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Abstract 
Partially specified data are commonplace in 
many practical applications of machine learning 
where different instances are described at 
different levels of precision relative to an 
attribute value taxonomy (AVT).  This paper 
describes AVT-NBL – a variant of the Naïve 
Bayes Learning algorithm that effectively 
exploits user-supplied attribute value taxonomies 
to construct compact and accurate Naïve Bayes 
classifiers from partially specified data. Our 
experiments with several data sets and AVTs 
show that AVT-NBL yields classifiers that are 
substantially more accurate and more compact 
than those obtained using the standard Naïve 
Bayes learner. 

1.  Introduction 
In many pattern classification tasks, it is often the case 
that the instances to be classified are specified at different 
levels of precision [Zhang and Honavar, 2003]. That is, 
the value of a particular attribute, or the class label 
associated with an instance, or both are specified at 
different levels of precision in different instances, leading 
to partially specified instances. To illustrate this 
phenomenon, an attribute value taxonomy (AVT) for the 
“color” attribute in which color takes on several values – 
Blue, Red, etc. is shown in Figure 1. Now suppose that 
Blue objects can be further specified in terms of the 
precise shade of blue such as Sky Blue, Light Blue, Dark 
Blue and Navy Blue. In this case, in one instance, the 

color of a particular 
object may be 
described as navy 
blue, whereas in 
another instance, it 
may be specified 
simply as Blue with-
out   specifying    the 

 

 

precise shade of blue. 

Algorithms for learning from AVT and partially specified 
data are of significant practical interest for several reasons: 

a. Partially specified data are quite common in many 
application domains including medical diagnosis, 
scientific discovery, electronic commerce, and 
security informatics. For example, in a medical 
diagnosis task, different cases may be described in 
terms of symptoms or results of diagnostic tests at 
different levels of precision e.g., a patient may be 
described as having cardiac arrhythmia without 
specifying the precise type of arrhythmia.   

b. Partially specified data are unavoidable in knowledge 
acquisition scenarios which call for integration of 
information from semantically heterogeneous, 
information sources [Reinoso-Castillo et al., 2003; 
Caragea et al., 2004]. Semantic differences between 
information sources arise as a direct consequence of 
differences in ontological commitments (i.e., 
assumptions about the objects and the properties of 
objects in the domain of interest) [Berners-Lee et al., 
2001]. Taxonomies and part-whole hierarchies are 
among the most common and useful types of 
ontologies. Increasing need for data sharing between 
autonomous organizations and groups have led to 
major efforts aimed at construct ion of taxonomies 
(e.g., AVT). Examples include ontologies for 
describing many aspects of macromolecular sequence, 
structure, and function e.g., gene ontology 
(www.geneontology.org) [Ashburner et al., 2000], 
and ontology for intrusion detection [Undercoffer et 
al. 2003].  

c. An important goal of machine learning is to discover 
comprehensible, yet accurate and robust classifiers 
[Pazzani et al., 1997]. The availability of AVT 
presents the opportunity to learn classification rules 
that are expressed in terms of abstract attribute 
values (e.g., color=Blue instead of color=Navy Blue) 
leading to simpler, easier-to-comprehend rules that 
are expressed in terms of familiar hierarchically 
related concepts.  Kohavi and Provost [2001] have 
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Figure 1.  A Value Taxonomy for Color Attribute



 

 

noted the need to be able to incorporate hierarchically 
structured background knowledge e.g., hierarchies 
over data attributes in electronic commerce 
applications of data mining.  Similar considerations 
arise in applications in diagnosis and scientific 
discovery. 

d. When training data are limited, there is a risk of 
generating classifiers that over fit the training data. A 
common approach used by statisticians when 
estimating from small samples involves shrinkage  
[McCallum et al, 1998] or grouping attribute values 
(or more commonly class labels) into bins when there 
are too few instances that match any specific attribute 
value or class label to estimate the relevant statistics 
with adequate confidence. Learning algorithms that 
exploit AVT can potentially perform shrinkage 
automatically thereby yielding robust classifiers. In 
other words, exploiting information provided by an 
AVT can be an effective approach to performing 
regularization to minimize over-fitting [Zhang and 
Honavar, 2003]. 

