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ABSTRACT

In the past decade Graphics Processing Units (GPUs) have advanced from simple fixed-

function graphics accelerators to fully-programmable multi-core architectures capable of sup-

porting thousand of concurrent threads. Their use has spread from the specialized field of

graphics into more general processing domains ranging from biomedical imaging to stock mar-

ket prediction. Despite their increased computational power and range of applications, the

security implications of GPUs have not been carefully studied. It has been assumed that the

use of a GPU as a coprocessor with physically separate memory space, minimal support for

multi-user programming, and limited I/O capability inherently guarantees security.

This research challenges this assumption by demonstrating multiple security vulnerabilities

in the current GPU computing infrastructure. Specifically, it focuses on the following three

areas:

1. Denial-of-Service by overwhelming the capabilities of the GPU so it is unable to provide

responsiveness to the host operating system.

2. Information leakage due to the way that modern GPUs fail to randomize pointers and

zero out memory.

3. The use of GPUs to assist CPU-resident malware through obfuscation and unpacking or

acceleration of computational intensive tasks such as password cracking or encryption.

Through the use of WebGL and CUDA, we successfully developed a proof of concept attack

for the first two vulnerabilities listed above. For the third, we considered several different

types of attacks and their implications. In all cases we also suggest possible security measures

to fix these vulnerabilities. While the impact of each of these particular exploits is currently

hardware and OS specific, current trends in GPU architecture indicate that these problems are

only going to rise in importance going forward.
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CHAPTER 1. INTRODUCTION

This is an exciting time for the field of Graphics Processing Unit (GPU) computing. As seen

in Figure 1.1, a decade ago, the theoretical peak performace of a GPU was roughly the same as

that of a CPU [9]. General purpose computing on graphics cards existed, but it was difficult and

not widespread. In general, GPUs were used to accelerate graphical displays and not much else.

Howerver, over the last decade all that has changed. CPUs ran into the power wall, causing

many researchers to conclude that serial computing had reached its performance zenith [5] and

could no longer keep up with the projection of Moore’s law [23]. CPU manufactures were forced

to turn to parallelism to get the needed performance gains. Meanwhile, the performance of

GPUs increased at an ever more rapid pace due to the parallelism inherent in modern GPU

designs. During much of the last decade, GPU performance has doubled more frequently than

18 months, outpacing even the predictions of Moore’s law [14]. Research suggests that this

will continue into the future and the architecture of a PC will transform into a heterogeneous

model with an increased focus on GPU processing [11].

Figure 1.1 GPU and CPU Performance

Along with this massive increase in GPU performance, the range of GPU applications

exploded. Three dimensional graphics became pervasive, to the point that GPU acceleration

became available within most modern internet browsers [8]. The massive throughput potential
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of GPUs was embraced by the high performance computing community, and as of 2011, three

out of the top seven supercomputers were GPU-based [19]. In 2007, NVIDIA first released

the CUDA toolkit, which allowed GPUs to truly be used for general purpose computing. This

sparked a widespread adoption of GPUs as accelerators of any tasks that could be adequately

parallelized. Currently, they are being used in the biomedical imageing community [20], the

computational geoscience community [37], the financial modeling community [26], and many

others.

Figure 1.2 Traditional CPU and GPU Architecture
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During the last decade, GPU usage was also expanded within the average consumer’s PC.

Rather than simply being used to accelerate games, GPUs were used for many different tasks.

Video encoding and playback were accelerated, desktop windowing systems added advanced

effects and used GPUs to render them, and browsers even began to use the GPU to draw the

entire webpage.

This integration of tasks between the CPU and GPU naturally resulted in a similar inte-

gration of the hardware architecture. This is more thoroughly explained in the AMD Fusion

Whitepaper found at [3], but the two main figures from that document show the key concepts.

Figure 1.2 shows the traditional architecture, with the CPU and dedicated GPU on different

physical chips connected by a bus. Even the integrated GPU is still forced to access the mem-

ory controller over a bus. This setup resulted in relatively slow communication between the

GPU and key system components such as the CPU and memory controller. However, this

system architecture has recently changed. Some systems still have dedicated GPU chips on a

separate physical board, but the new direction is to more closely integrate the two types of

cores. Figure 1.3 shows the new Accelerated Processing Unit from AMD. This device combines

both cores on the same die and gives the GPU first-class access to system memory. Current

machines still have a separation of memory between the GPU and the CPU, but a unified

memory system is planned for the near future. This discussion has focused on the AMD line

of products, but similar changes are being made by Nvidia as well. This trend in increased

integration shows the vital role that GPUs currently hold and will continue to hold well into

the future.

Along with rapidly growing performance and utilization, GPUs have also skyrocketed in

popularity. The term has experienced unprecendented growth in its global search volume over

the last decade. Figure 1.4 shows the search history as reported by Google Trends. As can

be seen, over the last ten years its popularity has steadily increased and looks to continue this

trend into the future. This increased attention is just one of many signs pointing to the fact

that GPUs continue to grow in importance.

With all these increases in performance, use cases, and popularity, it would be reasonable

to assume that increased attention has also been paid to GPU secuity. However, this is not
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Figure 1.3 New CPU and GPU Architecture

the case. The academic study of GPU vlunerabilities has been almost entirely neglected. One

reason there has not been much research in this area is the limitations in the way that GPUs

are typically viewed. GPUs in modern PCs are often viewed as coprocessors. The CPU runs

the operating system, handles I/O, and dispatches tasks to be executed on the GPU. The GPU

processes data, communicates with the CPU, and draws to the display, but beyond that it has

no control over the system or any user input.

