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I. INTRODUCTION AND HISTORICAL SURVEY 

The space Q(XjP) (Definition 2.4), of all quasi-

continuous functions on a non void set X relative to a 

given pre-algebra P, has become of interest since it 

arises both in problems in pure functional analysis and in 

the application of functional analysis to signal processing. 

For example, in [4] J. A. Dyer used these spaces as models 

for certain classes of duration limited signals and R. E. 

Lane [17], in 1955 through 1962, used special types of 

Q(XjP) spaces to study linear stationary systems. The 

applications of Q(X,P) spaces in abstract functional 

analysis and related ideas have been considered by J. A. 

Dyer in [3], [6], and [7], and by W. B. Johnson in [13]. 

As a result of these applications, the properties of 

Q(X,P) spaces have been investigated by mathematicians 

since the 1930's in special cases. These abstract spaces 

have been studied since the late 1960's. T H. EtLldebrandt 

[12] characterized sets with compact closure in QC([a,b]) 

(Example 3.11) and this was later extended to a certain 

class of Q(X,P) spaces [9] by J. A. Dyer and W. B. Johnson. 

The representation of linear operators on Q(X,P) spaces 
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when X is an interval or the real line has been considered 

by Kalteiiborn [14], Hildebrandt [11], Lane [17] and [18], 

and Baker [1]. Dyer in [3] and [5] has considered the 

abstract operator representation problem. The problem of 

solving linear operator equations in special Q(X,P) spaces 

has been considered in numerous papers by McNerney, Hinton, 

Hildebrandt, and Lane. A bibliography of these results can 

be found in [5]. E^er has studied the abstract case in [5] . 

Up to this time almost all of the research in Q(X,P) 

spaces has been devoted to properties of these spaces with 

the norm topology, and very little attention has been given 

to weak topological properties of these spaces. Recall 

that the weak topology 5" for a normed linear space is the 

smallest topology, with respect to set inclusion, such 

that every linear functional, continuous for the norm 

topology, is also continuous for 3". However, as soon as 

one considers the problem of the best sup norm approxi­

mation of an element of a Q(X,P) space by elements of a 

given subspace of the space then one must concern oneself 

with the weak properties of Q(X,P) spaces, in particular 

with weak sequential compactness and related matters. Since 

the uniform approximation problem has many important 
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applications in signal processing it would seem that research 

into these areas is overdue. In this dissertationwe begin 

the study of some of these questions. 

There are several ways to investigate Q(X,P) spaces. 

One method is to take a property of the well known space 

QC ( [a^b] ) and attempt to extend it to all Q(X,P) spaces. 

A second method is to use the fact that Q(X,P) is a closed 

subspace of B(X), the space of all bounded complex valued 

functions defined on X. Because of this^ some of the 

topological properties of B(X) hold automatically for 

every Q(X,P) space. In this thesis, a combination of both 

methods will be used to analyze several properties of these 

spaces. The basis for this investigation will be a new 

concept, that of a fundamental net of points (Definition 

3.4). This is a concept of extreme importance in that it 

not only allows a complete characterization of Q(X,P) but 

it is also neatly applicable to the study of the properties 

of these spaces. 

The dissertation itself is divided into five chapters. 

Since a great deal of this work is dependent upon a firm 

understanding of Q(X,P) spaces, chapter two contains a 

summary of all pertinent definitions and elementary 
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properties of these spaces. Most of these results are due 

to J. A. Dyer [3], [5], E. M. Eltze [10], and R. A. Shive 

[19]. 

The main results of the dissertation are given in 

chapters three and four, in chapter three the concept of a 

fundamental net of points is introduced. In order to illus­

trate this concept, a detailed study of the fundamental nets 

of points is given for several important quasi-continuous 

function spaces. These examples are not only important in 

their own right, but also serve to keep the abstract results 

of this thesis in perspective. The rest of chapter three 

contains two major applications of the concept of a funda­

mental net of points. The first of these is a new charac­

terization of Q(X,P) spaces (Theorem 3.3) which is a 

generalization of the classical one sided limit charac­

terization of QC([a,b]). The second application is to the 

study of the weak topology for Q(X,P) spaces. In Theorem 

3.7 necessary and sufficient conditions for a sequence 

[f^}^_^ to converge weakly to f^ in Q(X,P) are given. 

This result improves those in [2,p.281], [18] and [20]. As 

a corollary (Corollary 3.1), one obtains some improved 

conditions for the interchange of limits and integration for 
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the ^Jr integral (Definition 2.6). 

Chapter four also contains applications of the notion 

of a fundamental net of points. In it^ the extreme points 

of the closed unit ball of the adjoint space of Q(XjP), 

which will he denoted by (Q(X,P))*, are characterized. 

Recall that if G is a subspace of the complex normed 

linear space E and if f is in E - G then an element g^ 

in G is said to be a best uniform approximation to f by 

G if and only if |[f-g|̂j equals inf||f - gj] where g 

ranges over all the elements of G. The characterization 

of the extreme points (Theorem 4.3) is used to give neces­

sary and sufficient conditions for best uniform approxi­

mations by subspaces of Q(XjP). The method used is similar 

to that used by I. Singer [21] in his study of best uniform 

approximations by subspaces in C([a,b]). 

Chapter five contains a brief summary of the disser­

tation and a few notes concerning future research in 

Q(Xj!P) spaces. 
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II. EXAMPLES AND PROPERTIES OF Q(X^P) SPACES 

Throughout the remainder of this work the following 

conventions will he used. If a and b are real numbers 

and a < b then [a,b] and (a,b) will denote the closed 

interval whose endpoints are a and b, and the open 

interval whose endpoints are a and b respectively. The 

empty set will be denoted by 0. The complex conjugate of 

a number x will be denoted by x*. The following defini­

tion has its origin in [23,p.17] and differs from A. C. 

Zaanen's definition only in that we do not require X to be 

in P. 

Definition 2.1. Let X be a nonvoid set and P a nonvoid 

collection of subsets of X. Then P is said to be a pre— 

algebra of subsets of X if and only if the following 

three conditions are satisfied; 

(1) if A,B are in P then A H B is in P, 

(2) if A,B are in P then there exists a finite disjoint 

collection of sets [E.]? . in P such that 
i 1=1 

P 
A - B = U E., 

i=l ^ 
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(3) P contains a finite disjoint collection of 

r 
sets such that X = U G, . 

k=l 

In the remainder of this work P will always denote a 

pre-algébra of subsets of a nonvoid set X. The pair 

(X,P) will be called a volume pair. There are many examples 

of volume pairs and a few of them will now be listed for 

future reference. 

Example 2.1. Let X = [a,b] and let P consist of all 

open subintervals of [a,b], singleton subsets of [a,b], 

and the empty set. Then (X^P) is a volume pair [5]. 

Example 2.2. Let X = [a.,b] and let P be the collection 

of sets [ (c, d] : a ̂  c < d < b} U {[a}_,0}. Then (X,P) is 

a volume pair [4]. 

Example 2.3. Let X = R the set of all real numbers and 

let P be the collection of all sets of the form 

(ajb)j (a^oo)^ (-oo_,b)j[a} along with the empty set. It is 

straightforward to verify that (X,P) is a volume pair. 
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Example 2.4. Let X be a set with an infinite number of 

elements and let P consist of all subsets A of X such 

that X - A contains only a finite number of elements, or 

A = [a], or A is the empty set. To verify that (X,P) 

is a volume pair we need only show that all three conditions 

of Definition 2.1 are satisfied. Suppose A and B are in 

P. If either A or B is a singleton, or the empty set, 

then A n B is in P. If neither A nor B is a single­

ton or the empty set then 

which is a finite set since both X - A and X - B are 

finite sets. Thus, condition (1) is satisfied. Conditions 

(2) and (3) are easily verified since every singleton 

belongs to P. Hence, (X,P) is a volume pair. 

Example 2.5. Let X be any nonvoid set and let 

X - (A n B) = (X - A) U (X - B) 

N—1 
where U A . =X,A .  H A .  =0 if i = j 

and A = 0. Then (X,P) is a volume pair. 
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Example 2.6. Let X be the set of all positive integers 

and let P consist of all subsets of X of the form 

{N, isr + 1, n] and the empty set, where N is any 

positive integer. Since this case is similar to Example 2.4, 

we see that (X,P) is a volume pair. 

Example 2.7. Let X be any nonvoid set and let P be 

the collection of all subsets of X. It is trivial to 

verify that (X,P) is a volume pair. 

Definition 2.3. ([4],p.6) Let (X,P) be a volume pair. 

A disjoint collection of sets in P is said to be 

r 
a P-subdivision of X if and only if U G, = X. 

k=l 

The following theorem is due to J. A. Dyer [3] . it 

gives the main properties of P-subdivisions and is included 

for reference without proof. 

Theorem 2.1. For every volume pair (X,P) the following 

statements hold. 

(1) the collection of all P-subdivisions is directed by 

refinement and 
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(2) if E is in P then there exists a sxibdivision to 

which E belongs. 

As we noted in the introduction, this dissertation is 

concerned with quasi-continuous function spaces. The follow­

ing definition, taken from [3,p.473], explains the termi­

nology and symbolism that will be used in the remainder of 

this work. 

Definition 2.4. For the volume pair (X,P) ,Q(X,P), the 

quasi-continuous functions on X relative to P, will 

denote the linear space of all complex valued functions on 

X which are uniformly approximatable by finite linear 

combinations of characteristic functions of sets in P. 

Q{X,P) will be assumed to be topologized with the sup norm 

topology. 

As with most definitions, the definition of Q(X,P) 

has several equivalent representations. In the following 

theorem, Q(X,P) is shown to be a Banach space and an 

equivalent characterization for Q{x,P) is given. The 

theorem is taken from [5] and will be used without proof. 
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Theorem 2.2. For every Q(X,P) space we have the following: 

(1) Q(X,P) is a Banach space and 

(2) a complex valued function f on X is an element of 

Q{X,P) if and only if for every positive number g 

there exists a P-subdivision {D.}^ ^ of X such ] :=i 

that if p,g are in then jf(p) - f(q) j < e 

for j = 1, 

Theorem 2.2 is a very useful result and will be applied 

later (Theorem 3.3) to give a new characterization of 

Q(X_,P) . Since a major purpose of this dissertation is to 

investigate properties of the weak topology for Q(X,P), 

we will need several definitions and theorems concerning the 

general structure of continuous linear functionals on 

Q(X,P) . All of the following results are well known and an 

appropriate reference is given in each instance. 

Definition 2.5. [4] Let (X,P) be a volume pair. A 

finitely additive function u on P into the complex 

number field is said to be a p-volume; u is called a 

p-volume of bounded variation if and only if the net 
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P 

I lu(D^) I : is a P-subdivision of xj-

i=l 

has a finite supremxim. This supremiom will be denoted by V^. 

Definition 2.6. [2,p.469] Let (X,P ) be a volume pair, 

u a p-volxme on P, and ijf a choice function (that is, 

if (D) € D for all nonvoid D in P) for P - {0} . A 

complex valued function f defined on X is said to be 

^-integrable with respect to u if and only if the net 

P 

2 f (\!f (D^) )u (D^) : is a P-subdivision of xj-

i=l 

converges. The limit of this net, when it exists, will be 

denoted by i}r J f du. 
X 

The above integral is known as the iJf integral and 

was introduced and developed by J. A. Dyer in [3], [4], and 

[5]. The following two theorems are very important for the 

remainder of this work and both results can be found in 

[5] . 
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Theorem 2.3. Let (X,P) be a voliome pair and let 

be choice functions for P-{0}. If u is a p-volurae of 

bounded variation then J f du and ij; J f du both 
X X 

exist and are equal for every f e Q(X,P). 

Theorem 2.4. Let (X,P) be a volume pair and let § be a 

continuous linear functional on Q(X,P). Then, there exists 

a p-volume u of bounded variation such that 

ê (f) = 'ijf J f du. Conversely, if u is a p-volume of 
X 

bounded variation on P then § (f ) = iff J f du is a con-
X 

tinuous linear functional on Q(X,P) . Moreover, || § || = V^. 

