
Using Predictive Maintenance techniques and Business Intelligence to develop

smarter factory systems for the digital age

by

Tejaswini Vuyyuru

A creative component report submitted to the graduate faculty

in partial fulfillment of the requirements for the degree of

Master of Science

Major: Information Systems

Minor: Statistics

Program of Study Committee:

Dr. Sree Nilakanta, Major Professor

Dr. Jim Davis

Dr. Will Meeker

The student author, whose presentation was approved by the program of study

committee, is solely responsible for the content of this report. The Graduate College will

ensure this report is globally accessible and will not permit alterations after a degree is

conferred.

Iowa State University

Ames, Iowa

2018

Copyright © Tejaswini Vuyyuru, 2018. All rights reserved.

ii

TABLE OF CONTENTS

Page

LIST OF FIGURES ... iii

NOMENCLATURE .. iv

ACKNOWLEDGMENTS .. v

ABSTRACT ... vi

CHAPTER 1. INTRODUCTION ... 7

Age of Digital Transformation .. 8
Scope and Outcome ... 10

CHAPTER 2. LITERATURE REVIEW .. 11
Need for Predictive Maintenance within Industries .. 11

Business Intelligence to provide predictive maintenance .. 12

CHAPTER 3. RESEARCH DESIGN ... 13
System Specifications .. 13

Methodology .. 14

CHAPTER 4. DATA DICTIONARY .. 15

Data Generation and Structure .. 16

CHAPTER 5. EXPLORATORY DATA ANALYSIS ... 20

Missing Values Treatment ... 20
Anomaly detection and Outlier Treatment .. 21

CHAPTER 6. REAL-TIME IGNITION DASHBOARD ... 23

Design Features ... 23
Functional Features .. 24

CHAPTER 7. CONCLUSION.. 28

REFERENCES ... 29

APPENDIX ... 30
Data load Scripts on Ignition Server .. 30
Tag Scripts on Ignition Server ... 39

Tag Scripts for non-test stand stations on Ignition Server ... 39

iii

LIST OF FIGURES

Page

Figure 1: Design of Stations and Test Stands in an Assembly line 17

Figure 2: Sections of a product on the assembly line ... 17

Figure 3: H1 Tandem Time at Station XX 3-14 Shift 1 ... 20

Figure 4: Work time and Wait time of Station 10 .. 21

Figure 5: Ignition Interface showing the real-time dashboard system 25

Figure 6: Final Frontend display of the dashboard in the production facility 25

Figure 7: Shift Analysis across stations with work time and wait time 26

Figure 8: Work time of Station 10 during the first shift ... 27

iv

NOMENCLATURE

 CBM Condition-Based Maintenance

 UI User Interface

 MES Manufacturing Executive System

 SAP Systems, Applications and Products

 IT Information Technology

 EDA Exploratory Data Analysis

 PLC Programmable Logic Control

 OEE Overall Equipment Effectiveness

 FPY First Pass Yield

v

ACKNOWLEDGMENTS

I would like to express my sincere gratitude to our Head of the Committee and

Major Professor Dr. Sree Nilakanta, for always being as a significant support to reach great

heights and is an inspiration to set sky as the limit in attaining knowledge and face the

practical side of various subjects.

My special thanks to Dr. Jim Davis, for taking time out of his busy schedule and

spending invaluable time with me, thus, motivating me to put together this report in a

structured format to yield best results.

 My sincere thanks to Dr. Will Meeker, Minor Professor for accepting my offer to

be on the committee representing Statistics as my minor subject and for his guidance and

support throughout the course.

In addition, I would also like to thank my manager at Danfoss, friends, colleagues,

the department faculty and staff for making my time at Iowa State University a wonderful

experience.

vi

ABSTRACT

The aim of the project is to increase the productivity of Danfoss’ assembly lines

across the manufacturing facility at Ames, Iowa by continuously monitoring the

performance with the help of a real-time tracking tool. The efficiency of the employees at

each of the stations in the assembly lines, the time taken to procure the products or parts,

the test time and the paint time, all impact the performance and production rate within the

facility. Also, keeping few attributes constant, the time taken for the machines to pass a

particular station within an assembly line determines the health of the assembly line and

requires continuous monitoring. Minute errors on the assembly lines could stall production

for hours resulting in an immense loss to the giant manufacturing companies like Danfoss.

Therefore, the project is about implementing an algorithm that will monitor both

the number of workers per shift per day at the assembly lines and the status of the machines

on the line as they pass through each station on the assembly lines. On the other hand, a

user-interactive dashboard allows the workers to monitor their progress versus the expected

progress for the day. The live dashboard is scalable to other Danfoss assembly lines as a

daily monitoring system.

Keywords: Business Intelligence, Predictive Maintenance, Analytics, Machine

Learning, Manufacturing, Time series Analysis

7

CHAPTER 1. INTRODUCTION

The Danfoss Group is a manufacturer of products and services used in cooling food,

air conditioning, heating buildings, controlling electric motors, compressors, Variable

frequency drives and powering mobile machinery. The company is also active in the field of

solar and wind power as well as district heating and cooling infrastructure. Danfoss employs

approximately 24,000 people (Wikipedia, 2017) worldwide with its headquarters in Nordborg,

Denmark.

Danfoss was founded in 1933 by Mads Clausen and is today almost entirely owned by

The Bitten and Mads Clausen Foundation. In 2002 Danfoss joined the United Nations Global

Compact, consisting of nine principles with social and environmental responsibility. The

company has an annual sales turnover of 29.2 billion DKK (2016) and has sales companies in

47 countries and 56 factories in 18 countries around the world. Their distribution network for

solar inverters covers 82 distributors and wholesalers across 27 different countries.

Danfoss has four segment – Power Solutions, Heating, Cooling and Drives. For a major

B2B company like this, procuring raw materials, assemble them according to the needs of the

customer and delivering them is very important to retain their market and create a value

proposition. The production facilities are the most essential powerhouses where the products

are assembled, packed and shipped to the end consumer. As a result, the maintenance of the

production facility requires significant attention to make sure that everything is in place thus,

ensuring smooth production activities.

8

Age of Digital Transformation

Big Data Analytics has become an essential segment of every organization. Be it a

manufacturing firm with operations in more than 100 countries or a start-up emerging as a

future leader in the market, demands the capability to predict future events. Especially in this

digital age, when enormous data is readily available, all one needs to do is to devise

methodologies to process this data and derive trends which help in understanding what can be

improved. Predictive Maintenance is one such field within Predictive Analytics of the four

types of Analytics namely:

• Descriptive Analytics

• Diagnostic Analytics

• Predictive Analytics

• Prescriptive Analytics

Today, a large number of modern manufacturing companies are starting to incorporate data

analytics and machine learning in their production and manufacturing process. For an

organization like Danfoss, having Digital Transformation as one of the behaviors of its thought

leaders, Predictive Maintenance is a niche area with several engineers pushing to understand

the trends within the data. There are several organizations and business processes incorporating

predictive maintenance thereby, not only building the capability to tell when a device failure

can occur but also prevent the failure from occurring in the first place. This kind of predictive

systems allows these companies to plan machine maintenance adaptively rather than on a fixed

schedule. The purpose of such a system is to improve quality control, product quality and

reduce costs, by forecasting equipment breakdowns and scheduling maintenance before they

9

occur. Besides providing all these benefits, this would also improve the accuracy of detecting

such failures and optimize periodic maintenance operations that are carried out.