e. In many applications, there is a need to explore data 
from multiple points of view, or working 
assumptions on the part of the learner. The choice of 
the working assumptions (e.g., in the form of an AVT) 
in learning from data is analogous to the choice of 
axioms in mathematics. An AVT that captures the 
relevant relationships among attribute values can 
result in the generation of simple and accurate 
classifiers from data, just as an appropriate choice of 
axioms in a mathematical domain can simplify proofs 
of theorems. Thus, the simplicity and predictive 
accuracy of the learned classifiers based on 
alternative choices of AVT can be used to evaluate 
the utility of the corresponding AVT in specific 
contexts. 

Against this background, this paper introduces AVT-NBL, 
an AVT-based generalization of the standard algorithm 
for learning Naïve Bayes classifiers from data. 

2.  Learning Classifiers from AVT and Partially 
Specified Data 
In what follows, we define AVT, introduce the notions of 
a partially missing value (relative to an AVT), and a 
partially specified instance (relative to the AVTs 
associated with the attributes used to describe instances) 
[Zhang and Honavar, 2003]. An Attribute Value 
Taxonomy (AVT) associated with an attribute α, AVT(α) 
is a tree rooted at α. The set of leaves of the tree, 
Leaves(AVT(α)), corresponds to the set of possible 
primitive values of A. The internal nodes of the tree 
correspond to abstract values of attribute α. The arcs of 
the tree correspond to ISA relationships between attribute 
values that appear in adjacent levels in the tree. Let 
Nodes(AVT(α)) denote the set of nodes of the AVT 
associated with attribute α. Figure 1 shows an example of 
an AVT for the color attribute. The set of abstract values 

at any given level in the tree AVT(α) form a partition of 
the set of values at the next level (and hence, the set of 
primitive values of α).  For example, in Figure 1, the 
nodes at level 1, i.e., Red, Green, Blue, define a partition 
of attribute values that correspond to nodes at level 2 (and 
hence, a partition of all primitive values of the ‘color’ 
attribute).  After Haussler [1988], we define a cut Z of an 
AVT(α) is a subset of nodes in AVT(α) satisfying the 
following two properties: (1) For any leaf l ∈ 
Leaves(AVT(α)), either l ∈ Z or l is a descendent of a 
node n ∈ Z; and (2). For any two nodes f, g ∈ Z,  f is 
neither a descendent nor an ancestor of g. Cuts through 
AVT(α) correspond to a partition of Leaves(AVT(α)). 
Thus, the cut corresponding to {Red, Green, Sky Blue, 
Dark Blue, Navy Blue, Light Blue} defines a partition 
over the primitive values of the ‘color’ attribute. 

When each attribute has a single AVT, we will use T={T1, 
T2, …, TN} (where Ti =  AVT ( Ai)) to represent the set of 
the corresponding AVTs. Let Root(Ti) stand for the root 
of the AVT Ti. To make the notion of partially specified 
instances more precise, we define several operations on 
an AVT taxonomy Ti associated with an attribute Ai. 

(1) depth(Ti , v(Ai)) returns the length of the path from 
root to an attribute value v(Ai) in the taxonomy; 

(2) leaf(Ti , v(Ai)) return a Boolean value indicating if 
v(Ai) is a leaf node in Ti =AVT(Ai), that is if   v(Ai) ∈ 
Leaves(Ti). 

