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ABSTRACT  

  

Presented here are the action of four different α-amylases on eight different starches in 

their native granular form. Of the starches, potato and amylomaize-7 were slowest to degrade, 

but maize, wheat, rice, barley, and tapioca degraded at a similar (and faster) rates. Waxy maize 

degraded most rapidly compared to the other starches. Amylases from Bacillus licheniformis and 

human saliva were significantly more effective than amylases from Bacillus amyloliquefaciens 

and porcine pancreas. The broad range of outcomes indicates the correct choice of enzyme and 

starch is a critical factor in the design of efficient protocols for starch processing in the bio-

renewable industry. 
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CHAPTER I:  INTRODUCTION  
  

Background  

Starch is ubiquitous in the plant world, but human agricultural efforts historically have 

focused on starch-rich foods. Worldwide, more than half of all food calories comes from starch in 

the form of cereals and rhizomes (FAO and WHO, 1998). Starch is a glucose polymer of α(1→4) 

glycosidic linkages with α(1→6) glycosidic branch points. Amylose and amylopectin are the 

predominant constituents of starch. Amylose has very few branches, is insoluble in cold water. 

Amylopectin has significantly more branches, averaging between three to four percent, and is 

soluble in water. The rate of dissolution of amylopectin, however, is slow at low temperatures, a 

consequence in part to the semi-crystalline properties of this molecule (Gidley, 1987). 

Although all starches are polymers of glucose, their secondary structures differ vastly due 

to different amylose/amylopectin ratios, crystallinity, branching percentages, granule sizes and 

granule shapes. Every starch-producing organism will produce a distribution of starch granules. 

But each distribution is characteristic of the starch type. For example, potato starch granules tend 

to be large and smooth, whereas rice starch granules are small and angular (Kimura, 1995; Jane, 

1994). The granules of waxy maize are predominately amylopectin, whereas normal maize has an 

approximate ratio of 80:20 amylopectin to amylose (Lindenboom, 2004). 

Starches are stored energy. That energy is tapped in plants through the degradation of 

starch into simple sugars by the action of starch phosphorylase or amylase (Rathore, 2009). Other 

organisms use amylases to hijack glucose equivalents from plant starches. Hence, a multitude of 

species-specific amylases exist all of which act upon α(1→4) linkages. Some are endo-hydrolases 

(hydrolyzing linkages within a chain) and others are exo-hydrolases (hydrolyzing nonreducing 

ends of starch chains). Amylases also produce various products: glucose, maltose and 
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maltodextrins. Maltodextrins are also short-chained polymers of glucose ranging from three to 

twenty glucose units. 

Most schemes for enzyme kinetics assume both enzyme and substrate are soluble. In the 

case of polymeric substrates, enzyme-substrate interactions exhibit one-dimensional Brownian 

motion and "sliding" (Callender, 2014; Breyer, 2001). Starch in nature, however, is rarely a 

solubilized substrate, being instead a semicrystalline or amorphous solid. Kinetics data gleaned 

from liquefied (solubilized) starch may allow the precise determination of catalytic parameters, but 

such parameters are not a faithful representation of enzyme action on insoluble starch granules. 

As the secondary structure of native starch varies, as do amylases from each organism, one 

might expect a wide range in the efficiency of starch degradation.  Many different amylases might 

rapidly degrade one starch-type, whereas another might be susceptible to the action of only one 

amylase. Knowing the best combination of starch-type and amylase could reduce costs associated 

with pre-liquefaction of starch. 

Thesis Organization  

This thesis begins (Chapter II) with a review of the literature related to the properties of 

glucose, the structure of starch granules, the structure of selected α-amylases and the ecological 

niche occupied by the selected amylase-secreting organisms.  A presentation of research methods 

and summary of the results follows (Chapter III). The development of kinetic models appears in 

Chapter IV, with correlations between enzyme efficacy and starch-type in Chapter V.  Finally, 

suggestions for future directions of research are in Chapter VI.   Appendices and 

acknowledgements conclude the thesis. 
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CHAPTER II:  REVIEW OF LITERATURE   

Glucose 

Sugars are carbohydrate, the simplest (monosaccharides) having the general formula 

(CH2O)n. Physically, monosaccharides consist of a carbon chain that is decorated with hydroxyl 

groups on each carbon except for one carbon which contains a relatively more reactive carbonyl 

group. The hydrophilic hydroxyl and carbonyl groups allow water molecules to solvate what 

would otherwise be an insoluble hydrophobic carbon chain, stabilize secondary structure via intra-

molecular hydrogen bonding and be readily metabolized. The electrophilic carbon atom of the 

ketone or aldehyde group of monosaccharides reacts intra-molecularly and reversibly with a 

nucleophilic hydroxyl to form either a hemiketal or hemiacetal. The resulting cyclized the 

monosaccharide are of relatively low energy and the dominant state at equilibrium. 

Glucose has six carbons, one of which is included in the terminal aldehyde group and the 

others having hydroxyl groups and specific chiralities. The chiral carbons are such that cyclization 

into the pyranose ring puts all but one oxygen atom in the same equatorial plane and all carbon-

linked hydrogen atoms perpendicular that plane. The hydroxyl group associated with the 

hemiacetal can have conformations either α (axial) or β (equatorial).  Having all of the relatively 

large hydroxyl groups in equatorial positions is preferred sterically, so β-pyranose is twofold more 

prevalent than α-pyranose at equilibrium.  The six-atom cycle of pyranose is also sterically 

preferred to the five-atom cycle of furanose. Glucose then has hydrophilic equatorial plane and two 

hydrophobic surfaces above and beneath this plane. These hydrophobic surfaces favor the stacking 

of glucose with aromatic rings of amino-acid side chains and glucose polymers with helical and 

double helical conformations. Glucose helices can entrap relatively hydrophobic molecules, such 

as triiodide. 
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Although monosaccharides favor cyclized states, the cyclization reaction is reversible, and 

consequently a small percentage of uncyclized monosaccharide is present at equilibrium. In the 

case of glucose, this leaves the aldehyde group available for condensation reactions, process is 

called glycation. Frequently, amino groups condense with aldehyde groups of sugars in the 

Maillard Reaction (Mottram, 2002). After the initial formation of an imine group from the amino 

and aldehyde groups, the imine group tautomerizes with the adjacent alcohol to form amine and 

ketone groups (Amadori Rearrangement). Glycation of amino groups in proteins is a direct 

consequence of high serum glucose levels of hyperglycemia and advanced glycation end-products 

(AGEs) are associated with age related diseases such as Alzheimer’s (Vistoli, 2013). What 

differentiates glucose from other sugars is its stability in the cyclized state, thus reducing glycation 

events.  

The hemiacetal (or hemiketal) group generated by cyclization is also reactive, but the 

condensation of the hemiacetal (or hemiketal) group with the hydroxyl of another simple sugar 

results in a relatively inert glycosidic linkage. The formation of the glycosidic link, which 

generates a molecule of water as a product, is not energetically favored under aqueous conditions. 

Within organisms, this thermodynamically disfavored condensation is driven by nucleoside-

diphospho sugars, and the hydrolysis of diphosphate. The hemiacetal (or hemiketal) is 

phosphorylated and then reacts with a nucleoside triphosphate to form a high-energy nucleoside-

diphospho-sugars.  The nucleoside-diphospho sugars are polymerized to form kinetically stable 

polymers (Ghosh, 1966). Amylose and amylopectin are α(1→4) glycosidic polymers of glucose, 

and are both synthesized from adenosine-diphosphoglucose.  

Starch Granule 

Amylose and amylopectin are the two main components of starch. Amylose is a straight 

chain of α(1→4) bound glucose molecules with very few α(1→6) branch points. Amylose makes 
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up about one fifth of the total carbohydrate in starch with a few known exceptions. Amylopectin 

contains an α(1→6) branch every 24 to 30 α(1→4) linked glucose units. Amylose is insoluble in 

cold water, whereas amylopectin is soluble, the difference attributed to the frequency of α(1→6) 

branches. 

Both amylose and amylopectin form semi-crystalline single and double helices in solution. 

Amylose can form left-handed rigid single helices, but also right-handed helices in the presence of 

specific complexing agents (Gessler, 1999; Bulpin, 1982; Winter, 1974). Single-helix amylose is 

called V-type. Double helices of amylose are left- and right-handed, are more rigid and stack 

against each other (Sarko, 1978). A-type crystalline double-helical amylose is orthogonally 

packed, whereas B-type is hexagonally packed. A-type amylose is less hydrated than B-type 

(Blazek, 2011). When amylose crystallizes out of solution, the conditions associated with the 

retrogradation determine the crystals form (Sarko, 1978).  

Although amylose forms helices easily through retrogradation from solution, crystallinity is 

actually hindered by the presence of amylose in starch granules. Amylopectin exhibits the 

crystalline forms of amylose; however, because amylopectin is branched, crystallization is 

intramolecular. Computational and NMR studies show that the branch points cause significant 

conformational restrictions in starch that favor a left-handed helical model (Corzana, 2004). 

Amylopectin within starch granules then may exist predominately as double helices with a left-

handed chirality. Amylose is presumably less able to form double helices, contributing to single 

helical arrays that interrupt the crystallinity of amylopectin. This changes after retrogradation when 

amylose becomes concentrated (Pérez, 2010), and becomes more crystalline than amylopectin 

(Wang, 2015). 

The suggestion that crystalline regions of starch degrade more slowly than amorphous 

regions derives from the observation of "shelled" or "ringed" structures left behind after partial 
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degradation of starch granules by acid-based or amylase-based hydrolysis (Pérez, 2010). As noted 

above both amylose and amylopectin exist in crystalline and amorphous states, and these states 

may change due to treatment. For instance, after cooling, cooked starches increase in crystallinity 

with a concomitant loss of flavor.  Nonetheless most agree that amylopectin, which is the major 

constituent of starch (around 80%), is also the major component of crystalline regions, proposed as 

double helices of amylopectin packed in either A-type or B-type arrangements. There are several 

models for covalent bonding of amylose and amylopectin, but no technology has yet to determine 

the composition of starch layers, and the characteristics of coupling between layers. 

The most widely accepted model for starch granule biosynthesis requires pre-existing 

amylopectin. The non-reducing ends of the amylopectin are lengthened with branching until steric 

crowding interferes with synthesizing enzymes. Debranching enzymes then remove excess branch 

points, allowing amylopectin to crystallize into double helices. Double helices pack together in 

either an A-type or B-type polymorph. Higher order structures may rise by combining packed 

double helices into a superhelix (Bertoft, 2004). Amylose appears when some chains of 

amylopectin become almost completely debranched. 

The proposed model, however, fails to account for de novo synthesis in the absence of a 

primer or preexisting carbohydrate (Mukerjea, 2012). Such de novo synthesis requires starch 

synthase and adenosine-diphosphoglucose, and proceeds without starch-branching enzymes.  The 

resulting product precipitates with amylose and n-butanol. The addition of branching enzyme leads 

to larger quantities of amylopectin. Models of elongation from the reducing ends of starch (widely 

accepted primer models) cannot account for the synthesis of starch as described above. The model 

suggested by John F. Robyt begins starch biosynthesis as amylose, which is in turn branched into 

amylopectin by branching enzyme.  Starch is degraded to support metabolism by starch-
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debranching enzymes (Mukerjea, 2013). Debranching occurs on oligosaccharides rather than the 

starch granule to avoid the formation of starch granules resistant to further degradation. 

Regardless of how the starch granule is synthesized, there is a radial structure that is 

synthesized out of the hilum. The shell structure alternates between an easily degraded portion and 

a resistant potion. The resistant portion after hydrolysis is crystalline. Hydrolysis kinetics then, 

must account for fast and slow degrading portions (Buléon, 1998). 

α-Amylase 

α-Amylases are hydrolases that act upon α-linked glucose polymers. The standard 

definition restricts the action of α-amylase to α(1→4) glycosidic linkages; however, there are 

structural similarities and a conserved catalytic mechanisms with other amylases and 

transglycosylases (Kuriki, 1999; Svensson, 1994) . One common feature is a catalytic TIM barrel 

domain, which allows amylases and transglycosylases to be in an extended “α-amylase family”. 

The reactions catalyzes are hydrolysis and trans-glycosylation, and the substrate types are α(1→4) 

glycosidic linkages and α(1→6) glycosidic linkages. Neopullanase is an example of an α-amylase 

that catalyzes all four reactions types. Cyclodextrinases, which cyclize starches into toroids by 

intramolecular transglycosylation, can also hydrolyze these same cyclodextrins and glycosylate a 

variety of hydroxyl groups presumably by a mechanism related to its activation of water. 

Enzymes of the alpha-amylase family do not invert the chirality of the anomeric carbon 

after hydrolysis or transglycosylation, and possess a conserved pair (one Asp and one Glu) of 

essential catalytic side chains. Quantum mechanical simulations are consistent with one 

carboxylate poised to attack the anomeric carbon forming a β-linked glycosylated carboxyl group. 

The other carboxylic acid is in position to donate a proton to the leaving group. The β-linked 

glycosylated carboxyl group is hydrolyzed by water in a second reaction or by the hydroxyl group 
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of another sugar or acceptor molecule (transglycosylation). The double displacement reaction 

maintains the alpha configuration of the anomeric carbon (Pinto, 2015). 

α-Amylases are a subset of the α-amylase family which selectively act upon α(1→4) 

glycosidic linkages. They hydrolyze starches to generate maltooligosaccharides. This is the first 

step in solubilizing starche. Once starches are degraded into soluble oligomers, enzymes degrade 

oligomers into disaccharides and monosaccharides. 

Like other members of the α-amylase family, α-amylases contain a conserved TIM-barrel. 

They also contain a non-catalytic triad which is necessary for stability of the starches (Marx, 

2008). They promiscuously use anions as activators for their catalytic mechanism (Aghajari, 

2002). Anions, specifically chloride, properly orient the essential carboxylates at the active site and 

stabilize a helix, from which the substrate binding loop protrudes.  Calcium also frequently 

stabilizes the enzyme (Ghollasi, 2013). 

Aromatic residues play an important role in carbohydrate binding and are often present in 

active sites of carbohydrases (Matsui, 1994). Hydrophobic surfaces of glucose units stack with 

planar aromatic side chains.  Computational models indicate a substantial free-energy decrease due 

to the displacement of water molecules from aromatic functional groups by methyl-glucose 

(Kumari, 2012). Amylases may have binding sites for carbohydrates that are not in the active site. 

Crystal structures of porcine pancreatic α-amylase show maltose on surfaces far away from the 

active site. Human salivary α-amylase contains possible sites for carbohydrate binding. Aromatic 

resides play an integral role in these binding interactions (Ramasubbu, 2003). 

Ecological Niche 

Bacillus amyloliquefaciens.  Bacillus amyloliquefaciens (BA) is a soil-borne, spore-

forming, rod-shaped microorganism that is in a symbiotic existence with the roots of plants. It was 
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named for its ability to liquefy starches in a Japanese publication (Fukumoto, 1943) with no 

English translation. Liquefaction of starch by BA is not substantiated in this thesis. 

BA in its symbiotic relationship with plants produces antifungals, antibacterials, and auxins 

which promote plant growth. Moreover, BA produces a putative cellulase which facilitates the net 

transfer of carbon from plant to microorganism (Kierul, 2013). In more direct carbon transfer 

pathways, plants exude simple carbohydrates into the rhizosphere, as well as organic acids (Liu, 

2014). It is, therefore, likely that cellulase products are not a major carbon source for BA. 

Bacillus licheniformis. Bacillus licheniformis (BL) is also a soil-borne, rod-shaped, 

microorganism. BL is pathogenic (Haydushka, 2012; Agerholm, 1997). Its spores travel by air, and 

reside in bird plumage where it may play a role in molting (Burtt, 1999; Burtt, 2010). Enzymes 

isolated from BL tend to be thermostable and effective on solid substrates. Subtilisin from BL 

degrades feathers, one of the most stable and least soluble proteins in existence.  Proper pre-

digestion with BL subtilisin transforms feathers into a food source. The same protein is used as a 

high-pH protease for laundry detergents (Sellami-Kamoun, 2008). An exopolysaccharide isolated 

from marine BL (Arena, 2006) may remove oral plaque by binding to degrading biofilms. BL also 

secretes a thermostable amylase. 

Human saliva. Saliva is the first digestive secretion that comes into contact with consumed 

food. It must, therefore, act upon many solid substrates. The main constituents of saliva are 

mucopollysaccharides, glycoproteins, buffering ions, and hydrolytic enzymes (Humphrey, 2001). 

One of these hydrolytic enzymes is α-amylase encoded by the AMY1 gene. It is usually highly 

glycosylated (Shou, 2012), binding tightly to teeth and bacteria. Aromatic residues responsible for 

carbohydrate binding may be involved in binding bacteria (Ramasubbu, 2003). Because of this, 

human salivary α-amylase (HSA) is a constituent of dental plaque (Scannapieco, 1995) 

(Scannapieco, 1995). Since the pH optimum of HSA is 6.7-7.0, it is inactivated by stomach acid. 
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HSA must act then in the short time between chewing and swallowing. However, the presence of 

starch and maltooliogosaccharides can partially suppress the inhibition of a low pH (Rosenblum, 

1988). Upon neutralization, HSA regains some activity. It can also have activity on starch within 

the small intestine. 

The human diet, on average, receives most of its caloric intake from starches (FAO, 1998). 

This is due partially to humans breeding and cultivating starch-rich food sources in preference to 

other forms of food. Starches preserve easily (freeze drying potatoes in the mountains) and are 

versatile components of prepared food (bread products and flavor derived from saliva-based 

production of aromatic compounds). Humans, have therefore, devoted much effort and ingenuity 

into the manipulation of the starch granule. 

Porcine pancreas. The porcine pancreas secretes many hydrolytic enzymes into the 

duodenum. By the time pancreatic enzymes come into contact with food, it is partially digested 

and liquefied into chyme. One of these pancreatic hydrolases is an α-amylase (PPA). PPA, in 

contrast to HSA, tends to generate smaller hydrolysis products. 
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CHAPTER III:  METHODOLOGY & RESULTS 

Data Collection  

 Four amylases and 8 species of starch were analyzed in the study. Bacillus 

amyloliquefaciens and Bacillus licheniformis were the bacterial sources of amylase. Human 

salivary and porcine pancreatic amylases served as mammalian sources. The eight starches were 

potato, waxy maize, maize, amylomaize-7, rice, wheat, tapioca, and barley. 

The enzymes were assayed using a 10 mL starch solution prepared as follows: 110 mg of 

potato starch was autoclaved in 7 mL of water. The solution was buffered to a pH of 6.5 with 

imidazole hydrochloride. Calcium acetate was added as a source of calcium ions. The volume was 

raised to 10 mL, making a 10% (w/v) starch solution with 20 mM imidazole hydrochloride and 1 

mM calcium acetate. Enzymes were diluted in 20 mM imidazole hydrochloride (pH, 6.5), 1 mM 

calcium acetate and 0.04% polyethylene glycol 1500 (PEG 1500). In a warm bath (37 °C), a vial 

containing 1.9 mL of the starch solution was heated and stirred. 100 μL of the diluted enzyme 

solution was added to the vial for a total volume of 2.0 mL. 100 μL aliquots were added to 900 μL 

of 0.1 M sodium hydroxide to quench reactions. The copper bicinchoninate method determined the 

number of reducing ends. A unit (IU) of activity is defined as 1 millimole hydrolysis reactions per 

minute. Enzymes were diluted to 2, 20, and 200 IU/mL for experiments described in the next 

paragraph. The dilutions also contained 20 mM imidazole hydrochloride, 1 mM calcium, and 

0.04% PEG 1500.  

All the reactions took place at 37 °C. Flasks contained 19 mL of 1 g of one of eight 

starches in 20 mM imidazole hydrochloride (pH, 6.5) and 1 mM calcium acetate. Reactions were 

initiated by the addition of 1 mL of the diluted enzyme to the starch suspensions, giving final 

enzyme concentrations of 0.1, 1.0, and 10 IU/mL.  2 mL aliquots were removed from the reaction 
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digests at various time points and placed into an orange-capped tube containing 1 mL of 0.03 M 

trifluoroacetic acid (TFA) for a final pH about 2. Four enzymes, three concentrations, eight starch 

varieties, and 7 time points yielded a total of 96 reactions and 672 aliquots. 

The aliquots were centrifuged at 10,000xg for 10 minutes. The supernatant was removed. 

Pellets were re-suspended in 2 mL of 0.01 M TFA and re-centrifuged. The supernatants were 

pooled. The volume of the pooled supernatants was brought up to 10 mL using 0.01 M TFA. 

The supernatants were assayed using a modified sulfuric acid/phenol method to measure 

total carbohydrate content (TC) and a copper bicinchoninate method to measure the total reducing 

value (RV). For the total carbohydrate method, 25 μL of a properly diluted (10 – 200 μg/mL) 

sample was placed into a microwell plate in triplicate. 25 μL of a 5% (w/v) phenol solution was 

added to the wells over a bed of ice and agitated. 125 μL of concentrated sulfuric added was 

slowly added to the wells. The plate was then agitated. The plate was then floated upon an 80 °C 

hot bath for 30 minutes. The plate was then scanned at 492 nm. 

For the reducing value, two stock solutions where prepared. The first was a bicinchoninate 

buffer solution which contained 5 mM disodium 2,2’-bicinchoninate, 64 g/L sodium carbonate 

monohydrate, and 24 g/L sodium bicarbonate. The second stock was a copper solution containing 

5 mM copper sulfate and 12 mM L-serine. Equal parts of the stock solutions were mixed right 

before the assay was conducted. 100 μL of a properly diluted sample (1 – 20 mg/ml of maltose 

equivalents) was added to a microwell plate in triplicate. 100 μL of the binary stock solution was 

added to the microwell plate. The plate was agitated and then floated upon an 80 °C hot water bath 

for 35 minutes. The plate was then scanned at 560 nm. Both of these assays are in the literature 

(Fox, 1991). 
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Data Analysis  

All data was recorded and exported to Microsoft Excel. Triplicate values for TC and RV 

were averaged and plotted as a function of maltose equivalents over time (Appendix A). TC 

evolution does not fit a single exponential decay model, and requires at least a double-exponential 

decay process.  The RV plots are in Appendix B. RV plots were modeled using a single 

exponential decay function, although several time courses clearly undergo a double exponential 

decay process.  The RV confirms the TC data by a second chemical assay, but provide no 

additional insight into the mechanism of starch degradation.  Hence for the remainder of this thesis 

the focus is on the TC data. 

  Double exponential decay can come from two distinct mechanisms, which relate to the 

relative rates of the double-displacement reactions catalyzed by α-amylases. The first step results 

in a glycosylated enzyme active site and the release of the aglycone. As the aglycone in this case is 

a carbohydrate, it is measured by the TC and RV assays.  If the first step is rate limiting (as is the 

case for soluble substrates), then different rates must be a consequence of different substrate types 

(for instance, amorphous and crystalline starch).  The second step is the hydrolysis of the 

glycosylated enzyme intermediate, which in this study is a covalent complex between starch and 

enzyme, and technically no longer in solution.  If the rate of hydrolysis is the slow step, then 

double exponential decay could reflect a rapid “burst” phase (step one) followed by a slow steady-

state phase limited by the rate of hydrolysis of the enzyme-starch intermediate (step two).    Hence, 

double exponential decay could be a consequence of starch structural heterogeneity or the α-

amylase enzyme kinetics.  In Chapter IV of this thesis we explore possible models that could be 

the basis for observed double exponential decay. 

