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CHAPTER 1. OVERVIEW

The topics discussed in this dissertation are related to correlated data analysis.

Throughout the dissertation, I assume that the data are smoothly varying with negligible

measurement errors. I consider the cases of transect data for simplicity and extend the

idea to lattice data, which may be a post-processed form of geospatial data that is often

encountered. The focus is on defining the properties of our statistical approaches and

comparing against alternative approaches.

1.1 Motivation

Chapter 2 of this dissertation is concerned with proposing a cost-effective method

for spatial sampling for hotspot detection. Due to the correlated nature of the spatial

data, spatial sampling would benefit from a stratification of the sampling domain. A

sequential sampling design over a stratified domain is proposed which not only gives a

higher detection probability than a one-stage design but also provides an economical

strategy to implement a sampling design.

Chapter 3 and 4 is concerned with estimating variance function from a nonstation-

ary spatial process. Nonstationarity is a frequently encountered feature of spatial data.

When one needs to predict or estimate a possible range of values for a particular lo-

cation, variance estimation at the location is necessary to provide a prediction interval

or a confidence interval. Differencing nonstationary random field for variance function

estimation reduces the estimation bias by bypassing the mean function estimation, and
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this nonparametric method provides a flexible application and simple implementation.

1.2 Structure

Here is an overview of how the discussion progresses in the next four chapters. In

Chapter 2 we compare the detection probabilities of four one-stage sampling plans. Then

a two-stage systematic sampling design is proposed, which consistently detects problem-

atic areas with higher probability than any one-stage design of equivalent sample size. For

a two-stage design, a sample splitting proportion parameter is dependent on a hotspot

dispersal scenario. We determine the optimal value of the parameter via a simulation

study and apply the proposed design to a case study.

In Chapter 3 a difference-based nonparametric variance function estimator is pro-

posed. First ‘local variogram’ is defined for a nonstationary process by assuming local

stationarity. The local variogram possesses the same idea as a variogram in a stationary

process but with the variance scale factor multiplied locally. We derive the basic prop-

erties of the local variogram estimator and its asymptotic rate of risk. We contrast the

difference-based nonparametric estimation to Anderes and Stein (2011) local-likelihood-

based estimation through a simulation study.

The estimator is extended from being applied to one-dimension in Chapter 3 to a two-

dimensional setting in Chapter 4. As the number of dimensions increases, the number

of directions grows, and there are many more choices of directions, scales, and weight

options for the differencing. Because we consider square lattice data, the directions for

the differencing filter from one to two dimensions would increase twofold. Adding to

the complexities is the configuration of the differencing filters in the high-dimensional

support of data. In one dimension a line is the only configuration. On a two-dimensional

plane, the configuration starts to bear a significant meaning and provides a wide variety of

choices. Consequently weights assigned to each point of a filter configuration are another
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attribute of the filter that needs to be determined. After exploring the components of the

filter for the spatially correlated data variance function estimation in two dimensions,

in Chapter 4, we detail the simulation study and suggest specific difference filters for

a nonparametric variance function estimation. The statistically efficient averaging idea

also applies to this local smoothing approach, as the larger the number of data points to

consider, the more precision we have of the estimator. However, the extent of gathering

multiplicity should be balanced with the size of the neighborhood.

In Chapter 5, I briefly review the materials in the three main chapters and conclude.

1.3 Abstracts

Chapter 2 Abstract

A two-stage spatial sampling design for detecting contaminated areas is proposed for

effective decontamination planning. A two-stage design has a higher or equal hotspot

detection probability than a one-stage design under fixed budget constraints. The pro-

posed design uses the expected relative size of the contaminated area and the overall

sampling rate as the two control variables in determining an optimal sample splitting

proportion for a two-stage design. Results are shown through simulation studies and

theoretical derivation.

Chapter 3 Abstract

Many spatial processes exhibit nonstationary features. We estimate a variance func-

tion from a single process observation where the errors are nonstationary and correlated.

We assume that the mean process is smooth and that the error process is a product of

a smooth variance function and a second-order stationary process. A difference-based

approach for a one-dimensional nonstationary process is developed along with a band-

width selection method which takes into account the error dependence structure. The
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asymptotic properties of the estimator are investigated, and the estimation results are

compared to that of a local-likelihood approach proposed by Anderes and Stein (2011).

Simulation study shows that our method has a smaller integrated MSE, fixes the bound-

ary bias problem, and requires far less computing time as the evaluation of likelihood

with matrix inversion is not necessary.

Chapter 4 Abstract

A difference-based variance function estimation is developed for a two-dimensional

nonstationary process with correlated errors. There are a few practical guides for se-

lecting a difference filter of its shape, scale, and weight depending on the degree of

correlation in the data. When the data is strongly correlated, a symmetric weighting

scheme is preferred; and when the data is weakly correlated or independent, the Hall-

Kay-Titterington weight is preferred. A few practical guides for a two-dimensional linear

filters in this chapter should be easily adopted in practice.
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CHAPTER 2. A TWO-STAGE SPATIAL SAMPLING

DESIGN FOR HOTSPOT DETECTION

2.1 Introduction

We are interested in designing a sampling plan to detect remedial units containing

contaminant hotspots. We assume that contaminated hotspots are spatially clustered

and that remediation is performed over a neighborhood of hotspots to reduce the risk of

even low levels of exposure. In a building, for example, a contamination remediation unit

may be a room, floor, or a section of a floor, and often a sampling unit is smaller than

a remediation unit. Our goal is to maximize the detection probability of a remediation

unit under the constraint of a fixed budget. Hence, arranging sampling units into an

equal-sized remediation unit, which is equivalent to a contamination classification unit,

is the first step in implementing our proposed sampling plan.

In the field of industrial hygiene ‘sampling’ refers to collecting contaminants for anal-

ysis, while in the field of statistics ‘sampling’ refers to selecting a subset of a population

to make statistical inference on the extent of contaminant dispersion. In both commu-

nities, formulating an economical and efficient sampling strategy is important especially

in determining the extent of contamination in a given area. Singer (1972, 1975) provides

a Fortran program for computing detection probability of elliptically shaped hotspots

using square, rectangular, and hexagonal grid sampling. Parkhurst (1984) uses Singer

(1972) and demonstrates that sampling on a triangular grid gives better coverage than on

a square grid and results in 23% fewer sampling sites when fixing the maximum distance
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between the sampling sites and the location of a potential hotspot on both grids. He

notes that when the hotspots are regularly dispersed, one-per-stratum random sampling

has a more consistent hotspot detection probability than regular sampling, and in such

a case random sampling on a square grid should be easier to implement than on a tri-

angular grid. Gilbert (1982) and Zirschky and Gilbert (1984) examine the grid spacing

issue, the detection probability of an elliptically shaped hotspot, the Type II error of

a grid sampling plan, and the detection probability of multiple hotspots. When there

is insufficient information on the shape of a hotspot, the spacing between grid points

should be finer. Otherwise, the detection risk can be calculated, a priori compounded

with a statistical distribution, based on the sample size, the sampling grid, and the ratio

of a hotspot major semi-axis to grid spacing. Gilbert summarizes his previous work on

grid sampling for hotspot detection in Chapter 10 of his book Statistical Methods for

Environmental Pollution by Gilbert (1987).

In spatial sampling literature, it is known that simple random sampling is not very

efficient for spatial sampling. Breidt (1995) has introduced the Markov chain design as

a general spatial sampling framework that contains a few design parameters to make

sampling locations systematically dispersed with added randomness. As this design is a

compromise between a systematic sampling plan and a one-per-stratum spatial sampling

design, its detection probability of spatial clusters is slightly less than a systematic sam-

pling plan but greater than a one-per-stratum design. Thompson (1990) has introduced

adaptive cluster sampling designs to estimate the total population of rare and clustered

spatial phenomena. In the first stage, one takes a simple random sample of sampling

sites. In the second stage, the first-stage measurements are used to identify areas of

interest to sample further. Christman (2003) combines the work of Thompson (1990)

and Breidt (1995) and proposes an adaptive two-stage one-per-stratum sampling of rare,

dispersed populations. She proves that there is an increased efficiency of estimation in

two-stage sampling over one-stage systematic sampling when the same sample size is
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used.

We propose a two-stage systematic sampling plan that maximizes the detection prob-

ability of a remediation unit with hotspots. We refer to a remediation unit as a floor.

In first-stage sampling, we sample a fixed proportion of all floors. In second-stage, we

sample the remaining part of the floors that do not have any hotspots detected in the

first-stage sampling. This strategy requires dividing every floor and the corresponding

sampling resource into two parts to perform an adaptive sampling design.

In Section 2.2, I state the sampling objective and assumption, describe the sampling

plan, and expound on the assumptions for a data model. In Section 2.3, I consider an

optimal design that maximizes detection probability. In Section 2.3.1 several one-stage

sampling designs are reviewed, and in Section 2.3.2 I compare their detection probabilities

and show that a systematic design gives the highest detection probability. In Section 2.3.3

I describe the procedure of a two-stage systematic sampling plan. In Section 2.3.4 I prove

the effectiveness of a two-stage systematic design over any one-stage design. In Section

2.4 a simulation study gives an optimal set of two-stage design parameters. In Section

2.5 I verify the effectiveness of a two-stage design using a beryllium decontamination case

study, which was conducted at the Ames Laboratory in 2010-2011 under the supervision

of Tom E. Wessels and James H. Withers. In Section 2.6 we conclude with some remarks.

2.2 Objectives, assumptions, and notations

Industrial hygienists and statisticians alike are interested in developing a sampling

plan that identifies the locations of hotspots (exposure sites) with high sensitivity given

a fixed budget. To minimize the exposure risk, we keep the unit of remediation larger

than a sampling unit, for example, as an integer multiple of a sampling unit. Let room

represent a sampling unit and floor represent a unit of remediation. In this new language,

the objective is to detect as many contaminated floors as possible so as to decontaminate
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and reduce harmful element exposure. Define the contamination of a floor as having at

least one sampling unit whose measurement exceeds a threshold, and the detection of

a floor as detecting at least one of those sampling units. To detect and declare a floor

contaminated, we need to detect one contaminated room in a given floor.

The following assumptions are made to simplify the presentation of our method.

Assumption 1. Contamination exposure sites are of equal and fixed size clusters.

Assumption 2. A sampling domain is a transect.

Assumption 3. Contamination exposure sites are independent across floors and the prob-

ability of floor contamination is fixed.

Assumption 4. There is no uncertainty in declaring a site or room contaminated.

Assumption 5. There is at most one hotspot per floor.

Assumption 6. There are the same number of rooms per floor.

In Assumption 1, a clustered arrangement is a realistic description of the contamina-

tion process. The assumption for equal and fixed size clusters is not but simplifies the

theoretical derivation. Assumption 2 can be justified for cases where the observations

in one direction has a strong spatial correlation while in the orthogonal direction they

are weakly correlated. In such a scenario, we shall display the data as a transect. When

the observations exhibit strong spatial dependency in all directions, one should use a

two-dimensional grid. Here we present a scenario of one-dimensional sampling plan. In

a two-dimensional spatial design, a more complicated calculation of a hotspot detection

probability is required based on the assumptions of the shape of a hotspot. Assumption 3

describes remediation units, floors, as containing physically independent characteristics

for floor contamination probability. Assumption 4 describes a case where observations

have strong signals and small measurement errors, i.e. a small coefficient of variation.
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Since the observations are strongly correlated and the hotspots are clustered, the sam-

pling sensitivity is not affected by a small measurement error. Assumption 5 and 6

are, again, for the simplification of detection probability calculation. These assumptions

allow us to explicitly derive theoretical results without complex details.

X X X X
X X X X

X X X X
X X X X

X X X X
X X X X

X X X X
X X X X

X X X X
X X X X

X X X X
X X X X

X X
X X

X X

X X

X X
X X

X
X X

X X

(a) First-stage

X X X X
X X X X

X X X X
X X X X

X X X X
X X X X

X X X X
X X X X

X X X X
X X X X

X X X X
X X X X

X X
X X

X X

X X

X X
X X

X
X X

X X

(b) Second-stage

Figure 2.1: A two-stage systematic sampling diagram with the first and second stages.
Each horizontal section represents a floor, each cell represents a room, ‘X’ marks sampling
sites, i.e. rooms, and the shaded area signifies hotspots. In (b), the floors marked with
arrows, which are the first, fifth and seventh floors from the top, did not require sampling.

We define the data model parameters for contamination distribution as follows:

• n : sample size

• T : number of floors (remediation sections) in the sampling venue

• R : number of rooms (sampling locations) per floor

• N : total number of rooms, N = TR
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• r : sampling rate defined as the number of samples divided by the number of total

sample sites, i.e. n/N .

• c : probability that a floor is contaminated

• p : relative size of contamination given a floor contamination

• b : size of a contamination as an integer multiple of a sampling unit

• τ : proportion of a floor sampled in first-stage

• α : proportion of samples used in first-stage

Remark When τN is not an integer, we round it up as for the number of rooms in

first-stage sampling.

Remark We define a proportion τ for the number of sampling sites N and a proportion

α for the number of sample n. The two proportions should be the same when a two-stage

sampling requires sampling over the total area. However, probabilistically some floors

do not require full sampling over two stages by the proposed design. The efficiency gain

in our two-stage design comes from saving a portion of the sampling sites from sampling

as shown by the example in Figure 2.1. The relationship between α and τ is detailed in

Figure 2.4 where α ≥ τ .

In Figure 2.1 the two-stage sampling idea is illustrated via a realization of a system-

atic sampling plan with the X’s representing sampling sites. The left diagram shows a

realization of first-stage sampling, and the right diagram a realization of second-stage

sampling. We take the diagram as a cross-section of a building where each horizontal

line represents a floor with T = 12 total number of floors. Every floor does not need

to have the same side sampled, but the sampling sites in each floor are required to be

contiguous. For simplicity, we keep the first-stage sampling area to be all in the same

side, on the panel to the left of the double vertical lines. To the right of the doubled lines
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is the second-stage sampling area. On each floor, each cell represents a room, and there

are R = 30 rooms. There is at most one hotspot cluster per floor, and it is represented

by the shaded boxes of size b = 3 rooms. Say that the sample size is n = 66. Then the

overall sampling rate is r = n/N = 66/(12 × 30) = 11/60. Here we set the first-stage

floor splitting proportion τ = 0.6, and therefore the number of rooms in first-stage is

0.6×360 = 216 rooms. Let the number of first-stage sample αn = 48, and then the fixed

space between sample points should be 5. We have α ≥ τ because in the first-stage τ

proportion of all floors should be sampled with αn sampling points but in the second-

stage not all floors need 1 − τ proportion sampled with (1 − α)n sampling points. In

this illustrative example, we see that the first, the fifth, and the seventh floors from the

top are exempt from second-stage sampling because the hotspots on the respective floors

are detected. For the maximum detection probability given a fixed budget we carry

out systematic sampling over two-stage sampling where not every floor is fully sampled,

yet the probabilistic design should render a more or less efficient second-stage sampling

depending on the first-stage sampling result.

We can still show that a two-stage sampling design should be more effective than a

one-stage design even without Assumptions 1, 3, and 5. When the size of hotspots varies,

counter to Assumption 1, the detection probability of each floor fluctuates accordingly.

The floors with large hotspots have larger floor detection probability, and this higher

detection probability is shared among the remaining floors by reducing the number of

floors to be sampled and increasing the floor detection probability in second-stage sam-

pling. Therefore, a two-stage design floor detection probability should be greater than a

one-stage design, hence the greater efficiency of using the sampling resource. When the

floor contamination probability varies among floors, counter to Assumption 3, the floor

with a higher contamination probability has a higher detection probability. As in the

case of varying the size of hotspots the sampling resource in first-stage sampling is to be

used more efficiently in second-stage, and the sampling rate should be greater than that
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of a one-stage design. Lastly, when there is more than one hotspot (contamination clus-

ter) per floor, counter to Assumption 5, the detection probability should increase from

assuming only one hotspot per floor. By the same reasoning in the previous arguments

countering Assumptions 1 and 3, a two-stage design benefits from the increased floor

detection probability and becomes more efficient than a one-stage design.

