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Hot Deck Imputation for the Response Model 
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Abstract 

Hot deck imputation is a procedure in which missing items are replaced with values from respondents. A model supporting 
such procedures is the model in which response probabilities are assumed equal within imputation cells. An efficient version 
of hot deck imputation is described for the cell response model and a computationally efficient variance estimator is given. 
An approximation to the fully efficient procedure in which a small number of values are imputed for each nonrespondent is 
described. Variance estimation procedures are illustrated in a Monte Carlo study. 
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1. Introduction  
Imputation is used in sample surveys as a method of 

handling item nonresponse. In hot deck imputation, the 
imputed values are functions of the respondents in the 
current sample. Sande (1983) and Ford (1983) contain 
descriptions of hot deck imputation. Kalton and Kasprzyk 
(1986) and Little and Rubin (2002) review various impu-
tation procedures. 

In one version of hot deck imputation, the imputed value 
is the value of a respondent in the same imputation cell, 
where the imputation cells form an exhaustive and mutually 
exclusive subdivision of the population. In random hot deck 
imputation, respondents are assigned values at random from 
respondents in the same imputation cell. The record 
providing the value is called the donor and the record with 
the missing value is called the recipient. 

The variance of the imputed estimator is generally larger 
than the complete sample variance because nonresponse 
reduces sample size and because the imputed estimator may 
contain a component due to random imputation. Rao and 
Shao (1992) proposed an adjusted jackknife method for hot-
deck imputation where the first phase units are selected 
with-replacement. Rao and Sitter (1995) discussed the 
adjusted jackknife variance estimation method for ratio 
imputation. Rao (1996) and Sitter (1997) applied the 
adjusted jackknife method to regression imputation. Shao, 
Chen and Chen (1998) apply the idea of Rao and Shao 
(1992) to the balanced repeated replication method. Shao 
and Steel (1999) propose variance estimation for survey 
data with composite imputation, where more than one 
imputation method is used, and the sampling fractions are 
included in the variance expressions. Yung and Rao (2000) 
applied the adjusted jackknife method to imputed estimators 
constructed with a poststratified sample. Rubin (1987) and 

Rubin and Schenker (1986) suggested multiple imputation 
procedures. Tollefson and Fuller (1992), and Särndal (1992) 
proposed imputation methods and corresponding variance 
estimators. Kim and Fuller (2004) studied the use of 
fractional imputation for the model in which observations in 
an imputation cell are independently and identically 
distributed. 

In this paper, we consider hot deck imputation for a 
population divided into imputation cells. The response 
model is described in section 2. In section 3, we introduce 
fully efficient fractional imputation and present a variance 
estimation method for the imputation estimator, under the 
assumptions that the probability of nonresponse is constant 
within a cell. In section 4 we suggest a modification of the 
fully efficient method that uses a smaller number of donors. 
In section 5, an example is introduced to illustrate the actual 
implementation of the proposed method. In section 6, results 
of a simulation study are reported. Summary is presented in 
the last section. 

 
2. Basic Setup  

Consider a population of N elements identified by a set of 
indices }.,,2,1{ NU K=  Associated with each unit i in the 
population there is a study variable iy  and a vector ix  of 
auxiliary information. The set of vectors, ),,( iiy x  

,,,2,1 Ni K=  is denoted by .F   
Let A denote the indices of the elements in a sample 

selected by a set of probability rules called the sampling 
mechanism. Let the population quantity of interest be ,Nθ  
let θ̂  be a full sample, linear-in-y, estimator of ,Nθ  and 
write  

.ˆ ∑
∈

=θ
Ai

ii yw  (1) 
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If iw  is the inverse of the selection probability, then θ̂  is 
unbiased for the population total. 

Let RA  and MA  denote the set of indices of the sample 
respondents and sample nonrespondents, respectively. 
Define the response indicator function 

⎩
⎨
⎧

∈
∈

=
M

R
i Ai

Ai
R

if0

if1
 (2) 

and let }.);,{( AiRi i ∈=R  The distribution of R  is called 
the response mechanism. 

Assume that the finite population U is made up of G  
imputation cells, where the set of elements in cell g is .gU  
Let gn  be the number of sample elements in imputation cell 
g and let ,0, >gg rr  be the number of respondents in impu-
tation cell g. Assume the within-cell uniform response 
model in which the gr  responses in a cell are equivalent to a 
Poisson sample selected with equal probabilities from the 

gn  elements. 
Fractional imputation is a procedure in which more than 

one donor is used per recipient. Kalton and Kish (1984) 
suggested fractional imputation as an efficient imputation 
procedure. The method was discussed by Fay (1996). Let 

ijd  be the number of times that iy  is used as donor for the 
missing jy  and define }.,;{ MRij AjAid ∈∈=d  The 
distribution of d  is called the imputation mechanism. Let 

∗
ijw  be the factor applied to the original weight for element j 

when iy  is used as a donor for element j. For element 
,, MAjj ∈  

∑
∈

∗=
RAi

iijIj ywY  (3) 

is the weighted mean of the respondent values. The factor 
∗
ijw  is called the imputation fraction. It is the fraction that 

donor i donates for the missing item .jy  Note that 1=∗
iiw  

for RAi ∈  and 0=∗
ijw  for .,, RAjiji ∈≠  The sum of the 

imputation fractions for a missing item is restricted to equal 
one, 

∑
∈

∗ ∈∀=
RAi

ij Ajw .,1  (4) 

