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Abstract

Most companies maintain warranty databases for purposes of financial reporting and warranty ex-
pense forecasting. In some cases, there are attempts to extract engineering information (e.g., on the
reliability of components) from such databases. Another important application is to use warranty
data to detect potentially serious field reliability problems as early as possible. When a serious
problem arises, the existence of the problem will eventually be obvious. Early detection of serious
problems through the use of sensitive statistical methods, allowing early action to mitigate potential
reliability problems, could save large amounts of money and product good will.

This paper describes a detection procedure that has been designed for this purpose. In addition
to the statistical decision rules, we suggest graphical tools for illustrating and describing the par-
ticular information in the data that caused the potential problem to be flagged. The methods are
illustrated using data from an automobile warranty database.

Key words: Average run length; Control chart; Poisson distribution; Sequential test; Statistical
process monitoring; Warranty report.

1 Introduction

1.1 Motivation for early detection

The modern philosophy of manufacturing quality and reliability is to design reliability into a prod-
uct and do up-front accelerated testing before manufacturing begins in an effort to avoid serious
reliability/warranty problems for the product in the field. For example, programs such as “Reli-
ability by Design” and “Design for Six Sigma” have become popular in manufacturing industries.
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This focus on quality and reliability and the effective use of statistical methods have done much
to improve the reliability of manufactured products in certain industries, notably the automobile
industry. Automobile warranty periods have increased dramatically and 100 thousand miles is no
longer considered to be the end of the useful life of an automobile.

Nevertheless, most manufacturing companies have, from time to time, faced and will continue
to face serious reliability problems, most often caused by one or some combination of the following:
an unanticipated failure mode, harsher than expected operating environment, an unknown change
in raw material properties or supplier quality, an improperly verified design change, etc. In order
to meet financial reporting requirements and to assure adequate financial reserves, manufacturing
companies maintain warranty databases. The use of appropriate statistical detection rules in a
warranty database has the potential to identify or warn of serious reliability problems long before
they would otherwise be discovered. Detecting such a problem months or even weeks earlier than
it would otherwise be detected can importantly reduce both tangible and intangible costs of poor
reliability. Use of appropriate statistical tools can provide a framework to reliably and convincingly
separate signals in the data from noise. Because warranty databases already exist, there is little
extra cost in doing this monitoring.

1.2 Related work

A number of papers and books have been written to describe the use of warranty data. Blischke
and Murthy (1994, 1996) cover a wide range of topics related to warranty issues. General reviews of
statistical methods for warranty data are provided by Robinson and McDonald (1991), Lawless and
Kalbfleisch (1992), and Lawless (1998). Specific technical methods for dealing with problems arising
in field and warranty data (reporting delays, censoring, truncation, and missingness) are provided,
for example, in Suzuki (1985a, b), Kalbfleisch and Lawless (1988), Lawless, Hu, and Cao (1995), Hu,
Lawless, and Suzuki (1998), Karim, Yamamoto, and Suzuki (2001a), and Wang and Suzuki (2001a,
b). Kalbfleisch, Lawless, and Robinson (1991) describe prediction methods. Karim, Yamamoto,
and Suzuki (2001b) provide methods for detecting a change point from marginal count warranty
data which arise when one cannot identify the date of manufacture of units that are serviced under
warranty. In this paper we build on analysis and adjustment methods presented in some of these
papers to develop specific methods for early detection of changes from a historical standard for
product reliability.

1.3 Overview

The remainder of this paper is organized as follows. Section 2 describes the structure of warranty
data as it applies to early detection monitoring and introduces the example that we use to illustrate
the methods. Section 3 outlines the statistical formulation of the detection problem, including a
discussion of the relationship between warranty monitoring and traditional Shewhart process moni-
toring schemes. Section 4 describes the analytical methods used to allocate false alarm probability
and to balance with power for detection. Section 5 shows how to compute critical values for the
early detection monitoring procedure. Section 6 gives methods for assessing the average run length
(time until a detection signal is given), both under the baseline conditions and under out-of-control
alternatives. Section 7 summarizes the behavior of our monitoring procedure over a number of “la-
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bor codes” in our example warranty database. Section 8 describes some additional implementation
issues and areas for further research.

2 Background and Example

2.1 Warranty data

Although it is common to speak of “warranty data” and the information in a “warranty database,”
in most applications, inferences about field reliability from warranty data actually require informa-
tion from two different databases. One database contains production information giving the unit-
identification number (e.g., the vehicle identification number or VIN for automobiles), time and date
of manufacture, assembly line, and other production-related information. For some products (e.g.,
automobiles) this database may also contain the date of sale.

A separate database contains records for each warranty report. A report may result in a repair,
an adjustment, or a “no trouble found.” Each record contains the unit-identification number, date
of the report, geographical information, a code indicating what action was taken, by whom, and,
generally, the cost of the action. For an automobile warranty database, the record also provides the
number of miles on the odometer at the time of the report.

Modern warranty reporting systems for field repairs use computer technology (e.g., bar code
scanning and direct entry of information into a hand-held wireless computer terminals for field
repairs). Shop repair facilities also use direct computer entry of information. These systems virtually
eliminate reporting delays that used to be a serious difficulty in the analysis of warranty data.

2.2 Warranty report categorization in the warranty database

Warranty databases typically categorize reports to indicate the kind of repair or other action that
was taken. The categorization variable is typically called something like “failure type,” “labor code,”
“job code,” or something similar. We will use the term “labor code” in this paper because it is the
term that is used in the automobile database that we use for our examples. Typically detection rules
such as those described here would be used, more or less independently, for a chosen set of (possibly
all) labor codes in the database.

One common difficulty with warranty data is that the report classification is often not specific
enough to determine the actual cause of a report that is generally needed for engineering evaluation.
Although there can be human-factors variability in the way that the repair person reports the labor
code, this is generally the lowest level of information about the cause of the report and we will take
this code to be indicative of a particular failure mode. Nevertheless, when a serious problem arises,
the existing labor code definitions, if not too coarse, should be sufficient to identify and track the
problem. Sometimes there may be special focus on a particular labor code if there has been a change
in a corresponding component’s design and there is concern that the change might have a negative
effect on reliability.
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2.3 Distribution of time to a warranty report

Extraction of information relating to the distribution of time to a report for a particular labor
code requires merging of information from the production and the report databases. In particular,
the report database provides information on the calendar time of the report and other information
(like cost) for all occurrences of the particular labor code. The production database provides the
beginning of life definition so that the service time up to the time of the report can be determined
and also so that the amount of service time can be found for those units with no reports.

Definition of the distribution of time to a report requires a definition of the beginning of life of
the product. For most warranty analysis purposes, the beginning of life is defined as the time when
the unit was sold. Because it is important for warranty costing, we will use this definition, although
other definitions could be used for other specific purposes (e.g., in an engineering analysis, some
failure mechanisms become active at the time of manufacture and operate on a calendar-time time
scale).

The time that an individual unit is sold is part of the automobile industry production database.
In some other industries, however, this information is missing. The date of sale generally becomes
known for units that are returned for warranty repair. For units without a warranty report, this
information can generally be supplemented by statistical information on the distribution of the time
between manufacture and sale.