With respect to an AVT, a (completely) missing value of 
an attribute α corresponds to the root of AVT(α). We say 
that an attribute α is fully specified in an instance with 
respect to AVT(α) when the value of attribute α is a 
primitive value of α. We say that the value of an attribute 
α is partially specified (or equivalently, partially missing) 
when its value is not one of the primitive values of α. 
Thus, we can have instances specified at different levels 
of precision resulting in partially specified instances.  An 
instance Ij is expressed as a tuple Ij=(v1

(j), v2
(j),…, vn

 (j)) 
where each attribute Ai has a corresponding AVT Ti. Ij is: 

• a completely specified instance if ( ) ( )i
j

i TLeavesvi ∈∀    
• a partially specified instance when one or more of its 

attribute values are not primitive: ,)(
j

j
i Iv ∈∃  

),(  0),( )()( j
ii

j
ii vTleafvTdepth ¬∧≥  

Thus, a partially specified instance is an instance in which 
at least one of the attributes is partially specified. For 
example, consider a set of objects described in terms of 
the attributes ‘color’ and ‘shape’. The AVT for color is 
shown in Figure 1. Suppose Triangle, Polygon are 
primitive values of the ‘shape’ attribute (The AVT for 
shape is not shown). (Light Blue, Triangle), is an example 
of a fully specified instance.  Some examples of partially 
specified instances are (Blue, Polygon), (Dark Blue, 
Polygon), and (Blue, Square).  



 

 

The problem of learning classifiers from AVT and 
partially specified data can be stated as follows:  Given 
a user-supplied set of AVTs and a data set of (possibly) 
partially specified labeled instances, construct a classifier 
h from a suitable hypothesis class H for assigning 
partially specified instances to one of several mutually 
exclusive classes. For any hypothesis class HF (e.g., 
decision trees, Naïve Bayes classifiers) defined over an 
instance space corresponding to fully specified instances 
described by a set of attributes, and an AVT, we can 
define a hypothesis class HP over an instance space of 
partially specified instances induced by the AVT.  

3.  Approaches to Learning Classifiers from 
Partially Specified Data 

We can envision three approaches to learning from 
Partially Specified Data: 

Approaches that Treat Partially Specified Attribute 
Values as if they were Totally Missing: Each partially 
specified (and hence partially missing) attribute value is 
treated as if it were (totally) missing, and the resulting 
data set with missing attribute values is handled using 
standard approaches for dealing with missing attribute 
values in learning classifiers from an otherwise fully 
specified data set in which some attribute values are 
missing in some of the instances values. A main 
advantage of this approach is that it requires no 
modification to the learning algorithm. All that is needed 
is a simple preprocessing step in which all partially 
specified attribute values are turned into missing attribute 
values. 

AVT-Based Propositionalization Methods: The data set 
is represented using a set of Boolean attributes obtained  
from AVT Ti of attribute Ai by associating a Boolean 
attribute with each node (except the root) in Ti. Thus, each 
instance in the original data set defined using N attributes 
is turned into a Boolean instance specified using L 
Boolean attributes where  

( ) ⎟⎟
⎠

⎞
⎜
⎜
⎝

⎛
= ∑

=

N

i
iTNodesL

1

. 

In the case of the color taxonomy shown in Figure 1, this 
would result in binary features that correspond to the 
propositions such as (color=Red), (color=Blue), 
(color=Green), … (color=Sky Blue) … (Color=Navy 
Blue). Based on the specified value of an attribute in an 
instance e.g., (color = Sky Blue), the values of its 
ancestors in the AVT (e.g., color=Blue) are set to True 
because the AVT asserts that Sky Blue objects are also 
Blue objects. But the Boolean attributes that correspond to 
descendents of the specified attribute value are treated as 
unknown. For example, when the value of the color 
attribute is partially specified in an instance, e.g. 
(Color=Blue), the corresponding Boolean attribute is set 
to True, but the Boolean attributes that correspond to the 
descendents of Blue in the color taxonomy are treated as 

missing. The resulting data with some missing attribute 
values can be handled using standard approaches to 
dealing with missing attribute values.  

Note that the Boolean features created by the 
propositionalization technique described above are not 
independent given the class. A Boolean attribute that 
corresponds to any node in an AVT is necessarily 
correlated with Boolean attributes that correspond to its 
descendents as well as its ancestors in the tree. For 
example, the Boolean attribute (color=Blue) is correlated 
with (color=Sky Blue). (Indeed, it is this correlation that 
enables us to exploit the information provided by AVT in 
learning from partially specified data). Thus, a Naïve 
Bayes classifier that would be optimal in the Maximal a 
Posteriori sense [Langley et al., 1992; Mitchell, 1997] 
when the original attributes Color and Shape are 
independent given class would no longer be optimal when 
the new set of Boolean attributes are used because of 
dependencies among the Boolean attributes derived from 
an AVT.  

