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ABSTRACT 

The objective of this work is to develop an advanced automatic ultrasonic inspection system via 
adaptive learning network signal processing techniques. This system will provide the type, location, and 
size of defects in metal more quickly and to smaller defect size than current imaging systems, without 
the need for operator interpretation of the results. 

An ultrasonic .imaging array constructed for this project has been used to record data from artifi
cial defects in carbon steel test blocks.· Software has been written to automatically determine the 
orientation and size of cracks from these digitized waveforms. Detection of these cracks has been unam
biguous down to 1/6 wavelength or 0.25 mm. Sizing for depth is accurate to 12% down to 1/3 wavelength. 

Further research will extend these results to other defect types and to smaller defects. The sig
nificance of this work is that it will demonstrate the feasibility of a totally automatic detection, 
classification, and sizing system which will work with hardware ordinarily used for imaging. This system 
will provide a numerical estimate of the defect parameters rather than an image requiring operator inter
pretation, and it will do so at defect dimensions smaller than the limits set by the resolution of imag
ing systems. 

INTRODUCTION 

It is generally recognized that the ultra
sonic energy pattern or signature reflected from a 
given target contains substantially greater infor
mation than is being utilized by present ultra
sonic nondestructive testing techniques. When an 
ultrasonic sound beam illuminates a given target, 
the pattern generated by the target contains re
flected, diffracted, and redirected energies which 
include time, amplitude, and frequency spectral 
information that uniquely describes the reflector. 
Linear arrays afford the opportunity of capturing 
the pattern reflected from a flaw or target. 

It was anticipated at the start of this pro
gram that parameters of the scattered waveforms, 
as well as those of the reflected energy, could be 
used to size defects. This has proven to be the 
case as will be shown in this paper. Parameters 
from the mode-converted diffracted adaptive learn
; ng networks to classify these cracks as to their 
orientation and provide estimates of their depth. 
Furthermore, the work reported here shows that 
these parameters can be extracted from the raw 
waveforms automatically. It remains in this pro
ject to extend these results to other types of 
defects and to implement the algorithms developed 
so far in hardware. 

DATA COLLECTION 

The experimental apparatus has been described 
in last year's Proceedings of this conference and 

only changes in that description will be presented 
here. All data were collected by D. K. Lemon of 
Battelle. The outboard array previously referred 
to was positioned as close as possible to the main 
receiving array, and receiving elements on the 
main array were wired as shown in Fig. 1. A shear 
(S) wave beam at 34o from the vertical was direc
ted into the metal; pulse-echo data from the out
board array and pitch-catch data from receivers on 
the main array were collected for all EDM notches, 
both at 0° and 30° from the vertical. This con
stituted a total of 32 artificial defects. Data 
were taken on the main array for receivers suc
cessively further from the outboard array until no 
defect-related signal could be observed. Approxi
mately 700 waveforms were recorded in this way. 
All defects were detected with good signal-to
noise ratio. 

SOFTWARE DEVELOPMENT 

Software to simulate, as far as possible, the 
intended functions of the ALN 4000 in this appli
cation was written to analyze these data. Since 
the array was positioned by an operator this func
tion could not be simulated. In the hardware im
plementation, the ALN 4000 will acquire the desired 
waveforms by addressing particular receivers. 
Here, all waveforms were prerecorded and were ac
quired by searching through a list for the desired 
receiver. All other functions described below 
will be implemented in software much as they are 
here. 

*This research is supported by the Defense Advanced Research Projects Agency under 
Contract No. MDA-903-78-C-0223, DARPA Order No. 3553. 
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Fig. 1 Test block and ultrasonic arrays. 

The system performs the following functions 
in this sequence: 

• detect defect in pulse-echo mode; 

• acquire pitch-catch waveforms; 

• identify defect-related energy; 

• extract features; and 

• classify and size. 

The specific implementation of these steps is 
shown in Fig. 2. Defect detection is performed by 
moving the array by a step size as determined by 
the ultrasonic spot size and acquiring a pulse
echo waveform. This waveform is passed to a sig
nal detector which selects those portions of the 
waveform where the signal-to-noise ratio is high 
enough that a signal may be claimed to be pres
ent. The detection-association-processor (DAP) 
determines which, if any, of those signals may be 
due to a defect of interest. Other signals may be 
due to geometric reflectors or uninteresting de
fects such as 1 ayers of precipitate. If no defect 
is present, the array is moved to another nearby 
position. If a defect-related detection is found, 
the array is stopped and additional waveforms are 
acquired. 