2.4 Production stratification and monitoring increment

For early detection of reliability problems for a given product, monitoring commences as soon as
warranty data become available and monitoring actions should be repeated periodically as more
data are accumulated. For purposes of detection, production is stratified into intervals or “periods”
of time. Monthly, weekly, or even daily intervals might be appropriate, depending on the situation
(number of labor codes or failure modes that can be reported, costs of not detecting an important
problem, costs of false alarms, as well as cost and availability of computer processing power, etc.).
Following the existing practices of the automobile company that provided the part of the database
used in our examples, we will use one-month intervals in our examples. The methodology and
notation in our development are, however, general enough to be easily adjusted to other products
and time intervals. In our presentation we refer to a generic “period” for the time interval.

2.5 Example

To illustrate the methods presented in this paper, we will use warranty data that have been pro-
vided to us by an automobile manufacturer. Automobile warranties in the North America are two-
dimensional. Typically the bumper-to-bumper warranties are for 36 thousand miles or 36 months,
which ever comes first (although a number of possible variations exist, especially for parts of the
automobile like the drive train). Two-dimensional warranties can complicate the analysis of war-
ranty data as automobiles can leave the warranty region through “mileage-out.” Analysts do not
have information on the number of miles driven for specific automobiles that have not returned for
service. Which and when individual automobiles have exceeded the warranty mileage limit will, in
general, not be known. For purposes of detection of changes in report rates over time, mileage-out
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is not a problem.
The VIN (production) database used in our examples contains information on 566,406 different

automobiles. These are automobiles, of a particular model, that were manufactured between January
1995 and August 1998. The report database provides information on all warranty reports received
between January 1995 and November 1998 (the “data freeze” date). The report database contains
a total of 1,350,675 records with 1,908 unique labor codes. To protect proprietary information, the
make and model of the automobile and the precise meaning of the labor codes cannot be disclosed.
Some labor codes have a large number of reports (in the thousands). Others have few or none. All
of the unique labor codes were investigated individually as part of our exploratory data analyses.
Most labor codes had patterns that were relatively stable over the 3.5 years of production. Many
others showed dramatic changes.

Figure 1 provides a retrospective view of the fraction of automobiles with warranty reports for
12 selected labor codes. The particular labor codes in Figure 1 were chosen to give a sense of
the different patterns and report rate levels that were observed in our exploratory analysis, with
emphasis on those that exhibited rate changes over time. For example, the report rates for labor
codes A5580 and N3350 are approximately constant over time, but the rate for labor code A5580
was more than an order of magnitude larger. The indications in the plot for N3350 correspond to a
single report in the few production months for which there was a report.

The rate for E0432 suddenly jumped up and then continued to increase for a long period of time.
The rate for labor code E9995 had a steady downward trend until it became negligible. Labor codes
B0608, D3088, and N2015 indicate other warranty problems that were, apparently, solved.

Labor code C3301 jumped up for only in production month July 1997. In the first four months
of service, there were 19 reports that caused the July 1997 production month spike. There were,
however, only 3856 cars produced in July 1997; the average number for the other production months
was about 13,000. The other production months had on the order of 8 reports in the first four
months of service with approximately three times the production. The 4-month C3301 report rate
for production month July 1997 was about .00505. For the other production months, the rate ranged
from .00012 to .00156, with an average rate of .00071.

The focus in this paper is on early detection of changes for patterns like those seen in C0176,
D4450, E0432, J4640 and T2020 where the report rate was relatively stable for a period of time, but
then suddenly increased for a number of production months. For more detailed study we identified
48 labor codes for which there were at least 18 months with a stable report rate (so that we could
establish a base line report rate from the data) followed by a sudden increase in the rate that
persisted for at least two production months. We will focus on one of these labor codes for our
detailed examples. In Section 7 we will report on some general findings from this larger selected
group of labor codes.

For our detailed examples we will use the labor code designated C0140. The letter C indicates
a particular subsystem in the automobile (e.g., the power train) and the number indicates the
particular action that was taken. Figure 2 provides a retrospective view giving the fraction of
automobiles with labor code C0140 warranty reports for different “production months.” The plot
shows that there was serious deterioration of reliability starting in April 1997. In the following
sections we will illustrate methods for early detection of problems like this.
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Figure 1: Retrospective View Giving the Fraction of Automobiles With Warranty Reports in the First Four Months of Service as a Function of
Production Month for 12 Different Labor Codes.
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Figure 2: Retrospective View Giving the Fraction of Automobiles With Labor Code C0140 Warranty
Reports in the First Four Months of Service as a Function of Production Month.

3 Formulation of the Detection Problem

This section outlines the statistical formulation of the early-warning detection problem, including
discussion of the information available and the development of the detection rules.

3.1 Notation

The following notation will be used to describe the data from the warranty database used in the
detection procedure. Let ni denote the number of units produced in period i, and let nij denote
the number of units produced in period i and sold in period i + (j − 1), j = 1, 2, . . . (i.e., sold in
the jth period after they were manufactured). Also for a particular labor code under consideration,
let Rijk denote the number of warranty reports during the kth period in service for units that are
manufactured in period i and sold in period i + (j − 1). Note that Rijk first becomes available in
period i+ (j − 1) + k.

3.2 Information for detection

The early detection problem can be viewed as an inference on product reliability. It might be
suggested that it would be appropriate to fit a standard parametric distribution such as a Weibull
or a lognormal distribution to provide structure for the needed inference. Instead, we recommend
a nonparametric approach based on warranty report counts modeled with a Poisson distribution
with report intensities that depend on production period and number of periods in service. This is
equivalent to fitting a piece-wise exponential distribution to the available data and does not require
specification or use of a particular distributional form for the time-to-report distribution. We use



8

this approach for the following reasons.

1. The implied underlying time-to-report model is flexible, allowing for different behaviors without
having to make time-consuming modeling choices for each labor code. (There are 1,908 unique
labor codes in the database used in our examples.)

2. There is, in most commercial applications, a sufficient amount of data to support the estimation
of the (potentially) large number of report intensity parameters.

3. The detection decisions are made on the basis of report counts, which, along with historical
report rates, contain all of the available information for the detection procedure.

4. The detection procedure proposed here allows flexibility in allocating power to detect problems
in different parts of a unit’s service life and to provide, if desired, special focus on a suspected
labor code or codes (e.g., corresponding to a particular component or labor code that has had
a recent design change).

Following the statistical model used in Kalbfleisch, Lawless, and Robinson (1991), we assume
that Rijk can be described as independently distributed Poisson (nijλk) random variables, where
λk represents the report intensity for units during their kth service period (for the particular labor
code under consideration). The use of this probability model is strongly supported by most war-
ranty applications where there is a large number of units in the field, but the occurrence of any
given failure mode, when reliability is as expected, should be rare and statistically independent from
unit to unit with no underlying seasonality. (The detection rules developed in this paper can also
be used when there is seasonality in warranty reports; see discussions in Section 8.) The reference
value for λk, denoted by λ0

k, can be obtained based on historical records of report intensities for
this type of unit over previous production periods (several years). In the absence of such histor-
ical data, λ0

k can be obtained from previous experience with similar products or design specifications.