Predictive Maintenance is also about developing a real-time monitoring system to

strictly keep tabs in order to eliminate any possible production breakdowns. It is a cost-saving

business strategy to minimize loss and increase profits. To emphasize it enables leaders to

make better decisions to:

• increase/decrease the workforce during the shift,

• analyze the number the production systems or assembly lines used for

production

• manage inventory

• plan delivery

• build robust logistics and manage supply chain

• study the performance and to improve the efficiency of a system

10

Scope and Outcome

This project consists of two parts, where the first part is to analyze the data to identify

faults patterns and the second part is to develop and design a user-interactive and real-time

monitoring system to study the performance of the production lines. The future scope of this

project is to feed this analysis into a system which will learn over time to predict the best

estimation of Time to failure for the assembly line, based on early identification of unexpected

events. This will allow the company to repair the machine before it breaks, saving cost and

minimizing machine downtime.

The final outcome is to have:

• A design framework to consume existing assembly line data

• A business intelligence framework for dynamic display of trends in data

• A real-time on the floor monitoring system to examine the efficiency and performance

of the assembly lines

11

CHAPTER 2. LITERATURE REVIEW

Having a dynamic system to monitor business process across production facilities

continuously results in eminent maintenance. As a result, there is an increased performance

which further reduces the repair cost drastically. Given the advantages of incorporating such

intelligent systems in the production facility, organizations are tremendously investing in

research and development associated with improving the industry best practices.

Need for Predictive Maintenance within Industries

The fundamental purpose of maintenance of any business is to provide the required

capacity for production at a lower cost. It should be regarded as a “reliability” function and not

as a repair function (Beebe, Ray S. 2004). Predictive Maintenance or condition-based

maintenance (CBM) is an attempt to forecast the imminent occurrence of a failure to assist an

intervention and therefore, preventing the failure in the first place (Eisemann RC. 1998). This

predictive maintenance has resulted in minimizing the cost of maintaining the machines in

production facilities, improve operational safety and reduce the quantity and severity of in-

service machine failure. (Rao, B. K. N. 1996).

On the other hand, Big Data platforms provide a scalable, robust and low-cost option

by deriving insights from the historical data (Mohanty, S.; Jagadeesh, M.; Srivatsa, H. 2013).

Predictive Maintenance which is a subset of the Big Data systems provides a holistic approach

to study the business process and accelerates the decision-making process. Hence, a diagnosis

of the fault of an assembly line when scaled at a production facility level should be coupled

with predictive decision-making systems.

12

Business Intelligence to provide predictive maintenance

The primary aim of shifting the focus toward Big Data especially in the manufacturing

industry is to minimize the downtime cost and improve efficiency and performance. Deloitte,

a giant consulting firm, through its market research, confirmed that implementing advanced

analytical processes results in about 10 - 20% increase in the equipment uptime and availability

(Deloitte Consulting, 2017). Although the results of Predictive Maintenance are far fetching,

robust methodologies and business models should be developed to yield insightful outcomes.

The foremost required to designed strong business models for predictive maintenance

is to have a continuous stream of sensor data also known as time series data which records the

time at which the operations take place. The entire data is a series of timestamps collected over

a period of time (Perera, Srinath; Alwis, Roshan; 2017). The time series data is implemented

in Business Intelligence (BI) systems to understand “what has happened” followed by deriving

actionable insights about “what can be done.” There it is utmost important to understand the

“what” portion before arriving at the step to prevent an event from occurring in the first place

as in predictive maintenance. (Walker, Peter; ComputerWeekly; Information Builders; 2011).

13

CHAPTER 3. RESEARCH DESIGN

Danfoss has a robust system to generate, store and process the production data. The

company has sensors on machine lines, which monitors and collect data timely (putting a

timestamp on it). The data is continuously generated and stored on the SAP system within the

production IT domain. This data collected from the SAP system consists of several tables

which require to be aggregated and merged together. This data should be further linked to the

sensor data to obtain the time stamp data for assessing the time taken for the products to pass

through each station on the assembly line. This paper addresses the general challenges of

obtaining data access, aggregation, and preliminary trend analyses and developing

requirements.

System Specifications

The end system created has the following functional requirements:

• Analytics Dashboard: A real-time user-interactive dashboard is built. This

dashboard is placed on a screen in the production facility to deliver live updates

across the entire facility by tracking the performance and efficiency across the

assembly lines

• Predictive analytics: The dashboard system can also analyze the data and within

a degree of certainty, predict if the performance is lower or higher with respect

to historical data

• Historical analytics: The system also displays the varying trends throughout a

particular shift for any historical data

14

Methodology

The data required to initiate the analysis is extremely sensitive from the organization’s

point of view. It is important to get access to the data by following a Danfoss protocol of taking

the IT security training and then requesting to be mapped to the server. The dashboard should

be developed by utilizing the existing Danfoss tech stack, namely Industrial Automation’s

Ignition. This solution provides the basis of the User Interface (UI) and displays functionality,

the data should be fed into the system by extracting the required tables from the server. Data

will be gathered and sanitized from the existing Manufacturing Executive Systems (MES)

database structure wherein Danfoss stores all relevant product line statistics.

All the assembly lines have sensors across each of the stations in the production facility.

These sensors emanate data continuously with a timestamp assigned to each product that passes

through the stations. This real-time data is stored in several fragments within the MES on the

production IT. There are about ten different tables which different data pertaining to the

product type, model, specification and time. The data from all these tables are aggregated into

a single large dataset to carry out the initial descriptive analyses to understand the data. The

various types of initial analyses were to visualize the trends in Excel to find the outliers and

handle missing values. major

The design features of the dashboard had to be determined to answer several questions

which enable data-driven decision making feasible. The dashboard should be insightful for the

leadership team. Therefore, several discussions and brainstorming with a wide range of

stakeholders have been made as a priority in the pipeline.

15

CHAPTER 4. DATA DICTIONARY

The data is stored in several fragments on the SAP server controlled by the production

IT of Danfoss. The data has to be linked to the Ignition server on which the real-time dashboard

is required to be developed. However, before linking the data, there is an utmost need to study

the data and understand the structure. As the final dataset should be created by combining

several attributes of all of these small fragments, the data should be studied for primary keys

on which all of these datasets should be merged.

The following information is retrieved from all the individual tables:

• The plant code of the production facility code. For instance, the plant location

has a code “1501”

• An ID which is linked to a product description namely H1 Tandem or H1

single, S90 Pump or S90 motor and so on

• A line number stating the type of product to be assembled or tested in a

particular line. It also gives us the information about the paint lines of a specific

product

• A log data file consisting of a unique “Serial number” and a “Pallet Serial

Number” along with the time stamp data. The serial number is associated with

the product and the pallet serial number is the container on which the product

moves through various stations of the assembly line

• A called procedure code describing the action that is performed on the product

• A station code along with a cell id and a pass or a fail flag

16

• A component ID and a component structure explaining the parts which are used

in all the steps of assembling the final product. It also describes the part and

links it a specific part ID

• A genealogy data explaining the product class and the parent product. It also

has the information to link back to the pallet and the product serial number

• A customer code stating the entire customer information. It also gives the price

of the final product and the number of products ordered along with the estimated

delivery date. This information supports in keeping track and planning the

production of a particular product order

Most of this information is extremely sensitive and sharing any information containing the

exact column names or the attribute names does not comply with the security of Danfoss. Also,

any alterations to the datasets in the server could stall production for days. Therefore, an extract

of the original data on the server has been created for the initial testing phase until a final sign-

off has been obtained.