An estimator with the imputed values defined in (3) and 
some 1<∗

ijw  is called a fractionally imputed estimator.  
A linear-in-y imputation estimator can be written in the 

form 

i
Ai Aj

ijjI yww
R

∑ ∑
∈ ∈

∗
⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
=θ̂  (5) 

∑
∈

α=
RAi

ii y ,:  (6) 

where the notation A =: B means that B is defined to be 
equal to A. The sum of jij ww∗  over all recipients for which i 
is a donor (including acting as a donor for itself), denoted by 

,iα  is the total weight of donor i. If a responding unit i is 
not used as a donor, except for itself, then .ii w=α   

 
3. Fully Efficient Fractional Imputation  

Assume all elements in an imputation cell have the same 
probability of responding and assume the responses are 
independent. Then the overall distribution of an imputed 
estimator under the response model can be obtained by 
using the probability structure of multiple phase sampling, 
where the response model is treated as the second phase 
sampling mechanism. 

If the response probabilities in a cell are uniform, then a 
reasonable estimator of the total is the weighted sum of ratio 
estimators 

.ˆ
1

FE ∑
∑

∑ ∑
∩∈

∩∈

= ∩∈ ⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
=θ

gR

gR

g UAi i

UAi iiG

g UAi
i w

yw
w  (7) 

In the context of two phase sampling, Kott and Stukel 
(1997) call the estimator (7) a reweighted expansion esti-
mator. The estimator (7) is called fully efficient because it 
contains no variability due to random selection of donors. If 
the iw  are the same for all elements in a cell, the ratio 

ii
UAi

i
UAi

yww
gRgR

∑∑
∩∈

−

∩∈ ⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
1

 (8) 

is a simple mean and, hence, unbiased for the cell mean 
given that there is at least one respondent in the cell. If the 

iw  in a cell are not equal, then (8) is subject to ratio bias. It 
is possible for the number of elements in a cell, ,gn  to be 
positive and the number of respondents, ,gr  to be zero. If 
this occurs in practice, cells will be collapsed. 

The large sample properties of the estimator can be 
obtained for a sequence of populations and samples. 
Assume the population is composed of vG  mutually 
exclusive and exhausted cells, where v  is the index of the 
sequence. Assume the variance of a full sample estimator of 
the mean is ),( 1−

vnO  where vn  is the size of the sample 
selected from the thv  population. Assume responses are 
independent. Then, under regularity conditions, the proce-
dures used by Kim, Navarro and Fuller (2005) in the proof 
of their Theorem 2.1 can be used to show that estimator (7) 
satisfies 

∑ ∑
= ∈

−− +−π+θ=θ
Gv

g Ai
vvpivivgvivv

v gv

v
NnoeRw

1

2/11
FE ),()1(ˆˆ  (9) 
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where gvgviviv AYye ,−=  is the set of sample indices in the 
thg  cell for the thv  sample, gvY  is the population mean of 

the y – variable in cell gv  of population gvvF π,  is the prob-
ability that an element in cell gv  responds, and vF  denotes 
the thv  population. Also 

,|)1(

)|ˆ()|
~

(

1

221

FE

⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

π−π+

θ=θ

∑ ∑
= ∈

−
Gv

g Agvi
vivivgvgv

vvvv

v

FewE

FVFV

 
(10)

 

where 

∑ ∑
= ∈

− −π+θ=θ
Gv

g Ai
ivivgvivvv

v gv

eRw
1

1
FE .)1(ˆ~

 

The estimator (7) can be implemented by using fractional 
imputation in which every responding unit in an imputation 
cell is used as a donor for every nonrespondent in the cell. 
Then, the estimator (7) can be written as the fractionally 
imputed estimator 

∑ ∑ ∑
= ∩∈ ∩∈

∗=θ
G

g UAj UAi
iijj

g gR

yww
1

FEFI ,ˆ  (11) 

where ∗
ijj ww  is the weight of donor i for recipient j, ∗

ijw  is 
the imputation fraction of donor i for recipient j defined in 
(3), and  

( )
⎪
⎩

⎪
⎨

⎧

==

=
=

−
∩∈∗ ∑

.and1if1

0if

j

1

jiR

RRww
w

jiisUAs
ij

gR  (12) 

The estimator (11) with ∗
ijw  of (12), algebraically 

equivalent to (7), is called the fully efficient fractionally 
imputed (FEFI) estimator. The fractionally imputed esti-
mator has the advantage that functions of y such as the 
fraction less than a given number can be directly estimated 
from the fractionally imputed data set. 