Note that ijf can be any choice function, in Theorem 

2.4, because of the result given in Theorem 2.3. The fact 

that ijr is an arbitrary choice function will be of use 

later. Now that the members of (Q(X,P))* have been 

characterized, we are ready to investigate the weak topology 

of Q(X,P). We begin by introducing a new concept which 

will be used to characterize and analyze Q(X,P) spaces. 
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III. FUNDAMENTAL NETS 

Suppose (X,P) is a volume pair. If f is a function 

from X into the complex number field, then it can be 

difficult to apply either Definition 2.4 or Theorem 2.2 to 

determine whether or not f is in Q(XjP) . For the special 

{X,P) volume pair considered in Example 2.1, the task is 

much easier because it is well known, ([19],p.31), that f 

is an element of Q(X,P) if and only if Lim f (x), 
x-'y'^ 

Lim f (x), Lim f (x), and Lim f (x) exist for all y in 
x-»y" x-'a'^ xr*b~ 

(a,b). This special quasi-continuous function space is of 

considerable interest in that many physical systems can be 

modelled by using it ([3], [17]) . For the rest of this 

dissertation this Q(X,P) space will be denoted by 

QC([a,b]). A natural question arises; is there any way to 

extend the classic idea of a one sided limit in QC([a,b]) 

to an arbitrary quasi-continuous function space? To attack 

this problem some preliminary definitions and theorems are 

needed. 
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Definition 3.1. Let (X,P) be a volume pair. A net of 

nonempty sets {D^} in P is said to be a fundamental net 

of sets if and only if 

(1) Dg, is contained in if 6' follows Ô; 

(2) if is a P-subdivision of X then there 
J ]—1 

exists an F. and a 6 so that is contained in 
J à 

F.. 
J 

Theorem 3.1. Suppose is a fundamental net of sets 

for the volume pair (X_,P) . Then: 

(1) n Dg, is not empty for any 6 and 6 ' ; 

(2) if is a P-subdivision of X then there 
J Î--L 

exists a j and a Ô such that is contained in 

F. for all 6 which follow 5. 
] 

Proof: 

(1) There exists a 6^ such that 6^ follows both 6 and 

6'. Thus, the nonempty set is contained in 

, by virtue of condition (1) of Definition 3.1. 

(2) There exists a j and a 5 such that D^ is contained 

in F. . If 6 follows 6, D. is contained in D-r 
] 5 o J 

and so is contained in F.. 
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Although Definition 3.1 is fairly easy to understand, 

it is not obvious that there exists a fundamental net of 

sets for an arbitrary volume pair (X,P) . The following 

theorem guarantees that every volume pair has at least one 

fundamental net of sets. As well as being an existence 

theorem. Theorem 3.2 is an important tool and will be used 

in the proof of many of the results of this dissertation. 

Theorem 3.2. Let (X,P) be a volume pair and let 

be a sequence in X. Then there exists a fundamental net 

of sets [D } such that {x is frequently in each 
6 n n—X 

=6-

Proof: Let G be the set [A e P : {x is frequently 

in A}. Note that G is not empty since if is a J ]—-L 

P-subdivision of X then [^n^n-1 be frequently in 

at least one because each P-subdivision contains only 

a finite number of sets. Let 5 be the collection of all 

subsets M of G such that if A^ and A^ are in M 

then there exists an A in M such that A is a subset 

of A^ N A2. 3 is not empty since if A is in C then 

{A} is in 3. Partially order 3 by set inclusion 
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and let be a chain of elements in 5. Finally, let 

T be the set U M . If A., and A_ are elements of T 
Q, a 1 z 

then there exist sets m, and in {M } such that A, 
1 2 a 1 

is in and A^ is in . Since {M.^] is a chain we 

see that c or c . If M, is contained in 
1  —  2  2 — 1  1  

J it follows from the definition of 5, that there 

exists an A in M2 such that A is contained in 

A^ n A^. Since E T we see that A is in T and so 

T is an element of 3. A similar .result follows if M2 is 

a subset of . Thus, T is an upper bound for . 

It follows from Zorn's Lemma that 5 contains a maximal 

element, with respect to set inclusion. This element will 

be denoted by M. It is easily verified that M is a 

directed set with respect to ordering by set inclusion. 

Observe that no element of M is empty and that for set 

inclusion ordering, M satisfies condition (1) of 

Definition 3.1. Let {e.}^ , be a P-subdivision of X. 
 ̂ 1 1=1 

Suppose that no A in M is contained in any of the 

i = 1, ...,N. Then there exists an E^ such that E^ fl A 

is in G for all A in M or there doesn't. In the 

first case, let M be the set 
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M U {E. n A : A is in M} 
1 

and suppose that and are elements of M. Either 

and are both elements of M, or is in M 

and C_ = E. n A with A in M. or C, = E. n A. and 
2  1  '  1 1 1  

= E^ n A^ with A^ and A^ in M. In the first case 

it follows from the hypothesis on M that there exists a 

C in M, and hence in Mj such that C is contained 

in n c^. In the second case 

C- n C_ = n E. n A = (C^ n A )  H E .  3  C n E .  
1 2 1 x  1  1 —  X  

and this last set is in M because and A are in M 

and C, in M by the hypothesis on is a subset of 

N  A .  Finally, in the third case N  equals 

EI n (A^ n A^) which contains E^ n A an element of M, 

where A is contained in ^ ̂  and is an element of M. 

ThereforeJ M is an elment of 5. But, M is contained in 

M and since M is a maximal element of 3 with respect 

to set inclusion we see that M equals M. This in turn 

implies that E^ H A is in M for all A in M and so 
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n A is a subset of E^ contrary to our basic assumption 

on [E.T^ T. Thus, it follows that for each E., '• 1/1=1 ' 1 

i = 1, there exists an A. in M such that E. H A. 
' ' 1 11 

is not in G. Now, since M is in 5 we can select an 

_ N 
A in M so that A is a subset of H A. . Noting that 

i=l ^ 

A n E. is contained in A. H E., which is not in G, it 
1 11 ' 

follows easily that A n E . is not in G for any 

N 
i = 1,...,N. However, U ( A H  E . )  e q u a l s  A ,  w h i c h  i s  i n  

i=l ^ 

P, and since fx , is eventually not in A fi E., ' '• n n=l 2.' 

i = 1,...,N, it follows that is eventually not 

in A which is false. Thus, we have a contradiction and 

so M is a fundamental net of sets which has the desired 

property. 

Theorem 3.2 shows that every volume pair {X,P) has 

at least one fundamental net of sets associated with it. 

For some volume pairs it is possible to characterize all 

fundamental nets of sets. Many of the theorems that follow 

are useful only because such characterizations are possible. 

The following examples are extremely important and will be 

used extensively to illustrate our work. 
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Example 3.1. Let (X,P) be as in Example 2.1. We will 

show that there are only three distinct types of fundamental 

nets of sets for this volume pair. First, let us suppose 

that is a fundamental net of sets. Either there 

exists an X in [a,b] such that = {x} for some 6 ' 

or there doesn't. In the first case it follows from 

Definition 3.1 (1) that = {x} for all 6 ;> Ô ' . In the 

second case we have D. = (c.,d. ) with a < c. < d. < b 
0 0 0 — 0 0 

for each Ô. Let D. denote the closure of D. for each 
0 0 

6. Theorem 3.1 (1) implies that has the finite 

intersection property and since [a^b] is compact we see 

that there exists a z in D. for all ô. If z is an 
o 

element of Pi D, then the P-subdividion 
6 6 

{[a3,(a,z),{z},(z/b),{b}3 of [a,b] would not contain any 

member of which is impossible in view of Theorem 3.1 

(2). Therefore, there exists a 6' such that for all 6 

following ô ', z is not in and so z must be an end-

point of D. for all ô > ô'. Since D. H is not 

empty for any 5^ and 5^ we have equal to (z,2-f e^) 

with z<2 + 6g<b for all ô following ô ' ; or 

equals (z-s^^z) with z > z - ^ a for all 6 follow­

ing 5 '. Assume the first case occurs. If b ^z + T]>2 
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with "H > o then is eventually contained in some 

element of the P-sxxbdivision 

{{aj,(a,z),[z], iz,z + r\) ,{z + r]], (z + ri,b), {b} } and this 

element must be (z^z+ri) . Letting r, approach zero we see 

that Lim e, is 0. A similar argument can be made in the 
6 ® 

second case. 

In summary, if [D^} is a fundamental net of sets then 

either there exists a z in [a,b] so that eventually 

is iz]; or there exists a z in [a,b) so that eventually 

equals (z^z + e^) with z < z + ^ b and Lim 

equal to 0; or there exists a z in (a,b] so that 

eventually equals (z-e^,z) with a < z - < z 

and Lim e equal to 0. 
Ô ^ 

Example 3.2. Let (X,P) be the volume pair of Example 2.2. 

It can be shown by arguments similar to those given in 

Example 3.1, that is a fundamental net of sets if and 

only if one of the following three cases occurs: eventually 

D. is [a}; or eventually D equals (z-e ,z] for some 
Ô o Ô 

z in (a,b] with a ̂  z < b and Lim equal to 0; 
5 

or eventually D. equals (z^z + Sf] for some z in [a,b) 
0 0 
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with 2 < 2  + e <b and Lim e eaual to 0. 
6 - 6 ^ ' 

Example 3.3. Let (X^P) be the volume pair of Example 2.3 

and suppose is a fundamental net of sets. Either 

there exists a positive real constant M such that 

is eventually contained in the open interval or 

there doesn't. In the first case it follows easily that 

{D^} is eventually of one of three forms discussed in 

Example 3.1. In the second case, let M be any fixed 

positive real constant. Now, the collection 

{ (-co,-M), [-M], (-M,M) ,{M} , (M,oo)} is a P-subdivision of X 

and so {D^} is eventually contained in one of its members. 

By Theorem 3.1 (2) we see that either [D^} is eventually 

contained in or it is eventually contained in 

(M,<»). Assume the second case occurs. From Theorem 3.1 (2) 

and the above discussion it follows that eventually 

D. n is empty for any positive constant M. Also, 
0 

because the pair-wise intersection of elements of a 

fundamental net of sets is not empty we see that D eouals 
5 

{a^,oo) for all 5. Recalling that M was an arbitrary 

positive constant it follows that Lim a^^ is <». A similar 
6 

argument can be made if the first case occurs. 
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In summary J is a fundamental net of sets if and 

only if either is eventually equal to {a} for some 

real number a- or eventually D. is (z,2 + e ) with s. 
Ù 0 0 

greater than 0 for all 5 and Lim equal to 0; or 
5 

is (a.,a>) for all 6 with Lim a equal to oo- or 
6  6  ^ 6  

D- is (-co a.) for all Ô with Lim a equal to or 
6 6 g 6 

eventually is (z-e^jZ) with greater than 0 

for all Ô and Lim e equal to 0. 
6 

Example 3.4. Let (XjP) be the volume pair of Example 2.5. 

It is trivial to verify that is a fundamental net of 

sets if and only if there exists an i with 1 ̂  i ̂  N - 1 

such that equals for all ô. 

Example 3.5. Let (X,P) be the volume pair of Example 2.6 

and let be a fundamental net of sets. For any 

positive integer N consider the P-subdivision 

{f 1}, ... J f N}, [N + 1,N + 2_, ...}} . It follows from Theorem 3 .1 

(2) that [D^} is eventually equal to [N} for some 

positive integer N or D equals +1,...} for all 
O 0 0 

6 with Lim equal to oo. Conversely, every net of sets 
6 

of the above two forms is a fundamental net of sets. 
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Definition 3.2. A family 5 of subsets of a nonempty set 

X is said to be a filter if it possesses the following 

properties : 

(1) the empty set is not in 

(2) if A contains B and B is in 3, then A is in 

(3) if A and B are in 3, then A H B is in 3. 

Definition 3.3. If 3^ and are filters for the set 

X then we say that refines if contains . 