Even though this type of usage does limit the possible vulnerabilities, this research shows

that serious vulnerabilities do exist in the current hardware. We successfully developed a

denial of service (DoS) attack that overwhelms the GPU causing the host operating system to



5

Figure 1.4 Google Trends Search Volume

become unresponsive. Based on the individual system, this results in either a several second

freeze followed by a GPU driver reset or a complete system freeze requiring a hard restart. We

also discovered several memory vulnerabilities present in all Nvidia GPUs that could be used

to leak sensitive information. Additionally, we considered several ways in which GPUs could

be used to assist and enhance more traditional malware.

The rest of this paper is organized as follows: Chapter 2 discusses the related scholarly work

that has been done in this area and introduces the relevant technologies. Chapter 3 details

the denial of service attack, why it is possible, and what steps could be taken to mitigate

this vulnerability. Chapter 4 covers the various memory vulnerabilities, again discussing our

attack, why it is possible, and how to prevent it. Several other types of GPU-assisted malware

are discussed in Chapter 5. Due to the variety, individual attacks are not presented in this

chapter, but various concepts are discussed along with possible solutions. Chapter 6 concludes

this paper with a summary of our work along with a discussion of possible future work.
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CHAPTER 2. RELEVANT TECHNOLOGIES AND RELATED WORK

2.1 GPU Architecture

In order to understand the content of this work, a basic understanding of GPU architecture

is necessary. At its most basic level, a GPU is similar to a CPU in that it interacts with

memory and executes instructions on data. However, the way in which this is done is very

different. Figure 2.1 compares the architecture of a CPU to that of a GPU in a general sense.

The important thing to notice is that the GPU dedicates far more resources to ALUs, whereas

the CPU dedicates more resources to control logic and caches. This is due to the type of tasks

that each device has been specialized to execute. A CPU is optimized to execute sequential

tasks. It can execute several heavyweght threads at the same time, with good performance

per thread. On the other hand, the GPU is designed to execute thousands of lightweight

threads simultaneously, with relatively poor performance per thread. This provides execellent

performance when a task can be massively parallelized, but poor performance for serial tasks.

The CPU has a more cache-centric memory system to cope with I/O and other tasks with

widely varying read times. Inversely, the GPU has little caching but a large and fast ram

system to feed data into the many cores.

2.2 Enabling Software Technologies

WebGL is an API from the Khronos Group that brings GPU accelerated graphics to the

web browser. By writing some special JavaScript code, a webpage may be made to display a

canvas full of content rendered on the client’s GPU. The API mimics much of the functionality

found in graphics layer APIs such as OpenGL and DirectX. [2] provides a great example of

what is possible with WebGL, and the internet is full of resources for both learning WebGL
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Figure 2.1 CPU Architecture vs. GPU Architecture

and using it. Version 1.0 of WebGL was released in 2011, but it has already seen widespread

adoption and support from most major browsers.

In 2007 Nvidia changed the GPU computing landscape by releasing the CUDA toolkit. This

set of tools was designed to allow developers to easily perform general purpose computations on

a GPU. This was achieved by supporting an extension of C/C++ that specified which portions

of a program should execute on the CPU and which portions should execute on the GPU. Nvidia

also provided drivers that implemented the CUDA API to support communication between the

CPU and the GPU outside of traditional graphics applications. In the years since then, CUDA

has gained a huge number of users and developers and become a popular choice for general

purpose GPU computing.

2.3 Related Work

As mentioned in the introduction, the amount of scholarly research done in the area of

GPU security is surprisingly lacking. As of the time of this writing, a search on Google Scholar

for the term ”cpu security” returned 186,000 results, but a similar search for the term ”gpu

security” returned only 15,000 results. Other scholarly databases proved to be equally lacking

in resources related to this research area. The vast majority of work done involving GPUs and

security investigates the ways that GPU computing can be used to increase security, such as
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using a GPU to accelerate intrusion detection systems or anti-virus systems.

A few researchers have discussed the possibility of using a GPU to assist malware. [35]

describes multiple techniques used by malware authors to evade detection by virus scanning

software. It is then demonstrated how these techniques can be accelerated and improved by

using the GPU. The paper focuses specifically on unpacking and run-time polymorphism, but

it also includes a very brief discussion of various other techniques that might be possible in

the future. [28] also briefly discusses how GPUs could be used to help malware. In this case,

the possibility of using a GPU to execute the algorithm for generating a list of command

and control servers on a botnet is presented. Additionally, the author points out that at

this point disassembly of GPU executable files is impossible, which makes malware analysis of

GPU binaries much harder. [30] describes the general GPU landscape. A few paragraphs are

dedicated to describing security threats, but most of it is spent summarizing the work done in

[35].

None of the vulnerabilities discussed in this thesis are new conceptually, they are just

applied to a new domain, GPU computing. Denial of service type attacks have been around for

a long time. [15] describes the first denial of service attack that occurred back in 1988. Since

then, this type of attack has risen in popularity and ease of execution. Most often it involves

sending massive amounts of network traffic over the internet, limiting the responsiveness of a

specific website or service. However, DoS attacks aren’t limited to this type of scenario. [27]

defines a DoS attack as any ”explicit attempt to make a network or system unavailable for use,”

correctly stating that this type of attack can be employed against any type of system. A large

amount of research has been published detailing the ways in which DoS attacks are executed

over the internet and various mitigation techniques [13] [29] [38], but no formal research exists

that applies this type of attack to the modern CPU/GPU system architecture.

Just as DoS attacks have been around for many years in one form or another, so have

memory vulnerabilities. [34] attempts to summarize the last 25 years of memory vulnerability

exploits, discussing why after a great deal of resarch they continue to be one of the top threats

to computer security. These vulnerabilities take many different forms, from the classic buffer

overflow vulnerability [7], to format string vulnerabilities [24], to basic information leakaage
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between processes. Many different mitigation techniques have been suggested over the years.

[32] describes how Address Space Layout Randomization (ASLR) can be used to prevent stack

overflow attacks and information leakage. [4] and [10] describe the concept of process isolation,

which aims to solve many types of information leakage and memory vulnerabilities.