To consider replication variance estimation, let a replica-
tion variance estimator for the complete sample be 

,)ˆˆ()ˆ(ˆ 2)(

1

θ−θ=θ ∑
=

k
L

k
kcV  (13) 

where )(ˆ kθ  is the thk  estimate of Nθ  based on the observa-
tions included in the thk  replicate, L is the number of repli-
cates, and kc  is a factor associated with replicate k deter-
mined by the replication method. For a discussion of 
replication for survey samples see Krewski and Rao (1981) 
and Rao, Wu and Yue (1992). When the original estimator 
θ̂  is a linear estimator of the form (1), the thk  replicate 
estimate of θ̂  can be written 

∑
∈

=θ
Ai

i
k

i
k yw ,ˆ )()(  (14) 

where )(k
iw  denotes the replicate weight for the thi  unit of 

the thk  replication. 
A proposed replicate for the estimator FEFIθ̂  is 

.:

ˆ

)(

1

)(

)(

)(

1

)()(
FEFI

i
k

ij

G

g UAj UAi
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k

i
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k
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g UAi

k
i

k

yww

w
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w

g gR

gR

gR
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∗

= ∩∈ ∩∈
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∩∈
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∑ ∑ ∑

∑
∑

∑ ∑

=

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
=θ

 

(15)

 

Using the replicates (15), the replicate variance estimator 
can be written as  

.)ˆˆ(ˆ
1

2
FEFI

)(
FEFIFEFI ∑

=
θ−θ=

L

k

k
kcV  (16) 

The replicates in (15) can be computed in two steps. 
First, create the usual replicate by defining the weights )(k

iw  
for every element. Second, for a nonrespondent, the repli-
cate imputation fraction for donor i to recipient j is 

.)(

)(
)(

∑ ∩∈

∗ =
gR UAs

k
s

k
ik

ij w

w
w  

Note that the sum of the fractional replication weights of the 
donor records for each recipient is the same as the replica-
tion weight for that unit in a complete sample. 

The suggested procedure is closely related to the Rao and 
Shao (1992) variance estimator. See also Yung and Rao 
(2000). However, the use of fractional imputation greatly 
simplifies variance estimation. In the creation of replicates, 
only the weights on the imputed values are changed. No 
recomputing of imputed values is required, and once 
computed, the replicate weights can be used for any smooth 
function of the vector y. Also, the fractional replicates make 
the estimator (16) appropriate for a vector of y – variables. 

Theorem 3.1 of Kim, Navarro and Fuller (2005) can be 
used to show that, given a consistent full sample replication 
procedure, 

∑ ∑
= ∈

−−− +π−π−

θ=
v

v gv

G

g Ui
vpivgvgvv

vv

noeN

FVV

1

1212

FEFEFI

),()1(

)|
~

(ˆ

 
(17)

 

where vFE
~θ  is defined in (10), and the distribution is with 

respect to the sampling and response mechanisms. 
If the finite population correction can be ignored, the 

estimator (16) is consistent for }.ˆ{ FEθV  If the sample size is 
large relative to N, then an estimator of 

∑ ∑
= ∈

−− π−π
v

v gv

G

g
iv

Ui
gvgvv eN

1

212 )1(  

should be added to (16). 
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The imputation and variance estimation procedure 
outlined for the response model also produces consistent 
estimators for the cell mean model. Under the cell mean 
model, the elements within a cell of the finite population are 
a realization of independently and identically distributed 
random variables. The imputation procedure based on the 
response model is not necessarily fully efficient for the 
population mean under the cell mean model, but it can be 
shown that the estimator of the mean and the estimator of 
the variance of the estimated mean are consistent. 

 
4. Approximations to the Fully 

        Efficient Procedure  
In the previous sections, the estimator FEFIθ̂  was 

constructed to produce zero imputation variance. The 
implementation of the fractional imputation procedure, as 
described in (11), could require the use of a large number of 
donors for each recipient. Therefore, we outline a procedure 
with a fixed number of donors per recipient that is fully 
efficient for the grand total, but not necessarily fully 
efficient for subpopulations. The procedure assigns donors 
to produce small between-recipient variance of imputed 
values and modifies the weights of donors to attain full 
efficiency for the total. 

Suppose that M donors are to be assigned to each 
recipient. We suggest donors be assigned to recipients to 
approximate the distribution of all respondents in the cell. 
One possible selection method is to select a stratified sample 
for each recipient. A second possibility is to use systematic 
sampling with probability proportional to the weights to 
select donors for each recipient. Initial fractions ∗

0ijw  are 
assigned to the donated values. For systematic sampling 
with equal weights, the initial ∗

0ijw  is .1−M   
After the donors are assigned, the initial fractions, ∗

0ijw  
are adjusted so that the sum of the weights gives the fully 
efficient estimator of the mean of y, and such that the 
estimated cumulative distribution function based on the 
weights approximates the fully efficient estimator of the 
cumulative distribution function. The modification of 
weights using regression has been suggested by Fuller 
(1984, 2003). Chen, Rao and Sitter (2000) discussed an 
efficient imputation method that changes the imputed values 
rather than the weights. Let ),,,( 21 α= jgjgjgjg zzz Kz  be 
a vector defined by 

otherwise,0

Lif1

otherwise0

if1

1-

22

1

=

≤<=

=

≤=

=

ααα Lyz

Lyz

yz

jjg

jjg

jjg

M
 

where αLLL ,,, 32 K  divide the range of observed y in cell 
g into 1−α  sections. The number of sections that can be 
used depends on the numbers and type of observations in 
the cell, the number of recipients and the number of donors 
per recipient. If the number of donors per recipient is large, 
it is possible to adjust the set of weights for each recipient so 
that the sum of ∗

ijw  over i is one for every j and the sum of 

iij yw∗  over i is the fully efficient estimator for every j. In 
most cases the weights will be adjusted so that the sum of 
the ∗

ijw  over i is one for every j and the cell means of the 
imputed values are equal to the fully efficient estimator. 