Data Generation and Structure

The stations are serially aligned on the assembly lines in the production facility. As the

parts are assembled to form a final product, the pallet moves on from one station to another. If

a pallet is being processed at a station and the pallet in the previous has been already released,

then it waits until the pallet at the current station is entirely processed and released. This

amounts to the wait time of that model or product at that station. This wait time is arithmetically

increasing especially when a product reaches the test station. There are two stations to test the

front part of the product and the rear part of the product. In addition, by the way, the stations

are designed on an assembly line, it is given that the test times are enormously high and so are

17

the wait times. The following flow of the stations gives a better picture of how the stations are

designed.

Figure 1: Design of Stations and Test Stands in an Assembly line

The parts of a product are assembled one after the other sequentially starting from

Station 10 and ending at station 460. The product on an assembly line is first made in sections

as shown on the diagram below:

Figure 2: Sections of a product on the assembly line

FRONT and REAR elements are assembled one after another on stations 10 through

125; the CENTER is assembled on stations 130 and 135. In the next step, on station 140 all 3

elements (FRONT, CENTER and REAR) are put together and from there they run through

stations 460 until the end as one piece. The station 460 continues into the paint line which is

fully automatized with the help of robotic machines.

18

There are interim stations between station 10 and station 120 with the notation as

station 1110. Similarly, the interim station between station 120 and 125 is denoted as station

1120. These are the wait stations where the pallet waits until the pallet in the front is completely

processed and moved. Work times on stations 10, 120, 125 can be calculated by subtracting

time stamps of 1110 and 10, 1120 and 120, 1125 and 125 respectively. The wait times between

stations 10 and 120 and 125 are calculated by subtracting timestamps between 120 and 1110

and 125 and 1120 respectively. In similar fashion, the work times on stations 130 and 135 can

be calculated by subtracting timestamps of 1130 and 130 and 1135 and 1135 respectively.

FRONT, REAR and CENTER pieces wait time is calculated as timestamp difference

of 140 and 1125 for both FRONT and REAR (they are separated into the first two rows of each

unique serial number). Also, the FRONT piece is in the first line and REAR piece is in the

second line and they have different queue times. The CENTER piece wait time is calculated

as a difference of 140 and 1135. The work time in station 140 is calculated as a difference of

1140 and 140. Now the work progresses in the very same fashion all the way to station 170.

After station 170 we have an entry 85 where station 85 is not a physical station, but

rather a time at which a unit completes air tightens test at station 170. So, work time in station

170 is calculated as a difference between 85 and 170. At this stage, the data is merged with the

test stand database. Unique serial numbers can be matched between the two test stands datasets

and the station datasets. Test stands have entries indicating a test start time. Thus, the wait time

after completion of work at station 170 (timestamp 85) is calculated by subtracting the test

stand start time from the time stamp at the station 85. Test stand also gives us elapsed time of

a test duration. Some serial numbers tests are re-started and those are shown as FAIL status in

the results. The failed test time stamp is recorded at the time stamp of station 255. It could take

19

several test iterations before the product has a PASS flag and it shifted to the paint line. As a

result, the time stamp at station 255 records only last unsuccessful test event. Therefore, if a

unit is tested for 4 times before it finally makes it through, the time stamp of the 4 attempts is

recorded at station 255. Test completion is calculated as test start plus elapsed time.

After completing the testing phase, the unit is moved to station 1200. The duration of

the process of product moving from test stand to station 1200 can be calculated as a difference

between of the time stamp between station 1200 and the calculated time of a successful test

completion. As a final step, the product passes through station 460. This station marks the end

of work on station 1200 and the product has consecutively completed assembly and test of one

tandem pump unit before proceeding to the paint line.

As a product moves through each of these stations, the sensors placed at the respective

station records the event of time at which the assembly of the product is completed. The

product then moves from one station to the next as shown in Figure 1. The data is real-time

sensor data which is recorded sequentially as the product moves from station 10 to station 460.

20

CHAPTER 5. EXPLORATORY DATA ANALYSIS

Exploratory Data Analysis (EDA) is a significant step in the whole process. The final

dataset created by joining various datasets should be analyzed and studied for outliers and

missing values. Also, the trends in the data should be studied to identify the logic behind the

data and further plan our next steps in the process. In addition, EDA helps in identifying the

critical features of the dataset like treating the missing values, detecting anomalies within the

data and removing the outliers. As discussed earlier, the dataset consists of timestamp values

across all stations of the assembly line as shown below:

Figure 3: H1 Tandem Time at Station XX 3-14 Shift 1

Missing Values Treatment

The final dataset consists of several empty values. There is no timestamp value for the

stations for some of the model numbers. This can be interpreted as that the product or the unit

has been built during the time frame of the previous shift. Also, there could be a scenario where

a product was starting during a particular shift, but the testing was carried onto the next shift.

Consequently, the product completion time would be recorded in the next shift and the

timestamp would not be recorded for that station in that shift. If this scenario occurs for more

than two stations sequentially, then the time differences would be zero.

Further, the time recorded at the test stands are sometimes corrupted during a failed

test. Thus, there could be entries of the format “23:57:###” which are most likely to be ignored.

These values should be replaced with zero for our calculations.

Model Serial No PALLET 10 1110 120 1120 125 1125 130 1130 135 1135 140 ID1140 ID145 ID1145 460

83024138 A181049207 013 3/14/2018 10:49:48 AM 3/14/2018 10:50:43 AM 3/14/2018 10:51:27 AM 3/14/2018 10:54:04 AM 3/14/2018 11:03:33 AM 3/14/2018 11:04:51 AM 3/14/2018 11:12:08 AM

83024138 A181049207 021 3/14/2018 10:51:40 AM 3/14/2018 10:52:53 AM 3/14/2018 10:54:18 AM 3/14/2018 10:55:25 AM 3/14/2018 11:05:13 AM 3/14/2018 11:06:30 AM 3/14/2018 11:10:01 AM 3/14/2018 11:12:08 AM

83024138 A181049207 026 3/14/2018 10:55:53 AM 3/14/2018 11:00:04 AM 3/14/2018 11:04:16 AM 3/14/2018 11:06:28 AM 3/14/2018 11:10:07 AM 3/14/2018 11:12:09 AM

83024138 A181049207 BASE 3/14/2018 11:18:53 AM 3/14/2018 11:21:29 AM 3/14/2018 1:02:53 PM

83024138 A181112446 011 3/14/2018 10:56:55 AM 3/14/2018 10:57:19 AM 3/14/2018 10:58:03 AM 3/14/2018 11:01:00 AM 3/14/2018 11:13:04 AM 3/14/2018 11:14:24 AM 3/14/2018 11:23:42 AM

83024138 A181112446 023 3/14/2018 10:58:34 AM 3/14/2018 10:59:41 AM 3/14/2018 11:01:22 AM 3/14/2018 11:02:06 AM 3/14/2018 11:15:07 AM 3/14/2018 11:16:14 AM 3/14/2018 11:22:01 AM 3/14/2018 11:23:43 AM

83024138 A181112446 035 3/14/2018 11:07:20 AM 3/14/2018 11:09:58 AM 3/14/2018 11:19:04 AM 3/14/2018 11:21:42 AM 3/14/2018 11:22:04 AM 3/14/2018 11:23:44 AM

83024138 A181112446 BASE 3/14/2018 11:26:41 AM 3/14/2018 11:28:45 AM 3/14/2018 1:14:38 PM

21

Anomaly detection and Outlier Treatment

The dataset consists of work times and wait times. Some of the work times could be

exceptionally low and on the other hand, some of the wait times could be exceptionally high.