In the present configuration, eight waveforms 
from the receivers labeled "beamforming array" in 
Fig. 1 are recorded and used to form an ordinary 
time-delay-and-sum beam pointed at the defect at 
the compressional (P) wave velocity. The mode- Fig. 2 Inspection system logic. 
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converted diffracted energy preferentially passed 
by this beam is expected to provide significant 
sizing and classification information. This 
beamed waveform proceeds to the signal detector 
which locates time windows with signals as be
fore. The detection association processor again 
finds those signals due to the defect, and these 
signals provide the features used in classifica
tion and sizing, the last step in the process. 

Figure 3 shows some details of the signal 
detector. The only reasonable criterion for the 
presence of a signal is a signal-to-noise ratio 
(DET) above some preassigned threshold, so the 
task of a signal detector is to calculate the 
noise power and the signal power. This is done by 
executing the loop shown in Fig. 3 once per time 
point. The signal power (STA) is simply the aver
age power over some time window, generally about 
the length of the expected signal. The noise 
power (LTA) is the average power over some much 
longer time interval preceding the current time, 
and chosen so as to exclude any signals. The 
noise power as well as the signal power must be 
continually updated in order to account for the 
inevitable nonstationarity in the noise. Nonsta
tionarity occurs for a variety of reasons in real 
experiments, and in this case is caused by dis
tance-dependent attenuation and inhomogeneities in 
the metal, among others. 

Fig. 3 Signal detector logic. 

Bursts of noise of short duration may occur 
in the data, and these should not be included in 
the noise estimate. Neither should they be de
clared to be signals, so separate thresholds are 
set for freezing the noise estimate and for de
claring detections. It is found that setting the 
detection threshold about 4 dB above the noise
freezing threshold does result in satisfactory 
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performance. When the signal-to-noise ratio 
crosses the detection threshold, an entry is made 
in the detection log, claiming th~ beginning or 
ending of a signal, depending on whether the sig
nal-to-noise ratio was increasing or decreasing. 

Figure 4 shows a sample waveform from a beam 
of eight elements directed toward an EDM notch 
0.76 mm deep. The waveform with windows where a 
detection was claimed is shown in the top of the 
figure, and the signal-to-noise ratio in the 
bottom. The horizontal line at the bottom corres
ponds to the detection threshold, about 18 dB in 
this case. Corresponding arrows on the top figure 
show detections. The predicted arrival time for 
the mode converted energy is indicated by "SP 
time" and is seen to agree well with the actual 
arrival time of a pulse of energy. 

It is the task of the detection-association
processor (DAP) to predict the arrival times of 
the various phases and decide which, if any, of 
the actual detections match those times. It 
therefore must contain a model of the experiment, 
including distances, geometry, and propagation 
velocities. Figure 1 shows the relevant ray paths 
for this experiment. 

First, the DAP calculates the water depth. 
There is sufficient side-lobe energy from the out
board array.to give a large response from the 
front surface, and this enables the calculation of 
the water depth, given the speed of compressional 
waves in water. Then the phase arrival time can 
be found from the metal depth, the shear wave 
velocity in the metal, and the beam angle in the 
water bath. In the future'when defects at differ
ent depths are examined, a depth will be calcu
lated for each arrival time and those in the range 
of interest accepted as belonging to defects. 

When the DAP is entered with a detection log 
from a pitch-catch waveform, the requirements are 
somewhat different. ·The water depth and the de
fect depth are known, and it is required to find 
the arrival times of the various phases at a given 
receiver. Again, from Fig. 1 it can be seen that 
knowledge of the geometry, t~e transmitter
r~ceiver distance, and the various velocities may 
be used to find these times. The signal closest 
in time to the-predicted time, if it is within a 
preset tolerance, will be claimed to be the phase 
in question. 

FEATURE EXTRACTION 

Once the required signals were obtained, 
parameters were

2
extracted. Previous experience 

(Shankar, 1979) has shown that spectral param
eters may be used to size cracks ultrasonically. 
Accordingly, power spectra of all arrivals were 
calculated and the parameters illustrated in 
Fig. 5 found. This figure shows the power spec
trum of the SP waveform shown in Fig. 4 and is 
typical of SP phases. The frequency interval be
tween 0.5 and 4.0 MHz has been divided into eight 
equal intervals, and the fractional power in each 
interval calculated. These powers are normalized 
parameters not dependent on gains or pulser set
tings. The integral of this parameter, i.e., the 
power in a band up to and including a particular 
frequency, was a 1 so ca 1 cul ated. Finally, the fre
quency at which the integrated fractional power 
achieved 1/8, 2/8, ••• was found. 



