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I. INTRODUCTION AND HISTORICAL SURVEY

The space Q(X,P) (Definition 2.4), of all gquasi-
continuous‘functions on a non void set X relative to a
given pre-algebra §, has become of interest since it
arises both in problems in pure functional analysis and in
the application of functional analysis to signal processing.
For example, in [4] J. A. Dyer used these spaces as models
for certain classes of duration limited signals and R. E.
Lane [17], in 1955 through 1962, used special types of
Q(X,P) spaces to study linear stationary systems. The
applications of Q(X,) spaces in abstract functional
analysis and related ideas have been considered by J. A.
Dyer in [3], [6], and [7], and by W. B. Johnson in ([13].

As a result of these applications, the properties of

Q(X,P) spaces have been investigated by mathematicians
since the 1930's in special cases. These abstract spaces
have been studied since the late 1960's. T H. Hildebrandt
[12] characterized sets with compact closure in QC([a,b])
(Example 3.11) and this was later extended to a certain
class of Q(X,P) spaces [9] by J. A. Dyer and W. B. Johnson.

The representation of linear operators on Q(X,P) spaces



when X is an interval or the real line has been considered
by Kaltenborn [14], Hildebrandt [11], Lane [17] and [18],
and Baker [l]. Dyer in [3] and [5] has considered the
abstract operator representation problem. The problem of
solving linear operator equations in special Q(X,P) spaces
has been considered in numerous papers by McNerney, Hinton,
Hildebrandt, and Lane. A bibliography of these results can
be found in [5]. Dyer has studied the abstract case in [5].
Up to this time almost all of the research in Q(X,P)
spaces has been devoted to properties of these spaces with
the norm topology, and very little attention has been given
to weak topological properties of these spaces. Recall
that the weak topology J for a normed linear space is the
smallest topology, with respect to set inclusion, such
that every linear functional, continuous for the norm
topology, 1is also continuous for J. However, as soon as
one considers the problem of the best sup norm approxi-
mation of an element of a Q(X,P) space by elements of a
given subspace of the space then one must concern oneself
with the weak properties of Q(X,) spaces, in particular
with weak sequential compactness and related matters. Since

the uniform approximation problem has many important



applications in signal processing it would seem that research
into these areas is overdue. In this dissertation, we begin
the study of some of these questions.

There are several ways to investigate Q(X,P) spaces.
One method is to take a property of the well known space
oCc([a,b]) and attempt to extend it to all Q(X,P) spaces.
A second method is to use the fact that Q(X,) is a closed
subspace of B(X), the space of all bounded complex valued
functions defined on X. Because of this, some of the
topological properties of B(X) hold automatically for
every Q(X,P) space. In this thesis, a combination of both
methods will be used to analyze several properties of these
spaces. The basis for this investigation will be a new
concept, that of a fundamental net of points (Definition
3.4). This is a concept of extreme importance in that it
not only allows a complete characterization of Q(X,P) but
it is also neatly applicable to the study of the properties
of these spaces.

The dissertation itself is divided into five chapters.
Since a great deal of this work is dependent upon a firm
uncderstanding of Q(X,P) spaces, chapter two contains a

summary of all pertinent definitions and elementary
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properties of these spaces. Most of these results are due
to J. A. Dyer [3], [5], E. M. Eltze [10], and R. A. Shive
[19].

The main results of the dissertation are given in
chapters three and four. In chapter three the concept of a
fundamental nét of points is introduced. In order to illus-
trate this concept, a detailed study of the fundamental nets
of points is given for several important gquasi-continuous
function spaces. These examples are not only important in
their own right, but also serve to keep the abstract results
of this thesis in perspective. The rest of chapter three
contains two major applications of the concept of a funda-
mental net of points. The first of these is a new charac-
terization of Q(X,P) spaces (Theorem 3.3) which is a
generalization of the classical one sided limit charac-
terization cf QC([a,b]). The second application is to the
study of the weak topology for Q(X,P) spaces. In Theorem
3.7 necessary and sufficient conditions £for a sequence
{£.} to converge weakly to £ in Q(X,RP) are given.
This result improves those in [2,p.2811, [18] and [20]. As
a corollary (Corollary 3.1l), one obtains some improved

conditions for the interchange of limits and integration for



the ¢ integral (Definition 2.6).

Chapter four also contains applications of the notion
of a fundamental net of points. 1In it, the extreme points
of the closed unit ball of the adjoint space of Q(X,R),
which will be denoted by (Q(X,P))*, are characterized.
Recall that if G is a subspace of the complex normed
linear space E and if £ 41is in E-G then an element Iq
in G is said to be a best uniform approximation to £ by
G if and only if Hf—go[} equals infj|f-gl where g
ranges over all the elements of G. The characterization
of the extreme points (Theorem 4.3) is used to give neces-
sary and sufficient conditions for best uniform approxi-
mations by subspaces of Q(X,P). The method used is similar
to that used by I. Singer [21] in his study of best unifofm
approximations by subspaces in C([a,b]).

Chapter five contains a brief summary of the disser-

tation and a few notes concerning future research in

Q(X,P) spaces.



II. EXAMPLES AND PROPERTIES OF Q(X,P) SPACES

Throughout the remainder of this work the following
conventions will be used. If a and b are real numbers
and a < b then [a,b] and (a,b) will denote the closed
interval whose endpoints are a and b, and the open
interval whose endpoints are a and b respectively. The
empty set will be denoted by ¢. The complex conjugate of
a number x will be denoted by x*. The following defini-
tion has its origin in [23,p.l1l7] and differs from A. C.

Zaanen's definition only in that we do not require X to be

in P.

Definition 2.1. Let X be a nonvoid set and P a nonvoid

collection of subsets of X. Then P is said to be a pre-
algebra of subsets of X if and only if the following

three conditions are satisfied;

(1) 4if A,B are in ¥ them A N B is in P,
(2) if A,B are in § then there exists a finite disjoint
collection of sets {E.} in P such that

i“i=1

P

A-B= UE.,
. 1
1=



(3) P contains a finite disjoint collection {G.k}.i_l of

r
sets such that X = U Gk'
k=1

In the remainder of this work £ will always denote a
pre-algebra of subsets of a nonvoid set X. The pair
(X,) will be called a volume pair. There are many examples
of volume pairs and a few of them will now be listed for

future reference.

Example 2.1. Let X = [a,b] and let §# consist of all

open subintervals of [a,b], singleton subsets of [a,b],

and the empty set. Then (X,P) is a volume pair [5].

Example 2.2. Let X = [a,b] and let §# Dbe the collection

of sets {(c,d] :a < c < d<b}lU {{a},p}. Then (X,R) is

a volume pair ([4].

R the set of all real numbers and

Example 2.3. Let X

let ® Dbe the collection of all sets of the form
(a,b), (a,x), (-»,b) ,{a} along with the empty set. It is

straightforward to verify that (X,P) is a volume pair.



Example 2.4. Let X be a set with an infinite number of

elements and let P consist of all subsets A of X such
that X - A contains only a finite number of elements, or
A ={al, or A is the empty set. To verify that (X,P)

is a volume pair we need only show that all three conditions
of Definition 2.1 are satisfied. Suppose A and B are in
P. If either A or B 1is a singleton, or the empty set,

then AN B is in . If neither A nor B is a single-

ton or the empty set then

X-(ANB) = (X-14) U (X -B)

which is a finite set since both X-A and X-B are
finite sets. Thus, condition (1) is satisfied. Conditions
(2) and (3) are easily verified since every singleton

belongs to . Hence, (X,P) is a volume pair.

Example 2.5. Let X be any nonvoid set and let

N-1
P ={2,...,A] where URA, =XA N A =9 if i ]
i=1

and AN = ¢. Then (¥X,P) is a volume pair.



Example 2.6. Let X Dbe the set of all positive integers

and let # consist of all subsets of X of the form
{N,N+1,...},{N} and the empty set, where N is any
positive integer. Since this case is similar to Example 2.4,

we see that (X,P) is a volume pair.

Example 2.7. Let X be any nonvoid set and let £ Dbe

the collection of all subsets of X. It is trivial to

verify that (X,P) is a volume pair.

Definition 2.3. ([4],p.6) Let (X,P) Dbe a volume pair.

A disjoint collection {Gk}i=l of sets in # 1is said to be

r
a P-subdivision of X if and only if U G = X.
k=1

The following theorem is due to J. A. Dyer [3]. It

gives the main properties of P-subdivisions and is included

for reference without proof.

Theorem 2.1. For every volume pair (X,P) the following

statements hold.

(1) the collection of all P-subdivisions is directed by

refinement and
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(2) if E 4is in P then there exists a subdivision to

which E Dbelongs.

As we noted in the introduction, this dissertation is
concerned with quasi-continuous function spaces. The follow-
ing definition, taken from [3,p.473], explains the termi-
nology and symbolism that will be used in the remainder of

this work.

Definition 2.4. For the volume pair (X,P),Q(X,P), the

quasi-continuous functions on X relative to P, will
denote the linear space of all complex valued functions on
X which are uniformly approximatable by finite linear
combinations of characteristic functions of sets in PR,
Q(X,P) will be assumed to be topologized with the sup norm
topology.

As with most definitions, the definition of Q(X,P)
has several equivalent representations. In the following
theorem, Q(X,P) is shown to be a Banach space and an
equivalent characterization for Q(x,P) is given. The

theorem is taken from [5] and will be used without proof.
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Theorem 2.2. For every Q(X,P) space we have the following:

(1) o(X,P) 1is a Banach space and

(2) a complex valued function £ on X 1is an element of
Q(X,Pf) 1if and only if for every positive number ¢
there exists a f-subdivision {Dj}§=l of X such
that if p,g are in Dj then [£(p) - £(@)] < ¢

for j=1,...,N.

Theorem 2.2 is a very useful result and will be applied
later (Theorem 3.3) to give a new characterization of
Q(X,P). Since a major purpose of this dissertation is to
investigate properties of the weak topology for Q(X,P),
we will need several definitions and theorems concerning the
general structure of continuous linear functionals on
Q(X,P). All of the following results are well known and an

appropriate reference is given in each instance,

Definition 2.5. [4] Let (X,P) Dbe a volume pair. A

finitely additive function u on ¥ into the complex
number field is said to be a p-volume; u is called a

p-volume of bounded variation if and only if the net
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D
{ ] @) :{p)%  isa P-supdivision of x}

i=1
has a finite supremum. This supremum will be denoted by Vu'

Definition 2.6. [2,p.469] Let (X,P) bYe a volume pair,

u a p-volume on f, and ¥ a choice function (that is,
¥ (D) ¢ D for all nonvoid D in P) for P - {g}. A
complex valued function £ defined on X 1is said to be

¢-integrable with respect to wu if and only if the net

P
{L £(¢(D))u(D,) : {D,}5_| is a P-subdivision of x}

i7i=1
i=1

converges. The limit of this net, when it exists, will be

denoted by ¢ [ £ du.
X

The above integral is known as the ¢ integral and
was introduced and developed by J. A. Dyer in [3], [4], and

[5]. The following two theorems are very important for the

remainder of this work and both results can be found in

[5].
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Theorem 2.3. Let (X,P) be a volume pair and let ¢l,¢2

be choice functions for R - {¢}. If u is a p-volume of

bounded variation then ¢, [ fau and ¢y [ £au  both
X X

exist and are equal for every f ¢ Q(X,f).