A filter is called an ultrafiler if it is not refined by 

any filter but itself. 

The above two definitions are taken from [2,p.30] and 

have been used by some authors as an alternative to nets in 

the study of convergence. As the following example shows, 

there is a relationship between the ultrafilters of a set 

X and the fundamental nets of sets from the volume pair of 

Example 2.7. 

Example 3.6. Let (X^P) be the volume pair of Example 2.7. 

Unlike the previous examples, it is not possible to simply 

characterize all of the fundamental nets of sets for this 

volume pair. However, we will show that every ultrafilter 
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is a fundamental net of sets and every fundamental net of 

sets is a subset of an ultrafilter such that if 

A is in then there exists a D. such that D, is a 
Ù 0 

subset of A. To begin with, suppose 5 is an ultrafilter 

of subsets of X. Partially order 3 by set inclusion so 

that it becomes a directed set. Define the mapping S from 

S- onto 3 by: S (A) = A. In this manner ? becomes a 

net and we will now verify that it is a fundamental net of 

sets. Only condition (2) in Definition 3.1 is nontrivial. 

To this end let fF.]^ . be a P-subdivision of X and 
3 3=1 

assume that no element of 3 is contained in any for 

j = 1,...,N. Furthermore, suppose for each j that there 

exists an A. in 5 so that A. n F. is empty. Let A 
J ] ] 
N 

be the set fl A. . Then A is in ? by the definition of 
j=l ^ 

a filter and yet A H F^ is empty for j = 1,...,N which 

is obviously impossible. Thus, there exists an F^ such 

that A n Fj is not empty for every A in 3. Let 3' 

be the collection of all subsets W of X such that there 

exists an A in 3 for which A H F. is a subset of W. 
] 

It is easy to prove that 5' is a filter which properly 

contains J?. This is a contradiction and so 5 is a 
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fundamental net of sets. Let 3 be the collection of all 

subsets W of X such that W contains some member of 

{D.}. 5 is a filter as is easily verified. If 5' is a 
0 

filter properly containing 3 then there exists a W in 

5^* which contains no element of {D^}. But [{W}^[x-W'}} 

is a P-siibdivision of X and by Theorem 3.1 (2) X - W 

must contain an element of {D } which we will denote by 
o 

. This implies that W H Dr, is empty which contradicts 

the fact that 9' is a filter. Thus, 3 is an ultrafilter. 

Let A be in 3 and consider the P-subdivision 

[{A},[X-A}} of X. Since is a fundamental net of 

sets there exists a Ô so that D. is contained in one of 
0 

the members of the P-subdivision. But, A and are 

both in 3 and so A H is not empty which then implies 

that D. is a subset of A. 
0 

The last example shows that for this volume pair funda­

mental nets of sets are essentially equivalent to ultra-

filters. All of the theorems in this dissertation, when 

applied to this volume pair, could be stated in terms of 

ultrafilters. In fact, this has already been done by 

several authors ([2],p.280,[20]). However, for an arbitrary 

volume pair (X,P) this cannot be done because not every 
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ultrafilter of sxibsets of X is a fundamental net of sets. 

It would be possible to introduce a new definition for a 

filter to circumvent the problem. For example^ we could 

define 5 to be a P-filter if 3 satisfies all of the 

conditions of Definition 3.2 where the sets are restricted 

to lie in P. This is essentially what we have done in 

introducing the concept of a fundamental net of sets. How­

ever, there are several advantages in using fundamental nets 

of sets versus the concept of a P-filter. As the last 

example shows, we would have to work with maximal P-filters 

and most of the following theorems would be difficult to 

apply since it is usually impossible to characterize maximal 

filters of any type, unless one already knows what the funda­

mental nets of sets look like. A second advantage is that 

most of the theorems in chapters three and four are easier 

to state and prove using fundamental nets of sets. For 

example. Theorem 3.5 is much easier to apply than Theorem 

31, page 281 in [1]. With these comments in mind, the rest 

of this dissertation will deal exclusively with fundamental 

nets of sets. The following definition is a natural exten­

sion of Definition 3.1 and is extremely important to all 

that follows. 
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Definition 3.4. Let (X,P) be a voltune pair. A net of 

points in X is said to form a fundamental net of 

points if and only if there exists a fundamental net of sets 

{D.} such that x is in D. for each Ô. 
5 0 0 

Since we have already characterized the fundamental 

nets of sets for a few volume pairs we can characterize the 

fundamental nets of points for them. The examples are 

included now for easy reference. 

Example 3.7. Let (X,P) be the volume pair of Example 3.1. 

It then follows that {x } is a fundamental net of points 
0 

if and only if one of the following three cases occurs. 

There exists a z in [a,bj such that either [x^j is 

eventually equal to z, or eventually [x^} is less than 

z with Lim x equal to z, or eventually [x^] is 
6 

greater than z with Lim x^ equal to z. 
5 

Example 3.8. Let (X^P) be the volume pair of Example 3.2. 

It follows that {x } is a fundamental net of points if and 
Û 

only if one of the following three cases occurs. Either x^^ 

is eventually equal to a, or there exists a z in (a,b] 

such that eventually is less than or equal to z with 
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Lim equal to 2, or there exists a z in [a,b) such 
Ô 

that eventually z is less than x with Lim x equal 
^ 6 ^ 

to z. 

Example 3.9. Let (X,P) be the volume pair of Example 3.3. 

Then [x^] is a fundamental net of points if and only if 

one of the following five cases occurs. Either there exists 

a real z such that eventually x equals z, or eventu-
0  

ally X is less than z with Lim x equal to z, or 
^ 6 ' 

eventually z is less than x with Lim x equal to z^ 
6 6 6 

or Lim X is oo^ or Lim x is -<». 
Ô ^ 6 ® 

Example 3.10. Let (XjP) be the volume pair of Example 3.5, 

Then {x } is a fundamental net of points if and only if 
5 

either there exists an integer N such that eventually x^ 

equals or Lim x is 0 0 .  

ô ° 

As we pointed out before, if (X,P) is the volume pair 

of Example 3.7 then a function f is in QC([a,b]) if 

and only if all one sided limits exist for f on [a,b]. 

We are now ready to answer the question posed at the begin­

ning of this chapter. A careful analysis of Example 3.7 
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leads one to suspect the following theorem. 

Theorem 3.3. Let (X,P) be a volume pair. A complex 

valued function f on X is an element of Q(X,P) if and 

only if Lim f(x ) exists for every fundamental net of 
6 ^ 

points [x ]. 

proof: Suppose first that f is an element of Q(XjP) . 

Let greater than 0, be given and suppose [x^} is a 

fundamental net of points associated with the fundamental 

net of sets Since f is in Q(X,P) it follows from 

Theorem 2.2 (2) that there exists a P-subdivision 
3 ]-l 

of X and complex numbers a^,...,a such that 
p ^ 

|jf - 2 G-Xp II is less than e/2. Select such that 

j=i : 

there exists a 6 with D contained in F.. If 6,, Ô-
6 3 ± z 

both follow 5 then x. and x. are both elements of 

Fj which implies that 

|f (x ) - f(x ) I < jf (x ) - a I + ja - f(x ) 
1 °2 0^ J J 0^ 

< e/2 + e/2 
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Thus, [f(x^)} is a Cauchy net of complex numbers and so 

converges. 

Conversely, suppose Lim f(x ) exists for every 
6 ° 

fundamental net of points {x^} and furthermore assume the 

result is false. From Theorem 2.2 (2) it follows that there 

e x i s t s  a n  T ]  g r e a t e r  t h a n  0  s u c h  t h a t  i f  [  D i s  a  

P-subdivision of X then there exists a and x, y 

in such that | f (x) - f(y) | T]. Let C be the set 

of all A in P such that for every P-subdivision 

{E.}? of A there exists an E. and elements x.y in 
X 1=1 1 

such that jf (x) - f(y) | ̂ "H. We will first verify 

that G is not the empty set. Let {A_. )be a P-sub-
j 3"-*-

division of X and suppose that no A. is in G. Then, 

Pj 
for each A^ there exists a P-subdivision of 

Aj so that if x, y are in E^^ then jf (x) - f(y) j < "H 

r P-
for j = 1,...,r. It follows that {E..}., .3, is a ' ' 1] ]=1 1=1 

P-subdivision of X such that if x, y are in E^^ then 

jf (x) - f(y) j < 7], This is a contradiction and so G is 

not empty. Let 5 be the collection of all subsets M of 

G such that if A^, A^ are in M then there exists an 

A in M such that A is a subset of ^ ^ is 
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nonvoid because if A is in G then [A] is in 5. Par­

tially order 3 by set inclusion. Using an argument 

similar to that given in Theorem 3.2, it is easy to verify 

that 5 has a maximal element which we will denote by M. 

By our restrictions on 5 we see that M is a directed set 

with respect to set inclusion. Define S from M into P 

by: S (A) = A. Suppose M is not a fundamental net of sets. 

It then follows that there exists a P-subdivision 
X 1—J. 

of X so that no element of M is a subset of for 

any i. Assume that there exists an E^ such that E^ H A 

is in G for all A in M. Let M be the set 

M u {e^ n A : A is in M} . 

Again using an argument similar to that in Theorem 3.2, it 

follows that M is in ?. However, M is properly con­

tained in M because if M were equal to M then E^ fl A 

would be in iï for all A in M which then implies that 

E^ contains an element of M which is contrary to assump­

tion on E. . But, since M is a maximal element of 3 we 
X ' 

again have a contradiction. Thus, for each E_., 

i = 1, ...,p, there exists an A^ in M so that E^ PI A^ 
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is not in G. Select an A in M so that A is a subset 

of n A. . This is always possible since M is in 3. We 
i=l ^ 

will now show that A H e . is not in G for each 
1 

i  =  1 , S i n c e  A  H  E .  i s  c o n t a i n e d  i n  A .  H  E .  
1 11 

and 

since A. H E. is not in G it suffices to show that if 
1 1 

and are in P with B^ contained in B^ and B^ 

not in G then B^ is not in G. Now, since B^ is not 

in G there exists a P-subdivision of B_ such 
3 3—1 z 

that if X, y are in then | f (x) - f (y) { is less than 

T] ,  It follows that [F. n B^}^ , is a P-subdivision of 
3 1^3=1 

B^ which also has the property that if x, y are in 

Fj n B^ then jf (x) - f (y) | is less than T| and so B^ 

is not in G. Applying this result to our case we see that 

A n E^ is not in G for any i = 1, ...,p. However, 

{A n E.}? _ is a P-subdivision of A and since A H E. 1 1=1 1 

is not in G for i = 1, ...,p it is easy to verify that 

M there exists a P-subdivision {D.}. _ of A such that if 
1 1=1 

X, y are in then jf(x) - f (y) | is less than t]. 

But this implies that A is not in G contrary to assump­

tion. Thus, M is a fundamental net of sets with the 

property that if A is in M and [ E_. is a P-sub-
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division of A then there exists an E. and x, y in E. 
1 1 

such that |f (x) - f (y) [ ^ 'H. 

For the rest of this proof let us denote the fundamental 

net of sets, that was just constructed, by Now, 

either there exists an A in such that Â is a 

subset of A; for each ô or no such Â exists. In the 

first case consider the directed set [(Â,i) : i = 1,2, ...} 

where we define (Â, i) ̂  (A, j) if and only if i ̂  j . 

Define the function S by: S((Â, i)) = A. S is a funda­

mental net of sets because [A^} is a fundamental net of 

sets and because Â is contained in A, for all 6. 
0 

Select X, y in Â such that [f (x) - f (y) | 2 'H- Choose 

a fundamental net of points associated with S, 

such that 2^ equals x if i is even and is y if i 

is odd. Clearly, Lim f(z.) does not exist. This is a 
i-»oo 

contradiction and so no Â exists in {A.} such that Â 
0 

is a subset of A^ for all 6. In the second case, con­

sider the directed set [ (A^,i) : i = 0,1 and A^ is in 

{A^}} where the order is defined by (A^,i) ̂  (A^,,j) if 

and only if A^, is a subset of A^^. This is a directed 

set because if A^ does not equal A^, then there exists 

an such that A, is contained in A. H Ag, by the 
0 o 0 o 
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definition of M. Thus^ (A^,i) < and 

(Ag,,i) ̂  (Â^,j) for i = 0,1 and j = 0,1. On the 

other hand, if one considers (A ,0) and (A ,1) then 
0 0 

there exists a 5' such that A., is a subset of A. 
0 0 

because of the first case considered above. Therefore, 

(A^,,)) 2 (A^jO) and (A^,,0) ̂  (A^,l). 