This difference occurs in a case where a product or unit is being tested around lunch time. The

workers on the test stand should have their lunch during the designated time frame. Hence, the

product is left to stand there throughout the whole period while the unit behind it on the

assembly line has already been waiting for a while to be tested. As a result, when all these time

differences are converted into seconds for our analysis, we can see that the data is greatly

skewed to the left.

Figure 4: Work time and Wait time of Station 10

Daily values start with the first shift from 6:00 AM to 2:00 PM. Followed by the second

shift from 2:00 PM to 10:00 PM and the third shift from 10:00 PM to 6:00 AM the next day.

These shifts do not account for the lunchtimes and the break times and the sensors are active

during this time as well, continuously recording the time for a unit at a station in an assembly

0

1000

2000

3000

4000

5000

6000

7000

8
3
0
1
5
4
6
7

8
3
0
4
7
5
7
5

8
3
0
4
6
1
2
8

8
3
0
3
8
4
6
8

8
3
0
1
1
3
6
8

8
3
0
4
2
3
9
6

8
3
0
4
6
3
9
4

8
3
0
0
9
7
8
4

8
3
0
3
7
3
4
0

8
3
0
4
1
9
6
8

8
3
0
1
5
9
5
2

8
3
0
2
4
2
7
9

8
3
0
4
1
0
0
6

8
3
0
6
0
4
8
6

8
3
0
3
3
9
1
6

8
3
0
3
0
9
7
9

8
3
0
0
2
5
7
3

8
3
0
4
5
0
1
7

8
3
0
3
6
8
0
0

8
3
0
2
7
9
5
9

8
3
0
2
0
8
8
0

8
3
0
3
0
5
0
9

8
3
0
6
3
9
7
6

8
3
0
1
2
7
9
2

8
3
0
3
5
3
3
5

8
3
0
5
8
1
2
5

8
3
0
2
8
6
0
8

8
3
0
2
5
1
0
3

8
3
0
5
3
3
5
5

8
3
0
4
2
4
0
4

8
3
0
6
4
3
9
9

8
3
0
2
5
4
6
8

8
3
0
2
0
7
7
9

8
3
0
5
2
0
4
0

8
3
0
4
3
4
1
4

8
3
0
5
8
4
9
1

8
3
0
3
3
8
9
9

8
3
0
4
0
5
4
2

8
3
0
6
4
4
5
8

8
3
0
5
7
3
8
5

8
3
0
1
0
6
5
9

8
3
0
5
6
9
6
3

8
3
0
0
5
7
5
2

8
3
0
5
5
9
5
7

8
3
0
5
8
1
8
7

8
3
0
4
5
8
9
4

8
3
0
6
0
9
5
6

8
3
0
4
5
5
6
1

8
3
0
3
3
1
1
1

8
3
0
2
4
3
3
6

8
3
0
2
0
4
2
6

8
3
0
6
4
4
5
3

8
3
0
2
6
2
9
6

8
3
0
3
2
9
5
8

8
3
0
6
0
0
6
6

8
3
0
3
3
5
2
8

8
3
0
3
9
2
9
3

8
3
0
0
6
6
6
8

8
3
0
6
3
4
1
1

8
3
0
1
6
1
1
9

8
3
0
6
5
1
9
2

T
im

e
is

 s
ec

o
n

d
 i

n
 t

h
o

u
sa

n
d

ss

Model Number

Work time versus Wait time of Station 10

Sum of Sum of ST_10 Sum of Sum of STQ_1010

22

line. Thus, this time gets added into either work time or wait time. Subsequently, this time

should be removed from the timestamps depending on the data. As a consequence, the

skewness is reduced by a great extent.

Moreover, the data should follow a normal distribution to analyze the average time

taken by a product across each station. The skewness of the data is removed as outliers and the

data is normalized. Anything outside this normal distribution would be considered as an outlier.

To normalize the data, it is therefore required to anchor the distribution on the low end and

mean-time and ignore the remaining portion of the data where the time differences are too low

for analyses. This will set expectations of high performance across the assembly lines.

The data is not analyzed for stationarity or correlation as the primary focus is to clean

the backend data to be able to improve the quality of the dashboard. So, most of the data is

manually cleaned by identifying the extreme time difference between the stations. These

outlier values are eliminated from being considered in the pool of acceptable time differences

where the dashboard displays a red color.

The performance estimation and time difference information entitle the engineers to

detect any anomalous behavior across the assembly line. Any time difference value

significantly higher than the average work time or wait time of a station from the historical

data must be carefully studied and the insights should be a part of the continuous improvement

of the production facility. The main reason behind studying the historical trend is because the

data is highly auto-correlated, implying that the present values largely depended on the past

values. As a result, there was a significant impact on the time series data accommodating

explanations to either addition staffing during a shift or increasing the assembly lines in the

facility or to have additional test stands.

23

CHAPTER 6. REAL-TIME IGNITION DASHBOARD

After obtaining a complete understanding of the data and the data dictionary, a data

connection is made from the Ignition Server to the SAP server to extract all the required

datasets. As a result, the entire data is available real-time, thus, eliminating the process of

storing the data on another platform. The production numbers are taken from the queries and

the data is loaded into the Ignition server. As discussed, the MES data earlier, this data will

update each time a trigger is issued from a Programmable Logic Control (PLC).

Design Features

The dashboard is real-time and is displayed on a screen which is installed in the production

facility for continuous monitoring. The system has the following non-functional features:

• Performance: The system can dynamically update and respond to changes in the data

• Security: The system is secure as it is interacting with Danfoss’s production database.

Also, the access is restricted to only a few engineers working on the project

• Stability: The system is stable and can withstand downtime due to production

malfunctions and there was a maximum uptime to continue running analytics on the

assembly line

• Scalability: The system is scalable to many assembly lines without needing any

additional setup

• Maintenance and usability: The system is easy to maintain by Danfoss employees as it

is built on their internal production IT interface. Any bugs or errors are easily fixed,

and the system is put into running effectively immediately

24

Functional Features

The dashboard application translates a given assembly line data into a visual

representation to build predictive maintenance capabilities in the production facility. The

application generates an analytic functionality after being trained with assembly line data. The

system is capable of locating any possible discrepancies or negative trends in the data and

therefore provides an interface with the existing Danfoss technology stack by extracting the

data from the PLCs in real time. Besides, the machine can generate an alert in real time upon

occurrence of a failure.