Many more sources could have been referenced here, as a great deal of research has been

done into these types of attacks and mitigations. However, only a few consider the application

of these techniques to the current GPU landscape. Even [35] only considers using a GPU to

assist malware, it doesn’t discuss the vulnerabilities of the GPU architecture itself. The research

that follows is the first scholarly work to apply DoS attacks and memory vulnerability attacks

to GPUs, and it also expands the discussion of how GPUs can be used to assist malware.
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CHAPTER 3. DENIAL OF SERVICE

3.1 Description of the Vulnerability

Most consumer GPUs act as a coprocessor to the host CPU. In this configuration, the GPU

executes one task after another in a serialized fashion. Tasks cannot be preempted or halted

without reseting the device. In many systems, one of the main tasks that a GPU is responsible

for is drawing the OS desktop and interface. This leads to an obvious DoS vulnerability. As

shown in Figure 3.1, while the GPU is currently processing a task, it is unable to update the

user interface. If the duration of the task is sufficiently long, the user will be faced with an

unresponsive system.

3.2 Details of the Attack

In order to take advantage of this vulnerability, an attacker simply has to use the GPU for

a task that does not return in a timely manner. There are many ways to do this, and it can

easily be done using traditional graphics APIs such as OpenGL and DirectX. However, this

section describes multiple attacks using WebGL. WebGL gives web browsers access to GPUs

so a website can take advantage of their processing capabilities. This seems like a particularly

dangerous attack vector, since these attacks can be launched remotely when an unsuspecting

user visits a malicious website.

Three main variations of this attack have been developed. Each one takes advantage of

the same vulnerability described above, but in slightly different ways. The following sections

describe each variation along with a short code snippet showing the implementation.
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Figure 3.1 GPU Denial of Service

3.2.1 Flooding the gl.draw Function

The most straightforward way to perform a DoS attack against a GPU is to simply command

it to draw more things than it is capable of drawing in a timely manner. This can be done in

any number of ways, but the code in Listing 1 shows a simple attempt at drawing 4,000,000

triangles. Some of the boilerplate WebGL code has been ommitted, but the important details

of the exploit should be clear.
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triangleVertexPositionBuffer = gl.createBuffer();

gl.bindBuffer(gl.ARRAY_BUFFER, triangleVertexPositionBuffer);

var numTriangles = 4000000;

var verts = new Float32Array(numTriangles*9);

for(var i=0; i<numTriangles*9; i=i+9) {

verts[i] = 0.0; verts[i+1] = 5.0; verts[i+2] = 0.0;

verts[i+3] = -5.0; verts[i+4] = -5.0; verts[i+5] = 0.0;

verts[i+6] = 5.0; verts[i+7] = -5.0; verts[i+8] = 0.0;

}

gl.bufferData(gl.ARRAY_BUFFER, verts, gl.STATIC_DRAW);

triangleVertexPositionBuffer.itemSize = 3;

triangleVertexPositionBuffer.numItems = numTriangles*3;

gl.drawArrays(gl.TRIANGLES, 0, triangleVertexPositionBuffer.numItems);

Listing 1: Flooding the gl.draw Function

This code creates an array of nine values per triangle (three vertices, each needing an

x, y, and z coordinate) and then uses the GPU to draw these 4,000,000 triangles. Several

implementation details are important to note:

1. It is essential that the drawing is done through a single gl.drawArrays call. An alter-

native approach would be to make a separate call to gl.drawArrays for each triangle,

but this would miss the point of this attack. Each call is made by the CPU, and it

regains control every time the current call returns. By making multiple short calls to

gl.drawArrays, the OS is able to respond to user input between every call. Only by

using the method shown in the above code will the desired unresponsiveness of the OS

be achieved.

2. The size of the shape being drawn affects the amount of time that the GPU is unrespon-



13

sive. If the above code was changed to draw triangles with vertices at (0, 1), (-1, -1),

and (1, -1), then the GPU would only be unresponsive for a fraction of the time that it

is with the current code.

3. Any type of shape can be used, but the exact number of shapes being drawn is very

important. Intuitively, it would seem that the more shapes being drawn the better.

However, this is only true up to a point. If the size of the array holding the vertices is

too big, the program will crash before the GPU attempts to draw the shapes, and the

OS will never become unresponsive. The number of shapes must be picked such that it

is small enough to fit in the available memory of the GPU but also large enough that it

causes the GPU to become unresponsive when it attempts to render them.

As shown, this code clearly requires modifications which tailor it to the specific hardware

being attacked. However, it is fairly trivial to modify this into a more general purpose attack.

The WebGL API and others provide functionality to query the characteristics of the host

hardware to determine its memory size and processor capabilities. These values could then be

used to dynamically choose an appropriate size and number of shapes to draw. In this way,

the above code can be used to effectively attack any user that visits a website hosting it.

3.2.2 Flooding the Vertex Shader

Another possible attack vector is the vertex shader. A vertex shader is the stage of the

graphics pipeline responsible for processing each individual vertex. It handles the translation

from 3D coordinates to 2D screen coordinates and processes any desired modifications to vertex

attributes. Shaders are a little different than typical WebGL code in that they are precompiled

by the host and then loaded onto the GPU prior to a WebGL program’s execution. In order to

leverage the vertex shader in a DoS attack, the attacker needs to craft a shader program that

cannot be quickly executed on the GPU. There are many ways to do this, but a simple attack

can be done by including an infinite loop in the shader code. The shader code in Listing 2

demonstrates such an attack. Note that the WebGL code is not shown, but this shader code

can be incorporated into a WebGL application easily. Simply drawing a few shapes using this
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shader will result in a DoS attack.