Based on Assumptions 1-6 we use the above notations to define random variables as

follows:

• C : total number of floors contaminated C ∼ Bin(T, c).

• C1 : number of floors that contain contamination in the first-stage sampling area.

C1|C ∼ Bin (C, τ)

• C2 : number of floors that contain contamination in the area not sampled in the

first-stage. C2 = C − C1.

• D0 : number of contaminated floors detected in one-stage sampling. D0|C ∼

Bin (C, d0) where d0 is the detection probability.

• D1 : number of contaminated floors detected in first-stage for a two-stage sampling

plan. D1|C1 ∼ Bin (C1, d1) where d1 is the floor detection probability of first-stage

sampling.

• D2 : number of contaminated floors detected in second-stage for the two-stage

sampling plan. D2|C2 ∼ Bin (C2, d2) where d2 is the floor detection probability of

the second-stage sampling.

Breidt (1995) has proposed a variant of a systematic sampling plan called a Markov

chain design in which the danger of administering a systematic sampling plan is avoided

in the case of a periodic dispersion of hotspots.

We define a Markov chain sampling transition probability matrix for a one-dimensional

design as follows:
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Definition 2.2.1 A Markov chain sampling transition probability matrix PNl×Nl
for a

one-dimensional design is an Nl×Nl matrix with the (i, j) element given by P (i, j) where

Nl is the number of sampling locations per stratum. P (i, j) is the probability of sampling

from location j in one stratum conditioned on its neighboring sampling location i in its

stratum. For each row i, we need P (i, j) ≥ P (i, k) if |i− j| < |i− k| in one-dimensional

sampling. Every row should sum to 1. That is,
∑

iP (i, j) = 1 for all j.

An example of P (i, j) for one-dimensional five sampling unit stratum is

P 5×5 =
1

15



4 3 3 3 2

4 4 3 2 2

3 3 3 3 3

2 2 3 4 4

2 3 3 3 4


.

If P (i, i) = 1 for all i’s and P (i, j) = 0 for all i 6= j, then P should revert the sampling

design to a systematic sampling plan. If P (i, j) = 1/Nl for all i and j from 1, . . . , Nl,

then P generates a one-per-stratum sampling design.

2.3 Sampling designs maximizing detection probability

In this section we compare floor detection probabilities of several designs under the

assumption that hotspots are spatially correlated. Define floor contamination as having

at least one sampling unit whose measurement exceeds a threshold, and a floor detection

as detecting at least one of those sampling units. In Section 2.3.1 we briefly review several

sampling plans, and in Section 2.3.2 we compare detection probabilities of one-stage

spatial sampling plans. In Section 2.3.3 I describe the proposed two-stage sampling

plan that maximizes the contaminated floor detection probability. In Section 2.3.4 I

demonstrate theoretically that the detection probability of a two-stage design is greater

than that of a one-stage design.
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2.3.1 One-stage designs

We review four spatial sampling designs and one of their variants. A simple random

sampling is an equal probability selection of independent rN sampling sites from N

possible sites. Since a hotspot dispersal scenario is likely to be clustered in space, a

simple random sampling plan should be the least efficient one in a cluster detection. A

systematic spatial sampling is a selection of a fixed location in every stratum with a

random starting point. Since nearby sample measurements are likely to be more similar

and redundant than sample measurements that are further apart, a one-per-stratum

design is more economical in detecting contaminated floors than a simple random design.

There is a potential disadvantage when contamination is periodically dispersed, and

the distance between sampling locations is the same as the periodic dispersal distance.

However, that is a very unlikely scenario for contamination dispersal. A one-per-stratum

design is a compromise between a simple random sampling and a systematic sampling

where the sampling location in each stratum is random. A general form of a systematic

sampling design and a one-per-stratum design is proposed in Breidt (1995) and called a

Markov chain design. A transition probability matrix, defined in Definition 2.2.1, helps

to run a Markov chain from one end of a sampling transect to the other in order to

select the sampling location within a stratum dependent on the neighboring sampling

locations. A Markov chain design provides a sensible spatial sampling approach by

imposing a minimum and a maximum distance between neighboring sample sites. It is

less flexible than a one-per-stratum design yet less rigid than a systematic design.

Figure 2.2 shows a realization of three of the four one-dimensional spatial sampling

designs described above. Each design has a sample size n = 14 where the number of

total sampling sites N = 70. At the top, we see that a simple random sampling plan

has a large chance to miss a clustered contamination due to a large portion of the floor

being uncovered. A Markov chain design in the middle has some variability in sampling

locations within a stratum, yet it does not look drastically different from a systematic
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X X X X X X X X X X X X X X

Figure 2.2: Examples of three sampling designs in one dimensional display. The top is a
realization of simple random sampling (SRS), the middle is a Markov-chain design, and
the bottom is a systematic sampling (SYS) design.

sampling design in the bottom. A Markov chain design could be designed more like a

systematic design when the transition probability matrix has a positive probability close

to or only on the diagonal, or it could be designed like a one-per-stratum design when

the transition probabilities are uniform across each row.

2.3.2 Detection probabilities of one-stage designs

We compute the floor detection probabilities for three spatial sampling designs show-

cased in Figure 2.2. Let D denote the event that one or more of the sample n is in a

hotspot of size b sampling units located in N sampling sites. Then, the detection prob-

ability of a size n simple random sample, representing the event of detection as DSRS,

is

Pr(DSRS) = 1−

(
N − b
n

)
(
N

n

) . (2.1)

For a systematic sampling plan with a sampling rate of r, the floor detection repre-

sented by DSY S, is in the following lemma.

Lemma 2.3.1 Let the hotspot cluster size be b sampling units long on a transect. Let

N denote the total number of sampling sites and r = n/N a sampling rate. A systematic
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sampling plan detection probability of a b-sampling-unit large contamination is min(br, 1),

that is,

Pr(DSY S) = min(br, 1). (2.2)

Proof of Lemma 2.3.1. Consider a case where N is a multiple of a stratum size Nl. In

other words, the sample size n is an integer defined as N/Nl. The selection probability

of each sampling site within a stratum is 1/Nl = n/N = r. For sample of size n to be in

a hotspot of size b sampling units, we find b different sampling possibilities where b ≤ Nl

and Nl different cases where b > Nl. Therefore the probability of floor detection is br

when b ≤ 1

r
or else the floor detection probability is 1.

Consider the other case where the total sampling sites N is not an integer multiple

of a stratum size Nl and the sample size depends on the randomly chosen starting

point. Let Nl′ be the size of the remainder sampling sites when N is divided by Nl, i.e.

N = Nln + Nl′ , and Nl′ is possibly 1, 2, . . . , Nl − 1. Again, the selection probability for

every sampling site within a full-length stratum is 1/Nl because there are Nl possible

sites in these n number of strata. For the n+1st stratum at either end of the transect the

selection probability is not 1/Nl′ but rather 1/Nl because we place Nl′/Nl probability of

using the n+1th sample in this last incomplete stratum and each sampling site within this

incomplete stratum should have equal probability of selection. Therefore, the expected

sample size at a fixed sampling rate 1/Nl is E(sample size) = n +
Nl′

Nl

. Therefore, the

probability of DSY S is br = b/Nl when the size of contamination b <
1

r
and 1 when

b ≥ 1

r
. �

We calculate a Markov chain design detection probability via simulation because as

the chain gets longer or as the size of a stratum becomes relatively larger, the calculation

becomes complicated. Where N = 150 we test three sampling rates r = 1/6, 1/10, and

1/15 and use the following corresponding transition probability matrices:
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for r =
1

6

P 6×6 =
1

12



5 3 2 2 0 0

3 3 2 2 2 0

2 2 2 2 2 2

2 2 2 2 2 2

0 2 2 2 3 3

0 0 2 2 3 5


;

for r =
1

10

P 10×10 =
1

20



4 3 3 3 3 2 2 0 0 0

3 4 3 2 2 2 2 2 0 0

2 3 4 3 3 2 1 1 1 0

1 2 3 4 3 2 1 1 1 0

1 2 2 3 3 3 2 2 1 1

1 1 2 2 3 3 3 2 2 1

0 1 1 1 2 3 4 3 2 1

0 1 1 1 2 3 3 4 3 2

0 0 2 2 2 2 2 3 4 3

0 0 0 2 2 3 3 3 3 4



;

and for r =
1

15
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P 15×15 =
1

54



6 6 6 6 6 6 6 4 3 2 2 1 0 0 0

6 6 6 6 6 6 6 4 3 2 2 1 0 0 0

5 6 6 6 5 4 4 4 4 3 3 2 1 1 0

4 5 6 6 6 5 4 4 3 3 2 2 2 2 0

3 4 5 6 6 6 5 4 3 3 3 2 2 2 0

3 3 3 4 4 6 6 4 4 4 3 3 3 2 2

2 2 3 3 4 6 6 6 4 4 4 3 3 2 2

3 3 3 3 3 4 5 6 5 4 3 3 3 3 3

2 2 3 3 4 4 4 6 6 6 4 3 3 2 2

2 2 3 3 3 4 4 4 6 6 4 4 3 3 3

0 2 2 2 3 3 3 4 5 6 6 6 5 4 3

0 2 2 2 2 3 3 4 4 5 6 6 6 5 4

0 1 1 2 3 3 4 4 4 4 5 6 6 6 5

0 0 0 1 2 2 3 4 6 6 6 6 6 6 6

0 0 0 1 2 2 3 4 6 6 6 6 6 6 6



.

Figure 2.3 compares the detection probabilities of four different sampling designs. We

set the sampling rate at r = 1/6 in the left plot, 1/10 for the middle, and 1/15 in the right.

The x -axis represents the extent of contamination proportion p per floor, and the y-axis

represents the average detection probability. The expected floor detection probability

of the systematic sampling scenario based on simulation is represented by solid blue

lines, that of a Markov chain design by red short-dashed lines, one-per-stratum design in

black long-dashed lines, and simple random sampling by solid gray lines. For a Markov

chain design, we use the transition probability matrix as shown above for the respective
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Figure 2.3: Comparing detection probability of four sampling strategies at three different
sampling rates r = 1/6 (left), 1/10 (middle), and 1/15 (right). The x -axis represents the
extent of contamination p in a given floor. On average, the systematic sampling scenario
(solid blue) is better than a Markov chain design (short red dash), one-per-stratum design
(long black dash), and SRS (solid gray).

sampling rate r.

Among the class of spatially stratified designs, systematic sampling has the largest

chance of hotspot detection due to its periodic location sampling. Systematic sampling

achieves the highest detection probability because it reduces the redundancy of sampling

nearby locations and never leaves a sampling area greater than the size of a stratum

uncovered. As shown in Lemma 2.3.1 the systematic sampling plan floor detection prob-

ability (in solid blue) increases linearly as the contamination cluster size pN increases

up to a stratum size. Markov chain design and one-per-stratum design are comparable

in detection probabilities when the Markov chain design transition probability matrix

imposes a relatively even distribution of probabilities across P (i, ·)’s for the row index

i = 1, . . . , Nl as in the example given above for P 15×15. Their detection probabilities are

both less than a systematic sampling design and are significantly greater than a simple

random design. The simple random sampling floor detection probability is the lowest,

and its detection probability increases at the slowest rate with respect to the size of the

hotspot because it ignores the spatially clustered nature of hotspot data. The average
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detection probability is as shown in equation (2.1). Through simulation and analytical

derivations of the detection probabilities of simple random and systematic sampling in

equations (2.1) and (2.2), we verify that the systematic sampling design is the most ef-

ficient in floor detection among the four stochastic designs often considered for spatial

sampling.

2.3.3 Two-stage sampling to maximize detection probability

In sampling literature, a two-stage sampling is often used synonymously with sub-

sampling where the first-stage consists of sampling the components of interest, and the

second-stage involves selecting and measuring one or more aliquots from each sampled

component. The proposed two-stage sampling design is not a type of subsampling since

we are interested in locating hotspots instead of estimating the mean or the total level of

contaminant dispersal. The focus is on sampling as wide of a coverage area as possible

adaptively, and we expect the overall two-stage sampling frequency to be greater than

that of one-stage sampling using the same sample size.

An adaptive multi-stage design has an advantage over one-stage design in obtaining

more accurate information of sampling domain. For example, Thompson (1990) proposes

a two-stage design where in the first stage probability sampling is employed, and then in

the second stage cluster sampling is performed nearby the sites of first-stage detections.

As shown in example, it is sensible to use the ensuing stage sampling resources efficiently.

The trade-off of a multi-stage design is that it requires planning and allotting appropriate

time and sampling resources for each stage. Most often the additional effort in planning

and coordination should be worth the additional information. However, when some

measurement readings take a long time for lab analysis and time is an important factor,

a multi-stage design would not be preferred over a one-stage design. In practice, it is

judicious to curtail the benefit of a multi-stage design to a two-stage design given that

extra detailed information is more valuable than savings of the sampling resources by
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performing a one-stage design.

Consider a two-stage design where each stage sampling strategy is simple random

sampling. As we focus on maximizing the floor detection probability, second-stage sam-

pling is required where there is no hotspot detected in first-stage sampling. Note that

there is no difference in detection probability between a one-stage simple random sam-

pling of size n over N sampling sites and a multi-stage simple random sampling design

of the same size. See Appendix A (A.1) for the detailed proof. Let the first-stage sample

size be n1, the second-stage n2, n1 + n2 = n, and b represent the size of a hotspot in

sampling units. The two-stage simple random sampling floor detection probability is

Pr(DSRS, n1) + Pr(DSRS, n2) = 1−

(
N − b
n

)
(
N

n

) . (2.3)

The detection probability of two-stage simple random sample whose sample sizes are split

in any combination of n1 and n2 that sum to n in (2.3) equals the detection probability

of simple random sample of the same total sample size n in (2.1). Therefore, when the

Department of Energy Technical Standard (2005) proposes a simple random sample of

first n1 =15 and adaptively an additional n2 =15, this in fact yields the same floor

detection probability as the simple random sample of n = 30.

We are interested in a two-stage sampling method that has a higher contaminated

floor detection probability than a one-stage sampling design. We adopt a systematic

sampling plan in order to maximize the detection probability as shown in Section 2.3.2

Figure ??. This design requires partitioning the sample and the sampling area for a

sequential two-stage sampling; each floor should be divided into two parts, as well the

sample. A key idea enters by relieving a part of the “planned” second-stage sampling, i.e.

reducing the total number of sampling sites N to say N ′ < N and naturally increasing

the overall effective sampling rate r from n/N to n/N ′. The locations released from

second-stage sampling are of size N − N ′, whose floors have hotspots detected in first-
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stage sampling. Ideally, we would maintain the overall sampling plan like that found

in a one-stage systematic sampling design, so that the detection probability is kept the

highest as shown in Figure 2.3. In reality, there is a deviation from the expectation given

the best guess of the relative size of contamination p to the floor area and the proportion

c of floors contaminated.

As mentioned in the proposal of then two-stage sampling, the sample splitting pro-

portion α between the first-stage and second-stage sample need to be determined, as

well as the floor splitting proportion τ . For a systematic sampling each floor is divided

into a stratum of size τN/(αn) sampling locations, assuming τN/(αn) is an integer. We

sample one location at random from the first stratum on one end, and then select every

τN/(αn)th location thereafter the αn/T th sample on each floor is used. Since there is

some control over the sample size n, one should adjust n and α so that the number of

sample on each floor αn/T is an integer. The first-stage sampling area on each floor

should span over τR rooms. We also make an operative decision on τ such that it is

close to the optimal τ ∗ and satisfy that the number of sampling sites τR is an integer. In

second-stage sampling, ideally, one should continue sampling every τN/(αn)th location

from the last sample until (1− α)n sample is depleted. In reality, an adjustment needs

to be made. After covering τR locations in first-stage sampling, the remaining sampling

locations would be (1− τ)R(T −D1) determined by the number of floors D1 detected in

the first stage. The remaining sample size for second-stage sampling is (1−α)n. Hence,

the number of sampling units in a second-stage stratum should be the largest integer

less than or equal to (1− τ)R(T −D1)/{(1− α)n}.

