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ABSTRACT
Dynamic software updating provides many benefits, e.g. in run-
time monitoring, runtime adaptation to fix bugs in long running ap-
plications, etc. Although it has several advantages, no quantitative
analysis of its costs and revenue are available to show its benefits or
limitations especially in comparison with other software updating
schemes.

To address this limitation in evaluating software updating
schemes, we contribute a quantitative cost/benefit analysis based
on net option-value model, which stems from the analysis of finan-
cial options. Our model expresses the relation between added value
and paid cost in mathematical forms. We have used this model to
evaluate the revenue from dynamic updating in two case studies
featuring Xerces and MobileMedia. These studies reveal the set of
parameter values that render dynamic updating effective. We also
compared two previously published dynamic updating schemes and
observed how the perceived performance and coverage of different
updating systems affects their relative gain.

Categories and Subject Descriptors
D.2.8 [Software Engineering]: Metrics; D.2.7 [Software En-
gineering]: Distribution, Maintenance, and Enhancement; D.2.3
[Software Engineering]: Coding Tools and Techniques; D.2.13
[Software Engineering]: Reusable Software

General Terms
Measurement, Performance, Theory

Keywords
Dynamic Updating, Cost Benefits Analysis, Software Evolution

1. INTRODUCTION
Software evolution and maintenance is a fact of life [6, 22]. En-

hancements, security, and bug fixes are routinely made to a soft-
ware system during its usable life. Long running software sys-
tems such as web and application servers, automatic teller ma-
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chines (ATMs), critical control systems often need to balance evo-
lution and availability requirements. As Malabarba et al. state,
“for a large class of critical applications, such as business transac-
tion systems, telephone switching systems and emergency response
systems, the interruption poses an unacceptable loss of availabil-
ity [24]”. Stringent availability requirements for such systems dic-
tate minimal downtime and degradation in performance, whereas
evolution needs often translate into update and restarting of such
systems. As an example, consider the maintenance needs faced by
European banks while updating ATMs from national currencies to
Euro [21, 26]. The 24-hour service typical for ATMs dictates con-
stant availability, whereas the maintenance needs to convert curren-
cies required immediate software update. Often such maintenance
needs are critical and unanticipated [21]. Dynamic software updat-
ing helps address such software evolution needs.

Dynamic software updating has attracted significant interest in
the last few years [3,10,27,33]. This is due to the benefits software
updating can provide to long running applications. The interest in
dynamic updating is clear from a plethora of research efforts and
a specialized workshop (i.e. HotSwUp [17]). Such interest is only
expected to continue with the industrial trends towards software as
long-running services in service-oriented architectures.

However, adopting any dynamic updating scheme requires deep
understanding about its cost and benefits beyond the stated soft-
ware engineering benefits. To date, dynamic updating literature
evaluates such systems in terms of coverage (i.e. what type of code
changes are supported) and performance. For example, Subrama-
nian et al. [33] evaluated their system over a set of server appli-
cations. The evaluation was in terms of average server’s response
time before and during the update process. Their analysis also in-
cluded a description of supported version changes for these server
applications. Similarly, Chen et al. [10] and Gharaibeh et al. [14]
evaluated their systems in terms of service disruptions caused by
the update process. What is missing is a formal quantitative analy-
sis that allows us to study such a system in comparison to current
static update practices and other dynamic updating systems. Fur-
thermore, we need to understand the long-term effects of using dy-
namic updating and what circumstances may limit its usefulness in
long running software systems.

The contribution of this work is a quantitative value model that
allows us to study the gain form updating systems. Our model is
based on Net option-value (NOV) analysis [36]. NOV has been
devised to price options in a financial market and has also been used
to study the cost and benefit of modularity in designs [5, 23, 34].
Our value model allows us to study the relation between updating
system’s operational parameters (e.g. cost and timing) and value
provided to users. To the best of our knowledge, this is the first
attempt to quantitatively formulate and evaluate the benefits and
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costs of offline and dynamic updating in software systems.
We illustrate our model through a software evolution scenario

taken from the version history of Google’s Android mobile plat-
form [1]. This example is used to explain the logic behind our
model. For further evaluation, we have applied it to two case stud-
ies: the evolution of the XML parser library Xerces [37] and 7
feature releases for a software product-line application called Mo-
bileMedia [38] (Section 4). Using these case-studies, we evaluated
the dynamic update model and explored how operational parame-
ters affect the gain from dynamic updating in comparison to offline
updating. Furthermore, we used our value model to compare the
revenue of two, previously published, different dynamic updating
systems. Our evaluation reveals the important role of dynamic up-
dating overhead in determining the net revenue of the system. We
have found that for the studied applications, any dynamic updating
system should not cause more than 10% degradation on revenue.
Otherwise, the value gained by timely updates where lost due to the
constant cost of supporting the update process. We also observed
how the perceived performance and coverage of dynamic updating
systems affects their relative gain.

To summarize, our contributions in this paper are:

• A quantitative model for cost/benefit analysis of updating
systems and its formulation. The model targets the revenue
generated by the update systems.

• A case study from software evolution of real-world appli-
cations that illustrates the use of the proposed evaluation
model.

• We performed a quantitative analysis between two previ-
ously published dynamic updating systems in terms of pro-
vided revenue. The two schemes differ in the type of sup-
ported evolutionary changes and performance.