 The fitted double exponential decay curves were used to determine a calculate value for 

TC after 24 hours.  These values are summarize in Table 1. 
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 0.1 IU/ml   1.0 IU/ml 

 BLA PPA HSA  BAA   BLA PPA HSA  BAA 

Potato 5.17 3.61 3.84 1.23  Potato 8.13 7.07 7.66 2.39 

Waxy Maize 22.87 26.98 27.26 6.82  Waxy Maize 55.24 55.12 64.84 17.40 

Maize 19.64 18.06 19.61 6.92  Maize 36.04 34.51 36.36 16.16 

Amylomaize-7 7.37 5.42 6.09 2.22  Amylomaize-7 13.38 10.47 11.98 4.94 

Rice 22.26 22.89 31.66 13.63  Rice 38.27 35.18 52.45 19.57 

Wheat 14.03 6.43 7.56 3.29  Wheat 29.95 29.35 36.10 10.59 

Barley 14.11 11.65 22.74 2.44  Barley 32.11 25.83 42.66 8.40 

Tapioca 13.40 12.34 27.75 2.97  Tapioca 40.22 26.62 58.00 9.38 

 

 10.0 IU/ml  106 

 BLA PPA HSA  BAA  100 

Potato 15.44 12.29 15.29 4.09  90 

Waxy Maize 75.51 68.86 80.24 42.80  80 
Maize 59.26 52.31 56.54 30.35  70 

Amylomaize-7 29.86 21.30 22.27 8.57  60 

Rice 60.81 58.53 81.11 30.15  50 

Wheat 62.67 50.96 66.78 19.32  40 

Barley 63.84 49.16 105.09 17.28  30 
Tapioca 58.96 68.23 91.77 22.14  20 

      10 

      0 

 

Table 1. Total carbohydrate (TC) after a 24 hours as determined by double exponential fits of 

observed data. Calculations and fits are in Appendix A. Values are in mg of TC as maltose, 

assuming 100 mg of starch produces 106 mg of maltose. The color scale emphasizes high TC 

values (purple) from low values (light green).  Total enzyme concentrations are indicated at the top 

of data summaries as 0.1, 1.0, and 10.0 IU/mL..  
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CHAPTER IV: MODELS FOR STARCH DEGRADATION 

Biphasic Kinetics Due to Slow Hydrolysis 

If hydrolysis of the covalent complex between starch and enzyme is slow (the second step 

of the Ping Pong mechanism for α-amylase is rate-limiting), then a burst phase will appear in the 

data.  The size of the burst is proportional to the amount of ES that forms, which in turn is 

proportional to the total enzyme used in the experiment.  A burst greatly in excess of what the total 

enzyme can produce in a single turnover would disqualify a model based on rate-limiting 

hydrolysis.  The theoretical limit (based on the highest enzyme concentration) for the experiments 

here is 20 mg of maltose-equivalent product.  The burst concentrations of product for most 

reactions fall under 20 mg, and those that exceed 20 mg do so by no more than 50% (Appendix A).  

Hence, we cannot exclude a limiting hydrolysis mechanism as an explanation for biphasic kinetics.  

A direct determination of the rate of decay of the starch-enzyme complex is necessary in order to 

eliminate (or confirm) the possibility of rate-limiting hydrolysis. Confirmation of rate-limiting 

hydrolysis for insoluble carbohydrate-amylase complexes would impact the approach to the 

industrial processing of all carbohydrates, including cellulosic materials. 

Biphasic Kinetics Due to Substrate Inhomogeneity  

If the formation of the enzyme-intermediate complex is rate-limiting (first reaction of the 

Ping Pong mechanism), the Ping Pong mechanism becomes a Michaelis-Menten mechanism.  

Slow formation of the enzyme-starch covalent complex allows initial binding events between 

enzyme and starch to be at equilibrium. The reaction rate is determined by the kcat multiplied by 

the concentration of the enzyme-substrate complex ES. As ES is in equilibrium with free enzyme E 

and free substrate S, ES = E*S/K, where K the dissociation constant governing the equilibrium. 

These assumptions carried forward result in the Michaelis-Menten equation: −
𝑑𝑆

𝑑𝑡
=

𝐸𝑜𝑘𝑐𝑎𝑡𝑆/(𝐾 + 𝑆). Integration of the Michaelis-Menten equation through separation of variables 
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results in the following: (Eokcat/K)*t = ln(So/S)+(So–S)/K, where So is the concentration of substrate 

at time zero.  For a single substrate and single product P, So–S=P for all times.  Hence, the 

integrated Michaelis-Menten equation giving the time dependence of product formation is as 

follows: (Eokcat/K)*t = –ln[(So–P)/So]+P/K.  The latter equation reveals a complex relationship for 

product formation with time; however, by exponentiation of the relationship, we find: exp[–

(Eokcat/K)*t]= [(So–P)/So]*exp[–P/K].  At early times P~0, and exp[–P/K] approximates to unity.  

The relationship reduces to a first-order exponential decay: P = So–So*exp[–(Eokcat/K)*t]. Hence, 

the use of exponential decay functions in data fitting is justified. The foregoing analysis assumes 

the Michaelis-Menten reaction is irreversible. For starch hydrolysis reactions, the high 

concentration of water drives the reaction to completion with almost no back reaction. 

In the event of a rate-limiting first step in the Ping Pong mechanism, biphasic kinetics must 

be due to starch heterogeneity.  Heterogeneity can be represented by two substrate pools SC 

(crystalline) and SA (amorphous).  Assuming enzyme-starch binding to be at equilibrium, we can 

define two dissociation constants KC and KA and two rate constants kC and kA for parallel 

Michaelis-Menten mechanisms.  The resulting equation is as follows: 
𝑑𝑃

𝑑𝑡
=

𝐸𝑜𝑘𝐴𝑆𝐴

[(1+
𝑆𝐶

𝐾𝐶)𝐾𝐴+𝑆𝐴]
+

𝐸𝑜𝑘𝐶𝑆𝐶

[(1+
𝑆𝐴

𝐾𝐴)𝐾𝐶+𝑆𝐶]
. This expression cannot be integrated by separation of variables, but we can explore 

its complexity and behavior.  For the first term, which governs the degradation of amorphous 

starch, the constant (KA) for the dissociation of ESA (the complex of enzyme bound to amorphous 

starch) is increased by a factor of (1 +
𝑆𝐶

𝐾𝐶). In other words, the presence of crystalline starch 

enhances the dissociation of enzyme from amorphous starch.  Inspection of the second term 

indicates a reciprocal effect; the presence of amorphous starch enhances enzyme dissociation from 

crystalline starch.  These mutually antagonistic relationships are a consequence of separate 
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substrate pools competing for a single pool of enzyme.  If we assume kA>>kC (amorphous starch 

degrades completely before significant loss of crystalline starch), the second term is small relative 

to the first, and can be ignored. Also SC is constant and equal to its initial concentration SC
o. The 

later allows the expression of SA in terms of initial total substrate concentration So, product 

formation P and the initial crystalline starch concentration SC
o. In other words, SA =  So – SC

o – P.  

Degradation of the amorphous component then is approximated by the following: 
𝑑𝑃

𝑑𝑡
=

𝐸𝑜𝑘𝐴(𝑆𝑜−𝑆𝑜
𝐶−𝑃)

[(1+
𝑆𝑜

𝐶

𝐾𝐶)𝐾𝐴+(𝑆𝑜−𝑆𝑜
𝐶−𝑃)]

 . This expression can be integrated by separation of variables with a result 

analogous to the integration of the single-component Michaelis-Menten expression.  Hence, the 

rapidly degrading component exhibits exponential decay early in the time course.  When SA is 

exhausted (that is SA = 0), the first term can be neglected relative to the second term.  The 

relationship becomes as follows: 
𝑑𝑃

𝑑𝑡
=

𝐸𝑜𝑘𝐶(𝑆𝑜
𝐶−𝑃)

[𝐾𝐶+(𝑆𝑜
𝐶−𝑃)]

, which again is analogous to a single component 

Michaelis-Menten relationship, giving (after integration) an exponential decay function for 

crystalline starch.  The double-exponential decay function used in fitting seems justified not only 

as an empirical functional form that captures the behavior of the data, but also by first principles of 

kinetics. 

The number 106 used in fitting derives from theoretical calculation that 100 mg of starch 

will produce 106 mg of maltose equivalents, which we define here as the product of the reaction 

measured by the TC assay.  We note that for some starch-enzyme combinations, we are in reach of 

106 mg of maltose from 100 mg of starch, whereas for others, we seem to fall short of the expected 

yield.  In certain instances the experimental determination of maximum yield may have greatly 

improved double-exponential fits. 
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Additional Models for Starch Degradation 

Appendices C, D and E explore other models and assumptions.  In Appendix C, we assume 

Michaelis-Menten kinetics, with total enzyme concentration equal to free enzyme concentration 

(Eo = E).  The result is first-order exponential decay.  (In early paragraphs or this chapter, we 

explored the same model; however, we made no assumptions restricting the amount of free 

enzyme relative total enzyme).  This model did not account for data for biphasic starch-enzyme 

reactions. 

The model in Appendix D is a modified second-order model, in which the solution enzyme 

must first associate with the granule. Not all of the associations between enzyme and starch result 

in a productive ES complex.  Only enzyme association with susceptible starch results in product 

formation.  

𝐸𝑠𝑜𝑙𝑛 + 𝑆 ↔ 𝐸𝑆𝑔𝑟𝑎𝑛 + 𝑆𝑠𝑢𝑠𝑐(𝑢𝑛𝑏𝑜𝑢𝑛𝑑)  ↔ 𝐸𝑆𝑏𝑜𝑢𝑛𝑑 → 𝐸𝑆𝑔𝑟𝑎𝑛 + 𝑃 

In essence, the model of Appendix D creates two pools of starch, both of which bind enzyme, but 

only one of which allows product formation.  The constant C transforms the total carbohydrate 

mass into a concentration of hydrolysable starch, which is in equilibrium with enzyme. It is 

assumed that the value of K2[ES]gran is negligible in comparison to 1 as there is not a large 

concentration of [S]susc(unbound). This is assumed because the solid polymer does not have a lot of 

exposed surface area. If this assumption is false, there is no way to integrate the equation. The 

concentration of [E]tot is assumed to be about the concentration of [E]soln. Plots of the resulting 

function and data are Appendix D. 

The model in Appendix E allows the percentage of susceptible starch to change with time 

(and hydrolysis).  Portions of the starch granule are more susceptible to degradation, and as 

degraded, would leave behind more resilient starch. The equation used to model this reduction is 

an exponential decay function. The model is described as:  

K1 K2 
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𝐸𝑠𝑜𝑙𝑛 + 𝑆𝑎𝑣𝑎𝑖𝑙 ↔ 𝐸𝑆 → 𝐸 + 𝑃 

As before, one assumes [E]soln = [E]tot. The concentration of available substrate is a 

function of the total starch multiplied by the mass concentration of the total starch minus the 

starch-enzyme complex concentration. The function is an exponential decay function that stats at a 

maximum value, C0, which decays to a value of Cmin. This decay happens over the course of the 

digestion so that as P approaches 106 mg/ml, the C function approaches Cmin. 

The reaction rate is described as kcat[ES]. Following the same steps as the derivation as in 

Appendix C, results in an exponential integral function. The exponential integral function is a non-

elementary function that is described as 𝐸𝑖(𝑥) = − ∫
𝑒−𝑡

𝑡
𝑑𝑡

∞

−𝑥
. According to this model, this 

modified exponential integral function should linearize the TC values. A 12th power Taylor series 

approximation is used on excel for this model. Using a one to twenty ratio as the decay function of 

C, the data was better linearized than even the second order model, which was a more complicated 

model to derive. The resulting graphs can be seen in Appendix E. 
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CHAPTER V:  CORRELATIONS 

The amylase from Bacillus amyloliquefaciens (BAA) was the slowest of all four enzymes. 

Porcine pancreatic amylase (PPA) had intermediate activity for some starch varieties. Both human 

salivary amylase (HSA) and Bacillus licheniformis amylase (BLA) were, in general, close in 

reactivity. BLA was slightly better than HSA at degrading potato and maize starches. HSA was 

slightly better than BLA at degrading wheat, but significantly better at degrading rice, barley, and 

tapioca. 

Three trends are evidenced by the results: (1) Degradation proficiency depends modestly 

on the amylose/amylopectin ratio. (2) Degradation proficiency is strongly linked to the 

physiological or biological role of the enzyme. (3) Degradation proficiency is related to aromatic 

surface residues of the enzyme. 

Amylose, being less soluble than amylopectin, should be more resistant to degradation, as 

is apparent for the three maize species. High-amylose starches reach the large intestine in larger 

quantities than low-amylase starches (Sandstedt, 1962). These resistant starches are important for 

the gut flora of both humans and pigs (Topping, 1997; Brown, 1997; Schulz, 1993). Intestinal 

microorganisms use these starches as a fuel, releasing short-chained carboxylic acids as waste. 

These acids, specifically butyric acid, play a large role in preventing colon cancer (Mandal, 2001; 

Bird, 2000; Van, 2010). The correlation between amylose content and degradability, however, is 

evident for only the maize subset of starches. For the entire set of starches, there is no clear 

correlation between the amylose/amylopectin ratio and degradation proficiency.  

BA is a nonpathogenic soil organism, whereas BL is an opportunistic pathogen and 

saprophyte. BA lives symbiotically with starch producing plants and BA amylase is effective (high 

activity and specificity) in hydrolyzing dissolved (but not solid) starch. BA should avoid the 
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degradation of starch granules of its host, and prefer liquefied starch from decaying organisms 

external to the host. On the other hand, BLA is far more effective at degrading native (solid) 

starches. BL is spore forming (spread by air), and secretes enzymes that are effective at 

hydrolyzing other solid substrates, such as feathers of birds. BL may play a role in molting. BL is 

saprophytic; its ecological role is the degradation of dead organisms, and hence its secreted 

enzymes are be better suited for degrading solid materials.  

The different proficiencies exhibited by PPA and HAS in degrading starch may be linked to 

the physiological role of each enzyme. HSA is secreted in the mouth, the first of many human 

digestive enzymes. Since food is eaten as a solid, HSA must handle a solid substrate. HSA has 

high affinity for dextrans (glucose-based polysaccharides common to dental plaque), and therefore 

adheres to dental plaque, facilitating HSA action by retaining the enzyme in the mouth. In contrast, 

PPA acts on partially digested substrates that emerge from the stomach.  

The presence of aromatic residues on the surface of the enzyme correlate with the 

proficiency of solid starch degradation.  Liquified starches bind to aromatic residues of the 

amylases (Matsui, 1994; Mishra, 2002; Asensio, 2012). Computational studies reveal favorable 

interactions between sugars and para-methyl phenol, toluene, and indole as analogues of tyrosine, 

phenylalanine, and tryptophan. Imidazole pi-stacks with hydrophobic surfaces of starch and 

hydrogen bonds with glucose (Chen, 2012). Molten imidazole is able to dissolve starch at even 

greater concentrations than water (Jordan, 2014). Computation studies of cellulose dissolved in 

imidazole-based ionic liquids indicate that the imidazole ring is responsible for stacking with the 

glucose monomers in cellulose (Mostofian, 2014; Swatloski, 2002). Is there a correlation in starch 

degradation proficiency and the number and type of aromatic surfaces residues of the enzyme?  

HSA binds glucose-based carbohydrates effectively, and the study here shows that both 

HSA and BLA degrade solid starch effectively. To determine whether aromatic residues may be 
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playing a role, structures of amylases were inspected using UCFS Chimera. Phenylalanine and 

tryptophan represent hydrophobic aromatic residues, and tyrosine and histidine represent 

hydrophilic aromatic residues. Many surface hydrophobic residues of PPA are replaced by 

hydrophilic aromatic residues in HSA. The same pattern holds from BAA to BLA. Hydrophilic 

aromatic surface residues seemly favor solid starch as a substrate.  When the starch is liquefied, 

hydrophobic aromatic residues are favored. 

Comparison of human pancreatic α-amylase (HPA) to HAS limits the effect of species 

variation. Although the residue differences are not as substantial as HSA versus PPA, there are 

more hydrophobic aromatic residues on the surface of HPA relative to HSA, a change of an HPA 

tyrosine to a HAS histidine, and an additional tyrosine on HSA. The differences are consistent with 

the correlation of hydrophilic aromatic surfaces residues and proficiency in starch degradation. 

Human Salivary Amylase (HAS) exhibits multiple anomalies. HSA degrades barley, tapioca, and 

rice with unprecedented efficiency in comparison to the other starches and enzymes. HSA action 

on starch from barley approached and surpassed 106 mg/mL (theoretical maximum yield from 100 

mg/mL starch). HSA was slightly better than BLA at digesting wheat and waxy maize, but worse 

than BLA at digesting starches from potato and the maize varieties. Barley and primitive wheat are 

among the oldest of cultivated grains. Starch granules from both barley and wheat have been found 

fossilized in Iranian Neanderthal calculus. Granules are both undamaged (evidence of raw 

consumption) and damaged (evidence of cooking) (Henry, 2011), indicating the consumption of 

raw and cooked grain in the humanoid diet well before the advent of agriculture. Evidently, barley, 

wheat, and related grains were selected for their food (caloric) value by prehistoric humanoids. 

Moreover, HSA may have evolved to bind selectively and degrade the starches from these grains. 

The data here suggest one or more feature of starches from wheat and barley causes proficient 

action by HSA relative to BLA. This feature may have been bred into waxy maize while being 
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absent in maize and amylomaize. The proficient action of HSA on rice is also apparent in the data 

of this thesis; however, direct evidence for rice in the diet of Asiatic hominids has yet to surface. 

Nonetheless, as cultivated rice originated in the orient, it is likely that rice has been in the diet of 

ancient human and pre-human species. The data suggest HSA evolved to degrade minimally 

processed forms of barley, wheat and perhaps rice starch granules, whereas human evolution has 

not adjusted to starch from potatoes, amylomaize, and maize, crops subject to relatively recent 

cultivation. However, there was still a significant amount of time for maize to be bred for the 

human palette. A question is, “Why have maize and potato not been selected for HSA binding 

degradation the same way barley, wheat, and rice have?” It may be due to the processing of maize. 

An alternative explanation for the lack of proficiency in HSA degradation of starch from 

potato and maize may stem by the processing of these grains early on.  In the Americas, maize has 

historically gone through a process called “nixtamalization.” (boiling maize starch in lime water). 

This process avoided malnutrition caused by eating non-nixtamalized maize. Pellegra and 

Kwashiorkor affected Europeans who consumed maize without processing. Although these forms 

of malnutrition are associated with the inability to degrade the hull of the maize, it is known that 

heat and basic water transforms the starch granule into a more liquid form. Potatoes, historically 

were freeze-dried. Freeze drying (in contrast to simply drying) greatly affects the starch granule 

structure and its susceptibility to hydrolysis (Zhang, 2014). In the Andes, where potatoes 

originated, potatoes where left to dry at high altitudes and used as a preserved foodstuff. 

The proficient action of HSA on starch from tapioca, however, stands without a definite 

explanation; however, as a rhizome-based starch, tapioca does not undergo harsh treatment in food 

processing (mashing, washing, and dried as a thinly spread paste or slightly fermented).  Hence, 

starch granules retain their original structure and properties, requiring a proficient enzyme for its 

degradation. 
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The selectivity of BLA for corn starch over HSA was most apparent in amylomaize-7, 

indicating that structures generated by amylopectin provide recognition sites for HSA. This may be 

why waxy maize was similarly digested by both BLA and HSA. 

Unexpected lack of correlations. The lack of correlation between measurable properties of 

starch and proficiency of enzyme action is surprising. Water content, amylose/amylopectin ratios, 

crystallinity, and granule size do not contribute to the hydrolytic susceptibility of the starches. 

Among the maize varieties, there was a dependence on amylose/amylopectin content, but this was 

not a trend for starches investigated here.  The poor performances of the amylases on potato starch, 

which has a similar amylose/amylopectin ratio as maize, showed that other factors play bigger 

roles. The lack of correlation between crystallinity and hydrolytic proficiency is surprising.   

Resistant starches left after hydrolysis are enriched in crystallinity relative to their original state. 

Conceivably, “trimming” effects due to hydrolysis may promote crystallinity, in which case a 

model based on static pools of amorphous and crystalline components will fail.  Another is one of 

experimental reproducibility. In general, BAA was worse at hydrolyzing solid starch relative to 

PPA, which is in conflict with earlier results from the Robyt lab (Yook, 2002). No enzyme 

stabilizing agent (PEG 1500) was added in earlier experiments. As PPA is loses activity over time, 

it is likely that PPA instability gave the appearance of reduced activity on the solid substrate. 

BAA, being a secreted stable enzyme, would retain its activity for the time course of the 

experiment (Yoon, 2005). 
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CHAPTER VI:  FUTURE STEPS AND IMPORTANCE 

That the amylose/amylopectin ratio influences starch synthesis or degradation is unclear.  

Future work should probe multiple species of starch with almost identical amylose/amylopectin 

ratios. The best approach is to treat starch from the same species by breaking the granule into 

smaller pieces, adding lipids that bind to the granule, and sifting the granules into various sizes 

before hydrolysis. Other experiments would include starch from the same species, but exhibiting 

different amylose/amylopectin ratios, and then compares to another species exhibiting different 

amylose/amylopectin ratios. 

The hypothesis that enzymes have evolved to act on specific starches could be addressed 

by examining α-amylase varieties and determining whether the biological/physiological role of 

each enzyme would have it act on solid or liquid starch.  Once completed, the analysis of surface 

residues could provide evidence in support of hydrophobic aromatic residues favoring liquid 

substrates and hydrophilic aromatic residues favoring solid substrates. Confirmation of the latter 

findings would point the way to engineering efficient degradative enzymes for solid substrates. 

This is not limited to starch, but could extend to hemicellulose, cellulase, and lignases 

The efficient degradation of barley, tapioca, rice, and wheat starches by HSA begs the 

question: Is there a special feature common to all of these starches or is there a special attribute of 

HSA not shared by other amylases? Although it appears amylopectin structures are what is 

allowing HSA to have a selective advantage, more testing should be done to verify if that is the 

case. 

 Conclusions.  These results indicate that although enzymes can be standardized to have the 

same activity toward a solubilized substrate, their activities are altered in a way that is not easy to 

predict when acting upon solid granules. BLA and HSA were able to work on the solid substrate 
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with the greatest efficacy. Bacillus licheniformis and the human saliva amylases may have evolved 

to act on solid substrates. If so, surface aromatic resides may be playing a role in recognition of 

solid as opposed to liquid substrates.  



27  

REFERENCES 
Agerholm, J. S., et al. "A preliminary study on the pathogenicity of Bacillus licheniformis bacteria 

in immunodepressed mice." Apmis 105.1‐6 (1997): 48-54. 