A main advantage of the AVT-based propositionalization 
methods is that they require no modification to the 
learning algorithm. However it does require preprocessing 
of partially specified data using the information supplied 
by an AVT. The number of attributes in the transformed 
data set is substantially larger than the number of 
attributes in the original data set.  More importantly, the 
statistical dependence among the Boolean attributes in the 
propositionalized representation of the original data set 
can degrade the performance of classifiers e.g., Naïve 
Bayes  that rely on independence of attributes given class. 
Hence, it is of interest to explore principled approaches to 
exploiting the information provided by AVT in learning 
classifiers from partially specified data. 

AVT Guided Variants of Standard Learning 
algorithms:  We can extend standard learning algorithms 
in principled ways so as to exploit the information 
provided by AVT. AVT-DTL [Zhang & Honavar, 2003] 
which extends the standard decision tree learning 
algorithm and the AVT-NBL algorithm described in this 
paper which extends the standard algorithm for learning 
Naïve Bayes classifiers are examples of this class of 
algorithms.  

It is interesting to explore the performance of alternative 
approaches to learning classifiers from partially specified 
data.  

4.  AVT-Based Naïve Bayes Learner (AVT-NBL)  

4.1   Naïve Bayes Learner (NBL) 
Let A1 ... AN be an ordered set of attributes and C= {c1, 
c2,…,cM}  a finite set of mutually disjoint classes. Suppose 
each attribute Ai takes a value from a finite set of values 
V(Ai). An instance Xp to be classified is represented as a 
tuple of attribute values (a1p, a2p, …., aNp) where each 



 

 

aip∈ V(Ai). The Bayesian approach to classifying Xp =(a1p, 
a2p, …, aNp) is to assign it the most probable class cMAP(Xp) 
given the attribute values Xp =(a1p, a2p, …, aNp).  Naïve 
Bayes classifier operates under the assumption that each 
attribute is independent of others given the class.  Hence, 
we have: 
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∏
∈
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=
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The standard algorithm (NBL) for learning a Naïve Bayes 
classifier simply estimates a class conditional probability 
table for each attribute from a data set D of training 
examples. The class conditional probability table for 
attribute Ai has |V(Ai)||C| entries. The probabilities are 
typically estimated using a Bayesian approach [Mitchell, 
1997].  

4.2  AVT-Guided Naïve Bayes Learner (AVT-NBL) 

Given a user-supplied ordered set of AVTs T1…TN 
corresponding to the attributes A1 … AN and a data set D = 
{(Xp, cp)} of labeled examples of the form (Xp, cp) where 
Xp is a partially specified instance and cp is the 
corresponding class label, the task of AVT-NBL is to 
construct a Naïve Bayes classifier for assigning a partially 
specified instance Xp to its most probable class cMAP(Xp).  
As in the case of NBL, we assume that each attribute is 
independent of other attributes given the class.   

Calculation of Class Conditional Frequency Counts  
Let A={A1, A2, …, AN} be an ordered sequence of 
attribute names and T={T1, T2, …, Tn} the corresponding 
set of AVTs.  Let C={c1, c2, …, cM} is a set of mutually 
disjoint class labels. Let ψ(v, Ti) be  the set of descendents 
of a node corresponding to value v in a taxonomy Ti; 
Children (v, Ti),  the set of all children – that is, direct 
descendents of a node corresponding to value v in a 
taxonomy Ti; Λ(v, Ti) the  list of ancestors, including the 
root, for v in Ti. Let σi(v|cj) be the frequency count of 
value v of attribute Ai given class label cj in a training set 
D and pi(v|cj), the estimated class conditional probability 
of value v of attribute Ai given class label cj in a training 
set D. 