Theorem 2.4. Let (X,P) Dbe a volume pair and let & be a

continuous linear functional on Q(X,P). Then, there exists
a p-volume u of bounded variation such that

¢(f) =¢ [ £du. Conversely, if u is a p-volume of

X
bounded variation on P then &(f) = ¢ [ £du is a con-
X
tinuous linear functional on Q(X,P). Moreover, [[3] =V_.

u

Note that ¢ can be any choice function, in Theorem
2.4, because of the result given in Theorem 2.3. The fact
that ¢ is an arbitrary choice function will be of use
later. Now that the members of (Q(X,P))* have been
characterized, we are ready to investigate the weak topology

of Q(X,P). We begin by introducing a new concept which

will be used to characterize and analyze Q(X,P) spaces.



III. FUNDAMENTAL NETS

Suppose (X,P) is a volume pair. If £ is a function
from X into the complex number field, then it can be
difficult to apply either Definition 2.4 or Theorem 2.2 to
determine whether or not I is in Q(X,P). For the special
(X,P) volume pair considered in Example 2.1, the task is
much easier because it is well known, ([19],p.31), that £

is an element of Q(X,P) if and only if Lim £(x%),
x=y

Lim f£(x), Lim £(x), and Lim £(x) exist for all y in

x=y~ x-at x=b~
(2,b) . This special quasi-continuous function space is of
considerable interest in that many physical systems can be
modelled by using it ([3], [17]). For the rest of this
dissertation this Q(X,P) space will be denoted by
QC([a,b]l). A natural gquestion arises; is there any way to
extend the classic idea of a one sided limit in QC([a,b])
to an arbitrary quasi-continuous function space? To attack

this problem some preliminary definitions and theorems are

needed.
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Definition 3.1. Let (X,P) be a volume pair. A net of

nonempty sets {Dé} in £ is said to be a fundamental net

of sets if and only if

(1) Dé, is contained in D6 if &' follows §;

(2)y if {Fj}§=l is a P-subdivision of X then there
exists an Fj and a & so that Dé is contained in
Fj.

Theorem 3.1. Suppose {Dé} is a fundamental net of sets

for the volume pair (X,P). Then:

(1) Dé N Dé, is not empty for any & and §';

(2) if {Fj}ﬁ_l is a P-subdivision of X then there

exists a j and a 8 such that D6 is contained in

Fj for all & which follow &.

Proof:

(1) There exists a § such that § follows both § and

1 1
6'. Thus, the nonempty set D6 is contained in
1
D6 i Dé, by virtue of condition (1) of Definition 3.1.
(2) There exists a Jj and a 5 such that D- is contained

®

in Fj. If & follows 3§, D6 is contained in Dg
3

and so is contained in Fj.
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Although Definition 3.1 is fairly easy to understand,
it is not obvious that there exists a fundamental net of
sets for an arbitrary volume pair (X,P). The following
theorem guarantees that every volume pair has at least one
fundamental net of sets. As well as being an existence
theorem, Theorem 3.2 is an important tool and will be used

in the proof of many of the results of this dissertation.

Theorem 3.2. Let (X,P) bDbe a volume pair and let {xn}:—l

be a sequence in X. Then there exists a fundamental net
of sets {Dé} such that {xn}:_l is frequently in each

™
£ 4

5°

Proof: Let G be the set {A ¢F :{xn}:_l is frequently

in A}. Note that G is not empty since if {Ej}N is a

j=1
P-subdivision of X then {xn}:_l must be frequently in
at least one E. because each #f-subdivision contains only
a finite number of sets. Let JF Dbe the collection of all

subsets M of (G such that if Al and A2 are in M

then there exists an A in M such that A 1is a subset

of Al n A,- F is not empty since if A is in (G then

{a} 4is in &. Partially order 3JF by set inclusion
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and let {Ma} be a chain of elements in &. Finally, let

T be the set UMa' If Al and A2 are elements of T
a

then there exist sets My and M, in {Ma} such that A,

is in My and A, is in M, . Since {MQ} is a chain we

If M is contained in

see that M 1

lSMZ or M, cM

M2, it follows from the definition of ¥, that there
exists an A in M, such that A 1is contained in

C T we see that A is in T and so

lo

Al N A,. Since M,
T is an element of &. A similar result follows if M, is
a subset of M, . Thus, T is an upper bound for {Ma}'

It follows from Zorn's Lemma that & contains a maximal
element, with respect to set inclusion. This element will
be denoted by M. It is easily verified that M is a
directed set with respect to ordering by set inclusion.
Observe that no element of M is empty and that for set
inclusion ordering, M satisfies condition (1) of
Definition 3.1. Let {Ei}§=l be a P-subdivision of X.
Suppose that no A in M .is contained in any of the Ei,

i=1,...,N. Then there exists an Ei such that Ei na

is in G for all A in fd_ or there doesn't. In the

first case, let M be the set
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I‘ZU{EiﬂA:A is in M}

and suppose that Cl and C2 are elements of ﬂ Either

cl and 02 are both elements of B_/f, or Cl is in M

2=EiﬂA with 2 in M, or C1=EiﬂAl and

C, =E, N A, with a and A, in M. 1In the first case
2 i 2 1 2
it follows from the hypothesis on M that there exists a

C 1in ﬁ, and hence in ﬁ, such that C is contained

in Cl N C2. In the second case

ClﬂC2=ClﬂEiﬂA= (clnA) nEigani
and this last set is in M because Cl and A are in M
and C, in M by the hypothesis on fi-, is a subset of

Cl N A. PFinally, in the third case Cl n c, equals

Ei N (Al n A2) which contains Ei N A an element of M,
where A is contained in Al n A2 and is an element of M.
Therefore, M is an elment of 3. But, M is contained in
# and since M is a maximal element of 5 with respect

to set inclusion we see that M equals M. This in turn

implies that E; NaA is in M for all A in M and so
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Ei N A 1is a subset of Ei contrary to our basic assumption
on {Ei}ﬁ_l. Thus, it follows that for each E;,
i=1,...,N, there exists an Ai in M such that Ei n Ai

L oed

is not in (G. Now, since M is in 5§ we can select an
_ N
A in M so that A 1s a subset of FlAi. Noting that
i=1
AN E; is contained in A, N Ei’ which is not in G, it

follows easily that AN is not in (G for any

i=1,...,N. However, U @an Ei) equals A, which is in
i=

£, and since {Xn}:=l is eventually not in A N E;s
i=1,...,N, it follows that {Xn}:=l is eventually not
in A which is false. Thus, we have a contradiction and
so M is a fundamental net of sets which has the desired
property.

Theorem 3.2 shows that every volume pair (X,¥) has
at least one fundamental net of sets associated with it.
For some volume pairs it is possible to characterize all
fundamental nets of sets. Many of the theorems that follow
are useful only because such characterizations are possible.
The following examples are extremely important and will be

used extensively to illustrate our work.
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Example 3.1. ILet (X,P) be as in Example 2.1. We will

show that there are only three distinct types of fundamental
nets of sets for this volume pair. First, let us suppose
that {Dé} is a fundamental net of sets. Either there
exists an x in [a,b] such that Dgi = {x} for some §&°*
or there doesn't. 1In the first case it follows from
Definition 3.1 (1) that D6 = {x} for all & > 8'. 1In the

second case we have D_ = (cé,dé) with a g_cé <L d6 b

®

for each &. Let 56 denote the closure of D6 for each

8. Theorem 3.1 (1) implies that {56} has the finite
intersection property and since [a,b] is compact we see

that there exists a 2z in 56 for all §&§. If 2z 1is an

element of @ D6 then the R-subdividion

{{al, (2,2),{z}, (z,b),{b}} of [a,b] would not contain any
member of {Dé} which is impossible in view of Theorem 3.1
(2) . Therefore, there exists a &' such that for all §

following &', z is not in D6 and so 2z must be an end-

point of D, for all & > 6'. Since D, N D is not
5 61 5,

empty for any 61 and 62 we have D6 equal to (z,z-+eé)

with z< z + ¢, b for all & following &'; or D

d )

equals (z-eé,z) with z > z - €y 2 2 for all & follow-

ing &'. Assume the first case occurs, If b >z + 1> 2z
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with 71 > o then {Dg} is eventually contained in some
element of the P-subdivision

{{a}, (a,2),{2}, (z,z+m),{z+n}, (z+n,b),{b}} and this
element must be (z,z+mn). Letting 1 approach zero we see

that Lim €g is 0. A similar argument can be made in the
5

second case.

In summary, if {Dé} is a fundamental net of sets then
either there exists a 2z in [a,b] so that eventually D6
is {z}; or there exists a 2z in [a,b) so that eventually
D6 equals (z,z-+eé) with z < z + €5 < b and Lém €5

equal to 0O; or there exists a z in (a,b] so that

z) with a<z -¢, < 2

equals (z-¢ 5

t
eventually D6 57

and Lim 66 equal to O.
d

Example 3.2. Let (X,P) be the volume pair of Example 2.2,

It can be shown by arguments similar to those given in
Example 3.1, that {Dé} is a fundamental net of sets if and
only if one of the following three cases occurs: eventually

D6 is {a}; or eventually D6

z in (a,b] with a < z< b and Lim €s equal to O0;
)
or eventually Dé equals (z,z-+e6] for some 2z in [a,b)

equals (z-eé,z] for some
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with z < z + €5 <b and Lim €5 equal to O.
6

Example 3.3. Let (X,P) Dbe the volume pair of Example 2.3

and suppose {Dé} is a fundamental net of sets. Either
there exists a positive real constant M such that {Dé}
is eventually contained in the open interval (-M,M) or
there doesn't. In the first case it follows easily that
{Dé} is eventually of one of three forms discussed in
Example 3.1. In the second case, let M bDbe any fixed
positive real constant. Now, the collection

{ (~o,-M),{-M}, (-M,M),{M}, (M,©)} is a P-subdivision of X
and so {Dé} is eventually contained in one of its members.
By Theorem 3.1 (2) we see that either {Dé} is eventually
contained in (-»,-M) or it is eventually contained in
(M,~). Assume the second case occurs. From Theorem 3.1 (2)
and the above discussion it follows that eventually

D6 N (-M,M) is empty for any positive constant M. Also,
because the pair-wise intersection of elements of a

fundamental net of sets is not empty we see that D6 eqguals

(a_,o) for all &. Recalling that M was an arbitrary

6.7
positive constant it follows that Lim as is . A similar
d

argument can be made if the first case occurs.
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In summary, {Dé} is a fundamental net of sets if and
only if either {Dé} is eventually equal to {a} for some

real number a; or eventually D is (z,z-+e6) with €g

6
greater than 0 for all §& and Lgm €5 equal to 0; or
Dé is (aé,w) for all & with Lgm as equal to «; or
Dé is (—m,aé) for all & with Lgm ag equal to =-«; or
eventually D6 is (z-—eé,z) with e6 greater than O
for all & and Lém €g equal to 0.

Example 3.4. Let (X,P) be the volume pair of Example 2.5.

It is trivial to verify that {D5} is a fundamental net of
sets if and only if there exists an i with 1 i N-1

such that D, equals Ai for all §.

8

Example 3.5. Let (X,P) Dbe the volume pair of Example 2.6

and let {Dé} be a fundamental net of sets. For any
positive integer N consider the ®R-~subdivision

{13}, ...,{N},{N+1,N+2,...}}. It follows from Theorem 3.1l
(2) that {Da} is eventually equal to {N} for some
positive integer N or D_. equals {Ns,Néi-l,...} for all

d

§ with Lim Né equal to «=. Conversely, every net of sets
5

0f the above two forms is a fundamental net of sets.



Definition 3.2. A family & of subsets of a nonempty set

X 4is said to be a filter if it possesses the following

properties:

(1) the empty set is not in &;
(2) if A contains B and B is in &, then A is in

~.
d’

Lo

(3 if A and B are in &, then A i1 B is in &.

Definition 3.3. If 31 and 32 are filters for the set

X then we say that 31 refines 32 if ¥ contains 32.