There are productive measures displayed on the dashboard. The production number is

one attribute which is calculated which is a measure for the total number of units produced in

a particular shift along with the difference between the expected value and actual value of the

produce. Shift Productivity is a measure of the total units completed versus the total number

of units planned. In turn, units planned is a measure of the number of workers in the shift in an

assembly line and the time of the shift. Further, it gives the measure of the Overall Equipment

Effectiveness (OEE) across the shift. Furthermore, the First Pass Yield (FPY) and the number

of units which cleared the test stand are also shown along with the time remaining in a shift.

The circle in the current Dashboard is already calculating FPY measure based on a fixed rate

of 1 unit per 6 minutes.

25

Figure 5: Ignition Interface showing the real-time dashboard system

The front-end look of the dashboard which is displayed on the screen on the floor has

the circle replaced by a donut showing the overlap of the colors if the production is trailing or

leading.

Figure 6: Final Front end display of the dashboard in the production facility

26

The dashboard simultaneously demonstrates the wait times and the work times across

the individual stations as well as the flow of the unit from one station to another. The average

times across the stations throughout the shift is also stated across each station. The time

represented in green is the work time and the time represented in red is the wait time. The

horizontal line in yellow is a measure of the station having the highest efficiency or

performance when compared to all the other stations.

Figure 7: Shift Analysis across stations with work time and wait time

27

It is essential to draw the attention to examine the trend of the work time or wait time

across each station. Any notable difference in this trend assists in focusing at that particular

station.

Figure 8: Work time of Station 10 during the first shift

28

CHAPTER 7. CONCLUSION

The project is aimed at building an algorithm or a real-time monitoring system meant

to increase the productivity of Danfoss’ assembly lines. The system will monitor both the

efficiency of the workers and the status of the machines on the line. This will send flags to the

administrators should any of the allowed tolerances not be met. The user-interactive analytical

framework allows the workers to monitor their own progress versus the expected progress for

the day. The dashboard enables the continuous improvement team to determine the need and

identify the scope for enhancing the business process within the production facility. The

primary focus is to have the clean data to be the source for developing the dashboard for

sending out prompts or alerts dynamically. Most of the historical data is cleaned by eliminating

the vast considerable time difference of more than 7200 seconds between stations. Also, most

of the missing data is replaced with zeros to reduce the complexity in data cleaning.

This dashboard when scaled across the entire organization, reduces the production loss

due to downtime as it sends alert messages if a station takes longer than usual wait time. From

a test stand-point of view, it supports the understanding of the frequency at which each product

or unit is tested before the final step. Hence, the final solution when applied across other

Danfoss assembly lines is expected to increase the productivity and efficiency and reduce

runtime costs.

29

REFERENCES

Wikipedia, Danfoss.com

Beebe, Ray S. Maintenance of Pumps using Condition Monitoring. Elsevier Advanced

Technology; 2004.

Eisenmann RC. Machinery Malfunction Diagnosis and Correction: Vibration Analysis and

Troubleshooting for the Process Industries. Prentice Hall; 1998.

Rao, B. K. N. Handbook of Condition Monitoring. Elsevier Advanced Technology; 1996.

Mohanty, S.; Jagadeesh, M.; Srivatsa, H. Big Data Imperatives: Enterprise Big Data

Warehouse, BI Implementations and Analytics. Apress; 2013.

Predictive Maintenance, Position Paper - Deloitte Analytics Institute; 2017.

Perera Srinath: Alwis, Roshan; Machine Learning Techniques for Predictive Maintenance;

2017.

Computerweekly; Walker, Peter; UK country manager; Information Builders; 2011.

30

APPENDIX

Data load Scripts on Ignition Server

MIFA Analysis code for H1T line

Created by R. Kornicki & Tejaswini Vuyyuru

Last revised 6/27/2018

""" General variable definitions """

now = system.tag.read("[System]Gateway/CurrentDateTime").value

#now = system.date.addDays(now, -3)

currentDateTS = system.date.format(now, "yyyy-MM-dd") # date formatting for TS query

currentDateMES = system.date.format(now, "yyyy/MM/dd") # date formatting for MES query

print "hello"

shiftNo = 1

""" Query formulation for MES data pull

 Query returns station by station work start times and pivots those into an output table """

query = 'SELECT * '

query = query + ' FROM '

query = query + '('

#-- This first CASE statement makes sure we always get the serial number, sometimes in

IN_SERIAL_NUMBER,

#-- other times it's the PALLET_SERIAL_NUMBER

query = query + 'SELECT CASE WHEN TRIM(ml.IN_SERIAL_NUMBER) IS NULL '

query = query + ' THEN ml.PALLET_SERIAL_NUMBER '

query = query + ' ELSE ml.IN_SERIAL_NUMBER'

query = query + ' END SERIAL_NUMBER '

query = query + ' ,mi.MODEL '

query = query + ' ,mi.SOURCE_ITEM || mi.ORDCODE MMC '

query = query + ' ,IN_LOCATION '

query = query + ' ,TSTAMP '

#-- This CASE statement ensures that we either get the pallet number of the subcomponent (front, rear,

center section)

-- OR BASE. We need this since after the units are joined we get either NULL or the paint

pallet.

query = query + ' ,CASE WHEN TRIM(ml.IN_PALLET) IS NULL THEN \'BASE\' '

query = query + ' WHEN IN_LOCATION IN (145, 1145, 150, 1500, 165, 160, 1160, 170, 85,

255, 355, 180, 185, 1200, 460) THEN \'BASE\' '

query = query + ' ELSE LPAD(ml.IN_PALLET, 3, \'0\') '

query = query + ' END PALLET '

query = query + ' FROM MES_OWNER.MES_LOG ML '

query = query + ' INNER JOIN MES_OWNER.MES_WO_UNIT mwu ON mwu.SERIAL_NO =

ml.PALLET_SERIAL_NUMBER '

query = query + ' INNER JOIN MES_OWNER.MES_WOMAST mw ON mw.ID = mwu.WO_ID '

query = query + ' INNER JOIN MES_OWNER.MES_ITEM mi ON mi.ID = mw.ITEM_ID '

if shiftNo ==1:

 query = query + 'WHERE ml.TSTAMP >= TO_DATE(\'' + currentDateMES + ' 06:00:00\',

\'YYYY/MM/DD HH24:MI:SS\') '

31

 query = query + ' AND ml.TSTAMP <= TO_DATE(\'' + currentDateMES + ' 13:59:59\',

\'YYYY/MM/DD HH24:MI:SS\') '

if shiftNo ==2:

 query = query + 'WHERE ml.TSTAMP >= TO_DATE(\'' + currentDateMES + ' 14:00:00\',

\'YYYY/MM/DD HH24:MI:SS\') '

 query = query + ' AND ml.TSTAMP <= TO_DATE(\'' + currentDateMES + ' 21:59:59\',

\'YYYY/MM/DD HH24:MI:SS\') '

if shiftNo ==3:

 startDate = system.date.format(system.date.addDays(now, -1), "yyyy/MM/dd")

 query = query + 'WHERE ml.TSTAMP >= TO_DATE(\'' + startDate + ' 22:00:00\',

\'YYYY/MM/DD HH24:MI:SS\') '

 query = query + ' AND ml.TSTAMP <= TO_DATE(\'' + currentDateMES + ' 05:59:59\',

\'YYYY/MM/DD HH24:MI:SS\') '

query = query + ' AND mw.LINE_ID = 28 '

query = query + ' AND (ml.IN_LOCATION < 461 OR ml.IN_LOCATION > 600) '