3.3 Detection rule framework

The formal problem of detection of reliability deterioration can be formulated as a test of the
multiple-parameter hypothesis

H0 : λ1 ≤ λ0
1, λ2 ≤ λ0

2, . . . , λM ≤ λ0
M (1)

versus Ha : λ1 > λ0
1 or λ2 > λ0

2 or . . . or λM > λ0
M ,

where M is the prespecified number of future periods for which the report intensities will be mon-
itored for units manufactured in any given production period. For a given overall false alarm rate,
increasing M will require a reduction in power in order to spread protection over a larger number
of monitoring periods.

Consider production period i. In this period, ni units were manufactured, and ni1 of these units
were sold. Among these, there were Ri11 warranty reports during their first period of service, and
these Ri11 reports first became available in period i+ 1. Note that Ri11 ∼ Poisson (ni1λ1), and in



9

period i + 1, we can test only λ1 ≤ λ0
1 versus λ1 > λ0

1; no information is available on λ2, . . . , λM .
In general, in period i + k, k periods after the units in the ith production period were produced
and one period after ni1 + · · ·+ nik of these were sold, we can test the joint hypothesis of whether
λ1 ≤ λ0

1, . . . , λk ≤ λ0
k or not.

For testing λk, only the Rijk , j = 1, 2, . . . are relevant; the other Rij�(� �= k) contain no informa-
tion about λk. Because Rijk and Rij� (� �= k) are independent, testing H0 : λ1 ≤ λ0

1, . . . , λM ≤ λ0
M

versus Ha : λk > λ0
k for some k, k = 1, . . . ,M can be done by testing, individually, Hk

0 : λk ≤ λ0
k

versus Hk
a : λk > λ0

k for k = 1, . . . ,M .
Consider first testing H1

0 : λ1 ≤ λ0
1 versus H1

a: λ1 > λ0
1, the Poisson report intensity for the first

period in service. In period i + 1, we conclude that λ1 > λ0
1 if Ri11 ≥ Ci11 for some critical value

Ci11 (to be determined). In subsequent periods, additional information on the first period in service
for production period i will accumulate due to units that were sold some number of periods after
they were produced. In general, in period i+ j, we will conclude that λ1 > λ0

1 if Sij1 ≥ Cij1, where
Sij1 =

∑j
�=1 Ri�1 is the cumulative number of reports during the first period in service for the units

manufactured in period i. The optimality of such a rule arises from the theory of group sequential
tests (e.g., Pocock 1977; Jennison and Turnbull 2000). The false alarm (Type I error) probability of
this particular sub-test is α∗

1 = 1−Pr(Si11 < Ci11, . . . , SiM1 < CiM1), which is less than or equal to
α1, the nominal false alarm probability for this sub-test. Because of the discreteness of the Poisson
distribution, it is typically impossible to have α∗

1 = α1. Throughout this paper, Pr(·) is with respect
to H0 unless stated otherwise. The choices of α1 and Ci11, . . . , CiM1 are important aspects of this
test and will be described in Sections 4 and 5.1, respectively.

Similarly, for testing Hk
0 : λk ≤ λ0

k versus Hk
a : λk > λ0

k (the report intensity for the kth period
in service), in period i+ (j − 1) + k (i.e., the jth period after information on service period k first
becomes available), we conclude that λk > λ0

k if Sijk ≥ Cijk , where Sijk =
∑j

�=1 Ri�k. The false
alarm probability of this sub-test is

α∗
k = 1− Pr(Si1k < Ci1k, . . . , Si,M−k+1,k < Ci,M−k+1,k) ≤ αk, (2)

where αk is the nominal false alarm probability. The choice of αk and the determination of
Ci1k, . . . , Ci,M−k+1,k will be discussed in Sections 4 and 5.1, respectively.

Due to the independence of the tests for the different number of periods in service, the overall
false alarm probability for testing the hypothesis H0 versus Ha in (1) is then

α∗ = 1−
M∏

k=1

(1− α∗
k) ≤ 1−

M∏
k=1

(1− αk) = α, (3)

where α∗
k and αk are given by (2) and α is the nominal overall false alarm probability.

3.4 Example

Figure 3 shows sequential test monitoring charts that would be available in August 1997 for labor
code C0140 for the production periods from April to July 1997. Here for illustrative purposes,
we have chosen M = 4 and α = .1% and taken January 1995 to be the first production period.
Computation of the critical limits will be described in Section 5.1. Figure 3 shows the detection
alarm in the first service month of production month May 1997. (An alarm would be signaled,
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Figure 3: Sequential Test Monitoring Charts for Labor Code C0140 Warranty Reports With + Indicating the Cumulative Number of Reports
Sijk and − Indicating the Corresponding Critical Limit Cijk .
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respectively, in both July and August 1997.) Section 5.2 gives details describing the reason for this
detection.

In each subsequent monitoring period (month in this example), additional report information
becomes available. As more production periods pass, additional sequential test charts become avail-
able, and some expire. In production period i (i ≤ M + 1), there will be [i(i − 1)]/2 charts. At
any point in time after there have been M + 1 production periods, there will be the maximum of
[M(M + 1)]/2 such sequential test charts under consideration.

3.5 Relationship to Shewhart process monitoring schemes

The detection procedure presented here can be viewed as a generalization of a Shewhart process
monitoring scheme (Shewhart 1931), where after each monitoring increment the available data are
used to determine whether the process is out of control or not. In the warranty monitoring problem,
however,

• Multivariate statistical inferences are being made over time about a report process as a function
of periods in service parameterized by (λ1, λ2, . . . , λM ) and,

• Data on a particular period in service within a production period accumulate over time, due
to sales that are staggered over time.

Instead of a single set of control limits, the set of critical values Cijk is obtained in a way such
that the nominal overall false alarm probability is small, say on the order of α = .1% to 1%. When
an Rijk reaches its corresponding critical value within a particular sequential test for a production
period/period in service combination, an out-of-control signal is triggered. In this case, when the
manufacturing process is in control, the average run length (ARL) will be at least 1/α, as shown in
Section 6.1. This relationship is similar to the traditional Shewhart chart.

Of course, different choices of Cijk can be used to provide control charts with different perfor-
mance properties, as described in the following sections. Relatedly, warning limits Wijk can be
obtained in a manner that is similar to that used to compute the Cijk by setting α at 1% to 5%,
and reaching Wijk would suggest an action different from that of reaching Cijk . Such warning limits
might also be used as a basis for runs rules like those used in Shewhart monitoring schemes.