The reminder of this paper is organized as follows. Section 2
presents a gentle introduction to dynamic updating. In Section 3 we
discuss our quantitative model in parallel with a running example.
We describe the two case studies in Section 4. Section 5 presents
the related work while Section 6 discuss various aspects and limi-
tations of our evaluation model. Section 7 discusses directions for
future investigations and concludes.

2. DYNAMIC UPDATING
The typical process of updating a software system includes

restarting the application in order for changes to take effect. How-
ever, it is argued that restarts, and hence interruption of service,
are highly undesirable and can cause revenue loss [29, 30]. There-
fore, a solution that avoids service interruption might guard against
revenue loss.

Dynamic updating refers to the process at which software appli-
cations are modified amid execution. In this scenario, an update
module takes the code changes and applies them to the running
application structure (e.g. methods, objects, etc.). Several updat-
ing systems have been proposed targeting the theory [15, 32] and
implementation [10, 14, 16, 24, 28] of dynamic updating systems.
For example, Ginseng [28] is a dynamic software update tool for
C where programs are compiled specially so that they can be dy-
namically patched. POLUS [10] also updates C programs. Hjalm-
tysson et al. [16] introduced a method for updating C++ code in
running programs by using dynamic classes, while [24] supports
dynamic updates by extending the Java class loader functionality.
Also, Sun’s Java Virtual Machine(Hotspot) supports dynamic re-
definition of classes through its HotSwap capabilities [11]. Further-

more, variations of dynamic updating exists in the form of runtime
aspects weaving for aspect-oriented programming [4, 12, 19, 31].

Supporting dynamic updating capabilities requires paying the as-
sociated costs. The process of modifying the running application
affects its performance during the update period. For example, up-
dating in POLUS [10] and Ginseng [28] reduces the performance
by 30% for a the short duration of the update(order of millisec-
onds). Also, the updater module might cause long term perfor-
mance loss in the system, which translates to revenue loss. Further-
more, not all code changes can be applied dynamically. Dynamic
updating literature evaluate their systems in terms of the mentioned
limitations. In other words, what is the performance loss and what
type of updates are supported.

3. QUANTIFYING SOFTWARE UPDATE
This section presents the details about the proposed value model

and illustrates its use through a running example. The main idea
behind the value model is the computation of daily revenue of the
system. By understanding how different updating policies affect
the daily value, we can calculate the effect on total revenue made
by these systems.

We first present a software update scenario taken from the ver-
sion history of Google’s Android platform, which is used through-
out this section. We then present a generic value model for software
update and its instantiation for three different update models. This
allows us to quantitatively represent the gains from each model in
terms of its operating parameters. We then use this formulation to
compare and contrast the gain that each model can provide for our
Android update scenario.

3.1 Updating Android Platform
We will illustrate how our proposed value model works through a

simple, yet realistic example. The example is based on the Android
mobile platform from Google [1]. Android is an open-source plat-
form for operating smart phones. The platform builds on a Linux
kernel as its base and uses a special virtual machine (Dalvik VM)
to execute the system and user applications. Most of the system is
composed of Java applications specially compiled to execute on top
of the Dalvik virtual machine. Applications include web browser,
calendar, chat clients and others. Android was first released (V 1.0)
on September 2008 and a new release (V 1.5) followed on June
2009. We will study two patches to Android’s code base that af-
fected the value of the system.

3.1.1 Scenario I: Improving Security
The first code change was a security patch. A security vulnera-

bility was identified on October 20th 2008. The vulnerability was
caused by the use of an outdated package for the browser applica-
tion. A patch was released on November 1st and users were notified
of the availability of software update. The update process requires
phone restart and rendered the phone unusable, not even for emer-
gency calls, during the update process. More information about this
vulnerability can be found in [2].

3.1.2 Scenario II: Performance Enhancement
The second feature is a performance enhancement to some of

the platform application’s user interfaces. The patch enhanced the
speed of scrolling in the browser and Gmail lists and shortened the
camera start-up and image capture times. This patch was not sent to
users but incorporated into the next release (1.5). We estimate that
these features were added to the code base around April 2009. This
feature release scenario presents an interesting question. Users ex-
pect their phones to have high availability and performance. Does
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the benefits of having a faster phone and less user interruptions jus-
tifies the cost of supporting dynamic updating in Android? The
main goal of this paper is to formulate this question and to quanti-
tatively compare different updating approaches.

In the next few sections we will define different updating systems
precisely and formulate their associated costs and benefits.

3.2 Update Models
We will evaluate the following updating models:

• Model 0: Offline update at release time.

• Model 1: Offline update at feature time.

• Model 2: Dynamic Updating.

The first model (Model 0) represents the base case where up-
dates are performed when a new version is released. The update in
this model is performed offline where service is stopped until the
system finishes the updating process. For example, in the case of
the two features for Android, updates will be delivered whenever a
new release of the platform is available. Users will install the new
release and restart their phones. The disadvantage here is that se-
vere bugs will not be addressed in a timely manner. For example,
the Android security patch will be delivered to users as part of the
new release, not as an important update.

Model Revenue

Model 1 (+) time value of feature.
(-)cost of updating. It depends on cost of disabling and restarting
the service.

Model 2
(+) time value of feature.
(-)cost of online updating, which depends on feature complexity.
(-)cost of using a modified system that supports online updating.