-- This last condition excludes serial numbers that have ever had a DELETE SN called on them

-- you might choose to ignore this if you are just looking at the last hour, you may not care

query = query + ' AND 1 > ('

query = query + ' SELECT COUNT(*) '

query = query + ' FROM MES_OWNER.MES_LOG ml2 '

query = query + ' WHERE ml2.IN_SERIAL_NUMBER = ml.IN_SERIAL_NUMBER '

query = query + ' AND ML2.PALLET_SERIAL_NUMBER =

ml.PALLET_SERIAL_NUMBER '

query = query + ' AND CALLED_PROC IN (\'DELETE SN\') '

query = query + ') '

query = query + 'ORDER BY SERIAL_NUMBER, Pallet, TSTAMP '

query = query + ') '

query = query + 'PIVOT '

query = query + '('

query = query + ' MIN (TSTAMP) '

query = query + ' FOR IN_LOCATION '

query = query + ' IN (10, 1110, 120, 1120, 125, 1125, 130, 1130, 135, 1135, 140, 1140, 145, 1145,

150, 1500, 160, 165, 1160, 170, 85, 255, 355, 180, 185, 1200, 460) '

query = query + ') '

query = query + 'ORDER BY SERIAL_NUMBER, PALLET '

call = system.db.runQuery(query,"amsracp_dashboard")

rawData = system.dataset.toDataSet(call)

print call

#reset call to 0 & release occupied memory

#call = call[0]

re-formatting the returned table to include additional columns to be populated by Test Stand data

queries

colCount = rawData.getColumnCount()

columnDateData = []

columnTS_ID = []

columnWorkTime = []

columnRouteTime = []

for i in range(rawData.getRowCount()):

 columnDateData.append(now)

 columnTS_ID.append(0)

32

 columnWorkTime.append(0.0)

 columnRouteTime.append(0.0)

colPosition = rawData.getColumnIndex("85") # station 85 column index - two extra columns to be

added after

rawData = system.dataset.addColumn(rawData, colPosition + 1, columnTS_ID, "TS_ID", int)

rawData = system.dataset.addColumn(rawData, colPosition + 2, columnDateData, "TestStart",

type(now))

#adding two columns at the end for product work time and route time comparisons

rawData = system.dataset.addColumn(rawData, rawData.getColumnCount(), columnWorkTime,

"WORK_TIME", float)

rawData = system.dataset.addColumn(rawData, rawData.getColumnCount(), columnRouteTime,

"ROUTE_TIME_DIFF", float)

def getTestStartTime(serialNo, date):

 """

 Outputs test start time of the Serial Number queried

 Args:

 SerialNo - [str] serial number of unit queried

 date - [str] day queried YYYY-mm-dd

 Returns:

 [date] - test start date and time

 Internal data available:

 stand_id

 serial_number

 dt_created

 dt_eot

 passfail

 unit

 """

 query = "select stand_id, serial_number, dt_created, dt_eot, passfail, unit "

 query = query + "from test_record where stand_id in (8,19) "

 query = query + "and dt_created>=to_date('" + date + "','YYYY-MM-DD') "

 query = query + "and serial_number='" + serialNo + "' "

 query = query + "and unit=1 ORDER BY DT_CREATED, UNIT"

 callts = system.db.runQuery(query,'Teststand')

 callts = system.dataset.toDataSet(callts)

 if callts.getRowCount() > 0:

 return [callts.getValueAt(0, "stand_id"), callts.getValueAt(0, "dt_created")]

 if callts.getRowCount() == 0:

 return [0, 0]

def averageTwoCol(dataset, col1, col2):

 """

 Outputs the average difference in times of two columns within a PyDataSet

 Args:

 dataset (PyDataSet): dataset containing all timestamps

 col1 (str): name of first column of times

 col2 (str): name of second column of times

 Returns:

33

 float: average seconds difference column 2 and column 1

 """

 if col1 == col2:

 return float(0)

 count = 0

 sum = 0

 for row in dataset:

 first = row[col1]

 second = row[col2]

 if first != None and second != None:

 tdifference = system.date.secondsBetween(first, second)

 if tdifference >= 0:

 sum += tdifference

 count += 1

 return sum / float(count)

def averageqBtw25n40(dataset, col1, col2):

 if col1==col2:

 return float(0)

 count = 0

 sum = 0

 for row in range(dataset.getRowCount()-3):

 if dataset.getValueAt(row, "SERIAL_NUMBER") == dataset.getValueAt(row+2,

"SERIAL_NUMBER"):

 if dataset.getValueAt(row+3, "PALLET") == "BASE" or

dataset.getValueAt(row+2, "PALLET") == "BASE":

 first = dataset.getValueAt(row, "1125")

 second = dataset.getValueAt(row + 1, "140")

 if first != None and second != None:

 tdifference = system.date.secondsBetween(first, second)

 if tdifference >= 0:

 sum += tdifference

 count += 1

 return sum / float(count)

def avgqBfw45(dataset, col1, col2):

 if col1==col2:

 return float(0)

 count = 0

 sum = 0

 for row in range(dataset.getRowCount()-3):

 if dataset.getValueAt(row, "SERIAL_NUMBER") == dataset.getValueAt(row+1,

"SERIAL_NUMBER"):

 if dataset.getValueAt(row+3, "PALLET") == "BASE" or

dataset.getValueAt(row+2, "PALLET") == "BASE":

 first = dataset.getValueAt(row+2, "1140")

 second = dataset.getValueAt(row + 3, "145")

 if first != None and second != None:

 tdifference = system.date.secondsBetween(first, second)

 if tdifference >= 0:

 sum += tdifference

 count += 1

34

 return sum / float(count)

def tsq85(dataset,col1,col2):

 count = 0

 sum = 0

 for row in dataset:

 if row[25] != 0.0:

 first = row[col1]

 second = row[col2]

 if first != None and second != None:

 tdifference = system.date.secondsBetween(first, second)

 if tdifference >= 0:

 sum += tdifference

 count += 1

 return sum / float(count)

def tsq1(dataset,col1,col2):

 count = 0

 sum = 0

 for row in dataset:

 if row[25] == 8.0:

 first = row[col1]

 second = row[col2]

 if first != None and second != None:

 tdifference = system.date.secondsBetween(first, second)

 if tdifference >= 0:

 sum += tdifference

 count += 1

 return sum / float(count)

def tsq2(dataset,col1,col2):

 count = 0

 sum = 0

 for row in dataset:

 if row[25] == 19.0:

 first = row[col1]

 second = row[col2]

 if first != None and second != None:

 tdifference = system.date.secondsBetween(first, second)

 if tdifference >= 0:

 sum += tdifference

 count += 1

 return sum / float(count)

populating the Test Stand added columns with data from Test Stand Database

for a in range(rawData.getRowCount()):

 if rawData.getValueAt(a, "PALLET") == "BASE":

 serialNo = rawData.getValueAt(a, "SERIAL_NUMBER")

 tsquery = getTestStartTime(serialNo, currentDateTS)

 rawData = system.dataset.setValue(rawData, a, colPosition + 1, tsquery[0])

 rawData = system.dataset.setValue(rawData, a, colPosition + 2, tsquery[1])