A filter is called an ultrafiler if it is not refined by

any filter but itself.

The above two definitions are taken from [2,p.30] and
have been used by some authors as an alternative to nets in
the study of convergence. As the following example shows,
there is a relationship between the ultrafilters of a set

X and the fundamental nets of sets from the volume pair of

Example 2.7.

Example 3.6. Let (X,P) be the volume pair of Example 2.7.

Unlike the previous examples, it is not possible to simply
characterize all of the fundamental nets of sets for this

volume pair. However, we will show that evexry ultrafilter
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is a fundamental net of sets and every fundamental net of
sets {Dé} is a subset of an ultrafilter & such that if
A 1is in & then there exists a D6 such that D6 is a
subset of A. To begin with, suppose & 1is an ultrafilter
of subsets of X. Partially order & by set inclusion so
that it becomes a directed set. Define the mapping S from

>

F onto & by: S(A) =A. In this manner & becomes a
net and we will now verify that it is a fundamental net of
sets. Only condition (2) in Definition 3.1 is nontrivial.
To this end let {Fj}?;l be a P-subdivision of X and

assume that no element of & 1is contained in any Fj for

j =1,...,N. Furthermore, suppose for each Jj that there

exists an Aj in & so that A.j N Fj is empty. Let A
N

be the set (N A.. Then A is in & by the definition of
j=1

a filter and yet A N Fj is empty for 3 =1,...,N which

is obviously impossible. Thus, there exists an Fj such

that AN Fj is not empty for every A in &. Let &'

be the collection of all subsets W of X such that there

exists an A in & for which A © Fj is a subset of W.

It is easy to prove that &' is a filter which properly

contains &. This is a contradiction and so & 1is a
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fundamental net of sets. Let & Dbe the collection of all
subsets W of X such that W contains some member of

{D.}. & is a filter as is easily verified. If &' 1is a

)
filter properly containing & then there exists a W' in

5' which contains no element of {Dé}. But {{w'},{xX-w'}}
is a P-subdivision of X and by Theorem 3.1 (2) X - W'
must contain an element of {Dg} which we will denote by
This implies that W' N DS' is empty which contradicts

the fact that &' 1s a filter. Thus, & is an ultrafilter.

Dé"

Let A Dbe in & and consider the P-subdivision
{{a},{x-A}} of X. Since {Dé} is a fundamental net of
sets there exists a § so that D6 is contained in one of
the members of the P-subdivision. But, A and D6 are
both in & and so AN D is not empty which then implies

5
that D is a subset of A.

d
The last example shows that for this volume pair funda-
mental nets of sets are essentially equivalent to ultra-
filters. All of the theorems in this dissertation, when
applied to this volume pair, could be stated in terms of
ultrafilters. In fact, this has already been done by

several authors ([2],p.280,[20]). However, for an arbitrary

volume pair (X,P) this cannot be done because not every
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ultrafilter of subsets of X is a fundamental net of sets.
It would be possible to introduce a new definition for a
filter to circumvent the problem. For example, we could
define & to be a P-filter if F satisfies all of the
conditions of Definition 3.2 where the sets are restricted
to lie in . This is essentially what we have done in
introducing the concept of a fundamental net of sets. How-
ever, there are several advantages in using fundamental nets
of sets versus the concept of a f-filter. Aas the last
example shows, we would have to work with maximal f-~filters
and most of the following theorems would be difficult to
apply since it is usually impossible to characterize maximal
filters of any type, unless one already knows what the funda-
mental nets of sets look like. A second advantage is that
most of the theorems in chapters three and four are easier
to state and prove using fundamental nets of sets. For
example, Theorem 3.5 is much easier to apply than Theorem
31, page 281 in [1]. With these comments in mind, the rest
of this dissertation will deal exclusively with fundamental
nets of sets. The following definition is a natural exten-

sion of Definition 3.1 and is extremely important to all

that follows.
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Definition 3.4. Let (X,P) be a volume pair. A net of

points {xé} in X 1is said to form a fundamental net of
points if and only if there exists a fundamental net of sets

{D.} such that X, is in D, for each §.

0 0

Since we have already characterized the fundamental
nets of sets for a few volume pairs we can characterize the
fundamental nets of points for them. The examples are

included now for easy reference.

Example 3.7. Let (X,P) Dbe the volume pair of Example 3.1.

It then follows that {xé} is a fundamental net of points
if and only if one of the following three cases occurs.
There exists a 2z in [a,b] such that either {xé} is
eventually equal to 2z, or eventually {xé} is less than
z with Lgm X equal to 2z, or eventually {xé} is

greater than =z with Lim X6 equal to z.
&

Example 3.8. Let (X,P) Dbe the volume pair of Example 3.2.

It follows that {x_} is a fundamental net of points if and

d

only if one of the following three cases occurs. Either Xg

is eventually equal to a, or there exists a 2z in (a,b]

such that eventually X6 is less than or egual to =z with
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Lim X equal to 2z, or there exists a z in {[a,b) such

5 d
that eventually 2z is less than x6 with Lim x6 equal
)
to z.

Example 3.9. Let (X,P) Dbe the volume pair of Example 3.3.

Then {Xg} is a fundamental net of points if and only if
one of the following five cases occurs. Either there exists

a real =z such that eventually x equals 2z, or eventu-

5
ally x6 is less than 2z with Lim Xs equal to 2z, or
)
eventually z is less than Xy with Lim x6 equal to z,
5
or Lim X is ®», or Lim x is =,
5 0 5 O

Example 3.10. Let (X,P) be the volume pair of Example 3.5.

Then {xé} is a fundamental net of points if and only if
either there exists an integer N such that eventually x6

equals N, or Lim x6 is o,
S

As we pointed out before, if (X,P) is the volume pair
of Example 3.7 then a function £ is in QC([a,b]) if
and only if all one sided limits exist for £ on [a,b].
We are now ready to answer the question posed at the begin-

ning of this chapter. A careful analysis of Example 3.7
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leads one to suspect the following theorem.

Theorem 3.3. Let (X,P) be a volume pair. A complex

valued function £ on X is an element of Q(X,P) if and

only if Lim f(xé) exists for every fundamental net of
5

points {X5}'

proof: Suppose first that £ is an element of Q(X,P).

Let e, greater than 0, be given and suppose {xé} is a
fundamental net of points associated with the fundamental
net of sets {Dé}. Since f is in Q(X,P) it follows from
Theorem 2.2 (2) that there exists a #f-subdivision {Fj}§=l

of X and complex numbers a,,...,C such that
= b

P

. N .
- . 1 th 2, lect F. h that

£ Z.QJXF,” is less than ¢/ Selec 5 suc ha

j=1
there exists a § with D6 contained in Fj. If 61, 62
both follow & then x6 and x6 are both elements of

1 2

Fj which implies that

[£(x, ) - £(x )j < Jf(x, ) =a.] + |a. - £(x, )]
1 % ] J J %
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Thus, {f(xé)} is a Cauchy net of complex numbers and so

converges,
Conversely, suppose Lgm f(xé) exists for every
fundamental net of points {X5} and furthermore assume the
result is false. From Theorem 2.2 (2) it follows that there
exists an 7N greater than 0 such that if {Di}ﬁ;l is a
P-subdivision of X then there exists a Di and x, y
in Di such that [£(x) - £(y)]| > n. Let G be the set
of all A in # such that for every P-subdivision
{Ei}g_l of A there exists an E, and elements x,y in
E; such that [£(x) - £(y) | > n. We will first verify
that G is not the empty set. Let {Aj}¥ be a P-sub-
division of X and suppose that no Aj is in GC. Then,
for each Aj there exists a P-subdivision {Eij}§i1
Aj so that if x, y are in Eij then [f(x) - £(¥)| < n

£ j =1 t foll that {E..}- P50
or J=1l,...,r. I ollows a Eij §=1 i=1 is a

P-subdivision of X such that if x, y are in Eij then
|£(x) - £(y) | < m. This is a contradiction and so G is
not empty. Let & be the collection of all subsets M of
G such that if aA., a are in M then there exists an

1 2
A in M such that A is a subset of Al n A2. F 1is
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nonvoid because if A is in C then {A} is in &. Par-
tially order & by set inclusion. Using an argument
similar to that given in Theorem 3.2, it is easy to verify
that & has a maximal element which we will denote by M.
By our restrictions on & we see that M is a directed set
with respect to set inclusion. Define S from M into P
by: S(A) = A. Suppose M is not a fundamental net of sets.
It then follows that there exists a f-subdivision {Ei}§=l
of X so that no element of M is a subset of Ei for

any i. Assume that there exists an Ei such that Ei nAa

is in G for all A in M. Let ﬁ be the set
ﬁU{EinA:A is in M}.

Again using an argument similar to that in Theorem 3.2, it

-~ -

follows that M 1is in &, However, M is properly con-
tained in ﬁ because if M were equal to M then Ei N a
would be in M for all A in M which then implies that
E. contains an element of M which is contrary to assump-
tion on E,. But, since M is a maximal element of JF we
again have a contradiction. Thus, for each E,,

i=1,...,p, there exists an A, in M so that E, N A,
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is not in G. Select an A in M so that A is a subset

p
of N Ai. This is always possible since M is in 3. We

i=1

will now show that A 0 Ei is not in (¢ for each

i=1,...,p. Since A Ei is contained in A, n Ei and

since Ai N Ei is not in C it suffices to show that if

Bl and B2 are in £ with Bl contained in B2 and B2

not in C then Bl is not in (. ©Now, since 32 is not

in G there exists a P-subdivision {Fj}§_l of B, such
that if x, y are in Fj then [£(x) - £(y)| 4is less than
n. It follows that {Fj n Bl}§=l is a P-subdivision of

Bl which also has the property that if x, y are in

F. N By then |[f(x) - f(y)| 4is less than 7 and so Bl

is not in G. Applying this result to our case we see that

AN Ei is not in G for any i =1,...,p. However,
{an Ei}g—l is a P-subdivision of A and since A N E;

isnot in G for i =1,...,p it is easy to verify that

there exists a P-subdivision {D }?—l of A such that if

x, y are in D, then [£(x) - £(y)| is less than 1.

But this implies that A is not in (G contrary to assump-

tion. Thus, M is a fundamental net of sets with the

property that if A is in M anéd {E.}. is a P-sub-

LR e gy |
e R
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division of A then there exists an Ei and x, y in Ei

such that [£(x) -~ £(y) | > 7.

For the rest of this proof let us denote the fundamental
net of sets, that was Jjust constructed, by {A5}' Now,
either there exists an A in {Aé} such that A is a

subset of A6 for each § or no such A exists. In the

first case consider the directed set {(&,i) :i =1,2,...}
‘where we define (A,i) < (A4,3) if and only if i j.
Define the function S by: S((A,i)) =A. S is a funda-

mental net of sets because {Aé} is a fundamental net of

A

sets and because A is contained in A6 for all 5.
Select x, y in A such that |[£(x) - £(y)| > n. Choose
a fundamental net of points {zi}:zl associated with S,
such that z, equals x if i is even and is y if i

is odd. Clearly, Lim f(zi) does not exist. This is a

-0

contradiction and so no A exists in {Aé} such that A

is a subset of A6 for all &. In the second case, con-

sider the directed set {(Aé,i): i =0,1 and A6 is in
{AB}} where the order is defined by (Aé,i) g_(A6,,j) if

and only if Aé. is a subset of Aé. This is a directed

set because if A does not equal A then there exists

8 5!
an A6 such that Aé is contained in Aé n Aé, by the
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definition of M. Thus, (ag,1) < (R;,3) and
(25.,1) < (ﬁé,j) for i =0,1 and j = 0,1. On the
other hand, if one considers (Aé,O) and (Aé,l) then

there exists a §' such that AB' is a subset of Aé

because of the first case considered above. Therefore,
(A5-’)) 2'(A6’0) and (Aé,,O) 2'(A6’l)'

It follows that we have a directed set. Define S by:

S((Aa,i)) = A6 for all § and i = 0,1. Clearly, S is a

fundamental net of sets. From each S((Aé,i)) select xA s
)

v such that |[f(x, ) - £(y, )| > n. The collection
Ag By B

{z(éi,i): i =0,1} is a fundamental net of points where

z(5,0) = X, and z(5,1) = Yp - However, Lim £(z(6,1))
& o) (8,1)

does not exist because for any (§,i) there exists an A5'
properly contained in A6 and so (Aé’i) < (Aé,,O),

(Aé,i) < (Aé,,l) which then implies that

[£(z(6',0)) - £(z(6',1)) | > n.
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This shows that {£f(z(5,i)) :i = 0,1} is not a Cauchy net

and so does not converge. This is a contradiction and the

proof is complete.