4 Allocation of False Alarm Probability and Power for De-

tection

4.1 Allocation of false alarm probability

Section 3.3 defined α to be the nominal overall false alarm probability for testing the hypothesis in
(1), computed as α = 1−∏M

k=1(1− αk), where αk is the nominal false alarm probability for testing
the sub-hypothesis Hk

0 versus Hk
a about λk, corresponding to the kth period in service. Given α,

the choice or allocation of α1, . . . , αM depends on specific considerations in the application. For
example, if early detection of a potential reliability problem is critical and if it is believed that
problems could arise in the early periods of service life, then one might choose the first several αk’s
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(e.g., α1, α2, α3, etc.) to be larger than those at the end of the monitoring period (i.e., αM−2, αM−1,
αM , etc.).

To balance between quick detection and the overall probability of detection (power) over potential
reliability problems over the first M periods of a unit’s life, we propose a simple rule that chooses
αk to be proportional to the information available for testing Hk

0 versus Hk
a . This information is

proportional to the expected number of reports during the kth period in service. Thus we suggest

αk = C(f0
1 + · · ·+ f0

M−k+1)λ
0
k, (4)

where the f0
1 + · · ·+f0

M−k+1, based on historical records, is the expected fraction of units sold during
the first M − k + 1 periods after production and C is a constant such that α = 1 −∏M

k=1(1 − αk).
That is,

1−
M∏

k=1

[1− C(f0
1 + · · ·+ f0

M−k+1)λ
0
k] = α. (5)

Note that
∑M

j=1 f
0
j ≤ 1 and that the f0

j are likely to depend on the production period (e.g., inventory
of some products may sell much more rapidly during the period that a new model is released or during
the gift-giving season), although this dependency has been suppressed in our notation. Because
C(f0

1 + · · ·+ f0
M−k+1)λ

0
k = αk is generally small, we can use the approximation

C ≈ α∑M
k=1(f

0
1 + · · ·+ f0

M−k+1)λ
0
k

.

Alternatively, solving (5) for log(1 − α) gives a function of C that is increasing, making it easy to
use a numerical root-finding algorithm to obtain C and this is the approach that we used in our
computations.

4.2 Error allocation for the sequential test region

Once α1, . . . , αM (the nominal false alarm probabilities for the M service periods in the detection
procedure) have been determined for a given production period, it is necessary to choose error
probabilities corresponding to the sequential test region for testing λk for that production period.
The sequential test for a particular period in service within a given production period assesses
information as it accumulates on units that were produced in one production period but sold over a
number of periods (i.e., accounting for sales delay). In particular, for production period i,

1− Pr(Si1k < Ci1k, . . . , Sijk < Cijk)

for k = 1, . . . ,M and j = 1, . . . ,M − k + 1 is the cumulative probability of a false alarm at the
monitoring point that comes the jth period after information on service period k first becomes
available. Note that

1− Pr(Si1k < Ci1k, . . . , Sijk < Cijk) ≤ α
(i)
jk ,

where α(i)
jk is the corresponding nominal false alarm probability and α

(i)
M−k+1,k ≡ αk.

We will use the error spending approach for the choice of these α(i)
jk . This approach was originally

developed for sequential clinical trials by Slud and Wei (1982), Lan and DeMets (1983), among
others. It is explained in detail, for example, in Chapter 7 of Jennison and Turnbull (2000). The
basic idea is as follows.
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For the first period in service, consider testing H1
0 : λ1 ≤ λ0

1 versus H1
a: λ1 > λ0

1. The information
available for testing λ1 is proportional to the number of units sold during the first j periods after
production (i.e., ni1+ · · ·+nij), and the proportion of information accumulated during these periods
is

fi1 + · · ·+ fij

fi1 + · · ·+ fiM
,

where fij = nij/ni is the fraction of units produced in production period i and sold in the jth period
after having been produced. The error spending approach uses a nondecreasing function g(t) such
that g(0) = 0 and g(t) = α1 for t ≥ 1. It then assigns an amount

α
(i)
j1 = g

(
fi1 + · · ·+ fij

fi1 + · · ·+ fiM

)
.

A simple, flexible choice of g(t) is

g(t) =

{
α1t

ρ 0 ≤ t ≤ 1
α1 t > 1,

(6)

as suggested in Jennison and Turnbull (2000, chap. 7). Kim and DeMets (1987) studied the cases
ρ = 1, 1.5, and 2.

The error spending method is widely used in clinical trial applications where sequential decision
rules are used and the emphasis is often placed on overall power. Different choices of ρ (e.g.,
ρ=.5,1,2) provide different amounts of emphasis on early versus later detection, in terms of power.
In our applications, early detection is important. This suggests choosing a smaller value of ρ such
as ρ = .5 or 1, allocating somewhat more power to earlier detection opportunities.

For testing other λk values (corresponding to other numbers of periods in service), we can choose
different error spending functions [e.g., by changing the value of ρ in (6)]. Allowing for the differing
amounts of information available for different numbers of periods in service,

α
(i)
jk = αk ×

(
fi1 + · · ·+ fij

fi1 + · · ·+ fi,j+k + fi,j+k+1 + · · ·+ fi,M−k+1

)ρ

. (7)

In actual use it will be necessary to replace the fi,j+k+1, . . . , fi,M−k+1 in (7) by estimates of frequen-
cies based on past data, f0

j+k+1, . . . , f
0
M−k+1 because the actual fractions sold in these periods are

not available at the time the α(i)
jk values need to be computed (i.e., at the end of period i+(j−1)+k).

After the α
(i)
jk have been computed, the computation of the critical values Cijk can be done based

on a recursive formula, as shown in Section 5.1.

4.3 Example

To illustrate the method of allocation of false alarm probabilities in the sequential test we use α = .1%
and M = 4 with labor code C0140 for production month May 1997. The historical sale patterns
f0
1 , . . . , f

0
4 and report intensities (for this labor code) λ0

1, . . . , λ
0
4 are computed from information

available up to January 1997 based on the 24 production months from January 1995 (production
month one) to December 1996 (production month 24). That is,

f0
j =

∑25−j
i=1 nij∑25−j
i=1 ni

, for j = 1, 2, 3, 4, (8)
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Figure 4: Typical Spending Functions for Production Month May 1997 for Labor Code C0140 With
α = .1% and M = 4, and ρ = .5, —; ρ = 1, · · · ; and ρ = 2, - - -.

and

λ0
k =

∑25−k
i=1

∑min(4,26−i−k)
j=1 Rijk∑25−k

i=1

∑min(4,26−i−k)
j=1 nij

, for k = 1, 2, 3, 4. (9)

Using (8) and (9) and the data for labor code C0140 gives

f0
1 = .133, f0

2 = .241, f0
3 = .165, f0

4 = .123 and

λ0
1 = .00022, λ0

2 = .00013, λ0
3 = .00016, λ0

4 = .00014.

Based on these results, the nominal false alarm probability αk for testing Hk
0 versus Hk

a can be
obtained using the method outlined in Section 4.1 and (4). We have α1 = .00049, α2 = .00024, α3 =
.00021, and α4 = .00006.