It follows that we have a directed set. Define S by: 

S((A.,i)) = A, for all Ô and i = 0,1. Clearly, S is a 
O 0 

fundamental net of sets. From each S((A^,i)) select , 
Ô 

y such that | f (x ) - f(y ) j ^ "H • The collection 

{z(ô^,i) : i = 0,1} is a fundamental net of points where 

z(6,0) = X and z(ô,l) = y . However, Lim f(z(ô,i)) 
*^0 5 (6,i) 

does not exist because for any (ô,i) there exists an A^, 

properly contained in A. and so (A.,i) < (Aj.,,0), 
5 0 0 

(A.,i) < (A-,,1) which then implies that 
0 0 

|f(Z(6',0)) - f(z(ô',l)) I  1 n.  
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This shows that [f(z(5,i)) : i = 0,1) is not a Cauchy net 

and so does not converge. This is a contradiction and the 

proof is complete. 

As we remarked before, the above theorem yields many 

corollaries each of which characterize a Q(X,P) space in 

a manner well suited to applications. In Example 3.11 we 

obtain the result on the classical QC([a^b]) as a direct 

consequence of the last theorem and our previous examples. 

This points out well how the notion of a fundamental net of 

points can be considered as a generalization of one sided 

limits for Q(X,P) spaces. 

Example 3.11. Let (X,P ) be the volume pair of Example 3.7. 

It follows that f is in QC([a,b]) if and only if 

Lim f(x) and Lim f(x) exist for all y in (a,b) and 
x-y+ x-y~ 

the appropriate one sided limits exist at a and b. 

Example 3.12. Let (X^P) be the volume pair of Example 3.8. 

Then f is in Q(X,P) if and only if Lim f(x) exists 
x-'y^ 

for all y in [a,b) and Lim f(x) equals f(y) for all 
x—y" 

y in (a,b]. 
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Example 3.13. Let (X,P) be the volume pair of Example 3.9. 

Then f is in Q(X,P) if and only if Lim f(x), Lim f(x), 
x-'y"^ x-»y~ 

Lim f (x) and Lim f (x) exist for all real y. 
X-*oo X-»—CO 

Example 3.14. Let (X^P) be as in Example 3.10. Then f 

is in Q(X,P) if and only if Lim f(N) exists. Thus, we 
N-»oo 

see that Q(X,P) is just the Banach space c, consisting 

of all convergent complex sequences and normed with the 

supremum norm. 

Let X be a non empty set and suppose that 

[ f^ : X - is a sequence of functions pointwise con­

vergent on X to a function lif. If X is a compact 

Hausdorff space and each f^ is continuous then necessary 

and sufficient conditions for ;J; to be continuous are well 

known ([2],p.268). Suppose now that (X,P) is a volume 

pair and that f^ is in Q(X,P). We will show that neces­

sary and sufficient conditions for ij; to be in Q(X,P) can 

be given in terms of fundamental nets of points. 

Theorem 3.4. Let (X,P) be a volume pair and suppose 

{is a sequence in Q(X,P) such that 

Lim f (x) = 'y* (x) exists for every x in X. Then y is in 
n-»oo 
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Q{X,P) if and only if for every fundamental net of points 

[x^} and every positive number e there exists a 6 such 

that for each 6^0 there exists a positive integer 

such that if n > then If (x„) - f (x-)I is less than 
0 n o  n o '  

Proof: Suppose first that is in Q(XjP) . Let e > 0 

be given and suppose [x } is a fundamental net of points. 

Since t is quasi-continuous Lim v(x^) exists by virtue 
Ô 

of Theorem 3.3. Select 6 so that if 6^ ̂  5 we have 

j # ( x ^  )  -  t ( x - )  j  l e s s  t h a n  e / 3 .  F o r  e a c h  f i x e d  6 ^ 6  

choose so that if n > N. then 
6 0 

If^(x^) - y (Xg) i < e/3 and jf^^x-) - V(x-) j < e/3. 

Therefore, for each n > N. we have 
0 

" *(*5) '' " 1 jMXg) - f^ (X-) I < 

e/3 + e/3 -f e/3 = e 
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Suppose now that {x } is a fundamental net of points. 
0 

Let € > 0 be given and select Ô according to the 

hypothesis of the theorem. Let 6^^ 6^ both follow 6 

and choose N so that if n > N then | f (x^ ) - f (x-) ! 
n 0^ no 

and if (x. ) - f (x^) j are both less than e. Thus, if 
n Og no 

n ̂  N we have: 

2 e .  

This implies that {^(x^)} is a Cauchy net and so converges. 

Theorem 3.3 then shows that is in Q(X,P) . 

The last two theorems give very important results 

about Q(X,P) spaces but they do not really depend on any 

particular topology that one might place on Q(X,P) . For 

the rest of this chapter we are going to consider a special 

topology for Q(XjP), the weak topology. This particular 

topology is significant in duality theory and is of interest 
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in its own right. It turns out that the concept of a funda­

mental net of points is applicable to the study of this 

topology. The significance of this concept, when applied to 

Q(X,P) spaces, will become apparent as we obtain several 

fundamental results concerning the weak topology, which are 

easily stated and applied. In order to illustrate the 

simplicity of our theorems, we include here a short list of 

some known results concerning weak sequential convergence 

that may be adapted to Q(X,P) spaces. 

It is easy to verify, via Theorem 3.3, that Q(X,P) is 

a closed subalgebra of B(X) for every volume pair (X,P) . 

It follows from [22,p.221] and the Hahn-Banach Theorem that 

weak sequential convergence in Q(X,P) can be characterized 

if one determines necessary and sufficient conditions for 

weak sequential convergence in B(X). This has been done by 

several authors. Simons [20] has shown that a sequence 

[f converges weakly to 0 in B(X) if and only if 

{f^(x)}^_^ converges to 0 for every x in X and 

Lim Lim f (x ) equals Lim Lim f (x ) whenever {f } 
m k ' b c ' "  k m ^ " "  " k  

is a subset of f (not necessarily a subsequence) 

and - is such that all limits exist. In a similar 
X 1=1 

vein, Ptak [18] has shown that {f converges weakly to 
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0 in B(X) if and only if whenever are in X 

and Dim f (x ) exists for each n then Lim Lim f (x ) 
n m n m 

m n m 

is 0. To obtain another result along these lines, we need 

the following definition and theorem from [2,p.281) . The 

theorem is given without proof for reference. 

Definition 3.5. A sequence of complex valued 

functions on a nonempty set X is said to be quasi-uni-

formly convergent on X if and only if there exists a 

function f^ on X such that {f^ (S)} converges to 

f^(S) for every S in X, and such that for every positive 

number g and positive integer N there exists a finite 

number of indices n^, ^ N such that for each S in 

X min jf (S) - f (S) | is smaller than e. 
iii<k "i ° 

Theorem 3.5. Let X be an arbitrary set. A sequence 

in B (X) converges weakly to f^ if and only if 

there exists a constant M such that |] f^|| ^ M for all n 

and, {^n^n-1 ^^S^ther with every subsequence, converges to 

f^ quasi-uniformly on X. 
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While the above results are perhaps adequate for B(X), 

they are not easily applied to Q(X,P) spaces. It would 

seem that one should be able to obtain much better results 

by using the set structure which generates Q(X,P ). The 

following two theorems give the major results in that 

direction. 

Theorem 3.6, Let (X,P) be a volume pair. Then a sequence 

{f of functions in Q(X,P) converges weakly to 0 
n n—X 

if and only if there exists a constant M greater than 0 

such that [[f II < M for every n; and Lim Lim f (x ) 
^ n-co Ô ^ 

equals 0 for every fundamental net of points 

Proof: Suppose first that [f converges weakly to 0. 
n n—-L 

The existence of the constant M is a standard result and 

is easily verified. Now, suppose there exists a fundamental 

net of points {x } for which Lim Lim f (x ) does not 
® 5 ° ' 

equal 0. Put y^ equal to Lim f^(x^). The existence of 
Ô 

this limit is guaranteed by Theorem 3.4. Since Lim y is 
n-»» 

not 0 we can assume^ by choosing a subsequence of 

{y^}^_^ if necessary, that there exists a positive number 

T] such that |y^ I is larger than t] for all n. Define 
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u on P by the condition that u(E) is 1 if is 

eventually in E and is 0 otherwise. Then, u is a 

p-volume of bounded variation as we will now show. Suppose 

ElJ E^ are in P, E^ H e^ is empty and E^ U E^ is in 

P. Either {x ] is eventually in E^ U E^ or it isn't. 

In the latter case it follows that is not eventually 

in either E^ or E^ which implies that 

u(Ei U Eg) = 0 = ufE^) + uCEg). 

On the other hand, suppose [x ] is eventually in U Eg 

Select a P-subdivision {A.}? , of X containing E, 
1 1=1 1 

and a P-subdivision , of X containing E.. ] ]=1 2 

Finally, choose a P-subdivision [which refines 

the previous two. Since {x^} is a fundamental net of 

points, there exists a C^, such that [x^} is eventually 

in C^, . By our choice of and because E^ fl E^ 

is empty it follows that C^, is a subset of E^ or is a 

subset of Eg but not both. Thus, without loss of gener­

ality, we have ufE^) equal to 1 and ufEg) equal to 0. 

This shows that 
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u(E^ U Eg) = 1 = u(E^) + ufEg) 

ConverselyJ if is not eventually in E^ nor eventu­

ally in then it is not eventually in E^ U E^ as the 

previous part of the proof shows. In conclusion, 

u(E^) + ufEg) = u(E^ U Eg) and a similar proof will extend 

the result to any finite union of disjoint sets in P. Thus, 

u is finitely additive and so is a p-volume. Let [ ]_ 

he a P-subdivision of X. By the definition of a funda­

mental net of points there exists exactly one E^, such 

that [x^} is eventually in E^,. Thus, 

N 

X 1 = ju(E^,){ =1 

i=l 

and so u is a p-volume of bounded variation with V 
u 

equal to 1. From Theorems 2.3 and 2.4, it follows that 

§ (f ) = iji' J f du is a continuous linear functional on 

X 

Q (X,P ) which is independent of the choice of ijr. For each 

positive integer n choose a choice function on P, 

such that if [x^] is eventually in D then #^^D) is 

x^ where {f^^x^) j is greater than -q; whereas if {x^} 
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is not eventually in D then is an arbitrary 

element of D. Note that such a choice of is possible 

because jLim f^ (Xg)  | is larger than r ]  and so if 
Ô 

is eventually in D then [f^(Xg) | is greater than t] 

eventually„ However, 

P 

I = iLim X «n' 
^ ® i=l 

= |f„»n<V>l 

= |fj,(xg) I > n 

where is that unique element of the P-subdivision & 

such that [x^} is eventually in it. This contradicts the 

fact that f^n^n-1 converges weakly to 0. 