35

""" Route times comparisons """

controlRes = ["M1", "M2", "M3", "M4", "M5", "M6", "D9", "H4"]

shaftRes = ["B9", "C3", "F2", "F3", "F4", "E1"]

chargeRes = ["M"]

print rawData.getColumnNames()

funits = 0

if rawData.getRowCount() > 4:

 for row in range(rawData.getRowCount()-3):

 if rawData.getValueAt(row, "SERIAL_NUMBER") == rawData.getValueAt(row+3,

"SERIAL_NUMBER") and rawData.getValueAt(row+3, "PALLET") == "BASE":

 if rawData.getValueAt(row, "10") != None and rawData.getValueAt(row+1,

"10") != None and rawData.getValueAt(row+3, "460") != None:

 funits += 1

 st10fW = st10rW = st20fW = st20rW = st25fW = st25rW =

st30cW = st35cW = st40frW = st40cW = st45bW = st50bW = st6065bW = st70bW = testTime = st8085bW = 0

 if rawData.getValueAt(row, "10") != None and

rawData.getValueAt(row, "1110") != None:

 st10fW =

system.date.secondsBetween(rawData.getValueAt(row, "10"), rawData.getValueAt(row, "1110"))

 if rawData.getValueAt(row+1, "10") != None and

rawData.getValueAt(row+1, "1110") != None:

 st10rW =

system.date.secondsBetween(rawData.getValueAt(row+1, "10"), rawData.getValueAt(row+1, "1110"))

 if rawData.getValueAt(row, "120") != None and

rawData.getValueAt(row, "1120") != None:

 st20fW =

system.date.secondsBetween(rawData.getValueAt(row, "120"), rawData.getValueAt(row, "1120"))

 if rawData.getValueAt(row+1, "120") != None and

rawData.getValueAt(row+1, "1120") != None:

 st20rW =

system.date.secondsBetween(rawData.getValueAt(row+1, "120"), rawData.getValueAt(row+1, "1120"))

 if rawData.getValueAt(row, "125") != None and

rawData.getValueAt(row, "1125") != None:

 st25fW =

system.date.secondsBetween(rawData.getValueAt(row, "125"), rawData.getValueAt(row, "1125"))

 if rawData.getValueAt(row+1, "125") != None and

rawData.getValueAt(row+1, "1125") != None:

 st25rW =

system.date.secondsBetween(rawData.getValueAt(row+1, "125"), rawData.getValueAt(row+1, "1125"))

 if rawData.getValueAt(row+2, "130") != None and

rawData.getValueAt(row+2, "1130") != None:

 st30cW =

system.date.secondsBetween(rawData.getValueAt(row+2, "130"), rawData.getValueAt(row+2, "1130"))

36

 if rawData.getValueAt(row+2, "135") != None and

rawData.getValueAt(row+2, "1135") != None:

 st35cW =

system.date.secondsBetween(rawData.getValueAt(row+2, "135"), rawData.getValueAt(row+2, "1135"))

 if rawData.getValueAt(row+1, "140") != None and

rawData.getValueAt(row+1, "1140") != None:

 st40frW =

system.date.secondsBetween(rawData.getValueAt(row+1, "140"), rawData.getValueAt(row+1, "1140"))

 if rawData.getValueAt(row+2, "140") != None and

rawData.getValueAt(row+2, "1140") != None:

 st40cW =

system.date.secondsBetween(rawData.getValueAt(row+2, "140"), rawData.getValueAt(row+2, "1140"))

 if rawData.getValueAt(row+3, "145") != None and

rawData.getValueAt(row+3, "1145") != None:

 st45bW =

system.date.secondsBetween(rawData.getValueAt(row+3, "145"), rawData.getValueAt(row+3, "1145"))

 if rawData.getValueAt(row+3, "150") != None and

rawData.getValueAt(row+3, "1500") != None:

 st50bW =

system.date.secondsBetween(rawData.getValueAt(row+3, "150"), rawData.getValueAt(row+3, "1500"))

 if rawData.getValueAt(row+3, "160") != None and

rawData.getValueAt(row+3, "1160") != None:

 st6065bW =

system.date.secondsBetween(rawData.getValueAt(row+3, "160"), rawData.getValueAt(row+3, "1160"))

 if rawData.getValueAt(row+3, "165") != None and

rawData.getValueAt(row+3, "1160") != None:

 st6065bW =

system.date.secondsBetween(rawData.getValueAt(row+3, "165"), rawData.getValueAt(row+3, "1160"))

 if rawData.getValueAt(row+3, "170") != None or

rawData.getValueAt(row+3, "85") != None:

 st70bW =

system.date.secondsBetween(rawData.getValueAt(row+3, "170"), rawData.getValueAt(row+3, "85"))

 if rawData.getValueAt(row+3, "TestStart") != None or

rawData.getValueAt(row+3, "355") != None:

 testTime =

system.date.secondsBetween(rawData.getValueAt(row+3, "TestStart"), rawData.getValueAt(row+3, "355"))

 if rawData.getValueAt(row+3, "180") != None and

rawData.getValueAt(row+3, "1200") != None:

 st8085bW =

system.date.secondsBetween(rawData.getValueAt(row+3, "180"), rawData.getValueAt(row+3, "1200"))

 if rawData.getValueAt(row+3, "185") != None and

rawData.getValueAt(row+3, "1200") != None:

 st8085bW =

system.date.secondsBetween(rawData.getValueAt(row+3, "185"), rawData.getValueAt(row+3, "1200"))

 unitWorkTime = (st10fW + st10rW + st20fW + st20rW +st25fW +

st25rW + st30cW + st35cW + st40frW + st40cW + st45bW + st50bW + st6065bW + st70bW + testTime +

st8085bW) / 3600.0

37

 rawData = system.dataset.setValue(rawData, row + 3,

"WORK_TIME", unitWorkTime)

 routeTime = 0.95 # route time for base tandem model

 mmc = rawData.getValueAt(row, "MMC")

 if mmc[10:12] in controlRes:

 routeTime = routeTime + 0.2

 #print "control restriction option: " + mmc[10:12]

 if mmc[18:20] in shaftRes:

 routeTime = routeTime + 0.1

 #print "shaft restriction option: " + mmc[19:21]

 if mmc[31:32] in chargeRes:

 routeTime = routeTime + 0.25

 #print "charge pump restriction option: " + mmc[33:34]

 rawData = system.dataset.setValue(rawData, row +3,

"ROUTE_TIME_DIFF", unitWorkTime - routeTime)