Aiming for an overall systematic sampling design, we equate the first-stage sampling

rate to the second-stage sampling rate computed under the expected floor detection

scenario of first-stage sampling E(D1), since first-stage sampling is yet to be administered

in the planning stage. Given a sample size n and the total area of sampling N with R

rooms per each of T floors, we set up an equilibrium equation to find the first-stage sample
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proportion α and its corresponding floor splitting proportion τ given the contamination

proportions p and c relative to R and T .

αn

τRT
=

(1− α)n

(1− τ)R(T − E(D1))
(2.4)

Under the Assumptions in Section 2.2, the expected number of contaminated floor de-

tections in first-stage sampling is E(D1; p, c, α, n, T ) = cαn/R. Solving for τ in equation

(2.4), we get

τ =
(T − E(D1))α

T − αE(D1)
=
α(1− pcr)
1− α2pcr

. (2.5)

In determining the optimal α, we run simulations under different settings of p, c, and

T . See Section 2.4 for findings from numerical studies. We find as a general rule to set

α∗ = 0.45 as the optimal sample splitting proportion. In Figure 2.4, we plot optimal

first-stage floor sampling proportion τ versus sample proportion α. The relationship is

slightly slanted toward α in that α ≥ τ for any fixed α except for α = 0 or 1, at which

point the two-stage setting reverts to one-stage sampling. From three settings of p and c:

where the black line represents the case of low floor detection probability due to a small

size of contamination p = 0.04 yet with 50% chance of each floor being contaminated,

the red line is for a large size of contamination p = 0.4 and the same 50% chance of

each floor being contaminated, and the blue line where p = 0.4 and c = 0.8, we see

that as each p and c becomes larger and hint at a higher floor detection probability, it

is recommended to use a smaller first-stage floor splitting proportion τ than when there

is a small floor detection probability.

2.3.4 Theoretical properties of two-stage sampling

We use the result from Lemma 2.3.1 to prove that our proposed two-stage systematic

sampling design has a higher detection probability than a one-stage systematic sampling

design of equal size. In this section, we assume that there is at most one contaminated

room per floor and that there is no uncertainty in declaring a room contaminated to keep
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Figure 2.4: First-stage floor sampling proportion τ versus sample proportion α in three
scenarios: (i) p = 0.04 and c = 0.5 (black); (ii) p = 0.4 and c = 0.5 (red); and (iii)
p = 0.4 and c = 0.8 (blue). There is a more-or-less linear relationship between τ and
α. From the color-coded lines we see that when the relative size of contamination p is
greater, it is recommended to use a smaller first-stage floor splitting proportion τ than
α.

the proof concise. The same result holds with more complex contamination dispersal

scenarios, which are discussed in Section 2.2.

Theorem 2.3.2 Let D0 be the number of contaminated floors detected via one-stage

systematic sampling. Let D1 and D2 be the number of contaminated floors detected in

first- and second-stage sampling respectively in a two-stage adaptive sampling for given

sample splitting proportion α and floor splitting proportion τ . Let T be the total number

of floors, R be the number of rooms per floor, and n be the sample size, and r the overall

sampling rate. Under Assumptions 1 - 6 in Section 2.2, we have

E(D1 +D2) ≥ E(D0)

as n and N are at a fixed rate r = n/N .
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Proof of Theorem 2.3.2: Let the size of contamination be at most one sampling unit

large, i.e. p = 1/R per contaminated floor. By Lemma 2.3.1, the detection probability

of a one-stage systematic design is r = n/N . The expected number of floor detections

in a one-stage sampling plan is

E(D0) = E (E (D0|C)) = E (Cd0) = Tcd0 = Tc
n

RT
=
cn

R
.

For a two-stage sampling design, the first-stage detection probability is d1 = αn/(τRT )

and the second-stage detection probability is d2 = (1− α)n/(1− τ)R(T − E(D1)). The

expected number of floor detections in a two-stage plan is

E (D1 +D2)

= EC (EC1 (E (D1|C1, C))) + EC (EC1 (ED1 (E (D2|D1, C1, C))))

= EC (EC1 (C1d1|C)) + EC

(
EC1

(
(C − C1)

(1− α)n

(1− τ)R

(
ED1

(
1

T −D1

∣∣∣C1, C

))))
= EC (Cτd1) + EC

(
C (1− τ)

(1− α)n

(1− τ)R
EC1

(
ED1

(
1

T −D1

∣∣∣C1, C

)))
= Tcτ

αn

τRT
+ Tc

(1− α)n

R
EC

(
EC1

(
ED1

(
1

T −D1

∣∣∣C1, C

)))
=
cαn

R
+
c(1− α)n

R
EC

(
EC1

(
ED1

(
T

T −D1

∣∣∣C1, C

)))
≥ cn

R
= E(D0).

A two-stage design detection probability is greater than or equal to a one-stage design

detection probability for all pairs of α and τ . �

2.4 Numerical results

In Theorem 2.3.2, a two-stage design has an advantage over a one-stage design in

detecting contaminated floors. Now, it remains to determine the optimal sample and

floor splitting proportions α and τ so that the detection probability is maximized. We

numerically identify the optimal proportions α∗ and τ ∗ because p and c are the parameters

of the contamination data model on which α and τ jointly depend as in equation (2.5).



26

Simulations were run under the following conditions. We fix T = 60 floors. On

each floor there are R = 120 sampling units, i.e. rooms. The total sampling units N

is 7200. We place one contamination cluster per floor, and the placement is chosen at

random from R − b + 1 number of contiguous rooms, as the size of the contamination

cluster is set to b-sampling units, ranging from 1 to 15 by an increment of 1. We ran

a two-stage systematic sampling plan at three sampling rates r = 0.1, 0.2, and 0.25.

We varied the number of floors contaminated at nine levels from 6 to 54 floors by an

increment of 6 floors. Lastly, we experimented with the levels of α from 0.05 to 0.95 by

an increment of 0.05 and a corresponding level of τ , calculated in equation (2.5) along

with the appropriate values for p, c and r substituted. Note that when α = 0 or 1,

the proposed sampling design resorts to a one-stage systematic design. As we have a

probability sampling design, we simulated 9 (building contamination levels) × 15 (floor

contamination sizes) × 3 (sampling rates) × 19 (levels of two-stage design parameter)

≈ 7700 settings each 1000 times to obtain floor detection probabilities for two-stage

sampling and compared to the corresponding one-stage designs.

In Figure 2.5, we list three plots to summarize the sampling simulation results. We

use sampling rate r = 0.2. In each plot, we assume a different size of contamination; from

left to right we set p being 0.05, 0.1, and 0.2, i.e. the size of contamination b=3, 6, and 12

respectively. Each plot contains four profiles of the expected number of contamination

detected floors in which C = 12, 24, 36, and 48 floors exactly contain contamination

(corresponding to the expected scenario of c=0.2, 0.4, 0.6, and 0.8) from bottom to top.

The first-stage sample proportion α is marked on the x−axis below each plot. The y-axis

shows the expected number of floors detected. The solid line represents the average of

the total number of floors detected for a two-stage design given an α. The long-dashed

horizontal lines correspond to the expected total number of floors detected under the

same r, c, and b, when the value is constant across α as E[Tcr]. This is the same as

setting α = 0 or 1, which is a one-stage design. Describing the optimal α∗ in terms of
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the proportion c of contaminated floors, we have a four-tier explanatiion: when c < 0.35,

there is very little difference between the one-stage and two-stage detection probability

because of low probability of overall floor detectition, and hence, the estimated α∗ is

unreliable and its variability is high; when 0.35 < c < 0.6, α∗ is around 0.4; when

0.6 < c < 0.7, α∗ is between 0.4 and 0.7; and when c > 0.7, α∗ is about 0.6. The

pattern of high-to-low-to-high α∗, as c grows from 0.35 to 0.9, is a bit unexpected. We

can explain the relatively large α∗ of 0.6 when the probability of floor detection is high

due to either large p or c because detecting as many contaminated floors as possible

in the first-stage helps us increase the second-stage sampling rate in comparison to the

first-stage.
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Figure 2.5: Black solid lines are the expected floor detection count profiles of two-stage
sampling where T = 60 floors and R = 120 rooms per floor as the sample proportion
α varies from 0 to 1. The gray long-dashed lines are the expected floor detections of
one-stage systematic sampling. The red short-dashed lines trace the maximum for each
floor detection profiles and mark the optimal α∗ (given p and C). The jaggedness in the
optimal α profiles is due to the discreteness of the sample selection probability.

You will see from expected number of floor detection profile plots in Figure 2.5 that

when the proportion of contaminated floors is small (c ≤ 0.3), there is little difference in
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the detection probability between one- and two-stage systematic sampling because the

detection probability is relatively low. When the proportion of floors contaminated c

increases and the size of contamination p is greater than 0.1, a two-stage design with

large α (> 0.8) gives us the same detection probability as in a one-stage design. Since

detection is more likely when c and p are large, a two-stage design has marginally little

to offer over a one-stage design.

In practice, one may have prior knowledge of the extent of contamination on each

floor and the sample size. This allows a sampling design planner to refer to the results in

Figure 2.5 and select an optimal two-stage sample splitting proportion for the proposed

two-stage design. When one has little basis for making a good guess, we suggest a

conservative approach of setting α∗ = 0.5 because it is the median of the estimated α∗

from the detection probability profiles.

2.5 Beryllium clean-up study at Ames Laboratory

In this section, we detail a study that utilizes the proposed two-stage sampling de-

sign.This study is motivated by the recent decontamination efforts of surfaces containing

beryllium dust at Ames Laboratory, a U.S. Department of Energy (DOE) facility oper-

ated under contract by Iowa State University. Beryllium is a metal that was widely used

within the DOE complex for a variety of purposes including as moderators or reflectors

in nuclear reactors and as reactor fuel element cladding. Inhalation of beryllium dust or

particles can cause chronic beryllium disease or beryllium sensitization. In the 1940s and

early 1950s, beryllium was regularly used in uranium and thorium purification processes

developed at the Laboratory in support of the Manhattan Project. Although beryllium

usage decreased significantly in subsequent years, legacy beryllium contamination exists

in primarily inaccessible areas of each research building. Accordingly, it is necessary

to characterize research-generated beryllium dispersal in order to ensure that current
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employees are not at risk for exposure. Hence, we are interested in devising a spatial

sampling plan to establish the state of surface contamination. We propose a two-stage

systematic sampling design, which consistently detects problematic areas with higher

probability than a one-stage systematic sampling design of equivalent sample size.

0 10 20 30 40 50

1e
-0
2

1e
+0
0

1e
+0
2

SPH : Basement

Room no.

B
e 

(in
 p

pm
)

0 10 20 30 40 50

1e
-0
2

1e
+0
0

1e
+0
2

SPH : Ground Floor

Room no.

B
e 

(in
 p

pm
)

100 120 140 160

1e
-0
2

1e
+0
0

1e
+0
2

SPH : First Floor

Room no.

B
e 

(in
 p

pm
)

200 220 240 260

1e
-0
2

1e
+0
0

1e
+0
2

SPH : Second Floor

Room no.

B
e 

(in
 p

pm
)

300 320 340 360

1e
-0
2

1e
+0
0

1e
+0
2

SPH : Third Floor

Room no.

B
e 

(in
 p

pm
)

Figure 2.6: Five-story Spedding Hall (SPH) door-top beryllium census in log scale. The
dashed line represents a derived background limit.

In beryllium sampling reports from the National Energy Technology Laboratory-

Albany (Bond 2008) and of the United States Enrichment Corporation’s Portsmouth

gaseous diffusion plant, the main sampling strategy is a combination of a simple random

sample and a judgement sample. In the DOE Technical Standard (2005) a simple random

sample of first n1 =15 and adaptively an additional n2 =15 is suggested for a surface

scoping survey. Though sampling is over two stages, there is no difference from a one-

stage simple random sample of 30 in terms of detection probability as shown in (2.3)
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(a) Wilhelm Hall

Figure 2.7: Four-story Wilhelm Hall (HWH) door-top beryllium census in log scale.
The dashed line represents a derived background limit.

with the details in the Appendix (A.1). Rondeau (2009, p. 71-72) also describes a

surface sampling using a simple random sample. Simple random sampling is less efficient

if the contaminations are spatially clustered. In industrial hygiene practice a commonly

used design for contaminant detection is simple random sampling, as seen in the DOE

Technical Standard (2005) and Rondeau and et al. (2009).

In this case study, we use beryllium door-top concentration data, which our client

collected from the troughs of every door top, to validate our method. We simulate three

sampling strategies on two Ames Laboratory buildings, Spedding Hall and Wilhelm Hall,

and calculate the actual detection probabilities among the sampling plans. We take a

floor as the unit of remediation and sample each floor over two stages. In Spedding

Hall, each floor contains 51 to 72 rooms, and in Wilhelm Hall there are 28 to 44 rooms

per floor. From Spedding Hall data, we have found that the spatial correlation among

the beryllium dust data is strong only in neighboring door top measurements and very

weak among rooms across the hallway. To model the observations in a one-dimensional

setting, we string out the sampling sites around the hallway. In Wilhelm Hall, there is

strong spatial correlation in all directions. Here we order the rooms in a zigzag pattern,

alternating across hallways.
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In Figure 2.7, we show the door-top data of three representative floors in two buildings

mentioned above, with the horizontal dotted line representing the DOE site-specific

derived background beryllium concentration. The vertical axis is in logarithmic scale.

Spedding Hall is mostly free from research-derived beryllium, while Wilhelm Hall has a

higher level of beryllium dust detected.

In Table 2.1, we report the floor -by-floor and overall building beryllium detection

probability and each of their simulation standard errors in percentage. We set the sam-

pling rate at r = 0.15. The first column has the number of rooms/door-top measurements

per floor. The second column reports the percentage of beryllium measurements above

the site-specific derived background concentration per floor. The third column contains

the simple random sampling (SRS) detection probability. The floor detection probability

is not dependent on the beryllium dispersal scenario but only dependent on the sampling

rate r = 0.15, so we use equation (2.1) to calculate it. Also, the detection probability of

a one-stage systematic sampling, denoted as ‘One-stage’ in Table 2.1, is obtained using

a direct numerical calculation. The detection probability of a two-stage sampling plan,

denoted as ‘Two-stage’ in Table 2.1, may depend on the choice of α and τ . We use α =

0.6 and τ from equation (2.5). In order to use equation (2.5), we need to know pR the

contiguous contamination size or a dispersal scenario and the proportion c of floors with

contamination. We set p = 0.05 and c = 0.7 since the Laboratory expected a small area

to be contaminated per floor yet quite a few spots scattered throughout the buildings.

In other words, more than half of the floors should contain at least one sampling location

with a high level of beryllium.

Recall from Section 2.3.1 that a simple random sampling detection probability is lower

than that of a systematic design when beryllium dispersal is concentrated, i.e. spatially

correlated. In Table 2.1, one-stage and two-stage systematic sampling plans have similar

or higher floor contamination detection probabilities than a simple random sampling. In

Wilhelm Hall, we see almost no difference in detection probability among the sampling
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Table 2.1: Floor by floor contamination detection percentage from 1000 simulation runs
using three different sampling strategies. The two-stage sampling plan combined two
buildings as one. Sampling rate was fixed at 15%. The first-stage sample splitting
promotion was 60%. The number of rooms T and the percentage of contamination in
each floor are given in the first two columns. The next three columns show the average
(and the standard deviation of) hotspot-floor detection probabilities.