<script id="shader-vs" type="x-shader/x-vertex" >

attribute vec3 aVertexPosition;

uniform mat4 uMVMatrix;

uniform mat4 uPMatrix;

void main(void) {

float val;

for(float i=0.0; i!=0.5; i+=1.0)

val = val+0.000001;

gl_Position = uPMatrix * uMVMatrix * vec4(aVertexPosition, 1.0);

}

</script>

Listing 2: Flooding the Vertex Shader

This code implements a vertex shader containing an infinite loop, since the value i will never

be equal to 0.5. As described in [18], support for looping constructs in shaders is very limitied,

so the code must be written very specifically to cause an infinite loop while still meeting the

constraints. Several implementation details are important to note:

1. There is no guarantee that while loops in shaders will be supported on a given platform.

The use of a for loop ensures that this code will correctly execute on the widest range

of targets.

2. Loops are not allowed to have variables in the conditional expression other than the loop

index. This was meant to prevent infinite loops, but the above code shows how an infinite

loop can still be achieved within these constraints.

3. Due to the way that shaders are compiled and used on the GPU, there is a maximum

size constraint that differs with each model of GPU. One could attempt to write a shader
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that performs many instructions linearly without iterations, but it’s likely that this size

constraint would be reached before an effective DoS attack was achieved. The imple-

mentation presented above results in a short code segment, so this limitation is not a

problem.

4. The variable calculated in the loop is actually used in the calculation of the vertex posi-

tion. While this is not absolutely necessary at the time of this writing, it’s likely that in

the future compilers will advance to the point of optimizing out code that has no effect.

3.2.3 Flooding the Fragment Shader

Much like the vertex shader attack vector described above, the fragment shader could also

be used in a DoS attack. The fragment shader is responsible for computing color and other

attributes for every fragment. In order to leverage it in a DoS attack, an infinite loop can be

inserted into the shader code. The code in Listing 3 shows a simple way to do this. Note

that the WebGL code is not shown, but this shader code can be incorporated into a WebGL

application easily. Simply drawing a few shapes using this shader will result in a DoS attack.

<script id="shader-fs" type="x-shader/x-fragment" >

precision mediump float;

void main(void) {

float val = 1.0;

for(float i=0.0; i!=0.5; i+=1.0)

val = val+0.000001;

gl_FragColor = vec4(val, val, val, 1.0);

}

</script>

Listing 3: Flooding the Fragment Shader

This code implements a fragment shader with an infinite loop. The structure of this code is



16

very similar to the code for the vertex shader that was already discussed, but the GPU handles

the shaders differently since they are in different positions in the graphics pipeline. Again,

support for looping constructs is very limited, so the same details mentioned in the discussion

of the vertex shader code apply here as well.

3.3 Impact

WebGL is a fairly new technology, so it is not yet supported on all platforms. Modern

versions of Firefox and Chrome support WebGL, but even the newest version of Internet Ex-

plorer does not. The newest version of Safari does provide WebGL support, but it must be

manually activated, and Safari ships with it deactivated by default. Currently no major mobile

browsers offer WebGL support, but this situation will likely change in the very near future.

[6] demonstrates that WebGL support is already built into the mobile version of Safari, but

developers do not yet have an official way to activate it. The situation is similar for the mobile

versions of Chrome and Firefox as well, since the desktop browser codebase includes WebGL

support, it just has not yet been activated for the mobile versions. All signs point to the fact

that in the near future WebGL will be supported on both Android and iOS devices, which is

a large majority of the mobile device market.

Since WebGL is currently only fully supported on desktop versions of Firefox, Chrome, and

Safari, these browsers were used for testing. Each of the following three sections summarizes the

impact of one of the attacks and includes a table showing how it affected various combinations

of OSs and video cards. It turned out that each browser responded to the attacks the same way,

so the specific browser being used is not included in the following sections. Keep in mind that

the system freezes caused by these attacks are total OS freezes, not just web browser freezes.

The entire OS is unresponsive and nothing gets redrawn on the display.

3.3.1 Impact of Flooding the gl.draw Function

Table 3.1 contains the results of testing the first attack. In most cases, the system froze for

10-15 seconds, the screen went blank, and then the desktop came back up with a message saying

that the graphics driver was reset. Figure 3.2 shows this message on a Windows 7 machine
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Table 3.1 Results of Flooding the gl.draw Function

Nvidia GPU ATI GPU Intel GPU

Windows XP Total system freeze.

System freeze, then

GPU recovery

message

Not tested

Windows 7

System freeze, then

graphics driver

reset.

System freeze, then

graphics driver

reset. Occasional

total system freeze.

System freeze, then

graphics drvier

reset.

Mac OS X Total system freeze. Total system freeze. Not tested

Red Hat Linux

System freeze, then

graphics driver

reset.

System freeze, then

graphics driver

reset.

System freeze, then

graphics driver

reset.

with an Nvidia GPU. Some cases, most notably machines running Mac OS X, resulted in a

complete system freeze that required a hard reset. None of the tested systems responded to

this attack without freezing for at least several seconds.

Figure 3.2 Windows 7 GPU Reset Message

3.3.2 Impact of Flooding the Vertex Shader

Table 3.2 contains the results of testing the vertex shader attack. In most cases, the system

froze for 10-15 seconds, the screen went blank, and then the desktop came back up with the

same message as the first attack. In fact, Windows XP, Windows 7, and MAC OS X all

responded in the exact same way as the first test. However, Linux fared much worse in this

attack. Flooding the vertex shader resulted in a complete system freeze regardless of GPU

vendor. It’s not entirely clear why this different behavior is happening, but it suggests that

there is either a bug in the recovery code or that the recovery is dependent on the specific stage
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Table 3.2 Results of the Vertex Shader Attack

Nvidia GPU ATI GPU Intel GPU

Windows XP Total system freeze.

System freeze, then

GPU recovery

message

Not tested

Windows 7

System freeze, then

graphics driver

reset.

System freeze, then

graphics driver

reset.

System freeze, then

graphics driver

reset.

Mac OS X Total system freeze. Total system freeze. Not tested

Red Hat Linux Total system freeze. Total system freeze. Total system freeze.