Aghajari, Nushin, et al. "Structural basis of α‐amylase activation by chloride." Protein Science 

11.6 (2002): 1435-1441. 

Arena, Adriana, et al. "Antiviral and immunoregulatory effect of a novel exopolysaccharide from a 

marine thermotolerant Bacillus licheniformis." International immunopharmacology 6.1 

(2006): 8-13. 

Asensio, Juan Luis, et al. "Carbohydrate–aromatic interactions." Accounts of chemical research 

46.4 (2012): 946-954. 

Bertoft, Eric. "On the nature of categories of chains in amylopectin and their connection to the 

super helix model." Carbohydrate Polymers 57.2 (2004): 211-224. 

Bird, Anthony R., Ian L. Brown, and David L. Topping. "Starches, resistant starches, the gut 

microflora and human health." Current issues in intestinal microbiology 1.1 (2000): 25-37. 

Blazek, Jaroslav, and Elliot Paul Gilbert. "Application of small-angle X-ray and neutron scattering 

techniques to the characterisation of starch structure: A review." Carbohydrate Polymers 

85.2 (2011): 281-293. 

Breyer, Wendy A., and Brian W. Matthews. "A structural basis for processivity." Protein Science 

10.9 (2001): 1699-1711. 

Brown, Ian, et al. "Fecal numbers of bifidobacteria are higher in pigs fed Bifidobacterium longum 

with a high amylose cornstarch than with a low amylose cornstarch." The Journal of 

nutrition 127.9 (1997): 1822-1827. 

Buléon, A., et al. "Starch granules: structure and biosynthesis." International journal of biological 

macromolecules 23.2 (1998): 85-112. 

Bulpin, P. V., E. J. Welsh, and E. R. Morris. "Physical Characterization of Amylose‐Fatty Acid 

Complexes in Starch Granules and in Solution." Starch‐Stärke 34.10 (1982): 335-339. 

Burtt Jr, Edward H., and Jann M. Ichida. "Occurrence of feather-degrading bacilli in the plumage 

of birds." The Auk (1999): 364-372. 

Burtt, Edward H., et al. "Colourful parrot feathers resist bacterial degradation." Biology letters 

(2010): rsbl20100716. 

Callender, Robert, and R. Brian Dyer. "The dynamical nature of enzymatic catalysis." Accounts of 

chemical research 48.2 (2014): 407-413. 

Chen, Mo, et al. "Molecular dynamics simulations of the interaction of glucose with imidazole in 

aqueous solution." Carbohydrate research 349 (2012): 73-77. 



28  

Corzana, Francisco, et al. "Hydration of the amylopectin branch point. Evidence of restricted 

conformational diversity of the α-(1→ 6) linkage." Journal of the American Chemical 

Society 126.40 (2004): 13144-13155. 

FAO, and WHO Expert Consultation. "Carbohydrates in human nutrition (FAO Food and 

Nutrition Paper 66)." Rome, Italy: FAO (1998). 

Fox, Jeffrey D., and John F. Robyt. "Miniaturization of three carbohydrate analyses using a 

microsample plate reader." Analytical biochemistry 195.1 (1991): 93-96. 

Fukumoto, J. "Studies on the production of bacterial amylase. I. Isolation of bacteria secreting 

potent amylases and their distribution." J. Agr. Chem. Soc. Japan 19 (1943): 487-503. 

Gessler, Katrin, et al. "V-Amylose at atomic resolution: X-ray structure of a cycloamylose with 26 

glucose residues (cyclomaltohexaicosaose)." Proceedings of the National Academy of 

Sciences 96.8 (1999): 4246-4251. 

Ghollasi, Marzieh, Maryam Ghanbari-Safari, and Khosro Khajeh. "Improvement of thermal 

stability of a mutagenised α-amylase by manipulation of the calcium-binding site." Enzyme 

and microbial technology 53.6 (2013): 406-413. 

Ghosh, Hara Prasad, and Jack Preiss. "Adenosine diphosphate glucose pyrophosphorylase a 

regulatory enzyme in the biosynthesis of starch in spinach leaf chloroplasts." Journal of 

Biological Chemistry 241.19 (1966): 4491-4504. 

Gidley, Michael J., and Paul V. Bulpin. "Crystallisation of malto-oligosaccharides as models of the 

crystalline forms of starch: minimum chain-length requirement for the formation of double 

helices." Carbohydrate Research 161.2 (1987): 291-300. 

Haydushka, Irina A., et al. "Recurrent sepsis due to Bacillus licheniformis." Journal of global 

infectious diseases 4.1 (2012): 82. 

Henry, Amanda G., Alison S. Brooks, and Dolores R. Piperno. "Microfossils in calculus 

demonstrate consumption of plants and cooked foods in Neanderthal diets (Shanidar III, 

Iraq; Spy I and II, Belgium)." Proceedings of the National Academy of Sciences 108.2 

(2011): 486-491. 

Humphrey, Sue P., and Russell T. Williamson. "A review of saliva: normal composition, flow, and 

function." The Journal of prosthetic dentistry 85.2 (2001): 162-169. 

Jane, Jay‐Lin, et al. "Anthology of starch granule morphology by scanning electron microscopy." 

Starch‐Stärke 46.4 (1994): 121-129. 

Jordan, Torsten, et al. "Molten imidazole–a starch solvent." Green Chemistry 16.4 (2014): 1967-

1973. 



29  

Kierul, Kinga. Comprehensive proteomic study of Bacillus amyloliquefaciens strain FZB42 and its 

response to plant root exudates. Diss. Humboldt-Universität zu Berlin, Mathematisch-

Naturwissenschaftliche Fakultät I, 2013. 

Kimura, Atsuo, and John F. Robyt. "Reaction of enzymes with starch granules: kinetics and 

products of the reaction with glucoamylase." Carbohydrate Research 277.1 (1995): 87-107. 

Krause, Johannes, et al. "Neanderthals in central Asia and Siberia." Nature 449.7164 (2007): 902-

904. 

Kumari, Manju, Raghavan B. Sunoj, and Petety V. Balaji. "Exploration of CH⋯ π mediated 

stacking interactions in saccharide: aromatic residue complexes through conformational 

sampling." Carbohydrate research 361 (2012): 133-140. 

Kuriki, Takashi, and Tadayuki Imanaka. "The concept of the α-amylase family: structural 

similarity and common catalytic mechanism." Journal of Bioscience and Bioengineering 

87.5 (1999): 557-565. 

Lindeboom, Nienke, Peter R. Chang, and Robert T. Tyler. "Analytical, biochemical and 

physicochemical aspects of starch granule size, with emphasis on small granule starches: a 

review." Starch‐Stärke 56.3‐4 (2004): 89-99. 

Liu, Yunpeng, et al. "Enhanced rhizosphere colonization of beneficial Bacillus amyloliquefaciens 

SQR9 by pathogen infection." FEMS microbiology letters 353.1 (2014): 49-56. 

Mandal, Mahitosh, et al. "Butyric acid induces apoptosis by up-regulating Bax expression via 

stimulation of the c-Jun N-terminal kinase/activation protein-1 pathway in human colon 

cancer cells." Gastroenterology 120.1 (2001): 71-78. 

Marx, Jean‐Claude, et al. "The noncatalytic triad of α‐amylases: A novel structural motif involved 

in conformational stability." Proteins: Structure, Function, and Bioinformatics 70.2 (2008): 

320-328. 

Matsui, Ikuo, et al. "Roles of the aromatic residues conserved in the active center of 

Saccharomycopsis. alpha.-amylase for transglycosylation and hydrolysis activity." 

Biochemistry 33.2 (1994): 451-458. 

Mishra, Prasunkumar J., Chandran Ragunath, and Narayanan Ramasubbu. "The mechanism of 

salivary amylase hydrolysis: role of residues at subsite S2′." Biochemical and biophysical 

research communications 292.2 (2002): 468-473. 

Mostofian, Barmak, Jeremy C. Smith, and Xiaolin Cheng. "Simulation of a cellulose fiber in ionic 

liquid suggests a synergistic approach to dissolution." Cellulose 21.2 (2014): 983-997. 

Mottram, Donald S., Bronislaw L. Wedzicha, and Andrew T. Dodson. "Food chemistry: 

acrylamide is formed in the Maillard reaction." Nature 419.6906 (2002): 448-449. 



30  

Mukerjea, Rupendra, and John F. Robyt. "De novo biosynthesis of starch chains without a primer 

and the mechanism for its biosynthesis by potato starch-synthase." Carbohydrate research 

352 (2012): 137-142. 

Mukerjea, Rupendra, and John F. Robyt. "Tests for the mechanism of starch biosynthesis: de novo 

synthesis or an amylogenin primer synthesis." Carbohydrate research 372 (2013): 55-59. 

Pérez, Serge, and Eric Bertoft. "The molecular structures of starch components and their 

contribution to the architecture of starch granules: A comprehensive review." Starch‐Stärke 

62.8 (2010): 389-420. 

Pinto, Gaspar P., et al. "Establishing the Catalytic Mechanism of Human Pancreatic α-Amylase 

with QM/MM Methods." Journal of chemical theory and computation 11.6 (2015): 2508-

2516. 

Ramasubbu, Narayanan, Chandran Ragunath, and Prasunkumar J. Mishra. "Probing the role of a 

mobile loop in substrate binding and enzyme activity of human salivary amylase." Journal 

of molecular biology 325.5 (2003): 1061-1076. 

Rathore, R. S., et al. "Starch phosphorylase: role in starch metabolism and biotechnological 

applications." Critical reviews in biotechnology 29.3 (2009): 214-224. 

Rosenblum, JERRY L., CARL L. Irwin, and DAVID H. Alpers. "Starch and glucose 

oligosaccharides protect salivary-type amylase activity at acid pH." American Journal of 

Physiology-Gastrointestinal and Liver Physiology 254.5 (1988): G775-G780. 

Sandstedt, Rudolph M., et al. "The digestibility of high-amylose corn starches compared to that of 

other starches. The apparent effect of the ae gene on susceptibility to amylase action." 

Cereal Chem 39 (1962): 123-131. 

Sarko, A., and H‐CH Wu. "The Crystal Structures of A‐, B‐and C‐Polymorphs of Amylose and 

Starch." Starch‐Stärke 30.3 (1978): 73-78. 

Scannapieco, Frank A., G. I. Torres, and M. J. Levine. "Salivary amylase promotes adhesion of 

oral streptococci to hydroxyapatite." Journal of dental research 74.7 (1995): 1360-1366. 

Schulz, AGl, J. M. Van Amelsvoort, and A. C. Beynen. "Dietary native resistant starch but not 

retrograded resistant starch raises magnesium and calcium absorption in rats." The Journal 

of nutrition 123.10 (1993): 1724-1731. 

Sellami-Kamoun, Alya, et al. "Stability of thermostable alkaline protease from Bacillus 

licheniformis RP1 in commercial solid laundry detergent formulations." Microbiological 

Research 163.3 (2008): 299-306. 

Shou, Takashima, and Amano Junko. "Glycosylation and secretion of human α-amylases." 

Advances in Biological Chemistry 2012 (2012). 



31  

Svensson, Birte. "Protein engineering in the α-amylase family: catalytic mechanism, substrate 

specificity, and stability." Plant molecular biology 25.2 (1994): 141-157. 

Swatloski, Richard P., et al. "Dissolution of cellulose with ionic liquids." Journal of the American 

Chemical Society 124.18 (2002): 4974-4975. 

Topping, David L., et al. "A high amylose (amylomaize) starch raises proximal large bowel starch 

and increases colon length in pigs." The Journal of nutrition 127.4 (1997): 615-622. 

Van Immerseel, Filip, et al. "Butyric acid-producing anaerobic bacteria as a novel probiotic 

treatment approach for inflammatory bowel disease." Journal of medical microbiology 59.2 

(2010): 141-143. 

Vistoli, G., et al. "Advanced glycoxidation and lipoxidation end products (AGEs and ALEs): an 

overview of their mechanisms of formation." Free radical research 47.sup1 (2013): 3-27. 

Wall, Jeffrey D., et al. "Higher levels of Neanderthal ancestry in East Asians than in Europeans." 

Genetics 194.1 (2013): 199-209. 

Wang, Shujun, et al. "Starch Retrogradation: A Comprehensive Review." Comprehensive Reviews 

in Food Science and Food Safety 14.5 (2015): 568-585. 

Winter, William T., and A. Sarko. "Crystal and molecular structure of V‐anhydrous amylose." 

Biopolymers 13.7 (1974): 1447-1460. 

Yook, Cheol, and John F. Robyt. "Reactions of alpha amylases with starch granules in aqueous 

suspension giving products in solution and in a minimum amount of water giving products 

inside the granule." Carbohydrate research 337.12 (2002): 1113-1117. 

Yoon, Seung-Heon, and John F. Robyt. "Activation and stabilization of 10 starch-degrading 

enzymes by Triton X-100, polyethylene glycols, and polyvinyl alcohols." Enzyme and 

Microbial Technology 37.5 (2005): 556-562. 

Zhang, Bin, et al. "Freeze-drying changes the structure and digestibility of B-polymorphic 

starches." Journal of agricultural and food chemistry 62.7 (2014): 1482-1491. 

  



32  

APPENDIX A: TOTAL CARBOHYDRATE GRAPHS  

0

5

10

15

20

25

0 10 20 30 40

Bacillus licheniformis treatment 
on Potato Starch 

0

10

20

30

40

50

60

70

80

90

100

0 10 20 30 40

Bacillus licheniformis treatment 
on Waxy Maize Starch 

0

10

20

30

40

50

60

70

80

0 10 20 30 40

Bacillus licheniformis treatment 
on Maize Starch 

0

5

10

15

20

25

30

35

40

45

0 10 20 30 40

Bacillus licheniformis reatment 
on Amylomaize-7 Starch 

Total carbohydrate values of the supernatant are plotted against time in hours. The total 

carbohydrate values are in mg of maltose-equivalents that were present in the 2 ml aliquots. 

The three enzyme concentrations of 0.1, 1.0, and 10.0 IU/ml are presented on each graph. 
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carbohydrate values are in mg of maltose-equivalents that were present in the 2 ml aliquots. 

The three enzyme concentrations of 0.1, 1.0, and 10.0 IU/ml are presented on each graph. 
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carbohydrate values are in mg of maltose-equivalents that were present in the 2 ml aliquots. 

The three enzyme concentrations of 0.1, 1.0, and 10.0 IU/ml are presented on each graph. 
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Curve fits for the total carbohydrate values are described by 106 𝑚𝑔 ∗ (𝑅 ∗ 𝑒𝐴𝑟𝑔∗𝑡 +
(1 − 𝑅) ∗ 𝑒0.5𝑡) with R, and Arg being parameters. Rationale for having two exponential decays 

for the curve fitting is due to single decay curves not fitting the data well. The presence of a 

quickly-degrading component is the rational for the 𝑒0.5𝑡 term. R denotes the ratio between the 

quickly degrading starches and the slowly degrading starches. A table with these arguments is 

presented below. 

 

 BLA        

 R values       

 Potato Waxymaize Maize Amylomaize-7 Rice Wheat Barley Tapioca 

0.1 IU/ml 0.979 0.937 0.943 0.977 0.851 0.958 0.980 0.960 

1.0 IU/ml 0.967 0.812 0.855 0.942 0.777 0.912 0.934 0.849 

10.0 IU/ml 0.959 0.731 0.698 0.897 0.700 0.804 0.836 0.795 

 Arg values (in hours-1)      

0.1 IU/ml 0.0012 0.0074 0.0061 0.0021 0.0031 0.0041 0.0051 0.0040 

1.0 IU/ml 0.0019 0.0220 0.0108 0.0031 0.0082 0.0100 0.0122 0.0131 

10.0 IU/ml 0.0048 0.0389 0.0192 0.0093 0.0207 0.0282 0.0310 0.0243 

         

         

  

 PPA        

 R values       

 Potato Waxymaize Maize Amylomaize-7 Rice Wheat Barley Tapioca 

0.1 IU/ml 0.983 0.940 0.943 0.987 0.858 0.977 0.969 0.968 

1.0 IU/ml 0.969 0.743 0.867 0.963 0.784 0.891 0.902 0.871 

10.0 IU/ml 0.968 0.697 0.754 0.909 0.647 0.793 0.734 0.724 

 Arg values (in hours-1)      

0.1 IU/ml 0.0007 0.0097 0.0054 0.0017 0.0037 0.0016 0.0035 0.0038 

1.0 IU/ml 0.0016 0.0182 0.0105 0.0028 0.0066 0.0087 0.0073 0.0063 

10.0 IU/ml 0.0038 0.0287 0.0166 0.0054 0.0153 0.0176 0.0131 0.0295 

  

Scale 
R 1.0 0.9 0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1 0.0 

Arg 0.50 0.40 0.30 0.20 0.10 0.05 0.04 0.03 0.02 0.01 0.00 

 

A quickly degrading portion and a slowly degrading portion are considered in the curve 

fitting. The curve fitting is in the form 106 𝑚𝑔 ∗ (𝑅 ∗ 𝑒𝐴𝑟𝑔∗𝑡 + (1 − 𝑅) ∗ 𝑒0.5𝑡). The 

variable t is the time is hours, R is a ratio of the slow to fast degrading component, and 

Arg is the decay rate of the slowly degrading portion of the starch.  
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 HSA         

 R values       

 Potato Waxymaize Maize Amylomaize-7 Rice Wheat Barley Tapioca 

0.1 IU/ml 0.986 0.950 0.965 0.982 0.822 0.961 0.960 0.950 

1.0 IU/ml 0.973 0.792 0.843 0.944 0.657 0.813 0.832 0.750 

10.0 IU/ml 0.951 0.468 0.725 0.896 0.449 0.633 0.633 0.490 

 Arg values (in hours-1)      

0.1 IU/ml 0.0009 0.0102 0.0070 0.0017 0.0066 0.0014 0.0084 0.0105 

1.0 IU/ml 0.0020 0.0297 0.0104 0.0026 0.0109 0.0087 0.0138 0.0210 

10.0 IU/ml 0.0044 0.0273 0.0184 0.0052 0.0270 0.0224 0.1792 0.0540 

         

         

 BAA        

 R values       

 Potato Waxymaize Maize Amylomaize-7 Rice Wheat Barley Tapioca 

0.1 IU/ml 0.990 0.965 0.975 0.988 0.906 0.998 0.999 0.993 

1.0 IU/ml 0.983 0.946 0.944 0.982 0.862 0.997 0.995 0.978 

10.0 IU/ml 0.980 0.821 0.893 0.971 0.817 0.930 0.954 0.962 

 Arg values (in hours-1)      

0.1 IU/ml 0.0001 0.0013 0.0018 0.0004 0.0016 0.0012 0.0009 0.0009 

1.0 IU/ml 0.0002 0.0051 0.0045 0.0012 0.0023 0.0043 0.0032 0.0030 

10.0 IU/ml 0.0008 0.0133 0.0093 0.0023 0.0055 0.0054 0.0054 0.0082 

  

Scale 
R 1.00 0.90 0.80 0.70 0.60 0.50 0.40 0.30 0.20 0.10 0.00 

Arg 0.50 0.40 0.30 0.20 0.10 0.05 0.04 0.03 0.02 0.01 0.00 

 

A quickly degrading portion and a slowly degrading portion are considered in the curve 

fitting. The curve fitting is in the form 106 𝑚𝑔 ∗ (𝑅 ∗ 𝑒𝐴𝑟𝑔∗𝑡 + (1 − 𝑅) ∗ 𝑒0.5𝑡). The 

variable t is the time is hours, R is a ratio of the slow to fast degrading component, and 

Arg is the decay rate of the slowly degrading portion of the starch.  
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Bacillus licheniformis 

 Potato Waxy Maize Maize Amylomaize-7 Rice Wheat Barley Tapioca 

0.1 IU/ml 0.18 0.51 0.68 0.42 1.11 0.68 0.77 1.16 

1.0 IU/ml 0.40 2.29 1.44 0.48 2.27 1.30 2.10 2.54 

10.0 IU/ml 0.58 1.70 2.16 1.59 3.10 3.76 4.66 4.06 

Porcine pancreas 

 Potato Waxy Maize Maize Amylomaize-7 Rice Wheat Barley Tapioca 

0.1 IU/ml 0.24 1.52 2.66 0.29 1.14 0.29 0.66 0.75 

1.0 IU/ml 0.24 2.57 3.38 0.70 2.84 1.87 0.85 1.94 

10.0 IU/ml 0.87 1.51 1.27 0.56 3.41 1.00 4.14 3.01 

Human Saliva 

 Potato Waxy Maize Maize Amylomaize-7 Rice Wheat Barley Tapioca 

0.1 IU/ml 0.13 1.67 1.35 0.32 1.51 0.24 0.67 1.56 

1.0 IU/ml 0.19 4.12 2.25 0.75 4.07 1.70 2.86 3.91 

10.0 IU/ml 0.85 3.51 3.61 0.96 7.88 2.87 6.66 2.09 

Bacillus amyloliquefaciens 

 Potato Waxy Maize Maize Amylomaize-7 Rice Wheat Barley Tapioca 

0.1 IU/ml 0.04 0.32 0.25 0.11 1.35 0.15 0.08 0.13 

1.0 IU/ml 0.13 0.53 0.48 0.09 1.57 0.64 0.39 0.51 

10.0 IU/ml 0.18 1.66 1.37 0.23 2.37 1.39 1.22 1.21 
 

         

 

The above table includes the square root errors in the calculations of the curve fits. The 

tabulated data is in units of mg. 
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 Bacillus licheniformis   Bacillus licheniformis 

 Potato Total Carbohydrate   

Waxy Maize Total 
Carbohydrate 

Hours 
0.1 

IU/ml 
1 

IU/ml 
10 

IU/ml   Hours 0.1 IU/ml 
1 

IU/ml 
10 

IU/ml 

1 1.00 2.32 2.70  1 3.46 9.73 14.41 

2 1.65 2.55 4.08  2 5.10 14.25 23.31 

4 2.29 3.32 4.99  4 8.15 23.11 33.57 

8 3.13 5.01 8.80  8 12.78 34.55 50.50 

16 4.57 6.53 11.18  16 18.24 49.84 66.41 

24 5.00 8.48 15.28  24 23.28 53.49 75.49 

36 6.57 10.19 20.85  36 29.40 65.64 84.70 

 

 

 Bacillus licheniformis   Bacillus licheniformis 

 Maize Total Carbohydrate   

Amylomaize-7 Total 
Carbohydrate 

Hours 
0.1 

IU/ml 
1 

IU/ml 
10 

IU/ml   Hours 0.1 IU/ml 1 IU/ml 10 IU/ml 

1 3.03 7.31 16.11  1 1.19 2.71 5.37 

2 4.85 12.00 21.42  2 1.89 4.04 7.79 

4 7.86 16.92 30.59  4 2.69 6.15 11.25 

8 10.78 23.02 42.72  8 4.14 9.13 17.74 

16 14.26 27.43 54.11  16 5.41 10.82 27.17 

24 20.84 38.53 60.43  24 8.20 14.02 29.54 

36 25.35 43.78 66.45  36 9.35 16.40 36.65 

 

 

 Bacillus licheniformis   Bacillus licheniformis 

 Rice Total Carbohydrate   Wheat Total Carbohydrate 

Hours 
0.1 

IU/ml 
1 

IU/ml 
10 

IU/ml   Hours 
0.1 

IU/ml 
1 

IU/ml 
10 

IU/ml 

1 7.93 14.50 18.95  1 1.65 4.13 8.90 

2 11.36 17.55 25.06  2 3.11 7.30 15.46 

4 13.31 20.83 33.87  4 4.90 11.02 23.09 

8 16.98 27.27 39.75  8 7.99 16.29 42.26 

16 20.82 33.07 50.12  16 11.83 25.31 56.13 

24 23.26 39.70 59.21  24 14.60 31.56 62.92 

36 24.57 44.24 74.30  36 17.68 36.70 70.69 

 

  

Total carbohydrate values of the supernatant are plotted against time in hours. The total 

carbohydrate values are in mg of maltose-equivalents that were present in the 2 ml aliquots. 