Note that, for purposes of illustration, we focus only on a single production month. The actual
monitoring process will monitor all of the most recent M production months (not including the
current production month) simultaneously after the monitoring process has been in operation for M
months. (For M = 4 here, the production months from April 1997 to July 1997 would be monitored
simultaneously in August 1997.) For production month May 1997, i = 29 and n29 = 13203, with
sales in the first four months after production being n29,1 = 4198, n29,2 = 3659, n29,3 = 1991, and
n29,4 = 1791. The α(29)

jk values are computed using (7). For the detection rule outlined in Section 3.3,

α
(29)
11 would be computed in June 1997, α(29)

21 and α
(29)
12 in July, α(29)

31 , α
(29)
22 , and α

(29)
13 in August,

and α
(29)
41 , α

(29)
32 , α

(29)
23 , and α

(29)
14 in September 1997.

Figure 4 illustrates the error spending functions in (7) for values ρ = .5, 1, and 2. For example,
Figure 4(a) gives the error allocations α(29)

11 , α
(29)
21 , α

(29)
31 , and α

(29)
41 = α1 for the first month in service

for ρ = .5, 1, and 2. Clearly, a smaller value of ρ such as ρ = .5 gives more power to earlier detection
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opportunities. Figures 4(b), (c), and (d) give error allocations for the second, third, and fourth
service month, respectively. Note that, for the fourth service month (here M = 4), only data for the
first sale month is available, and thus α(29)

14 = α4 does not depend on the choice of ρ.

5 Computing the Critical Values

This section describes and illustrates the use of an algorithm to compute critical values for the
warranty report monitoring procedure.

5.1 Recursive algorithm

First note that Sijk ∼ Poisson (ni(fi1+ · · ·+fij)λ0
k). For a given production period i, service period

k, and false alarm allocations α(i)
jk , j = 1, . . . ,M − k + 1, the following recursive algorithm can be

used to compute the sequential test critical values Ci1k, . . . , Ci,M−k+1,k.

1. Let r denote the smallest value of s such that
s∑

y=0

Pr(Si1k = y) ≥ 1− α
(i)
1k .

Then Ci1k = r + 1.

2. For � = 2, . . . ,M − k + 1, to obtain Ci�k, given Ci1k . . . Ci,�−1,k, compute

Pr(Si1k < Ci1k, . . . , Si,�−1,k < Ci,�−1,k, Si�k = U)

=
U∑

u=L

Pr(Si1k < Ci1k, . . . , Si,�−2,k < Ci,�−2,k, Si,�−1,k = U − u)

×Pr(Ri�k = u) (10)

for U = 0, 1, . . ., where L = max(0, U+1−Ci,�−1,k) andRi�k = Si�k−Si,�−1,k ∼ Poisson (nifi�λ
0
k).

3. Let r denote the smallest value of s such that
s∑

y=0

Pr(Si1k < Ci1k, . . . , Si,�−1,k < Ci,�−1,k, Si�k = y) ≥ 1− α
(i)
�k .

Then Ci�k = r + 1.

The recursive formula (10) can be derived along the same lines as that for the binomial distribution
(Schultz et al. 1973). Such recursive formulas are computationally efficient and are widely used in
group sequential tests (e.g., see p. 237 of Jennison and Turnbull 2000). To implement (10), first
compute Pr(Si1k = U) for U = 0, . . . , Ci1k − 1 (and save these results). Then if � ≥ 3, compute
Pr(Si1k < Ci1k, . . . , Si,j−1,k < Ci,j−1,k, Sijk = U) using (10) for U = 0, . . . , Cijk − 1 (and save
these results), successively for j = 2, . . . , l − 1. Finally compute Pr(Si1k < Ci1k, . . . , Si,�−1,k <

Ci,�−1,k, Si�k = U) using (10). The appendix gives the sequence of steps used to compute the Cijk

values.



16

Table 1: Example Data and Critical Values for the C0140 Monitoring Process in August 1997 for
the April to July 1997 Production Months

Month Rijk Historical Number Cumulative
Production Service Becomes Number of Number Critical
Month Month Available of Reports Reports of Reports Value

i k i+ j + k − 1 nijλ
0
k Rijk Sijk Cijk

APR 1997 1 MAY 1997 .612 0 0 6
APR 1997 1 JUN 1997 .785 3 3 8
APR 1997 1 JUL 1997 .435 3 6 9
APR 1997 1 AUG 1997 .366 2 8 10
APR 1997 2 JUN 1997 .371 2 2 5
APR 1997 2 JUL 1997 .475 3 5 7
APR 1997 2 AUG 1997 .263 1 6 7
APR 1997 3 JUL 1997 .462 2 2 6
APR 1997 3 AUG 1997 .592 2 4 7
APR 1997 4 AUG 1997 .394 2 2 5
MAY 1997 1 JUN 1997 .907 5 5 7
MAY 1997 1 JUL 1997 .791 4 9 9
MAY 1997 1 AUG 1997 .430 2 11 9
MAY 1997 2 JUL 1997 .549 2 2 6
MAY 1997 2 AUG 1997 .479 4 6 7
MAY 1997 3 AUG 1997 .684 4 4 6
JUN 1997 1 JUL 1997 .790 0 0 6
JUN 1997 1 AUG 1997 .531 0 0 8
JUN 1997 2 AUG 1997 .478 0 0 6
JUL 1997 1 AUG 1997 .022 0 0 3

5.2 Example

Table 1 gives the observed number of reports Rijk and cumulative number of reports Sijk = Ri1k +
Ri2k + · · · + Rijk for labor code C0140 up to August 1997 for the April to July 1997 production
months. The third column in Table 1 indicates when Rijk and Sijk values first become available and
when the corresponding critical value Cijk is computed. The computation of Cijk is based on the
recursive algorithm given in Section 5.1. Here we use α = .1%,M = 4, and ρ = 1. The historical
sale patterns f0

1 , . . . , f
0
4 and report intensities λ0

1, . . . , λ
0
4 were computed as described in Section 4.3.

The values of α1, . . . , α4 are also given there.
For illustration, consider the first month in service for the May 1997 production month (i = 29).

In June 1997, f29,1 = n29,1/n29 and f29,2 = n29,2/n29 are available and α
(29)
11 is computed using (7).

Then C29,1,1 = 7 is obtained using step 1 of the recursive algorithm. In July 1997, f29,3 becomes
available and α

(29)
21 is computed using (7). Then C29,2,1 = 9 is obtained using steps 2 and 3 of the

algorithm. Similarly, C29,3,1 = 9 is computed in August 1997. These C29,j,1 and the corresponding
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Figure 5: Nonparametric Estimate of Fraction With Reports After One Month of Service as a
Function of Production Month for Data Available in July 1997.

S29,j,1 values are plotted in the first plot of the second row of Figure 3. In general, for each production
month and service month, there is one plot in the sequential test monitoring charts. Here Table 1
gives all of the Sijk and Cijk values needed for producing Figure 3. Note that S29,2,1 = C29,2,1 = 9
and S29,3,1 = 11 > C29,3,1 = 9, indicating that an alarm would be signaled, respectively, in both July
and August 1997. The historical number of reports nijλ

0
k, which is E(Rijk) under H0, is indeed

much smaller than the observed Rijk for the first month in service for the May 1997 production
month, as can be seen from the table.