Given an attribute value taxonomy Ti for attribute Ai, we 
can define a tree of class conditional frequency counts 
CCFC(Ai) such that there is an one-to-one correspondence 
between the nodes of the AVT Ti  and the nodes of the 
corresponding CCFC(Ai). It follows that the class 
conditional frequency counts associated with a non leaf 
node of CCFC(Ai) should correspond the aggregation of 
the corresponding class conditional frequency counts 
associated with its children. Because each cut through an 
AVT Ti corresponds to a partition of the set of possible 
values V(Ai) of the attribute Ai,  the corresponding cut 
through CCFC(Ai) specifies a valid class conditional 
probability table for the attribute Ai.  If all of the instances 
in the data set D are fully specified, estimation of 

CCFC(Ai) for each attribute is straightforward: We simply 
estimate the class conditional frequency counts associated 
with each of the primitive values of Ai from the data set D 
and use them recursively to compute the class conditional 
frequency counts associated with the non-leaf nodes of 
CCFC(Ai). When some of the data are partially specified, 
we can use a 2-step process for computing CCFC(Ai) 
[Zhang and Honavar, 2003]: First we make an upward 
pass aggregating the class conditional frequency counts 
based on the specified attribute values in the data set. 
Then we propagate the counts associated with partially 
specified attribute values down through the tree, 
augmenting the counts at lower levels according to the 
distribution of values along the branches based on the 
subset of the data for which the corresponding values are 
fully specified. This is a straightforward generalization of 
a standard approach to dealing with missing attribute 
values to the case of partially specified attribute values.  
The procedure is shown below. 

1. Calculate frequency counts σi(v|cj)  for each node v in 
Ti using the class conditional frequency counts 
associated with the specified values of attribute Ai in 
training set D.  

2. For each attribute value v in Ti which received non-
zero counts as a result of step (1), aggregate the 
counts upward from each such node v to its ancestors 
Λ(v, Ti):  ( ) ( ) ( )jijiTvwji cvcwcw

i
|||

),(
σσσ +←

Λ∈
 

3. Starting from the root, recursively propagate the 
counts corresponding to partially specified instances  
at each node v downward according to the observed 
distribution among its children to obtain updated 
counts for each child ul ∈ Children (v, Ti ): 

 
Let Γ={γ1,γ 2,…,γN } be a set of cuts where ,γi stands for a 
cut through CCFC(Ai). The estimated conditional 
probability table CPT(γi) associated with the cut γi can be 
calculated from CCFC(Ai) using Laplacian estimator 
[Mitchell, 1997] 
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The Naïve Bayes Classifier h(Γ) based on a chosen set of 
cuts Γ is completely specified by the conditional 
probability tables associated with the cuts in Γ:  
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If each  cut γi ∈ Γ is chosen to correspond to the primitive 
values of the respective attribute i.e., ∀i, γi= 
Leaves(CCFC(Ai)), h(Γ) is simply the standard Naïve 
Bayes Classifier based on the attributes A1, A2, …, AN.  
Searching for a Compact Naïve Bayes Classifier 
We start with the Naïve Bayes Classifier that is based on  
the most abstract value of each attribute and successively 
refine the classifier using a criterion that is designed to 
tradeoff between the accuracy of classification and the 
complexity of the resulting Naïve Bayes classifier. 

We say that a cut λi is a refinement of a cut γi  if λi is 
obtained by replacing at least one attribute value v∈γi by 
its descendents Λ(v, Ti). We say that a set of cuts ∆ is a 
refinement of Γ if at least one cut in ∆ is a refinement of a 
cut in Γ. We say that a hypothesis h(∆)is a refinement of 
hypothesis h(Γ) if ∆ is a refinement of Γ. Figure 2 
illustrates hypothesis refinement process.  