Let gFE,z  denote the fully efficient estimator for cell g. 
Using regression procedures, the modified ,∗

ijw  modified to 
give the fully efficient cell mean of ,z  are 

[ ] ,).()( 0
1

,FE0 ′−−+= ∗−∗∗∗
jgjigijgggijij www zzSzz zz  (18) 

where 

,

,
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,).().(

1
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j
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Ai
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jg

wwb

dwb
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dwb

Lg

RgLg

Rg

RgLg

−

∈

∈

∗

∈

∗
∈

∗
∈

∗

∈

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
=

=

=

−′−=

∑

∑∑

∑

∑∑

zz

zz

zzzzS zz

 

gLA  is the set of indexes of recipients in cell g, gijg zz =[i]  
is the value imputed from donor i for recipient j, and jg .z  is 
the weighted mean of the imputed values for recipient j 
using the initial .0

∗
ijw  

To estimate the variance, replicates are created so that the 
weights on the donors reflect the effect of the deletion of an 
element on the fully efficient estimator. We use the words 
“deletion” and “delete” to identify the element chosen for 
principal weight modification for replication variance 
estimation. 

Let )(k
iw  be the weight assigned to element i for the thk  

replicate for variance estimation of the full sample esti-
mator. Then the replicate for the fully efficient mean of y for 
cell g is 

 

Survey Methodology, December 2005                                                                                                                                  7



 

 
Statistics Canada, Catalogue No. 12-001

.)(
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zz ∑∑
∈

−

∈ ⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
=  (19) 

Replicate fractions are assigned to donors in cell g so that 
the replicate estimate of the cell mean is .)(k

gz  Initial 
fractional weights )(

0
k

ijw∗  are assigned where )(
0
k

ijw∗  is small, 
but positive, if i is a deleted unit for replicate k. The final 
fractional weights )(k

ijw∗  are computed using the procedure 
of (18) with )(k

gz  replacing g,FEz  and )(
0
k

ijw∗  replacing .0
∗
ijw  

The procedure simulates the effect of deleting a single 
element on the fully efficient estimator. 

 
5. An Artificial Example  

In this section, we present an example with artificial data  
to illustrate the implementation of the proposed method. 
Suppose that two study variables, x and y, are observed in a 
sample of size n = 10 obtained by simple random sampling. 
Variable x is a categorical variable with three categories, say 
1, 2, and 3, and variable y is a continuous variable. Both 
variables have item nonresponse and there is a set of 
imputation cells for each variable. Table 5.1 shows the 
sample observations, where nonresponse is denoted by M in 
the table. We use a weight of one to simplify the presen-
tation. Divide by ten to obtain weights for the mean.  

Table 5.1 
An Illustrative Data Set 

 

Observation Weight Cell for x Cell for y x y 
1 1 1 1 1 7 
2 1 1 1 2 M 
3 1 1 2 3 M 
4 1 1 1 M 14 
5 1 1 2 1 3 
6 1 2 1 2 15 
7 1 2 2 3 8 
8 1 2 1 3 9 
9 1 2 2 2 2 

10 1 2 1 M M  
Because the x variable is a categorical variable with three 

categories, using three fractions for fractional imputation 
gives fully efficient estimators for the distribution of the 

variable−x . Thus the weights in Table 5.2 for the three 
imputed values of x for observation four are the fractions for 
the three categories in x – cell one. 

If a subset of donors is to be used for each recipient, a 
controlled method of selecting donors, such as systematic 
sampling, is suggested. In our simple illustration we could 
easily use fractional imputation with all four y responses in 
cell 1, but to illustrate the regression adjustment we use only 
three. See Table 5.2. 

Several approaches are possible for the situation in which 
two items are missing, including the definition of a third set 

of imputation cells for such cases. Because of the small size 
of our illustration, we impute under the assumption that x 
and y are independent within cells. Thus we impute four 
values for observation ten. For each of the two possible 
values of x we impute two possible values for y. One of the 
pair of imputed y – values is chosen to be less than the mean 
of responses and one is chosen to be greater than the mean. 
See the imputed values for observation 10 in Table 5.2.  

Table 5.2 
Fractional Weights for Means 

 

Observation Weight Donor for y Cell for x Cell for y x y 

1 1.0000  1 1 1 7 
2 0.2886 1 1 1 2 7 
2 0.3960 6 1 1 2 15 
2 0.3154 8 1 1 2 9 
3 0.3333 5 1 2 3 3 
3 0.3333 7 1 2 3 8 
3 0.3334 9 1 2 3 2 
4 0.5000  1 1 1 14 
4 0.2500  1 1 2 14 
4 0.2500  1 1 3 14 
5 1.0000  1 2 1 3 
6 1.0000  2 1 2 15 
7 1.0000  2 2 3 8 
8 1.0000  2 1 3 9 
9 1.0000  2 2 2 2 

