it accounts for about 85% of the 

total production cost. In this regard, ammonia price should follow natural gas even closer than 

urea. Yet, figure 3.4 shows that since 2009, ammonia price has increased and natural gas prices 

have decreased. The increasing corn price in the same time indicates that ammonia price is 

closer to corn price (a factor determine farmer’s ability to pay) than to its main feedstock price. 
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Figure 3.4: Monthly price of ammonia, natural gas, corn and % of capacity utilization 
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similar to that with respect to corn prices. However, from 2006 to 2011 we observe no 

correlation between ammonia and natural gas, but an increased correlation of 0.7 with corn. 

Table 3.2: Correlation coefficients between ammonia, natural gas and corn 

Period 1999-2005 Period 2006-2011 
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Natural 

Gas Corn Ammonia 

Natural 

Gas 1.0     

Natural 
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Corn 0.3 1.0   Corn -0.1 1.0  

Ammonia 0.5 0.5 1.0 Ammonia 0.0 0.7 1.0 
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        One of the key purposes of this study is to analyze the competitiveness of the U.S. nitrogen 

fertilizer industry to determine whether the prices of nitrogen fertilizer, such as anhydrous 

ammonia and urea, follow the marginal cost of production (the competitive case) or the value 

of the marginal productivity of fertilizers in agriculture (the non-competitive case). The co-

integration and vector error correction model (VECM) introduced by Granger (1981) and 

Engle and Granger (1987) has been the most widely used methodology to analyze long-run 

price causality. Our results, however, demonstrate an unstable causal relationship between 

nitrogen fertilizer price and its feedstock (natural gas) or output (corn) price over the sample 

period. This non-constancy of causality makes the application of standard Granger causality 

test inappropriate. In this paper, we investigate the time-varying effects of natural gas prices 

and corn prices on U.S. nitrogen fertilizer prices from 1999 to 2011 by using a Bayesian-based 

time-varying parameter approach. 

        In understanding the market power of the U.S. nitrogen fertilizer industry, the role played 

by capacity utilization cannot be overlooked. The capacity constraint on nitrogen production 

is a significant factor that affects the price-cost margin (a fundamental way to characterize 

market power of an industry) of the nitrogen industry in the short term. Nitrogen demand is 

quite inelastic since farmers must use a certain amount to enhance crop yields. Thus, even a 

small firm with available production capacity can earn great market power if market demand 

is greater than industry capacity and supplies of other firms are close to their individual 

capacity. However, the market power caused by this capacity constraint cannot be maintained 

with the capacity expansion in the medium term and long term.  

        We observe in figure 3.3 that, in the case of urea, capacity utilization oscillates around 

83% from 1999 to 2005, and has decreased since 2006. Figure 3.4 shows that ammonia 
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capacity utilization has also decreased steadily since 2006. These observations in decreasing 

capacity utilization might be an indication of increasing market power in the U.S. fertilizer 

industry since a non-competitive industry has the incentive to exert its market power and 

underutilize its capacity in order to increase output price. Thus, the second contribution of this 

paper is to take into account the industry capacity utilization into an original price formulation 

model to analyze how the interrelation between different factors affect nitrogen fertilizer 

prices. 

        The last contribution of this paper is to utilize a single-equation error correction model to 

analyze both long-run and short-run adjustments to equilibrium relationship by constructing 

an error correction term in which a co-integrating vector is no longer constant as in the standard 

model, but instead time-varying estimates. 

        The paper proceeds as follows. Section 3.2 summarizes the literature review. Section 3.3 

explains the methodology employed. Section 3.4 provides an empirical analysis, including data 

description and empirical results. Section 3.4 also exhibits the time-varying relationship 

between different nitrogen feedstock and product prices and fertilizer prices via a Bayesian-

based Kalman filter and the estimation of a single-equation error correction model. Section 3.5 

offers concluding remarks. 