After an alarm is signaled, analysts should look more carefully at the reasons (both statistical and
physical) for the signal. Physically, engineers would be interested in doing careful physical failure
mode analysis of some of the units that failed (and it is often a good idea to look carefully at units
of a similar vintage that have not failed to see if they are headed for the same fate). Statistically,
several further graphical analyses can be used to supplement Figure 3. Figure 5 provides a followup
chart giving a nonparametric (Kaplan-Meier) estimate of the fraction of automobiles with C0140
reports in the first month of service (because the alarm signal was for the first month of service)
as a function of production month, based on data available in July 1997. This plot shows clearly
the reason for the signal for production month May 1997. Figures 3 and 5 and Table 1 show that
there was also some evidence of problems in April 1997, but not enough for the signal at the chosen
α = .1% false alarm probability and spending function.

After a problem is detected other important questions focus on the magnitude of the problem.
Two general classes of problems exist. In some cases the detected problem is likely to affect all or
nearly all units in service. In other cases the problem affects only a proportion of units (sometimes
called a limited failure population or LFP model, as described in Meeker 1987). Figure 6 is a Weibull
probability plot representing the 9 reports in the first service month and the 2 additional reports in
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Figure 6: Weibull Probability Plot and Weibull ML Estimate for Production Month May 1997 Based
on Data Available in July 1997 (after two months in service).

the second service month. The plotted points are nonparametric (adjusted Kaplan-Meier) estimates
of fraction with reports as a function of month in service. The line is the corresponding Weibull ML
estimate and approximate 95% pointwise confidence intervals, extrapolated to 12 months. Extrap-
olation has risks and can only be expected to provide adequate projections for a limited amount
of time into the future, unless there is firm knowledge about the failure mode and its failure-time
distribution.

Figure 7 is a Weibull probability plot representing the failure-time data available in November
1998. This plot provides a retrospective view of the reliability of the automobiles manufactured
in May 1997. This plot shows that the Weibull distribution provided adequate, but somewhat
pessimistic, projections out to 6 to 8 months in service. The nonparametric estimate begins to level
off (and deviate from the Weibull distribution) after 6 to 8 months and the last reports occurred
after 14 months in service, with a cumulative fraction with reports just over 1%, indicating that the
problem should be described by an LFP model. Generally failure mode analysis of failed units and
autopsy of some unfailed units can help provide more timely information on whether the population
is LFP or not.

6 Average Run Length

Average run length (or ARL, the mean time until a signal as a function of the process state) is an
important metric for a monitoring scheme. Under H0, when the process is in the in-control state,
the ARL should be large. In the presence of an important reliability problem, the ARL should be
small enough to quickly detect the problem.
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Figure 7: Weibull Probability Plot for Production Month May 1997 Based on Data Available in
November 1998.

6.1 Average run length under H0

Suppose the monitoring scheme is implemented for a particular labor code beginning with production
period one. The first sequential test monitoring chart is plotted in period two. Suppose that the
period in which the first alarm is triggered is denoted by N +1. Then the ARL is E(N), which can
be expressed as

E(N) =
∞∑

�=1

Pr(N ≥ �)

(e.g., Larsen and Marx 2001, p. 202). Note that “N ≥ �” implies that no alarm is triggered during
the first (� − 1) periods of monitoring. Let γij (j ≤ M) denote the probability that no alarm is
triggered during the first j periods of monitoring of production period i. Let γij = γiM for j > M .
Because each production period is monitored for M periods and the overall false alarm probability,
as given in (3), is at most α, it follows that γij ≥ 1−α. During the first (�−1) periods of monitoring,
(�− 1) production periods are monitored independently. Thus

Pr(N ≥ �) =
�−1∏
i=1

γi,�−i ≥ (1− α)�−1.

Then

E(N) =
∞∑

�=1

Pr(N ≥ �) ≥
∞∑

�=1

(1− α)�−1 =
1
α
.

That is, the ARL under H0 is at least 1/α.
For the special case when production and sale patterns do not vary over time (i.e., ni = n is

constant for all production periods, and fij = f0
j , j = 1, . . . ,M), γij = γj does not depend on i. In
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this case,

E(N) =
∞∑

�=1

�−1∏
i=1

γ�−i =
∞∑

�=1

�−1∏
j=1

γj

= 1 + γ1 + γ1 × γ2 + · · ·+ γ1 × γ2 × · · · × γM−2

+γ1 × γ2 × · · · × γM−1 ×
(
1 + γM + γ2

M + · · · )
= 1 + γ1 + γ1 × γ2 + · · ·+ γ1 × · · · × γM−2 +

γ1 × γ2 × · · · × γM−1

1− γM
.

Note that γj can be written as γj = (1−α∗
j1)×(1−α∗

j−1,2)×· · ·×(1−α∗
1j), where 1−α∗

jk represents
the probability of no false alarm for monitoring the units produced in one period during their kth
period in service and the first j periods after information about λk first becomes available. The
computation of α∗

jk is as follows.

1. Let α1, . . . , αM be the values computed in Section 4.1 and let

αjk = αk ×
(

f0
1 + · · ·+ f0

j

f0
1 + · · ·+ f0

M−k+1

)ρ

, for k = 1, . . . ,M,

j = 1, . . . ,M − k + 1.

2. Compute critical values Cjk using the recursive algorithm in Section 5.1, ignoring all the
subscripts “i” involved there and noting that Sjk ∼ Poisson (n(f0

1 + · · ·+ f0
j )λ

0
k).

3. Compute
α∗

jk = 1− Pr(S1k < C1k, . . . , Sjk < Cjk)

using the recursive algorithm in Section 5.1, again ignoring the subscripts “i” there.

6.2 Average run length under Ha

Suppose report intensities of manufactured products are in-control before period t0 but that the
report intensities change to λa

k > λ0
k for k = 1, . . . ,M in period t0 and stay there in periods t ≥ t0.

Denote the alternative hypothesis by Ha : λk = λa
k, k = 1, . . . ,M . Suppose that the first alarm is

signaled in period N + t0 for monitoring the production periods t ≥ t0 under Ha. Similar to the
derivations in Section 6.1, the ARL can be expressed as

E(N) =
∞∑

�=1

Pr(N ≥ �),

where “N ≥ �” means that no alarm is triggered during the first (� − 1) periods of monitoring of
the production periods t ≥ t0. Note that Pr(·) is with respect to Ha. Let δij (j ≤ M) denote the
probability that no alarm is triggered during the first j periods of monitoring of production period
i ≥ t0. Let δij = δiM for j > M . During the first (�− 1) periods of monitoring production periods
i ≥ t0, (�− 1) such production periods are monitored independently. Since each production period
is monitored for M periods,

Pr(N ≥ �) = Πt0+�−2
i=t0

δi,(t0+�−1−i).
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For the special case when production and sale patterns do not vary over time, similar to the argu-
ments in Section 6.1, δij = δj does not depend on i, and in this case, the ARL simplifies to

E(N) =
∞∑

�=1

t0+�−2∏
i=t0

δt0+�−1−i =
∞∑

�=1

�−1∏
j=1

δj

= 1 + δ1 + δ1 × δ2 + · · ·+ δ1 × · · · × δM−2 +
δ1 × δ2 × · · · × δM−1

1− δM
.