10 0.2247 8 2 1 2 9 
10 0.2753 4 2 1 2 14 
10 0.2095 1 2 1 3 7 
10 0.2905 6 2 1 3 15  

Initial fractions of one third are assigned to the three 
imputed values for observations three and four, and initial 
fractions of one fourth are assigned to the four imputed 
values for observation ten. The fractional weights are then 
adjusted using the regression method of equation (18) to 
give the FEFI mean of y as the estimator, where the fully 
efficient estimator for the mean of y is 

∑
=

==
2

1
FE .4833.8

g
Rg

g y
n

n
y  

We restrict the weights for observation 10 so that the 
estimated fractions for the two categories of x are the cell 
fractions. Then, because the weighted mean for the categor-
ical variable is controlled for each individual, the vector z  
contains only the y – variable. Table 5.2 gives the final 
fractional weights computed with the regression weighting. 

An analyst can use the data set of Table 5.2 and any full-
sample computer program to compute estimates of 
functions of y and x, such as the mean of y for the x cate-
gories. The fractional data set is fully efficient for any 
function of the x – variable and is also fully efficient for the 
mean of the y – variable. 

For jackknife variance estimation, we repeat the weight 
calculation for each replicate. The replicate estimates of the 
cell means of y are given in Table 5.3 and the replicate 
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estimates of the category fractions for x are given in Table 
5.4. The values in Table 5.3 and in Table 5.4 are used as the 
control totals g,FEz  in the regression weighting. We used 

1)(
0 3−∗ =k

ijw  as the initial value of the replication fractions 
for observation two and 1)(

0 4−∗ =k
ijw  for observation ten. 

Table 5.5 contains the jackknife weights for the 
fractionally imputed data set of Table 5.2. The replicate 
weights are used in the same way as replicates for a full 
sample. They are appropriate, with the caveats of the next 
section, for any statistic for which the full sample jackknife 
is appropriate. Thus the procedure is particularly appealing 
for a general purpose data set, because no additional 
computations are required of the analyst. 

The fully efficient estimator of the mean of y is obtained 
by treating the respondents as the second phase of a two 
phase sample. A two-phase variance estimator is 

,043.3
1

)(
1ˆ 2

2
2

1

2

1

2
FE =⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
+−= ∑ ∑

= =
Rg

gg g

g
Rg

g s
rn

n
yy

n

n

n
V  

where 2
Rgs  is the within cell sample variance for cell g . If 

we use the replication weights in Table 5.5, the replication 
variance estimate for the mean of y is 

.078.3)(9.0)(ˆ 2
FI

)(
FI

10

1
FIJK =−=∑

=
yyyV k

k

 

The difference between the linearized variance estimator 
and the jackknife variance estimator is 

∑
=

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
−−

−

2

1

2 .1
1

1g
Rg

g

g s
n

n

r

r
 

Thus, the jackknife variance estimator slightly overestimates 
the true variance in this example. 

  
Table 5.3 

Jackknife Replicates of Cell Mean of y – variable 
 

Replicate Cell 
1 2 3 4 5 6 7 8 9 10 

1 12.67 11.25 11.25 10.33 11.25 10.00 11.25 12.00 11.25 11.25 
2 4.33 4.33 4.33 4.33 5.00 4.33 2.50 4.33 5.50 4.33  

Table 5.4 
Jackknife Replicates of Cell Mean of the Dummy Variables of x – variable 

 

Replicate Cell Level of x 
1 2 3 4 5 6 7 8 9 10 

1 0.33 0.67 0.67 0.50 0.33 0.50 0.50 0.50 0.50 0.50 
2 0.33 0.00 0.33 0.25 0.33 0.25 0.25 0.25 0.25 0.25 1 
3 0.33 0.33 0.00 0.25 0.33 0.25 0.25 0.25 0.25 0.25 
1 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 
2 0.50 0.50 0.50 0.50 0.50 0.33 0.67 0.67 0.33 0.50 2 
3 0.50 0.50 0.50 0.50 0.50 0.67 0.33 0.33 0.67 0.50  

Table 5.5 
Jackknife Weights for Fractional Imputation 

 