The three enzyme concentrations of 0.1, 1.0, and 10.0 IU/ml are presented on each graph. 
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 Bacillus licheniformis   Bacillus licheniformis 

 Barley Total Carbohydrate   Tapioca Total Carbohydrate 

Hours 
0.1 

IU/ml 
1 

IU/ml 
10 

IU/ml   Hours 
0.1 

IU/ml 
1 

IU/ml 
10 

IU/ml 

1 1.46 2.80 4.34  1 1.78 5.56 9.09 

2 2.30 4.65 11.64  2 2.77 10.05 14.98 

4 3.52 9.84 26.02  4 4.54 16.44 25.49 

8 6.35 17.20 41.32  8 6.95 27.52 35.98 

16 9.81 26.28 52.63  16 11.90 34.94 55.05 

24 15.66 34.67 68.15  24 14.94 42.26 61.99 

36 18.73 39.22 70.66  36 16.13 46.73 64.50 

 

 Porcine Pancreas    Porcine Pancreas  

 Potato Total Carbohydrate   

Waxy Maize Total 
Carbohydrate 

Hours 0.1 IU/ml 
1 

IU/ml 
10 

IU/ml   Hours 0.1 IU/ml 
1 

IU/ml 
10 

IU/ml 

1 0.68 1.64 1.67  1 0.45 3.34 9.97 

2 1.02 2.30 2.36  2 1.00 4.95 19.15 

4 1.79 3.33 4.11  4 2.04 8.43 26.41 

8 2.31 4.92 5.89  8 2.54 13.54 40.29 

16 3.45 5.50 11.15  16 4.47 21.98 48.88 

24 3.72 7.09 12.59  24 6.21 29.30 57.35 

36 4.28 8.98 15.61  36 8.25 33.39 61.83 
 
         

 Porcine Pancreas    Porcine Pancreas  

 Maize Total Carbohydrate   

Amylomaize-7 Total 
Carbohydrate 

Hours 0.1 IU/ml 
1 

IU/ml 
10 

IU/ml   Hours 0.1 IU/ml 1 IU/ml 10 IU/ml 

1 1.09 4.13 10.67  1 0.25 0.72 1.66 

2 2.61 7.50 18.50  2 0.43 1.07 2.76 

4 4.89 14.83 27.11  4 0.61 1.49 4.11 

8 12.39 22.02 36.31  8 0.89 2.86 5.63 

16 16.68 32.94 46.85  16 1.27 4.25 9.41 

24 20.69 37.40 50.59  24 1.43 5.83 11.25 

36 20.38 38.49 29.96  36 1.67 7.05 12.72 

 

  

Total carbohydrate values of the supernatant are plotted against time in hours. The total 

carbohydrate values are in mg of maltose-equivalents that were present in the 2 ml aliquots. 

The three enzyme concentrations of 0.1, 1.0, and 10.0 IU/ml are presented on each graph. Note 

how PPA acting upon Maize at 10.0 IU/ml on the 36 H time point is erroneous. 
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 Porcine Pancreas    Porcine Pancreas  

 Rice Total Carbohydrate   Wheat Total Carbohydrate 

Hours 0.1 IU/ml 
1 

IU/ml 
10 

IU/ml   Hours 0.1 IU/ml 
1 

IU/ml 
10 

IU/ml 

1 2.32 8.33 14.65  1 0.19 1.12 5.85 

2 3.42 10.17 17.39  2 0.28 1.77 8.50 

4 4.43 12.82 19.89  4 0.28 2.55 11.42 

8 7.19 18.07 26.80  8 0.36 4.28 17.02 

16 8.78 20.84 30.35  16 0.71 5.02 26.36 

24 11.38 22.24 32.38  24 1.05 6.10 31.47 

36 13.76 26.76 43.11  36 2.43 8.54 34.50 

 

 Porcine Pancreas    Porcine Pancreas  

 Barley Total Carbohydrate   Tapioca Total Carbohydrate 

Hours 0.1 IU/ml 
1 

IU/ml 
10 

IU/ml   Hours 0.1 IU/ml 
1 

IU/ml 
10 

IU/ml 

1 0.25 1.46 4.96  1 0.30 1.47 5.07 

2 0.50 2.61 7.35  2 0.42 2.19 7.85 

4 1.12 4.13 10.51  4 0.85 4.11 12.69 

8 1.64 5.70 16.58  8 1.34 6.36 18.81 

16 3.12 9.51 21.63  16 2.13 10.52 26.00 

24 4.46 12.74 26.47  24 2.43 13.11 26.74 

36 5.77 14.67 31.74  36 2.98 15.58 30.68 

 

 Human Saliva    Human Saliva  

 Potato Total Carbohydrate   

Waxy Maize Total 
Carbohydrate 

TC 0.1 IU 1 IU 10 IU   Hours 0.1 IU/ml 
1 

IU/ml 
10 

IU/ml 

1 0.55 1.20 1.97  1 2.12 6.31 19.70 

2 1.20 1.95 3.49  2 3.42 16.09 36.36 

4 1.53 3.27 5.69  4 7.46 26.84 51.51 

8 2.37 4.67 9.33  8 14.79 44.99 69.15 

16 3.09 6.12 12.33  16 22.62 54.50 77.60 

24 3.99 7.85 16.54  24 27.88 68.00 81.12 

36 4.88 9.80 18.89  36 34.65 72.01 83.08 

 

  

Total carbohydrate values of the supernatant are plotted against time in hours. The total 

carbohydrate values are in mg of maltose-equivalents that were present in the 2 ml aliquots. 

The three enzyme concentrations of 0.1, 1.0, and 10.0 IU/ml are presented on each graph. 
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 Human Saliva    Human Saliva  

 Maize Total Carbohydrate   

Amylomaize-7 Total 
Carbohydrate 

Hours 0.1 IU/ml 
1 

IU/ml 
10 

IU/ml   Hours 0.1 IU/ml 1 IU/ml 10 IU/ml 

1 0.71 3.84 10.30  1 0.74 1.95 4.22 

2 2.95 10.78 20.61  2 1.42 3.56 6.93 

4 5.29 17.15 27.47  4 1.87 5.71 11.17 

8 10.14 26.06 42.15  8 3.57 8.15 14.96 

16 15.37 31.88 49.50  16 5.09 11.13 20.23 

24 21.40 37.30 61.61  24 6.25 12.47 22.81 

36 24.90 42.58 61.29  36 7.83 14.05 26.30 

 

 Human Saliva    Human Saliva  

 Rice Total Carbohydrate   Wheat Total Carbohydrate 

Hours 0.1 IU/ml 
1 

IU/ml 
10 

IU/ml   Hours 0.1 IU/ml 
1 

IU/ml 
10 

IU/ml 

1 9.80 23.38 38.48  1 2.14 10.27 17.77 

2 12.57 26.68 46.10  2 3.11 14.32 26.05 

4 16.56 30.58 52.45  4 3.76 18.38 37.74 

8 22.94 39.21 58.05  8 5.20 24.27 48.54 

16 29.86 46.82 70.50  16 6.51 32.02 62.42 

24 31.87 54.55 83.80  24 7.64 38.54 70.17 

36 36.32 58.62 91.89  36 9.17 41.17 71.48 

 

 Human Saliva    Human Saliva  

 Barley Total Carbohydrate   Tapioca Total Carbohydrate 

Hours 0.1 IU/ml 
1 

IU/ml 
10 

IU/ml   Hours 0.1 IU/ml 
1 

IU/ml 
10 

IU/ml 

1 2.45 7.65 28.49  1 2.24 9.28 26.91 

2 4.52 11.95 46.19  2 4.31 17.90 41.85 

4 6.27 17.57 67.13  4 8.21 25.57 54.16 

8 10.61 27.38 84.97  8 13.25 42.30 69.66 

16 17.39 39.80 105.04  16 23.03 53.62 84.84 

24 23.82 44.60 113.91  24 29.43 60.02 92.98 

36 29.81 48.53 118.32  36 34.82 63.63 97.96 
         

 

  

Total carbohydrate values of the supernatant are plotted against time in hours. The total 

carbohydrate values are in mg of maltose-equivalents that were present in the 2 ml aliquots. 

The three enzyme concentrations of 0.1, 1.0, and 10.0 IU/ml are presented on each graph. Note 

how HSA acting upon barley exceeds 106 mg in the final two time points. 



47  

 

 Bacillus amyloliquefaciens   Bacillus amyloliquefaciens 

 Potato Total Carbohydrate   

Waxy Maize Total 
Carbohydrate 

Hours 
0.1 

IU/ml 
1 

IU/ml 
10 

IU/ml   Hours 0.1 IU/ml 
1 

IU/ml 
10 

IU/ml 

1 0.50 0.98 1.29  1 1.96 3.38 7.96 

2 0.67 1.17 1.56  2 2.80 4.48 11.31 

4 0.96 1.47 2.08  4 3.46 6.39 22.51 

8 1.05 1.94 2.75  8 4.68 9.57 27.22 

16 1.21 2.26 3.33  16 6.07 14.48 37.25 

24 1.22 2.42 3.98  24 6.35 17.59 43.45 

36 1.32 2.66 5.18  36 8.55 22.29 50.79 

 

 Bacillus amyloliquefaciens   Bacillus amyloliquefaciens 

 Maize Total Carbohydrate   

Amylomaize-7 Total 
Carbohydrate 

Hours 
0.1 

IU/ml 
1 

IU/ml 
10 

IU/ml   Hours 0.1 IU/ml 1 IU/ml 10 IU/ml 

1 1.51 2.94 5.95  1 0.67 1.02 1.52 

2 1.96 4.06 8.09  2 0.83 1.38 2.28 

4 2.90 6.74 11.35  4 1.14 2.15 3.28 

8 3.97 9.27 19.82  8 1.54 2.88 5.27 

16 5.35 13.43 24.40  16 2.04 4.08 6.94 

24 7.36 16.72 31.63  24 2.31 4.96 8.50 

36 8.81 20.28 37.25  36 2.60 6.36 11.12 

 

 Bacillus amyloliquefaciens   Bacillus amyloliquefaciens 

 Rice Total Carbohydrate   Wheat Total Carbohydrate 

Hours 
0.1 

IU/ml 
1 

IU/ml 
10 

IU/ml   Hours 
0.1 

IU/ml 
1 

IU/ml 
10 

IU/ml 

1 6.71 8.99 12.48  1 0.16 1.12 4.45 

2 7.79 10.88 14.23  2 0.43 1.22 4.93 

4 8.59 11.76 16.59  4 0.64 2.44 7.08 

8 9.77 15.49 21.33  8 1.44 3.87 11.02 

16 11.80 17.30 26.18  16 2.02 6.71 17.70 

24 14.10 20.23 32.56  24 3.45 9.64 20.29 

36 15.60 21.97 33.99  36 4.77 16.22 23.26 

 

  

Total carbohydrate values of the supernatant are plotted against time in hours. The total 

carbohydrate values are in mg of maltose-equivalents that were present in the 2 ml aliquots. 

The three enzyme concentrations of 0.1, 1.0, and 10.0 IU/ml are presented on each graph. Note 

how HSA acting upon barley exceeds 106 mg in the final two time points. 
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 Bacillus amyloliquefaciens   Bacillus amyloliquefaciens 

 Barley Total Carbohydrate   Tapioca Total Carbohydrate 

Hours 
0.1 

IU/ml 
1 

IU/ml 
10 

IU/ml   Hours 
0.1 

IU/ml 
1 

IU/ml 
10 

IU/ml 

1 0.32 0.56 1.25  1 0.52 1.27 1.72 

2 0.29 1.06 3.24  2 0.66 1.71 3.49 

4 0.48 1.67 5.87  4 0.98 2.98 5.75 

8 0.84 3.32 9.49  8 1.40 4.55 12.03 

16 1.62 5.42 14.73  16 2.04 7.28 15.86 

24 2.50 9.15 18.59  24 3.17 10.33 23.72 

36 3.56 11.77 21.35  36 4.05 12.07 28.87 

Total carbohydrate values of the supernatant are presented against time in hours. The total 

carbohydrate values are in mg of maltose-equivalents that were present in the 2 ml aliquots. 

The three enzyme concentrations of 0.1, 1.0, and 10.0 IU/ml are presented on each table. 
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APPENDIX B: REDUCING VALUE GRAPHS 
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These reducing value graphs plot the maltose-equivalents of reducing value in units of mg. The 

x-axis is in units of hours. The equations used to smooth the data is in the form [𝑃]𝑚𝑎𝑥(1 −
𝑒𝐴𝑟𝑔∗𝑡) with [P]max and Arg as parameters. These parameters and their associated errors are at 

the end of this Appendix 
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These reducing value graphs plot the maltose-equivalents of reducing value in units of mg. The 

x-axis is in units of hours. The equations used to smooth the data is in the form [𝑃]𝑚𝑎𝑥(1 −
𝑒𝐴𝑟𝑔∗𝑡) with [P]max and Arg as parameters. These parameters and their associated errors are at 

the end of this Appendix 
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These reducing value graphs plot the maltose-equivalents of reducing value in units of mg. The 

x-axis is in units of hours. The equations used to smooth the data is in the form [𝑃]𝑚𝑎𝑥(1 −
𝑒𝐴𝑟𝑔∗𝑡) with [P]max and Arg as parameters. These parameters and their associated errors are at 

the end of this Appendix. Only 0.1 IU/ml and 1.0 IU/ml are available for maize and 

amylomaize. 
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These reducing value graphs plot the maltose-equivalents of reducing value in units of mg. The 

x-axis is in units of hours. The equations used to smooth the data is in the form [𝑃]𝑚𝑎𝑥(1 −
𝑒𝐴𝑟𝑔∗𝑡) with [P]max and Arg as parameters. These parameters and their associated errors are at 

the end of this Appendix. Only 0.1 IU/ml and 1.0 IU/ml are available for this specific 

combination. 
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These reducing value graphs plot the maltose-equivalents of reducing value in units of mg. The 

x-axis is in units of hours. The equations used to smooth the data is in the form [𝑃]𝑚𝑎𝑥(1 −
𝑒𝐴𝑟𝑔∗𝑡) with [P]max and Arg as parameters. These parameters and their associated errors are at 

the end of this Appendix 
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These reducing value graphs plot the maltose-equivalents of reducing value in units of mg. The 

x-axis is in units of hours. The equations used to smooth the data is in the form [𝑃]𝑚𝑎𝑥(1 −
𝑒𝐴𝑟𝑔∗𝑡) with [P]max and Arg as parameters. These parameters and their associated errors are at 

the end of this Appendix 
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These reducing value graphs plot the maltose-equivalents of reducing value in units of mg. The 

x-axis is in units of hours. The equations used to smooth the data is in the form [𝑃]𝑚𝑎𝑥(1 −
𝑒𝐴𝑟𝑔∗𝑡) with [P]max and Arg as parameters. These parameters and their associated errors are at 

the end of this Appendix 
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These reducing value graphs plot the maltose-equivalents of reducing value in units of mg. The 

x-axis is in units of hours. The equations used to smooth the data is in the form [𝑃]𝑚𝑎𝑥(1 −
𝑒𝐴𝑟𝑔∗𝑡) with [P]max and Arg as parameters. These parameters and their associated errors are at 

the end of this Appendix 
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 Bacillus licheniformis   Bacillus licheniformis 

 Potato Reducing Values   Waxy Maize Reducing Values 

Hours 0.1 IU/ml 
1 

IU/ml 10 IU/ml   Hours 0.1 IU/ml 
1 

IU/ml 10 IU/ml 

1 0.44 0.83 1.59  1 0.95 2.88 6.82 

2 0.73 1.44 2.81  2 1.59 4.76 11.56 

4 1.10 1.72 5.02  4 2.69 7.85 18.08 

8 1.58 2.57 6.32  8 4.51 12.34 27.42 

16 1.92 3.63 8.64  16 7.06 17.90 38.34 

24 2.20 4.67 13.60  24 8.41 21.12 46.79 

36 2.53 5.87 13.64  36 10.76 25.68 48.57 

 

 

 Bacillus licheniformis   Bacillus licheniformis 

 Maize Reducing Values   

Amylomaize-7 Reducing 
Values 

Hours 0.1 IU/ml 
1 

IU/ml 10 IU/ml   Hours 0.1 IU/ml 
1 

IU/ml 10 IU/ml 

1 1.30 3.52 10.29  1 0.65 1.56 3.17 

2 2.16 5.62 15.15  2 1.03 2.38 5.48 

4 3.67 8.67 23.49  4 1.60 3.60 6.92 

8 5.38 12.66 32.70  8 2.14 5.34 12.58 

16 7.12 15.05 49.11  16 2.54 6.46 18.56 

24 9.99 22.02 55.25  24 3.81 8.61 23.59 

36 11.73 24.50 57.30  36 4.57 9.62 29.17 

 

 

 Bacillus licheniformis   Bacillus licheniformis 

 Rice Reducing Values   Wheat Reducing Values 

Hours 0.1 IU/ml 
1 

IU/ml 10 IU/ml   Hours 0.1 IU/ml 
1 

IU/ml 10 IU/ml 

1 2.62 6.55 8.62  1 1.73 3.13 8.00 

2 4.46 8.50 13.61  2 2.84 5.45 12.94 

4 6.09 9.74 18.90  4 4.30 8.33 19.32 

8 8.24 14.39 24.27  8 7.13 15.08 33.02 

16 10.45 17.54 32.70  16 11.12 21.48 48.79 

24 11.71 21.48 40.82  24 13.78 27.74 53.87 

36 12.83 22.58 55.61  36 19.52 30.90 58.48 
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 Bacillus licheniformis   Bacillus licheniformis 

 Barley Reducing Values   Tapioca Reducing Values 

Hours 0.1 IU/ml 
1 

IU/ml 10 IU/ml   Hours 0.1 IU/ml 
1 

IU/ml 10 IU/ml 

1 0.91 1.61 3.93  1 0.73 2.44 5.31 

2 1.70 3.17 8.97  2 1.53 4.16 9.13 

4 2.65 6.99 19.94  4 2.27 7.62 14.91 

8 4.82 13.03 32.76  8 3.49 11.45 24.81 

16 7.70 20.29 41.51  16 6.09 15.70 36.73 

24 11.81 26.01 51.95  24 8.33 21.89 43.35 

36 14.22 27.90 53.97  36 8.08 22.44 51.34 

 

 

 Porcine Pancreas    Porcine Pancreas  

 Potato Reducing Values   Waxy Maize Reducing Values 

Hours 0.1 IU/ml 
1 

IU/ml 
10 

IU/ml   Hours 0.1 IU/ml 
1 

IU/ml 
10 

IU/ml 

1 0.08 0.37 1.01  1 0.18 0.99 5.68 

2 0.24 0.59 1.61  2 0.30 1.94 10.78 

4 0.27 0.90 2.31  4 0.40 3.24 16.71 

8 0.49 1.37 3.45  8 1.01 5.87 24.03 

16 0.59 1.85 3.85  16 1.57 12.20 27.23 

24 0.78 2.16 4.55  24 2.12 12.63 35.20 

36 0.98 2.68 5.91  36 2.62 14.58 38.51 

 

 

 Porcine Pancreas    Porcine Pancreas  

 Potato Reducing Values   Waxy Maize Reducing Values 

Hours 0.1 IU/ml 
1 

IU/ml 
10 

IU/ml   Hours 0.1 IU/ml 1 IU/ml 10 IU/ml 

1 0.08 0.37 1.01  1 0.99 5.68 12.31 

2 0.24 0.59 1.61  2 1.94 10.78 18.79 

4 0.27 0.90 2.31  4 3.24 16.71 27.57 

8 0.49 1.37 3.45  8 5.87 24.03 41.06 

16 0.59 1.85 3.85  16 12.20 27.23 50.23 

24 0.78 2.16 4.55  24 12.63 35.20 55.90 

36 0.98 2.68 5.91  36 14.58 38.51 59.16 
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 Porcine Pancreas    Porcine Pancreas 

 Maize Reducing Values   

Amylomaize-7 Reducing 
Values 

Hours 0.1 IU/ml 
1 

IU/ml     Hours 0.1 IU/ml 
1 

IU/ml 

1 0.59 3.08   1 0.43 1.35 

2 1.29 5.90   2 0.66 2.24 

4 2.67 10.30   4 0.99 3.63 

8 5.27 16.48   8 1.78 5.57 

16 8.78 22.61   16 2.58 7.66 

24 10.15 25.12   24 3.29 8.46 

36 11.05 28.77   36 3.92 9.58 

 

 

 Porcine Pancreas    Porcine Pancreas 

 Rice Reducing Values   Wheat Reducing Values 

Hours 0.1 IU/ml 
1 

IU/ml     Hours 0.1 IU/ml 
1 

IU/ml 

1 2.10 8.46   1 0.52 3.35 

2 3.68 12.37   2 0.80 5.36 

4 5.68 14.76   4 1.32 6.74 

8 7.80 18.44   8 1.52 10.97 

16 11.06 21.09   16 2.32 14.87 

24 13.38 22.47   24 2.63 19.60 

36 15.04 24.43   36 3.74 22.78 

 

 

 Porcine Pancreas    Porcine Pancreas 

 Barley Reducing Values   Tapioca Reducing Values 

Hours 0.1 IU/ml 
1 

IU/ml     Hours 0.1 IU/ml 
1 

IU/ml 

1 0.30 3.06   1 0.68 2.96 

2 0.53 4.92   2 1.20 5.50 

4 1.15 7.92   4 2.45 8.76 

8 1.98 11.81   8 3.93 14.20 

16 3.13 17.57   16 6.47 19.08 

24 4.27 17.70   24 8.13 Err 

36 5.90 23.63   36 10.26 23.36 
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 Human Saliva    Human Saliva  

 Maize Reducing Values   

Amylomaize-7 Reducing 
Values 

Hours 0.1 IU/ml 
1 

IU/ml 
10 

IU/ml   Hours 0.1 IU/ml 
1 

IU/ml 
10 

IU/ml 

1 0.59 3.36 9.02  1 0.57 1.34 3.65 

2 2.04 8.63 19.01  2 1.13 2.78 7.12 

4 4.33 17.70 27.72  4 1.69 4.41 10.39 

8 8.59 24.15 47.42  8 3.75 7.38 16.01 

16 13.77 34.03 57.51  16 5.60 10.43 21.88 

24 18.93 38.68 74.77  24 6.09 13.21 25.54 

36 22.04 43.55 76.98  36 7.26 15.69 28.56 

 