The computation of δj ’s is similar to that of γj ’s in Section 6.1 and is done by replacing λ0
k there by

λa
k. That is, we now have Sjk ∼ Poisson(n(f0

1 + · · · + f0
j )λ

a
k). Specifically, let β∗

jk = 1 − Pr(S1k <

C1k, . . . , Sjk < Cjk) for k = 1, . . . ,M, j = 1, . . . ,M − k+ 1, where the Cjk values were computed as
described in Section 6.1. Then β∗

jk can be computed the same way as α∗
jk in Section 6.1, and

δj = (1− β∗
j1)× (1− β∗

j−1,2)× · · · × (1− β∗
1j), for j = 1, . . . ,M.

6.3 Example

In Sections 6.1 and 6.2, formulas for computing ARL’s under H0 and Ha are presented for the
special case when production and sale patterns do not vary over time. As the formulas indicate,
these ARL’s depend on many parameters, including α,M , f0

1 , . . . , f
0
M , λ0

1, . . . , λ
0
M , ρ, and n. Under

Ha, they also depend on λa
1 , . . . , λ

a
M . Table 2 gives some values of ARL’s for α = .1%, .5%, and

1%, M = 4, 8, and 12, and ρ = .5, 1, and 2 under H0 : λ1 = λ0
1, . . . , λM = λ0

M and Ha : λ1 =
λa

1 , . . . , λM = λa
M , where λa

k = λ0
k + sλ0

k for k = 1, . . . ,M , with s = 1, 2 and 3. In computing these
ARL’s, we choose n = 13, 000, f0

1 = .15, f0
2 = .25, f0

3 = .15, f0
4 = .12, f0

5 = .09, f0
6 = .07, f0

7 = .05,
f0
8 = .04, f0

9 = .03, f0
10 = .02, f0

11 = .01, and f0
12 = .01. This choice roughly represents an average

production and a typical sale pattern based on the automobile database used in our examples. We
also choose λ0

1 = .00025, λ0
2 = .00015, λ0

3 = .0002, λ0
4 = .00015, λ0

5 = .0001, λ0
6 = .00015, λ0

7 = .00005,
λ0

8 = .00005, λ0
9 = .00005, λ0

10 = .00007, λ0
11 = .00008, and λ0

12 = .00009. This choice reflects the
report intensities for the labor code C0140 used throughout this paper. Here for s = 1, 2, and
3, λa

k = λ0
k + sλ0

k may indicate respectively a potentially mild, moderate, and serious reliability
problem. (This is only for illustrative purposes. Whether a problem is serious or not depends on
the specific application.)

As Table 2 shows, the ARL’s under H0 are greater than but close to 1/α. Due to the discreteness
of the Poisson distribution involved, it is typically impossible to design a monitoring scheme such
that the ARL’s under H0 are exactly equal to 1/α. As the last column of the table indicates, the
monitoring schemes developed in this paper can often quickly detect a serious reliability problem.
Here an alarm is typically triggered within three or four periods of monitoring after a serious problem
occurs. The choice of α, M , and ρ can have a significant effect on the rate of false alarms and the
ARL’s, especially for detecting small to moderate reliability problems. This choice should be based
on the specific application.

7 Summary of Analyses of Other Labor Codes

As described in Section 2.5, we retrospectively investigated the time series given by the number of
warranty reports after four months of service and also after 12 months of service, as a function of
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Table 2: ARL’s of Sequential Test Monitoring Charts With Parameters α, M , and ρ for Detecting
Different Reliability Shifts

Shift s (λk = λ0
k + sλ0

k, k = 1, ...,M)
α M ρ 0 1 2 3
.1% 4 .5 1510.20 32.41 6.57 3.61
.1% 4 1.0 1239.69 23.75 5.89 3.62
.1% 4 2.0 1376.23 23.86 5.92 3.67
.1% 8 .5 1262.29 18.37 5.76 3.76
.1% 8 1.0 1325.74 18.96 5.80 3.77
.1% 8 2.0 1477.81 18.58 6.16 4.19
.1% 12 .5 1139.33 18.14 5.97 3.81
.1% 12 1.0 1156.33 17.19 6.23 4.00
.1% 12 2.0 1294.60 17.43 6.38 4.22
.5% 4 .5 244.41 10.69 4.27 3.02
.5% 4 1.0 244.41 10.69 4.27 3.02
.5% 4 2.0 262.40 10.92 4.37 3.14
.5% 8 .5 232.59 9.74 4.40 3.07
.5% 8 1.0 260.96 9.86 4.60 3.20
.5% 8 2.0 276.32 10.13 5.01 3.61
.5% 12 .5 219.96 10.00 4.60 3.16
.5% 12 1.0 228.74 10.06 4.89 3.43
.5% 12 2.0 264.57 10.48 5.12 3.62
1% 4 .5 127.32 8.43 3.59 2.54
1% 4 1.0 132.98 8.29 3.64 2.68
1% 4 2.0 198.34 9.63 4.06 2.95
1% 8 .5 126.87 7.87 4.08 3.00
1% 8 1.0 133.00 8.04 4.24 3.05
1% 8 2.0 141.79 8.26 4.41 3.19
1% 12 .5 118.82 8.20 4.26 3.05
1% 12 1.0 120.05 8.31 4.36 3.10
1% 12 2.0 140.75 8.94 4.74 3.41
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production month, for all of the 1,908 labor codes. Then we applied our detection procedure to
48 of the 1,908 labor codes for which there were at least 18 months with a stable report rate (so
that we could establish a base line from the data) followed by a noticeable increase in the rate that
persisted for at least two production months. The selection of these 48 labor codes was based on
the retrospective plots for 12 months of service. For these evaluations we used an overall false alarm
probability of α = .1% and values of M ranging from 1 to 18. Without loss of useful information
we report a summary of the results for M = 4, 8, and 12. There were some interesting differences
among these three choices. Generally using M greater than 12 gave results that were similar to
M = 12 and did not appear to importantly improve the ability to detect any problems that we
discovered in our retrospective analysis of the warranty data.

In the labor code C0140 detailed example we used a monitoring period of M = 4 months and
were able to detect the increase in report rate after only three months of monitoring (these three
months include shipping time, time until sale, and time for the problem to be reported by the
customer). Not all report rate increases can be detected so easily. For example, the increase in
the report rate (starting from April 1997) for labor code C0176 is obvious in the retrospective plot
(see Figure 1), but small relative to the background rate and could not be detected with M = 4
months of monitoring. This problem was, however, detected with both M = 8 and M = 12 months
of monitoring.