Table 3.3 Results of the Fragment Shader Attack

Nvidia GPU ATI GPU Intel GPU

Windows XP Total system freeze.

System freeze, then

GPU recovery

message

Not tested

Windows 7

System freeze, then

graphics driver

reset.

System freeze, then

graphics driver

reset.

System freeze, then

graphics driver

reset.

Mac OS X Total system freeze. Total system freeze. Not tested

Red Hat Linux
Hang, then graphics

driver reset.

Hang, then graphics

driver reset.

Hang, then graphics

driver reset.

of the graphics pipeline in which the looping occurs.

3.3.3 Impact of Flooding the Fragment Shader

Table 3.3 contains the results of testing the fragment shader attack. In almost every case,

it resulted in the same behavior as the first attack. The one exception is a Windows 7 machine

with an ATI graphics card. This setup occasionally resulted in a complete system freeze

when the first attack was performed. However, the fragment shader attack never resulted in a

complete system freeze for this type of system.

Some clear patterns emerge when looking at this data. First, the Windows machines were

very consistent throughout all three attacks. For Windows XP, an Nvidia machine always froze
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completely and an ATI machine always hung for several seconds and then recovered. Windows

7 machines always hung for a few seconds and then recovered, regardless of video card. Mac OS

X froze completely under every attack, and Red Hat Linux froze completely under the vertex

shader attack. This variety of response likely results from the complex system that is used to

render WebGL content using the GPU. Even though web browsers and driver versions are not

included in these tables, these two factors along with operating system type and specific GPU

all play a role in the behavior of a PC subjected to one of these attacks. At the time of this

research all web browsers and drivers lead to the same behavior, but this may not always be the

case. One particular browser could implement one of the suggested mitigations or a graphics

driver could change the way that the driver reset is handled. In this case, there would be even

more variables in determining the response of a given system.

3.4 Mitigations

3.4.1 Existing Mitigations

As mentioned in the previous section, some mitigations for this vulnerability already exist.

Windows Vista, Windows 7, and Linux all have timers to detect when a GPU is unresponsive.

When this is detected, the OS will reset the video driver to restore functionality. However,

testing the previous exploits revealed that this mitigation does not always function as well as

advertised. [22] shows the Windows documentation claiming this timer is two seconds, but

testing of the previously mentioned attack typically resulted in a freeze of roughly one minute.

Additionally, after a certain number of timeouts (default 5), Windows will crash entirely. The

Linux detection typically worked in a more timely manner, but in the case of the vertex shader

attack the GPU fault was never detected and the system was entirely unresponsive. At the

time of this writing, Mac OS X had no mitigations for this type of attack. Overall, the existing

mitigations are highly inadequate.



20

3.4.2 Suggested Mitigations

The unfortunate thing about many DoS vulnerabilities is that they are often inherent to

the way that the system is designed to function. As is so often the case, there isn’t really a

way to completely eliminate this vulnerability while still providing a useful service to the user

without a major redesign of the system. Oftentimes it is deemed enough to simply make the

DoS very difficult to execute effectively. In this case, there seem to be two main options for

mitigation, depending on the willingness of the vendor to change the design. The first option is

to do some type of software filtering on the code prior to executing it on the GPU. Either the

web browser’s implementation of WebGL or the GPU driver could do some static analysis to

attempt to estimate the runtime of the GPU function calls prior to allowing the application to

execute. This could be done by analyzing the number of shapes being drawn and the complexity

of the shaders. If the estimated runtime was greater than a certain value, then it could prevent

the application from launching. This is not an ideal solution, since static code analysis is very

difficult and sometimes the runtime cannot properly be estimated. However, a new WebGL

engine from Google known as ANGLE [16] already validates shaders, so it seems reasonable to

think that this functionality could be extended to prevent some of the simpler DoS attacks.

Another option would be to redesign the architecture of the GPU to support simultaneous

execution of different tasks. If this was done correctly, some GPU resources could always be

responsible for the necessary OS functions, even if another task on the GPU was not respon-

sive. This mitigation technique is much more robust than the previously described static code

analysis, but it also requires major changes to the existing GPU hardware. Additionally, the

ramifications of this change are vast and unknown. It’s likely that the vendors would rather

put up with this DoS vulnerability than implement such a major change.

At the very least, the current mitigation strategy of detecting GPU faults and reseting the

adapter should be adopted by all major operating systems. It should also be more thoroughly

tested to ensure that a complete system crash never happens. The timing should also be

improved so a user is not faced with an OS that is unresponsive for a whole minute prior to

the driver reset occurring.
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CHAPTER 4. MEMORY VULNERABILITIES

4.1 Description of the Vulnerabilities

4.1.1 Process Isolation and ASLR

In order to understand the memory vulnerabilities present on modern GPUs, it’s important

to first understand two major security techniques being used by modern PCs. Process isolation

is a cornerstone of computer security. The basic idea is that each process on an operating

system should be protected from all other processes. Specific channels may be provided to

support inter-process communication, but otherwise a process should never be able to interfere

with the execution of another process or read/write its memory contents.

Address Space Layout Randomization (ASLR) is a security technique that attempts to make

several memory vulnerabilities much harder to exploit. It does this by randomly positioning

various data areas within a process’ address space. For example, consider the simple C program

in Listing 4.

#include <stdlib.h>

#include <stdio.h>

void main(void) {

int *p = (int*)malloc(sizeof(int));

printf("%d\n", p);

}

Listing 4: CPU ASLR Test

This program uses malloc to get a pointer to the heap. The value of this pointer is
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then printed out as an integer and the program exits. Running this program consecutively

demonstrates the ASLR that is implemented on all modern operating systems. As shown in

Figure 4.1, the exact same memory allocation will result in different addresses during different

program executions due to the randomization of the heap. This improves security in many

ways and makes various buffer overflow attacks very difficult to execute. It also protects

against information leakage when process isolation is not fully implemented.