 

 Human Saliva    Human Saliva  

 Rice Reducing Values   Wheat Reducing Values 

Hours 0.1 IU/ml 
1 

IU/ml 
10 

IU/ml   Hours 0.1 IU/ml 
1 

IU/ml 
10 

IU/ml 

1 4.00 13.61 24.96  1 1.38 4.48 13.58 

2 6.91 18.47 32.94  2 1.86 8.23 23.51 

4 9.16 22.74 35.91  4 1.74 11.62 33.58 

8 16.90 28.67 54.15  8 3.19 17.07 46.31 

16 18.47 36.01 65.20  16 3.95 24.40 68.03 

24 22.51 41.04 75.93  24 5.64 30.78 68.48 

36 24.44 45.73 78.95  36 4.07 30.79 67.53 

 

 

 Human Saliva    Human Saliva  

 Barley Reducing Values   Tapioca Reducing Values 

Hours 0.1 IU/ml 
1 

IU/ml 10 IU/ml   Hours 0.1 IU/ml 
1 

IU/ml 
10 

IU/ml 

1 1.69 4.92 17.21  1 0.30 2.63 13.24 

2 2.74 8.48 28.22  2 1.05 6.28 20.49 

4 4.65 13.50 41.55  4 1.45 9.39 27.16 

8 8.40 21.95 60.44  8 4.49 15.46 41.84 

16 13.62 31.09 72.88  16 8.29 21.42 47.41 

24 18.86 37.10 85.03  24 12.75 26.24 54.84 

36 23.93 42.42 84.43  36 11.28 25.80 53.24 
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 Bacillus amyloliquefaciens   Bacillus amyloliquefaciens 

 Potato Reducing Values   Waxy Maize Reducing Values 

Hours 0.1 IU/ml 1 IU/ml 10 IU/ml   Hours 0.1 IU/ml 1 IU/ml 10 IU/ml 

1 0.17 0.44 0.81  1 0.50 1.33 3.02 

2 0.28 0.60 1.05  2 0.72 2.08 5.28 

4 0.37 0.75 1.58  4 1.12 3.38 3.04 

8 0.46 1.03 2.20  8 1.81 5.74 18.54 

16 0.57 1.31 2.56  16 2.69 9.45 30.28 

24 0.64 1.45 3.07  24 3.27 12.02 37.61 

36 0.77 1.66 3.62  36 3.89 14.79 45.40 

 

 

 Bacillus amyloliquefaciens   Bacillus amyloliquefaciens 

 Maize Reducing Values   

Amylomaize-7 Reducing 
Values 

Hours 0.1 IU/ml 
1 

IU/ml 10 IU/ml   Hours 0.1 IU/ml 
1 

IU/ml 10 IU/ml 

1 0.20 1.37 2.30  1 0.25 0.66 1.46 

2 0.52 2.03 5.01  2 0.32 0.92 2.01 

4 1.01 3.43 9.86  4 0.51 1.41 3.22 

8 1.67 6.01 17.93  8 0.82 2.04 5.07 

16 2.16 8.49 25.54  16 1.15 2.92 7.62 

24 3.04 9.86 32.11  24 1.42 3.84 9.31 

36 3.74 13.38 38.59  36 1.65 4.78 11.19 

 

 

 Bacillus amyloliquefaciens   Bacillus amyloliquefaciens 

 Rice Reducing Values   Wheat Reducing Values 

Hours 0.1 IU/ml 
1 

IU/ml 10 IU/ml   Hours 0.1 IU/ml 
1 

IU/ml 10 IU/ml 

1 1.36 3.27 6.30  1 0.01 0.79 1.92 

2 1.98 4.48 8.42  2 0.29 1.27 4.02 

4 2.70 5.44 11.98  4 0.60 1.84 5.64 

8 3.34 7.24 14.42  8 1.21 4.45 10.58 

16 4.50 9.26 20.78  16 2.12 7.31 17.78 

24 5.39 11.63 24.06  24 3.51 11.21 23.26 

36 5.40 11.95 25.84  36 5.72 15.30 27.24 
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 Bacillus amyloliquefaciens   Bacillus amyloliquefaciens 

 Barley Reducing Values   Tapioca Reducing Values 

Hours 0.1 IU/ml 
1 

IU/ml 10 IU/ml   Hours 0.1 IU/ml 
1 

IU/ml 10 IU/ml 

1 0.09 0.26 0.66  1 0.07 0.35 0.48 

2 0.16 0.72 2.31  2 0.21 0.76 1.61 

4 0.33 1.41 4.53  4 0.33 0.98 2.56 

8 0.69 2.87 7.67  8 0.62 2.32 7.30 

16 1.37 5.08 13.26  16 0.80 3.47 15.87 

24 2.38 7.81 17.06  24 1.24 5.25 21.50 

36 3.50 10.55 21.25  36 1.79 7.07 31.92 
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Argument 

Bacillus licheniformis 

Activity Potato 
Waxy 
Maize 

Maize 
Amylomaize-

7 
Rice Wheat Barley Tapioca 

0.1 IU/ml 0.149 0.048 0.067 0.073 0.173 0.038 0.031 0.062 

1.0 IU/ml 0.069 0.078 0.086 0.105 0.172 0.073 0.066 0.082 

10.0 IU/ml 0.076 0.108 0.123 0.059 0.074 0.105 0.103 0.078 

         

         

Argument 

Porcine Pancreas 

Activity Potato 
Waxy 
Maize 

Maize 
Amylomaize-

7 
Rice Wheat Barley Tapioca 

0.1 IU/ml 0.088 0.056 0.071 0.064 0.102 0.001 0.027 0.048 

1.0 IU/ml 0.093 0.136 0.107 0.117 0.343 0.078 0.096 0.117 

10.0 IU/ml 0.133 0.171       

         

Argument 

Human Saliva 

Activity Potato 
Waxy 
Maize 

Maize 
Amylomaize-

7 
Rice Wheat Barley Tapioca 

0.1 IU/ml 0.103 0.045 0.044 0.078 0.141 0.161 0.035 0.050 

1.0 IU/ml 0.068 0.104 0.108 0.069 0.215 0.108 0.089 0.110 

10.0 IU/ml 0.073 0.171 0.111 0.109 0.203 0.170 0.175 0.206 

         

         

Argument 

Bacillus amyloliquefaciens 

Activity Potato 
Waxy 
Maize 

Maize 
Amylomaize-

7 
Rice Wheat Barley Tapioca 

0.1 IU/ml 0.1744 0.0742 0.0539 0.0833 0.1711 0.0014 0.0018 0.0042 

1.0 IU/ml 0.1820 0.0501 0.0606 0.0628 0.1640 0.0137 0.0126 0.0081 

10.0 IU/ml 0.1532 0.0417 0.0623 0.0711 0.1475 0.0498 0.0417 0.0049 
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APPENDIX C: FIRST ORDER ANALYSIS 
𝑑[𝑃]

𝑑𝑡
= 𝑘𝑐𝑎𝑡[𝐸𝑆] = 𝑘𝑐𝑎𝑡 ∗ 𝐾[𝐸]𝑠𝑜𝑙𝑛[𝑆]𝑎𝑣𝑎𝑖𝑙 

[𝐸]𝑠𝑜𝑙𝑛 = [𝐸]𝑡𝑜𝑡 − [𝐸𝑆] 

[𝐸]𝑠𝑜𝑙𝑛 = [𝐸]𝑡𝑜𝑡 − 𝐾[𝐸]𝑠𝑜𝑙𝑛[𝑆] 

[𝐸]𝑠𝑜𝑙𝑛(1 + 𝐾[𝑆]) = [𝐸]𝑡𝑜𝑡 

[𝐸]𝑠𝑜𝑙𝑛 =
[𝐸]𝑡𝑜𝑡

(1 + 𝐾[𝑆])
≈ [𝐸]𝑡𝑜𝑡 

[𝑆]𝑎𝑣𝑎𝑖𝑙 = 𝐶[𝑆]𝑡𝑜𝑡 − [𝐸𝑆] 

[𝑆]𝑎𝑣𝑎𝑖𝑙 = 𝐶[𝑆]𝑡𝑜𝑡 − 𝐾[𝐸]𝑠𝑜𝑙𝑛[𝑆]𝑎𝑣𝑎𝑖𝑙 ≈ 𝐶[𝑆]𝑡𝑜𝑡 − 𝐾[𝐸]𝑡𝑜𝑡[𝑆]𝑎𝑣𝑎𝑖𝑙 

[𝑆]𝑎𝑣𝑎𝑖𝑙 =
𝐶[𝑆]𝑡𝑜𝑡

1 + 𝐾[𝐸]𝑡𝑜𝑡
 

[𝑆]𝑎𝑣𝑎𝑖𝑙 =
𝐶(106 − [𝑃])

1 + 𝐾[𝐸]𝑡𝑜𝑡
 

𝑑[𝑃]

𝑑𝑡
= 𝑘𝑐𝑎𝑡 ∗ 𝐾[𝐸]𝑡𝑜𝑡 ∗

𝐶(106 − [𝑃])

1 + 𝐾[𝐸]𝑡𝑜𝑡
 

𝑑[𝑃]

(106 𝑚𝑔 − [𝑃])
=

𝑘𝑐𝑎𝑡 ∗ 𝐶 ∗ 𝐾[𝐸]𝑡𝑜𝑡

1 + 𝐾[𝐸]𝑡𝑜𝑡
𝑑𝑡 

ln(106 − [𝑃]) = −
𝑘𝑐𝑎𝑡 ∗ 𝐶 ∗ 𝐾[𝐸]𝑡𝑜𝑡

1 + 𝐾[𝐸]𝑡𝑜𝑡
𝑡 + ln(106) = 𝛷𝑡 + ln(106) 

The above equations describe the derivation of the first order model. Graphs depicting the 

evaluation according to this model are shown below. Since the data was not well-linearized with 

this, it is safe to assume that the reaction kinetics do not follow a first-order reaction with respect 

to starch. Better explanation of this derivation can be seen in Chapter 4. 
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Values are plotted against time in hours. The y-axis represents -ln(106-[P]) + ln(106). These 

values are unit-less. Tables of values and R2 values are listed after the graphs in Appendix B. 
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Values are plotted against time in hours. The y-axis represents -ln(106-[P]) + ln(106). These 

values are unit-less. Tables of values and R2 values are listed after the graphs in Appendix B. 
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Values are plotted against time in hours. The y-axis represents -ln(106-[P]) + ln(106). These 

values are unit-less. Tables of values and R2 values are listed after the graphs in Appendix B. 
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Values are plotted against time in hours. The y-axis represents -ln(106-[P]) + ln(106). These 

values are unit-less. Tables of values and R2 values are listed after the graphs in Appendix B. 



71  

0

0.01

0.02

0.03

0.04

0.05

0.06

0 10 20 30 40

First Order Approximation of 

Potato TC - BAA

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0 10 20 30 40

First Order Approximation of 

Waxy Maize TC - BAA

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

0 10 20 30 40

First Order Approximation of 

Maize TC - BAA

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0 10 20 30 40

First Order Approximation of 

Amylomaize-7 TC - BAA

Values are plotted against time in hours. The y-axis represents -ln(106-[P]) + ln(106). These 

values are unit-less. Tables of values and R2 values are listed after the graphs in Appendix B. 



72  

 
  

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0 10 20 30 40

First Order Approximation of 

Rice TC - BAA

0

0.05

0.1

0.15

0.2

0.25

0.3

0 10 20 30 40

First Order Approximation of 

Wheat TC - BAA

0

0.05

0.1

0.15

0.2

0.25

0.3

0 10 20 30 40

First Order Approximation of 

Barley TC - BAA

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0 10 20 30 40

First Order Approximation of 

Tapioca TC - BAA

Values are plotted against time in hours. The y-axis represents -ln(106-[P]) + ln(106). These 
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 Bacillus licheniformis   Bacillus licheniformis 

 Potato First Order Analysis   

Waxy Maize First Order 
Analysis 

Hours 
0.1 

IU/ml 
1 

IU/ml 10 IU/ml   Hours 0.1 IU/ml 1 IU/ml 10 IU/ml 

1 0.01 0.02 0.03  1 0.03 0.10 0.15 

2 0.02 0.02 0.04  2 0.05 0.14 0.25 

4 0.02 0.03 0.05  4 0.08 0.25 0.38 

8 0.03 0.05 0.09  8 0.13 0.39 0.65 

16 0.04 0.06 0.11  16 0.19 0.64 0.98 

24 0.05 0.08 0.16  24 0.25 0.70 1.25 

36 0.06 0.10 0.22  36 0.32 0.97 1.60 

         

slope = 0.0015 0.0023 0.0053  slope = 0.0082 0.0242 0.0412 

R2 = 0.9520 0.9766 0.9893  R2 = 0.9818 0.9610 0.9734 

 

 

 Bacillus licheniformis   Bacillus licheniformis 

 Maize First Order Analysis   

Amylomaize-7 First Order 
Analysis 

Hours 
0.1 

IU/ml 
1 

IU/ml 
10 

IU/ml   Hours 0.1 IU/ml 1 IU/ml 10 IU/ml 

1 0.03 0.07 0.16  1 0.01 0.03 0.05 

2 0.05 0.12 0.23  2 0.02 0.04 0.08 

4 0.08 0.17 0.34  4 0.03 0.06 0.11 

8 0.11 0.24 0.52  8 0.04 0.09 0.18 

16 0.14 0.30 0.71  16 0.05 0.11 0.30 

24 0.22 0.45 0.84  24 0.08 0.14 0.33 

36 0.27 0.53 0.99  36 0.09 0.17 0.42 

  

 

      

slope = 0.0068 0.0128 0.0233  slope = 0.0023 0.0039 0.0105 

R2 = 0.9792 0.9615 0.9295  R2 = 0.9633 0.9386 0.9521 

 

 

  Values are plotted against time in hours. The tables represent -ln(106-[P]) + ln(106). These 

values are unit-less. Tables of values and R2 values are listed after the graphs in Appendix B. 

Units of the slopes are in hours-1. 
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 Bacillus licheniformis   Bacillus licheniformis 

 Rice First Order Analysis   Wheat First Order Analysis 

Hours 0.1 IU/ml 1 IU/ml 10 IU/ml   Hours 
0.1 

IU/ml 
1 

IU/ml 
10 

IU/ml 

1 0.08 0.15 0.20  1 0.02 0.04 0.09 

2 0.11 0.18 0.27  2 0.03 0.07 0.16 

4 0.13 0.22 0.39  4 0.05 0.11 0.25 

8 0.17 0.30 0.47  8 0.08 0.17 0.51 

16 0.22 0.37 0.64  16 0.12 0.27 0.75 

24 0.25 0.47 0.82  24 0.15 0.35 0.90 

36 0.26 0.54 1.21  36 0.18 0.42 1.10 

         

slope = 0.0050 0.0112 0.0267  slope = 0.0047 0.0111 0.0290 

R2 = 0.8707 0.9602 0.9870  R2 = 0.9575 0.9647 0.9371 

 

 

 Bacillus licheniformis   Bacillus licheniformis 

 Barley First Order Analysis   Tapioca First Order Analysis 

Hours 
0.1 

IU/ml 
1 

IU/ml 
10 

IU/ml   Hours 
0.1 

IU/ml 
1 

IU/ml 
10 

IU/ml 

1 0.01 0.03 0.04  1 0.02 0.05 0.09 

2 0.02 0.04 0.12  2 0.03 0.10 0.15 

4 0.03 0.10 0.28  4 0.04 0.17 0.28 

8 0.06 0.18 0.49  8 0.07 0.30 0.41 

16 0.10 0.28 0.69  16 0.12 0.40 0.73 

24 0.16 0.40 1.03  24 0.15 0.51 0.88 

36 0.19 0.46 1.10  36 0.17 0.58 0.94 

         

slope = 0.0053 0.0129 0.0309  slope = 0.0045 0.0150 0.0254 

R2 = 0.9825 0.9576 0.9217  R2 = 0.9288 0.9190 0.9004 
 

 

  
Values are plotted against time in hours. The tables represent -ln(106-[P]) + ln(106). These 

values are unit-less. Tables of values and R2 values are listed after the graphs in Appendix B. 

Units of the slopes are in hours-1. 
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 Porcine Pancreas    Porcine Pancreas  

 Potato First Order Analysis   

Waxy Maize First Order 
Analysis 

Hours 0.1 IU/ml 
1 

IU/ml 
10 

IU/ml   Hours 0.1 IU/ml 
1 

IU/ml 
10 

IU/ml 

1 0.01 0.02 0.02  1 0.03 0.10 0.15 

2 0.01 0.02 0.02  2 0.05 0.20 0.25 

4 0.02 0.03 0.04  4 0.08 0.29 0.39 

8 0.02 0.05 0.06  8 0.14 0.48 0.62 

16 0.03 0.05 0.11  16 0.23 0.62 0.84 

24 0.04 0.07 0.13  24 0.32 0.78 1.07 

36 0.04 0.09 0.16  36 0.38 0.88 1.33 

         

slope = 0.0010 0.0019 0.0042  slope = 0.0021 0.0103 0.0216 

R2 = 0.8853 0.9512 0.9545  R2 = 0.9877 0.9665 0.9100 

 

 

 Porcine Pancreas    Porcine Pancreas  

 Maize First Order Analysis   

Amylomaize-7 First Order 
Analysis 

Hours 0.1 IU/ml 
1 

IU/ml 
10 

IU/ml   Hours 0.1 IU/ml 1 IU/ml 10 IU/ml 

1 0.01 0.04 0.11  1 0.01 0.02 0.04 

2 0.02 0.07 0.19  2 0.01 0.03 0.07 

4 0.05 0.15 0.30  4 0.01 0.04 0.09 

8 0.12 0.23 0.42  8 0.03 0.05 0.14 

16 0.17 0.37 0.58  16 0.04 0.09 0.19 

24 0.22 0.44 0.65  24 0.06 0.11 0.22 

36 0.21 0.45 0.33  36 0.07 0.13 0.29 

         

slope = 0.0062 0.0121 0.0227  slope = 0.0004 0.0018 0.0032 

R2 = 0.8369 0.8624 0.9113  R2 = 0.9122 0.9730 0.9366 

 

 

  
Values are plotted against time in hours. The tables represent -ln(106-[P]) + ln(106). These 

values are unit-less. Tables of values and R2 values are listed after the graphs in Appendix B. 

Units of the slopes are in hours-1.The highlighted value was omitted as it is erroneous. 
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 Porcine Pancreas    Porcine Pancreas  

 Rice First Order Analysis   Wheat First Order Analysis 

Hours 0.1 IU/ml 
1 

IU/ml 
10 

IU/ml   Hours 0.1 IU/ml 
1 

IU/ml 
10 

IU/ml 

1 0.08 0.15 0.23  1 0.01 0.06 0.12 

2 0.10 0.18 0.28  2 0.02 0.08 0.18 

4 0.13 0.21 0.37  4 0.02 0.11 0.26 

8 0.19 0.29 0.55  8 0.04 0.18 0.35 

16 0.22 0.34 0.63  16 0.05 0.29 0.51 

24 0.24 0.36 0.87  24 0.06 0.35 0.67 

36 0.29 0.52 0.97  36 0.08 0.39 0.86 

         

slope = 0.0032 0.0056 0.0097  slope = 0.0006 0.0019 0.0100 

R2 = 0.9597 0.9070 0.9549  R2 = 0.9086 0.9574 0.9370 

 

 

 Porcine Pancreas    Porcine Pancreas  

 Barley First Order Analysis   Tapioca First Order Analysis 

Hours 0.1 IU/ml 
1 

IU/ml 
10 

IU/ml   Hours 0.1 IU/ml 
1 

IU/ml 
10 

IU/ml 

1 0.01 0.05 0.09  1 0.01 0.05 0.11 

2 0.02 0.07 0.17  2 0.02 0.08 0.23 

4 0.04 0.10 0.28  4 0.04 0.13 0.37 

8 0.06 0.17 0.43  8 0.06 0.20 0.57 

16 0.09 0.23 0.62  16 0.10 0.28 0.87 

24 0.13 0.29 0.67  24 0.13 0.29 1.10 

36 0.15 0.36 0.68  36 0.16 0.34 1.21 

         

slope = 0.0015 0.0039 0.0086  slope = 0.0007 0.0042 0.0081 

R2 = 0.9888 0.9634 0.9591  R2 = 0.9359 0.9584 0.8667 
 

 

  

Values are plotted against time in hours. The tables represent -ln(106-[P]) + ln(106). These 

values are unit-less. Tables of values and R2 values are listed after the graphs in Appendix B. 

Units of the slopes are in hours-1. 
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 Human Saliva    Human Saliva  

 Potato First Order Analysis   

Waxy Maize First Order 
Analysis 

TC 0.1 IU 1 IU 10 IU   Hours 0.1 IU/ml 
1 

IU/ml 
10 

IU/ml 

1 0.01 0.01 0.02  1 0.02 0.06 0.21 

2 0.01 0.02 0.03  2 0.03 0.16 0.42 

4 0.01 0.03 0.06  4 0.07 0.29 0.67 

8 0.02 0.05 0.09  8 0.15 0.55 1.06 

16 0.03 0.06 0.12  16 0.24 0.72 1.32 

24 0.04 0.08 0.17  24 0.31 1.03 1.45 

36 0.05 0.10 0.20  36 0.40 1.14 1.53 

         

slope = 0.0011 0.0023 0.0050  slope = 0.0108 0.0308 0.0357 

R2 = 0.9548 0.9603 0.9461  R2 = 0.9680 0.9247 0.7952 

 

 

 Human Saliva    Human Saliva  

 Maize First Order Analysis   

Amylomaize-7 First Order 
Analysis 

Hours 0.1 IU/ml 
1 

IU/ml 
10 

IU/ml   Hours 0.1 IU/ml 1 IU/ml 10 IU/ml 

1 0.01 0.04 0.10  1 0.01 0.02 0.04 

2 0.03 0.11 0.22  2 0.01 0.03 0.07 

4 0.05 0.18 0.30  4 0.02 0.06 0.11 

8 0.10 0.28 0.51  8 0.03 0.08 0.15 

16 0.16 0.36 0.63  16 0.05 0.11 0.21 

24 0.23 0.43 0.87  24 0.06 0.13 0.24 

36 0.27 0.51 0.86  36 0.08 0.14 0.29 

         

slope = 0.0075 0.0127 0.0218  slope = 0.0020 0.0034 0.0067 

R2 = 0.9622 0.8990 0.8686  R2 = 0.9587 0.8831 0.9095 

 

 

  
Values are plotted against time in hours. The tables represent -ln(106-[P]) + ln(106). These 

values are unit-less. Tables of values and R2 values are listed after the graphs in Appendix B. 