The scoring function that we use to evaluate a candidate 

AVT-guided refinement of a Naïve Bayes Classifier is 
based on a variant of the minimum description length 
(MDL) score Rissanen [1978] which captures the tradeoff 
between the complexity and accuracy of the model. MDL 
score captures the intuition that the goal of a learner is to 
compress the training data D and encode it in the form of 
a hypothesis or a model h so as to minimize the length of 
the message that encodes the model h and the data D 
given the model h. Friedman et al (1997) suggested the 
use of a conditional MDL score in the case of hypotheses 
that are used for classification (as opposed to modeling 
the joint probability distribution of a set of random 
variables) to capture the tradeoff between the complexity 
and accuracy of the classifier: 
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where Ph(cp| a1p, a2p, …. aNp) denotes the conditional 
probability assigned to the class cp∈ C associated with the 
training sample Xp =(a1p, a2p, …. aNp) by the classifier h, 
size(h) is the number of parameters used by h, |D| the size 
of the data set, and CLL(h |D) is the conditional log 
likelihood of the data D given a hypothesis h.  In the case 
of a Naïve Bayes classifier h, size(h) corresponds to the 
total number of class conditional probabilities needed to 
describe h. Because each attribute is assumed to be 

independent of the others given the class in a Naïve Bayes 
classifier, we have: 
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where P(cp) is the prior probability of the class cp which 
can be estimated from the observed class distribution in 
the data  D.  

There are two cases in the calculation of the conditional 
likelihood CLL(h|D) when D contains partially specified 
instances. The first case is when a partially specified 
value of attribute Ai for an instance lies on the cut γ 
through CCFC(Ai) or corresponds to one of the 
descendents of the nodes in the cut. In this case, we can 
treat that instance as though it were fully specified 
relative to the Naïve Bayes classifier based on the cut  γ  
of CCFC(Ai ) and use the class conditional probabilities 
associated with the cut γ to calculate its contribution to  
CLL(h|D). The second case is when a partially specified 
value (say v) of Ai is an ancestor of a subset (say λ) of the 
nodes in γ. In this case, we can aggregate the class 
conditional probabilities of the nodes in λ to calculate the 
contribution of the corresponding instance to CLL(h|D).    

Because each attribute is assumed to be independent of 
others given the class, the search for the AVT-based 
Naïve Bayes classifier (AVT-NBC) can be performed 
efficiently by optimizing the criterion independently for 
each attribute. This results in a hypothesis h that 
intuitively trades off the complexity of Naïve Bayes 
classifier (in terms of the number of parameters used to 
describe the relevant class conditional probabilities) 
against accuracy of classification. The algorithm 
terminates when none of the candidate refinements of the 
classifier yield statistically significant improvement in the 
CMDL score. The procedure is outlined below. 

 

1. Initialize each γi in Γ={γ1,γ 2,…,γN } to {Root(Ti )} 
2. Estimate probabilities that specify the hypothesis h(Γ).  
3. For each cut γi  in Γ={γ1,γ 2,…,γN }: 

A. Set δi ←γi 
B. Until there are no updates to γi   

i. For each v∈ δi,  
a. Generate a refinement γv

i of γi by 
replacing v with Children(v, Ti), and 
refine Γ accordingly to obtain ∆.  
Construct corresponding hypothesis h(∆).  

b. If CMDL(h(∆)|D) < CMDL(h(Γ)|D), 
replace Γ with ∆ and γi with γv

i 
ii. δi ←γi 

4. Output h(Γ) 
 

Figure 2.  Hypothesis refinement. The cut γ2 = {A, B, C, D}  in T2 has been refined 
to λ2 = {A, B1, B2, C, D}  by replacing B with its two children B1, B2. Therefore, 
∆={γ1, λ2, γ1}  is a refinement of Γ={γ1, γ2, γ1}  , and corresponding hypothesis h(∆) 
is a refinement of h(Γ). 
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5.  Experiments and Results 

5.1  Experiments 
Our experiments were designed to explore the 
performance of AVT-NBL relative to that of the standard 
Naïve Bayes algorithm (NBL) and a Naïve Bayes Learner 
applied to a propositionalized version of the data set 
(PROP-NBL). 

Although partially specified data and hierarchical AVT 
are common in many application domains, at present, 
there are few standard benchmark data sets of partially 
specified data and the associated AVT. Hence, we 
describe results of experiments with several data sets 
(MUSHROOM, SOYBEAN, AND NURSERY) adapted from the 
UC Irvine Repository. In the case of MUSHROOM 
TOXICOLOGY dataset, 17 of the 22 attributes have AVT 
supplied by a botanist. In the case of the SOYBEAN and 
NURSERY data sets, the AVTs for nominal attributes were 
specified based on our understanding of the domain.  