3.2 Related Literature 

        There have been very limited academic studies on the price behavior and market power 

of the U.S. nitrogen fertilizer industry. Huang (2007) analyzes the impacts of rising natural gas 

prices on U.S. ammonia price and supply and finds that further increases in natural gas prices 

in the United States would result in a continuous decrease in U.S. aggregate ammonia supply 
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that could make U.S. ammonia markets more vulnerable. Galbraith (2010) compares price 

variations of urea and ammonia in North American locations to that of natural gas and corn 

using an error correction model in two different periods: 2002–2005 and 2006–2009. He finds 

that fertilizer prices respond more to natural gas prices in the first period and corn prices in the 

second period. The main pitfall of this analysis is that it tested each factor individually, not 

accounting for the correlation between them. Humber (2014) utilizes a structural vector 

autoregressive (SVAR) model to determine the impact the 2010 merger between CF industries 

and Terra industries had on fertilizer prices. The counterfactual fertilizer prices generated 

suggest a 75% increase in fertilizer prices caused by the merger. 

        Carter and Kohn (1994) provide an algorithm to carry out Bayesian inference on a linear-

state space model, in which states are generated efficiently using the Kalman filter. Frühwirth-

Schnatter (1994) suggest a data augmentation algorithm to approximate posterior distribution 

and model likelihoods for a dynamic linear model. Jong and Shephard (1995) introduce a 

simulation smother, which draws from the multivariate posterior distribution of the disturbance 

of the model. Durbin and Koopman (2002) present a simpler and more efficient simulation 

smoother relative to that of Jong and Shephard (1995), in which only mean corrections for 

unconditional vectors are required. Petris et al. (2009) formally introduce the Bayesian-based 

Kalman filter, the state space model and dynamic linear model, as well as the procedure for 

estimating and forecasting. Koop et al. (2011) introduces a Markov Chain Monte Carlo 

(MCMC) algorithm that allows Bayesian inference in a time-varying co-integration model and 

combines the simulation smoother for state-space time-series models and the Gibbs sampling 

method for time-invariant VECM.  
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        Empirically, both error correction models and time-varying parameter (TVP) models have 

been increasingly used in many fields of study. Hung-Gay Fung et al. (2013) use the daily data 

of 16 commodity futures contracts traded in China and the corresponding foreign markets to 

analyze price linkage between markets. Their results show that no significant causal relation 

was found in most of futures pairs. Arslanturk et al. (2011) use the rolling window and time-

varying parameter estimation methods to analyze the Granger causality between tourism 

receipts and economic growth in a small open economy. Park et al. (2010) estimateU.S. 

gasoline demand from 1976 to 2008 using a time-varying co-integrating regression method. 

Balcilar et al. (2015) analyze the time-varying causality between spot and futures crude oil 

prices via a Markov-switching vector-error correction model, and find that the lead-lag 

relationship between the spot and futures oil markets existed only temporarily. 

3.3 Methodology 

3.3.1 Model Specification 

        The standard invariant-parameter Granger causality test in section 4 demonstrates that 

nitrogen fertilizer prices are co-integrated with natural gas prices in the pre-2006 sub-period; 

however, they are co-integrated with corn prices in the post-2006 sub-period. There is no 

Granger causal relationship between fertilizer prices and corn price or natural gas price in the 

full sample range. This implies an unstable causal relationship over the sample period, and the 

examination of time-varying relationship between fertilizer, corn, and natural gas prices is of 

interest. 

        Consider a model in which nitrogen fertilizer price is determined by both demand side 

force and supply side force for the given capacity utilization: 
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                                                 price= (demand, supply, capacity)f                                               (3.1) 

Natural gas accounts for 75% and 85% of total production cost of urea and ammonia, 

respectively; thus, its price would be one of the most influential factors that affects nitrogen 

fertilizer price. Accordingly, natural gas prices are selected as the proxy variable for demand 

side force of the price system. Corn price is selected as the proxy variable for the supply side 

force of the price system since corn accounted for the largest share of nitrogen use among 

crops. 