Conversely, recall that Q(X,P) is a closed subspace 

of B(X) in both the norm and weak topologies. Thus, it 

suffices to show that the present hypotheses imply those 

of Theorem 3.5. Since every subsequence of {f 

satisfies the conditions of Theorem 3.6, it suffices to 

show that {f converges quasi-uniformly to 0 on X. 
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Assume that this is not true. It follows that either there 

exists an T] greater than 0 and an integer N such that 

for all m greater than N there exists an x^ in X with 

If. (x ) j > T] for N < i < m or Lim f (x ) is not 0 for 
1 m — no n"*oo 

some x^ in X. Consider the first case. By Theorem 3.2 

there exists a fundamental net of sets such that 

fx is frequently in each D . Now, either [D } 
m  H I — o  0  

contains a member , which is a subset of every other 

member or it doesn't. In the former case consider the 

directed set [D^,,i) : i = 1,2,...] where follows 

(D^,,i) if j is greater than i. The net 

{A(D^ ,,i) : A(D^ , ,i) = , for all i = 1,2, } 

is a fundamental net of sets because {D^] is a fundamental 

net of sets and because D. , is a subset of D. for all 
0 0 

Ô. From each A(Dg,,i) select in , such that 

equals x^ with i less than m. This is always possible 

since {x }°° is frequently in D. , . Clearly, fz.}? . m'^m=N+l ^ Ô' -ij t 

is a fundamental net of points. However Lim Lim f (z. ) 
. n X n-wa l-wo 

does not equal 0 because for each fixed integer n 
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greater than N we have |f^ (z^^) | ̂ T] if i is larger 

than n. This is a contradiction. In the latter case, 

consider the directed set {(D^,i) : i = 1, 2 , . . .  and Ô is 

arbitrary} where (D ,i) is less than (D. ,j) if and 
°1 °2 

only if D, is a siibset of D. . This is a directed set 
Ô2 «1 

because of the case just considered. Clearly, 

[A(D.,i) : A(D-,i) = D for all 6 and i = 1,2,...} 
0 O O 

is a fundamental net of sets. From each A(D^,i) select 

z(D. ,i) such that z(D_,i) is x , in D , with i 
0 0 m o 

less than m. Again, this is possible because fx }°° . 
^ ^ m iii=N+l 

is frequently in each . {z(D^,i)] is a fundamental net 

of points. However, Lim Lim f (z(D ,i)) is not 0 
n-*oo (D^, i) ̂  

because for each fixed integer n greater than N we have 

|f^(z(D^,i)) ( ^ T] if i is greater than n and because 

for each (D^,i) there exists a , such that (Dg,,j) 

follows (D^,i) for all j = 1,2,.... This is a contra­

diction. It remains only to show that [f (x ) . con-n o n=l 

verges for each x^ in X. Now, the net 

{A : A € P and x^ e A} is a fundamental net of sets where 
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the ordering is by set inclusion. From each set select 

X . Thus. fx } is a fundamental net of points. By 
o o 

hypothesis, Lim f (x ) is 0 and this completes the 
n-»oo 

proof. 

Because of our knowledge of the fundamental nets of 

points in certain Q(X,P) spaces, we have many obvious but 

important corollaries to the last theorem. In all of the 

following examples we will assume that is norm 

bounded. 

Example 3.15. Let {X,P) be the volume pair of Example 2.1. 

A sequence in QC([a,b]) converges weakly to 0 

if and only if Lira f (x) equals 0 for all x in [a,b] 
n-»03 

and 

Lim Lim f (x) = Lim Lim f (x) 
n-»a! x-'v"^ " n-»» x-'y" 

= Lim Lim f (x) 
^ n 

n-»oo x-»a • 

= Lim Lim f (x) 
n-'os x-»b~ 
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for all y in (a,b). 

Example 3.16. Let (X,P) be the volume pair of Example 

2.2. A sequence {f in Q(X,P) converges weakly to 

0 if and only if Lim f (x) equals 0 for all x in 
n—ce 

[a,bj and Lim Lim f (x) equals 0 for all y in 
J-n-»oo x-»y * 

[a.,b) . 

Example 3.17. Let {X,P) be the volume pair of Example 

2.3. A sequence [Q(XjP) converges weakly to 

0 if and only if Lim f (x) is 0 for all real x and 
n-»oo 

Lim Lim f (x) = Lim Lim f (x) 
^ n — zi 

n—oo xr^Y ' x-»y 

= Lim Lim f (x) 
n n-^co X-»oo 

Lim Lim f^ (x) 
n-»oo X-*—CO 

= 0 

for all real y. 
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Example 3.18. Let (X,P) be the volume pair of Example 

•» GO 
2.6. A sequence {f } _ in Q(XjP) converges weakly to 

n n—_L 

0 if and only if Lim f (m) is 0 for every positive 
n-»oo 

integer m and Lim Lim f (m) equals 0. 
n-*co inr»co 

Recall that Q(X,P) in Example 3.18 is the space c 

of all convergent complex sequences. The Banach space c^, 

of all complex sequences which converge to 0, is a closed 

subspace of c. Applying the results from the last example 

to c^ we see that [^n^n-1 converges weakly to 0 if 

and only if [ norm bounded and Lim f^ (m) is 0. 
n-»co 

Similarly, since c([a,b]) is a closed subspace of Q(X,P) 

in Example 3.15 we obtain the following well-known result 

as a corollary. A sequence ff in c([a,b]) con-
n n—J. 

verges weakly to 0 if and only if Lim f (x) is 0 for 
n-»oo 

all X in [a,b] and {norm bounded. Although 

Theorem 3.6 is significant, it is not as general as 

Theorem 3.5 since f did not have to be the zero element 
o 

in Theorem 3.5. The next result improves Theorem 3.6 and 

is an interesting and important result because of its ease 

in applications. 
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Theorem 3.7. Let (X^P) be a volume pair. A sequence 

in Q(XjP) converges weakly to f if and only if 

[f , is norm bounded: Lim f (x) equals f (x) for all 
n/n=l ' n 

n-*oo 

X in X; the iterated limits Lim Lim f^(x^) and 
n-*co Ô 

Lim Lim f^(x^) both exist and are equal. 
6 n-*oo 

Proof. Suppose first that converges weakly to f, 

an element of Q(X,P) . It follows that Lim f (x) equals 
n-»oo 

f (x) for all X in X because pointwise evaluation is a 

continuous linear functional on Q(X,P) spaces. Therefore, 

Lim Lim f (x. ) equals Lim f (x. ) and the existence of this 
c no • o Ô n-»03 6 

limit is guaranteed by Theorem 3.3. it follows that 

00 

[f^ - converges weakly to 0 and so 

Lim Lim (f - f) (x ) is 0 by Theorem 3.6. Again, since 
^ n 0 n-»co 6 

Lim f(x ) exists we see from the last statement that 
6 ® 

Lim Lim f (x. ) exists and ecuals Lim f (x. ) . Combining 
J n 6 " 0 n-*oo 0 0 

this result with the earlier part of the proof, we obtain 

the desired conclusion. 

Conversely, it follows from the last part of the proof 

of Theorem 3.6 that {x} is a fundamental net of points 
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for each x in X and so Liiri f (x) exists for each x. 
n-*co 

Let f (x) equal Lim f (x) . We will show first that f is 
n-*co 

in Q(XjP). Let [x ] be a fundamental net of points. 

Since Lim Lim f (x_) exists we see that if s is greater 
c no à n-'oo 

than 0 then for 6^ and 6^ sufficiently large 

{Lim(f (x ) - f (x )) I < € 
n o -I n o ̂ n-»co 1 2 

Therefore, 

|f(x ) - f(x ) I = |Lim(f (x ) 
^2 n-« " h 

- r 
n 

( X ,  ) ) i  

< 

Oiis implies that Lim f(x^) exists and so f is in 
Ô 

Q(XjP) by Theorem 3.3. To verify that [ ̂n^n-1 converges 

to f weakly it suffices to show that {f - f} _ con-n n=l 

verges weakly to C. But, 
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I Lim Lim(f (x ) - f(x.)) J = 
r no 0 ' n-»oo 5 

ILim Lim f (x^) - Lim f(x.) I = 
n-. 6 n 5 6 ' 

ILim Lim f (x ) - Lim f(x ) j = 
ô n-»oo ^ 6 

I Lim f(x ) - Lim f(x ) | = 0. 
6 6° 

So the hypotheses of Theorem 3.5 are satisfied which 

completes the proof. 

The last theorem is of special interest when one con­

siders how the weak topology is defined. Recall that a 

sequence {converges weakly to f^ if and only if 

Lim 9(f ) equals §(f ) for every continuous linear 
n-»oo 

functional § on Q(XjP). Since every continuous linear 

functional on Q(X,P) can he represented as a ir integral 

(Theorem 2.4), Theorem 3.7 yields a very general result on 

the interchange of limits and integration for the i{; inte­

gral. 
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Corollary 3.1. Let be a sequence in Q(X,P) such 

that {f i ^ IS norm bounaea ana sucn thai: Lim r (x) n n=l n 
n-'oo 

exists ror all x in X. Tnen ijUû y i r du ecruals 
n—oo X 

'y' r Liiu f du for every p-volume u of bounded variation 
X n-'oo 

if and only if Liin Lim f^(x^) equals Lim Liia f^(x^) for 
Ô n—co n-*<x> Ô 

every fundamental net of points [x^}. 

For some Q(X,P) spaces trie continuous linear func-

tionals can be expressed as well-known concrete Stieltjes 

integrals. Let (X,P) be the volume pair of Example 2.2. 

In [5] J. A. Dyer nas shown that if u is a real valued 

p-volume then the function f^ on [a,b] defined by: 

f^ (a) = u ({ a} ) and 

f^(t) =u((a,t]) + u([a}) 

for t in (a,bj is a function of bounded variation on 

[a,b]. Let y be the choice function on P defined by: 

y'({a} ) is a and Ç((c,dl) is d. It is also shown in 
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D 
îjf J h du = h (a) f (a) -f- R j" h df 
X a 

where this last integral is the right Cauchy integral. Since 

u is of bounded variation the integrals are independent of 

. Combining these results with Corollary 3.1 we have the 

following. 

Corollary 3.2. Let (X,P) be the volume pair of Example 

2.2 and let [h ] _ be a seauence in Q(X,P). Then ^ n" n=x - ' 

j_,im R I n ar = R i 1^ n df 
^ n u ^ n u n-«03 a a n-»oo 

for every function f^ of bounded variation on [a,b] if 

and only if Lim h (x) exists for all x in [a.,b] ; 
n-»oo 

Lim Lim h (x) equals Lim h (x) for all z in (a,b] ; 
x-'z" n-»oo n-»oo 

Lim Lim h (x) equals Lim Lim h (x) for all z in 
X-^2 n-*co X-^2 

Fa.b): fh , is norm bounded. - ' n n=i 

In a similar fashion one may start from the functional 

representations given in [14], [8] for special Q(X,P) 

spaces to obtain theorems for the interchange of limits and 

integration for some non-i type Stieltjes integrals includ­
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ing the mean Stieltjes integral and the interior integral. 

For some Q(XjP) spaces it is impossible to com­

pletely characterize the fundamental nets of points. For 

example, if X is the set h of all positive integers 

and P is taken to be the pre-algebra of all subsets of h 

then Q(X,P) becomes the space m of all bounded complex 

sequences. For this quasi-continuous space, no character­

ization of the fundamental nets of points is apparent. 

Nevertheless, because they exist, we are able to give new 

conditions for weak sequential convergence in m. 

Theorem 3.8. Let [f , be a sequence in m. Then n n=l 

{f converges weakly to 0 if and only if Lim f (k) 

equals 0 for every positive integer k; there exists a 

constant M such that || f^|| ̂  M for all n; if 

is a sequence of positive integers such that Lim x. 

equals -H» and if e is greater than 0 then there 

exists a positive integer N such that for each integer 

n 
n-*oo 

k-»oo 

of 
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Proof: Suppose first that converges weakly to 0. 

The first two conditions are standard results. Let 

he a sequence of positive integers such that Lini is 
]c-*oo 

-4-co and let e greater than 0 be given. By Theorem 3.2 

there exists a fundamental net of sets {} such that for 

each 6 J is frequently in . From each 

select so that equals for some integer k. 