Figure 1: Value of updating to feature i

The costs and benefits of the last two update models are summa-
rized in Figure 1. Model 1 presents the option for offline updating
at feature availability time. In this model, updates are scheduled on
the next system restart and applied when the system goes offline.
In the case of the two features for Android, features will be re-
leased whenever they are available rather than at the next available
release. Users are able to install these features instead of waiting
the next release date. Also, under this model, users will be required
to restart their phones, which might cause users to delay applying
the patch until a more suitable time.

Finally, in Model 2 the system is dynamically updated when new
features are available even if availability occurs before the next re-
lease time. In the Android example, when a new patch is available,
the system will incorporate the needed change without restarting
the phone or blocking users. However, users might suffer from
short-time performance loss during the update process.

3.3 Net Options Value Model
Net Options Value (NOV) model quantifies the value of using

the system over a certain period of time. In other words, if the
value is represented as a function of time, the total value is equal to
the integration of the value function over the specified period. Let
us consider the scenario shown in Figure 2. It shows the revenue
generated by Model 1 (bold line) and Model 2. Each model’s total
revenue is equal to the area under its value function.

Model 2 has less value initially due to the cost of supporting dy-
namic updates. However, Model 2 gains value by early adoption
of feature and reduced cost of updating. The dip in the Model 2
value represent the cost of the updating process. For Model 1, the
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Figure 2: Value of different updating models.

dip is more severe since it represents complete service disruption.
The area on the figure shaded by diagonal lines represents the gain
achieved by offline over dynamic updating, while areas shaded by
horizontal lines represents the gain of dynamic over offline updat-
ing. Intuitively, if the area of diagonally shaded region is larger
than the horizontal region, then offline updating provides better to-
tal revenue and the cost of supporting dynamic updating does not
justify its benefits.

In general, net options value [5] is represented as follows:

V = S +
X
i

NOVi − C

NOVi = Vi − Ci

where V is the net value of the model,C is the model cost, which
is paid even if no updates were exercised. NOVi is the value gained
by updating to feature i and Ci is the cost of the update. This
formula, although general, does not offer much insight into the
specifics of a typical updating system. Thus, we seek a domain-
specific formulation of the net-options value analysis starting with
a quantitative treatment of the value of Model 1 and 2 described
previously.

3.3.1 Model 0: Static Update at Release Time
For this model the system value increases at release time by an

amount equal to added features value. Thus we define the system
value (V ) for this model at a future release as:

V = S +
X
i

σi

where S is the system value at the current release and σi is the
technical significance (value) of feature i. In other words, the value
of the system after installing a new release is equal to its original
value (old release value) plus the value of new features.

3.3.2 Model 1: Static Update at Feature Time
For this model the system value increases at next restart time by

an amount proportional to added features time value. The cost has
two components. First, the cost of delaying the update. Second, the
cost of restarting the service. Thus we define the system value (V )
for this model at a future release as follows:

V =

nX
i=1

NOVi
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NOVi = E[U ]
TR

ti+T
i
off

σi(t)dt− CR (1)

CR =

8>>>><>>>>:
0 ti + T ioff = ti−1 + T i−1

off

UL

tfaR
0

dt

∗z }| {
i−1X
j=1

σj(ti) otherwise
(2)

(3)

The value function we will use represent the value gained by a sin-
gle user. It is often necessary to multiply the gained value by the
expected number of users to obtain the total value. In the above
value model, E[U ] represents the expected number of users, UL is
the number of users at low-demand time. Toff is expected value of
time until update is applied, and tfa is the time needed to complete
offline update. This value model has two parts. The first part de-
scribes how the deployment of a feature increases the system value.
The value equals the summation of daily revenue of a feature which
is represented by (σ(t)). The integration bounds represents the pe-
riod of time the new feature is active. Since this model relies on
scheduled restarts, the feature will not be deployed at its release
time (ti) but rather after certain number of days (Toff ). The sec-
ond part of the formula presents the cost associated with offline
updating. The first case states that if two features are scheduled on
the same restart period, we only need to pay the cost once. The
second case presents the cost of the restart in terms of lost value
(system value so far, labeled with (*)) and the time needed to finish
the restart of the system after update (tfa).

3.3.3 Model 2: Dynamic Updating
For this model the system value increases at feature availability

time by an amount proportional to added features time value. The
cost has two components. First, the long-running cost of using the
updating system. Second, the cost of performing the update. Thus
we define the system value (V ) for this model at a future release as:

V = E[U ]CVM

nX
i=1

NOVi

where CVM is the cost of using a modified system that supports
dynamic updating and ranges over the period [0, 1], where having
the value of one means that there are no long-running overhead.
E[U ] is the expected number of users. The value gained by Model
2 is offset by the cost of using the updating system.

The per-feature value (NOVi) is defined as follows:

NOVi =

TZ
ti

σi(t)dt−
toaZ
0

Coa(t)dt

i−1X
j=1

σj(ti) (4)

where ti is the time of release for feature i, T is the time of next re-
lease, σi(t) the value function of the feature, toa is time needed to
finish the dynamic update, and Coa represents the reduction in sys-
tem’s value during the dynamic updating. Again, this value model
represents the gain from deploying the feature (integration of σ(t))
minus the cost of the dynamic update which is related to update
duration and value loss during the update.

3.4 Effect of Operational Parameters
Operational parameters are those used to describe the cost and

timing of the update process. Based on the previous valuation
models, we will now construct a set of relations that describes the
bounds on these parameters that guarantees profitable operation.

The original value models can be used to compare total revenue,
while this set of relations can be used to calculate the system pa-
rameters based on known constraints.