As we remarked before, the above theorem yields many
corollaries each of which characterize a Q(X,P) space in
a manner well suited to applications. In Example 3.11 we
obtain the result on the classical QC([a,b]) as a direct
consequence of the last theorem and our previous examples.
This points out well how the notion of a fundamental net of

points can be considered as a generalization of one sided

limits for Q(X,P) spaces.

Example 3.11., Let (X,P) Dbe the volume pair of Example 3.7.

It follows that £ dis in QC([a,b]) if and only if

Lim £(x) and Lim £(x) exist for all y in (a,b) and

the appropriate one sided limits exist at a and b.

Example 3.12. Let (X,P) Dbe the volume pair of Example 3.8.

Then £ is in Q(X,R) 4if and only if Lim f£(x) exists
x>yt

for 211 y in [a,b) and Lim £(x) equals £f(y) for all

X~y

vy in (a,b].
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Example 3.13. Let (X,P) Dbe the volume pair of Example 3.9.

Then £ 4is in Q(X,®) Aif and only if ILim f£(x), Lim £(x),
x=y™ x=y~

Lim £(x) and Lim £(X) exist for all real vy.
Xm0 X==00

Example 3.14., Let (X,P) Dbe as in Example 3.10. Then £

is in Q(X,P) if and only if Lim £(N) exists. Thus, we
N—o

see that Q(X,RP) is just the Banach space ¢, consisting
of all convergent complex sequences and normed with the

supremum NOrm.

ILet X De a non empty set and suppose that

{fn: X = C}:=l is a sequence of functions pointwise con-
vergent on X to a function ¢. If X 1is a compact
Hausdorff space and each fn is continuous then necessary
and sufficient conditions for ¢ to be continuous are well
known ([2]},p.268). Suppose now that (X,P) is a volume
pair and that fn is in Q(X,P). We will show that neces-

sary and sufficient conditions for ¢ to be in Q(X,P) can

be given in terms of fundamental nets of points.

Theorem 3.4. Let (X,P) Dbe a volume pair and suppose

o0}

n=1 is a sequence in Q(X,P) such that

£
(£}
Lim fn(x) = ¢y (x) exists for every x 1in X. Then ¢ 1is in

1100
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Q(X,P) 1if and only if for every fundamental net of points

{Xg} and every positive number ¢ there exists a § such
that for each & > § there exists a positive integer N6

such that if n > N, then ]fn(xé) - ;n(x;)j is less than
Y

Proof: Suppose first that ¢ dis in Q(X,P). Let € > O

be given and suppose {xé} is a fundamental net of points.

Since ¢ 1is quasi~-continuous Lim &(xé) exists by virtue
&

of Theorem 3.3. Select § so that if 61 2_5 we have

;'f,r(x6 ) - $(Xg)f less than ¢/3. For each fixed & > §
1

choose Né so that if n Z'Né then

£ (x,) - 's’«'(xé)i < /3 and an(xS) -y (x-g)I < e/3.

Therefore, for each n Z.Né we have
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Suppose now that {xé} is a fundamental net of points.

Let € > 0 be given and select § according to the

hypothesis of the theorem. Let 3§ o) both follow g

1’ 2
N th f N I 1 ff - 'Y
and choose N so that i n >N then | n(xél) fn(xé)]
and |f (x, ) - £ (xg)| are both less than ¢. Thus, if
n 62 n 8
n > N we have:
& <
£ (x, ) - £ (x_ )| <
n 61 n 62
| £ (X6 ) fn(Xg)[ + ]rn(x—) - rn(x6 ) | <
1 2
€ + € = 2¢.

This implies that {v(xé)} is a Cauchy net and so converges,

Theorem 3.3 then shows that ¢ is in Q(X,P).

The last two theorems give very important results
about Q(X,P) spaces but they do not really depend on any
varticular topology that one might place on Q(X,P). For
the rest of this chapter we are going to consider a special
topology for Q(X,P), the weak topology. This particular

topology is significant in duality theory and is of interest



in its own right. It turns out that the concept of a funda-
mental net of points is applicable to the study of this
topology. The significance of this concept, when applied to
Q(X,P) spaces, will become apparent as we obtain several
fundamental results concerning the weak topology, which are
easily stated and applied. 1In order to illustrate the
simplicity of our theorems, we include here a short list of
some known results concerning weak seguential convergence
that may be adapted to Q(X,P) spaces.

It is easy to verify, via Theorem 3.3, that Q(X,P) is
a closed subalgebra of B(X) for every volume pair (X,P).
It follows from ([22,p.221] and the Hahn-Banach Theorem that
weak sequential convergence in Q(X,P) can be characterized
if one determines necessary and sufficient conditions for
weak sequential convergence in B(X). This has been done by
several authors. Simons [20] has shown that a sequence
{fn}:=l converges weakly to O in B(X) if and only if
{fn(x)}:=l converges to 0 for every x in X and

.

Lim Lim £ (x_) equals iLim Lim £ (x_) whenever {£_ :
n m n m
m k k m

zOO

n’n=1 (not necessarily a subsequence)

is a subset of {f

«© . L - . - PR
and {x¢}i—l 1s such that all limits exist. In a similar

oo}

vein, Ptak [18] has shown that {fn}n_, converges weakly to
—d
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0 in B(X) if and only if whenever xl’XZ"" are in X

and Lim fn(xm) exists for each n then Iim Lim fn(gm)
m n m

is 0. To obtain another result along these lines, we need
the following definition and theorem from [2,p.281). The

theorem is given without proof for reference.

Definition 3.5. A sequence {fn};—l of complex valued

functions on a nonempty set X is said to be guasi-uni-
formly convergent on X if and only if there exists a
function fo on X such that {fn(s)} converges to

fo(S) for every S in X, and such that for every positive
number ¢ and positive integer N there exists a finite
number of indices Niseee,y > N such that for each S in
X min |£_ (8) - fo(s)] is smaller than e.

ik i

Theorem 3.5. ILet X be an arbitrary set. A sequence

{fn}:_l in B(X) converges weakly to £ = if and only if
there exists a constant M such that “an <M for all n

and, {fn};_l together with every subsequence, converges to

fo quasi-uniformly on X,
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while the above results are perhaps adequate for B(X),
they are not easily applied to Q(X,P) spaces. It would
seem that one should be able to obtain much better results
by using the set structure which generates Q(X,P). The

following two theorems give the major results in that

direction.

Theorem 3.6. Let (X,P) Dbe a volume pair. Then a sequence

{fn}z_l of functions in Q(X,P) converges weakly to O

if and only if there exists a constant M greater than O

such that anﬂ <M for every n; and Lim Lim £ (x,)
n=e  §

equals 0 for every fundamental net of points {xé}.

Proof: Suppose first that {fn}:=l converges weakly to 0.
The existence of the constant M is a standard result and
is easily verified. Now, suppose there exists a fundamental
net of points {xé} for which Lim Lém fn(xé) does not

=0

equal 0. Put Y, equal to Lim fn(xé). The existence of
&

this limit is guaranteed by Theorem 3.4. Since Lim Yg is
n-w

not 0 we can assume, by choosing a subsequence of

w - - - L3
if necessary, that there exists a positive number

{y_}

n'n=1
n such that Jynj is larger than 7 for all n. Define



u on P by the condition that u(g) is 1 if {Xg} is
eventually in E and is 0O otherwise. Then, u is a

p-volume of bounded variation as we will now show. Suppose

E,, E are in P, El nE is empty and E, U E, is in

1’ 72 2

£ . Either {xé} is eventually in E; U E, or it isn't.
In the latter case it follows that {xé} is not eventually
in either El or E2 which implies that

u(El U E =0 = u(El) + u(EZ).

2)
On the other hand, suppose {xé} is eventually in E, U E,.

Select a P-subdivision {A,}°

2321 of X containing El

and a Pe-subdivision {Bj}?=l of X containing E,.
Finally, choose a P-subdivision {Ck}i=l which refines
the previous two. Since {xé} is a fundamental net of
points, there exists a Cy s such that {xé} is eventually
in Cyr- By our choice of {Ck}£=l and because Eq N E,
is empty it follows that C is a subset of E, or is a
subset of Ez but not both. Thus, without loss of gener-

ality, we have u(Bl) egqual to 1 and u(EZ) equal to O.

Tnis shows that
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u(El U E2) =1 = u(El) + u(Ez)

Conversely, if {xé} is not eventually in E; nor eventu-—
ally in E, then it is not eventually in El U E2 as the
previous part of the proof shows. In conclusion,
u(El) + u(Ez) = u(El U EZ) and a similar proof will extend
the result to any finite union of disjoint sets in #. Thus,
u is finitely additive and so is a p-volume. Let {Ei}§=l
be a P-subdivision of X. By the definition of a funda-
mental net of points there exists exactly one Ei' such
that {xé} is eventually in E;,. Thus,

N

J luE) | = juE )] =1
i=1

and so u is a p-volume of bounded variation with va
equal to 1. From Theorems 2.3 and 2.4, it follows that

(L) =10 I f du is a continuous linear functional on
X
0(X,P) which is independent of the choice of {. For each

positive integer n choose &n, 2 choice function on P,
such that if {xé} is eventually in D then wn(D) is

X, where {fn(xé)] is greater than m; whereas if {X5}
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is not eventually in D then wn(D) is an arbitrary
element of D. Note that such a choice of wn is possible

because [Lim fn(x6)] is larger than 71 and so if {xé}

is eventually in D then [fn(xé)[ is greater than n

eventually. However,

2
v [ £ au| = |zim ) £ (4_(D,))u(D,) |
s 8 .
i=1l
= J£_ (v, (0,)) |
= [£,(xg) [ >

where Di is that unique element of the f-subdivision 8
such that {X5} is eventually in it. This contradicts the
fact that {fn}:=l converges weakly to O,

Conversely, recall that Q(X,P) is a closed subspace
of B(X) in both the norm and weak topologies. Thus, it
suffices to show that the present hypotheses imply those

(o<}

of Theorem 3.5. Since every subsequence of {fn}n—l

satisfies the conditions of Theorem 3.6, it suffices to

show that {fn}:_l converges quasi-uniformly to 0 on X.
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Assume that this is not true. It follows that either there

exists an 7N greater than O and an integer N such that

for all m greater than N there exists an X in X with

]fi(gm)] >n for N igm or Lim £ (x) isnot 0 for

=

some xo in X. Consider the first case. By Theorem 3.2

there exists a fundamental net of sets {Dé} such that

0 . . .
{xh}m:N+l is frequently in each Dy . Now, either {Dé}
contains a member D which is a subset of every other