Some labor codes emit signals very shortly after production (e.g., after two months) because at
least some customers begin to have the problem shortly after the time of purchase. The fact that
some problems were not detected until as many as 12 months after manufacturing is not a reflection
of poor performance of the detection scheme. Unlike quality, field reliability can be quantified, in
general, only after a sufficient amount of operating time has elapsed to excite the failure. This is
because some physical failure modes require a certain amount of initiation time before they can
occur. For example, with labor code T2020 (see Figure 1), deterioration of reliability started in
October 1996 and gradually became very serious in July 1997. Our detection scheme first signaled
the reliability problem in September 1997 (for M = 8 or 12) or October 1997 (for M = 4). To be
conservative, we used October 1996 as the start of the reliability problem (which gradually became
more serious in later months) and recorded the time to detection as 11 (for M = 8 or 12) or 12
(for M = 4) months. In this example, the earliest possible time of detection would be 11 months
because there were only three reports before September 1997 (one in June and two in August 1997)
for all the production months since October 1996 when a reliability problem started.

Table 3 summarizes the detection success for M = 4, 8, and 12, giving the distribution of time
to a first detection among the 48 labor codes, as well as the distribution if one could have chosen the
best M for each labor code. We would recommend doing such an analysis of different labor codes
with historical data and using available engineering information in order to select an appropriate
value of M for different labor codes. Generally, M should be smaller (larger) for labor codes with
a reliability problem expected to appear earlier (later) in a product’s life. Table 3 shows that with
M = 4, some problems would not be detected and that for such labor codes a larger value of M
should be used. The disadvantage of using M = 8 or M = 12 relative to M = 4 is that, for a fixed
false alarm rate, available detection power has to be spread more broadly, generally lengthening the
average time to detection; smaller values of M provide quicker detection for problems that can show
up early. Table 4 provides a summary of the values of M that resulted in the quickest detection.
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Table 3: Frequency Distribution for Times to First Detection

Months to Best of
Detection M = 4 M = 8 M = 12 M = 4, 8, 12

2 9 8 7 9
3 4 4 5 4
4 3 2 2 3
5 6 6 6 6
6 3 7 6 7
7 1 2 2 1
8 3 5 4 5
9 3 4 6 5
10 1 1 0 0
11 1 2 4 4
12 3 1 4 4
13 1 1 0 0
14 0 0 0 0
15 1 0 0 0
16 0 1 0 0
17 1 0 0 0
18 0 1 1 0

Undetected 8 3 1 0
Total number 48 48 48 48

Table 4: Value of M Having the Quickest Detection

Quickest Detection Number Number Including Ties
Same time for M=4, 8, and 12 23
M=4 and 8 3
M=8 and 12 8
M=4 5 31
M=8 2 36
M=12 7 38
Total number 48
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8 Concluding Remarks and Directions for Future Research

This section describes some additional implementation issues and indicates some possible areas for
future research.

1. For some labor codes in the warranty database there were long periods of time with 0 reports,
followed by a single isolated report. If the base line λ0

k is 0, even a single such report will cause
a signal. If it is desired not to have a signal for an isolated report, λ0

k should be adjusted to
be slightly larger than 0.

2. In many applications it will be useful or necessary to adjust for special factors affecting the
frequency of warranty reports. It is important, for example, to account for known systematic
factors like seasonality or trend in warranty reports rates. This can be done by analyzing
historical data and using these to fit a model that will provide appropriate values of λ0

k.

3. We define the beginning of product life as the date of sale because it is available in the
database and because it coincides with the beginning of the warranty period. When date of
sale is not in the production database, it is usually in the report database (as customers/repair
shops have to present proof that the warranty is still in force). Thus information for Rijk is
available. The past patterns in the report rates used to determine the λ0

k values will reflect the
distribution of time between manufacturing and sales. Thus an assumption of the detection
procedure, as described here, is that the distribution of time between manufacturing and sales
is approximately stable over time.

4. For detection purposes, we stratify on production period. Running the monitoring procedure
separately on different plants, shifts, etc. could provide much more power to detect localized
manufacturing problems. On the other hand, to detect new problems arising from a change
in product design, higher power for detection will result from pooling data over different
manufacturing lines.

5. Field product life distributions are almost always a mixture of different use rates and envi-
ronments. This mixture can work to aid in early detection. In particular, reports for some
failure modes will tend to occur earlier from segments of the population having high use rates.
Our detection procedure accounts for this implicitly by using historical report rates to develop
the critical values. Thus another assumption of our procedure, as described here, is that the
product use-rate distribution is approximately stable over time. If it is not, then adjustment
of the λ0

k reference values would be needed.

6. Beyond M > 12 months or so of observation with a two-dimensional warranty policy, the
number of reports will begin to be affected by automobiles that experience “mileage-out”
because they have accumulated (say) 36 thousand miles of service. The reduction in report
rate resulting from mileage out will, however, be reflected in the historical reporting pattern
and thus our monitoring procedure can be used without modification for two-dimensional
warranties.

7. Most of the work cited in Section 1.2 is concerned with estimating the failure-time distribution
of a manufactured product. The detection scheme presented here, however, is based on the
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distribution of warranty reports over time. This simpler inference problem does not require
adjustment for mileage-out, effects of the use-rate distribution and so on.

8. The most serious reliability problems tend to arise abruptly in time, generally caused by
a change of product design, materials or components, or in a manufacturing process. The
detection procedure described here was designed to detect such changes. To increase the
power of detecting gradual or smaller changes (which we did observe in some labor codes),
various kinds of runs rules can be added. Runs rules could be constructed in a manner that is
similar to runs rules that have been associated with the Shewhart process monitoring schemes.
The use of such rules would affect false alarm rates and the ARL distribution, but these
characteristics would be easy to evaluate using either numerical or simulation techniques.

9. For given specific costs and cost functions, it would be possible to optimize the detection
procedure to minimize some particular definition of total cost.
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A Computing Monitoring Quantities Sijk and Cijk

This appendix outlines the sequence of steps used to compute the test statistics and corresponding
critical values used in the warranty monitoring procedure. The inputs include α,M, ρ, λ0

1, . . . , λ
0
M ,

and f0
1 , . . . , f

0
M .

1. Compute αk, k = 1, . . . ,M using the method in Section 4.1.

2. Suppose production starts in period 1. At the end of period 1, n1 and n11 become available.
Set f11 = n11/n1 and f1k = f0

k for k = 2, . . . ,M .

3. At the end of period i (i ≥ 2), ni and nm,(i+1−m), m = i, i − 1, . . . ,max(1, i + 1 − M) are
available. Set fm,(i+1−m) = nm,(i+1−m)/nm for m = i, . . . ,max(1, i+ 1−M) and fik = f0

k for
k = 2, . . . ,M . Compute the following for m = i− 1, . . . ,max(1, i−M) and j = 1, . . . , i−m.

(a) Obtain Rm,j,(i+1−m−j) from the warranty report data set.

(b) Compute

Sm,j,(i+1−m−j) =

{
Rm,1,i−m if j = 1
Sm,j−1,(i+1−m−j) +Rm,j,(i+1−m−j) if j > 1
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(c) Compute α
(m)
j,(i+1−m−j) = αm ×

(
fm1+···+fmj

fm1+···+fm,M+m+j−i

)ρ

.

(d) Compute Cm,j,(i+1−m−j) using the recursive algorithm in Section 5.1.
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