3.4.1 Effect of Updating Overhead
In our model, both update systems suffer a value loss during the

update. However, the dynamic update system also pays the con-
tinuous cost of supporting dynamic updates (Cvm). The value of
Cvm represents the performance overhead from using the dynamic
update system. It is known that such overhead must be kept at min-
imum. However, the question is when does the overhead reverse
any gains from the modified system.

In general, the relation between Cvm and gain in comparison to
the other system can be modeled by equating equations (4) and (3).
By assuming n will dispersed features , we conclude that dynamic
updating has higher value when:

nX
i=1

[

cost of dynamic updatez }| {
E[U ](1− Cvm)

TZ
ti

σi(t)dt+ E[U ]Cvm

toaZ
0

Coa(t)dt

i−1X
j=1

σj(ti)dt

−E[U ]

T i
offZ
0

σi(t)dt− UL

tfaZ
0

dt

i−1X
j=1

σj(ti)dt

| {z }
cost of static update

] < 0

The first half represents the cost of the dynamic update system
which consists of the long-running cost and the update cost. The
second half shows the offline updating cost consisting of delayed
feature deployment and service disruption at update time. Notice
that as Cvm increases to reach the value of one (no long-running
costs), the cost of dynamic update is reduced to the cost of the
update process at update time. As Cvm decreases, the long running
cost increases in a similar amount. Also, note that as either Toff or
tfa increases, lower values of Cvm can be tolerated.

3.4.2 Effect of Delayed Updates
For two features fi, fj where tj > ti, applying the two features

at tj has higher value than applying each feature at its time for
Model 1 if

UL

tfaZ
0

dt

i−1X
k=1

σk(ti) > E[U ]

tj+T
j
offZ

ti+T
i
off

σi(t)dt

and for Model 2 if
toaZ
0

Coa(t)dt

i−1X
k=1

σk(ti) >

tjZ
ti

σi(t)dt

where terms have their previously defined meanings.
On the other hand, if σ(t), Coa(t) do not depend on time (i.e.

constant values), these conditions are simplified to:
Model 1:

σi <
UL
E[U ]

tfa
Pi−1
k=1 σk(ti)

(tj + T joff )− (ti + T ioff )

Model 2:

σi <
toaCoa

Pi−1
k=1 σk(ti)

tj − ti
(5)
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The later condition relates the value of σi to the cumulative system
value, update cost and period between features. For example, under
Model 2 (5), a feature that is equal to 10% of cumulative value and
with a period of one week until next feature, the dynamic update
time should be more than 8 hours and 24 min to justify combining
the two features.

3.4.3 Coverage of Dynamic Updating
Many dynamic updating systems do not support all types of code

updates. Therefore, even a dynamic update system requires occa-
sional restarts to serve certain update requests. Generally, we can
include this factor as a random event xi that is related to the ratio of
supported updates. Assuming that for any certain feature, there is a
probability p(xi) that the feature can not be updated dynamically.
Therefore, the valuation model of Model 2 is changed as follows:

NOVi =p(xi)NOV
1
i (6)

+ (1− p(xi|xi−1))max{NOV 1
i , NOV

2
i } (7)

+ (1− p(xi|xi−1))NOV
2
i (8)

(9)

In the new model, the NOV of feature i has two factors. First, there
is a probability of xi that a static update is required (i.e. NOV 1

i ).
Second, if the feature can be applied dynamically, the NOV is the
maximum of the dynamic and static NOV. We are using the maxi-
mum aggregate to cover the possibility that feature i − 1 was up-
dated statically (i.e. p(xi|xi−1)) and that the new feature is re-
leased within the Toff period. In this case, we have the option of
upgrading feature i dynamically at the regular cost or statically at
reduced cost since the restart is already required. Otherwise, the
regular NOV of dynamic update is used (i.e. p(xi|xi−1))

3.5 Android Update Revisited
We will now apply the analysis model to our running example.

To that end, the first task is to identify the value function of each
feature (σ(t)). The security-related patch was released on day 60
and resolved a critical security vulnerability that could compromise
the system. If the patch is not applied, the system looses value on a
daily bases. The loss is proportional to the probability of an attack
which grows every day. The loss can be modeled as a exponential
random distribution function according to the following formula:

σ1(t) =

(
−λe−λt td < t1

0 t > t1

Where λ is the probability of an attack and is set to 0.3. td is the
vulnerability discovery time. In our case, td = 50 days.

The second feature enhanced the user-perceived performance by
increasing response speed of certain applications. In reality, mod-
eling the gain from such feature is hard since it requires knowledge
about the market and how this feature can affect potential number
of users or their satisfaction. For simplicity, we will assume that
this feature increases user satisfaction by 15%. Therefore, the gain
can be expressed as follows:

σ2(t) = 0.15R

WhereR is the previous system value, which depends on gain from
the previous feature (σ1(t2)).

Finally, we will assume that the system has an initial revenue of
$100 per day. Other system parameters are known or there value
can be assumed and are presented in Figure 4. We assume a low-
overhead (Cvm) dynamic updating scheme with performance close

to 99.5% of base system. As for time parameters, we assume that
restarts can be initiated four days after feature release (Toff ) and
that a restart cycle (tfa) takes two minuets to complete, while the
dynamic update system requires five seconds (toa) to deploy the
feature and causes 50% performance loss during the update (Coa).
The phone has a single continuous user (E[U ] = UL).