6 1
member or it doesn't. In the former case consider the
i) :i =1,2,...} where (Dé.,j) follows

directed set {Dé,,

(Dé,,i) if j is greater than i. The net

i) =D for all i =1,2,...}

i) : A(D 5t

{a(D

6!’ 6!’

is a fundamental net of sets because {D5} is a fundamental
net of sets and because Dé, is a subset of D6 for all
. From each A(Dé,,i) select z, in D5' such that z;

equals X with 1 less than m. This is always possible

o]

is frequently in Dg 1 - Clearly, {zi}i=l

o0

since {zm}m=N+l

is a fundamental net of points. However Lim Lim £ (z2.)
n—co =0 no1

does not equal 0 because for each fixed integer n
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greater than N we have lfn(zi)] >mn if i is larger

than n. This is a contradiction. In the latter case,
consider the directed set {(Dé,i): i=1,2,... and & is

arbitrary} where (D6 ,i) is less than (D6 ,3) if and
1 2

only if D is a subset of D This is a directed set

52 61

because of the case just considered. Clearly,

{A(Dé,i) : A(D,,i) =D, for all & and i = 1,2,...1

is a fundamental net of sets. From each A(Dé,i) select
z(D6,i) such that z(Dé,i) is X in D5’ with 1

. " (o]
less than m. Again, this is possible because {xh}m=N+l

is frequently in each Dy - {z(Dé,i)} is a fundamental net

of points. However, Lim Lim £ (z(Dé,i)) is not O
n= (Dé,i)

because for each fixed integer n greater than N we have
[fn(z(Dé,i))[ >mn if i is greater than n and because

6 1

follows (Dé,i) for all j =1,2,.... This is a contra-

for each (Dé,i) there exists a D such that (Dé,,j)

diction. It remains only to show that {fn(xo)}:_l con-
verges for each xo in X. Now, the net

{A:A e and X, € A} is a fundamental net of sets where



the ordering is by set inclusion. From each set select
X - Thus, {xo} is a fundamental net of points. By

hypothesis, Lim fn(xo) is 0 and this completes the

n—o
proof.

Because of our knowledge of the fundamental nets of
points in certain Q(X,P) spaces, we have many obvious but

important corollaries to the last theorem. In all of the

o]

following examples we will assume that {fn}n—’ is norm
- -4

bounded.

Example 3.15. Let (X,P) De the volume pair of Example 2.1.

A sequence {fﬁ};—l in QC([a,b]) converges weakly to O
n’n=

if and only if Lim fn(x) equals O for all x in {a,b]

n=o
and
Lim Lim fp(x) = Iim ZILim fr (x)
n~eo X-y+v nm=eo x=y~ 7



for all y in (a,b).

Example 3.16. Let (X,P) Dbe the volume pair of Example

2.2, A sequence (I_; in Q{X,P) converges weakly to
0 if and only if Lim £ (x) ecuals 0 Zfor all x in

[a,b] and Lim Lim fn(x) equals 0 Zfor 2ll y in
nN=—00 x—oy+ -

[2,D).

Example 3.17. Let (X,f) Dbe the volume pair of Example

2.3. A seguence {fp}:_l in Q(X,P) converges weakly to

0 if and only if ZLim fn(x) is 0 <£for all real x and

=

F=

Lim Lim ...n(x) Lim Iim fn(x)
n—o x-y+ N X-y

= Lim Lim £ (X)
n-w X-eo O

= Lim Lim f_’ (x)
N0 K=smo0 al

Hh
0

H

[

'..J
|-l
H

o

)

(]
<
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Example 3.18. Let (X,P) Dbe the volume pair of Example

2.6. A sequence {fn}:=l in Q(X,P) converges weakly to

0 if and only if Lim fn(m) is 0 for every positive
n=—o

integer m and Lim Lim £ (m) equals O.
TI=CO IO n

Recall that Q(X,P) in Example 3.18 is the space c
of all convergent complex sequences. The Banach space co,
of all complex sequences which converge to 0, 1is a closed
subspace of c¢. 2Applying the results from the last example
to c, Wwe see that {fn}:=l converges weakly to 0 if

and only if {fn}::_l is norm bounded and Lim £ (m) is O.
n=ce

Similarly, since c([a,b]) is a closed subspace of Q(X,P)
in Example 3.15 we obtain the following well-known result
as a corollary. A sequence {fn}:—l in c¢({a2,b]) con-

verges weakly to 0 if and only if Lim fn(x) is 0 for

==

all x in [a,b] and {fn}:=l is norm bounded. Although
Theorem 3.6 is significant, it is not as general as
Theorem 3.5 since fo did not have to be the zero element
in Theorem 3.5. The next result improves Theorem 3.6 and
is an interesting and important result because of its ease

in applications.



Theorem 3.7. Let (X,P) Dbe a volume pair. A seguence

-h

{£ }n—l in Q(X,P) converges weakly to £ if and only if

} is norm bounded; Lim £ (x) egquals £(x) for all

n=1 n
n—o

'“.‘

x in X; the iterated limits Iim Lim fn(xé) and
n-~eo §

Lim Lim £ (xé) both exist and are equal.

8§ n—ee

e . -~
{£ converges weakly to £,

"J
cr

Proof. Suppose first tha

“n 1—1

an element of Q(X,P). It follows that ILim fn(x) equals
=00

f(x) for all x in X Dbecause pointwise evaluation is a
continuous linear functional on Q(X,P) spaces. Therefore,

Lim Lim fn(xé) equals Lim f(xé) and the existence of this
d n-e 6

limit is guaranteed by Theorem 3.3. It follows that

{

Lim Zim (£_ - f)(xé) is 0 by Theorem 3.6. Again, since
n—o  § )

- f}°° . converges weakly to 0 and so

n n=4

Hy

Tim £(x exists we see from tne last statement that
o
)
Lim Lim (x ) exists and ecuals Lim £ X5>‘ Ccmbining
n~cs  § 8

i

this result with the earlier part of the »roof, we obtain

the desired conclusion.

Conversel it foilows from the last part of the proof

-

{x} 4is a fundzmental net of points

- =
9
“

of Theorem 3.6 that
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for each x in X and so Lim fﬁ(x) exists for each x.
-
=0

Let £(x) egqual Lim fn(x). We will show first that £ 1is
N~

in Q(X,RP). Let {xé} be a fundamental net of points.
Since Lim Lim fn(xé) exists we see that if € is greater
b n-ow

than O then for 51 and 62 sufficiently large

[Lim(£ (x5 ) = £ (x5 1)) | < e.
n—c 1 2
Therefore,
[£(x, ) - £(x, )| = |Lim{£_(x, ) - £_(x_ ))|
Ol 62 Ao n 61 n 52
< €.

This implies that Lim f(xé) exists and so f 1is in
®
Q(X,P) by Theorem 3.3. To verify that {fn}n—l converges
- ~ - . - .~ . - m
to £ weakly it suffices to show that {f_ - f}1~1 con-
-d dd =

verges weakly to OC. But,
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'ff‘.if Lém(fn(xé) - £(x.)) | =

|Lim Lim fn(xé) - Lim f(xé)[ =
n-e  § 5

fL:;.m Lim £ (x;) - Lim £(x,) | =
fen s &

|Lim £(x,) - Lim £(x.) | = 0. ‘
5 5 5

So the hypotheses of Theorem 3.6 are satisfied which

completes the proof.

The last theorem is of special interest when one con-
siders how the weak topology is defined. Recall that a
sequence {fn};_l converges weakly to fo if and only if

Lim é(fn) equals §(fo) for every continuous linear

-

functional & on Q(X,P). Since every continuous linear
functional on Q(X,P) can be represented as a 1 integral
(Theorem 2.4), Theorem 3.7 yields a very general result on

the interchange of limits and integration for the ¢ inte-

gral.



e}

n=1 be a sequence in Q(X,P) such

Corollary 3.1. Let {fn}

. R - = - - . . - :
that {f_} _; is norm bounded and such that Lim rn(x)
X oo

exists for all x in X. Then Lim ¥ £ du equals

h

fp du for every p-volume u oI bounded variation

J L
X n—

8 B

if and only if Lim Lim fn(xé) ecguals Lim Lim fn(xé) for
d n—oe n=w

every fundamental net of points {xé;.
For some Q(X,P) spaces the continuous linear func-
tionals can be expressed as well-Xnown concrete Stieltjes
integrals. Let (X,P) De the volume pair of Example 2.2.
In [5] J. A. Dver has shown that if u is a real valued
p-volume then the function fu on [a,b] defined by:

£, (@) = u({a}) and

£ (t) = ul(a,t]) + u{{a})

for t in (a&,b] 1is a Zfunction of bounded variation on

{a,p}. Let ¢y Dbe the crhoice function on ¥ dJdefined by:
v {{a}) is a and ¢ {{c,&}) is d&. It is also shown in



n
n

-

b
hdf
u

<
e

hdau = h(a)f (a) + R |
a
where this last integral is the rignt Cauchy integral. Since
u is of bounded variation the integrals are independent of
¢. Combining these results with Corollary 3.1 we have the

following.

Corollary 3.2. Let (X,P) Dbe the volume pair of Example

. (> - .
2.2 and let ihn}ﬁ—l be a sequence in Q(X,P). Then
n=
. o ob. ..
Iim R h & =R | 1lim nh d4af
J n u v n u
n—o a a n—w

for every function £  of bounded variation on [a,b] if
and only if Lim hn(x) exists for all x in [a,b];

n-o
Lim Lim hn(x) equals Lim hp(x) for 211 =z in ({(a,b];

X2z n—x n—sco

Lim Lim hn(x) equals Lim Lim hn(x) for 2ll =z in
X=zT n-o n=n X—=z*

.. 0 . -
fa,b); {(h_} ., is norm bounded.
n n=1

In a similar fashion one may start from the functional
representations given in [14], [8] for special Q(X,P)
spaces to obtain theorems for the interchange of limits and

integration for some non~¥ tvpe Stieltjes integrals includ-



56

ing the mean Stieltjes integral and the interior integrai.
For some Q(X,P) spaces it is impossible to com-
pletely characterize the fundamental nets of points. For
example, if X is the set N of all positive integers
and # is taken to be the pre-algebra of all subsets of I
then Q(X,P) Dbecomes the space m of all bounded complex
sequences. For this quasi-continuous space, no character-
ization of the fundamental nets of points is apparent.
Nevertheless, because they exist, we are able to give new

conditions for weak sequential convergence in m.

Theorem 3.8. Let {fn}:_l be a sequence in m. Then

® converges weakly to 0 if and only if Lim fn(k)

n=1
N~

£
[}
equals O for every positive integer k; there exists a

. [es]
constant M such that “fn” <M for all n; 1if {Xk}k=l

is a sequence of positive integers such that ILim X
k=

equals +» and if ¢ 1is greater than 0 then there

exists a positive integer N such that for each integer
h ist ub 3. £ {x 3}
no > N there exists a subsequence {xkt =1 © X by

such that |[£ (%, )| is smaller than ¢ for all
o

t =l’2,...‘
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Proof: Suppose first that {fn};_l converges weakly to O.
The first two conditions are standard results. Let {xk}:_l

be a sequence of positive integers such that Lim X is
koo

+xo and let ¢ greater than ¢ Dbe given. By Theorem 3.2

tHh

there exists a fundamental net of sets {D5} such that for

each &, {xk}k= is frequently in Dy - From each Dy 5

select =z so that =z equals X for some integer k.