 #print " - acc. time of " + str("%.2f" % unitWorkTime) +" hours

with difference of " + str("%.2f" % (unitWorkTime - routeTime))

print rawData

def stationWorkTime(dataset, station):

 headers = ["Time", "Work Time"]

 data = []

 for row in range(dataset.getRowCount()):

 if dataset.getValueAt(row, station) != None and dataset.getValueAt(row,

dataset.getColumnIndex(station)+1) != None:

 tdifference = system.date.secondsBetween(dataset.getValueAt(row,

station), dataset.getValueAt(row, dataset.getColumnIndex(station)+1))

 data.append([dataset.getValueAt(row, station), tdifference])

 graphData = system.dataset.sort(system.dataset.toDataSet(headers, data), 0)

 return graphData

#system.tag.write("graph data", stationWorkTime(rawData, "10"))

rawData2 = system.dataset.toPyDataSet(rawData)

Calls functions for each station

st10w = averageTwoCol(rawData2,4,5)

st20q = averageTwoCol(rawData2,5,6)

st20w = averageTwoCol(rawData2,6,7)

st25q = averageTwoCol(rawData2,7,8)

st25w = averageTwoCol(rawData2,8,9)

Looks for "BASE" and goes to st40 that jumps rows

st40q1= averageqBtw25n40(rawData,9,14)

st30w = averageTwoCol(rawData2,10,11)

38

st35q = averageTwoCol(rawData2,11,12)

st35w = averageTwoCol(rawData2,12,13)

st40q2= averageTwoCol(rawData2,13,14)

st40w = averageTwoCol(rawData2,14,15)

Speacial procedure that jumps one row down

st45q = avgqBfw45(rawData,15,16)

st45w = averageTwoCol(rawData2,16,17)

st50q = averageTwoCol(rawData2,17,18)

st50w = averageTwoCol(rawData2,18,19)

st60q = averageTwoCol(rawData2,19,20)

st65q = averageTwoCol(rawData2,19,21)

st60w = averageTwoCol(rawData2,20,22)

st65w = averageTwoCol(rawData2,21,22)

st70q = averageTwoCol(rawData2,22,23)

st70w = averageTwoCol(rawData2,23,24)

st85q = tsq85(rawData2,24,26)

ts1q = tsq1(rawData2,24,26)

ts2q = tsq2(rawData2,24,26)

ts1w = tsq1(rawData2,26,28)

ts2w = tsq2(rawData2,26,28)

st180q= averageTwoCol(rawData2,28,29)

st185q= averageTwoCol(rawData2,28,30)

st180w= averageTwoCol(rawData2,29,31)

st185w= averageTwoCol(rawData2,30,31)

st1200= averageTwoCol(rawData2,31,32)

#Required Dataset

headers = ["st10", "st20", "st25", "st40q1", "st30", "st35", "st40", "st45", "st50", "st60", "st65", "st70",

"st85", "ts1", "ts2", "st180", "st185", "st1200"]

averageTimes = []

##Appending work times

averageTimes.append([st10w, st20w, st25w, 0.0, st30w, st35w, st40w, st45w, st50w, st60w, st65w,

st70w, 0.0, ts1w, ts2w, st180w, st185w, st1200])

##Appending queue times

averageTimes.append([0.0, st20q, st25q, st40q1, 0.0, st35q, st40q2, st45q, st50q, st60q, st65q, st70q,

st85q, ts1q, ts2q, st180q, st185q, 0.0])

averageTimesData = system.dataset.toDataSet(headers, averageTimes)

system.tag.write("ShiftCounts/mifaData", averageTimesData)

system.tag.write("ShiftCounts/stationsData", rawData)

system.tag.write("ShiftCounts/st10w", st10w)

system.tag.write("ShiftCounts/st20w", st20w)

system.tag.write("ShiftCounts/st20q", st20q)

system.tag.write("ShiftCounts/st25w", st25w)

system.tag.write("ShiftCounts/st25q", st25q)

system.tag.write("ShiftCounts/st30w", st30w)

system.tag.write("ShiftCounts/st35w", st35w)

system.tag.write("ShiftCounts/st35q", st35q)

system.tag.write("ShiftCounts/st40w", st40w)

system.tag.write("ShiftCounts/st40q2", st40q2)

system.tag.write("ShiftCounts/st45w", st45w)

system.tag.write("ShiftCounts/st45q", st45q)

system.tag.write("ShiftCounts/st50w", st50w)

system.tag.write("ShiftCounts/st50q", st50q)

39

system.tag.write("ShiftCounts/st60w", st60w)

system.tag.write("ShiftCounts/st60q", st60q)

system.tag.write("ShiftCounts/st65w", st65w)

system.tag.write("ShiftCounts/st65q", st65q)

system.tag.write("ShiftCounts/st70w", st70w)

system.tag.write("ShiftCounts/st70q", st70q)

system.tag.write("ShiftCounts/ts1w", ts1w)

system.tag.write("ShiftCounts/ts1q", ts1q)

system.tag.write("ShiftCounts/ts2w", ts2w)

system.tag.write("ShiftCounts/ts2q", ts2q)

system.tag.write("ShiftCounts/st180w", st180w)

system.tag.write("ShiftCounts/st180q", st180q)

system.tag.write("ShiftCounts/st185w", st185w)

system.tag.write("ShiftCounts/st185q", st185q)

window = system.nav.openWindow('mifa board')

system.nav.centerWindow(window)

Tag Scripts on Ignition Server

This script was generated automatically by the navigation

script builder. You may modify this script, but if you do,

you will not be able to use the navigation builder to update

this script without overwriting your changes.

window = system.nav.openWindow('Station plot', {'stationName' : 10})

system.nav.centerWindow(window)

dataset = system.tag.read("ShiftCounts/stationsData").value

stationName = "TestStart"

headers = ["Time", "Work Time"]

data = []

for row in range(dataset.getRowCount()):

 if dataset.getValueAt(row, dataset.getColumnIndex(stationName)-1) == 8.0:

 if dataset.getValueAt(row, stationName) != None and dataset.getValueAt(row,

dataset.getColumnIndex(stationName)+2) != None:

 tdifference = system.date.secondsBetween(dataset.getValueAt(row,

stationName), dataset.getValueAt(row, dataset.getColumnIndex(stationName)+2))

 data.append([dataset.getValueAt(row, stationName), tdifference])

 graphData = system.dataset.sort(system.dataset.toDataSet(headers, data), 0)

system.tag.write("ShiftCounts/stationCycleTimePlot", graphData)

Tag Scripts for non-test stand stations on Ignition Server

This script was generated automatically by the navigation

script builder. You may modify this script, but if you do,

you will not be able to use the navigation builder to update

40

this script without overwriting your changes.

window = system.nav.openWindow('Station plot', {'stationName' : 10})

system.nav.centerWindow(window)

dataset = system.tag.read("ShiftCounts/stationsData").value

stationName = "10"

headers = ["Time", "Work Time"]

data = []

for row in range(dataset.getRowCount()):

 if dataset.getValueAt(row, stationName) != None and dataset.getValueAt(row,

dataset.getColumnIndex(stationName)+1) != None:

 tdifference = system.date.secondsBetween(dataset.getValueAt(row, stationName),

dataset.getValueAt(row, dataset.getColumnIndex(stationName)+1))

 data.append([dataset.getValueAt(row, stationName), tdifference])

 graphData = system.dataset.sort(system.dataset.toDataSet(headers, data), 0)

system.tag.write("ShiftCounts/stationCycleTimePlot", graphData)