Using our analysis, let us evaluate the total gain for Model 1:

V =S +NOV1 +NOV2

NOV1 =100 ∗
Z 210

14

λe−λtdt− 100 ∗
Z 14

0

λe−λtdt

−
Z 0.0014

0

.dt ∗ 100

NOV2 =

Z 270

210+4

100 ∗G1(213) ∗ 0.15dt

−
Z 0.0014

0

.dt ∗ 100 ∗G1(213)

V =23, 619.13$

The total gain for Model 2 is:

V =(S +NOV1 +NOV2) ∗ Cvm

NOV2 =100 ∗
Z 210

10

λe−λtdt− 100 ∗
Z 10

0

λe−λtdt

− 0.5

Z 0.00006

0

.dt ∗ 100

NOV1 =

Z 270

210

100 ∗G1(210) ∗ 0.15dt

− 0.5

Z 0.00006

0

.dt ∗ 100 ∗G1(210)

V =23, 794.17$

Figure 3 shows the daily system revenue. Note that Model 2
gains from early adoption of features while loosing small amounts
of daily revenue. In this example, the total revenue from dynamic
updating was slightly higher than revenue from offline updating.
Although not shown here, but increasing the value of attack proba-
bility (λ) increases the gain from using dynamic updating.

4. EVALUATION
This section presents an evaluation of dynamic updating using

our formulation. We analysed two cases of software evolution. The
chosen cases are Xerces [37] and MobileMedia [13, 38]. Xerces
is an XML parsing library that can be found, among many places,
in web server applications. MobileMedia on the other hand is a
mobile application used to manage images, audio and videos and
is similar in nature to the Google’s Android platform that we dis-
cussed in previous section.

We will start by describing the process of selecting the evaluation
parameters. Then we will present detailed information about each
case study. Finally, we will study the effect of operating parameters
on gains achieved by dynamic updating model and how the timing
of updates affect the system’s value.

4.1 Selecting Analysis Parameters
The main challenge in this section is the selection of proper value

functions. Each feature contributes to the value of a release. How-
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Figure 3: Comparison of daily revenue for the two updating
models

Parameter Value Parameter Value
Cvm∗ 0.999 Toff∗ 4 days
toa∗ 5 sec. tfa∗ 2 min.
Coa 0.3 E[U ], UL 1
t1 day 60 t2 day 210
T 270 days

Figure 4: System parameters. Values of parameters with * are
based on the expected behavior of update systems

ever, assigning proper values of σ(t) is not trivial as it requires an
understanding of the technical importance of a feature and how it
affects the whole system’s value. Therefore, we employed a simple
heuristic to evaluate a feature’s importance. For evaluation pur-
poses, we used a constant value for σ(t). First, we need to set the
limits on σ values. We assume that a system value doubles at every
release. Thus, by taking the formula of Model 0 we have:

2S = S +
X
i

σi ⇒ S =
X
i

σi

The equation can be further simplified if we start with normal-
ized values (i.e. V = 2, S = 1). In this case we have:

X
i

σi = 1

We approximated σi values for studied features through a point
system. Any security-related features is assigned four points, bug
fixes and added features are assigned three points, performance en-
hancement are assigned two points, and finally, any remaining fea-
tures are assigned one point. Using this approach, each feature’s σi
is equal to its share of points.

The value of Toff equals the number of days until offline up-
dates are performed (i.e. Sundays). The value of toa is approxi-
mated by αtfa. The value of α depending on code modifications
required to implement the feature and was computed by studying
code changes. Finally, the value of Coa is set to 0.5. This value in-
dicates that the system loses half of its performance (which is very
conservative) during the dynamic update process.

4.2 Xerces Case Study
We selected ten features from two constitutive releases of Xerces

XML parsing library. The features are described in Figure 5. The
features provide additional capabilities (e.g. A3: Japanese char-

acters serialization , B4: support for <redefine> attribute), perfor-
mance enhancement (e.g. A4: improve Deterministic Finite Au-
tomaton(DFA) build-time performance) or resolve bugs (e.g. B1).
Deploying these features allows the system to increase its revenue
through faster processing, wider customer base and support addi-
tional types of XML documents.

A0 Dec 6, 2000 Start of V 1.2.3
A1 Dec 8, 2000 Upgraded schema support to the schema CR drafts at a

similar level to that which had existed for the WD schema
specifications.

A2 Dec 12, 2000 Fix for NullPointerException caused by deferred DOM
implementation when in non-validating mode and there
are multiple IDs declared on the same element.

A3 Dec 14, 2000 Applied patch from TAMURA Kent: (Japanese characters
serialization)

A4 Jan 11, 2001 Updates to DFAContentModel to improve DFA build-time
performance.

A5 Jan 18, 2001 Schema Identity Constraints
B0 Jan 31, 2001 start of 1.3.0
B1 Feb 1, 2001 Some massive bug fixes. All subtle but very important.
B2 Feb 2, 2001 Implementation of parsing component (javax.xml.parsers)

of JAXP 1.1
B3 Feb 6, 2001 XML Node Normalization
B4 Feb 16, 2001 Initial support for <redefine>.
B5 Mar 5, 2001 XML Notations
C0 Mar 16, 2001 start of 1.3.1

Figure 5: Xerces Features Selected for Analysis: This Informa-
tion was Obtained by Mining commit logs

For simplicity, we are assuming that a release consists of these
features only. Figure 6 shows the parameter values for selected
features. The table shows the number of points assigned to each
feature as points are used to approximate value gained by de-
ploying a feature (σ). The table also shows the feature’s relative
complicity(α) as derived from code modification logs. Feature
complexity is used to derive the dynamic updating time (toa). A
complex feature requires more updating time than a simpler fea-
ture. The table also lists the time in days until the next release is
available(T − t) and the wait period from the feature release time
until the next Sunday(Toff ) which used as waiting period for the
offline updating system.