The first set of experiments compares the performance of 
AVT-NBL, NBL, and PROP-NBL on the original (fully 
specified) data.  The second set of experiments explores 
the performance of the three algorithms on data sets with 
different percentages of totally missing or partially 
missing attribute values. Data sets with a pre-specified 
percentage (0%, 10%, 30%, or 50%) of partially missing 
attribute values were generated by assuming that the 
missing values are uniformly distributed on the nominal  
attributes (see [Zhang and Honavar, 2003] for details). In 
each case, the error rate and the size (as measured by the 
number of class conditional probabilities used to specify 
the learned classifier) were estimated using 10-fold cross-
validation.  

 

5.2  Results 
AVT-NBL yields significantly lower error rates than 
NBL and PROP-NBL on the original fully specified 
data. 

Table 1 shows the estimated error rates of the classifiers 
generated by the AVT-NBL, NBL, and PROP-NBL on 
three benchmark data sets from UC Irvine Repository. 
The error rate of AVT-NBL is substantially smaller than 
that of NBL and PROP-NBL, with the difference in error 
rates being most pronounced in the case of MUSHROOM 
data. It is worth noting that PROP-NBL (NBL applied to a 
transformed data set using Boolean features that 
correspond to nodes of the AVTs) generally produces 
classifiers that have substantially higher error rates than 
AVT-NBL applied to the original data set. This can be 
explained by the fact that the Boolean features generated 
from an AVT are generally not independent given the 
class. This argues for the investigation of algorithms such 
as AVT-NBL based on principled ways of exploiting 
supplied by an AVT in generating classifiers. 

 

Table 1. Comparison of error rates of NBL, PROP-NBL and 
AVT-NBL on benchmark data sets.  

 NBL PROP-NBL AVT-NBL 

0% 4.43% 4.45% 1.36% 

10% 4.65% 4.69% 1.46% 

30% 5.28 % 4.84% 1.57% 

M
U

SH
R

O
O

M
 

50% 6.63% 5.82% 2.06% 

0% 9.67% 10.59% 9.67% 

10% 15.27% 15.50% 12.97% 

30% 26.84% 26.25% 21.27% N
U

R
SE

R
Y 

50% 36.96% 35.88% 29.34% 

0% 7.03% 8.19% 6.44% 

10% 11.12% 11.13% 8.49% 

30% 12.45% 11.78%  8.99% SO
YB

EA
N
 

50% 17.42% 14.91% 12.35% 

 

Table 2. Comparison of the complexity of the classifiers as 
measured by the number of class conditional probabilities 
needed to specify the Naïve Bayes Classifier generated by NBL, 
PROP-NBL and AVT-NBL on benchmark data sets. 

 NBL PROP-NBL AVT-NBL    

                   

Percentage of Partially Missing Values DATA SET

0% 50% 0% 50% 0% 50%

MUSHROOM 252 252 682 682 192 194

NURSERY 135 135 355 355 125 125

SOYBEAN 1900 1900 4959 4959 1653 1723

 

AVT-NBL yields classifiers that are substantially more 
compact than those generated by PROP-NBL and NBL. 

Table 2 compares the total number of class conditional 
probabilities needed to specify the classifiers produced by 
AVT-NBL, NBL, and PROP-NBL when 0% and 50% of 
the attribute values are partially specified. The results 
show that AVT-NBL is effective in exploiting the 
information supplied by the AVT to generate accurate yet 
compact classifiers. Thus, AVT-guided learning 
algorithms offer an approach to compressing class 
conditional probability distributions that is different from 
the statistical independence-based factorization used in 
Bayesian Networks.   

AVT-NBL yields significantly lower error rates than 
NBL and PROP-NBL on partially specified data. 