62 )
z_} is a fundamental net of points. Consider the P-sub-
5 b

division {{1},...,{N

o},{Noé-l,Nb-+2,...}} of Nh where

N is an arbitrary fixed positive integer. Since {Dé}

is a fundamental net of sets {Dé} is eventually contained
- L -~ - 3 . . - 5
in one of the sets of the P-subdivision. However, {xk}k—l

is fregquently in each member of {Dé} and since Lim X
K=o

is 4o it follows that D is eventually a subset of

&
{N6-+1,N6-+2,...}. Thus, eventually z, is greater than
No and since NO was arbitrary it follows that Lim z6
0
is +w. By Theorem 3.6 we see that Lim Lim fn(zé) is O.
n—ee  §
Choose an integer N such that for ali n greater than N
we have |Lim fﬂ(zé)j less than <. Let n_  be a fixed
P

integer greater than X and Dick 61 so that if §
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follows &

1 then [fn (26)] is less than e. We will now
o

construct a subsequence {xk }:=1 of {xk}:=l such that
t

for each t there exists a § 2_61 such that X equals
t

z To do this let X equal 26 . Note that z6 is
1

& 1 1

equal to X o for some integer k'. Choose 62 greater

than 61 such that 262 is greater than max{xl,...,xk,}.

Such a choice is always possible because Lim zg is +o,
&

Let X equal z6 . Note that 26 equals Xen for
2 2 2

some integer k". Also, k2 is greater than kl. Continue

the process by induction to obtain a subsequence {xk }:=1'
t
By our choice of {xk 3 it follows easily that
£ t=1
|£ (%, )| is less than ¢ for all t =1,2,.... Thus,
o ft

{fﬁ}:—l has the desired properties.
Conversely, assume the result is false and that

{f }:=l does not converge weakly to 0. Then there exists

a fundamental net of points {Y5} such that

Lim Lim fn(yé) does not equal 0. From this fact and from
n~=o 3§

consideration of the #-subdivision

{({1},...,{n },{N +1,N +2,...}} we see that Lim y, is
o} o o) 5 )
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+0, Since Lim Lim fn(yé) does not equal 0, we can
n=o

assume, without loss of generality, that there exists an

1> 0 such that [Lim fn(yé)] is greater than n for
)

every positive integer n. Select 61 so that }fl(yé)[
is larger than 711 if & 2_61. This 1is always possible

because |Lim fl(yé)j exists and is larger than mn. Choose
&

greater than &

& such that Ys follows Yg and
2

2 1

2

{fz(yé)f is greater than 7 if § 2_62. This selection
is possible because [Lim fz(yé)} exists and is larger than
¢!

n and because Lim y, is +=. Note also that lfl(yé)]
®

is greater than ©n 3if & > & since § is greater than
! < Y2 2

® We continue the process by induction. Choose én

lo

such that {>,q is greater than 6n~l’ Yy is greater than
n

-

v , ané |f (y.)| 4is greater than 7 if & > &_ . Note
& ‘'md n
n-1

that [fi(yé){ is greater than 7 if i = 1,2,...,n and

) Z_Gn. For each positive integer n let X equal y6 .
n

x

Since {y6 3. is a strictly increasing sequence of
7'

3=1
=4

positive integers it follows that Lim X is +», However,
=

- - . co .
I of {x_} ., we have
[

IO any suposegquence ’LXP ndn=1
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[£ (x_ )| greater than 7 for all m if t is suffi-
m n,

ciently large. This is a contradiction and the proof is
complete.

As we stated in the introduction, Chapter four of this
dissertation is concerned with the problem of best uniform
approximations in Q(X,P) spaces. The following theorem
will play an important part in that investigation. It is
inciuded here because it is a result about the weak topology

of Q(X,P) .

Theorem 3.9. Let (X,P) Dbe a volume pair such that if

X are in X with X not equal to then there exist
3 8

sets Ax and Ay in ® such that x is in Ax, vy is

in Ay and A G Ay is empty. (Note that all of our

examples of volume pairs satisfy this condition.) Let F

be a subset of Q(X,P). Then the following conditions are
equivalent.

(1) P is norm bounded and if {xé} is a fundamental net

of points then for every ¢ greater thamn 0 and §

there exist 61""’6k > & such that

) — Lim £(x.): 1is less than ¢ for ail
~ 6]
)
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£f in F.

(2) F is norm bounded and if Fo is a denumerable subset
of F and {Xn};=l is a sequence in X for which
{f(xn)}:=l converges for each £ in Fo’ then for
every ¢ greater than O and for every positive
integer N there exist DyseeesTy > N such that

min ff(xn ) -~ Lim f(xn)f < e forall £ in F_.
1<ick i new

(3) F is weakly sequentially compact.

Proof: Suppose (1) is true and let Fo be a denumerable
subset of F for which (2) is not true. Then there exists
e {x 3" in X h that {£(x )} r
a s ce i such tha I(x c es

quen in=1 t o) 4o onverg
for each £ in Fo and there exists an ¢ greater than
0, a positive integer N such that if DiseeerTy > N
then we can find an £ in Fo such that

}f(xn ) - Lim £(x_ )| > e for i =1,...,k. It follows
i n—o -
from Theorem 3.2 that one can find a fundamental net of
~ -0 . - o
sets {AB} such that {x_} is frecquently in each Aé.

Either there exists an Aé, such that Aé, is a subset

or 2ll ¢ or there doesn't. 1In the £irst case,

0

H
>
th

¢l

consider the directed set {(a&,,,i):i =1,2,...} where



we define

if

62
if and only

(Aé,,i) to be less than (Aél,j)
i 1is less than J Clearly,
=A6|.’ i=l.’2.’"‘}

i) select

{a(ag,,1) = a(ag,,1)
6!1

ts. From each A(A
is the smallest positive integer

(

is a fundamental net of sets
Aé.,i) =X where k i
such that x  is in A,, and k > max{N i}. such a
is frequently in Aé,
for all £

choice is possible because {x_}

Then {x(Aﬁ,, )}:—l is a fundamental net of points and
is equal to Lim £(x_) £
n—w

(

(A

[e0]
because {x(Aé,, )}1 ; 1is a subsequence of {xn}n_
If

L)

(

)

)

Lim f(x(Aa,, i))
LS
in F
by construction. Now, consider Aé”l) and €.
Aé,,l )"":(A5:: are greater than or equal to
(Aﬁ,, then there exists an £ in F such that
jf(x(Aé,,ij)) -  Lim f(X(Aé.,i))] > €
(Aél.!
for 5 =1,...,t Dbecause x(Aé., .) is egual to x,_ for
some Xk with Xk > N and because of the assumption that
This contradicts (1) Suppose now that no

(2) is false.
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such Aé' exists. That is, for each A6l there exists an

A not equal to A such that A is a subset of A_ .
5 < 0 <
2 1 2 1
Suppose there exists an X with xr > N such that X, is

in A for all ©&. Consider the directed set

d
{(Aé,i): i=1,2,..., for all &} where (A6 ,1) g_(A6 ,3)
1 2
if and only if A6 is a subset of A6 . The collection
2 1

[a(a,1) : A1) =2, i=1,2,..., for all &}

is a fundamental net of sets. From each A(Aé,i) select
x(Aé,i) such that x(Aé,l) equals X for all & and

x(Aé,i) is xp with Xn in Aé and n > i for each

-

i=2,3,... and for all §&. Such choices are always

is freguently in each A, and

. . . ©
possible since {x_} 5

n’n=1

because X is in A, for all §. Clearly, {x(Aé,i)}

is a fundamental net of points. Note that

Lim f(x(AB,i)) exists because of Theorem 3.3. For any
(Aé,i)

fixed &, we have Lin f(x(Aé,i)) equal to Lim f(xn)
1= n—=o

{x{a.,i)} was constructed.
t J

because of the manner in waich 5

Moreover, for each Aé there exists an Aé, such that Aé,



is contained in A@' From these observations it follows
that Lim f(xn) is egual to Lim f(x(Aé,i)) for all £
n—oo (Aé,i)

in FO. Now, suppose (Aé,,j) is given. There exists an
A6 such that A6 is not equal to Aé, and A6 is a sub-
set of Aé,. Therefore, (Aé,,j) is less than (Aé,i)

for i =1,2,.... There exists, by hypothesis, an £ in

F such that ff(xr) - Lim f(xn)f is greater than or equal
n=oo

to €. But, since

|£(x_) - Lim £(x )] =
-0

]f(x(Aé,l)) - Lim f(x(Aé,i))[
(B5,1)
we see that last guantity is greater than or equal to €.

Since (a;,,3) is arbitrary and (Aé.,j) is less than

(a.,1) it follows f£rom this that Lim f£((x(a.,i) does not
&7 . 8?7
(Aé,l)

exist. This is a contradiction. Therefore, for every

positive integer n there exists an A6 such that X,

n
is not in A6 . If 8 > 5_ then X is not in A@’ From
. n
each A select x6 such that X, equals X with
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n > N. For each £ in Fo we have Lim f(xn) equal to
n—co

Lim f(xé) because the second limit exists and because for
®

each positive integer n' there exists a 6n‘ such that if

) Z-Gn' then x6 equals x_ with n greater than n'.

Now, let § be fixed and let 815 unsby > & be chosen.

Since Xg is equal to X with n, >N it follows from
i i

our assumption on {xn}:_l that there exists an £ in Fo

such that

nin [f(xn ) - Lim f(xn)f > €.
1<i<k i pew

Thus,

min jf(x6 ) - Lim f(xé)[ > €
1<ick i 5

because Lim £(x ) is equal to Lim £(x,). Since g was
n—o o

arbitrary this contadicts (1) and so (1) implies (2).
We will now show that (2) impliies (3). The proof is
taken from Theorem 29 page 280 in [2]. It is included for

reference. Recall that Q(X,P) is a closed subalgebra of
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the complex algebra B(X). Moreover, Q(X,P) contains the
unit e as well as the complex conjugate of each of its
elements. Finally, Q(X,P) distinguishes between the

points of X Dbecause of the hypothesis on P. Let Sl
consist of those nonzero continuous linear functionals @
in the closed unit sphere of (Q(X,R))* for which & (£fg)
equals @ (f)2(g). Sl is not empty since it contains the
evaluation functionals. It follows from [2], Theorem 18,
page 275, that Sl is a compact Hausdorff space. Define
the map V from Q(X,P) into C(sl) by V(£) 1is fl

(3) equals ¢&(f) for all ¢ in Sl. V is a

where £
1

linear iscmetry onto C(Sl). The mapping ¢ from X into

S defined by ¢ (S) eguals §S’ where és(f) is £(8)

1
for all £ in Q(X,P), is a one to one embedding of X as

a dense subset of Sl. et F De a norm bounded subset of
Q(X,R) and let F Dbe the set V(F). Then F is a norm
bounded subset of C(Sl)' Let §o be a denumerable subset

,és ,...} Dbe a sequence in S, con-
o i

of F and let {és
~. - -
tained in the range of { Zfor which ILim f(gs ) 1s equal

) for 2all £ in P . Let Fo be the set
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that ¥ (Si) equals §S for all i. Now, Lim f(Sn)
i N~
equals Lim §S (£) which in turn is equal to Lim %(és )
N n n—c n

and since this last limit exists so does the first, for all

£f in FO. Therefore,

min J%(és ) - Lim %(és ) | < e.
l_<_ i_<__k n 1= n

It follows from Theorem 14, page 269, in [2] that F is
weakly sequentially compact in C(Sl) . But, Q(X,P) 1is
isomorphicaliy isometric to C(Sl) and so F is a weakly
sequentially compact subset of Q(X,P). Thus, (2) implies
(3).

The proof will be complete once it is shown that (3)
implies (1). Let {xﬁ} be a fundamental net of points.