Feature Points σ α T − t Toff
A1 3 0.214 0.185 54 2
A2 3 0.214 0.012 50 5
A3 3 0.214 0.235 48 3
A4 2 0.143 0.136 20 3
A5 3 0.214 0.432 13 3
B1 3 0.214 0.4 43 3
B2 3 0.214 0.36 42 2
B3 2 0.143 0.1 38 5
B4 3 0.214 0.08 28 2
B5 3 0.214 0.05 11 6

Figure 6: Xerces Feature’s Parameters

We can note that feature complexity follows the trend of feature’s
value for Xerces. In other words, important features are complex.
Therefore, supporting a high-value feature comes at higher cost
than a simpler feature, but will provide higher value.

4.3 MobileMedia Case Study
MobileMedia [13] is an extension of the MobilePhoto [38] ap-

plication, which was developed to study the effect of aspect-
oriented designs on software product lines (SPL). MobileMedia is
an SPL for applications that manipulate photos, music and videos
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on mobile devices. MobileMedia extends MobilePhoto to add new
mandatory, optional and alternative features.

Release Description Type of Change
R1 MobilePhoto core [29, 30]
R2 Exception handling included (in the As-

pectJ version, exception handling was imple-
mented according to [13])

Inclusion of non-
functional concern

R3 New feature added to count the number of
times a photo has been viewed and sorting
photos by highest viewing frequency. New
feature added to edit the photo’s label

Inclusion of op-
tional and manda-
tory features

R4 New feature added to allow users to specify
and view their favourite photos.

Inclusion of op-
tional feature

R5 New feature added to allow users to keep
multiple copies of photos

Inclusion of op-
tional feature

R6 New feature added to send photo to other
users by SMS

Inclusion of op-
tional feature

R7 New feature added to store, play, and organ-
ise music. The management of photo (e.g.
create, delete and label) was turned into an
alternative feature. All extended functionali-
ties (e.g. sorting, favourites and SMS trans-
fer) were also provided

Changing of one
mandatory feature
into two alterna-
tives

R8 New feature added to manage videos Inclusion of alterna-
tive feature

Figure 7: Summary of Change Scenarios in the MobileMedia
SPL (based on Figueiredo et al.’s work [13, Tab.1])

There are a total of seven releases and descriptions of each is
shown in Figure 7. For example in release 7 (R7), the optional
feature added in a previous release to manage photos was turned
into an alternative feature and a new feature to manage music was
added.

Feature Type Points σ α T − t Toff
R2 Mandatory 3 0.214 0.14 23 3
R3 Mandatory 3 0.214 0.1 21 1
R4 Optional 2 0.143 0.04 21 1
R5 Optional 2 0.143 0.11 18 5
R6 Optional 2 0.143 0.11 15 2
R7 Alternative 1 0.071 0.3 0 1
R8 Alternative 1 0.071 0.2 0 1

Figure 8: MobileMedia Feature’s Parameters

Figure 8 shows the parameter values for these features. The ta-
ble lists the same parameters as in Figure 6. Mainly the feature
value (σ), complexity(α), time until next release(T − t) and time
until the next Sunday(Toff ). Contrary to the Xerces case study,
less important features (Alternative features) has higher complex-
ity. Therefore, the cost of deploying these features may not justify
the gain in the case of this application.

4.4 Analysis
We will now employ our valuation model to evaluate the two up-

date models (Model 1 and Model 2) over the described case studies.
We will study the gain in revenue from using Model 2 and the effect
of operational parameters on revenue.

4.4.1 Revenue Analysis
Assuming E[U ] = UL = 1, Figure 9 presents the revenue val-

ues for Model 2 and Model 1. These values reflect the expected
benefits for a single continues user. Note that increasing the num-
ber of expected users (E[U ]) will increase the absolute revenue.
However, it has minimum effect on the difference between Model
1 and Model 2 update systems. The main cause of increased value

in Model 2 is the wait period until restart required by Model 1. The
cost of waiting increases linearly in relation to the expected number
of users. Also, the gain increases in a similar linear fashion. There-
fore, the net gain difference does not show large changes when the
expected number of users change.

Cycle Scheme Revenue
Xerces 1.2.3- Model 2 37.73
1.3.0 Model 1 34.86
Xerces 1.3.0- Model 2 31.64
1.3.1 Model 1 28.43
MobileMedia Model 2 16.87

Model 1 15.06

Figure 9: NOV Calculation when E[U ] = UL = 1 and tfa =
one min. Cvm = 0.99

In all cases, Model 2 update system provides higher revenue than
Model 1. The higher revenue from the first Xerces release is due to
the long release period. The first release (from 1.2.3 - 1.3.0) was 56
days compared to 44 days for second Xerces release and the short
25 days for MobileMedia. The longer release duration increases
the gain from early adoption of features and reduces the cost of
waiting in the case of Model 1.