Spedding Hall T Hotspot (%) SRS One-stage Two-stage

Basement 65 9.2 64.9 (5.11) 74.3 (4.59) 76.7 (4.05)
Ground Floor 54 11.1 63.7 (3.68) 61.1 (4.50) 72.3 (3.91)

First Floor 58 8.6 58.4 (4.97) 58.6 (4.89) 68.1 (5.23)
Second Floor 51 37.3 98.3 (1.33) 100 (0) 100 (0)
Third Floor 72 12.5 79.6 (3.27) 81.9 (3.29) 88.4 (4.84)

Wilhelm Hall T Hotspot (%) SRS One-stage Two-stage

Basement 44 84.1 100 (0) 100 (0) 100 (0)
Ground Floor 28 53.6 96.5 (1.56) 100 (0) 100 (0)

First Floor 33 87.9 100 (0) 100 (0) 100 (0)
Second Floor 32 43.8 93.9 (1.97) 96.8 (1.38) 99.8 (0.43)

Table 2.2: Floor detection percentages for each building separately and collectively using
three different sampling strategies.

Building SRS One-
stage

Two-
stage

Spedding 73.00 76.02 81.12
Wilhelm 97.60 99.22 99.85

Total 83.93 85.88 89.48

plans because the proportion of contamination is so high that any sampling plan would

detect the floors contaminated. However, when the floor contamination proportion is

small as it is in Spedding Hall, a two-stage sampling plan displays a higher detection

probability than the other two. It shows that a two-stage systematic sampling plan

makes more strategic use of sample.
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2.6 Conclusion

We are interested in maximizing the detection probability of contaminated floors.

Simple random sampling is a common practice of surface sampling in industry, which is

not the most efficient use of sampling resources. We recommend a two-stage systematic

sampling design to achieve a higher floor detection probability than any one-stage sam-

pling designs. Two-stage sampling is more effective than one-stage sampling because in

two-stage sampling a set of floors detected in the first-stage is excluded in the second-

stage sampling and this leads to an increased sampling frequency over the area that is

to be sampled.

The optimal first-stage sample proportion is but is not sensitive to the contamination

size and the fraction of floors contaminated. In practice it can be chosen via a Bayesian

approach or by optimizing the minimax risk of detection. One could plan an adaptive

multi-stage design beyond two stages, but it has a diminishing return in detection prob-

ability. For an additional stage of sampling, extensive prior knowledge of the sampling

domain is required, as well as a greater amount of planning effort and implementation

time. Therefore, we recommend the use of the two-stage design, which achieves a balance

of implementation complexity and efficiency.
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CHAPTER 3. DIFFERENCE-BASED VARIANCE

FUNCTION ESTIMATION OF A ONE-DIMENSIONAL

NONSTATIONARY PROCESS

3.1 Introduction

3.1.1 Motivation

Many spatial processes exhibit nonstationary features, such as non-constant mean,

variance, and varying covariance structures. We often encounter data with these features

in ecology, geology, meteorology, astronomy, and in sociology. More specifically, natural

phenomena possess these characteristics in species and mineral abundance, wind fields,

crop yields (Hu and Mo (2011)) , and the Cosmic Microwave Background maps (Inman

et al. (1997)). Human activities on the aggregate level also display nonstationary spatial

patterns such as an Internet search query pattern associated with a geo-referenced code

(Kessler and Shnerb (2009)), a real estate price map (Helbich et al. (2014) and Gelfand

et al. (2004)), and an air pollution map (Briggs et al. (1997)), to name a few. With

the development of modern technology especially in communication, the prevalent use

of hand-held devices and the capacity for large data storage have brought about high

demand for spatial data analysis. It is not only important to estimate the process mean

map but also useful to construct reasonable interval estimates of the mean process and

spatial prediction intervals.

We are interested in estimating the variance function of a one-dimensional spatial
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process where the mean and the variance functions are smooth and have additive cor-

related errors. We assume a fixed equidistant design in one dimension and consider a

mixed domain asymptotic framework to develop the asymptotic properties of a variance

function estimator. Our estimator starts with the same differencing idea as Brown and

Levine (2007) and Wang et al. (2008). We use Gasser-Müller kernel for smoothing, which

helps to simplify the theoretical derivation as is the case in the latter of the two papers.

A development from their approach, however, is that we extend the scenario to a cor-

related nonstationary process and also discuss the cross-validation idea for bandwidth

selection. Our estimator requires estimating the correlation structure embedded in the

data, as well as adjusting the scale of the difference-based estimator using the correlation

information. The adjustment scale is the variogram value at a difference lag distance,

i.e. one minus the correlation between a set of lagged observations.

3.1.2 Literature Review

Two common approaches to variance estimation are the likelihood-based method

and the method-of-moments. Anderes and Stein (2011) have presented a likelihood-

based approach to estimate the parameters of a nonstationary spatial process. A series

of likelihood is constructed in a cascading form using the nearest observation from the lo-

cation of estimation to then nearby observations once the neighborhood size is increased.

The final likelihood function is constructed by heavily weighting the likelihoods formed

by nearby observations and discounting the weights on the farther observations. Such

weighting schemes marginalize the influence of far away observations and strengthens

the idea of local stationarity. This method deals well with irregularly spaced data. Also,

the smoothing kernel applied across the domain should produce a smooth parameter

functional estimation. A few drawbacks are the computational burden of inverting co-

variance matrices at every location for variance estimation, especially when using their

bandwidth proposal ideas; lack of statistical efficiency in the risk measure; and a rigid
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Gaussian distributional assumption of the process for analytical tractability.

Another common and general approach to variance estimation is the method-of-

moments estimation. This approach often requires estimating a mean structure, while

a difference-based approach does not require estimating the mean. Also, the variance

estimation suffers less from the bias generated by estimating the mean (Seifert et al.

(1993)). Using differences of successive observations, von Neumann et al. (1941) have

proposed variance estimation of independent and identically distributed errors. Gasser

et al. (1986) have used second order differences to estimate the variance for non-fixed

designs. Gasser et al. (1985) developed kernels, which we use, for nonparametric curve

estimation. Brown and Levine (2007) have introduced a difference-based kernel estimator

for a non-constant variance process in one dimension. They assume that a nonstationary

process has a smooth mean and variance functions and that the errors are independent

and identically distributed. The variance estimator is defined as the local polynomial

regression estimator based on the squares of the pseudo-residuals. They show the optimal

convergence rate of risk and a corresponding bandwidth. The asymptotic variance of the

estimator is affected by the choice of the difference sequence, but the asymptotic bias is

not affected. For bandwidth selection, Levine (2006) proposes a K-fold cross-validation

type method.

Adopting a difference-based method without estimating the mean, a large-scale effect,

suggests that there should be an effect of the smoothness of mean function to that of

variance function. Hall and Carroll (1989) have discussed the effect of relative smoothness

of mean function to the smoothness of variance function on the order of risk of a variance

function estimator. Wang et al. (2008) have followed up with the minimax risk rate of

convergence and have found that the rate is the same as in a nonparametric regression

setting, whose convergence rate of risk of a functional estimator is O(n−β/(2β+1)) in one-

dimensional estimation, where β is the degree differentiability of the estimated function.

If the degree differentiability of the mean function is less than 1/4, then the convergence
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rate of risk is larger than the common form.

As we follow the tradition of nonparametric estimation, we develop the method fur-

ther and also contrast it with the likelihood approach. In Section 3.2, we define the

local variogram as a product of the variance function of location and the traditional

variogram function of lag. Then we explain the rationales behind some definitions. In

Section 3.3, we discuss the theory and the method of local variogram function estimation

and variance function estimation. In Section 3.4, the estimation algorithm is presented.

In Section 3.5, we illustrate our method through a simulation study. In Section 3.6, I

discuss the advantages of the difference-based variance function estimator in comparison

to a likelihood-based estimator.

3.2 Model and Definition

Consider a nonstaionary continuous process model

Z(s) = µ(s) + σ(s)Xs (3.1)

on 0 ≤ s ≤ 1 with a smooth mean function µ(s) and an additive noise function as

a product of a smooth standard deviation function σ(s) and a second-order stationary

error process {Xs}s∈S where E(Xs) = 0, var(Xs) = 1, and cov(Xs, Xs′) = ρ(|s− s′| ; θ)

for s 6= s′. We assume that Xs is isotropic and the correlation function is defined as

ρ(|s− s′| ; θ) =


1 s = s′

1− θ |s− s′|α + o(|s− s′|2) s 6= s′
(3.2)

where θ > 0 and 0 < α < 2 for a valid correlation structure. There are several corre-

lation function models that are readily available such as linear, spherical, Matérn and

exponential, and these satisfy the condition (3.2). We assume a fixed equally spaced

design such that si,n =
2i− 1

2n
where the location is indexed by i = 1, . . . , n. When we

deal with a general n, we may drop the second index and express si,n = si. The following
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shorthand is also used.

Zi = Z(si) ρh,n = ρ(h/n),

µi = µ(si), σi = σ(si),

and for a parametric correlation function, we use ρh;θ = ρ (h/n; θ).

Definition 3.2.1 Let c1, c2 > 0. Denote q′
.
= q − bqc where bqc is the largest in-

teger less than q. We say that the function f(x) ∈ Λq(cf ) if for all x, y ∈ (0, 1)

,
∣∣f (bqc)(x)− f (bqc)(y)

∣∣ ≤ c1 |x− y|q
′
,
∣∣f (k)(x)

∣∣ ≤ c2 for k = 0, . . . , bqc, and cf =

max(c1, c2).

Definition 3.2.2 If a function f(x) is in class Λq(cf ) and there exists δ > 0 such that

f(x) > δ for all x ∈ [0, 1], we say the function is in Λ+
q (cf ).

In this paper, we consider µ(s) ∈ Λq, q ≥ 0 and σ2(s) ∈ Λ+
β , β ≥ 2, which are continuously

differentiable Lipschitz functions.

We borrow the idea of a variogram, which is widely used in geostatistics, to one-

dimensional nonstationary processes defined in (3.1). Mathernon (1962) introduced the

term variogram for a second-order stationary random field {Xs} to represent 2γ(‖h‖) =

var (X(s + h)−X(s)) for any pair of observations separated by h. In our data model

the process is heteroscedastic. The differenced process also contains heteroscedasticity,

and the central location of the pair of observations from which the differencing is taken

contains information. For a fixed space design of n sample in one dimension, the variance

of a simple order lag-h differenced process centered about s is,

var

(
Z

(
s− h

2n

)
− Z

(
s+

h

2n

))
=2σ2(s) (1− ρh,n) + 2

(
σ(1)(s)

)2
(1 + ρh,n)

(
h

2n

)2

+ o
(
n−2
)

(3.3)

when expanded about s where σ2(j)(s) = djσ2(x)/dxj|x=s. See equation (A.2) in Ap-

pendix A for details.
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Definition 3.2.3 The local variogram 2γL (s, h) is defined as the leading term of (3.3),

i.e.

γL(s, h) = σ2(s)(1− ρ(h/n)). (3.4)

The local variogram (3.4) is a product of a heteroscedastic variance function and a

variogram function where the lag size h is relatively small in comparison to n. Therefore,

for variance function estimation at location s we need to estimate the local variogram at

location s and lag h and the correlation structure from the data at lag h. We proceed

by defining a differencing sequence to be used in the local variogram estimator.

Definition 3.2.4 A one dimensional order l differencing filter has an l order binomial

expansion coefficients cj = (−1)j
(
l

j

)
as a coefficient for the (j + 1)th term involved in

the filter where j = 0, . . . , l. We define a squared order l difference process at lag-h as

{D2
i,h}n−hli=1 =

{(
∑l

j=0 cjZ(si+jh))
2}n−hli=1∑j=l

j=0 cj
2

.

where dj = cj/
√∑j=l

j=0 cj
2.

Remark For any positive integer l,
∑l

j=0 dj = 0 and
∑l

j=0 d
2
j = 1 since

∑j=l
j=0 cj = 0. If

{Zi} is an independent and identically distributed error process with mean 0, this implies

the sequence of {Di,h} is an identically distributed error process with E(Di,h) = 0 and

var(Di,h) = E(D2
i,h) = 1 and not independent. Hence, in the literature, Di,h are often

called pseudo-residuals.

In constructing a local variogram estimator, we use a lag-h, first order, normalized

squared difference sequence of fixed-design data. That is, {D2
i,h} = {(Zi − Zi+h)2 /2}n−hi=1 ,

which has a direction connection to the definition of a local variogram. The pseudo-

residuals in the simplest terms offer the most compact form at fixed a lag and introduces

the smallest bias in local variogram estimation among the class of lag-h difference filters.

We suggest using lag-1 simple difference sequence because the variance of the squared

lag-1 sequence is smaller than that of larger lags.
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Definition 3.2.5 Let a kernel function K(·) be supported on [−1, 1]. It is called a kernel

of order m if it satisfies the following four conditions:

1.
∫ 1

−1
K(x)dx = 1,

2.
∫ 1

−1
K(x)xidx = 0 for i = 1, . . . ,m− 1,

3.
∫ 1

−1
K(x)xmdx > 0, and

4.
∫ 1

−1
K2(x)dx <∞.

Nonparametric smoothing often has its problems at the boundaries of estimating

domain. Local polynomial regression with an odd degree kernel is a common solution to

remove the boundary effect. Gasser et al. (1985) provides an asymmetric m-order kernel

function that removes a boundary effect.

Definition 3.2.6 Let kernel KB(x) be a boundary kernel for a lower boundary 0 ≤ s ≤

λ. For some 0 ≤ b < 1, s = bλ, and we require that

1.
∫ b
−1
KB(x)dx = 1,

2.
∫ b
−1
KB(x)xidx = 0 for i = 1, . . . ,m− 1,

3.
∫ b
−1
KB(x)xidx > 0 for i = m, and

4.
∫ b
−1

(
KB(x)

)2
dx <∞.

Remark A boundary kernel for an upper boundary 1 − λ < s ≤ 1 has the limits from

−b to 1 satisfying the conditions 1 to 4 above as the upper boundary is 1 − s = bλ for

0 ≤ b < 1.

Definition 3.2.7 Let λ be a bandwidth parameter. Define an m-order Gasser-Müller

kernel function Kλ,i(s) (Gasser et al., 1985) for the ith term weight as

Kλ,i(s) =



∫ (si+si+1)/2

(si+si−1)/2

1

λ
K

(
s− u
λ

)
du s ∈ (λ, 1− λ)∫ (si+si+1)/2

(si+si−1)/2

1

λ
KB

(
s− u
λ

)
du s ∈ [0, λ]∫ (si+si+1)/2

(si+si−1)/2

1

λ
KB

(
−s− u

λ

)
du s ∈ [1− λ, 1]

where 0 < λ < 1/2 and 0 ≤ s ≤ 1 for i = 2, . . . , n− 2.
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Remark For i = 1, the limits of the integral of KB ((s− u)/λ) are from 0 to (s1 +s2)/2;

and for i = n−1, the limits are from (sn−1+sn)/2 to 1. For any 0 ≤ s ≤ 1,
∑n−1

i=1 Kλ,i(s) =

1.

For fixed design data, a local polynomial regression and the above kernel adjust

the boundary estimation problem at the same rate. However, the latter has an advan-

tage of dealing with random design data and induces a cleaner asymptotic expansion.

Gasser-Müller kernel smoothing also gives the same asymptotic properties as the local

polynomial smoothing does (Fan and Gijbels (1992)).

3.3 Theoretical Results

3.3.1 Local variogram estimator

We define a Gasser-Müller kernel estimator of local variogram as

γ̂L λ(s, h) =
n−h∑
i=1

Kλ,i+h/2(s)D2
i,h (3.5)

where D2
i,h is a simple normalized square difference of an observed process, and Kλ,i is a

Gasser-Müller kernel of order β > 2. Without loss of generality, assume that the domain

of a variance function is from 0 to 1.

Remark Note that in the local variogram estimator (3.5) the ith difference square,

D2
i,h, is associated with the Gasser-Müller kernel weight indexed by i+ h/2. This index

represents the kernel centering location, and it is aligned with the weight center of D2
i,h.