Units of the slopes are in hours-1. 
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 Human Saliva    Human Saliva  

 Rice First Order Analysis   Wheat First Order Analysis 

Hours 0.1 IU/ml 
1 

IU/ml 
10 

IU/ml   Hours 0.1 IU/ml 
1 

IU/ml 
10 

IU/ml 

1 0.10 0.25 0.45  1 0.02 0.10 0.18 

2 0.13 0.29 0.57  2 0.03 0.15 0.28 

4 0.17 0.34 0.68  4 0.04 0.19 0.44 

8 0.24 0.46 0.79  8 0.05 0.26 0.61 

16 0.33 0.58 1.09  16 0.06 0.36 0.89 

24 0.36 0.72 1.56  24 0.07 0.45 1.08 

36 0.42 0.81 2.02  36 0.09 0.49 1.12 

         

slope = 0.0090 0.0162 0.0438  slope = 0.0019 0.0112 0.0273 

R2 = 0.9074 0.9520 0.9933  R2 = 0.9473 0.9293 0.8831 

 

 

 Human Saliva    Human Saliva  

 Barley First Order Analysis   Tapioca First Order Analysis 

Hours 0.1 IU/ml 
1 

IU/ml 
10 

IU/ml   Hours 0.1 IU/ml 
1 

IU/ml 
10 

IU/ml 

1 0.02 0.07 0.31  1 0.02 0.09 0.29 

2 0.04 0.12 0.57  2 0.04 0.18 0.50 

4 0.06 0.18 1.00  4 0.08 0.28 0.72 

8 0.11 0.30 1.62  8 0.13 0.51 1.07 

16 0.18 0.47 4.70  16 0.25 0.70 1.61 

24 0.25 0.55 Err  24 0.33 0.84 2.10 

36 0.33 0.61 Err  36 0.40 0.92 2.58 

         

slope = 0.0088 0.0157 0.1831  slope = 0.0110 0.0235 0.0645 

R2 = 0.9902 0.9102 0.9879  R2 = 0.9700 0.8843 0.9713 
 

 

  

Values are plotted against time in hours. The tables represent -ln(106-[P]) + ln(106). These 

values are unit-less. Tables of values and R2 values are listed after the graphs in Appendix B. 

Units of the slopes are in hours-1. 

 

Highlighted values are omitted as they were either too close to or surpassed 106 mg and 

therefore, could not be evaluated. 
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 Bacillus amyloliquefaciens   Bacillus amyloliquefaciens 

 Potato First Order Analysis   

Waxy Maize First Order 
Analysis 

Hours 
0.1 

IU/ml 
1 

IU/ml 
10 

IU/ml   Hours 0.1 IU/ml 
1 

IU/ml 
10 

IU/ml 

1 0.00 0.01 0.01  1 0.02 0.03 0.08 

2 0.01 0.01 0.01  2 0.03 0.04 0.11 

4 0.01 0.01 0.02  4 0.03 0.06 0.24 

8 0.01 0.02 0.03  8 0.05 0.09 0.30 

16 0.01 0.02 0.03  16 0.06 0.15 0.43 

24 0.01 0.02 0.04  24 0.06 0.18 0.53 

36 0.01 0.03 0.05  36 0.08 0.24 0.65 

         

slope = 0.0002 0.0004 0.0010  slope = 0.0017 0.0058 0.0158 

R2 = 0.7045 0.8508 0.9717  R2 = 0.9430 0.9811 0.9427 

 

 

 Bacillus amyloliquefaciens   Bacillus amyloliquefaciens 

 Maize First Order Analysis   

Amylomaize-7 First Order 
Analysis 

Hours 
0.1 

IU/ml 
1 

IU/ml 
10 

IU/ml   Hours 0.1 IU/ml 1 IU/ml 10 IU/ml 

1 0.01 0.03 0.06  1 0.01 0.01 0.01 

2 0.02 0.04 0.08  2 0.01 0.01 0.02 

4 0.03 0.07 0.11  4 0.01 0.02 0.03 

8 0.04 0.09 0.21  8 0.01 0.03 0.05 

16 0.05 0.14 0.26  16 0.02 0.04 0.07 

24 0.07 0.17 0.35  24 0.02 0.05 0.08 

36 0.09 0.21 0.43  36 0.02 0.06 0.11 

         

slope = 0.0021 0.0052 0.0107  slope = 0.0005 0.0014 0.0026 

R2 = 0.9758 0.9672 0.9615  R2 = 0.9113 0.9726 0.9697 

 

 

  

Values are plotted against time in hours. The tables represent -ln(106-[P]) + ln(106). These 

values are unit-less. Tables of values and R2 values are listed after the graphs in Appendix B. 

Units of the slopes are in hours-1. 
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 Bacillus amyloliquefaciens   Bacillus amyloliquefaciens 

 Rice First Order Analysis   Wheat First Order Analysis 

Hours 
0.1 

IU/ml 
1 

IU/ml 
10 

IU/ml   Hours 
0.1 

IU/ml 
1 

IU/ml 
10 

IU/ml 

1 0.07 0.09 0.13  1 0.00 0.01 0.04 

2 0.08 0.11 0.14  2 0.00 0.01 0.05 

4 0.08 0.12 0.17  4 0.01 0.02 0.07 

8 0.10 0.16 0.22  8 0.01 0.04 0.11 

16 0.12 0.18 0.28  16 0.02 0.07 0.18 

24 0.14 0.21 0.37  24 0.03 0.10 0.21 

36 0.16 0.23 0.39  36 0.05 0.17 0.25 

         

slope = 0.0026 0.0040 0.0078  slope = 0.0013 0.0043 0.0062 

R2 = 0.9686 0.9228 0.9369  R2 = 0.9915 0.9871 0.9408 

 

 

 Bacillus amyloliquefaciens   Bacillus amyloliquefaciens 

 Barley First Order Analysis   Tapioca First Order Analysis 

Hours 
0.1 

IU/ml 
1 

IU/ml 
10 

IU/ml   Hours 
0.1 

IU/ml 
1 

IU/ml 
10 

IU/ml 

1 0.00 0.01 0.01  1 0.00 0.01 0.02 

2 0.00 0.01 0.03  2 0.01 0.02 0.03 

4 0.00 0.02 0.06  4 0.01 0.03 0.06 

8 0.01 0.03 0.09  8 0.01 0.04 0.12 

16 0.02 0.05 0.15  16 0.02 0.07 0.16 

24 0.02 0.09 0.19  24 0.03 0.10 0.25 

36 0.03 0.12 0.22  36 0.04 0.12 0.32 

         

slope = 0.0009 0.0033 0.0061  slope = 0.0010 0.0032 0.0087 

R2 = 0.9977 0.9912 0.9432  R2 = 0.9916 0.9726 0.9765 
 

  
Values are plotted against time in hours. The tables represent -ln(106-[P]) + ln(106). These 

values are unit-less. Tables of values and R2 values are listed after the graphs in Appendix B. 

Units of the slopes are in hours-1. 
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APPENDIX D: SECOND ORDER ANALYSIS 
𝑑[𝑃]

𝑑𝑡
= 𝑘𝑐𝑎𝑡[𝐸𝑆]𝑏𝑜𝑢𝑛𝑑 

[𝐸𝑆]𝑏𝑜𝑢𝑛𝑑 = 𝐾2[𝐸𝑆]𝑔𝑟𝑎𝑛[𝑆]𝑠𝑢𝑠𝑐(𝑢𝑛𝑏𝑜𝑢𝑛𝑑) 

[𝑆]𝑠𝑢𝑠𝑐(𝑢𝑛𝑏𝑜𝑢𝑛𝑑) = 𝐶[𝑆]𝑡𝑜𝑡 − [𝐸𝑆]𝑏𝑜𝑢𝑛𝑑 

[𝐸𝑆]𝑏𝑜𝑢𝑛𝑑 = 𝐾2[𝐸𝑆]𝑔𝑟𝑎𝑛(𝐶[𝑆]𝑡𝑜𝑡 − [𝐸𝑆]𝑏𝑜𝑢𝑛𝑑) 

[𝐸𝑆]𝑏𝑜𝑢𝑛𝑑 =
𝐾2𝐶[𝐸𝑆]𝑔𝑟𝑎𝑛[𝑆]𝑡𝑜𝑡

1 + 𝐾2[𝐸𝑆]𝑔𝑟𝑎𝑛
 

𝑑[𝑃]

𝑑𝑡
= 𝑘𝑐𝑎𝑡

𝐾2𝐶[𝐸𝑆]𝑔𝑟𝑎𝑛[𝑆]𝑡𝑜𝑡

1 + 𝐾2[𝐸𝑆]𝑔𝑟𝑎𝑛
≈ 𝑘𝑐𝑎𝑡𝐾2𝐶[𝐸𝑆]𝑔𝑟𝑎𝑛[𝑆]𝑡𝑜𝑡 

[𝐸𝑆]𝑔𝑟𝑎𝑛 = 𝐾1[𝐸]𝑠𝑜𝑙𝑛[𝑆] ≈ 𝐾1[𝐸]𝑡𝑜𝑡[𝑆] 

[𝑆] = [𝑆]𝑡𝑜𝑡 − [𝐸𝑆]𝑔𝑟𝑎𝑛 

[𝑆] = [𝑆]𝑡𝑜𝑡 − [𝐸𝑆]𝑔𝑟𝑎𝑛 ≈ [𝑆]𝑡𝑜𝑡 − 𝐾1[𝐸]𝑡𝑜𝑡[𝑆] 

[𝑆] =
[𝑆]𝑡𝑜𝑡

1 + 𝐾1[𝐸]𝑡𝑜𝑡
 

[𝐸𝑆]𝑔𝑟𝑎𝑛 =
𝐾1[𝐸]𝑡𝑜𝑡[𝑆]𝑡𝑜𝑡

1 + 𝐾1[𝐸]𝑡𝑜𝑡
 

𝑑[𝑃]

𝑑𝑡
= 𝑘𝑐𝑎𝑡𝐾2𝐶

𝐾1[𝐸]𝑡𝑜𝑡[𝑆]𝑡𝑜𝑡

1 + 𝐾1[𝐸]𝑡𝑜𝑡

[𝑆]𝑡𝑜𝑡 

𝑑[𝑃]

𝑑𝑡
=

𝑘𝑐𝑎𝑡𝐾2𝐾1𝐶[𝐸]𝑡𝑜𝑡[𝑆]𝑡𝑜𝑡
2

1 + 𝐾1[𝐸]𝑡𝑜𝑡
 

𝑑[𝑃]

[𝑆]
𝑡𝑜𝑡
2

=
𝑘𝑐𝑎𝑡𝐾2𝐾1𝐶[𝐸]𝑡𝑜𝑡

1 + 𝐾1[𝐸]𝑡𝑜𝑡
𝑑𝑡 

𝑑[𝑃]

(106 − [𝑃])2
=

𝑘𝑐𝑎𝑡𝐾2𝐾1𝐶[𝐸]𝑡𝑜𝑡

1 + 𝐾1[𝐸]𝑡𝑜𝑡
𝑑𝑡 

−
1

106 − [𝑃]
+

1

106
=

𝑘𝑐𝑎𝑡𝐾2𝐾1𝐶[𝐸]𝑡𝑜𝑡

1 + 𝐾1[𝐸]𝑡𝑜𝑡
𝑡 = 𝛷 ∗ 𝑡 

The above equations describe the derivation of the second-order model. Graphs depicting the 

evaluation according to this model are shown below. A better explanation of this derivation can 

be seen in Chapter 4. 
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Values are plotted against time in hours. The y-axis represents 1/106+1/(106-[P]). Values are in 

units of mg-1. Tables of values and R2 values are listed following the graphs. 
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Values are plotted against time in hours. The y-axis represents 1/106+1/(106-[P]). Values are in 

units of mg-1. Tables of values and R2 values are listed following the graphs. 
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Values are plotted against time in hours. The y-axis represents 1/106+1/(106-[P]). Values are in 

units of mg-1. Tables of values and R2 values are listed following the graphs. 
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Values are plotted against time in hours. The y-axis represents 1/106+1/(106-[P]). Values are in 

units of mg-1. Tables of values and R2 values are listed following the graphs. 
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Values are plotted against time in hours. The y-axis represents 1/106+1/(106-[P]). Values are in 

units of mg-1. Tables of values and R2 values are listed following the graphs. 
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Values are plotted against time in hours. The y-axis represents 1/106+1/(106-[P]). Values are in 

units of mg-1. Tables of values and R2 values are listed following the graphs. 
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Values are plotted against time in hours. The y-axis represents 1/106+1/(106-[P]). Values are in 

units of mg-1. Tables of values and R2 values are listed following the graphs. 
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units of mg-1. Tables of values and R2 values are listed following the graphs. 

 



90  

 Bacillus licheniformis   Bacillus licheniformis 

 Potato Second Order Analysis   

Waxy Maize Second Order 
Analysis 

Hours 0.1 IU/ml 1 IU/ml 10 IU/ml  Hours 0.1 IU/ml 1 IU/ml 10 IU/ml 

1 9.0E-05 2.1E-04 2.5E-04  1 3.2E-04 9.5E-04 1.5E-03 

2 1.5E-04 2.3E-04 3.8E-04  2 4.8E-04 1.5E-03 2.7E-03 

4 2.1E-04 3.0E-04 4.7E-04  4 7.9E-04 2.6E-03 4.4E-03 

8 2.9E-04 4.7E-04 8.5E-04  8 1.3E-03 4.6E-03 8.6E-03 

16 4.2E-04 6.2E-04 1.1E-03  16 2.0E-03 8.4E-03 1.6E-02 

24 4.7E-04 8.2E-04 1.6E-03  24 2.7E-03 9.6E-03 2.3E-02 

36 6.2E-04 1.0E-03 2.3E-03  36 3.6E-03 1.5E-02 3.8E-02 

         

slope = 1.4E-05 2.3E-05 5.7E-05  slope = 9.3E-05 4.0E-04 1.0E-03 

R2 = 0.9549 0.9795 0.9912  R2 = 0.9907 0.9859 0.9974 

 

 

 Bacillus licheniformis   Bacillus licheniformis 

 Maize Second Order Analysis   

Amylomaize-7 Second Order 
Analysis 

Hours 0.1 IU/ml 1 IU/ml 10 IU/ml  Hours 0.1 IU/ml 1 IU/ml 10 IU/ml 

1 2.8E-04 7.0E-04 1.7E-03  1 1.1E-04 2.5E-04 5.0E-04 

2 4.5E-04 1.2E-03 2.4E-03  2 1.7E-04 3.7E-04 7.5E-04 

4 7.6E-04 1.8E-03 3.8E-03  4 2.5E-04 5.8E-04 1.1E-03 

8 1.1E-03 2.6E-03 6.4E-03  8 3.8E-04 8.9E-04 1.9E-03 

16 1.5E-03 3.3E-03 9.8E-03  16 5.1E-04 1.1E-03 3.3E-03 

24 2.3E-03 5.4E-03 1.3E-02  24 7.9E-04 1.4E-03 3.6E-03 

36 3.0E-03 6.6E-03 1.6E-02  36 9.1E-04 1.7E-03 5.0E-03 

         

slope = 7.5E-05 1.7E-04 4.1E-04  slope = 2.3E-05 4.1E-05 1.3E-04 

R2 = 0.9851 0.9756 0.9735  R2 = 0.9659 0.9473 0.9687 
 

  
Values are plotted against time in hours. Values represent -1/106+1/(106-[P]). For the sake of 

clarity, the values have been multiplied by -1 in relation to the derivation of the second order 

kinetic model. Values are in units of mg-1. The slope is in units of mg-1hours-1. 
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 Bacillus licheniformis   Bacillus licheniformis 

 Rice Second Order Analysis   Wheat Second Order Analysis 

Hours 0.1 IU/ml 1 IU/ml 10 IU/ml  Hours 0.1 IU/ml 1 IU/ml 10 IU/ml 

1 7.6E-04 1.5E-03 2.1E-03  1 1.5E-04 3.8E-04 8.6E-04 

2 1.1E-03 1.9E-03 2.9E-03  2 2.8E-04 7.0E-04 1.6E-03 

4 1.4E-03 2.3E-03 4.4E-03  4 4.6E-04 1.1E-03 2.6E-03 

8 1.8E-03 3.3E-03 5.7E-03  8 7.7E-04 1.7E-03 6.3E-03 

16 2.3E-03 4.3E-03 8.5E-03  16 1.2E-03 3.0E-03 1.1E-02 

24 2.7E-03 5.6E-03 1.2E-02  24 1.5E-03 4.0E-03 1.4E-02 

36 2.8E-03 6.8E-03 2.2E-02  36 1.9E-03 5.0E-03 1.9E-02 

         

slope = 5.7E-05 1.5E-04 5.2E-04  slope = 4.9E-05 1.3E-04 5.2E-04 

R2 = 0.8850 0.9770 0.9645  R2 = 0.9659 0.9799 0.9842 

 

 

 Bacillus licheniformis   Bacillus licheniformis 

 Barley Second Order Analysis   Tapioca Second Order Analysis 

Hours 0.1 IU/ml 1 IU/ml 10 IU/ml  Hours 0.1 IU/ml 1 IU/ml 10 IU/ml 

1 1.3E-04 2.6E-04 4.0E-04  1 1.6E-04 5.2E-04 8.8E-04 

2 2.1E-04 4.3E-04 1.2E-03  2 2.5E-04 9.9E-04 1.6E-03 

4 3.2E-04 9.7E-04 3.1E-03  4 4.2E-04 1.7E-03 3.0E-03 

8 6.0E-04 1.8E-03 6.0E-03  8 6.6E-04 3.3E-03 4.8E-03 

16 9.6E-04 3.1E-03 9.3E-03  16 1.2E-03 4.6E-03 1.0E-02 

24 1.6E-03 4.6E-03 1.7E-02  24 1.5E-03 6.3E-03 1.3E-02 

36 2.0E-03 5.5E-03 1.9E-02  36 1.7E-03 7.4E-03 1.5E-02 

  

 

      

slope = 5.6E-05 1.6E-04 5.6E-04  slope = 4.6E-05 2.0E-04 4.2E-04 

R2 = 0.9853 0.9747 0.9577  R2 = 0.9352 0.9508 0.9370 

 

  
Values are plotted against time in hours. Values represent -1/106+1/(106-[P]). For the sake of 

clarity, the values have been multiplied by -1 in relation to the derivation of the second order 

kinetic model. Values are in units of mg-1. The slope is in units of mg-1hours-1. 
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 Porcine Pancreas    Porcine Pancreas  

 Potato Second Order Analysis   

Waxy Maize Second Order 
Analysis 

Hours 0.1 IU/ml 1 IU/ml 
10 

IU/ml   Hours 0.1 IU/ml 1 IU/ml 10 IU/ml 

1 6.1E-05 1.5E-04 1.5E-04  1 3.1E-04 9.8E-04 1.5E-03 

2 9.1E-05 2.1E-04 2.1E-04  2 4.6E-04 2.1E-03 2.6E-03 

4 1.6E-04 3.1E-04 3.8E-04  4 8.2E-04 3.1E-03 4.5E-03 

8 2.1E-04 4.6E-04 5.6E-04  8 1.4E-03 5.8E-03 8.1E-03 

16 3.2E-04 5.2E-04 1.1E-03  16 2.5E-03 8.1E-03 1.2E-02 

24 3.4E-04 6.8E-04 1.3E-03  24 3.6E-03 1.1E-02 1.8E-02 

36 4.0E-04 8.7E-04 1.6E-03  36 4.3E-03 1.3E-02 2.6E-02 

         

slope = 9.3E-06 1.9E-05 4.3E-05  slope = 2.1E-05 1.2E-04 3.5E-04 

R2 = 0.8878 0.9550 0.9607  R2 = 0.9896 0.9779 0.9565 

 

 

 Porcine Pancreas    Porcine Pancreas  

 Maize Second Order Analysis   

Amylomaize-7 Second Order 
Analysis 

Hours 0.1 IU/ml 1 IU/ml 
10 

IU/ml   Hours 0.1 IU/ml 1 IU/ml 10 IU/ml 

1 9.8E-05 3.8E-04 1.1E-03  1 6.4E-05 1.5E-04 4.3E-04 

2 2.4E-04 7.2E-04 2.0E-03  2 9.6E-05 2.5E-04 6.5E-04 

4 4.6E-04 1.5E-03 3.2E-03  4 1.3E-04 3.8E-04 9.4E-04 

8 1.2E-03 2.5E-03 4.9E-03  8 2.6E-04 5.3E-04 1.5E-03 

16 1.8E-03 4.3E-03 7.5E-03  16 3.9E-04 9.2E-04 1.9E-03 

24 2.3E-03 5.1E-03 8.6E-03  24 5.5E-04 1.1E-03 2.3E-03 

36 2.2E-03 5.4E-03 3.7E-03  36 6.7E-04 1.3E-03 3.2E-03 

         

slope = 6.6E-05 1.5E-04 3.2E-04  slope = 3.5E-06 1.8E-05 3.3E-05 

R2 = 0.8480 0.8856 0.9450  R2 = 0.9132 0.9754 0.9422 

 

  
Values are plotted against time in hours. Values represent -1/106+1/(106-[P]). For the sake of 

clarity, the values have been multiplied by -1 in relation to the derivation of the second order 

kinetic model. Values are in units of mg-1. The slope is in units of mg-1hours-1. 