Replicate Obs. 
1 2 3 4 5 6 7 8 9 10 

1 0 1.1111 1.1111 1.1111 1.1111 1.1111 1.1111 1.1111 1.1111 1.1111 
2 0.1664 0 0.3206 0.4205 0.3206 0.4563 0.3206 0.2392 0.3206 0.2724 
2 0.6559 0 0.4400 0.3002 0.4400 0.2500 0.4400 0.5540 0.4400 0.5075 
2 0.2888 0 0.3505 0.3904 0.3505 0.4048 0.3505 0.3179 0.3505 0.3312 
3 0.3706 0.3706 0 0.3706 0.3226 0.3706 0.5018 0.3706 0.2867 0.3706 
3 0.3697 0.3697 0 0.3697 0.5018 0.3697 0.0090 0.3697 0.6004 0.3697 
3 0.3708 0.3708 0 0.3708 0.2867 0.3708 0.6003 0.3708 0.2240 0.3708 
4 0.3703 0.7407 0.7407 0 0.3703 0.5556 0.5556 0.5556 0.5556 0.5556 
4 0.3704 0 0.3704 0 0.3704 0.2777 0.2777 0.2777 0.2777 0.2777 
4 0.3704 0.3704 0 0 0.3704 0.2778 0.2778 0.2778 0.2778 0.2778 
5 1.1111 1.1111 1.1111 1.1111 0 1.1111 1.1111 1.1111 1.1111 1.1111 
6 1.1111 1.1111 1.1111 1.1111 1.1111 0 1.1111 1.1111 1.1111 1.1111 
7 1.1111 1.1111 1.1111 1.1111 1.1111 1.1111 0 1.1111 1.1111 1.1111 
8 1.1111 1.1111 1.1111 1.1111 1.1111 1.1111 1.1111 0 1.1111 1.1111 
9 1.1111 1.1111 1.1111 1.1111 1.1111 1.1111 1.1111 1.1111 0 1.1111 
10 0.1624 0.2777 0.2777 0.3061 0.2777 0.2286 0.3474 0.3013 0.1520 0 
10 0.3931 0.2778 0.2778 0.2494 0.2778 0.1417 0.3934 0.4395 0.2185 0 
10 0.0932 0.2778 0.2778 0.3231 0.2778 0.4400 0.1483 0.0746 0.3171 0 
10 0.4623 0.2778 0.2778 0.2324 0.2778 0.3008 0.2220 0.2957 0.4235 0 
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6. Simulation Studies  
6.1 Study Parameters  

To study the properties of the imputation procedure we 
conducted a Monte Carlo study. The sample is a stratified 
sample with two elements per stratum and two imputation 
cells, where the cells cut across the strata. Cell one is 20% 
of the population in strata 1 – 25 and 80% of the population 
in strata 26 – 50. The probability of response is 0.7 for cell 
one and 0.5 for cell two. Two variables are considered. The 
variable D is always observed and defines a subpopulation. 
The probability that D = 1 is 0.25 for cell one and 0.40 for 
cell two. The variable y is subject to nonresponse with 
constant within-cell response probabilities. The variable D is 
independent of y and of the response probability. The 
variable y is normally distributed, where the parameters for 
a population of 50 strata are given in Table 5.1. In the data 
generating model of Table 6.1, there are no stratum effects. 
The parameters of interest are: mean1 =θ  of mean, 2 =θy  
of y for =θ= 3,1D  fraction of Y ’s less than two, =θ4  
fraction of Y ’s less than one.  

Table 6.1 
Parameter Set A 

 

   Cell One  Cell Two 

Strata 
Element 
Weight  Mean Variance  Mean Variance 

1 – 25 0.01  0.4 0.36  1.6 0.36 
26 – 50 0.01  0.4 0.36  1.6 0.36  

6.2 Estimation Procedures  
In the simulation M = 5 and M = 3 donors were used per 

recipient. Systematic samples were selected to serve as 
donors for each recipient. If the number of respondents in 
the cell is less then M, every respondent was used as a donor 
for every recipient and the ∗

ijw  are proportional to the 
original iw  of the respondents. If there are more than M 
respondents in a cell, the donors are ordered by size and 
numbered from one to .gr  Then the donors are placed in the 
order 1, 3, 5, 2,,,,, 31 KK −− ggg rrr  for gr  odd and the order 

2,,,,,,5,3,1 21 KK −− ggg rrr  for gr  even. The cumulated 
sums of the weights are formed and gm  systematic samples 
of size M are selected, where .ggg rnm −=  The cumulative 
sums are normalized so that the grand sum is one, a random 
number, ,NgR  between zero and gm2.0  is selected and the 

gm  samples are the systematic samples of size M defined 
by the donor associated with ,)1()1(2.0 1−−+−+ gNg mtsR  

5,4,3,2,1=s  for recipients .,,2,1 gmt K=  The initial 
imputation fraction for each donor is .1−∗ = Mwij  

The initial imputation fractions are modified using the 
regression procedure of (18). The donors in a cell were 
ordered from smallest to largest and the cumulative sum of 
the weights formed. Let 

∑
=

∈=
t

i
Rgitwg AiwS

1
][, ,,  (20) 

where ,,,2,1,][ gi riw K=  is the weight of )(, igy  and 

)(,)1(, ngg yy ≤≤K  are the ordered y – values in cell g. To 
define the boundaries of groups to be used to create 
indicator functions, let st∗  be the t for which  

}2.0:{max ,, gwtwgtwg sSSS ≤  

for s = 1, 2, 3, 4, where gwS  is the total of the weights of the 
donors in cell g. Define 

otherwise0

andif1 )(,1,

=

∈≤=
∗+ Rgtgisgi Aiyyz

s  
(21)

 

for s = 1, 2, 3, 4 and let ).,,,( 521 gjgjgjgj zzy K=z  The 
regression modified imputed estimator of the mean for each 
of the five variables in the z – vector is the fully efficient 
estimator of the respective mean. 