So, for example, when h = 1, then the kernel Kλ,i+1/2 integration limits are si and si+1. If

the kernel weight had been Kλ,i, then the integration limits would have been (si−1 +si)/2

and (si + si+1)/2.
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Let

D2
i,h =

(Zi − Zi+h)2

2

δi,h = µi − µi+h and

gi,h = σ2
i + σ2

i+h − 2σiσi+hρh,n

for i = 1, . . . , n − h. As the data model is set up in (3.1), E(D2
i,h) = 1

2

(
δ2
i,h + gi

)
. For

an asymptotic expansion of the local variogram estimator (3.5), we need the following

results. Under the condition µ(·) ∈ Λq, q ≥ 1, a Taylor expansion of δi,h about location

s is

δi,h =

bqc∑
k=1

µ
(k)
s

k!

{
(si − s)k − (si+h − s)k

}
+O (|si − s|q + |si+h − s|q)

= −h
n

bqc∑
k=1

µ
(k)
s

k!

k−1∑
a=0

(si − s)a(si+h − s)k−1−a +O(|si − s|q + |si+h − s|q). (3.6)

When 0 ≤ q < 1,

δi,h = c

(
i

n

)q
− c

(
i+ h

n

)q
= cn−q {iq − (i+ h)q} = O

(
n−q
)
. (3.7)

As for gi,h, we rewrite gi,h = σi(σi − σi+hρh,n) + σi+h(σi+h − σiρh,n) and expand each

two-term factor under the condition that σ2(·) ∈ Λβ for β ≥ 2.

σi − σi+hρh,n = σi −

(
σi + σ

(1)
i

h

n
+
σ

(2)
i

2

h2

n2
+ o

(
n−2
))

ρh,n

= σi (1− ρh,n)− σ(1)
i

h

n
ρh,n −

σ
(2)
i

2

h2

n2
ρh,n + o

(
ρh,nn

−2
)
,

σi+h − σiρh,n =

(
σi + σ

(1)
i

h

n
+
σ

(2)
i

2

h2

n2
+ o

(
n−2
))
− σiρh,n

= σi (1− ρh,n) + σ
(1)
i

h

n
+
σ

(2)
i

2

h2

n2
+ o

(
n−2
)
.

Then, we see the 2γL = 2σ2
i (1− ρh,n) appearing in the leading term of the expansion of

gi,h about si.

gi,h =σ2
i + σ2

i+h − 2σiσi+hρh,n
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=σi(σi − σi+hρh,n) + σi+h(σi+h − σiρh,n)

=σ2
i (1− ρh,n)− σiσ(1)

i

h

n
ρh,n −

σiσ
(2)
i

2

h2

n2
ρh,n + o(ρh,nn

−2)

+

(
σi + σ

(1)
i

h

n
+
σ

(2)
i

2

h2

n2
+ o(n−2)

){
σi(1− ρh,n) + σ

(1)
i

h

n
+
σ

(2)
i

2

h2

n2
+ o(n−2)

}

=σ2
i (1− ρh,n)− σi

h

n

(
σ

(1)
i +

σ
(2)
i

2

h

n

)
ρh,n + o(ρh,nn

−2)

+ σ2
i (1− ρh,n) + σi

h

n

(
σ

(1)
i +

σ
(2)
i

2

h

n

)
(2− ρh,n) +

(
σ

(1)
i

)2 h2

n2
+ o(n−2)

=2(1− ρh,n)

(
σ2
i + σiσ

(1)
i

h

n
+ σiσ

(2)
i

h2

n2

)
+
(
σ

(1)
i

)2 h2

n2
+ o(n−2)

A Taylor expansion of gi,h about location s is

gi,h =2(1− ρh,n)

(
σ2
s + σsσ

(1)
s

h

n
+
σsσ

(2)
s

2

h2

n2

)
+

(
σ(1)
s

h

n

)2

+ 2(1− ρh,n)

bβc∑
j=1

{
(σ2

s)
(j)

j!
+

(σ2
s)

(j+1)

2(j + 1)!

(
1 +

h

n

)
h

n

}
(si − s)j

+
h2

n2

bβc∑
k=1

k∑
j=1

cj,kσ
(j)
s σ(k−j+2)

s (si − s)k +O(|si − s|β) (3.8)

where ck is a constant that is independent of n.

Here, we mention asymptotic properties of the Gasser-Müller kernel. Note that

n−1∑
i=1

Kλ,i(s) =
n−1∑
i=1

∫ si+1/2

si−1/2

1

λ
K

(
s− u
λ

)
du = 1

=

bns+λ−1c∑
i=bns−λ−1c

∫ si+1/2

si−1/2

1

λ
K

(
s− u
λ

)
du.

This implies

Kλ,i(s) = O

(
1

nλ

)
. (3.9)

Using the above fact, the sum of quadratic terms of the kernel is

n−h∑
i=1

K2
λ,i+h

2

(s) = O(nλ)O

(
1

(nλ)2

)
= O

(
1

nλ

)
, (3.10)
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and

(n−h−2)∑
i=1

(n−h−1)∑
j>i

K2
λ,i+h

2

(s)K2
λ,j+h

2

(s) = O
(
(nλ)2

)
O

(
1

(nλ)2

)
= O(1). (3.11)

When the higher order terms in the expansions of δi,h and gi,h, respectively in equations

(3.6) and (3.8), are convolved with a Gasser-Müller kernel of order m,

n−h∑
i=1

Kλ,i+h
2
(s) (si − s)j =

n−h∑
i=1

∫ (s
i+h

2
+s

i+h
2 +1

)/2

(s
i+h

2
+s

i+h
2−1

)/2

1

λ
K

(
s− x
λ

)
dx
(
si+h

2
− s
)j

=
n−h∑
i=1

∫ si+(h+1)/2

si+(h−1)/2

1

λ
K

(
s− x
λ

){
(si+h

2
− s)j − (x− s)j

}
dx

=
n−h∑
i=1

∫ si+(h+1)/2

si+(h−1)/2

1

λ
K

(
s− x
λ

)
jξj−1
i (si+h

2
− x)dx,

and the Mean Value theorem is used in the last equality where ξi + s is in the interval

(si+(h−1)/2, si+(h+1)/2). Let u = (s− x)/λ and ui = (s− si+h/2)/λ.∣∣∣∣∣
n−h∑
i=1

∫ si+(h+1)/2

si+(h−1)/2

1

λ
K

(
s− x
λ

)
jξj−1
i (si+h

2
− x)dx

∣∣∣∣∣ ≤
n−h∑
i=1

j|ξi|j−1

n

∣∣∣∣∫ ui+1

ui

K(u)du

∣∣∣∣
≤ j

n
= O(n−1).

By the property of a Gasser-Müller kernel of order m, the kernel keeps the terms in

the asymptotic expansions of δi,h and gi,h with factors (si − s)j for j = 1, . . . ,m − 1 at

O(n−1). Applying a Gasser-Müller kernel of order m to (si − s)β where β ≥ m in the

expansion of δ2
i,h and σ2

i about s,

n−h∑
i=1

Kλ,i+h
2
(s)|si+h

2
− s|m ≤

bn(s+λ)c+1∑
i=bn(s−λ)c

∣∣∣Kλ,i+h
2
(s)
∣∣∣ ∣∣∣si+h

2
− s
∣∣∣m

≤
bn(s+λ)c+1∑
i=bn(s−λ)c

∣∣∣Kλ,i+h
2
(s)
∣∣∣ (λ+

1

n

)m
=O(λm).
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3.3.2 Bias of the estimator

The expected value of the local variogram estimator is

E (γ̂Lλ(s, h)) =
n−h∑
i=1

Kλ,i+h
2
(s)E

(
D2
i,h

)
=

1

2

n−h∑
i=1

Kλ,i+h
2
(s)
{

(µi − µi+h)2 + σ2
i + σ2

i+h − 2σiσi+hρh,n
}
.

The bias of the local variogram estimator is

bias(γ̂λ(s, h)) = E(γ̂λ(s, h))− (1− ρh,n)σ2(s)

=
n−h∑
i=1

Kλ,i+h
2
(s)

{
1

2
(δ2
i,h + gi,h)− (1− ρh,n)σ2(s)

}
. (3.12)

Note that (1− ρh) = O(n−α) and 0 < α < 2.

Theorem 3.3.1 Assume a data model (3.1) and (3.2). The process functions µ(s) and

σ2(s) are continuously differentiable Lipschitz functions (see Definitions 3.2.1 and 3.2.2)

where µ(s) ∈ Λq, q ≥ 0 and σ2(s) ∈ Λ+
β , β ≥ 2. The difference-based local variogram

m-order Gasser-Müller kernel estimator (3.5) at location s and lag h has an asymptotic

bias of order

bias(γ̂λ(s, h)) =


O(n−2 + n−2q + n−α−1) where q, β < m

O(n−2 + n−2q + n−α−1) +O(n−αλm) where q < m ≤ β

O(n−2 + n−2q + n−α−1) +O(λm) where m ≤ q.

(3.13)

Proof To calculate an asymptotic bias we split (3.12) into two parts. The first term is

δ2
i,h whose expansion is in (3.6) for q ≥ 1 and in (3.7) for 0 < q < 1. Convolved with a

Gasser-Müller kernel of order m (see Definition 3.2.5 - 3.2.7), the higher order terms in

δ2
i,h is cancelled when the number of derivatives of the mean function q ≤ m.

n−h∑
i=1

Kλ,i+h
2
(s)δ2

i,h =


O(n−2) +O (n−2q) where q < m

O(n−2) +O (n−2q) +O(λm) where q ≥ m.

(3.14)
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The second part of the bias is 1
2
gi,h−σ2(s)(1− ρh,n). In equation (3.8), the leading term

in gi,h expansion about s is the local variogram σ2(s)(1−ρh,n). Applying a Gasser-Müller

kernel to the remaining high order terms in (3.8), we get the following:

n−h∑
i=1

Kλ,i+h
2
(s)

{
1

2
gi,h − σ2(s)(1− ρh,n)

}

=
n−h∑
i=1

Kλ,i+h
2
(s)

{
(1− ρh,n)

(
σsσ

(1)
s

h

n
+
σsσ

(2)
s

2

h2

n2

)
+

1

2

(
σ(1)
s

h

n

)2
}

+
n−h∑
i=1

Kλ,i+h
2
(s)(1− ρh,n)

bβc∑
j=1

{
(σ2

s)
(j)

j!
+

(σ2
s)

(j+1)

2(j + 1)!

(
1 +

h

n

)
h

n

}
(si − s)j

+
n−h∑
i=1

Kλ,i+h
2
(s)

h2

2n2

bβc∑
k=1

k+1∑
j=1

ckσ
(j)
s σ(k−j+2)

s (si − s)k +
n−h∑
i=1

Kλ,i+h
2
(s)O(|si − s|β)

=


O (n−α−1) +O (n−2) where β < m

O (n−α−1) +O (n−2) +O(n−αλm) where β ≥ m.

(3.15)

Combining derivations in (3.14) and (3.15), the bias is summarized in (3.13). �

Remark The asymptotic bias has an order dependent on the data smoothness parameter

α and the degree differentiability of the mean and variance functions, which are q and

β respectively in comparison to the order m of the kernel. Assume that the first case is

true, i.e. the order of kernel is greater than the degree of differentiability of both mean

and variance functions. Then, when α < 1 and α+1
2
< q ≤ 1, the bias is in the order of

n−α−1; when α < 1 and 2q ≤ α + 12, the bias is in the order of n−2q; and when α ≥ 1

and q ≥ 1, the order of bias is n−2. The setting of α < 1 translates to the data process

being less smooth than a process with an exponential correlation structure whose α = 1.

The first two settings indicate a rough error process with a less smooth mean process,

while the latter setting suggests a smooth error process with the mean function with at

least one derivative. Assume that the second case is true and that λ = O(n−x) where

0 < x < 1. Then O(n−αλm) is the order of bias in the following three settings: (1) 1 ≤ q,

α ≤ 1, and x < 1/m; (2) q ≥ 1, α ≥ 1, and x < (2 − α)/m; and α < 1, 2q < α + 1,
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and x < (2q−α)/m. All other settings should be referred to the first case. Assume that

the third case is true. Then the bias is O(λm) in the following three settings: (1) q ≥ 1,

α ≥ 1, and 2/m > x; (2) q < 1, 2q < α + 1, and x < 2q/m; (3) α < 1, α + 1 < 2q and

x < (α + 1)/m.

Roughly speaking, the greater the order of the kernel is (or as long as the order of the

kernel is greater than q and β), the smaller the asymptotic bias term is. In reality, we do

not know q and β in advance, but it is still better to choose a high order kernel function.

3.3.3 Variance of the estimator

The variance of the local variogram estimator at location s and lag h is

var(γ̂λ(s, h)) =
n−h∑
i=1

n−h∑
j=1

Kλ,i+h
2
(s)Kλ,j+h

2
(s)cov(D2

i,h, D
2
j,h). (3.16)

Recall Di,h = (δi + σiXi − σi+hXi+h) /
√

2 where Xi is a Gaussian process with mean

0, variance 1, and a fixed correlation function ρθ(h) = cov(Xi, Xi+h). Then, we have

(σiXi − σi+hXi+h) distributed Normal (0, gi,h) and E (σiXi − σi+hXi+h)
4 = 3g2

i,h. For

the sake of simplicity in notation, from here on we use gi for gi,h, δi in place of δi,h, and

ρh for ρh,n.

var(D2
i,h) = E(D4

i,h)− E2(D2
i,h)

=
1

4

{
δ4
i + 6δ2

i gi + 3g2
i −

(
δ2
i + gi

)2
}

= δ2
i gi +

1

2
g2
i

The covariance between the normalized and squared differences centered at location

si+h/2 and sj+h/2 is

cov(D2
i,h, D

2
j,h)

=
1

4

{
E((Zi − Zi+h)2 (Zj − Zj+h)2)− (δ2

i + gi)(δ
2
j + gj)

}
=δiδj{ρ|i−j|(σiσj + σi+hσj+h)− ρ|i−j−h|σiσj+h − ρ|i−j+h|σi+hσj}
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+
1

2
{(ρ|i−j|σiσj − ρ|i−j−h|σiσj+h)2 +

(
ρ|i−j+h|σi+hσj − ρ|i−j|σi+hσj+h

)2}

+ (ρ2
|i−j| + ρ|i−j−h|ρ|i−j+h|)σiσi+hσjσj+h − ρ|i−j|σiσi+h(ρ|i−j+h|σ2

j + ρ|i−j−h|σ
2
j+h)

=δiδjPij +
1

2
P 2
ij.

where Pij = ρ|i−j| (σiσj + σi+hσj+h)−ρ|i−j−h|σiσj+h−ρ|i−j+h|σi+hσj for i 6= j. Note that

when i = j, the expression Pij = gi,h. The Taylor expansion of Pi,j about si for any i 6= j

is

Pij =
h2

n2

(
σ

(1)
i

)2

− 2h2

(nθ)2
σ2
i + o

(
n−3
)
. (3.17)

See Appendix A (A.3) for the derivation. We are interested in the asymptotic rate of

convergence of (3.16).

Theorem 3.3.2 Assume the same conditions as in Theorem 3.3.1. The asymptotic

variance of local variogram estimator γ̂L,λ in 3.5 is of the order

var(γ̂λ(s, h)) = O

(
1

nλ

)
O
(
n−2q−α + n−2α

)
. (3.18)

Proof By plugging in (3.6), (3.8), and (3.17), a Taylor expansion of the local variogram

estimator about s and lag h in (3.16) is

var(γ̂λ(s, h)) =
n−h∑
i=1

K2
λ,i+h

2

(s)

(
δ2
i gi +

g2
i

2

)
+ 2

n−h−1∑
i>j=1

Kλ,i+h
2
(s)Kλ,j+h

2
(s)

(
δiδjPij +

P 2
ij

2

)

=2
n−h∑
i=1

K2
λ,i+h

2

(s)
{
δ2
i (1− ρh)O (1) + (1− ρh)2O (1)

}
+ 2

n−h−1∑
i>j=1

K2
λ,i+h

2

(s)K2
λ,j+h

2

(s)
{
δiδjO(n−2) +O(n−4)

}
=2(1− ρh)

n−h∑
i=1

K2
λ,i+h

2

(s)
{
O(n−2 + n−2q) + (1− ρh)O(1)

}
+ 2

n−h−1∑
i>j=1

Kλ,i+h
2
(s)Kλ,j+h

2
(s)O(n−4) (3.19)

Note that Pij = O(n−2). Using the results in (3.10) and (3.11) in (3.19), we have (3.18).