 

The highlighted value was omitted since it is erroneous. The centrifuge tube leaked. 
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 Porcine Pancreas    Porcine Pancreas  

 Rice Second Order Analysis   Wheat Second Order Analysis 

Hours 0.1 IU/ml 1 IU/ml 
10 

IU/ml   Hours 0.1 IU/ml 1 IU/ml 
10 

IU/ml 

1 8.0E-04 1.5E-03 2.5E-03  1 1.0E-04 5.5E-04 1.2E-03 

2 1.0E-03 1.9E-03 3.1E-03  2 1.6E-04 8.2E-04 1.8E-03 

4 1.3E-03 2.2E-03 4.3E-03  4 2.3E-04 1.1E-03 2.8E-03 

8 1.9E-03 3.2E-03 7.0E-03  8 4.0E-04 1.8E-03 4.0E-03 

16 2.3E-03 3.8E-03 8.3E-03  16 4.7E-04 3.1E-03 6.2E-03 

24 2.5E-03 4.1E-03 1.3E-02  24 5.8E-04 4.0E-03 9.1E-03 

36 3.2E-03 6.5E-03 1.5E-02  36 8.3E-04 4.6E-03 1.3E-02 

         

slope = 3.3E-05 6.4E-05 1.3E-04  slope = 5.3E-06 1.9E-05 1.2E-04 

R2 = 0.9654 0.9216 0.9590  R2 = 0.9071 0.9603 0.9521 

 

 

 Porcine Pancreas    Porcine Pancreas  

 Barley Second Order Analysis   Tapioca Second Order Analysis 

Hours 0.1 IU/ml 1 IU/ml 
10 

IU/ml   Hours 0.1 IU/ml 1 IU/ml 
10 

IU/ml 

1 1.3E-04 4.6E-04 8.4E-04  1 1.3E-04 4.7E-04 1.1E-03 

2 2.4E-04 7.0E-04 1.8E-03  2 2.0E-04 7.5E-04 2.4E-03 

4 3.8E-04 1.0E-03 3.0E-03  4 3.8E-04 1.3E-03 4.2E-03 

8 5.4E-04 1.7E-03 5.1E-03  8 6.0E-04 2.0E-03 7.3E-03 

16 9.3E-04 2.4E-03 8.2E-03  16 1.0E-03 3.1E-03 1.3E-02 

24 1.3E-03 3.1E-03 8.9E-03  24 1.3E-03 3.2E-03 1.9E-02 

36 1.5E-03 4.0E-03 9.2E-03  36 1.6E-03 3.8E-03 2.2E-02 

         

slope = 1.5E-05 4.0E-05 1.0E-04  slope = 7.1E-06 4.4E-05 9.4E-05 

R2 = 0.9901 0.9685 0.9739  R2 = 0.9375 0.9652 0.8874 
 

  
Values are plotted against time in hours. Values represent -1/106+1/(106-[P]). Values are in 

units of mg-1. The slope is in units of mg-1hours-1. 
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 Human Saliva    Human Saliva  

 Potato Second Order Analysis   

Waxy Maize Second Order 
Analysis 

TC 0.1 IU 1 IU 10 IU  Hours 0.1 IU/ml 1 IU/ml 10 IU/ml 

1 5.0E-05 1.1E-04 1.8E-04  1 1.9E-04 6.0E-04 2.2E-03 

2 1.1E-04 1.8E-04 3.2E-04  2 3.1E-04 1.7E-03 4.9E-03 

4 1.4E-04 3.0E-04 5.4E-04  4 7.1E-04 3.2E-03 8.9E-03 

8 2.2E-04 4.3E-04 9.1E-04  8 1.5E-03 7.0E-03 1.8E-02 

16 2.8E-04 5.8E-04 1.2E-03  16 2.6E-03 1.0E-02 2.6E-02 

24 3.7E-04 7.5E-04 1.7E-03  24 3.4E-03 1.7E-02 3.1E-02 

36 4.6E-04 9.6E-04 2.0E-03  36 4.6E-03 2.0E-02 3.4E-02 

         

slope = 1.1E-05 2.3E-05 5.3E-05  slope = 1.3E-04 5.7E-04 9.3E-04 

R2 = 0.9571 0.9648 0.9553  R2 = 0.9833 0.9700 0.8914 

 

 

 Human Saliva    Human Saliva  

 Maize Second Order Analysis   

Amylomaize-7 Second Order 
Analysis 

Hours 0.1 IU/ml 1 IU/ml 10 IU/ml  Hours 0.1 IU/ml 1 IU/ml 10 IU/ml 

1 6.4E-05 3.5E-04 1.0E-03  1 6.6E-05 1.8E-04 3.9E-04 

2 2.7E-04 1.1E-03 2.3E-03  2 1.3E-04 3.3E-04 6.6E-04 

4 5.0E-04 1.8E-03 3.3E-03  4 1.7E-04 5.4E-04 1.1E-03 

8 1.0E-03 3.1E-03 6.2E-03  8 3.3E-04 7.9E-04 1.5E-03 

16 1.6E-03 4.1E-03 8.3E-03  16 4.8E-04 1.1E-03 2.2E-03 

24 2.4E-03 5.1E-03 1.3E-02  24 5.9E-04 1.3E-03 2.6E-03 

36 2.9E-03 6.3E-03 1.3E-02  36 7.5E-04 1.4E-03 3.1E-03 

         

slope = 8.2E-05 1.6E-04 3.6E-04  slope = 1.9E-05 3.5E-05 7.5E-05 

R2 = 0.9726 0.9349 0.9025  R2 = 0.9623 0.8927 0.9273 
 

  
Values are plotted against time in hours. Values represent -1/106+1/(106-[P]). Values are in 

units of mg-1. The slope is in units of mg-1hours-1. 
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 Human Saliva    Human Saliva  

 Rice Second Order Analysis   Wheat Second Order Analysis 

Hours 0.1 IU/ml 1 IU/ml 10 IU/ml  Hours 0.1 IU/ml 1 IU/ml 10 IU/ml 

1 9.6E-04 2.7E-03 5.4E-03  1 1.9E-04 1.0E-03 1.9E-03 

2 1.3E-03 3.2E-03 7.3E-03  2 2.9E-04 1.5E-03 3.1E-03 

4 1.7E-03 3.8E-03 9.2E-03  4 3.5E-04 2.0E-03 5.2E-03 

8 2.6E-03 5.5E-03 1.1E-02  8 4.9E-04 2.8E-03 8.0E-03 

16 3.7E-03 7.5E-03 1.9E-02  16 6.2E-04 4.1E-03 1.4E-02 

24 4.1E-03 1.0E-02 3.6E-02  24 7.3E-04 5.4E-03 1.8E-02 

36 4.9E-03 1.2E-02 6.1E-02  36 8.9E-04 6.0E-03 2.0E-02 

         

slope = 1.1E-04 2.6E-04 1.5E-03  slope = 1.9E-05 1.4E-04 5.3E-04 

R2 = 0.9285 0.9750 0.9588  R2 = 0.9515 0.9489 0.9294 

 

 

 Human Saliva    Human Saliva  

 Barley Second Order Analysis   Tapioca Second Order Analysis 

Hours 0.1 IU/ml 1 IU/ml 10 IU/ml  Hours 0.1 IU/ml 1 IU/ml 
10 

IU/ml 

1 2.2E-04 7.3E-04 3.5E-03  1 2.0E-04 9.1E-04 3.2E-03 

2 4.2E-04 1.2E-03 7.3E-03  2 4.0E-04 1.9E-03 6.2E-03 

4 5.9E-04 1.9E-03 1.6E-02  4 7.9E-04 3.0E-03 9.9E-03 

8 1.0E-03 3.3E-03 3.8E-02  8 1.3E-03 6.3E-03 1.8E-02 

16 1.9E-03 5.7E-03 1.0E+00  16 2.6E-03 9.7E-03 3.8E-02 

24 2.7E-03 6.9E-03 -1.4E-01  24 3.6E-03 1.2E-02 6.7E-02 

36 3.7E-03 8.0E-03 -9.1E-02  36 4.6E-03 1.4E-02 1.1E-01 

         

slope = 1.0E-04 2.1E-04 5.0E-03  slope = 1.3E-04 3.9E-04 3.1E-03 

R2 = 0.9960 0.9392 0.9961  R2 = 0.9832 0.9351 0.9840 

 

  
Values are plotted against time in hours. Values represent -1/106+1/(106-[P]). Values are in 

units of mg-1. The slope is in units of mg-1hours-1. 

 

Highlighted values are omitted from analysis as their values were too close to or surpassed 106 

mg to be evaluated accurately. 
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 Bacillus amyloliquefaciens   Bacillus amyloliquefaciens 

 Potato Second Order Analysis   

Waxy Maize Second Order 
Analysis 

Hours 0.1 IU/ml 1 IU/ml 10 IU/ml  Hours 0.1 IU/ml 1 IU/ml 10 IU/ml 

1 4.4E-05 8.8E-05 1.2E-04  1 1.8E-04 3.1E-04 7.7E-04 

2 6.0E-05 1.0E-04 1.4E-04  2 2.6E-04 4.2E-04 1.1E-03 

4 8.6E-05 1.3E-04 1.9E-04  4 3.2E-04 6.0E-04 2.5E-03 

8 9.5E-05 1.8E-04 2.5E-04  8 4.4E-04 9.4E-04 3.3E-03 

16 1.1E-04 2.1E-04 3.1E-04  16 5.7E-04 1.5E-03 5.1E-03 

24 1.1E-04 2.2E-04 3.7E-04  24 6.0E-04 1.9E-03 6.6E-03 

36 1.2E-04 2.4E-04 4.8E-04  36 8.3E-04 2.5E-03 8.7E-03 

         

slope = 1.8E-06 4.2E-06 9.9E-06  slope = 1.7E-05 6.3E-05 2.2E-04 

R2 = 0.7053 0.8522 0.9732  R2 = 0.9462 0.9878 0.9740 

 

 

 Bacillus amyloliquefaciens   Bacillus amyloliquefaciens 

 Maize Second Order Analysis   

Amylomaize-7 Second Order 
Analysis 

Hours 0.1 IU/ml 1 IU/ml 10 IU/ml  Hours 0.1 IU/ml 1 IU/ml 10 IU/ml 

1 1.4E-04 2.7E-04 5.6E-04  1 6.0E-05 9.2E-05 1.4E-04 

2 1.8E-04 3.8E-04 7.8E-04  2 7.4E-05 1.2E-04 2.1E-04 

4 2.7E-04 6.4E-04 1.1E-03  4 1.0E-04 2.0E-04 3.0E-04 

8 3.7E-04 9.0E-04 2.2E-03  8 1.4E-04 2.6E-04 4.9E-04 

16 5.0E-04 1.4E-03 2.8E-03  16 1.8E-04 3.8E-04 6.6E-04 

24 7.0E-04 1.8E-03 4.0E-03  24 2.1E-04 4.6E-04 8.2E-04 

36 8.5E-04 2.2E-03 5.1E-03  36 2.4E-04 6.0E-04 1.1E-03 

         

slope = 2.0E-05 5.6E-05 1.3E-04  slope = 5.0E-06 1.4E-05 2.7E-05 

R2 = 0.9784 0.9755 0.9772  R2 = 0.9125 0.9749 0.9738 
 

  
Values are plotted against time in hours. Values represent -1/106+1/(106-[P]). Values are in 

units of mg-1. The slope is in units of mg-1hours-1. 
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 Bacillus amyloliquefaciens   Bacillus amyloliquefaciens 

 Rice Second Order Analysis   Wheat Second Order Analysis 

Hours 0.1 IU/ml 1 IU/ml 10 IU/ml  Hours 0.1 IU/ml 1 IU/ml 10 IU/ml 

1 6.4E-04 8.7E-04 1.3E-03  1 1.4E-05 1.0E-04 4.1E-04 

2 7.5E-04 1.1E-03 1.5E-03  2 3.8E-05 1.1E-04 4.6E-04 

4 8.3E-04 1.2E-03 1.7E-03  4 5.7E-05 2.2E-04 6.8E-04 

8 9.6E-04 1.6E-03 2.4E-03  8 1.3E-04 3.6E-04 1.1E-03 

16 1.2E-03 1.8E-03 3.1E-03  16 1.8E-04 6.4E-04 1.9E-03 

24 1.4E-03 2.2E-03 4.2E-03  24 3.2E-04 9.4E-04 2.2E-03 

36 1.6E-03 2.5E-03 4.5E-03  36 4.4E-04 1.7E-03 2.7E-03 

         

slope = 2.8E-05 4.4E-05 9.6E-05  slope = 1.2E-05 4.4E-05 6.8E-05 

R2 = 0.9723 0.9319 0.9467  R2 = 0.9917 0.9819 0.9505 

 

 

 Bacillus amyloliquefaciens   Bacillus amyloliquefaciens 

 Barley Second Order Analysis   Tapioca Second Order Analysis 

Hours 0.1 IU/ml 1 IU/ml 10 IU/ml  Hours 0.1 IU/ml 1 IU/ml 10 IU/ml 

1 2.9E-05 5.0E-05 1.1E-04  1 4.6E-05 1.1E-04 1.6E-04 

2 2.5E-05 9.5E-05 3.0E-04  2 5.9E-05 1.5E-04 3.2E-04 

4 4.3E-05 1.5E-04 5.5E-04  4 8.8E-05 2.7E-04 5.4E-04 

8 7.5E-05 3.0E-04 9.3E-04  8 1.3E-04 4.2E-04 1.2E-03 

16 1.5E-04 5.1E-04 1.5E-03  16 1.8E-04 7.0E-04 1.7E-03 

24 2.3E-04 8.9E-04 2.0E-03  24 2.9E-04 1.0E-03 2.7E-03 

36 3.3E-04 1.2E-03 2.4E-03  36 3.7E-04 1.2E-03 3.5E-03 

         

slope = 8.8E-06 3.3E-05 6.5E-05  slope = 9.4E-06 3.3E-05 9.7E-05 

R2 = 0.9976 0.9920 0.9545  R2 = 0.9919 0.9760 0.9846 

 

  
Values are plotted against time in hours. Values represent -1/106+1/(106-[P]). Values are in 

units of mg-1. The slope is in units of mg-1hours-1. 
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APPENDIX E: EXPONENTIAL INTEGRAL ANALYSIS 
[𝐸𝑆] = 𝐾[𝐸]𝑠𝑜𝑙𝑛[𝑆]𝑎𝑣𝑎𝑖𝑙 ≈ 𝐾[𝐸]𝑡𝑜𝑡[𝑆]𝑎𝑣𝑎𝑖𝑙 

[𝑆]𝑎𝑣𝑎𝑖𝑙 = 𝐶([𝑆]𝑡𝑜𝑡)[𝑆]𝑡𝑜𝑡 − [𝐸𝑆] 

𝐶([𝑆]𝑡𝑜𝑡) = 𝐶0 ∗ (
𝐶𝑚𝑖𝑛

𝐶0
)

[𝑃]/106

 

𝑑[𝑃]

𝑑𝑡
= 𝑘𝑐𝑎𝑡[𝐸𝑆] = 𝐾[𝐸]𝑡𝑜𝑡[𝑆]𝑎𝑣𝑎𝑖𝑙 

[𝑆]𝑎𝑣𝑎𝑖𝑙 = 𝐶0[𝑆]𝑡𝑜𝑡 (
𝐶𝑚𝑖𝑛

𝐶0
)

[𝑃]/106

− [𝐸𝑆] 

[𝑆]𝑎𝑣𝑎𝑖𝑙 = 𝐶0[𝑆]𝑡𝑜𝑡 (
𝐶𝑚𝑖𝑛

𝐶0
)

[𝑃]/106

− 𝐾[𝐸]𝑡𝑜𝑡[𝑆]𝑎𝑣𝑎𝑖𝑙 

[𝑆]𝑎𝑣𝑎𝑖𝑙 =
𝐶0[𝑆]𝑡𝑜𝑡 (

𝐶𝑚𝑖𝑛

𝐶0 )
[𝑃]/106

1 + 𝐾[𝐸]𝑡𝑜𝑡
 

𝑑[𝑃]

𝑑𝑡
= 𝑘𝑐𝑎𝑡𝐾[𝐸]𝑡𝑜𝑡[𝑆]𝑎𝑣𝑎𝑖𝑙 

𝑑[𝑃]

𝑑𝑡
=

𝑘𝑐𝑎𝑡𝐾[𝐸]𝑡𝑜𝑡𝐶0[𝑆]𝑡𝑜𝑡 (
𝐶𝑚𝑖𝑛

𝐶0 )
[𝑃]/106

1 + 𝐾[𝐸]𝑡𝑜𝑡
 

𝑑[𝑃]

[𝑆]𝑡𝑜𝑡
(

𝐶𝑚𝑖𝑛

𝐶0
)

−[𝑃]/106

=
𝑘𝑐𝑎𝑡𝐾[𝐸]𝑡𝑜𝑡𝐶0

1 + 𝐾[𝐸]𝑡𝑜𝑡
𝑑𝑡 

𝑑[𝑃]

(106 − [𝑃])
(

𝐶𝑚𝑖𝑛

𝐶0
)

−[𝑃]/106

=
𝑘𝑐𝑎𝑡𝐾[𝐸]𝑡𝑜𝑡𝐶0

1 + 𝐾[𝐸]𝑡𝑜𝑡
𝑑𝑡 

− (
𝐶0

𝐶𝑚𝑖𝑛
) 𝐸𝑖 (

([𝑃] − 106) ∗ ln (
𝐶0

𝐶𝑚𝑖𝑛
)

106
) + (

𝐶0

𝐶𝑚𝑖𝑛
) 𝐸𝑖 (−106 ∗ ln (

𝐶0

𝐶𝑚𝑖𝑛
)) =

𝑘𝑐𝑎𝑡𝐾[𝐸]𝑡𝑜𝑡𝐶0

1 + 𝐾[𝐸]𝑡𝑜𝑡
𝑡

= 𝛷𝑡 

The above equations describe the derivation of the exponential integral model. Graphs 

depicting the evaluation according to this model are shown below. A better explanation of this 

derivation can be seen in Chapter 4. 
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Values are plotted against time in hours. Values represent − (
𝐶0

𝐶𝑚𝑖𝑛
) 𝐸𝑖 (

(106−[𝑃])∗ln(
𝐶0

𝐶𝑚𝑖𝑛
)

106
) +

(
𝐶0

𝐶𝑚𝑖𝑛
) 𝐸𝑖 (−106 ∗ ln (

𝐶0

𝐶𝑚𝑖𝑛
)). For this particular set, a 

𝐶0

𝐶𝑚𝑖𝑛
 value was assigned to 20. Y-values are 

unitless. 
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Values are plotted against time in hours. Values represent − (
𝐶0

𝐶𝑚𝑖𝑛
) 𝐸𝑖 (

(106−[𝑃])∗ln(
𝐶0

𝐶𝑚𝑖𝑛
)

106
) +

(
𝐶0

𝐶𝑚𝑖𝑛
) 𝐸𝑖 (−106 ∗ ln (

𝐶0

𝐶𝑚𝑖𝑛
)). For this particular set, a 

𝐶0

𝐶𝑚𝑖𝑛
 value was assigned to 20. Y-values 

are unitless. 
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Values are plotted against time in hours. Values represent − (
𝐶0

𝐶𝑚𝑖𝑛
) 𝐸𝑖 (

(106−[𝑃])∗ln(
𝐶0

𝐶𝑚𝑖𝑛
)

106
) +

(
𝐶0

𝐶𝑚𝑖𝑛
) 𝐸𝑖 (−106 ∗ ln (

𝐶0

𝐶𝑚𝑖𝑛
)). For this particular set, a 

𝐶0

𝐶𝑚𝑖𝑛
 value was assigned to 20. Y-values are 

unitless. 



102  

0

0.5

1

1.5

2

2.5

3

3.5

4

0 10 20 30 40

Rice TC Exponential Integral

PPA

0

0.5

1

1.5

2

2.5

3

0 10 20 30 40

Wheat TC Exponential Integral

PPA

0

0.5

1

1.5

2

2.5

0 10 20 30 40

Barley TC Exponential Integral

PPA

0

1

2

3

4

5

6

0 10 20 30 40

Tapioca TC Exponential 

Integral

PPA

Values are plotted against time in hours. Values represent − (
𝐶0

𝐶𝑚𝑖𝑛
) 𝐸𝑖 (

(106−[𝑃])∗ln(
𝐶0

𝐶𝑚𝑖𝑛
)

106
) +

(
𝐶0

𝐶𝑚𝑖𝑛
) 𝐸𝑖 (−106 ∗ ln (

𝐶0

𝐶𝑚𝑖𝑛
)). For this particular set, a 

𝐶0

𝐶𝑚𝑖𝑛
 value was assigned to 20. Y-values are 

unitless. 
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Values are plotted against time in hours. Values represent − (
𝐶0

𝐶𝑚𝑖𝑛
) 𝐸𝑖 (

(106−[𝑃])∗ln(
𝐶0

𝐶𝑚𝑖𝑛
)

106
) +

(
𝐶0

𝐶𝑚𝑖𝑛
) 𝐸𝑖 (−106 ∗ ln (

𝐶0

𝐶𝑚𝑖𝑛
)). For this particular set, a 

𝐶0

𝐶𝑚𝑖𝑛
 value was assigned to 20. Y-values 

are unitless. 
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Values are plotted against time in hours. Values represent − (
𝐶0

𝐶𝑚𝑖𝑛
) 𝐸𝑖 (

(106−[𝑃])∗ln(
𝐶0

𝐶𝑚𝑖𝑛
)

106
) +

(
𝐶0

𝐶𝑚𝑖𝑛
) 𝐸𝑖 (−106 ∗ ln (

𝐶0

𝐶𝑚𝑖𝑛
)). For this particular set, a 

𝐶0

𝐶𝑚𝑖𝑛
 value was assigned to 20. Y-values 

are unitless. The last 3 datapoints for barley are omitted due to their proximity to 106 mg. 
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Values are plotted against time in hours. Values represent − (
𝐶0

𝐶𝑚𝑖𝑛
) 𝐸𝑖 (

(106−[𝑃])∗ln(
𝐶0

𝐶𝑚𝑖𝑛
)

106
) +

(
𝐶0

𝐶𝑚𝑖𝑛
) 𝐸𝑖 (−106 ∗ ln (

𝐶0

𝐶𝑚𝑖𝑛
)). For this particular set, a 

𝐶0

𝐶𝑚𝑖𝑛
 value was assigned to 20. Y-values are 

unitless. 
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Values are plotted against time in hours. Values represent − (
𝐶0

𝐶𝑚𝑖𝑛
) 𝐸𝑖 (

(106−[𝑃])∗ln(
𝐶0

𝐶𝑚𝑖𝑛
)

106
) +

(
𝐶0

𝐶𝑚𝑖𝑛
) 𝐸𝑖 (−106 ∗ ln (

𝐶0

𝐶𝑚𝑖𝑛
)). For this particular set, a 

𝐶0

𝐶𝑚𝑖𝑛
 value was assigned to 20. Y-values are 

unitless. 
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 Bacillus licheniformis   Bacillus licheniformis 

 Potato Exponential Integral   

Waxy Maize Exponential 
Integral 

Hours 0.1 IU/ml 
1 

IU/ml 10 IU/ml   Hours 0.1 IU/ml 
1 

IU/ml 10 IU/ml 

1 0.01 0.02 0.03  1 0.03 0.11 0.18 

2 0.02 0.03 0.04  2 0.05 0.18 0.36 

4 0.02 0.03 0.05  4 0.09 0.35 0.65 

8 0.03 0.05 0.10  8 0.16 0.69 1.55 

16 0.05 0.07 0.13  16 0.25 1.50 3.34 

24 0.05 0.09 0.20  24 0.36 1.79 5.30 

36 0.07 0.12 0.30  36 0.52 3.22 8.79 

         

slope = 0.0016 0.0028 0.0075  slope = 0.0136 0.0857 0.2434 

R2 = 0.9599 0.9842 0.9910  R2 = 0.9979 0.9859 0.9948 

 

 Bacillus licheniformis   Bacillus licheniformis 

 Maize Exponential Integral   

Amylomaize-7 Exponential 
Integral 

Hours 0.1 IU/ml 
1 

IU/ml 10 IU/ml   Hours 0.1 IU/ml 1 IU/ml 10 IU/ml 

1 0.03 0.08 0.21  1 0.01 0.03 0.06 

2 0.05 0.14 0.31  2 0.02 0.04 0.09 

4 0.09 0.22 0.55  4 0.03 0.07 0.13 

8 0.13 0.35 1.05  8 0.04 0.10 0.24 

16 0.18 0.46 1.84  16 0.06 0.13 0.45 

24 0.30 0.85 2.50  24 0.09 0.18 0.52 

36 0.41 1.11 3.35  36 0.11 0.22 0.77 

         

slope = 0.0106 0.0291 0.0911  slope = 0.0027 0.0052 0.0202 

R2 = 0.9899 0.9823 0.9900  R2 = 0.9700 0.9603 0.9837 

 

  Values are presented against time in hours. Values represent − (
𝐶0

𝐶𝑚𝑖𝑛
) 𝐸𝑖 (

(106−[𝑃])∗ln(
𝐶0

𝐶𝑚𝑖𝑛
)