       Consider a regression model in which coefficients are time varying rather than fixed: 

            (1) (2) (3) (4) 2,  (0, )t t t t t t t t t tFertilizer Corn Gas Capacity N εβ β β β ε ε σ= + + + +             (3.2)      

where tFertilizer , tCorn and tGas  are the monthly prices of nitrogen fertilizer, corn, and natural 

gas after a natural logarithm, respectively, and tCapacity  is the fertilizer capacity utilization 

rate at time t .  

        (1)
tβ , (2)

tβ , (3)
tβ  and (4)

tβ are time-varying parameters treated as stochastic state variables, 

for which the transition equation follows random walk with trends: 

                                              

(1) (1) (1) (1)
1 1

(2) (2) (2) (2)
1 1

(3) (3) (3) (3)
1 1

(4) (4) (4) (4)
1 1

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

t t t t

t t t t

t t t t

t t t t

v
v
v
v

β α β
β α β
β α β
β α β

− −

− −

− −

− −

        
        
        = + +        
                       

                           (3.3)  

where (1)
tα , (2)

tα , (3)
tα  and (4)

tα are possible time trends, which satisfies the random walk 

assumption: 
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(1) (1) (1)
1
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1
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      
      = +      
                 

                                      (3.4) 

All random error terms are assumed to be identically and independently normal distributed: 

( ) 2
,(0, )i

t i vNν σ  for 1, 2,3, 4i =  and ( ) 2
,(0, )i

t i ww N σ  for 1, 2,3, 4i = . This I.I.D. random walk 

assumption is flexible and can be modified to impose more restrictions on the structure of the 

time variation. The time-varying parameter model characterized by equations (3.1) and (3.2) 

is in the form of dynamic linear model and can be estimated recursively from the updated 

information available at each time point t , by using a Bayesian–based Kalman filter algorithm.  

3.3.2 Estimation Method 

        In order to estimate the time-varying parameters, we apply a Markov Chain Monte Carlo 

(MCMC) method to sequentially obtain samples of parameters from undated posterior 

conditional distribution by Gibbs sampling. The model above can be rewritten as a dynamic 

linear model specified by a normal prior distribution of the 4- dimensional state vector at time 

0t = , 

 0 4 0 0~ ( , )N m Cβ   

together with a pair of equations for each time 1t ≥ , 

 

2

2 2 2 2
1 1 1, 2, 3, 4,

2 2 2 2
1 1, 2, 3, 4,

,   (0, )
,     (0, ( , , , ))

,   (0, ( , , , ))

t t t t t

t t t t t v v v v

t t t t w w w w

y X N
v v N diag

w w N diag

εβ ε ε σ

β α β σ σ σ σ

α α σ σ σ σ
− −

−

= +

= + +

= +






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where ty  is the dependent variable, nitrogen fertilizer price. tX  is the vector that contains all 

explanatory variables, tβ  is a time-varying state vector with time trend tα  in its dynamic . We 

consider the commonly used inverse-gamma conjugate priors for the unknown variance of 

random errors.  More specifically, we assume the inverse of the variances 2
εσ , 2

1,vσ , 2
2,vσ , 2

3,vσ , 

2
4,vσ and 2

1,wσ , 2
2,wσ , 2

3,wσ , 2
4,wσ  have independent gamma prior with mean a  and variance b . 

Given the observations 1:Ty  and 1:TX , the conjugate posterior conditional distribution of 

unknown variances are given as:  

2
2 1 2

1: 1: 1
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1, 1: 1: 1 11
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Letting 1a b= =  and using the posterior conditional distribution of random errors, the forward 

filtering backward sampling (FFBS) procedure can be implemented by the following steps: 

1. Choose the initial value of the mean 0m  and distance from 0C  for the normal prior 

distribution of state vector at initiation time. 
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2. Draw initial value of 2
εσ , 2

1,vσ , 2
2,vσ , 2

3,vσ , 2
4,vσ and 2

1,wσ , 2
2,wσ , 2

3,wσ , 2
4,wσ  from their independent 

and identical inverse gamma priors. 