Det "' Short-t~rw average Power 
Long-term average Power 

Fig. 4 Beamed waveforms. 

lO 

Fig. 5 SP power spectrum. 

Fig. 6 SS power spectrum. 

These parameters describe the shape of the 
spectrum. The first indicates the location of the 
spectral peak. The second, the integrated power, 
gives an idea of how sharply peaked the spectrum 
is. Rapid variation in this parameter indicates a 
narrow spectrum. The third has the opposite mean
ing. Large changes in this parameter indicate a 
slowly varying spectrum. As a group, they were 
found satisfactory for parameterizing the spectrum. 

Figure 6 shows a typical SS spectrum recorded 
in the pulse-echo mode. The target was the same 
as that in fig. 5, but the spectral shape is dra
matically different. There is relatively much 
more energy in the frequency range above 4.0 MHz 
in the SS spectrum. 
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These spectra are as recorded so they contain 
the effects of the transducer, whose spectrum 
peaks at about 2.5 MHz and has a minor peak near 
5.0 MHz. The energy in this minor peak is rel a
tively less than its contribution in the SS spec
trum, suggesting that the processes of mode con
version' and diffraction at the target have shifted 
energy from the incident shear wave into the out
going compressional wave-much more efficiently at 
low frequencies than at high frequencies. Hence 
the low frequency SS level is lower than expected 
and the low frequency SP level higher than 
expected. 



•• 

ADAPTIVE LEARNING NETWORKS 

The SS spectra were parameterized in the same 
way as the SP spectra, except that the frequency 
range used was from 1.0 MHz to 6.5 MHz, reflecting 
the different distribution of energy in these 
spectra. All spectral parameters were input to 
Adaptronics adaptive learning network software 
which found networks which discriminated between 
cracks at 30° and oo from the vertical, and which 
found the depths of the cracks in each class. 
Separate networks were necessary for each crack 
angle, a result that might be expected given the 
fact that discrimination on angle was possible. 
Networks for classification and sizing are shown 
in Figs. 7, 8, and 9, along with the parameters 
involved in them. In every case, parameters from 
the SP waveforms were found to be important, show
ing that mode-converted and diffracted energy is 
indeed useful in defect characterization. Final
ly, Fig. 10 shows the model depth as a function of 
the true depth for both crack orientations. The 
mean absolute deviation between model and predic
tion is about 12% here, which is satisfactory 
agreement. 

SUMMARY AND CONCLUSIONS 

Using the present array and software, present 
capabi 1 ity is: 

X • Fractional power in &th 
~ eiqhth u! SS spectrum 

X .)
2 

• Fractional power in lower 1/B 
of SP spectrWII 

27 
"' Fractional power ln 

lower l/4 of SP =spect.rWII. 

Fig. 7 Network to discriminate crack angle. 
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Fig. 9 Neh1ork to size 0° cracks. 
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1. 

2. 

• cracks can be detected automatically and 
unambiguously as low as 1/6 wavelength; 

• cracks at 30° from the vertical can be 
distinguished from those at oo from the 
vertical; 

• cracks can be sized with about 12% mean 
deviation from the true depth as low as 
1/3 wavelength; and 

• the processes for acquiring the data to 
train the adaptive learning networks for 
these functions can be made automatic, as 
can be actual sizing and classification 
themselves. 
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SUMMARY DISCUSSION 
(S. S. Lane) 

Mark Weinberg (U.S. Army Armament R&D Command): Were all three transducers fixed in 
relation to each other in the scan? 

Steve Lane: They were in this experiment. There is a capability of moving the trans
ducer array, number one, which is mounted on a goniometer to about five different 
known positions from the main array. 

Mark Weinberg: Do you see any particular difficulty in applying a sequence of this 
nature to other than a flat plane? 

Steve Lane: The detection association processor would have to be modified to correctly 
predict the mode arrival times. But other than that, no. You would also have 
to know where you were with respect to the curved front surface, for instance. 
But presumably the pulse echo shots at the front surface could give you that 
information. 

# # 
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