Using the same notation as before consider the net {§x 3.
S

Since Sl is a compact Hausdorff space there exists a sub-

net {3 1 of {éx } which strongly converges. The set
5* &
which equals V(F), is weakly secuentially compact

~
o
)

because F is and because V is a linear isometry. From

Theorem 14, page 269, in [2] it follows that for every ¢
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greater than 0 and 8* there exist 6i,...,6£ 2_3' such

that

for all £ in %. Since %(é ) equals f(xé) for all

5 we see that

min |£(x,,) - Lim f(Xs.)f < €
1<i<k i X

for all £ in F. Finally, because Lim f(xél) equals

6!

Lim f(xé) for all £ in F and because for every §
4}

there exists a &' > & we obtain (1).

When (X,P) is the volume pair of Example 2.7, then
0X,P) 1is B(X). Conseguently, using the results of
Example 3.6 we see that Theorem 3.9 reducés to Theorem 29,
page 280 in [2] for this particular Q(X,P) space. This
fact points out again that many of the properties of B(X)
can be extended to all Q(X,P) spaces by using fundamental

nets of points. Ultrafilters for B(X) are nothing more
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than fundamental nets of sets for this Q(X,P) space and
considering them in this way allows one to better under-

stand the structure of B(X).
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IV. BEST UNIFORM APPROXIMATIONS IN Q(X,P) SPACES

In this chapter the problem of best uniform approxi-
mations by elements of linear subspaces of Q(X,P) will be
considered. For an nistorical survey on the subject of best
approximations and for a summary of the significance of the
subject, the reader is referred to the introduction in [21].
Recall that if G is a subspace of Q(X,P) and go is an
element of Q(X,P) - G then an element £ in G is said
to be a best uniform approximation to gO by G if and

only if ['f - goﬁ is equal to inflg - goﬁ where g
g

ranges over all the elements of G. The problem is to
determine necessary and suifficient conditions for the ex~
istence of best uniform approximations. As a final illus-
tration of the uses of the concept of a fundamental net of
points, we will give necessary and sufficient conditions
for best uniform approximations in Q(X,P) spaces in terms

f these nets. We begin by introducing a definition taken

0

rom [21,p.93].

Fh

Definition 4.1. Let G Dbe z subspace of the complex normed

b

n E - G. The set of a2ll

[N

iinear space E &and let g_ e

Test uniform appeoroximations to %o by G will be dernoted



]
[
H

by pG(go). G 1is said to be a proximal supbspace of

and only if p (g_) 1s not empty for each 9, in E - G.

Note that G must be a closed subspace of E 1if it
is a proximal sudspace. The following theorem gives suf-
LI~ ot ~ T S e S e e . 3 - BRSO
ficient conditicns fcxr a subspace G to be a proximal sub-

space. It is taken from [22,p.97] and is stated without

Theoren 4.1 Let E Dbe a complex normed linear space and

-

let G Dbe a linear subspace of E with the property that
the ciosed unit bali of G 1is weakly sequentially compact.
Then G 1is a proximal subspace of BE.

Since we have already characterized, in Theorem 3.9,
2ail of the weakly secuentially compact subsets for most

(X,P) spaces, the following theorem is obvious.
3 5

Theorem 4£.2. Let (X,P) be a2 volume pair satisfying the

conditions of Theorem 3.9. Let G be a linear supspace of

0(X,P) and let S e the closed unit »all of G. If for

1}

-
1

every fundamental net of points (X

o}

greater than 0 and for every §, there exist

8.y eeasd > 8 ucn tnat
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min fg(x6 ) - Lim g(xé)f < €
1<i<k i 5

for every g in SG’ then G 1s proximal,

While Theorem 4.2 yields sufficient conditions for a
subspace to be proximal, it does not solve our original
problem. The problem posed in the intfoduction to this
chapter was concerned with best uniform approximations to a
fixed element by a given subspace. The two questions are
entirely different. That is, a subspace G of Q(X,P)

may have a best approximation to an element £, without G

necessarily being a proximal subspace. For the rest of this

dissertation we will be concerned only with the problem as
stated in the introduction to this chapter. The methods we
will use are basiczlly the same as those used by I. Singer
in [21] to analyze C([a,b]). The key to this method is
the determination of the extreme points for the closed unit
baill of (Q(X,RP))*¥. 2As we will show, fundamental nets of

points are sufficient to settle the guestion.
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Definition 4.2. Let G Dbe a normed linear space and let

k be a subset of G. A point 2z in Xk 1is said to be an
extreme point of k 1if and only if whenever 2z equals

with 0< A< 1, k k in k, then

Ak 10 Ky

+ (1 - Ak

1 2

both kl and k2 equal =z.

Theorem 4.3. Let ¢ Dbe a continuous linear functional on

Q(X,). Then & is an extreme point of the closed unit
ball of (Q(X,RP))* if and only if there exists a fundamental
net of points {xé} and a complex number o such that

la| equals 1 and &(f) is equal to o Lim f(x,) for

5 5

all £ in Q(X,P).

Proof: We will first verify that the conditions are suf-

ficient. Let {Xg} be a fundamental net of points and

define & by &(f) is o Lim £(x where [a| equals 1.

5

Note that ¢ is well defined by Theorem 3.3. ¢ is clearly

5)

linear and is continuous because

sup [8(£)| = sup |o Lim f(xé)i
f£ll<1 IEliky 8

IN
[



Thus, [|8]l < 1 and a straightforward argument will show
that §(XE) is equal to 1 for every E in # and so
|¢]] is equal to 1. From Theorem 2.4 it follows that there
exists a p-volume u of bounded variation such that Vﬁ

equals 1 and ¢ (f) 4is ¥ £cdu for each £ in Q(X,P).

Suppose E 1is in & and suppose {Xg} is not eventually

in E. Thus,

0 =ca L;m xE(xé) = 9(XE)
=3¢ [
—'%XEdu
= u(E).

=
th

{Xé} is eventually in E then

a = a Lim XE(X

) = 8{xg)
5 E

d
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Now, assume & is not an extreme point. Then there exist

continuous linear functionals §l and éz and a constant

A such that 0 < A <1 and & equals kél + (1 - k)§2

where both ﬁélﬁ and Hézﬁ are less than or equal to 1.
Let u__L and u, be the two p-volumes of bounded variation
associated with ¢ and ¢ respectively. For every E

1 2

in # we have:

u(E) =¥ [ xgdu = 8 (xg)
X

)+ (1= )8, (x)

¥ du, + (1 - Ay [ yx.du
% E 1l % E 2

=4 (E + (1 - D, (E)

and so u eguals Au, + (1 - A)u with V < 1 and
1 2 u; ~

V. <1, Choose E in P such that {xé} is eventually

in E. Then
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1= la] = |u(E)]
= A u (E) + 1 - My, ()]
< x[ul(E)! + (1 - 1) }u?_(E)l

<A+ (1 -1)

Therefore, both [ul(E)J and ]uZ(E)] are equal to 1

and since o equals Rtﬁ}E) + (1 - k)uZ(E) we must have
ul(E) and uz(E) equal to a Dbecause a 1is an exXtreme
point of the closed unit ball in the complex plane. If

{xé} is not eventually in E then select a P-subdivision
{Ej}?=l of X, to which E belongs, and suppose E = El.
This is possible by Theorem 2.1 (2). Since Vﬁ <1 and
since there exists an Ej' with J' greater than 1 such

that {Xé} is eventually in Ej" we see that

N

> ) @[22
3=1

1 Zvul
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because }u(Ej,)} = |a| = 1. Thus, u, (E) equals 0 and
a similar proof shows that uz(E) is 0. Therefore, uy

and u, are both equal to u which implies that él and

§2 are equal to @&. This is a contradiction.

Conversely, suppose & 1is an extreme point of the

closed unit ball of (Q(X,P))* and let u be the p-volume

of bounded variation such that & (£f) egquals ¢ fdu for

all £ in Q(X,P). It is easy to verify [l¢g]l is 1 and

SO Vﬁ equals 1. Suppose now that there exist two dis-

joint sets El and E2 in §# such that both u(El) and

u(EZ) are not zero. Define Uy by ul(E) is u(E N El)'

Clearly, u, is a p-volume of bounded variation with
L

Vﬁ g_va. Since there exists a P-subdivision of X to
l .

which E belongs, we can select {F.}g in £ such
l o jj:
N
that X - E, equals U F., where Fj n F. is empty if i

j=1 7

is different than Jj. Define u, by u2(E) is

N
-
Z‘u(E i F.). Again, it is easy to show that u, 1is a
3
3=1
- < L - N k
p-volume of bounded variation with V. < V.. Let {G.}._,
u.2 - u i i=a

be any P-sudbdivision of X. Note thnat
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= I8 N j { (i
G, (Bl Gi) U (Fl Gi) U,..U (FN ¢ Gi)

for i =1,...,k and each of these sets is in § and they

are pairwise disjoint. Therefore,

k k N
T - v ARy SN
/, ju(c;i)j = ) ;u(El n Gi) F) u(Gi n Fj)j
k
= 2:1u1<Gi> ¥ uy(6y) |
i=1
x k
< ) e ) a6 |
i= i=1
<V, +V_.
ul u2

Taking supremums we obtain vh g_Vﬁ + Vu . To prove the
1 2

reverse inegquality let {Hﬁ}?—l and {Gw};=l be P-subdi-

visions of X. By Theorem 2.1 there exists a P-subdivision

L - . .
- of X which refines the previous two. Then,
—
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M k
Ll EY ) e ] <
j= W=
L L
PRCCRTE DI ENCARE
t+t= t=
L b N
) olutE 0 S+ Y () a0 EDD <
L 1 t t 3 =
=1 t=1 j=1
V .
u

Taking supremums of both sides we get V +V <K V.
u u, — u
1 2
Therefore, Vﬁ equals v, *t Vﬁ . Now, let u, = ul/Vu
1 2 1
and 52 = u2/Vu . Note that V and V are both non-

u u
2 1 2
zero because oi the original assumption on u. Both Gl

and u, are p-volumes of bounded variation and each has

variation 1. Moreover, for any E in §# we have:
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Also, since u(gp) is O we see that ﬁl(E2) and Ez(El)

are both 0 and so El and 52 both differ from u.