106
) +

(
𝐶0

𝐶𝑚𝑖𝑛
) 𝐸𝑖 (−106 ∗ ln (

𝐶0

𝐶𝑚𝑖𝑛
)). For this particular set, a 

𝐶0

𝐶𝑚𝑖𝑛
 value was assigned to 20. Values are 

unitless. The slope is in units of H-1. 
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 Bacillus licheniformis   Bacillus licheniformis 

 Rice Exponential Integral   Wheat Exponential Integral 

Hours 0.1 IU/ml 
1 

IU/ml 10 IU/ml   Hours 0.1 IU/ml 
1 

IU/ml 10 IU/ml 

1 0.09 0.18 0.26  1 0.02 0.04 0.10 

2 0.13 0.24 0.40  2 0.03 0.08 0.20 

4 0.16 0.30 0.67  4 0.05 0.13 0.35 

8 0.23 0.46 0.91  8 0.09 0.21 1.03 

16 0.30 0.64 1.52  16 0.14 0.41 2.03 

24 0.36 0.90 2.36  24 0.18 0.59 2.82 

36 0.39 1.14 4.98  36 0.24 0.77 4.14 

         

slope = 0.0083 0.0274 0.1232  slope = 0.0063 0.0212 0.1171 

R2 = 0.9048 0.9894 0.9432  R2 = 0.9782 0.9930 0.9962 

 

 Bacillus licheniformis   Bacillus licheniformis 

 Barley Exponential Integral   Tapioca Exponential Integral 

Hours 0.1 IU/ml 
1 

IU/ml 10 IU/ml   Hours 0.1 IU/ml 
1 

IU/ml 10 IU/ml 

1 0.01 0.03 0.04  1 0.02 0.06 0.10 

2 0.02 0.05 0.14  2 0.03 0.12 0.19 

4 0.04 0.11 0.42  4 0.05 0.22 0.41 

8 0.07 0.23 0.98  8 0.08 0.46 0.74 

16 0.11 0.43 1.71  16 0.14 0.70 1.93 

24 0.20 0.69 3.65  24 0.19 1.03 2.69 

36 0.26 0.88 4.13  36 0.21 1.29 3.05 

         

slope = 0.0072 0.0254 0.1258  slope = 0.0059 0.0357 0.0920 

R2 = 0.9877 0.9884 0.9620  R2 = 0.9452 0.9766 0.9522 

 

  Values are presented against time in hours. Values represent − (
𝐶0

𝐶𝑚𝑖𝑛
) 𝐸𝑖 (

(106−[𝑃])∗ln(
𝐶0

𝐶𝑚𝑖𝑛
)

106
) +

(
𝐶0

𝐶𝑚𝑖𝑛
) 𝐸𝑖 (−106 ∗ ln (

𝐶0

𝐶𝑚𝑖𝑛
)). For this particular set, a 

𝐶0

𝐶𝑚𝑖𝑛
 value was assigned to 20. Values are 

unitless. The slope is in units of H-1. 
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 Porcine Pancreas    Porcine Pancreas  

 Potato Exponential Integral   

Waxy Maize Exponential 
Integral 

Hours 0.1 IU/ml 
1 

IU/ml 
10 

IU/ml   Hours 0.1 IU/ml 
1 

IU/ml 
10 

IU/ml 

1 0.27 0.28 0.28  1 0.03 0.11 0.19 

2 0.27 0.28 0.29  2 0.05 0.27 0.35 

4 0.28 0.30 0.30  4 0.09 0.43 0.67 

8 0.28 0.31 0.32  8 0.17 0.93 1.43 

16 0.30 0.32 0.39  16 0.33 1.43 2.45 

24 0.30 0.34 0.41  24 0.51 2.15 3.92 

36 0.31 0.36 0.46  36 0.65 2.67 6.03 

         

slope = 0.0010 0.0023 0.0054  slope = 0.0024 0.0184 0.0743 

R2 = 0.8926 0.9612 0.9700  R2 = 0.9924 0.9882 0.9790 

 

 Porcine Pancreas    Porcine Pancreas  

 Maize Exponential Integral   

Amylomaize-7 Exponential 
Integral 

Hours 0.1 IU/ml 
1 

IU/ml 
10 

IU/ml   Hours 0.1 IU/ml 1 IU/ml 10 IU/ml 

1 0.01 0.04 0.12  1 0.01 0.02 0.05 

2 0.03 0.08 0.25  2 0.01 0.03 0.07 

4 0.05 0.19 0.45  4 0.01 0.04 0.11 

8 0.15 0.33 0.76  8 0.03 0.06 0.18 

16 0.22 0.63 1.29  16 0.04 0.11 0.25 

24 0.30 0.80 1.55  24 0.06 0.13 0.30 

36 0.29 0.85 0.54  36 0.08 0.15 0.44 

         

slope = 0.0088 0.0248 0.0625  slope = 0.0004 0.0020 0.0040 

R2 = 0.8643 0.9100 0.9693  R2 = 0.9150 0.9794 0.9514 

 

  Values are presented against time in hours. Values represent − (
𝐶0

𝐶𝑚𝑖𝑛
) 𝐸𝑖 (

(106−[𝑃])∗ln(
𝐶0

𝐶𝑚𝑖𝑛
)

106
) +

(
𝐶0

𝐶𝑚𝑖𝑛
) 𝐸𝑖 (−106 ∗ ln (

𝐶0

𝐶𝑚𝑖𝑛
)). For this particular set, a 

𝐶0

𝐶𝑚𝑖𝑛
 value was assigned to 20. Values are 

unitless. The slope is in units of H-1. 
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 Porcine Pancreas    Porcine Pancreas  

 Rice Exponential Integral   Wheat Exponential Integral 

Hours 0.1 IU/ml 
1 

IU/ml 
10 

IU/ml   Hours 0.1 IU/ml 
1 

IU/ml 
10 

IU/ml 

1 0.09 0.19 0.33  1 0.01 0.06 0.14 

2 0.12 0.23 0.43  2 0.02 0.09 0.23 

4 0.16 0.28 0.64  4 0.03 0.14 0.39 

8 0.25 0.44 1.19  8 0.04 0.23 0.58 

16 0.30 0.55 1.47  16 0.05 0.43 1.02 

24 0.33 0.61 2.67  24 0.06 0.58 1.66 

36 0.44 1.07 3.23  36 0.10 0.69 2.60 

         

slope = 0.0041 0.0094 0.0229  slope = 0.0006 0.0022 0.0188 

R2 = 0.9742 0.9404 0.9551  R2 = 0.9041 0.9650 0.9683 

 

 Porcine Pancreas    Porcine Pancreas  

 Barley Exponential Integral   Tapioca Exponential Integral 

Hours 0.1 IU/ml 
1 

IU/ml 
10 

IU/ml   Hours 0.1 IU/ml 
1 

IU/ml 
10 

IU/ml 

1 0.01 0.05 0.10  1 0.01 0.05 0.13 

2 0.03 0.08 0.22  2 0.02 0.09 0.31 

4 0.04 0.12 0.42  4 0.04 0.15 0.63 

8 0.06 0.22 0.80  8 0.07 0.26 1.25 

16 0.11 0.32 1.45  16 0.12 0.42 2.66 

24 0.15 0.44 1.62  24 0.16 0.44 4.11 

36 0.19 0.59 1.68  36 0.20 0.56 5.04 

         

slope = 0.0017 0.0050 0.0152  slope = 0.0008 0.0055 0.0143 

R2 = 0.9922 0.9762 0.9892  R2 = 0.9404 0.9754 0.9137 

 

  Values are presented against time in hours. Values represent − (
𝐶0

𝐶𝑚𝑖𝑛
) 𝐸𝑖 (

(106−[𝑃])∗ln(
𝐶0

𝐶𝑚𝑖𝑛
)

106
) +

(
𝐶0

𝐶𝑚𝑖𝑛
) 𝐸𝑖 (−106 ∗ ln (

𝐶0

𝐶𝑚𝑖𝑛
)). For this particular set, a 

𝐶0

𝐶𝑚𝑖𝑛
 value was assigned to 20. Values are 

unitless. The slope is in units of H-1. 
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 Human Saliva    Human Saliva  

 Potato Exponential Integral   

Waxy Maize Exponential 
Integral 

TC 0.1 IU 1 IU 10 IU   Hours 0.1 IU/ml 
1 

IU/ml 
10 

IU/ml 

1 0.01 0.01 0.02  1 0.02 0.07 0.28 

2 0.01 0.02 0.04  2 0.03 0.21 0.76 

4 0.01 0.03 0.06  4 0.08 0.45 1.62 

8 0.02 0.05 0.11  8 0.19 1.18 3.83 

16 0.03 0.07 0.15  16 0.34 1.88 5.92 

24 0.04 0.09 0.22  24 0.47 3.62 7.17 

36 0.05 0.11 0.26  36 0.69 4.43 8.00 

         

slope = 0.0012 0.0028 0.0070  slope = 0.0193 0.1303 0.2284 

R2 = 0.9614 0.9722 0.9685  R2 = 0.9963 0.9784 0.8989 

 

 Human Saliva    Human Saliva  

 Maize Exponential Integral   

Amylomaize-7 Exponential 
Integral 

Hours 0.1 IU/ml 
1 

IU/ml 
10 

IU/ml   Hours 0.1 IU/ml 1 IU/ml 10 IU/ml 

1 0.01 0.04 0.12  1 0.01 0.02 0.04 

2 0.03 0.13 0.30  2 0.01 0.04 0.07 

4 0.06 0.23 0.46  4 0.02 0.06 0.13 

8 0.12 0.42 1.02  8 0.04 0.09 0.19 

16 0.20 0.60 1.47  16 0.05 0.13 0.29 

24 0.31 0.80 2.65  24 0.07 0.15 0.35 

36 0.39 1.05 2.60  36 0.09 0.18 0.43 

         

slope = 0.0113 0.0278 0.0771  slope = 0.0022 0.0043 0.0108 

R2 = 0.9848 0.9683 0.9161  R2 = 0.9684 0.9085 0.9508 

 

  Values are presented against time in hours. Values represent − (
𝐶0

𝐶𝑚𝑖𝑛
) 𝐸𝑖 (

(106−[𝑃])∗ln(
𝐶0

𝐶𝑚𝑖𝑛
)

106
) +

(
𝐶0

𝐶𝑚𝑖𝑛
) 𝐸𝑖 (−106 ∗ ln (

𝐶0

𝐶𝑚𝑖𝑛
)). For this particular set, a 

𝐶0

𝐶𝑚𝑖𝑛
 value was assigned to 20. Values are 

unitless. The slope is in units of H-1. 
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 Human Saliva    Human Saliva  

 Rice Exponential Integral   Wheat Exponential Integral 

Hours 0.1 IU/ml 
1 

IU/ml 
10 

IU/ml   Hours 0.1 IU/ml 
1 

IU/ml 
10 

IU/ml 

1 0.11 0.36 0.85  1 0.02 0.12 0.24 

2 0.15 0.44 1.25  2 0.03 0.18 0.42 

4 0.22 0.55 1.70  4 0.04 0.25 0.82 

8 0.35 0.88 2.23  8 0.05 0.38 1.40 

16 0.53 1.29 4.10  16 0.07 0.60 2.75 

24 0.60 1.88 8.34  24 0.08 0.85 4.03 

36 0.76 2.29 13.83  36 0.10 0.97 4.31 

         

slope = 0.0183 0.0570 0.3610  slope = 0.0022 0.0253 0.1261 

R2 = 0.9517 0.9856 0.9670  R2 = 0.9588 0.9665 0.9422 

 

 Human Saliva    Human Saliva  

 Barley Exponential Integral   Tapioca Exponential Integral 

Hours 0.1 IU/ml 
1 

IU/ml 10 IU/ml   Hours 0.1 IU/ml 
1 

IU/ml 
10 

IU/ml 

1 0.02 0.08 0.49  1 0.02 0.11 0.45 

2 0.05 0.14 1.25  2 0.04 0.24 1.01 

4 0.07 0.24 3.47  4 0.09 0.41 1.85 

8 0.12 0.46 8.93  8 0.16 1.03 3.93 

16 0.23 0.91 60.83  16 0.35 1.80 8.86 

24 0.37 1.16 13.43  24 0.52 2.45 14.93 

36 0.53 1.40 1.68  36 0.70 2.92 22.13 

         

slope = 0.0145 0.0396 1.2270  slope = 0.0199 0.0841 0.6282 

R2 = 0.9988 0.9627 0.9931  R2 = 0.9945 0.9606 0.9973 

 

  Values are presented against time in hours. Values represent − (
𝐶0

𝐶𝑚𝑖𝑛
) 𝐸𝑖 (

(106−[𝑃])∗ln(
𝐶0

𝐶𝑚𝑖𝑛
)

106
) +

(
𝐶0

𝐶𝑚𝑖𝑛
) 𝐸𝑖 (−106 ∗ ln (

𝐶0

𝐶𝑚𝑖𝑛
)). For this particular set, a 

𝐶0

𝐶𝑚𝑖𝑛
 value was assigned to 20. Values are 

unitless. The slope is in units of H-1. 
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 Bacillus amyloliquefaciens   Bacillus amyloliquefaciens 

 Potato Exponential Integral   

Waxy Maize Exponential 
Integral 

Hours 0.1 IU/ml 
1 

IU/ml 10 IU/ml   Hours 0.1 IU/ml 
1 

IU/ml 10 IU/ml 

1 0.00 0.01 0.01  1 0.02 0.03 0.09 

2 0.01 0.01 0.02  2 0.03 0.05 0.13 

4 0.01 0.01 0.02  4 0.03 0.07 0.34 

8 0.01 0.02 0.03  8 0.05 0.11 0.46 

16 0.01 0.02 0.03  16 0.06 0.18 0.80 

24 0.01 0.02 0.04  24 0.07 0.24 1.09 

36 0.01 0.03 0.05  36 0.10 0.33 1.57 

         

slope = 0.0002 0.0005 0.0011  slope = 0.0020 0.0085 0.0414 

R2 = 0.7069 0.8547 0.9757  R2 = 0.9515 0.9953 0.9928 

 

 Bacillus amyloliquefaciens   Bacillus amyloliquefaciens 

 Maize Exponential Integral   

Amylomaize-7 Exponential 
Integral 

Hours 0.1 IU/ml 
1 

IU/ml 10 IU/ml   Hours 0.1 IU/ml 1 IU/ml 10 IU/ml 

1 0.01 0.03 0.06  1 0.01 0.01 0.01 

2 0.02 0.04 0.09  2 0.01 0.01 0.02 

4 0.03 0.07 0.13  4 0.01 0.02 0.03 

8 0.04 0.11 0.28  8 0.02 0.03 0.06 

16 0.06 0.17 0.38  16 0.02 0.04 0.08 

24 0.08 0.22 0.59  24 0.02 0.05 0.09 

36 0.10 0.29 0.80  36 0.03 0.07 0.13 

         

slope = 0.0024 0.0074 0.0210  slope = 0.0005 0.0016 0.0032 

R2 = 0.9825 0.9865 0.9902  R2 = 0.9150 0.9788 0.9803 

 

  Values are presented against time in hours. Values represent − (
𝐶0

𝐶𝑚𝑖𝑛
) 𝐸𝑖 (

(106−[𝑃])∗ln(
𝐶0

𝐶𝑚𝑖𝑛
)

106
) +

(
𝐶0

𝐶𝑚𝑖𝑛
) 𝐸𝑖 (−106 ∗ ln (

𝐶0

𝐶𝑚𝑖𝑛
)). For this particular set, a 

𝐶0

𝐶𝑚𝑖𝑛
 value was assigned to 20. Values are 

unitless. The slope is in units of H-1. 
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 Bacillus amyloliquefaciens   Bacillus amyloliquefaciens 

 Rice Exponential Integral   Wheat Exponential Integral 

Hours 0.1 IU/ml 
1 

IU/ml 10 IU/ml   Hours 0.1 IU/ml 
1 

IU/ml 10 IU/ml 

1 0.07 0.10 0.15  1 0.00 0.01 0.05 

2 0.09 0.13 0.18  2 0.00 0.01 0.05 

4 0.10 0.14 0.22  4 0.01 0.02 0.08 

8 0.11 0.20 0.31  8 0.01 0.04 0.13 

16 0.14 0.23 0.43  16 0.02 0.07 0.24 

24 0.18 0.29 0.62  24 0.03 0.11 0.29 

36 0.20 0.33 0.67  36 0.05 0.21 0.36 

         

slope = 0.0037 0.0063 0.0157  slope = 0.0014 0.0055 0.0094 

R2 = 0.9777 0.9448 0.9565  R2 = 0.9919 0.9706 0.9640 

 

 Bacillus amyloliquefaciens   Bacillus amyloliquefaciens 

 Barley Exponential Integral   Tapioca Exponential Integral 

Hours 0.1 IU/ml 
1 

IU/ml 10 IU/ml   Hours 0.1 IU/ml 
1 

IU/ml 10 IU/ml 

1 0.00 0.01 0.01  1 0.00 0.01 0.02 

2 0.00 0.01 0.03  2 0.01 0.02 0.04 

4 0.00 0.02 0.06  4 0.01 0.03 0.06 

8 0.01 0.03 0.11  8 0.01 0.05 0.14 

16 0.02 0.06 0.19  16 0.02 0.08 0.21 

24 0.02 0.10 0.26  24 0.03 0.12 0.37 

36 0.04 0.14 0.31  36 0.04 0.14 0.50 

         

slope = 0.0010 0.0039 0.0087  slope = 0.0010 0.0039 0.0139 

R2 = 0.9974 0.9924 0.9700  R2 = 0.9925 0.9813 0.9906 

  

Values are presented against time in hours. Values represent − (
𝐶0

𝐶𝑚𝑖𝑛
) 𝐸𝑖 (

(106−[𝑃])∗ln(
𝐶0

𝐶𝑚𝑖𝑛
)

106
) +

(
𝐶0

𝐶𝑚𝑖𝑛
) 𝐸𝑖 (−106 ∗ ln (

𝐶0

𝐶𝑚𝑖𝑛
)). For this particular set, a 

𝐶0

𝐶𝑚𝑖𝑛
 value was assigned to 20. Values are 

unitless. The slope is in units of H-1. 
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APPENDIX F: INVERSE MICHAELIS-MENTEN GRAPHS 
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Using a least squares method and adjusting K and 𝑘𝑐𝑎𝑡 ∗ 𝐶0 as a parameter, models fitting the 

three slopes for the three concentrations of [E] are plotted. The slope was calculated by taking the 

24H time point from the smoothened curves, running the exponential integral, and dividing by 

24H. The equation used to fit the data points is 
𝑘𝑐𝑎𝑡𝐾[𝐸]𝑡𝑜𝑡𝐶0

1+𝐾[𝐸]𝑡𝑜𝑡
. Values and errors are in the tables at the 

end of this appendix. 
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Using a least squares method and adjusting K and 𝑘𝑐𝑎𝑡 ∗ 𝐶0 as a parameter, models fitting the 

three slopes for the three concentrations of [E] are plotted. The slope was calculated by taking 

the 24H time point from the smoothened curves, running the exponential integral, and dividing 

by 24H. The equation used to fit the data points is 
𝑘𝑐𝑎𝑡𝐾[𝐸]𝑡𝑜𝑡𝐶0

1+𝐾[𝐸]𝑡𝑜𝑡
. Values and errors are in the tables at 

the end of this appendix. 
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Using a least squares method and adjusting K and 𝑘𝑐𝑎𝑡 ∗ 𝐶0 as a parameter, models fitting the 

three slopes for the three concentrations of [E] are plotted. The equation used to fit the datapoints 

is 
𝑘𝑐𝑎𝑡𝐾[𝐸]𝑡𝑜𝑡𝐶0

1+𝐾[𝐸]𝑡𝑜𝑡
. Values and errors are in the tables at the end of this appendix. 
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Using a least squares method and adjusting K and 𝑘𝑐𝑎𝑡 ∗ 𝐶0 as a parameter, models fitting the 

three slopes for the three concentrations of [E] are plotted. The equation used to fit the data 

points is 
𝑘𝑐𝑎𝑡𝐾[𝐸]𝑡𝑜𝑡𝐶0

1+𝐾[𝐸]𝑡𝑜𝑡
. Values and errors are in the tables at the end of this appendix. Note how barley and 

HSA do not fit the model well. 
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Using a least squares method and adjusting K and 𝑘𝑐𝑎𝑡 ∗ 𝐶0 as a parameter, models fitting the 

three slopes for the three concentrations of [E] are plotted. The equation used to fit the data 

points is 
𝑘𝑐𝑎𝑡𝐾[𝐸]𝑡𝑜𝑡𝐶0

1+𝐾[𝐸]𝑡𝑜𝑡
. Values and errors are in the tables at the end of this appendix. These graphs have 

HSA data omitted so that the other enzyme values can be seen. 
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 Bacillus licheniformis      

Starch Potato Waxy Maize Maize 
Amylomaize-

7 
Rice Wheat Barley Tapioca 

K 0.877 0.428 0.345 0.345 0.379 0.122 0.139 0.506 

kcat*C0 0.009 0.272 0.127 0.029 0.134 0.211 0.211 0.116 

Error 0.002 0.003 0.007 0.002 0.009 0.005 0.005 0.001 

         

         

 Porcine Pancreas       

Starch Potato Waxy Maize Maize 
Amylomaize-

7 
Rice Wheat Barley Tapioca 

K 1.165 0.884 0.578 0.568 0.352 0.338 0.284 0.001 

kcat*C0 0.007 0.175 0.082 0.015 0.122 0.085 0.082 19.19 

Error 0.0007 0.0003 0.0051 0.0001 0.0027 0.0007 0.0010 0.00001 

         

         

 Human Saliva       

Starch Potato Waxy Maize Maize 
Amylomaize-

7 
Rice Wheat Barley Tapioca 

K 0.686 0.644 0.464 0.690 0.192 0.154 0.0001 0.077 

kcat*C0 0.009 0.329 0.105 0.016 0.453 0.234 2732.28 1.317 

Error 0.0008 0.0049 0.0074 0.0016 0.0122 0.0006 0.0828 0.0111 

         

         

         

 Bacillus amyloliquefaciens      

Starch Potato Waxy Maize Maize 
Amylomaize-

7 
Rice Wheat Barley Tapioca 

K 0.994 0.165 0.513 0.890 1.353 0.700 0.600 0.348 

kcat*C0 0.002 0.071 0.027 0.005 0.023 0.013 0.011 0.018 

Error 0.0003 0.0010 0.0014 0.0003 0.0027 0.0004 0.0004 0.0006 

 

 

Errors are defined as the square root of the sum of the squared deviations. The deviation is 

defined as the difference between the calculated reaction rate versus the measured reaction rate. 

Values of K are in IU-1. Values of kcat*C0 are in hour-1. Errors were minimized with K and kcat*C0 

using solver on excel. A scale for the errors is listed below. 

 

0 0.0005 0.001 0.0015 0.002 0.003 0.005 0.01 0.02 0.03 0.05 0.08 0.1 
 

Note that HSA acting upon barley and PPA acting upon tapioca does not fit the data well, and therefore, 

has values that are not feasible with this model. 