�
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Let us define

ηh(i, j) = 2ρ(|i− j|)− ρ(|i− j − h|)− ρ(|i− j + h|). (3.20)

If σ(·) = 1 a constant function, then Pij = ηh(i, j). More generally,

ηh(i, i+ k) = 2ρ(|k|)− ρ(|k + h|)− ρ(|k − h|).

Assume that the correlation function is exponential, i.e. ρh;θ = exp
(
− h
nθ

)
. Then, when

k ≥ h:

ηh(i, i+ k) = exp

(
− k

nθ

)(
2− exp

(
− h

nθ

)
− exp

(
h

nθ

))
= −2 exp

(
− k

nθ

) ∞∑
i=1

1

(2i)!

(
h

nθ

)2i

= o(n−2);

and when k < h:

ηh(i, i+ k) = 2 exp

(
− k

nθ

)
−
(

exp

(
−h− k

nθ

)
− exp

(
−h+ k

nθ

))
= 2 exp

(
− k

nθ

)
− exp

(
− h

nθ

)(
exp

(
k

nθ

)
+ exp

(
− k

nθ

))
= 2 exp

(
− k

nθ

)
− exp

(
− h

nθ

) ∞∑
i=0

2

(2i)!

(
k

nθ

)2i

= −2

{
∞∑
i=1

1

(2i− 1)!

(
k

nθ

)2i−1

+
∞∑
i=1

1

i!

(
− h

nθ

)i ∞∑
i=0

1

(2i)!

(
k

nθ

)2i
}

= o(n−1).

We use the shorthand notation ηh for ηh(i, j) when it is clear from the context which two

indices are picked for correlation measurement.

Remark Let the index difference match the lag size, i.e. |i − j| = h. When the

underlying process is correlated via the exponential correlation function, we have ηh =

2ρh−ρ0−ρ2h = 2ρh−1−ρ2
h = −(1−ρh)2. When the underlying process is independent,

we have ηh = 2ρh − ρ0 − ρ2h = −1. Hence, for a stationary process the correlation

between D2
i and D2

i+1 is stronger when the process is independent rather than when the

process is correlated.
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We define µ̇δ(i, j) = δiδjn
2/h2. The correlation between D2

i,h and D2
j,h of a lag-h

nonstationary difference squared process is

Cor(D2
i,h, D

2
j,h)

=
Cov(D2

i,h, D
2
j,h)√

var(D2
i,h)var(D

2
j,h)

=
δiδjPij + 1

2
P 2
ij√

(δ2
i gi + 1

2
g2
i )(δ

2
j gj + 1

2
g2
j )

=

h4

n4

[
2

θ2
σ2
i

{
σ2
i

θ2
−
(
σ

(1)
i

)2

− µ̇δ(i, j)
}

+

{
µ̇δ(i, j) +

1

2

(
σ

(1)
i

)2
}(

σ
(1)
i

)2

+ o (n−1)

]
√(

δ2
i gi + 1

2
g2
i

) (
δ2
j gj + 1

2
g2
j

)
=
O(n−4)

O(n−2α)
= O(n−2(2−α)).

Note that the correlation between the squared pseudo-residuals D2
i,h and D2

j,h converges

asymptotically to 0 for i 6= j. With the infill asymptotic the differencing not only removes

the feature of a mean function but also drastically reduces the correlated nature of the

data. Assuming that µ̇δ(i, j) is negligible, which comes from δi and δj being negligible,

or in other words µ(s) ∈ Λε where ε is small, the third line of equality above is reduced

to

Cor(D2
i,h, D

2
j,h) =

h4

n4

{
2σ2

i

θ2
−
(
σ

(1)
i

)2
}2

+ o (n−1)

gigj
=

P 2
ij

gigj
.

The above is trivially true when µ(·) is constant. The asymptotic rate of convergence

for the correlation is O
(
n−2(2−α)

)
whether the mean is constant or smoothly varying.

3.3.4 Risk of Local Variogram Estimator

A point-wise risk of the local variogram estimator is the sum of the squared bias

in (3.12) and variance in (3.19). The asymptotic point-wise risk, using the results in
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equations (3.13) and (3.18), is:

Risk (γ̂λ(s, h), γ(s, h))

= bias(γ̂λ(s, h))2 + var (γ̂λ(s, h))

=



O (n−4 + n−4q + n−2α−2) +O

(
1

nλ

)
O (n−2α + n−2q−α)

where m > q, β

O (n−4 + n−4q + n−2α−2 + n−2αλ2m) +O

(
1

nλ

)
O (n−2α + n−2q−α)

where β ≥ m > q,

O(n−4 + n−4q + n−2α−2 + λ2m) +O

(
1

nλ

)
O (n−2α + n−2q−α)

where q ≥ m.

(3.21)

Theorem 3.3.3 Consider a one-dimensional nonstationary process local variogram es-

timation problem described in Section 3.2 with a data model (3.1) and (3.2) and the

local variogram estimator described as in (3.5). We assume that µ(s) ∈ Λq, q ≥ 0,

σ2(s) ∈ Λβ, β ≥ 2, ρθ(h) = 1 − θ (h/n)α + o((h/n)2) for 0 < α < 2, and that the

bandwidth λ = O (n−x) where 0 < x < 1.

When the order of Gasser-Müller kernel m is greater than both q and β, the point-

wise risk of the Gasser-Müller kernel estimator of local variogram and the asymptotic

convergence rate of bandwidth are

Risk(γ̂λ(s, h)) =


O (n−4q) where λ � n−1−α+2q

O (n−4) where λ � n3−2α

(3.22)

given α < 2q < min(α +
1

2
, 2) and given q ≥ 1 and α >

3

2
, respectively.

When the order of Gasser-Müller kernel m is greater than either q > 1 or β, the
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point-wise risk of the Gasser-Müller kernel estimator of the local variogram is

Risk(γ̂λ(s, h)) =


O
(
n−2m(1+2α)/(1+2m)

)
where λ � n−(1+2α)/(1+2m)

O
(
n−2α−2m/(1+2m)

)
where λ � n−1/(1+2m)

(3.23)

where α < min

(
2q,

3

2

)
and α < 2q respectively.

Proof We assume m > q, β. Then, in terms of the asymptotic risk, we are concerned

with the first case in (3.21). Let us assume that q ≥ 1. Then, the asymptotic order

of variance in (3.18) should be O (n−2α−1λ−1) as 2α < 2q + α as for q ≥ 1. When

α ≥ 1, the corresponding asymptotic order of bias in (3.13) is O(n−2), and when α < 1,

the asymptotic order of bias is O(n−α−1). The latter results in an unsuitable rate of a

bandwidth λ, but the former gives λ � n3−2α. The order of a bandwidth is assumed to

be λ = O (n−x) where 0 < x < 1, hence α > 3/2.

Assume that q < 1. When α ≥ 2q − 1, the asymptotic order of bias is O (n−2q).

Or else, it is O (n−α−1). The latter case has been taken care of above, so we concen-

trate on the former scenario. When α ≥ 2q − 1, the asymptotic order of variance is

O (n−α−2q−1λ−1). Equating the doubled order of bias and the order of variance gives

λ � n−1−α+2q.

When q < m ≤ β, we focus in on line 2 of (3.21), where the lowest order term of

the squared asymptotic bias is O(n−2αλ2m). When m ≤ q as in line 3 of (3.21), the

lowest order term of bias is O(λ2m). In both cases, the asymptotic order of variance is

O(n−2α−1λ−1) where α < 2q as we assume q > 1.

In the former case, there is a condition for the kernel order m, i.e.
m

1 + 2m
< 2 −

α ⇒ m >
α− 2

3− 2α
=

1

2

(
1

2α− 3
− 1

)
, which is not a restriction at the end as long

as q < m ≤ β. Here, the latter case, we need to check (i)
m(1 + 2α)

1 + 2m
< 2 and (ii)

m(1 + 2α)

1 + 2m
< 1 + α. Since

2 + 2α

2m
>

1 + 2α

2m
>

1 + 2α

1 + 2m
, (ii) holds true for any valid α
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and m. As for (i) ⇒ m <
2

2α− 3
, and for any positive 2α − 3, we could find m that

satisfies (i). Therefore, we have α >
3

2
. �

Remark In the bottom half of Theorem 3.3.3, the rate of risk O
(
n−2m(1+2α)/(1+2m)

)
and O

(
n−2α−2m/(1+2m)

)
are, in fact, very similar. In both cases, the implied range of the

smoothness parameter is α . 3/2.

Remark There is no convergence of risk when q ≥ β and the process is very smooth

with α & 3/2 since the the variance function is masked by the mean process.

Given that we set m = β, as α → 0 (a process becoming less smooth and indepen-

dent), the risk converges to O
(
n−2β/(1+2β)

)
in all three cases, which is consistent with

the nonparametric literature. As the Lipschitz differentiability of a variance function

increases, i.e. β ↑, a larger bandwidth is preferred, which is consistent with the results

in the nonparametric literature. The greater the degree differentiability, or Lipschitz

differentiability, a mean function has than that of a variance function, the smaller the

smoothing bandwidth. This is because the locally changing variance information is suf-

ficiently retrieved from a small scale neighborhood.

3.4 Algorithm and Bandwidth Selection

We are interested in estimating the variance function embedded in a nonstationary

spatial process where the mean and the variance functions are smooth and the standard-

ized spatial process is isotropic. The estimation of local variogram function at a given

location is formed by smoothing a squared lag-h difference process using a Gasser-Müller

kernel. We use a high order kernel to keep the bias small and perform cross-validation

to select an appropriate bandwidth.

Here is the algorithm.
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1. Fix lag size h = 1 and create a set of J bandwidths {λj}Jj=1 between 0 and 1/2.

For each λj and h = 1 the local variogram estimation γ̂L,λj (s, h) is obtained as

in (3.5) for any location in [0,1].

2. Select bandwidth via cross-validation (see below for the details of new notations):

λ̂← argλ min
λj

n−h∑
i=1

(
dev2

ρ−1(si)

1−M
(
i+ h

2
, i+ h

2

))

3. {Z∗i }
n
i=1 ←

{Zi}ni=1√
γ̂λ̂j(si, h)

4. Select an appropriate correlation model for {Z∗i } and estimate its parameters Θ.

5. σ̂2(s)←
γ̂L,λ̂j(s;h)

1− ρ̂(h; Θ̂)

Algorithm 1: Variance Function Estimation at a Point

In step 2 of Algorithm 1, devρ−1(si) is a de-correlated deviance C−1/2ε̂i where ε̂i =

D2
i,h − σ̂2

i+h
2

is a raw deviance and C = C(i, j;h) = σ2
i σ

2
jρ(|si − sj|; θ) is the covariance

matrix of D2
i,h. In the denominator M

(
i+ h

2
, i+ h

2

)
is the ith diagonal of the smoothing

matrix of D2
i,h where M(i+h

2
,j+h

2 )(λ) = K

(si+h
2
− sj+h

2

λ

)
= K

(
i− j
nλ

)
.

A cautionary tale in local variogram or variance function estimation is to guarantee

that it is positive. We may encounter negatively estimated values in step 1 of Algorithm

1 when we run a kernel smoothing with small bandwidth. Most often negative values

occur near the boundaries. We fix this problem by increasing the bandwidth size near

the boundary, then the edge effect should not skew nor drive the functional estimation

near the boundary.

It is well known in nonparametric statistics literature that when underlying data

are correlated, bandwidth selection requires an adjustment either to the data or to a

penalty term. Hart (1991) For bandwidth selection in nonparametric regression two

common practices are cross-validation and finding optimal smoothness in the estimating
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function.Opsomer et al. (2001) compiles of several proposals. Altman (1990) proposes to

adapt the weights of residuals. Han and Gu (2008) simultaneously select the bandwidth

and estimate the correlation parameters after adding a penalty term to the likelihood

function to adjust for the correlation.

Even though the data are correlated, the differencing greatly reduces the correlation

between the differenced process and keeps it small. See Remark in Section 3.3.3. We

estimate the covariance parameters assuming a suitable parametric correlation model

for the process. We obtain the variance estimate for location s by dividing the local

variogran estimate at the specified location with the value of variogram function at a

fixed lag-h derived from the estimated correlation function.

In terms of computing time for estimating a realization of size n = 1000, the difference-

based method including the correlation parameter estimation takes 1/10 of time as the

likelihood-based method with the known correlation parameter values plugged-in. Band-

width selection adds much greater computing cost for the likelihood-based method since

Anderes and Stein (2011) suggest a simulation based approach which requires the in-

version of a correlation matrix as many number of times as simulation is required. The

difference-based method also requires the inverse of a estimated data correlation struc-

ture in Step 2 of Algorithm 1 but it is just once.

3.5 Simulation Study

3.5.1 Set-up

From the data model Zs = µ(s) + σ(s)Xs in (3.1), we set µ(s) = 0 and test our

method on a small-scale local spatial process, which would be broadly termed correlated

errors. We set a stationary error process Xs to be a Gaussian random field for two

reasons. One is due to the ease of simulation, and the other is due to the distribution’s

analytical tractability, which is welcomed when adopting a likelihood approach. The



56

dependent structure is generated using an exponential correlation function with the range

parameter θ= 0.01 and 0.1, which translates to a practical range of 3θ=0.03 and 0.3,

where the correlation becomes .05. We also generate an independent error process as the

third level of dependency investigated. The process is generated on an equally spaced

grid over a unit interval 0 ≤ s ≤ 1. The sample size is set at four levels: n = 100,

200, 500, and 1000. In terms of variance function, we have the following four standard

deviation functions:

(a) an infinitely-differentiable sinusoidal function: σ(s) = 2 sin(s/0.15) + 2.8,

(b) a quadratic function: σ(s) = 8(s− 0.5)2 + 0.5

(c) a piece-wise-differentiable function: (a hockey stick) σ(s) = 1{0≤s≤1/3}+3s1{1/3<s≤1},

(d) a discontinuous step function: σ(s) = 1 + 1{1/3<s≤1}.

The functional smoothness, or differentiability, changes from infinitely smooth to dis-

continuous from (a) to (d). Since our method assumes a smooth variance function, we

should detect a change point (i.e. a point of discontinuity) in (d) and estimate the vari-

ance functions separately about the change point. Nevertheless, it is worth noticing the

effect of this violation of the assumption, and so we include the function (d).

3.5.2 Discussion of Results

We display and discuss the results of variance function estimation in this section. In

evaluating functional estimation, we focus on the following two criteria:

(i) Discretized integrated squared error (DMSE):
∑n

i=1{σ̂i,λ − σi}2/n

(ii) Maximum deviation: maxi
{
|σ̂2
i,λ − σ2

i | : for i = 1, . . . , n
}

.

From the DMSE we can evaluate the average variance of the variance function estimator.

From the maximum deviation, we are able to assess the worst point estimation result
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across the estimation domain. Yet, we do acknowledge that the variance is greater for the

larger functional estimation values, and the approximate location of the worst estimation

result is well gauged. For the ease of computation, we evaluate the estimated functions

at 100 equally-spaced points on [0,1].

We compare the results from our method to the likelihood-based method proposed

by Anderes and Stein (2011) for a nonstationary process and to the difference-based

method proposed by Brown and Levine (2007) for an independent error process using

the bandwidth selection idea presented in Levine (2006). As Brown and Levine (2007)

assume an independent error data model, Levine’s bandwidth selection idea uses this

property to randomly leave out a training set in K-fold cross validation. Therefore, we

do not expect a reasonable result when correlated errors are presented. Nonetheless we

test Levine’s bandwidth selection idea against the oracle and our bandwidth selection

proposal for a nonstationary correlated error process.