Figure 4.1 CPU ASLR

4.1.2 CPU/OS Implementation

In general, most modern CPUs and OSs implement process isolation through a combination

of virtual memory and ASLR. Figure 4.2 shows how virtual memory addresses can be used to

guarantee memory isolation for each process. Every virtual address used in a process gets

translated through a page table into a unique physical memory address. In this way, process

A and process B can both use memory address ‘0’ without any collision or memory leakage.

Figure 4.2 CPU Memory Isolation
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Additionally, ASLR has been implemented by all of the major operating systems for several

years. Even if process isolation did not exist, information leakage between processes would be

difficult due to ASLR. The location of the desired data would have to be guessed each time the

attack was executed. This is possible to do, and brute force attacks exist, but it is much more

difficult than simply knowing where key data areas are within a program’s address space.

4.1.3 GPU Implementation

Current GPUs do not implement either virtual memory or ASLR. Figure 4.3 shows what

memory access looks like on modern GPUs due to the lack of virtual memory. Memory address

‘0’ is the same physical memory location for every process. If process B uses a pointer to an

address that has previously been used by process A, it will access the same physical memory

that was used by process A. This may not seem to be a problem since current GPUs only

execute one process at a time, but when combined with the following vulnerabilities it can be

exploited.

Figure 4.3 GPU Memory Access
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ASLR is currently not implemented on any modern GPUs. Pointer allocations consistenly

return the same addresses, which indicates that key data areas are not randomized. Consider

the code in Listing 5 which is an adaptation of the ASLR demo program in the previous section.

#include <stdio.h>

int main() {

int *a_device;

cudaMalloc((void **)&a_device, sizeof(int));

printf("%d\n", a_device);

return 0;

}

Listing 5: GPU ASLR Test

This program uses cudaMalloc to get a pointer to the global memory on the GPU. The

value of this pointer is then printed out as an integer and the program exits. Running this

program consecutively demonstrates the lack of ASLR on a GPU. As shown in Figure 4.4,

the same memory allocation will result in the exact same addresses during different program

executions.

Figure 4.4 CPU ASLR

Additionally, GPUs do not zero out memory prior to allocation or after deallocation. Com-

bined with the lack of virtual memory and lack of ASLR, this results in a clear vulnerability

for information leakage. Pointer allocations are not randomized, so the addresses of various

data can be determined. Virtual memory does not exist, so these addresses access the same

physical memory accross processes. This memory does not get cleared, so the data remains in
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memory even after program execution ends.

4.2 Details of the Attack

Based on these vulnerabilities, there are many ways that information leakage attacks could

be done. In this research, we present a proof-of-concept attack that demonstrates how these

vulnerabilities can be exploited to leak information from one CUDA program to another. For

this attack, two CUDA programs have been developed. The first, savekey.cu, consists of the

code in Listing 6.

#include <stdio.h>

int main() {

float *a_device;

float a_host = 95.0;

cudaMalloc((void **)&a_device, sizeof(float));

cudaMemcpy(a_device, &a_host, sizeof(float),

cudaMemcpyHostToDevice);

printf("The value %f was written to the device.\n", a_host);

cudaFree(a_device);

return 0;

}

Listing 6: savekey.cu CUDA code

This program allocates memory on the GPU, stores the value 95.0 to this memory, prints

the value that was stored, and then releases the memory on the device. In this testing scenario,

this program is the victim that leaks information to the attacker. The second, getkey.cu,

consists of the code in Listing 7.
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#include <stdio.h>

int main() {

float a_host;

float *a_device;

cudaMalloc((void **)&a_device, sizeof(float));

cudaMemcpy(&a_host, a_device, sizeof(float),

cudaMemcpyDeviceToHost);

printf("The value %f was retrieved from the device.\n",

a_host);

cudaFree(a_device);

return 0;

}

Listing 7: getkey.cu CUDA code

This program allocates some memory on the GPU, copies whatever is stored at this location

back to the CPU, prints the value that was recovered, and then releases the memory on the

device. The important feature of this program is that the location in the GPU memory that

is being read from is never initialized. In this testing scenario, this program is the attacker,

and the goal is to recover the value that was stored on the GPU by the previous program.

If this program recovers the correct value, in this case 95.0, the attack is successful and the

information leakage vulnerability is demonstrated.

4.3 Results

As expected based on the vulnerabilites, the first CUDA application leaked data to the

second CUDA application. This was tested by a three step process: first getkey.cu code was

executed to demonstrate that the original memory did not contain 95.0. Next, the savekey.cu

code was executed to simulate the usage of the GPU by an outside program. Finally, the

getkey.cu code was executed a second time to demonstrate the succesfull recovery of the
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value used in the previous program’s execution. Figure 4.5 shows the output of these three

steps:

Figure 4.5 Information Leakage between two CUDA Applications

This attack was successful since the information leaked from the savekey program’s execu-

tion to the getkey program’s execution. This succesfully demonstrated the information leakage

vulnerability between CUDA applications. Futhermore, this attack was successful across mul-

tiple users and login sessions. There is no automatic mechanism to clear the GPU memory, so

it’s possible that information can stay in GPU memory for an indefinite amount of time, able

to be read by anyone who knows where to look.

4.4 Implications

This proof-of-concept attack is harmless, but it has serious implications. GPU hardware

offers no memory protection, and at this point most software doesn’t either. What this means

is that any information that is processed on the GPU is vulnerable to information leakage.

A decade ago this might not have been too serious since games were the only applications

that did much processing on the GPU, but that’s no longer the case. GPUs are already used

for very important processing, and the trend is for more and more to be done on GPUs.