3. Run Kalman filter and get sample of state variables via FFBS algorithm. 

4. Update information of state variables obtained in step 3 and draw samples of 2
εσ , 2

1,vσ , 2
2,vσ ,

2
3,vσ , 2

4,vσ and 2
1,wσ , 2

2,wσ , 2
3,wσ , 2

4,wσ  from their corresponding posterior inverse gamma 

distribution equation. 

5. Substitute the sample obtained in step 4 into step 2 as the initial values for  2
εσ , 2

1,vσ , 2
2,vσ ,

2
3,vσ , 2

4,vσ and 2
1,wσ , 2

2,wσ , 2
3,wσ , 2

4,wσ . 

6. Repeat steps 1 through 5 for M  times, obtaining a bootstrapped set of parameter estimates

 { }( , ) : 1,...,
m m
t t m Mα β = . 

       This parameter set enables us to construct a confidence interval for estimates and to 

analyze the interrelationship between prices. We run the algorithms a total of 40,000 times 

and discard the first 20,000 samples as the burn period, then use the subsequent sample to 

make a Bayesian inference about the parameters. 

3.4 Empirical Analysis 

3.4.1 Description of Data 

        The empirical analysis of this study is based on data for the period from January 1999 to 

December 2011 for a total of 156 observations. The Agricultural Marketing Service (AMS) 

reports farm-level average monthly retail prices of urea and anhydrous ammonia.  Monthly 

natural gas spot price comes from the Henry Hub terminal in Louisiana, and standardized as 
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U.S. dollars per thousand cubic meters of gas. Corn price is obtained from Economic Research 

Service (ERS). All prices are converted to natural logarithms. Capacity utilization is calculated 

as the ratio between the fertilizer supply and the sum of individual plant capacity of all plants 

in the North America. Data for the supply of fertilizer products and plant capacity are obtained 

from International Fertilizer Industry Association (IFA) and International Fertilizer 

Development Center (IFDA), respectively. 

        To investigate the time-varying relationship between nitrogen fertilizer price and its main 

feedstock and product prices, we first perform the Augmented Dickey-Fuller (ADF) and 

Phillip-Perron (PP) unit root tests to all price series in different sample periods in order to 

determine whether they are stationary or not. The results in table 3.3 indicate that all price 

series are non-stationary in levels, but stationary for the first difference.  

Table 3.3: ADF and PP unit root test 

 99-Jan to 05-Dec 06-Jan to 11-Dec 09-Jan to 11-Dec 

 ADF Test PP Test ADF Test PP Test ADF Test PP Test 

Urea 0.97 -1.22 0.00 -2.40 0.45 -1.69 

Urea∆  -5.65*** -6.83*** -5.95*** -4.79*** -8.01*** -7.59*** 

Ammonia 0.87 -1.01 0.75 -1.18 1.23 -1.11 

Ammonia∆  -3.43*** -4.50*** -6.95*** -8.60*** -7.34*** -10.91*** 

Corn 0.01 -2.12 1.12 -1.35 0.93 -0.75 

Corn∆  -5.03*** -5.72*** -4.95*** -7.41*** -6.99*** -9.72*** 

Gas 0.81 -1.84 -0.60 -1.49 0.08 -2.67* 

Gas∆  -6.00*** -7.36*** -5.74*** -8.78*** -8.42*** -11.53*** 

Note: (***), (**) and (*) represents stationary at 1%, 5% and 10% confidence level 
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3.4.2 Model Estimation and Empirical Results 

        To determine whether nitrogen fertilizer prices follow the marginal cost of production 

(the competitive case) or follow the value of the marginal productivity of fertilizers in 

agriculture (the non-competitive case), we first check the co-integration relation between price 

series to perform a Granger causality analysis. Since the analysis in the introduction implies a 

structural change in the causal relationship over the time period, we split our data into pre-

2006 and post-2006 components and apply Johansen’s co-integration test in each sub-period. 