4.4.2 Effect of Updating Overhead
Figure 10 shows the gain percentage from using Model 2 com-

pared to Model 1 for the studied features from Xerces and Mobile-
Media. It shows that dynamic updating can provide benefit as long
as its performance is above 90% of Model 1 performance. In other
words, for the studied applications, the long running costs of us-
ing dynamic updating must not exceed 10% of the system revenue.
For example, if supporting the dynamic update system reduces a
server’s performance (e,g, satisfied requests per second) by 10%,
then this performance loss translates into lost customers, and thus
a loss in revenue by 10%. Any gain from early adoption of features
will be eliminated by the constant high cost of supporting dynamic
updating. Note that this limit (i.e. 10%) is specific to this study
and not a general limit. Other update scenarios might show less or
more tolerance to the constant overhead of dynamic updating.
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Figure 10: Effect of Cvm. E[U ] = UL = 1 and tfa = one min.

What this example shows, however, is that our analysis model
can be applied to a real world dynamic update scenario to determine
the suitability of a candidate update model.

4.4.3 Effect of Restart Schedule
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Figure 11: Effect of tfa. E[U ] = UL = 1 and Cvm = 0.99
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Figure 12: Effect of toff . E[U ] = UL = 1 and tfa = one min.
Cvm = 0.99

As seen so far, Model 2 has better value than Model 1. The
main reason is the delayed updates in Model 1 which is related to
Toff . This parameter represents the period of maintenance cycle
in model 1. High value indicates longer periods without restarts
and thus reduced cost due to service interruption. On the other
hand, low values of Toff brings required updates at a faster rate.
Figure 12 shows the relation between the value of Toff and the
gain of model 2 compared to Model 1. At higher Toff values, the
static update model losses most of its benefits and become closer to
Model 0. This is especially true for MobileMedia, where any value
of Toff > 25 makes it behave as Model 0. With low Toff (i.e.
daily restarts), the system will closely follow the value of Model
2. It is worthy to note that in all cases, we assumed that static
updates occur on low demand times (i.e. restart cost multiplied by
UL rather than E[U ]). In reality, this assumption may not hold for
low values of Toff .

4.5 Comparison of Updating Methods
Until now we have been comparing dynamic updating with the

typical offline updating scheme. Now we take the analysis to a dif-
ferent direction. We would like to understand how dynamic updat-
ing schemes compare in terms of provided revenue. Previously pro-
posed updating system varies in terms of supported code changes
and how these changes are expressed. We will compare between
two updating systems. The key objective of the first system is to
support dynamic deployment and removal of features expressed via
language mechanisms provided to the programmer [12]. The other
system is designed specifically for dynamic updating and it uses
differences in class structure [33]. This comparison is based on

Scheme Revenue Scheme Revenue
Updater#2 17.04 Update#1-Weekend 15.97
Updater#1- 16.64 Updater#1 16.78
Daily Hypothetical

Figure 13: Revenue For Different Dynamic Updating Schemes

features from Figueiredo et al. [13], which describes code changes
as aspect-oriented and object-oriented implementations.

4.5.1 Updater #1: Low Constant Runtime Overhead
and Negligible Update Overhead

This update system requires code changes to be described as part
of the program. Furthermore, the updater deals with these changes
by dynamically weaving them into the running application. An
example of such system is presented in [12] from which we will
deduce the parameters needed for the analysis.

The research prototype for the selected update system does not
support all types of aspects. It only supports the pointcut-advice
model [25] at this time, so inter-type declaration can not be pro-
cessed by the system. Out of the seven releases of MobileMedia,
the first release uses inter-type declaration to add new exceptions to
the application. As a consequence, this updater will not be able to
process the first feature dynamically. Other features are supported
by this update system. The updating system used here has a long
running cost of 1.5% while update cost is negligible.

4.5.2 Update #2: Negligible Runtime Overhead and
Large Update Overhead

The second update system, designed specifically for dynamic
updates, relies on class transformations to change the application
structure. Changes are presented in terms of new methods and
fields informations. We will consider the system described in [33].
All code changes in the MobileMedia case study are supported by
the update system. The system suffers from performance degrada-
tion during the update process. We will use the values presented
in [33] although they were a result of a different benchmark. The
update process requires approximately 15 seconds to complete and
the performance is reduced by an average of 28%. The system pre-
sented does not show any long-term performance loss.

4.5.3 Analysis
Figure 13 shows the revenue of the two update models. The up-

dater#1 has the highest value due to its ability to support all needed
changes. The updater#2 inability to support dynamic update of first
feature reduces its revenue. This loss is reduced if offline updates
are allowed in a daily bases (third row) rather on a weekly bases
(second row). The last row shows the revenue assuming that all
features can be dynamically applied using updater#2. It shows the
effect of long term overhead associated with updater#2.

This analysis reflects on the importance of completeness for soft-
ware updating systems. Furthermore, it identifies that for most
update scenarios it appears to be beneficial to optimize long term
overhead from the perspective of dynamic software updating.

4.6 Summary
In this section we investigated the value of different update mod-

els on a set of real-world applications. Several key insights are
worthy to note. First, the long running cost of supporting dynamic
updating has an influential role in determining the net total revenue
gained from dynamic updating. In our experiments, the system
reached zero gain when the overhead was 10% of the base sys-
tem performance. Another key observation is the importance of
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recognizing the update system performance and capabilities when
deciding to support dynamic updating. In our last case study of
two dynamic update schemes, We noted how the coverage and per-
formance characteristic of the second update system made it less
favorable in terms of total revenue.