Figure 3.1 shows the results of the step standard deviation function, Model (d), esti-

mation using a difference-based method and Anderes and Stein (2011)’s likelihood-based

method both with an oracle bandwidth. We assume that the true covariance model and

the parameters are known when producing oracle bandwidth selected results. Figure

3.2 has the results of sinusoidal standard deviation function, Model (a), estimation as

Figure 3.1 and additionally contains a difference-based estimation with regular band-

width selection and the estimated covariance parameter. In both figures, the thick solid

red line represents the true standard deviation function σ(·) and the thin gray lines are

estimation results from 11 innovation processes. The DMSE is smaller, i.e. the vari-

ance of the estimator grows smaller as the sample size n grows. Also, the maximum

deviation grows smaller, as the sample size grows. Notice in Figures 3.1 and 3.2 that

the local-likelihood approach renders an estimation result that is less smooth and more

ragged than a local polynomial smoothing, which can be seen by comparing the plots

in the first row to the last. Relying on the oracle bandwidth selection criterion of the
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Figure 3.1: Piece-wise continuous function estimation: σ(s) = 1 +1{1/3<s≤1}. The thick
solid red line represents the true σ(·). The thin gray lines are examples of estimation
results from 11 innovation processes.

minimized DMSE gives the likelihood-based estimation results to be less than ideal. As

n grows, a similar qualitative difference remains between the two estimation methods.

For a local-likelihood approach it is better to choose a larger bandwidth than for the

oracle selection, yielding a smoother estimation result, which is closer to the true form

of the variance function. We, then, deduce that the DMSE should be larger than the

minimized DMSE, which was the criterion of the oracle bandwidth selection, and also

than the DMSE of a difference-based method.

Figure 3.3 illustrates the difference in estimation summary between the likelihood-

based method (blue boxplots) and the difference-based method (red boxplots) for differ-

ent sample sizes n =100 (left), 500 (middle) and 1000 (right). We test four dependency

range parameters θ = 0.05, 0.1, 0.2, and 0.3. within each plot, where there are four

pairs of red and blue boxplots with a corresponding label. When the sample size is
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Figure 3.2: Smooth variance function estimation : σ(s) = 2 sin(s/0.15) + 2.8. The
thick red line represents the true σ(·). The thin gray lines are examples of estimation
results from 11 innovation processes. The top row shows a difference-based estimation
with bandwidth selection. The middle row also uses the difference-based method but
with an oracle bandwidth. The bottom row has a local-likelihood-based estimation with
an oracle bandwidth. From left to right, the columns reflect an increase in the process
sample size, as indicated in the title of each graph.
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Figure 3.3: Comparing σ(·) Model (a) estimation summaries of the difference-based
method (red boxplots) and the likelihood-based method (blue boxplots) using oracle
bandwidths in both settings.
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small to moderate, say n ≤ 200, the two methods perform similarly. When the sample

size is large, say n > 200, the difference-based method has a significantly smaller vari-

ance than the local-likelihood method. In the right plots, the differenced-based method

boxplots have a Q3 that nearly matches or is less than the likelihood-based method

estimation summary Q1 in Figure 3.3 (b). In maximum deviation, the difference is

even more pronounced in that the difference-based method performs better than the

likelihood-based method where n > 200. Tables 3.1 and 3.2 show the estimation results

of standard deviation functions (a) and (b) respectively. There are three main compar-

isons to be made: first, between a difference-based estimation using oracle bandwidth

(Diff-oracle) and our difference-based estimation with all parameters estimated (Diff-

proposed); secondly, between Diff-oracle and the difference-based method of Brown and

Levine (2007) assuming independent errors (Diff-Levine); and lastly, between Diff-oracle

and the likelihood-based estimation of Anderes and Stein (2011) using oracle bandwidth

(Likelihood). As mentioned above, we take the true covariance model and the param-

eter values as given for the estimation with oracle bandwidth so that the comparison

of Diff-oracle and Likelihood(-oracle) is on equal footing. In the columns of each table

below the heading of DMSE and L∞, there are three levels of dependency in the data:

θ = 0.1, 0.01 and independent. The numerical summaries in Tables 3.1 and 3.2 show

little difference between a difference-based estimation and a likelihood-based estimation

both with an oracle bandwidth when n is relatively small like n=100 and 200. How-

ever, the numerical summaries often overlook some qualitative difference in estimation

summary, and we have discussed the selection of smaller than perfect bandwidths in this

likelihood-based estimation, which results in a slightly ragged estimation as seen in the

bottom row of Figures 3.1 and 3.2.

Table 3.3 contains the optimal bandwidth summary for the settings listed above.

Notice that the oracle bandwidths tend to be small for the likelihood-based method.

The kernel used for both cases are different; a higher order kernel is used for the local-
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likelihood method. Yet the comparison is not completely ungrounded because in both

cases, bounded support kernels are used for smoothing. It is worth noting that the

oracle bandwidth tends to be smaller for a dependent process variance estimation but

that our bandwidth selection gives the contrary result. The difference in the bandwidth

sizes for dependent processes and for independent processes becomes more drastic as n

grows. Also, the case is more obvious for Model (b), a quadratic standard deviation

function, than for Model (a), a sinusoidal standard deviation function. When estimat-

ing the quadratically-shaped function, Levine’s method works only when the errors are

independent; otherwise it fails to provide an accurate estimation as the method is based

on N independent error model assumption.

We note that the differentiability of the variance function affects the estimation bias

and variance of both difference-based and likelihood-based methods. The strength of the

dependency, i.e. the size of autocorrelation at a fixed lag, does not affect the asymptotic

result.
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Table 3.1: A sine σ(·) estimation result summary

∼ sine DMSE L∞

n Methods θ = 0.1 θ = 0.01 indep. θ = 0.1 θ = 0.01 indep.

100

Diff-oracle 0.32 0.33 0.37 1.20 1.43 1.47
(0.19) (0.22) (0.24) (0.45) (0.65) (0.66)

Diff-proposed 1.09 0.55 0.53 1.84 1.56 1.71
(2.13) (0.74) (0.33) (0.93) (0.69) (0.78)

Diff Levine 4.93 1.00 0.76 3.62 2.14 1.98
(0.41) (0.35) (0.47) (0.21) (0.55) (0.75)

Likelihood 0.32 0.30 0.28 1.40 1.37 1.34
(0.14) (0.15) (0.13) (0.33) (0.35) (0.37)

200

Diff-oracle 0.15 0.16 0.21 0.96 0.98 1.18
(0.08) (0.09) (0.12) (0.34) (0.39) (0.44)

Diff-proposed 0.71 0.31 0.30 1.48 1.21 1.28
(0.79) (0.18) (0.17) (0.58) (0.47) (0.56)

Diff Levine 6.09 1.69 0.52 3.90 2.32 1.55
(0.21) (0.26) (0.28) (0.12) (0.27) (0.50)

Likelihood 0.19 0.18 0.18 1.13 1.12 1.11
(0.09) (0.08) (0.08) (0.29) (0.26) (0.28)

500

Diff-oracle 0.08 0.07 0.11 0.70 0.70 0.85
(0.05) (0.04) (0.06) (0.28) (0.24) (0.28)

Diff-proposed 0.54 0.23 0.14 1.23 0.90 0.87
(0.52) (0.19) (0.08) (0.51) (0.33) (0.34)

Diff Levine 7.38 3.37 0.26 4.18 2.99 1.08
(0.10) (0.21) (0.19) (0.06) (0.14) (0.35)

Likelihood 0.10 0.10 0.10 0.88 0.85 0.90
(0.05) (0.05) (0.05) (0.20) (0.20) (0.22)

1000

Diff-oracle 0.05 0.04 0.06 0.58 0.54 0.62
(0.03) (0.02) (0.03) (0.23) (0.19) (0.24)

Diff-proposed 0.51 0.22 0.07 1.11 0.81 0.64
(0.54) (0.23) (0.04) (0.55) (0.32) (0.26)

Diff Levine 8.03 4.82 0.11 4.35 3.47 0.75
(0.05) (0.13) (0.08) (0.03) (0.08) (0.29)

Likelihood 0.06 0.06 0.06 0.74 0.74 0.70
(0.03) (0.02) (0.02) (0.18) ( 0.15) (0.17)
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Table 3.2: A quadratic σ(·) estimation result summary

^ Quadratic DMSE L∞

n Methods θ = 0.1 θ = 0.01 indep. θ = 0.1 θ = 0.01 indep.

100 Diff-oracle 0.07 0.08 0.10 0.90 0.83 0.90
(0.06) (0.07) (0.09) (0.37) (0.43) (0.47)

Diff-proposed 0.18 0.12 0.15 1.0 1 0.93 1.10
(0.14) (0.07) (0.11) (0.40) (0.41) (0.66)

Diff Levine 0.83 0.16 0.19 1.97 1.16 1.12
(0.09) (0.07) (0.15) (0.19) (0.36) (0.57)

Likelihood 0.06 0.06 0.07 0.79 0.76 0.81
(0.03) (0.03) (0.04) (0.23) (0.24) (0.27)

200 Diff-oracle 0.03 0.04 0.06 0.54 0.58 0.70
(0.02) (0.03) (0.05) (0.27) (0.27) (0.33)

Diff-proposed 0.16 0.08 0.08 0.84 0.70 0.82
(0.39) (0.06) (0.05) (0.44) (0.31) (0.40)

Diff Levine 1.03 0.24 0.11 2.05 1.28 0.83
(0.05) (0.06) (0.09) (0.12) (0.24) (0.40)

Likelihood 0.04 0.04 0.04 0.62 0.62 0.63
(0.02) (0.02) (0.02) (0.17) (0.19) (0.18)

500 Diff-oracle 0.02 0.02 0.03 0.43 0.39 0.51
(0.02) (0.01) (0.02) (0.20) (0.18) (0.23)

Diff-proposed 0.17 0.17 0.17 0.75 0.77 0.93
(0.13) (0.13) (0.11) (0.27) (0.26) (0.31)

Diff Levine 1.26 0.52 0.05 2.18 1.53 0.58
(0.03) (0.05) (0.05) (0.07) (0.11) (0.28)

Likelihood 0.02 0.02 0.02 0.49 0.46 0.47
(0.01) (0.01) (0.01) (0.14) (0.13) (0.15)

1000 Diff-oracle 0.011 0.009 0.013 0.34 0.32 0.37
(0.010) (0.008) (0.011) (0.18) (0.14) (0.17)

Diff-proposed 0.09 0.04 0.017 0.65 0.48 0.42
(0.10) (0.04) (0.011) (0.36) (0.23) (0.22)

Diff Levine 1.381 0.781 0.021 2.26 1.79 0.42
(0.017) (0.031) (0.012) (0.04) (0.07) (0.22)

Likelihood 0.012 0.012 0.012 0.40 0.40 0.40
(0.006) (0.005) (0.006) (0.13) c(0.12) (0.12)
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Table 3.3: Bandwidth selection summary of sine and
quadratic σ(·) estimation

Bandwidth ∼ ^

n Methods θ = 0.1 θ = 0.01 indep. θ = 0.1 θ = 0.01 indep.

100

Diff-λO 0.203 0.206 0.209 0.218 0.222 0.229
(.054) (.059) (.052) (.071) (.084) (.076)

Diff–λ∗ 0.262 0.281 0.266 0.405 0.415 0.434
(.074) (.079) (.069) (.126) (.087) (.074)

Levine 0.356 0.455 0.420 0.360 0.467 0.418
(0.297) (0.274) (0.281) (.304) (.267) (.289)

Like–λO 0.165 0.168 0.154 0.137 0.138 0.133
(.054) (.055) (.033) (.032) (.030) (.030)

200

Diff-λO 0.170 0.171 0.177 0.191 0.185 0.203
(.034) (.037) (.046) (.050) (.060) (.066)

Diff–λ∗ 0.240 0.218 0.190 0.381 0.336 0.289
(.090) (.108) (.119) (.126) (.143) (.163)

Levine 0.234 0.380 0.347 0.248 0.369 0.334
(0.248) (0.224) (0.229) (.249) (.230) (.217)

Like–λO 0.131 0.129 0.127 0.113 0.113 0.112
(.034) (.028) (.021) (.025) (.024) (.023)

500

Diff-λO 0.140 0.141 0.154 0.154 0.152 0.158
(.027) (.031) (.037) (.042) (.042) (.047)

Diff–λ∗ 0.217 0.205 0.180 0.357 0.329 0.260
(.107) (.117) (.111) (.143) (.147) (.159)

Levine 0.186 0.256 0.232 0.192 0.264 0.240
(0.186) (0.164) (0.165) (.193) (.152) (.166)

Like–λO 0.098 0.098 0.100 0.091 0.090 0.094
(.016) (.016) (.016) (.019) (.016) (.017)

1000

Diff-λO 0.120 0.121 0.133 0.131 0.125 0.148
(.026) (.026) (.023) (.033) (.033) (.038)

Diff–λ∗ 0.209 0.186 0.170 0.329 0.300 0.255
(.121) (.117) (.109) (.159) (.157) (.165)

Levine 0.180 0.289 0.174 0.199 0.288 0.191
(0.155) (0.118) (0.094) (.157) (.123) (.092)

Like–λO 0.086 0.084 0.086 0.078 0.076 0.078
(.013) (.011) (.013) (.015) (.013) (.014)
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3.6 Discussion

We have developed a nonparametric variance function estimator for a one-dimensional

nonstationary process whose correlation structure is isotropic. We have investigated

mixed-domain asymptotic properties of the local variogram estimator and have shown

that the asymptotic rate of convergence is dependent on the relative smoothness of mean

function to the smoothness of variance function and the mean square differentiability of

a data process.

We have shown through a simulation study that difference-based estimation has a

smaller bias and variance than a local-likelihood approach. Boundary bias can be fixed

by adjusting the objective function of a nonparametric estimation whereas the local-

likelihood method should introduce additional innovation terms to solve the boundary

bias problem. Another contrast between the two approaches is in computing time. A

difference-based method needs no matrix inversion and reduces the computing time by

O(1/n2) to that of a likelihood-based method, where n is the size of the data process.

The bandwidth selection idea by Anderes and Stein (2011) also requires a global co-

variance matrix inversion and increases the computing time by O(mn2) where m is the

number of simulations of a stationary process to test against the observed nonstationary

process. While their bandwidth selection ideas are insightful and useful when there is a

specific data model which can be simulated, it is still costly to perform likelihood-based

estimation in terms of computing time and power.

Under certain regularity conditions we directly estimate a variance function, applying

a difference filter to the data, instead of estimating a large-scale model component or

the marginal mean function before the variance function. In signal processing, a band-

pass filter could also provide local variance estimation assuming that the marginal mean

function is changing slowly. First, carefully select a filter and the passband, then pass

signals through the filter to reduce the effect of signals outside of the preferred range
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of frequencies, and lastly those filtered spectra of noise are converted into the variance

estimation. However, there are some disadvantages to this approach. It works well

under second-order stationarity of the error process and not under nonstationarity, and

this limits the range of variance functions to be estimated. Also, the shape of a filter and

the passband should interact with the underlying data process and have an impact on the

estimation result, and the number of points of consideration exceeds that of time-domain

smoothing. Lastly, depending on the variance function to be estimated, the estimation

output from the band-pass filter may introduce bias from the frequency to time domain

conversion. Therefore, the difference-based smoothing in the time-domain gives more

precise and accurate estimation of the variance function.