Table 3.4: Pair-wise Johansen co-integration test 

  Urea Ammonia 

  Corn Gas Corn Gas 

99-Jan to 05-Dec 
0r =  14.40 13.03 11.37 21.88** 

1r ≤  1.20 1.60 1.92 2.97 

06-Jan to 11-Dec 
0r =  24.06*** 13.37 17.41* 10.17 

1r ≤  1.50 1.78 3.71 1.89 

99-Jan to 11-Dec 
0r =  12.46 12.05 15.94 14.78 

1r ≤  0.86 4.53 0.67 3.59 

Note: (***), (**) and (*) represents co-integration at 1%, 5% and 10% confidence level 

        Table 3.4 illustrates the maximum likelihood trace statistics (Johansen, 1991) of pair-wise 

Granger causality test in each sample component. Table 3.4 shows that both urea and ammonia 

prices are co-integrated with corn price in the post-2006 sample period, indicating a non-

competitive market structure in which fertilizer prices follow the value of its marginal 

productivity in agriculture; whereas ammonia price is co-integrated with natural gas price in 

the pre-2006 sample period, which is an indication of competitive market structure in which 
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fertilizer prices follow the marginal cost of production. In addition, the full sample test results 

demonstrate that there is no Granger causal relationship between fertilizer prices and corn price 

or natural gas price in the full sample range. 

        The results of the standard pair-wise Granger causality test in table 3.4 demonstrate an 

unstable causal relationship between nitrogen fertilizer price and its feedstock (natural gas) or 

output (corn) price over the sample period. This non-constancy of causality makes the 

application of standard Granger causality test inappropriate. Thus, we next investigate the 

time-varying effects of natural gas prices and corn prices on U.S. nitrogen fertilizer prices over 

the 1999–2011 sample period by using a Bayesian-based time-varying parameter approach.  

        The main advantage of this method is that it enables us to explore the structural change, 

when there is transition from one type causal relationship to another within the model, using 

information presented in the full sample. The rejection of the existence of a co-integrated 

relationship between nitrogen fertilizer price and its main feedstock or output price over the 

full sample period might be the result of structural changes in the long-run relationship that 

cannot be modelled explicitly by a traditional error correction model. Instead of splitting the 

sample into sub-periods according to pre-defined points, the time-varying parameter approach, 

which is based on a dynamic linear model, enables us to investigate the transitions of 

relationships between price series via full sample data information.  

        The critical issue for Markov Chain Monte Carlo (MCMC) methods in applications is 

how to determine when it is safe to stop sampling and use the samples to estimate 

characteristics of the distribution of interest. This paper applies Gelman and Rubin’s 

convergence diagnostic on all posterior draws of parameters to ensure the convergence of 

MCMC items. The test result in table 3.5 demonstrates the evolution of Gelman and Rubin’s 
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shrink factor as the number of iterations increases for posterior draws of parameters (2)
tβ , (3)

tβ  

and (4)
tβ . These parameters characterize the time varying effect on nitrogen fertilizer prices. 

The evolutions for all impact parameters are close to 1, indicating convergence of these 

posterior draws. 

Table 3.5: MCMC convergence test 

Impact of Corn on Urea Impact of Gas on Urea Impact of Capacity on 
Urea 

   

Impact of Corn on AA Impact of Gas on AA Impact of Capacity on AA 

   

 



79 

 

         The impacts of corn price, natural gas price and capacity utilization on nitrogen fertilizer 

price are characterized by (2)
tβ , (3)

tβ  and (4)
tβ , respectively. The corresponding time trends are 

characterized by the evolution of (2)
tα , (3)

tα  and (4)
tα . Figure 3.5 shows posterior mean of 

estimation results of (2)
tα , (3)

tα  and (4)
tα in ammonia equation. The posterior means of (2)

tα and 

(3)
tα are always close to zero, indicating no time trend of corn and natural gas price effect on 

ammonia price. But there is obvious downward trending for capacity utilization effect on 

ammonia price. 