Table 1 compares the estimated error rates of AVT-NBL 
with that of NBL and PROP-NBL in the presence of 
varying percentages of (10%, 30% and 50%) of partially 



 

 

missing attribute values.  Naïve Bayes classifiers 
generated by AVT-NBL have substantially lower error 
rates than those generated by NBL and PROP-NBL, with 
the differences being more pronounced at higher 
percentages of partially missing attribute values. 

6.  Summary and Discussion 
6.1  Summary 
In this paper, we have presented AVT-NBL, an algorithm 
for learning Naïve Bayes Classifiers using attribute value 
taxonomies from partially specified data.  AVT-NBL is a 
natural generalization of the standard algorithm (NBL) for 
learning Naïve Bayes Classifiers.  

Experimental results presented in the paper show that: 

(1) AVT-NBL is able to learn substantially more 
accurate Naïve Bayes classifiers than those produced 
by NBL and PROP-NBL from data sets with varying 
percentages of partially specified attribute values 
(including data sets with no partially specified 
attribute values). 

(2) Classifiers generated by AVT-NBL are substantially 
more compact than those generated by NBL and 
PROP-NBL. 

6.2  Related Work  
There is some work in the machine learning community 
on the problem of learning classifiers from attribute value 
taxonomies (sometimes called tree-structured attributes) 
and fully specified data in the case of decision trees and 
rules (see Zhang and Honavar, 2003 for a review) 
desJardins et al [2000] suggested the use of Abstraction-
Based Search (ABS) to learn Bayesian networks with 
compact structure. Zhang and Honavar [2003] describe 
AVT-DTL, an efficient algorithm for learning decision 
tree classifiers from AVT and partially specified data. 
With the exception of AVT-DTL, to the best of our 
knowledge, there are no algorithms for learning classifiers 
from AVT and partially specified data. 

There has been some work on the use of class taxonomy 
(CT) in the learning of classifiers in scenarios where class 
labels correspond to nodes in a predefined class hierarchy 
[Clare and King, 2001; Koller and Sahami, 1997].  

MDL principle has been used to learn unrestricted 
Bayesian belief networks [Lam and Bacchus, 1994; 
Suzuki, 1998]. Friedman et al. [1997] suggested the use of 
class conditional MDL (CMDL) score for constructing 
Bayesian classifiers. In general, computation of CMDL 
score is not computationally feasible. The AVT-NBL 
algorithm described in this paper demonstrates the use of 
CMDL score to guide AVT-based search for compact and 
accurate Naïve Bayes classifiers. 

There is a large body of work on the use of domain 
theories to guide learning. AVT can be viewed as a 
restricted class of domain theories. However, the work on 
exploiting domain theories in learning has not focused on 
the effective use of AVT to learn classifiers from partially 
specified data.  

Chen and Tseng [1996]  proposed database models to 
handle imprecision using partial values and associated 
probabilities where a partial value refers to a set of 
possible values for an attribute. McClean et al [2001] 
proposed aggregation operators defined over partial 
values. While this work suggests ways to aggregate 
statistics so as to minimize information loss, it does not 
address the problem of learning from AVT and partially 
specified data. 

Automated construction of hierarchical taxonomies over 
attribute values and class labels is beginning to receive 
attention in the machine learning community. Examples 
include distributional clustering, [Pereira et al., 1993], 
extended FOCL and statistical clustering [Yamazaki et al., 
1995], information bottleneck [Slonim & Tishby 2000]. 
Such algorithms provide a source of AVT in domains 
where none are available. However, the focus of work 
described in this paper is on algorithms that use AVT in 
learning classifiers from data.  

6.3  Future Work  
Some directions for future work include: 

(1) Development AVT-based variants of other machine 
learning algorithms for construction of classifiers 
from partially specified data from distributed, 
semantically heterogeneous data sources [Reinoso-
Castillo et al., 2003; Caragea et al., 2004]. 

(2) Extension of the algorithms like AVT-DTL and 
AVT-NBL to handle taxonomies defined over 
ordered and numeric attribute values. 

(3) Further experimental evaluation of AVT-NBL, AVT-
DTL, and related learning algorithms on a broad 
range of data sets in scientific knowledge discovery 
applications e.g., computational biology. 
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