5. RELATED WORK
Dynamic updating is gaining increased interest from research

and industry. Several research projects have proposed, designed
and implemented dynamic updating systems. However, the main
evaluation tasks in the literature were performance and coverage.
Chen et al. [10] and Subramanian et al. [33] evaluated their systems
in terms of service disruptions during the update process. Evalua-
tion of runtime aspect-weaving tools [4, 12, 19, 31] have also fo-
cused on runtime overhead. In this paper, we explored a different
evaluation goal and methods. To the best of our knowledge, this
is the first exposition into evaluating update systems in terms of
running costs and added options value.

Our evaluation model is based on net option-value analysis
[9, 20]. Net option-value analysis is based on the problem of pric-
ing financial options. A financial option presents the opportunity
to purchase a commodity at a strike price in the future regardless
of price fluctuations, provided that the buyer pays a premium in
the present (also known as Call Option). In this paper we used the
basics of options analysis to evaluate the benefits of dynamic up-
dating. Updating has a significant resemblance with the problem of
option pricing. As options, dynamic updating provides the oppor-
tunity to perform a future update at a possibly reduced price given
that a premium (i.e. cost of using the dynamic update system) is
paid. The body of literature describing this financial instruments is
extensive and out of the scope of this paper. However, we note the
application of options to software design and especially to design
modularity. Baldwin and Clark [5] showed the benefits of mod-
ular design in increasing a system’s value. The main conclusion
is that a set of options over modules are more valuable than op-
tions on the whole system. This idea is further utilized in software
design research by analyzing which modularization provides the
best value. Sullivan et al. [34] showed the value of design based
on information hiding principles by combining option analysis and
design information. Similar uses of option analysis can be found
in [8,23,35]. Ji et al. [18] used option analysis to evaluate the ben-
efits from designing and issuing new software releases in relation
to market uncertainty.

6. DISCUSSION
We have illustrated how our proposed model can be used to eval-

uate updating systems and to understand the effect of some opera-
tional parameters. This evaluation model is advantageous since it
accounts for the value of time and supports the study of time de-
pendent value functions. In our evaluation (Section 4), we treated
the feature value function as a constant. In general, assigning val-
ues to features is often subjective. However, it would be of interest
to study value functions that directly depend on time. For example,
functions that model compound interest on feature’s value.

We assumed that each applied update is correct and does not
fail (i.e. bug-free). This assumption simplifies the formulation.
However, a more practical model will incorporate the possibility of
failed updates. A failed update can be considered as a feature with
negative gain to model value loss during the use of the malfunc-
tioning code. Since failures are unknown before their occurrence,
this additional negative-gain feature will depend on a probability
distribution that describes bug probability over time.

The basics of net option-value analysis used in this paper can
also be used to study the value of update systems from a design
perspective. We argue that the problem of quantifying benefits of
dynamic updates can be translated into a modular design problem.
Systems that supports updates, either static or dynamic, are mod-
ular. However, their modules and module-dependencies are differ-
ent. The question is, which modularization provides greater value.
Figure 14 depicts this assumption. Model 0 can be considered as an
indivisible system with no update options. Model 1 has the update
options represented as modules. However, there are restricting de-
pendencies between such modules. Therefore, any module upgrade
(i.e. applying an update) affects other modules (by restarting). Fi-
nally, Model 2 has the options and they are decoupled through the
use of interfaces, which allows easier upgrades to any module.
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Figure 14: Units of update for different update models

Finally, this study evaluated two update models, static(offline)
and dynamic. An interesting question is to try to evaluate a combi-
nation of several dynamic update schemes depending on the nature
of the feature and how they compare in provided value.

7. CONCLUSIONS AND FUTURE WORK
Software updating has several advantages such as runtime mon-

itoring, bug fixes or adding features to long running applications.
Therefore, dynamic software updating has attracted significant in-
terest in the last few years [10, 16, 24, 27, 28]. To date, dynamic
updating literature evaluates such systems in terms of coverage
(i.e. what type of code changes are supported) and performance.
Chen et al. [10] and Subramanian et al. [33] evaluated their sys-
tems in terms of service disruptions during the update process and
noted the types of code changes that their system can not handle.
These evaluation methods are sufficient to understand the system
performance and coverage. However, we often need other metrics
to compare different updating systems. For example, what would
be the gain from dynamic updating over offline updating, or what
is the gain difference between two dynamic updating systems. To
answer these questions, we formalized a quantitative model to eval-
uate the net revenue gained by the use of different updating models.
Using this model, we were able to evaluate the gain from online up-
dating vs. offline updating in three update scenarios based on the
evolution history of real-world applications. Furthermore, we used
the model to compare and contrast two, previously published, up-
dating schemes that differ in their coverage and performance.

An interesting outcome of this analysis was an insight into the
perceived value of performance overheads for dynamic update sys-
tems. Generally, researchers have been concerned about two kinds
of such overheads [4, 7, 31]: first, during update time, and second,
constant overhead during the system’s normal execution. Our anal-
ysis provides a method to analyze and compare these overheads
based on their perceived values, which has the potential to aid in
the selection of an updating system during software design.
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Future work involves extending our analysis model in two main
directions. First, the formulation can be extended to model the ef-
fect of bug discovery. Often after a feature release a bug is discov-
ered and a second patch is needed to resolve the bug. The extension
can model the revenue loss from such activity. Second, in terms
of evaluation, we used simple constants to represent feature val-
ues. However, modeling real-world economics would require more
complex valuation functions.
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