 

 

Figure 3.5: Time trend of effects on ammonia price 

 

        Similarly, figure 3.6 illustrates posterior mean of estimation results of (2)
tα , (3)

tα  and (4)
tα

in urea equation. There is no time trend of corn price effect on urea price as the posterior mean 

of (2)
tα varies around zero. The natural gas price effect on urea price experiences slightly 

increasing trend, while the time trend of capacity utilization effect on ammonia price is 

significantly downward sloping. 
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Figure 3.6: Time trend of effects on urea price 

 

        Taking into account these time trends for the time varying effect on ammonia and urea 

prices, the de-trended estimation results of parameter (2)
tβ , (3)

tβ  and (4)
tβ in each equation are 

illustrated from figure 3.7 to 3.12. 

         

 

Figure 3.7: Impact of corn price on ammonia price 
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        Figure 3.7 illustrates the de-trended posterior mean of time-varying estimations on the 

impact of corn price on ammonia price. It shows that the effect of corn prices on ammonia 

prices has increased over time—the estimated coefficient increased from 0.739 to 0.817 over 

the sample period with a peak of 0.861.  

        Figure 3.8 shows de-trended estimation of the time-varying posterior mean impact of 

natural gas prices on ammonia prices when considering the effect of capacity utilization. It 

shows a decreasing trend of the estimated effects of natural gas prices on ammonia prices—

the coefficient decreased from 0.359 to 0.273 over the sample period with a trough of 0.184.  

 

 

Figure 3.8: Impact of natural gas price on ammonia price 

 

        Both the increasing effect of corn price on ammonia price demonstrated in figure 3.7 and 

the declining effect of natural gas price on ammonia price demonstrated in figure 3.8 indicate 

that nitrogen fertilizer prices have been following more closely to the value of marginal 

productivity rather than marginal cost of production, implying a stronger market power within 

the fertilizer industry over time. In addition, the posterior mean effect of capacity utilization 

on ammonia price in figure 3.9 provides another support to the increasing market power in 
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ammonia market. It illustrates steady increasing impact of ammonia capacity utilization on its 

price. In an uncompetitive market, supplier tends to restrict its capacity utilization to lower 

quantity and increase price-cost margin. Thus, the higher impact of capacity utilization on 

prices, the higher market power caused by this capacity constraint. 

 

 

Figure 3.9: Impact of capacity utilization on ammonia price 

 

        Turn to the model of urea price, figure 3.10 shows the de-trended posterior mean of time-

varying impact of corn prices on urea prices, when considering the effect of capacity 

utilization. After removing the effect of time trend, it still shows a convincing increasing 

impact of corn prices on urea prices over time, maintaining a high level in recent years. The 

time-varying estimated coefficient increased steadily from 0.363 to a peak of 0.653, and 

remained in a range between 0.539 and 0.653 since December, 2008. 
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Figure 3.10: Impact of corn price on urea price 

 

        Figure 3.11 illustrates the de-trended estimation of the time-varying posterior mean 

impact of natural gas prices on urea prices when considering the effect of capacity utilization. 

It shows that the impact of natural gas prices on urea prices have been oscillating from around 

0.20 from 1999 to mid-2008, then dropping below that level to the trough of 0.124 and 

increasing very slowly since year 2011.   

 

 

        Figure 3.11: Impact of natural gas price on urea price 
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        Both the increasing posterior mean effect of corn price on urea price demonstrated in 

figure 3.10 and the declining posterior mean effect of natural gas price on urea price 

demonstrated in figure 3.11 indicate that nitrogen fertilizer prices have been following more 

closely to the value of marginal productivity rather than marginal cost of production, implying 

a stronger market power within the urea industry over time. Again, the posterior mean effect 

of capacity utilization on urea price in figure 3.12 provides another support to the increasing 

market power in urea market. It illustrates steady increasing impact of urea capacity utilization 

on its price. This strong impact of capacity utilization on commodity prices indicates an 

increasing market power in urea market. 