The k – deleted FE estimator of the cell mean of z  is 
defined in (19). The initial fractional weight for donor k to 
element j is set at .01.0)(

0
∗∗ = kj

k
kj ww  This initial weight 

assures that the final weight will be small, but permits 
regression adjustment. The final )(k

ijw∗  are computed using 
the regression procedure of (18) using the initial weight 

.)(
0
k

ijw∗    
6.3 Monte Carlo Results  

The Monte Carlo results for 5,000 samples generated by 
the parameters of Table 6.1 are given in Table 6.2 and Table 
6.3. Results are given for the full sample, for fractional 
imputation with 5 donors, fractional imputation with three 
donors, and for multiple imputation (MI) using the 
Approximate Bayesian Bootstrap (ABB) of Rubin and 
Schenker (1986) with M = 5 and ABB with M = 3.  Both the 
FI and MI procedures are unbiased for all four parameters of 
Table 6.2. The last column of Table 6.2 gives the Monte 
Carlo variance of the estimator divided by the Monte Carlo 
variance of the FI procedure with M = 5, expressed in 
percent. The FI procedure is five to ten percent more 
efficient than MI with M = 5 and 9 to 13 percent more 
efficient than MI with M = 3. 

Under the model, the mean of the observed values is not 
the best estimator of the domain mean. In this example, the 
FI estimator is about as efficient as the full sample 
estimator. The effect of a smaller number of observations is 
balanced by the use of a superior estimator of the mean for 
the domain. Under the model, the domain indicator is 
independent of the y values, given the cell. Therefore it is 
efficient to use all values in the cell as donors, not just 
respondents in the domain. 

The properties of the variance estimators are given in 
Table 6.3. The column headed “Relative Mean” gives the 
Monte Carlo estimated mean of the estimated variances 
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divided by the Monte Carlo estimated variance, where the 
Monte Carlo estimated variance is given in Table 6.2. Both 
variance estimation procedures appear to be nearly unbiased 
for the variance of the mean. The relative variance of the MI 
variance estimator for M = 5 is nearly twice that of the FI 
variance estimator for M = 5. For M = 3, the MI variance 
estimator is more than three times that for FI. The MI 
variance estimator has a large variance because the variance 
due to missing observations is estimated with four degrees-
of-freedom for M = 5 and with two-degrees-of freedom for 
M = 3. 

The MI variance estimator for the domain mean is 
seriously biased. This property was first identified by Fay 

(1991, 1992) and studied by Meng (1994) and Wang and 
Robins (1998). The FI variance estimator for the domain 
mean also has a positive bias, though much smaller than that 
of MI. The bias in the FI variance estimator can be reduced 
by increasing M, but the bias of MI has little relationship to 
M.  

All variance estimators for the variance of 4θ̂  are slightly 
negatively biased. We believe FI is slightly biased for 4θ̂  
because, although we use the z – vector, the weights are 
slightly smoothed by the regression procedure. MI is known 
to have a small sample bias. See Kim (2002). 

 
Table 6.2 

Mean and Variance of the Point Estimators Under Setup A (5,000 Samples of Size 100) 
 

Parameter Imputation Scheme Mean Variance Stand. Var. 
Mean Complete Sample 1.00 0.00570 67 

)( 1θ  FI(3) 1.00 0.00849 100 
 ABB(3) 1.00 0.00926 109 
 FI(5) 1.00 0.00849 100 
 ABB(5) 1.00 0.00903 106 

Domain Mean Complete Sample 1.14 0.02020 99 
)( 2θ  FI(3) 1.14 0.02050 100 

 ABB(3) 1.14 0.02230 109 
 FI(5) 1.14 0.02040 100 
 ABB(5) 1.14 0.02170 106 

)2(Pr <Y  Complete Sample 0.87 0.00104 51 
)( 3θ  FI(3) 0.87 0.00202 100 

 ABB(3) 0.87 0.00228 113 
 FI(5) 0.87 0.00202 100 
 ABB(5) 0.87 0.00223 110 

)1(Pr <Y  Complete Sample 0.50 0.00208 66 
)( 4θ  FI(3) 0.50 0.00313 100 

 ABB(3) 0.50 0.00342 109 
 FI(5) 0.50 0.00313 100 
 ABB(5) 0.50 0.00329 105  

Table 6.3 
Relative Mean, t – statistic and Relative Variance for the Variance Estimators Under Setup A 

(5,000 Samples of Size 100) 
 

Parameter Method Relative Mean (%)** t – statistic* Relative Variance (%) 
Mean FI(3) 100.1 0.05 5.66 

)( 1θ  ABB(3) 99.6  – 0.19 19.25 
 FI(5) 100.1 0.03 5.65 
 ABB(5) 98.2  – 0.89 9.95 

Domain Mean FI(3) 115.9 7.54 13.88 
)( 2θ  ABB(3) 127.9 12.72 28.88 

 FI(5) 106.6 3.14 11.62 
 ABB(5) 128.4 13.43 20.03 

)2(Pr <Y  FI(3) 103.9 1.86 13.90 
)( 3θ  ABB(3) 100.8 0.36 48.42 

 FI(5) 101.7 0.82 12.07 
 ABB(5) 98.5  – 0.67 25.10 

)1(Pr <Y  FI(3) 98.5  – 0.75 4.67 
)( 4θ  ABB(3) 96.3  – 1.80 18.51 

 FI(5) 97.6  – 1.20 4.45 
 ABB(5) 96.7  – 1.65 10.17 

 

*   Statistic for hypothesis that the estimated variance is unbiased. 
** Monte Carlo mean of variance estimates divided by Monte Carlo variance of estimates, in percent. 
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In a second set of parameters, denoted by C, the means 
were as follows: 
 

4.0 25;1 strata of 1 Cell =μ−  
0.3 50;26 strata of 1 Cell =μ−  

1.625;1 strata of 2 Cell =μ−  
2.2.50;26 strata of 2 Cell =μ−   

All other parameters are the same as in parameter set A. The 
properties of the estimators are given in Table 6.4. Both FI 
and MI produce unbiased estimates of the means and of the 
domain mean. As with parameter set A, the FI procedure is 
eight to twelve percent more efficient than MI for M = 5 and 
14 to 16 percent more efficient for M = 3. 