{Zg} is a fundamental net of points. Consider the P-sub-

division {{l}j , , {N^ + l^N^-f 2, ... } } of M, where 

N is an arbitrary fixed positive integer. Since [D } 
o 0 

is a fundamental net of sets is eventually contained 

in one of the sets of the P-subdivision. However, {x^}^_^ 

is frequently in each member of [D ] and since Dim x^ 
^ k-co ^ 

is 4-œ it follows that is eventually a subset of 

+IjN^+2,...}. ThusJ eventually z^ is greater than 

N and since N was arbitrary it follows that Lim z. 
o o 5 Ô 

is +00. 3v Theorem 3.6 we see that Lim Lim f (z^) is 0. 
" ; no n-»o= Ô 

Choose an integer N such that for all n greater than N 

we have ILim f (z.) \ less than s. Let n be a fixed 
' Ô ' o 

integer greater than N and pick 6^ so that if o 
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follows ô, then f (z.) is less than e. We will now 
J. no 

o 

construct a subsequence [ ^t-1 [ ̂̂ k-1 ^uch that 
t 

for each t there exists a ô ^ 0^ such that x^ equals 

z. . To do this let x, equal z . Note that z is 
5 6l 

equal to x^, for some integer k'. Choose 6^ greater 

than 5^ such that z^ is greater than max[x^, 

Such a choice is always possible because Lim z^ is +<», 
6 

Let x^ equal z^ . Note that equals x^„ for 

some integer k". Also, k^ is greater than k^. Continue 

the process by induction to obtain a subsequence {x^ ̂ t-1' 

By our choice of {x^ ̂ t-1 follows easily that 

jf (x, ) I is less than e for all t = 1,2,.... Thus, 
""o ^t 

has the desired properties. 

Conversely, assume the result is false and that 

does not converge weakly to 0. Then there exists 

a fundamental net of points fYg) such that 

Lim Lim (y^) does not equal 0. From this fact and from 
n—03 5 

consideration of the P-subdivision 

{{1},..{N },{N^ +1,N^ +2,...}} we see that Lim y^ is 
Ô 
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+00. since Lim Lim ) does not equal 0, we can 
n-»t» 6 

assume J without loss of generality, that there exists an 

Ti > 0 such that {Lim (y^^ ) j is greater than M for 
5 

every positive integer n. Select 0^ so that {f^(y^) j 

is larger than r\ if 6 6^. This is always possible 

because jLim f (y ) j exists and is larger than r|. Choose 
Ô 

5 greater than 6 such that y follows y and 
^ °2 1 

I is greater than T] if 6 selection 

is possible because jLim f^(y^) exists and is larger than 
Ô 

T] and because Lim y is +oo. Note also that |f^(y^) j 
6 

is greater than r ;  if 6 since 6 is greater than 

6^. We continue the process by induction. Choose 6^ 

such that Ô is greater than 6 y. is greater than 
n n-i' 6 

n 

y, , and if (y.) i is greater than r] if ô > ô . Note 
' n ̂ 5 ' ^ n 

n—1 

that |f\(y^) j is greater than T| if i = 1,2, ...,n and 

ô 2 0%' each positive integer n let x^ equal y . 
n 

Since [y^ is a strictly increasing sequence of 
i ~ ~ 

positive integers it follows that Lim x is -ra>. However, 
n-»oo 

for any subsequence {x , of fx ^ we have ^ n, t=j. nn=l 
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jf^(x^ ) j greater than "H for all m if t is suffi­

ciently large. This is a contradiction and the proof is 

complete. 

As we stated in the introduction. Chapter four of this 

dissertation is concerned with the problem of best uniform 

approximations in Q(X_,P) spaces. The following theorem 

will play an important part in that investigation. It is 

included here because it is a result about the weak topology 

of Q(X,P). 

Theorem 3.9. Let (X,P ) be a volume pair such that if 

Xj y are in X with x not equal to y then there exist 

sets A and A in P such that x is in A , y is 
X y X 

in A and A .1 A is empty. (Note that all of our 
y X y 

examples of volume pairs satisfy this condition.) Let F 

be a subset of Q(X,P) . Then the following conditions are 

equivalent. 

(1) F is norm bounded and if {x^} is a fundamental net 

of points then for every £ greater than 0 and Ô 

there exist >5 such that 

lain ;f(x ) - Lim f(x.) • is less than s for all 
l<i<k' a 
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f in F. 

(2) F is norm bounded and if F^ is a denuinerable subset 

of F and fx _ is a sequence in X for which n n=l 

{f (x )}°° - converges for each f in F , then for 
n ̂ n=l ^ o' 

every e greater than 0 and for every positive 

integer N there exist n^, ...,n^ ̂  N such that 

min If(x ) - Lim f(x )| < e for all f in F . 
l^i<k ^i n-Ko  ̂ ° 

(3) F is weakly sequentially compact. 

Proof: Suppose (1) is true and let F^ be a denumerable 

subset of F for which (2) is not true. Then there exists 

a sequence in X such that [f(x^)}^^^ converges 

for each, f in F^ and there exists an e greater than 

0, a positive integer N such that if n.,...,n^ N 

then we can find an f in F such that 
o 

{f(x ) - Lim f (x^) i 2 G for i = 1, ...,k. it follows 
i n-»co 

from Theorem 3.2 that one can find a fundamental net of 

sets {A.} such that {x } ^ is frequently in each . 0 n n=± 0 

Either there exists an , such that A^, is a subset 

of A for all Ô or there doesn't. In the first case, 

consider the directed set { (A%,,i) : i = 1,2,...} where 
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we define (A^,,i) to be less than if and only 

if i is less than j. Clearly, 

{A(A^,,i) : A(A^,,i) = A^,, i = 1,2,...} 

is a fundamental net of sets. From each A(A^,,i) select 

x(A , ,i) = X, where k is the smallest positive integer 
0 k 

such that is in A^, and k ̂  max[ N, i} . Such a 

choice is possible because is frequently in A^,. 

Then {x (A^ ,,i) is a fundamental net of points and 

Lim f(x(A ,,i)) is equal to Lim f(x ) for all f 
(As,,!) a-™ * 

in F because {x (A. ,, i) , is a subsecruence of {x } 
o o 1—X n 21—J. 

by construction. Now, consider (A^,,l) and e. If 

(A^,, i^), ..(A^,,i^) are greater than or equal to 

(A^,,l) then there exists an f in F^ such that 

|f(x{A ,i.)) - Lim f{x(A ,i) ) j  ^  s 

for j = 1, ...,t because x(A. ,,i.) is equal to x, for 
6 J " -< 

some k with k ̂  N and because of the assumption that 

(2) is false. This contradicts (1). Suppose now that no 
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such , exists. That is, for each , there exists an 

Ae not equal to A^ such that A. is a subset of A, , 
62 6^ 62 61 

Suppose there exists an x^ with r ̂  N such that x^ is 

in A( for all 6. Consider the directed set 
0 

{ (A ,i) : i = 1,2, for all 5} where (A ,i) ̂  (A, ,j) 
Ô 0^ O2 

if and only if A. is a subset of A. . The collection 
62 6^ 

[ A(Aj.,i) : A(A , i) = A , i = 1,2, for all 0} 
0 00 

is a fundamental net of sets. From each A(A^,i) select 

x(A^,i) such that x(A^,l) equals x^ for all Ô and 

x(Ac, i )  i s  X  w i t h  x  i n  A. a n d  n  >  i  for e a c h  
6  n  n o  

i = 2,3,... and for all 5. Such choices are always 

possible since [^n^n-1 frequently in each A^ and 

because x^ is in A^ for all Ô. Clearly, {x(A^,i)} 

is a fundamental net of points. Note that 

Liiu f(x(A ,i)) exists because of Theorem 3.3. For any 

fixed 5, we have Lin f(x(A , i)) equal to Lim f (x ) 
i-»oo n—00 ^ 

because of the manner in which [x(A^,i)} was constructed, 

itoreover, for each A^ there exists an A^, such that A^, 
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is contained in . From these observations it follows 
o 

that Lim f (x ) is equal to Lim f(x(A.,i)) for all f 

in Now, suppose (A^,,j) is given. There exists an 

A^ such that is not equal to A^ , and A^ is a sub-
Ô Ô Ô 0 

set of A^,. Therefore, (A^,,j) is less than (A^,i) 

for i = 1,2,.... There exists, by hypothesis, an f in 

F such that If(x ) - Lim f(x ) j is greater than or equal 
n-»oo 

to €. But, since 

|f(x^) - Lim f (x^) I = 
n—oo 

f(x(A ,l)) - Lim f(x(A ,i) ) j  

we see that last quantity is greater than or equal to £. 

Since (A^^, ,]) is arbitrary and (A^ ,, j ) is less than 

(A ,1) it follows from this that Lim f(x(A , i) does not 

exist. This is a contradiction. Therefore, for every 

positive integer n there exists an A^^ such that x^ 

zs not in A^ . j-f ô > ô tnen x is noc in A. . From 
5 n n 0 
n 

each A. select x^ such that x equals x with 
ô 6 o n 
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n ̂  N. For each f in F we have Lim f (x ) equal to 
n-»oo 

Lim f(x.) because the second limit exists and because for 
6 ^ 

each positive integer n' there exists a 5^ ̂ such that if 

Ô > Ô , then x^ ecruals x with n greater than n ' . 
n ' 5 n 

Now J let ô be fixed and let ^6 be chosen. 

Since X, is equal to x with n. > N it follows from 
ô. n. 1 
i 1 

our assumption on fx , that there exists an f in F ^ n n=l o 

such that 

lain jf (x ) - Lim f (x ) j ^ e 
l<i<k ^i n-oQ ^ 

Thus, 

min i f(x ) - Lim f(x ) 1 ^ e 
l<i<k °i 5 

because Lim f (x^) is equal to Lim f(x^) . Since 5 was 
n-»oo 6 

arbitrary this contadicts (1) and so (1) implies (2). 

We will now show that (2) implies (3). The proof is 

taken from Theorem 29 page 280 in [2]. It is included for 

reference. Recall that Q (XjP) is a closed subalgebra of 
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the complex algebra B (X) . Moreover, Q(X,P) contains the 

unit e as well as the complex conjugate of each of its 

elements. Finally, Q(.X,P) distinguishes between the 

points of X because of the hypothesis on P. Let 

consist of those nonzero continuous linear junctionals s 

in the closed unit sphere of (Q(X,P))* for which §(fg) 

equals 5(f)8(g). is not empty since it contains the 

evaluation functionals. It follows from [2], Theorem 18, 

page 275, that is a compact Hausdorff space. Define 

the map V from Q(X,P) into C(S^) by V(f) is f^ 

where f^($) equals §(f) for all s in S^. V is a 

linear isometry onto C(S^). The mapping ^ from X into 

defined by #(S) equals 9^, where g^^f) is f(S) 

for all f in Q(X,P), is a one to one embedding of X as 

a dense subset of S^. Let F be a norm bounded subset of 

Q(X,P) and let F be the set V(F). Then F is a norm 

bounded subset of C (S^). Let F^ be a denumerable subset 

of F and let ,9^ ,...] be a sequence in con-
o 1 

tained in the range of i for which Lim f(§^) is equal 
n-»co n 

to f(§^ ) for all f in F . Let F be the set 
S o o 
o 

V (F ) and consider the sequence in X such 
o ~ i—1 
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that ^ (S^) equals 9^ for all i. Now, Liiii f(S^^ 
i n-»co 

equals Lim (f) which in turn is equal to Lim f(ëg ) 
n-*oo n n-*<=o n 

and since this last limit exists so does the first, for•all 

f in F^. Therefore, 

min lf(2g ) - Lira f(ëg ) j < e. 
l<i<k n. n-'oo n 

1 

It follows from Theorem 14, page 269, in [2] that F is 

weakly sequentially compact in C(S^). But, Q(X,P) is 

isomorphically isometric to C(S^) and so F is a weakly 

sequentially compact subset of Q(X,P). Thus, (2) implies 

(3) . 

The proof will be complete once it is shown that (3) 

implies (1). Let be a fundamental net of points. 

Using the same notation as before consider the net {5 }. 