 

 

Figure 3.12: Impact of capacity utilization on urea price 

 

        In summary, the estimation results of the time-varying parameter model for both ammonia 

and urea prices demonstrate an increasing effect of corn prices on nitrogen fertilizer prices over 

the years and a decreasing effect of natural gas on nitrogen fertilizer prices. This variation in 

causal relations coincides with the increasing impact of capacity utilization of the industry on 
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its commodity price. These time-varying changes in price causal relationships can be explained 

by the increasing degree of the non-competitive market structure in the U.S. nitrogen fertilizer 

industry—its market concentration index, one measurement of market power, has also 

increased steadily in recent years.6 

3.4.3 Single-Equation Error Correction Model 

        The standard invariant parameter Granger causality test performed in section 3.2 

demonstrated that there is no co-integration relationship between nitrogen fertilizer price and 

its main feedstock and output price over the full sample period. The co-integrating vector 

remains constant over time in a standard co-integration model, but the results in section 3.2 

show that the relationships between fertilizer prices and corn and natural gas prices are varied 

over time. As a result, the long-run equilibrium relationship between price series cannot be 

explained by the model with a constant co-integrating vector, since it is impossible to take into 

account the structural change in the model appropriately.  

        The next thing we are interested in examining is whether there is a long-run equilibrium 

relationship between fertilizer price and the price of its demand and supply factors. We utilize 

the single-equation error correction model (SSECM) to examine the long-run relationship 

between these three components. In our model, the error correction term is obtained from the 

Bayesian estimates of the time-varying regression model and can be represented as 

                                                 

6 For urea, the 4-firm concentration index has increased from 68% to 84% over the sample period; 

and the 4-firm concentration index of the ammonia industry has increased from 48% to 77% over 

sample period. 
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    

(1) (2) (3) (4)

t t t tt t t t tECT Fertilizer Corn Gas Capacityβ β β β= − − − −   

where 
( )

,  1, 2,3, 4
i

t iβ =  are estimates from the time-varying regression model in equation (3.2);

tFertilizer , tCorn and tGas  are monthly prices of nitrogen fertilizer, corn, and natural gas, 

respectively, and tCapacity  is the fertilizer capacity utilization rate at time t . The error 

correction model is expressed as  

 0 1 1 2 3t t t t tFertilizer ECT Corn Gasφ φ φ φ ε−∆ = + + ∆ + ∆ +   

where 1φ  characterizes the long-run adjustment between the three price series back to their 

long-run equilibrium relationship, 2φ  and 3φ measure the short-run adjustment of corn and 

natural gas price changes on fertilizer price. 

Table 3.6: Results of error correction model 

Variables Model 1 (Urea) Model 2 (AA) 

Constant 0.0097 

-24.8005*** 

0.2885** 

0.1202** 

0.0081* 

-20.2709*** 

0.1972** 

0.1327*** 

1tECT −  

tCorn∆  

tGas∆  

Note: (***), (**) and (*) represents significant at 1%, 5% and 10% level 

 

        The estimation results are reported in table 3.6. First, all coefficients are significant at the 

5% level, except the constant term in the model, indicating a good explanation of this error 

correction model. Second, the estimated coefficients of the error correction term are both 

negative and significant, which is an indication of the existence of a co-integrated relationship. 
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Third, the coefficient of corn price changes is significantly larger than that of natural gas price 

changes, indicating a greater impact of corn price on fertilizer price. This supports the results 

we obtained in section 3.2 by using the time-varying parameter model. 

3.5 Conclusion 

        This paper utilizes a time-varying parameter approach to analyze the price causal 

relationship between U.S. nitrogen fertilizer and its main feedstock and crop product, while 

considering capacity utilization of the industry. Our empirical results from the time-varying 

parameter approach show that the price of corn, the largest share of nitrogen use, has become 

more influential in affecting nitrogen fertilizer price over the years, while the effect of natural 

gas, the main feedstock of nitrogen fertilizer production, has been decreasing in recent years. 

Combining this result with increasing market concentration and decreasing capacity 

utilization, we conclude that the degree of non-competitiveness in the U.S. nitrogen fertilizer 

industry has increased over the years. The analysis of a long-run and short-run adjustment to 

the equilibrium relationship from the error correction model provides support for our 

conclusion.  
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