The assumptions required for MI variance estimation are 
not satisfied for parameter set C. Therefore the MI estimated 

variance is seriously biased for all parameters. See Table 
6.5. The bias in the MI estimated variance with M = 5 is 
about 17% for the variance of the overall mean and nearly 
50% for the domain mean. The bias of the MI variance of 
the mean for a binomial variable is smaller than the bias for 
the mean of the continuous variable because the stratifica-
tion effect is smaller for the binomial variable. 

The properties of the estimated variances for the FI 
procedures are similar to those for setup A. There is a 
positive bias for the variance of the domain mean of about 
23% for M = 3 and about 6% for M = 5. 

The variance of the MI estimated variance is 2.4 to 3.5 
times the variance of the FI estimated variance for M = 5 
and 3 to 7 times for M = 3, demonstrating the clear supe-
riority of the FI variance estimator for this configuration.  

Table 6.4  
Mean and Variance of the Point Estimators Under Setup C (5,000 Samples of Size 100) 

 

Parameter Imputation Scheme Mean Variance Stand.Variance 
Mean Complete Sample 2.10 0.00500 48 

)( 1θ  FI(3) 2.10 0.01050 100 
 ABB(3) 2.10 0.01220 116 
 FI(5) 2.10 0.01050 100 
 ABB(5) 2.10 0.01150 110 

Domain Mean Complete Sample  0.02530 102 
)( 2θ  FI(3) 2.01 0.02510 101 

 ABB(3) 2.01 0.02850 115 
 FI(5) 2.01 0.02480 100 
 ABB(5) 2.01 0.02710 109 

)2(Pr <Y  Complete Sample  0.00127 45 
)( 3θ  FI(3) 0.45 0.00281 100 

 ABB(3) 0.45 0.00322 115 
 FI(5) 0.45 0.00280 100 
 ABB(5) 0.45 0.00314 112 

)1(Pr <Y  Complete Sample  0.00107 54 
)( 4θ  FI(3) 0.15 0.00199 100 

 ABB(3) 0.15 0.00226 114 
 FI(5) 0.15 0.00199 100 
 ABB(5) 0.15 0.00214 108  

Table 6.5 
Relative Mean, t – statistic and Relative Variance for the Variance Estimators Under Setup C (5,000 Samples of Size 100) 

 

Parameter Method Relative Mean (%) t – statistic* Relative Variance (%) 
Mean FI(3) 100.9 0.41 6.42 

)( 1θ  ABB(3) 116.7 7.31 40.14 
 FI(5) 100.8 0.39 6.42 
 ABB(5) 117.1 7.99 22.29 

Domain Mean FI(3) 122.7 10.78 16.23 
)( 2θ  ABB(3) 144.4 19.79 46.05 

 FI(5) 106.1 2.95 11.95 
 ABB(5) 148.7 22.51 32.49 

)2(Pr <Y  FI(3) 104.4 2.18 6.63 
)( 3θ  ABB(3) 114.7 6.54 42.32 

 FI(5) 101.8 0.89 6.42 
 ABB(5) 112.1 5.74 20.67 

)1(Pr <Y  FI(3) 102.3 1.13 11.08 
)( 4θ  ABB(3) 101.3 0.58 39.14 

 FI(5) 99.9  – 0.04 10.05 
 ABB(5) 102.2 1.04 23.60 

   * Statistic for hypothesis that the estimated variance is unbiased. 
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7. Summary  
In fractional imputation, several donors are used for each 

missing value and each donor is given a fraction of the 
weight of the nonrespondent. If all donors are used, the 
procedure is fully efficient, under the model, for all 
functions of a y – vector. It is shown that the use of fractional 
imputation with a small number of imputations per non-
respondent can give a fully efficient estimator of the mean. 
Estimates of other parameters, such as estimates of the 
cumulative distribution are nearly fully efficient. 

Fractional imputation permits the construction of general 
purpose replicates for variance estimation. A single set of 
replicates can be used for variance estimation for imputed 
variables, variables observed on all respondents, and under 
model assumptions, for functions of the two types of 
variables. The replicates give estimates of the variances of 
domain means with much smaller biases than those of 
multiple imputation. The bias goes to zero as M increases 
and, in the simulation, is modest for M = 5. The replication 
variance estimator is easily implemented with replication 
software such as Wesvar. 

Fractional imputation with a fixed number of donors per 
recipient is slightly more efficient for the mean than 
multiple imputation with the same number of donors. 
Fractional imputation gives variance estimates with smaller 
bias and much smaller variance than multiple imputation 
estimators with the same number of imputations. 
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