Since is a compact Hausdorff space there exists a sub­

net {§ } of {§ } which strongly converges. The set 

F, which equals V (F), is weakly sequentially compact 

because F is and because V is a linear isometry. From 

Theorem 14, page 269, in [2] it follows that for every e 



68 

greater than 0 and 6 ' there exist 2 & ' such 

that 

min jf(9 ) - Lim f(9 ) j < s 
l<i<k ^S: 5' ^6' 

1 

for all f in ?. Since f(§ ) equals f(x ) for all 
^6 

6 we see that 

min 1f(x ,) - Lim f(x ) j < e 
l<i<k ^i Ô • 

for all f in F. Finally, because Lim f(x ) equals 
Ô' ^ 

Lim f(x^) for all f in P and because for every ô 
ô 

there exists a 5' ̂  6 we obtain (1). 

When (XjP) is the volume pair of Example 2.1, then 

Q(X,P) is B(X). Consequently, using the results of 

Example 3.6 we see that Theorem 3.9 reduces to Theorem 29, 

page 280 in [2] for this particular Q(X,P) space. This 

fact points out again that many of the properties of B(X) 

can be extended to all Q(X,P) spaces by using fundamental 

nets of points. Ultrafilters for B(X) are nothing more 
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than fundamental nets of sets for this Q{X,P) space and 

considering them in this way allows one to better under­

stand the structure of B (X) . 
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IV. BEST "UNIFORM APPROXIMATIONS IN Q(X,P) SPACES 

In this chapter the problem of best uniform approxi­

mations by elements of linear subspaces of Q(X,P) will be 

considered. For an historical survey on zhe subject of best 

approximations and for a summary of the significance of the 

subject, the reader is referred to the introduction in [21] . 

Recall that if G is a subspace of QiX,P) and g^ is an 

element of Q(X,P) - G then an element f in G is said 

to be a best uniform approximation to g^ by G if and 

only if |!f - g^jj is equal to infjjg - where g 
9 

ranges over all the elements of G. The problem is to 

determine necessary and sufficient conditions for the ex­

istence of best uniform approximations. As a final illus­

tration of the uses of the concept of a fundamental net of 

points, we will give necessary and sufficient conditions 

for best uniform approximations in Q(X,P) spaces in terms 

of these nets. We begin by introducing a definition taken 

from [21,p.93]. 

Definition 4.1. Let G be a subspace of the complex normed 

linear space S and let g^ be in S - G. The set of all 

best uniform approximations to g^ by G will be denoted 
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by p (g ). G is said to be a proximal subspace of S if 
G  O  

and only if p (g ) is not empty for each g in E - G. 
~ G o o 

Note that G must be a closed siibspace of E if it 

is a proximal subspace. The following theorem gives suf­

ficient conditions for a subspace G to be a proximal sub-

space. It is taken from [22,p.97] and is stated without 

proof. 

Theorem 4.1. Let E be a complex normed linear space and 

let G be a linear subspace of E with the property that 

the closed unit ball of G is weakly sequentially compact. 

Then G is a proximal subspace of E. 

Since we have already characterized, in Theorem 3.9, 

all of the weakly sequentially compact subsets for most 

Q(X,P) spaces, ôhe following theorem is obvious. 

Theorem 4.2. Let (X,P) be a volume pair satisfying the 

conditions of Theorem 3.9. Let G be a linear subspace of 

Q(X,P) and let S_ be the closed unit ball of G. If for 

every fundamental ne-c of points {x.j and for every e 

greater than 0 and for every Ô, there exist 

6Ô, > Ô such that 
J. K — 
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min lg(x ) - Lim g(x )| < e 
l^i<k *i 6 

for every g in S ^ then G is proximal. 
G 

While Theorem 4.2 yields sufficient conditions for a 

suispace to he proximal, it does not solve our original 

problem. The problem posed in the introduction to this 

chapter was concerned with best uniform approximations to a 

fixed element by a given subspace. The two questions are 

entirely different. That is, a subspace G of Q(X,P) 

may have a best approximation to an element f, without G 

necessarily being a proximal subspace. For the rest of this 

dissertation we will be concerned only with the problem as 

stated in the introduction to this chapter. The methods we 

will use are basically the same as those used by I. Singer 

in [21] to analyze C([a,b]). The key to this method is 

the determination of the extreme points for the closed unit 

ball of (Q(X,P))*. As we will show, fundamental nets of 

points are sufficient to settle the question. 
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Definition 4.2. Let G be a normed linear space and let 

k be a subset of G. A point z in k is said to be an 

extreme point of k if and only if whenever z equals 

Xk^ + (1 - Xjkg with 0 < X < 1, k^, k^ in k, then 

both k^ and k^ equal z. 

Theorem 4.3. Let 9 be a continuous linear functional on 

Q(XjP) . Then ë is an extreme point of the closed unit 

ball of (Q(X,P))* if and only if there exists a fundamental 

net of points {x } and a complex number a such that 
o 

jaj equals 1 and 9(f) is equal to a Lim f(x^) for 
6 

all f in Q{X_,P) . 

Proof: We will first verify that the conditions are suf­

ficient. Let {x^} be a fundamental net of points and 

define 9 by 9(f) is a Lim f(x^) where |a j equals 1. 
6 

Note that § is well defined by Theorem 3.3. § is clearly 

linear and is continuous because 

sup (9 (f) ( = sup ja Lim f(x ) j 
!|£!!<I' llfllli 6 

< 1. 
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Thus J II §11 ^ 1 and a straightforward argument will show 

that Ô is equal to 1 for every E in P and so 

II§11 is equal to 1. From Theorem 2.4 it follows that there 

exists a o-volume u of bounded variation such that V 
u 

equals 1 and ë (f ) is Ç' J f du for each f in Q(X,P) . 
X 

Suppose E is in P and suppose is not eventually 

in E. Thus, 

0 = a Lim x_(x ) = § (x_) 
r Ù O JCJ 
Û 

= V j Xp 3u 
X 

= u(E) . 

If {x ) is eventually in E then 

a = a Lim XgCx^) = ê (Xg) 
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Now, assume ë is not an extreme point. Then there exist 

continuous linear functionals and and a constant 

\ such that 0 < X < 1 and 9 equals + (1 - AjSg 

where both and {| are less than or equal to 1. 

Let u^ and u^ be the two p-volumes of bounded variation 

associated with 9^ and 9^ respectively. For every E 

in P we have: 

u(E) = !if J Xgdu = 9 (Xg) 

= X + (1 - \)^2 (%E) 

= X li' J Xgdu^ + (1 - \)V J 

= \ u^(E) + (1 - XjUgfE) 

and so u equals X u^ + (1 - X)u2 with ^1 and 

^ 1. Choose S in P such that is eventually 

in E. Then 



76 

1 = la I = |u(E) 1 

= |X u^(E) + (1 - X)u^ (E) j 

< \ ju^(E) I + (1 - %) 1*2 (E) I 

^ X + (1 - X) 

= 1. 

Therefore, both |u^(E) | and (UgfE) j are equal to 1 

and since a equals Xu^(E) + (1 - XÏUgfE) we must have 

u^(E) and u^(E) equal to a because a is an extreme 

point of the closed unit ball in the complex plane. If 

{Xg3 is not eventually in E then select a P-subdivision 

{e.3^_ t  of X, to which E belongs, and suppose E = E_. 

This is possible by Theorem 2.1 (2). Since < 1 and 

since there exists an E^, with j' greater than 1 such 

that (Xg) is eventually in E^, we see that 

N 

1 ^ |u^(E.)| 

j=l 
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because |u(Ej,) | = ja | =1. Thus^ u^(E) equals 0 and 

a similar proof shows that UgfS) is 0. Therefore, u^ 

and u^ are both equal to u which implies that and 

§2 are equal to 9. This is a contradiction. 

Conversely, suppose g is an extreme point of the 

closed unit ball of (Q(X,P))* and let u be the p-volume 

of bounded variation such that § (f ) equals j f du for 
X 

all f in Q(X,P) . It is easy to verify pjj is 1 and 

so equals 1. Suppose now that there exist two dis­

joint sets and E^ in P such that both u(E^) and 

ufEg) are not zero. Define u^ by u^(E) is u (E H E^). 

Clearly, u^ is a p-volume of bounded variation with 

V < V . Since there exists a P-subdivision of X to 
u^- u 

which E^ belongs, we can select [ P. ]in P such 
1 ] ] —1 

N 
that X - S- equals U F. where F. H p. is empty if i 

^ 3=1 3 3 ^ 

is different than j. Define u by u (E) is 
N 

^ u (E n F_. ) . Again, it is easy to show that u^ is a 

3=1 

ID-volume of bounded variation with V < V . Let {G.}. , u^ — u 1 1=1 

be any P-subdivision of X. Note that 
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Gi = (E^ n G^) u (F^ n G^) U...U (F^ n G^) 

for i = 1,...,k and each of these sets is in P and they 

are pairwise disjoint. Therefore, 

k k N 

2 iu(Gu) j = ^ ju(E^ n G^) + 2 n Fj)| 

i=l i=l j=l 

= ^ |Ui (Gi) + >12 <°i" 

i=l 

k k 

< X I + ^ lu^CG.) i 

i=l i=l 

< V + V . 
*2 

Taking supremums we obtain ^ . To prove the 

reverse inecuality let . and , be P-subdi-] ]=± W W=1 

visions of X. By Theorem 2.1 there exists a P-subdivision 

of X which refines the previous two. Then, 
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M k 

1 1^1 (Hj) I + ^ 1^2 I — 

j =1 W=1 

L L 

I  +  I  -
t=l t=l 

L L N 

^ |u{E^ n J^)\ + ^ ( 2 Fj) |) < 

t=l t=l j=l 

V . 
u 

Taking suiDremums of both sides we get V -f- V < V . 
^2 — u 

Therefore, V equals V + V . Now, let u_ = u./V 
' U ^ U^ Ug 1 1 U^ 

and u^ = u_/V . Note that V and V are both non-
2 2' «1 "2 

zero because of the original assumption on u. Both u^ 

and u^ are p-volumes of bounded variation and each has 

variation 1. Moreover, for any E in P we have: 

Ui(E) 4- (1-V^ iUgCE) = 

(S) -f (E) = u^ (E) + u^ (E) = 

N 

u (S n E^ ) -f y u (E n F.) = u (E) . 
± J 
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Also, since u(0) is 0 we see that and 

are both 0 and so and both differ from u. 

Since 0 < <1 we see that g is not an extreme point 

of the closed unit ball of (Q(XyP))* which is a contra­

diction. Therefore, if and are in P with 

E^ n E^ empty then either ufE^) is 0 or ^2^^^ is 0. 

Let G be the set [A : A is in P with u (A) = 0}. We 

claim that G is a directed set with respect to set in­

clusion. It suffices to show that u(A^ n A^) is not 0. 

Suppose u(A^ n Ag) is zero. Now, there exist sets 

Ic M 
{D.}. . and {E.}. , in P such that 1^1=1 ] ]=1 

k M 
A - (A, n A-) = U D. and A - (A H A_) = U E. . 

i=l ^ ^ j=l ] 

Since, 

k 

u(A^) = u(A^ n A^) T ^ U(D^) 

i=l 

and since u(A^) is not zero there exists a with 

u(D^) not zero. Similarly, there exists an Ej with 

u(E. ) not zero. However. D. He. is empty and this 
J 1 ] 
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contradicts our earlier result. Thus^ u (A^ fl A^) is not 

zero and so G is a directed set. If S is the map from 

G into G defined by: S (A) = A then G forms a net. 

We will show that it is a fundamental net of sets. To 

verify (2) of Definition 3.1 let be a P-sub-

division of X and let A be in G. It follows that 

{a n is a P-subdivision of A. Since u (A) equals 

N 

^ u(A n E^) and since u(A) is not zero it follows that 

i=l 

u(A n E^) is not 0 for some i. But, A E^ is a sub­

set of E. and A E. is in G which shows that G is 
1 i 

a fundamental net of sets. Let A^ and A^ be in G with 

M 
A^ contained in A„. Since A_ - A equals U D. for 
± 2 2 ± i=i 1 

M 
some collection of disjoint sets in f, we see 

that 

M 

UCA^) = U(A^) t ^u(D^). 

i=l 

However, u(A^) is not zero and A^ H is empty for 

i = 1, ...,M which implies that u(D_.) is 0 for each i. 