Since 0 < Vﬁ < 1 we see that & is not an extreme point
1

of the closed unit ball of (Q{X,P))* which is a contra-

diction. Therefore, if El and E, are in © with

El N E2 empty then either wu(E;) is 0 or uZ(E) is 0.
Let G be the set {A:A is in P with u(a) = 0}. We
claim that G is a directed set with respect to set in-—
clusion. It suffices to show that u(Al N A2) is not 0.
Suppose u(A1 0 A2) is zero. ©Now, there exist sets
{D.}E and {E.}g in P such that

i‘i=1 j’i=1

M

k
A - (Al N A2) = .U Di and A2 - (Al N A2) = .U Ej.
i=1l j=1

Since,

and since u(A1) is not zero there exists a Di with

-

u(Di) not zerc. Similarly, there exists an Lj with

u(E.) not zero., However, Di 0 Ej is empty and this

Ly
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contradicts our earlier result. Thus, u(Al N A2) is not
zero and so (G 1is a directed set. If S is the map from
G into (G defined by: S(a) = A then (G forms a net.
We will show that it is a fundamental net of sets. To
verify (2) of Definition 3.1 let {Ei}§=l be a P-sub-
division of X and let A Dbe in C. It follows that

{an Ei}ﬁ—l is a P-subdivision of A. Since u(ad) equals

N
Z:u(A n Ei) and since u(A) is not zero it follows that

i=1

u(a N Ei) is not 0 for some i. But, AN Ei is a sub-
set of Ei and a0 Ei is in G which shows that G 1is

a fundamental net of sets. Let Al and A2 be in G with

M

Ay contained in A, Since A, - Al equals ;ﬂlDi for

some collection of disjoint sets {Di}?;l in P, we see

that

M
u(AZ) = u(Al) + Z:u(Di).
i1
However, u(Al) is not zero and Al 8 Di is empty for
i=1,...,M which implies that u(D,) is 0 Zfor each 1.

b < 1 T£ T 3 )
Thus, L(Al) eguals u(Az). If Al and A2 are in (C,
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then Al n A.2 is in G and so

u(Al) = u(Al N Az) = u(Az)

because Al N A2 is a subset of both A.l and AZ' There-

fore, u is constant on G and since Vﬁ is 1 we see
that u(a) eguals o with |a| equal to 1 for all A
in G. From each A in G choose X, SO that {XA}

forms a fundamental net of points. Let E De in P such
that {xA} is not eventually in E. Then u(E) is 0 for
otherwise E would be in (G and so {xA} would eventually
be in E. On the other hand, if {XA} is eventually in ﬁ,
a set in P, and if u(B) is O then £ is not in G
and so there exists an A in G with A N E empty. The
reason for this is that there exists a P-subdivision

.}N of X to which £ belongs and u cannot vanish
on every Ei because Vu is not 0. But, since A is in
G, {xA} must eventually be in A and in view of the fact
that it is also eventually in E with EN A void we
obtain a contradiction. Therefore, u(E) is not O and

so u(E) 1is «a. Select a choice function ¢ so that

v (E) egquals x_ 1if {x,} is eventually in E and is
' o £
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arbitrary if {xA} is not eventually in E. Then,

where the first limit is taken over all P-subdivisions of
X and D, is that unique element of {Di}?—l such that
{x } is eventually in D.,. Note also that

A

Limc £(¥(D.,)) = o Lim £(x_ )
1 A
8 A
because of our choice of ¢ and because of Theorem 2.3.
Theorem 4.3 is interesting in its own right and it
plays an important part in determining necessary and suf-
ficient conditions for best uniform approximations by sub-

spaces in Q(X,P). Because of the importance for appli-



cations, we will now give a collection of examples of the
application of Theorem 4.3 to those Q(X,P) spaces for
which we have determined all the fundamental nets of points.
In all of the following examples o will be a complex

constant with |[a]| equal to 1.

Example 4.1. Let X De the set ([a,b] and let § be the

collection of all open subintervals of ([a,b] along with
the singleton subsets of X. & is an extreme point of the
closed unit ball of (Q(X,P))* if and only if there exists
a z in [a,b] such that &(f) egquals « £(z) for all
£f; or there exists a z in [a,b) such that ¢(f) 1is

a Lim £(x) for all £f; or there exists a 2z in (a,b]
x~zt

such that ¢(f) is o Lim f(x) for all £.
X=z"

Example 4.2. Let X Dbe as in the last example and let P

be the collection of all subsets of X of the form (c,d]
along with {al}. & is an extreme point of the closed unit
ball of (Q(X,RP))* if and only if there exists a =z in
[a,b] such that ¢(f) equals <« f£(z) for all £; or
there exists a 2z in [a,b) such that ¢&(£f) is

¢ Lim £(x) for all £f.
x~zTt
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Example 4.3. Let X Dbe the set of all positive integers

and let  Dbe the collection of all subsets of X of the
form {N,N+1,...} along with the singletons. & is an
extreme point of the closed unit ball of (Q(X,RP))* if and
only if there exists a positive integer N such that & (£)

equals o £(N) for all £; or ¢&(f) 1is coLim £(N) £for
N—oo

all £.

Example 4.4. Let X Dbe as in the last example and let ¢

be the collection of all subsets of X. Recall that in
this case Q(X,P) is the space m. & is an extreme point
of the closed unit ball of (m)* if and only if there
exists a positive integer N such that ¢ (£f) equais a £(N)
for all £; or there exists an ultrafilter {Aé} of sub-
sets of X such that 2&(f) is o Lim f(aé) for all £
d

where as is in A6 for all &.

In order to apply Theorem 4.3 to the problem of best
uniform approximations in Q(X,P) spaces, we need some
preliminary results from [21]. The following is Theorem

1.13, page 62 in [21]. t is included for reference and is

stated without proo=Z.
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Theorem 4.4. ILet E be a normed linear space and let G

be a subspace of E. Suppose X 1is in E - G and go is
in G. Then go is a best approximation to x by G 1if
and only if for every g in G there exists an extreme

point fg of the closed unit ball in E* such that
g
Re(f (g - g,)) 20

and

g _ = | _ ]
£ (x-g) =lx-g

By using Theorems 4.3 and 4.4 we are now able to solve

the problem stated in the introduction to this chapter.

Theorem 4.5. Let (X,P) De a volume pair. Suppose G 1is

a linear subspace of Q(X,f), £ 1is an element of
QX,P) - G and 9 is an element of G. Then 9 is a
best uniform approximation to £ by G if and only if for

every g in G there exists a fundamental net of points

{xg} such that:
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Re[(L-g-m(f(Xg)) - %(Xg”*”'gm g(x;) > 0

and

[Lim(f(xg) - go(xg)) | = sup[£(x) - g_(x)|.
o xeX

Proof: From previous results we see that 95 is a best
uniform approximation to £ by G if and only if for
every g in G there exists a fundamental net of points

{xg} and a scalar a with |a| =1, such that

Re{a Lim[g_ (x‘g) - g(xg)]} > 0
&)

o Lim[f(xg) - g (xg)] = sup |[£(x) - g(x)|.
& o b
! xeX

Clearly,

Im{ o Lém[f(x‘g) - g (x)1} =0
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and since |[a| is 1 we see that o equals M*/|M| where

M = Lim[£(x)) - g_(xJ)]
el o
&
if this quantity is not 0. If it is 0 then the result is
trivial. Thus, = is a best uniform approximation to £
by G if and only if for every g in G there exists a
fundamental net of points {xg} satisfying the second con-

dition of the theorem and

Re{M* Lim[g_(x7) - g(x;)1} 2 O.
<

Since 9o = G equals G and applying the last result to

g —9g
{xéo } we obtain the first condition of the theorem.

although the last theorem is a solution to our problem,
in some special cases Theorem 4.5 can be improved upon. In
the following theorem, we consider the problem of best
uniform approximations by a subspace G of finite dimen-

sion.
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Theorem 4.6. Let G be an n-dimensional subspace of

Q(X,P),s let £ Dbe in Q(X,P) - G and suppose 9 is in

G. The following statements are equivalent:

(1) = is a best uniform approximation to £ by G;
(2) +there exists h fundamental nets of points

{x6 },...,{x6 } where 1< h< n+l if the scalars
1 h

are real and 1 < h ¢ 2n+1 if the scalars are complex

and h scalars Al,...,xh all greater than 0 with

h
Z Aj equal to 1, such that
3=1

a
L kj Lém g(xéj) =0
j=1 J

for all g in G and

h

) hs sin(£0eg ) - g50x )) = £ - g
=1 3 ’

F

(3) there exist h fundamental nets of points

{x4 },...,{x6 } where 1< hn+l if the scalars
1 h

are real and 1 < h ¢ 2n+1 if the scalars are complex,

and h numbers kl""’kh greater than 0 with



S0

h
Z:kj equal to 1, such that
J=1
h
5 .
Z,l' Lim g(x. ) =0
J=1 J

for all g in G and

Lim(£(x, ) - g(xg ) = [ - g, |

5 .
3 J J

for each j = 1,...,h.

Proof: The result follows from Theorem 4.3 and Theorem 1.1

of [21].

Theorems 4.5 and 4.6 are good examples of the use of
fundamental nets of points. In applying these results to
specific Q(X,P) spaces, all that is necessary is a
As we have shown in

knowledge of the nets for that space.

previous examples, this can be done in many cases.
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V. CONCLUDING REMARKS

The original intent of this dissertation was to deter-
mine the weakly sequentially compact subsets of Q(X,P),
in order to use Theorem 4.1 in the determination of best
uniform approximations. In considering this question, one
must have some knowledge of the weak topology of Q(X,P)
spaces, especially the sequential properties of this topolo-
gy. Up until this time, little has been done in this area.
Apparently, the reason for this is that there has not been
a characterization of Q(X,P) spaces that is suited for
such an analysis. The concept of a fundamental net of
points is the major contribution to the study of the weak
topology in this dissertation. This concept is based upon
set theoretic properties of the volume pair (X,P) for the
space Q{X,P) and as such is applicable to many different
areas of interest concerning these spaces. For example, we
were able to give a new characterization for Q(X,P) spaces
as well as necessary and sufficient conditions for best
uniform approximations by subspaces of Q(X,P). Neither of
these results deals with the weak topology. This concept

is also applicable to problems concerning the weak topology
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of Q(X,P) spaces since we were able to give necessary

and sﬁfficient conditions for weak sequential convergence
using this concept. This in turn allowed us to determine
the weakly sequentially compact subsets. Thus, it is
apparent that the concept of a fundamental net of points is
not topologically oriented but rather is inherent in the
structure of the space itself. As a result of this, the
many diverse examples of Q(X;P) spaces are more easily
understood as a class of Banach spaces. For example, we
have shown that several of the properties of QC([a,b])
which were thought to be related to the order properties of
the real line are not in fact unigque to this space, but are
properties of general quasi-continuous function spaces. It
is for this reason that fundamental nets of points are
important to the study of the abstract properties of

Q(X,#) .

Naturally, the usefulness of a concept depends not
only on its theoretic applications but also on how easy it
is to use in concrete examples. In many of the classical
Q(X,P) spaces the fundamental nets of points can be com-
pletely determined. As a result of this, the abstract

results cited above are easily applied to these spaces.
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For example, some limit interchange theorems for Stieltjes
integrals become trivial corollaries of our more geneial
result (Theorem 3.7) concerning the interchange of limits.
This points out again the significance of fundamental nets
of points.

For the reasons mentioned above, it would seem likely
that this concept could be applied to settle other ques-
tions concerning Q(X,P) spaces. For example, can sets
whose closure is compact be characterized? This particular
question has been settled in [9] but only for those Q(X,P)
spaces with a special ordering property on X. It is
possible to characterize weak convergence in Q(X,P) wusing
fundamental nets of points? If it is possible, then this
would improve upon the results obtained in Chapter three,
since only weak sequential convergence was considered
there.

In Chapter four the question of best uniform approxi-
mations by subspaces of Q(X,fP) was settled. Unfortu-
nately, neither Theorem 4.5 nor Theorem 4.6 is especially
useful in actually determining a best uniform approxi-
mation. Does there exist an algorithm which will allow one

to constructively determine a best approximation? One of



the major difficulties in developing such an algorithm is
that best uniform approximations to an element by a subspace
need not be unigque in Q(X,P) spaces. For example, let A
be the subspace of QC([a,b]) consisting of all functions

f such that £(b) is zero and let g Dbe the element of

oCc([a,b]) defined by g(x) equals 2 for all x in
[2,b]. Clearly, g is not in A. ©Now consider the two

functions fl and f2 defined by

£.(x) =1 for x ¢ [a,b)
and

fl(b) =0
while

fz(x) =0 for all x in [a,b],

Then £, and f2 are both in A. Moreover,
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Also, since every element in A 1is O at Db whereas

g) is 2 we see that

inf[ £ - gl = 2.
fea

Thus, we see that best uniform approximations by subspaces
are not unique in Q(X,P) spaces. This lack of unigueness

seems to make an algorithm difficult to find.

In conclusion, the results given in this dissertation
point out that fundamental nets of points are very useful
in the analysis of quasi-continuous function spaces. The
concept is easy to apply to the classical Q(X,P) spaces

and it allows one to understand these spaces as a class of

Banach spaces.
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