[25] describes countless CUDA applications in scientific research, commercial ventures, and

government contracts. [17] describes how Google Chrome now has an option to render entire

webpages using the GPU, not just WebGL content. From valuable research data to personal

bank account information, all this sensitive material is vulnerable if individual software security

measures are not used.
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This CUDA attack shows how to simply read the contents of global memory, but it could

easily be extended to intelligently search through the memory contents looking for specific types

of data. [36] demonstrates how statistical methods can be used to recover chunks of information

from a corrupted hard drive, and this same method could be applied here. In fact, the GPU

could even be used to accelerate this statistical analysis and quickly find valuable types of data.

Additional research could be done to find patterns in locations of data storage, and this could

be used to more efficiently extract valuable information. An attack like this could be attached

to existing malware to collect information from the GPU along with keystroke logging and

screen capturing. With this fundamental vulnerability, the possible applications are vast.

4.5 Mitigations

4.5.1 Existing Mitigations

Some GPU programming APIs have already implemented mitigations for these types of

attacks. WebGL clears the contents of memory prior to allocating that space, so it is not

possible to use this as the attack vector. However, since it does not clear the memory after

it has been used, WebGL applications are still vulnerable to information leakage as shown

previously in this chapter. The CUDA driver does only allow access to addresses that have

already been allocated to a program, but it doesn’t prevent you from allocating all of the global

memory and reading from it. Clearly the existing mitigations are not enough to protect against

these attacks.

4.5.2 Suggested Mitigations

A simple mitigation for this vulnerability would be a GPU driver that automatically cleared

the contents of memory whenever it was done being used. This would defeat both of the attacks

laid out in this chapter. However, there are legitimate reasons why this is not currently done.

This operation adds an overhead to program execution. While these types of overheads may

be tolerable in most OSs, the focus on GPU performance makes them less acceptable in this

context. It’s a possibility that this type of security will be implemented in the future, but it’s
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understandable why it is not already. However, there is nothing stopping the implementation of

this same type of security by the developer. API programmers could write library functions in

such a way that when memory is released it is automatically cleared first. Even if this doesn’t

happen, application developers could manually clear memory contents prior to releasing them.

The most robust solution is obviously for this to be implemented at the lowest level possible, but

even at the application level it will at least prevent information leakage from that application.

Possibly the best solution is for GPU vendors to provide this security as an option that can be

enabled when desired.

Another possible mitigation technique would be a GPU architecture that supports virtual

memory. Currently this idea is not implemented due to the fact that only one process can

be executing at a given time, but it’s possible that in the future this might change, and then

the idea of virtual memory makes a great deal of sense. With virtual memory implemented,

process isolation could be easily enforced and ASLR could be implemented in the same way

that it currently is on modern OSs.
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CHAPTER 5. GPU-ASSISTED MALWARE

Along with the specific vulnerabilities described in this work, there are several interesting

ways in which a GPU can be used to assist traditional malware. Chapter 2 mentioned several

possibilities that have been discussed in existing research. In the following sections we present a

brief survey of these possibilities and several new considerations. In general, the major benefits

of utilizing a GPU in this context are the following: Code executing on a GPU is not scannable

by the CPU. Additionally, at this time no security software does any analysis of GPU binaries.

These factors combine to mean that current anti-virus software offers no protection against

malicious CUDA code. CUDA applications do not need any elevated priviledges, so any user

can launch them. Finally, CUDA applications are inherently more stealthy, since most users

are much more likely to monitor/notice a spike in CPU usage but not one in GPU usage.

5.1 Possible Attacks

5.1.1 Unpacking and Run-time Polymorphism

[35] is the most thorough research done in the area of GPU-assisted malware. It describes

several strategies used by malware authors to prevent detection, focusing on unpacking and

run-time polymorphism. It then demonstrates how these strategies can be improved by using

CUDA to execute key functions on the GPU. The GPU is able to greatly improve the unpacking

technique due to its computational performance and the inability of analysts to inspect CUDA

binary files. Complex encryption schemes can be used to hide the contents of the malware since

the power of the GPU allows faster decryption than that of a CPU [21]. The host code simply

has to load the encrypted data onto the GPU and then call the GPU function to unpack the

code. This minimizes the amount of host malware code that is accessible to security researchers,
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since the GPU binary code is essentially a black box.

This functionality would offer very little real benefit if some type of run-time polymorphism

was not also implemented. Once the unpacking phase is complete, the original malware code

is in the host memory and vulnerable to any type of analysis. For this reason, many malware

authors implement run-time polymorphism by only unpacking one chunk of code at a time.

This technique could also be implemented on the GPU to improve results. The benefit would

again be malware that is much harder to reverse engineer and detect.

5.1.2 Direct Memory Access

[31] mentions the possibility of attacking a system by taking advantage of Direct Memory

Access (DMA) to access memory that otherwise would be protected. While not specifically

mentioned in this paper, the extension of this idea to GPUs represents a large vulnerability.

DMA allows the GPU to access system memory independently of the CPU. Since the CPU

does all the memory protection, this DMA would bypass any type of memory security and

allow unlimited access to system memory. [12] describes how this type of attack has been

successfully implemented in the past using a network card. However, our research in this area

suggests that it is currently impossible to use a GPU to perform such an attack. This is due to

the way that DMA is implemented in CUDA. In order to use DMA, certain asynchronous copy

functions are used. The CPU is still responsible for allocating host memory, and this pinned

memory is passed to the GPU for use in DMA. This prevents the vulnerability, since the CPU

still controls the memory access and the protections are still in place. The GPU can only use

DMA to access the memory that was already given to it by the CPU, not any of the system

protected memory. It’s possible that in the future the GPU will have more control over its

DMA, but at the moment this type of attack is not possible.

5.1.3 Framebuffer and Screen Capture

[35] also mentions the framebuffer as a potential attack vector. The framebuffer resides in

the GPU memory, so in theory a GPU program could be designed to access the framebuffer for

malicious reasons. This program could grab the contents and act as a stealthy screengrabber.
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It could also be used in a sophisticated phishing attack by analyzing the current display and

modifying certain regions of it. For example, it could analyze the address bar of a web browser

and replace the real address with a fake one. This would lead to very hard to detect phishing

attacks.