Thus, u{A^) equals u (A^) . If A^ and A^ are in G, 
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then n is in G and so 

u{A^) = u(A^ n Ag) = u (Ag) 

because A^ n A^ is a subset of both A^ and A^. There­

fore, u is constant on G and since V is 1 we see 
^ u 

that u(A) equals a with jaj equal to 1 for all A 

in G. From each A in G choose x, so that fx,} 
A A 

forms a fundamental net of points. Let E be in P such 

that [ is not eventually in E. Then u(E) is 0 for 

otherwise E would be in G and so [x^} would eventually 

be in E. On the other hand, if [x^] is eventually in E, 

a set in P, and if u(E) is 0 then E is not in G 

and so there exists an A in G with A H Ê empty. The 

reason for this is that there exists a P-subdivision 

{E.}^ , of X to which E belongs and u cannot vanish 
 ̂ 1 1=1 

on every E. because V is not 0. But, since A is in 
1 u 

G, {x^} must eventually be in A and in view of the fact 

that it is also eventually in Ê with Ê fi A void we 

obtain a contradiction. Therefore, u(E) is not 0 and 

so u(E) is a. Select a choice function 6 so that 

'He) equals x_ if is eventually in E and is 
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arbitrary if is not eventually in E. Then, 

ë (f ) = ij,' J f du 
X 

N 

= Lim ; f(V(D.))u(D.) 

 ̂ iti ' ' 

= Lim a f (i^ (D. , ) ) 
& ^ 

= a Lim f (x^) 

where the first limit is taken over all P-subdivisions of 

X and D. , is that unique element of fD.}^ ^ such that 
1' 1 1=1 

{x^3 is eventually in Note also that 

Lim a f ("^ (D. , ) ) = a Lim f (x ) 
6 A ^ 

because of our choice of ij,* and because of Theorem 2.3. 

Theorem 4.3 is interesting in its own right and it 

plays an important part in determining necessary and suf­

ficient conditions for best uniform approximations by sub-

spaces in Q(X,P). Because of the importance for appli-
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cationsJ we will now give a collection of examples of the 

application of Theorem 4.3 to those Q(X,P) spaces for 

which we have determined all the fundamental nets of points. 

In all of the following examples a will be a complex 

constant with ja{ equal to 1. 

Example 4.1. Let X be the set [a,b] and let P be the 

collection of all open subintervals of [a^b] along with 

the singleton subsets of X. § is an extreme point of the 

closed unit ball of (Q(XyP})* if and only if there exists 

a z in [a,b] such that s(f) equals a f(z) for all 

fj or there exists a z in [a,b) such that §(f) is 

a Lim f (x) for all f; or there exists a z in (a.,b] 

such that 0(f) is a Lim f (x) for all f. 
x-»z~ 

Example 4.2. Let X be as in the last example and let P 

be the collection of all subsets of X of the form (c, d] 

along with {a}. § is an extreme point of the closed unit 

ball of (Q(XjP))* if and only if there exists a z in 

[a,b] such that § (f) equals cif(z) for all f; or 

there exists a z in [a,b) such that § (f) is 

a Lim f (x) for all f. 
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Example 4.3. Let X ce the set of all positive integers 

and let P be the collection of all svibsets of X of the 

form [N, N-5-1, ...} along with the singletons. 5 is an 

extreme point of the closed unit ball of (Q(X,P))* if and 

only if there exists a positive integer N such that i(f) 

equals a f (N) for all f; or § (f) is ct Lim f (N) for 
N-*o° 

all f. 

Example 4.4. Let X be as in the last example and let P 

be the collection of all subsets of X. Recall that in 

this case Q(XjP) is the space m. § is an extreme point 

of the closed unit ball of (m)* if and only if there 

exists a positive integer N such that 9(f) equals a f(N) 

for all f; or there exists an ultrafilter of sub­

sets of X such that 9(f) is a Lim f(a ) for all f 
6 ® 

where a, is in A. for all 6. 
Û 0 

In order to apply Theorem 4.3 to the problem of best 

uniform approximations in Q(XjP) spaces, we need some 

preliminary results from [21]. The following is Theorem 

1.13, page 52 in [21]. It is included for reference and is 

stated without proof. 
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Theorem 4.4. Let E be a normed linear space and let G 

be a subspace of E. Suppose x is in E - G and is 

in G. Then g^ is a best approximation to x by G if 

and only if for every g in G there exists an extreme 

point f^ of the closed unit ball in E* such that 

Re{f^(g - g^) ) k 0 

and 

f^(x - g^) = ||x - g^ll . 

By using Theorems 4.3 and 4.4 we are now able to solve 

the problem stated in the introduction to this chapter. 

Theorem 4.5. Let (X^P) be a volume pair. Suppose G is 

a linear subspace of f is an element of 

Q(XjP) - G and is an element of G. Then g^ is a 

best uniform approximation to f by G if and only if for 

every g in G there exists a fundamental net of points 

{xf} such that: 
6 
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Re[ (Liin(f (x^) ) - g^(x^) )*]Liin g(xp ^0 
Ô 6 

and 

jLim(f(x^) - g^(x^)) j = sup|f(x) - g^(x) |. 
Ô xeX 

Proof: From previous results we see that g^ is a best 

uniform approximation to f by G if and only if for 

every g in G there exists a fundamental net of points 

{x^} and a scalar a with jaj =1, such that 

Re{a Lim[g^(x^) - g(x^)]} ̂  0 
5 

and 

a Lim[f (x^) - g (x^)] = sup {f (x) - g (x) j. 
6 * ° xeX 

Clearly, 

lm{ci Lim[f(x^) - g (x^)]} = 0 
. 0 O 0 
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and since |a| is 1 we see that a equals M*/|M j where 

M = Liin[f(xJ) - g (x^)] 

if this quantity is not 0. If it is 0 then the result is 

trivial. Thus^ g^ is a best uniform approximation to f 

by G if and only if for every g in G there exists a 

fundamental net of points fx^} satisfying the second con­

dition of the theorem and 

Re{M* Lim[g^(x^) - g(x^)]} ̂ 0. 
ô 

Since g^ - G equals G and applying the last result to 

g -g 
{x^ } we obtain the first condition of the theorem. 

Although the last theorem is a solution to our problem, 

in some special cases Theorem 4.5 can be improved upon. In 

the following theorem, we consider the problem of best 

uniform approximations by a subspace G of finite dimen­

sion. 
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Theorem 4.6. Let G be an n-dimensional sub space of 

Q(X,P)j '- let f be in Q(X,P) - G and suppose is in 

G. The following statements are equivalent: 

(1) g^ is a best uniform approximation to f by G; 

(2) there exists h fundamental nets of points 

{x [x } where l<h<n-rl if the scalars 
°1 °h 

are real and 1 < h < 2n + 1 if the scalars are complex 

and h scalars all greater than 0 with 

h 

) X. equal to 1, such that 
^ 3 
3=1 

h 
) X. Lim g (x ) =0 

A '  

for all g in G and 

h 

(3) there exist h fundamental nets of points 

{x }j...,{x } where 1 < h n + 1 if the scalars 
^1 ®h 

are real and 1 < h ̂  2n + 1 if the scalars are complex, 

and h numbers greater than 0 with 
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equal to 1, such that 

h 

y X . Lim g (x ) =0 

A '  ̂3  

for all g in G and 

Lim(f(x ) - g(x )) = Ijf - g |i 
6. "j ] 

for each j = 1, ...,h. 

Proof: The result follows from Theorem 4.3 and Theorem 1.1 

of [21] . 

Theorems 4.5 and 4.6 are good examples of the use of 

fundamental nets of points. In applying these results to 

specific Q(XjP) spaces, all that is necessary is a 

knowledge of the nets for that space. As we have shown in 

previous examples, this can he done in many cases. 

h 

j=l 
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V. CONCLUDING REMARKS 

The original intent of this dissertation was to deter­

mine the weakly sequentially compact subsets of Q(X,P), 

in order to use Theorem 4.1 in the determination of best 

uniform approximations. In considering this question, one 

must have some knowledge of the weak topology of Q(X,P) 

spaces, especially the sequential properties of this topolo­

gy. Up until this time, little has been done in this area. 

Apparently, the reason for this is that there has not been 

a characterization of Q(X,P ) spaces that is suited for 

such an analysis. The concept of a fundamental net of 

points is the major contribution to the study of the weak 

topology in this dissertation. This concept is based upon 

set theoretic properties of the volume pair (X,P) for the 

space Q(X,P) and as such is applicable to many different 

areas of interest concerning these spaces. For example, we 

were able to give a new characterization for Q(X,P) spaces 

as well as necessary and sufficient conditions for best 

uniform approximations by subspaces of Q(X,P) . Neither of 

these results deals with the weak topology. This concept 

is also applicable to problems concerning the weak topology 
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of Q(X,P) spaces since we were able to give necessary 

and sufficient conditions for weak sequential convergence 

using this concept. This in turn allowed us to determine 

the weakly sequentially compact subsets. ThuSj it is 

apparent that the concept of a fundamental net of points is 

not topologically oriented but rather is inherent in the 

structure of the space itself. As a result of this, the 

many diverse examples of Q(X^P) spaces are more easily 

understood as a class of Banach spaces. For example, we 

have shown that several of the properties of QC([a,b]) 

which were thought to be related to the order properties of 

the real line are not in fact unique to this space, but are 

properties of general quasi-continuous function spaces. It 

is for this reason that fundamental nets of points are 

important to the study of the abstract properties of 

Q(X,P) . 

Naturally, the usefulness of a concept depends not 

only on its theoretic applications but also on how easy it 

is to use in concrete examples. In many of the classical 

Q(X,P) spaces the fundamental nets of points can be com­

pletely determined. As a result of this, the abstract 

results cited above are easily applied to these spaces. 
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For exampleJ some limit interchange theorems for Stieltjes 

integrals become trivial corollaries of our more general 

result (Theorem 3.7) concerning the interchange of limits. 

This points out again the significance of fundamental nets 

of points. 

For the reasons mentioned above, it would seem likely 

that this concept could be applied to settle other ques­

tions concerning Q(XjP) spaces. For example, can sets 

whose closure is compact be characterized? This particular 

question has been settled in [9] but only for those Q(X,P) 

spaces with a special ordering property on X. It is 

possible to characterize weak convergence in Q(XjP) using 

fundamental nets of points? If it is possible, then this 

would improve upon the results obtained in Chapter three, 

since only weak sequential convergence was considered 

there. 

In Chapter four the question of best uniform approxi­

mations by subspaces of Q(X,P) was settled. Unfortu­

nately, neither Theorem 4.5 nor Theorem 4.6 is especially 

useful in actually determining a best uniform approxi­

mation. Does there exist an algorithm which will allow one 

to constructively determine a best approximation? One of 
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the major difficulties in developing such an algorithm is 

that best uniform approximations to an element by a subspace 

need not be unique in Q(X_,P) spaces. For example, let A 

be the subspace of QC([a^b]) consisting of all functions 

f such that f(b) is zero and let g be the element of 

QC([a,b]) defined by g(x) equals 2 for all x in 

[a,b] . Clearly, g is not in A. Now consider the two 

functions and f^ defined by 

f^(x) = 1 for X 6 [a,b)  

and 

f^ (b) = 0 

while 

f^ (x) = 0 for all X in [a,b]. 

Then f^ and f^ are both in A. Moreover, 

- gli = 11^2 - 91! =2. 
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Also, since every element in A is 0 at b whereas 

g(b) is 2 we see that 

inf|lf - g|i = 2. 
feA 

Thus, we see that best uniform approximations by subspaces 

are not unique in Q(X,P) spaces. This lack of uniqueness 

seems to make an algorithm difficult to find. 

In conclusion, the results given in this dissertation 

point out that fundamental nets of points are very useful 

in the analysis of quasi-continuous function spaces. The 

concept is easy to apply to the classical Q(X,P) spaces 

and it allows one to understand these spaces as a class of 

Banach spaces. 
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