These ideas are interesting concepts, but our research suggests that they are not possible

to implement using current GPU programming APIs. While the framebuffer does reside on the

GPU, none of the APIs expose direct access to it to the programmer. CUDA cannot directly

read from the framebuffer or write to it. It’s possible that this functionality may be added in

the future, but currently it does not exist.

However, a GPU would still be useful in a related attack. It could still be used to assist

screengrabbing malware in multiple ways. First, it could analyze the captured screenshot to

determine if it contains any useful information. This type of image analysis is computationally

intensive, so it would be perfect to execute on the GPU without taking up CPU cycles and

noticeably slowing the machine. The GPU could also be used to compress or encrypt the image

prior to its transmission. These are also operations that map very well to the parallel GPU

architecture. These techniques would result in malware that is much harder for the average

user to detect.

5.1.4 Password Cracking and File Decryption

One area where GPU computing has been leveraged since it first became available is the

brute force cracking of password hashes. [1] demonstrates how GPUs are able to generate

hashes over 100 times more quickly than CPUs resulting in decreased password cracking times.

This capability could be used to make malware much more effective at gaining access to sen-

sitive information and escalated priviledges. Host code could easily access hashes of any user

passwords and then crack them in the background on the GPU. Not only would this greatly

reduce the time needed for cracking but it would also prevent the increased CPU usage that

often reveals the presence of malware. This same technique could also be used to decrypt files

on a victim’s computer.
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5.1.5 Botnet Services

Botnets are at the heart of computer security. They are behind most DoS attacks, most

malware distribution, and most spam email. A wide variety of techniques are used by botnet

operators to make them more effective and harder to detect, and many of these techniques

could benefit from GPU computing. One technique often used to increase the robustness of

a botnet is the dynamic calculation of command and control servers. These calculations are

typically done on the bot’s CPU, but they could be accelerated by using the GPU. This would

allow more advanced schemes to be used making them harder to predict. In a similar fashion,

the power of a GPU could be used to encrypt the communications between a bot and the

command and control server. A more complex encryption scheme could be used to increase

security, and the host would be available to do other tasks. Distributed GPU computing could

also be leveraged to do things like distributed password cracking or bitcoin mining.

5.2 Suggested Mitigations

The wide variety of possible malicious applications described will likely require a wide

variety of mitigations to properly combat. It’s likely that anti-malware products will have to

advance to the point that analysis of GPU binary files is possible. This will likely require

more disclosure from Nvidia, since the doumentation is sparse and the disassembler is not very

robust. [33] is an open source project that attempts to support reverse engineering this type

of file, but without any official assistance from Nvidia it is likely not robust enough to be

relied on by security vendors. New encryption schemes will also need to be developed that

take into consideration the unique performance characteristics of modern GPUs. They could

be specifically designed to prevent GPU password cracking.
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CHAPTER 6. CONCLUSION

6.1 Contributions

This work began with a discussion of the last decade of GPU computing and the current

state of GPU security research. It was then demonstrated how vulnerable the current GPU

security landscape is. This was done by developing two main attacks. The first one had multiple

varieties, but the focus was on the DoS vulnerability inherent to the way that modern GPUs

communicate with CPUs. This attack was tested and found to be effective. Based on the

specifics of the individual machine, the results ranged from several seconds of unresponsiveness

followed by a graphics driver reset, to a complete system crash. The second main attack focused

on exploiting the lack of memory protections on GPUs to leak information from one program

to another. The attack was effective, and the widespread possibilities of this type of attack

were discussed.

We not only demonstrated these vulnerabilities through working attacks, but we also dis-

cussed the implications of these attacks and how they could be leveraged to create serious

security breaches. While not comprehensive, this work also included discussion of various mit-

igation strategies to defend against each of the suggested vulnerabilities. Examples of existing

mitigations were also mentioned, but most of these were found to be inadequate.

Our work concluded with a survey of possible ways that a GPU could be used to assist

malware and make it more effective and harder to detect. Our investigation of some suggestions

resulted in the conclusion that they were not possible at the moment, but others were very

possible. Each of these presents a very real threat, and it’s possible that some are already

being utilized by attackers. Suggested mitigations were also mentioned to deal with several of

the possible GPU-assisted malware schemes.
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6.2 Future Work

This research is meant to be a first step towards improving the GPU security landscape.

As such, it leaves the door wide open for future work. The ideas presented here could certainly

be expanded upon, and these vulnerabilies are definitely not comprehensive in scope. The field

of GPU security is in its infancy, and it is almost certainly going to grow quickly in the near

future.

There are several options for improving the basic DoS attacks presented earlier. As men-

tioned, code could be written to query the device and determine what the best parameters

would be for each specific system. Additionally, some extra logic could be added to freeze the

GPU for a short enough time that the OS’s timer does not kick in and reset the driver, and

then keep freezing it repeatedly. This would result in a near total system crash even on those

OSs that have timers. The DoS attacks could also be modified to utilize complex operations

rather than actual infinite loops. If created correctly, these could achieve the same DoS while

being protected from future mitigations that look for infinite loops.

Chapter 4 mentioned a few ways that the information leakage attack could be extended,

and there are many more possibilities. This vulnerability leaves so many applications so wide

open to attack. The basic CUDA code could easily be extended to recover larger chunks of

data and do some analysis on the recovered data. This could be tailored to attack anything

from a website to a video game to a scientific computation. It’s possible that it could even be

used to steal the contents of a user’s desktop at any given time.

Chapter 5 discusses several ways in which GPUs could be used to assist malware. None of

these have been extensively studied, and each one would make an interesting topic for future

research. Malware authors are likely already working on ways to leverage the GPU to gain an

advantage, so it would be wise for academic study to be done in this area as well. Possible

attacks for each of the methods listed could be developed, and working implementations of the

various mitigations would greatly further this field.
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