In the following chapter we extend the variance function estimation via a difference-

based method to a two-dimensional nonstationary random field. There are many more

difference filters to consider, and therefore we add more conditions to the linear filters

and discuss the properties of the filters.
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CHAPTER 4. VARIANCE FUNCTION ESTIMATION OF
TWO-DIMENSIONAL NONSTATIONARY PROCESS

4.1 Introduction

We extend the differencing idea for variance function estimation of one-dimensional

nonstationary process to a two-dimensional nonstationary random field. A random field

takes values in an Euclidean space and is a stochastic process with a non-zero correlation

function. Examples of random fields are weather variable maps, areas of abundance of

ecological resources in a continuous domain, the topography of an area, etc. These

examples are broadly characterized by a large-scale trend, which is often referred to as

a mean process. After removing a large-scale trend from an observed stochastic process,

there still remains local variations which we refer to as a meso-scale trend. A temperature

map of the US, for example, shows a large-scale trend of warm temperature in the south

and cool temperature in the north and a meso-scale trend of the temperature field around

the Great Lakes which is significantly cooler than the northwest or northeast corner of the

US in the same longitude. The large-scale pattern and the meso-scale variation together

capture the important features of a map. The remaining variations, which we refer to as

an error process, may still contain correlation and nonstationarity. We are interested in

estimating the variance function of a nonstationary correlated error process.

Gasser et al. (1986), Müller and Stadtmüller (1987), Buckley et al. (1988), and

Hall and Carroll (1989) have considered one-dimensional differencing scenarios for vari-

ance function estimation. A nonparametric estimation of variance should be reasonable

when a variance function is of a smooth function. Gasser et al. (1986) and Müller and
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Stadtmüller (1987) have also been interested in estimating the derivatives of the mean

function, which could be interpreted as a variance function, and have directly estimated

them using a differencing idea. Smoothing the difference filter applied data can be used

either as a preliminary stage of exploration or as a final stage of the estimation of the

underlying function of interest. When there is insufficient covariate information to build

a parametric model for a regression analysis, a nonparametric approach helps to bring

out significant features of the data. Often it is a case in spatial data analysis that we

observe heteroscedasticity and that we do not know the target parametric form of the

variance function. Hence, it is convenient to adopt the difference-based idea for removing

the trend and to estimate the covariance parameters of a nonstationary process.

Hall et al. (1991) discuss the two-dimensional optimal difference filter configurations

that achieve minimum variance in variance estimation. Their application is for image

processing, and they assume independent and identically distributed errors for the ob-

served process. They find that averaging over a number of different linear filters besides

the rotation of filters helps reduce the variance of the estimator in the order of N−1l−2

where N is the number of observations in an increasing domain and l is the the number

of filter configurations. Zhu and Stein (2002) use difference filters for estimating the

fractal dimension of fractional Brownian fields and introduce a generalized variogram.

A similar idea is also used to estimate a generalized local variogram introduced in

Section . For applying a difference filter and a smoothing kernel to the data, we implicitly

assume local stationarity when nonstationarity is present in a random field. Our data

model for a random field assumes a smooth and non-constant variance function and

an isotropic correlation function over the parameter space. In order to apply a two-

dimensional difference filter, we explore several configurations and compare two different

weighting options: a symmetric weighting scheme and a Hall-Kay-Titterington weighting

scheme from Hall et al. (1991). Our difference-based variance function estimator is

dependent only on the set of points in two-dimensional space and should not rely on any
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assumptions about the lattice. The lattice type, e.g. a triangular lattice versus a square,

rectangular or hexagonal lattice, can determine the number of directions to average,

resulting in the greater statistical efficiency in variance estimation with a greater number

of directions. For the ease of data simulation, we use the data on a rectangular lattice.

In Section 4.2.1, I describe the correlated data model and define the variance function

estimator and its basic properties. In Section 4.2.2 I explain the difficulty of a fully

theoretical derivation of choice filters and report a numerical study to provide insight into

the proposed method. Section 4.3 details the difference weight sequences and discusses

the optimal choice of the weighting schemes. Examples of optimal sequences are given

for several filter configurations, such as a line, box, cross, Y, and rotations of a line

and Y-configurations. In Section 4.4, I examine the filter performance depended on the

weight schemes, directional rotation and averaging, and the filter scale with respect to

the degree of dependence in the data and fineness through a simulation study. Finally,

in Section 4.5 I conclude the chapter with comments and discussions of the simulation

study.

4.2 Data Model and Method

Consider a two-dimensional regular lattice Zn = {Z(si)}i∈Rn
where si is a location

indexed by i ∈ Rn ⊆ Z2. Using the same data model setup as in Chapter 3 with the

exception of the observations being in two-dimensional Euclidean space, we let Z(s) =

µ(s) +σ(s)X(s) be a nonstationary random field on a unit grid [0, 1]2 in R2 where X(s)

is a stationary Gaussian random field with mean 0, variance 1, and cor (X(s), X(s′)) =

c‖s − s′‖α where 0 < α < 2 for some constant 0 < c < 1. We assume for some C > 0

and 0 < ε < 1
3
, |µ(si) − µ(sj)| ≤ C|si − sj|1/2(1−3ε) for any i, j ∈ Z2 and σ2(s) ∈ Λβ

where β ≥ 2.
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4.2.1 Notations and Definitions

A linear filter function L is defined by a set of weights A = {aj : j ∈ J } associated

with a set of relative locations J =
{
pj = (p1j, p2j) ∈ Z2 :

∑
j(pj − p0) = 0

}
.

Let’s define some attributes of a difference filter and difference filtered data:

• L : linear difference filter function

• l : index of a filter represented by an integer or the filter configuration

• R =

cosφ − sinφ

sinφ cosφ

 : a rotation matrix for a two-dimensional filter. On a square

lattice data, we use φ = 0,
π

4
,
π

2
, and

3π

4
.

• J (l) =
{
pj = (pj1, pj2) :

∑
j pj = 0

}
, a set of relative node locations of filter Ll

• νl: the number of nodes in filter Ll

• hl: the minimum spacing among the nodes in Jl of filter Ll. The scale factor is

represented as a multiple of one-dimensional grid spacing.

• D2
i : shorthand of D2(si;L) when the filter L is apparent from context

• A(l) = {a(l)
j : j ∈ Jl}, a set of difference weights for filter Ll

• R: a set of location indices of lattice data

• RB: a set of boundary location indices of R

• Rl = {k : for every j ∈ J (l), j + k ∈ R}, a set of location indices of D2
L

• Nl = |Rl| : the cardinality of Rl, i.e. number of pseudo-residuals

• %L(hl): L-filter autocorrelation at lag h, the closest node pair distance

• α: smoothness parameter of the data
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Condition 1.
∑

j∈J aj = 0 =⇒ E(
∑

j∈J ajXi+j) = 0

Condition 2.
∑

j∈J a
2
j = 1 =⇒ E

(∑
j∈J ajXi+j

)2

= %L(h)

Condition 3.
∑

j∈J ajpj = (0, 0) =⇒ L(Zs) gives a pseudo-residual at s.

• θ : data covariance function parameter

Definition 4.2.1 Define an L-filter variogram at scale h as

%L(h) = 1− 2
∑
j∈Jl

∑
k 6=j
k∈Jl

ajaj+kρ(h‖k‖).

We use i as the location index in R and reserve indices k, k1, k2 and m,m1,m2 for

node indices J of a filter. We occasionally use j for the data location. Let L (Z(s)) =∑
j∈J ajZ(s + pj) represent a filter L applied to a random field Z about location s. As

a shorthand, we use the following.

Z(s + pj) = Zs+j, Z(s + hpj) = Zs+jh, Z(si + pj) = Zi+j,

ρ(‖si − sj‖) = ρ‖i−j‖, p
(l)
j ∈ Jl ⇒ j ∈ Jl

In Chapter 3, note that we have used the notation Di,h for the ith pseudo-residual lag-h

difference. For two-dimensional random field, we use D2
L as a square of {L (Z(s))}s∈Rn

.

The ith value is

D2(si;L(h)) =

(∑
j∈J

ajZi+jh

)2

which is referred to as the ith pseudo-residual in two-dimensional random field.

The following conditions are imposed on filter L:

Each condition has an implication which makes the filter applied data to be called

as a pseudo-residual because of mean 0 (Condition 1) and because of the expected value

of the squared pseudo-residual being an L-filter variogram (Condition 2).
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Remark Note that Condition 1 and 2 above imply a∗
∑

j∈J\{∗} aj = a∗(1 − a∗). Then

the sum of all cross-terms of filter weights are

∑
i∈J

∑
j 6=i,j∈J

aiaj =
∑
i∈J

ai ∑
j∈J\{i}

aj

 =
∑
i∈J

−a2
i = −1.

Therefore, when Xi is a mean 0, variance 1, and an isotropic process, we have

E
(∑

j∈J ajXi+j

)2

=
∑

j∈J a
2
j −

∑
i∈J
∑

j 6=i,j∈J aiajρ(‖i− j‖). We conceptually regard

E
(∑

j∈J ajXi+j

)2

as a variogram.

Definition 4.2.2 Let K(·) and KB(·) be defined as in 3.2.5-3.2.6. For a vector of band-

width parameter Λ = (λx, λy) ∈
(
0, 1

2

)2
, define a 2m-order Gasser-Müller kernel function

KΛ(i, s) as a product of two m-order Gasser-Müller kernel functions each centered at
each coordinate of s = (sx, sy). KΛ(i, s) = Kλxi(sx)Kλy ,i(sy) where

Kλxi(s1) =



∫ (sxi+sxi+1)/2

(sxi+sxi−1)/2

1

λx
K

(
sx − u
λx

)
du when s1 ∈ (λx, 1− λx)∫ (sxi+sxi+1)/2

(sxi+sxi−1)/2

1

λx
KB

(
sx − u
λx

)
du when s1 ∈ (0, λx)∫ (sxi+sxi+1)/2

(sxi+sxi−1)/2

1

λx
KB

(
−sx − u

λx

)
du when s1 ∈ (1− λx, 1)

and Kλy ,i(sy) is defined in the same fashion as Kλx,i(s1) only on a different coordinate
with bandwidths λy centered at s2. The notations in the limits of the integral represent
sx,i+1 = sx,i+1/n, sx,i−1 = sx,i−1/n, and likewise for sy,i+1 and sy,i−1 for any i ∈ Rl\RB.
For i ∈ RB the limits of the integral KB

(
s−u
λ

)
are from 0 to sxi+1/2, and the limits of the

integral KB
(
− s−u

λ

)
are from sxi−1/2 to 1. Then, for any s ∈ [0, 1]2,

∑
i∈Rl

KΛ(i, s) = 1.

Let bx,ij = sx,i+j − sx,i and by,ij = sy,i+j − sy,i, so (si+j − si) = (bx,ij, by,ij). The

expected value of the ith squared pseudo-residual is
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E
(
D2(si;L(h))

)
=E

(∑
j∈Jl

ajZi+jh

)2

=
∑
j∈Jl

∑
k∈Jl

ajakσi+jhσi+khρh‖j−k‖

=σ2
i (1−

∑
j 6=k

a2
ja

2
kρh‖j−k‖) +∇σ2

i

∑
j∈Jl

a2
j(si+jh − si)

+
∑
j∈Jl

a2
j

{
1

2

∂2σ2
i

∂s2
x

b2
x,ij +

∂2σ2
i

∂sx∂sy
bx,ijhby,ijh +

1

2

∂2σ2
i

∂s2
y

b2
y,ijh + o

(
‖si+jh − si‖2

)}
+
∑
j∈Jl

∑
k∈Jl

ajak
{
∇σi(si+jhs − si)∇σi(si+kh − si)ρh‖j−k‖ + o

(
‖si+jh − si‖2

)}
(4.1)

If σ2
i (·) is constant, then equation (4.1) reduces down to σ2

i (1−
∑

j 6=k a
2
ja

2
kρh‖j−k‖). If σ2

i (·)

has a small degree differentiability, then, again, the equation (4.1) becomes dominated

by the first term.

Definition 4.2.3 Define a generalized local variogram ΓΛ(s, L(h)) for a two-dimensional
nonstationary random field at location s0 and L-filter variogram at lag-scale size h as
the leading term in the expected value of D2(si;L):

ΓΛ(s;L(h)) = σ(s)2(1−
∑
j 6=k

j,k∈JL

a2
ja

2
kρh‖j−k‖). (4.2)

4.2.2 Method

We propose the method-of-moments generalized local variogram estimator of ΓΛ(·;L(h))

for a nonstationary isotropic process. Assuming local stationarity for smoothing, we ap-

ply a Gasser-Müller kernel as in Definition 4.2.2 to the squared pseudo-residuals D2
L of

the observations and estimate the generalized local variogram at location s0:

Γ̂Λ(s0;L(h)) =
∑
i∈Rl

KΛ(i,0)D2
L(h)(si). (4.3)
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Then, define a variance estimator at location s0 as

σ̂Λ(s0) =
Γ̂Λ(s0;L(h))

1− %L(h; θ̂),
(4.4)

averaging the squared pseudo-residuals first as in equation (4.3) and then scaling ap-

propriately by the L-filter variogram, instead of averaging all the scaled pseudo-residual

squares, because of gaining robustness in the scale of variance and the correlation pa-

rameter estimation. In detail, the numerator is a generalized local variogram estimator

as in (4.3) and the denominator is an L-filter variogram as explained in Definition 4.2.1.

In the expectation of the local variogram estimator (4.1), the higher-order terms of

the directly squared pseudo-residual are in the first line, and in the following lines are

the higher-order terms of the cross-terms of the pseudo-residual. The bias of gener-

alized local variogram estimator (4.3) contains these terms, but the odd order terms

are canceled out when the filter shape and weights are symmetric about p0. For ex-

ample, a ν = 3-node filter with J = {j1 = (−1, 0), j2 = (0, 0), j3 = (1, 0)} and

A = {1/
√

6, −2/
√

6, 1/
√

6} has the first-order term in the bias
∑

j∈Jl a
2
j∇σ2

0(si+j − si)

expanded about p0 as ∇σ2
0(si+(1,0) − si + si+(−1,0) − si) = 0. The bias arises from small

cross-terms.

We study the effect of filter weights for the estimator bias and variance via a numerical

method due to a number of terms increasing as the order of the terms increases. For bias

we need to consider second-order terms of a random field, and for variance and covariance

the fourth-order terms are involved. When the underlying standard deviation function

is constant or linear, a normalized linear filter does not introduce any or negligible bias.

When the underlying variance function is non-linear, a linear filter interacts with the

underlying function and creates a small order bias whose shape closely reflects the filter

weight distribution. The size of the bias is negligible, under appropriate conditions, and

can be smoothed out using a high-order kernel, whose order should match the degree

differentiability of the underlying variance function as seen in Theorem 3.3.3.
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Figure 4.1: Bias in estimation when using a symmetric weight, line configuration filter
where A = {(1,−2, 1)/

√
6}.

We use Model C in Section 4.4 and equation (4.1) for a numerical calculation of

bias and have sliced the bias surface function where sy = 0.3. The size of observations

N = n× n are set to n = 40 (in black), 100 (in blue), and 200 (in red). For each sample

size, the dashed line represents the bias of a variance function estimation with strong

correlation, and the line the case of an independent error process. for a cross-section of

raw bias for estimating the variance function which plateaus at (sx, sy) = (0.3, 0.3). As

the number of sample points increases, the bias goes to 0. The shape of the bias reflects

the weight assigned to the filter nodes; with filter weight (1, −2, 1)/
√

6, the bias shows

a peak, a trough, a flat 0barea, a trough, and a peak. The flat 0 area about sx = 0.3 is

due to the true underlying function having 0 or very small value derivative for a radius

of 0.04 about (sx, sy) = (0.3, 0.3). As there is no interaction effect in estimation between

a linear filter and a linear underlying function. The true variance close to sx = 0.18 is

13, and the raw bias is no larger than 0.05 when n = 40. The variance of the variance

function also shows the same shape as the bias, and the scale is much more dependent

on the underlying function scale.



77

Table 4.1: Number of Z’s fourth order terms in the expression of (D2
i )

2

Terms Coefficient # of Combinations Condition

Z4 a4
j ν ν ≥ 1

Z2
jZ

2
k 6a2

ja
2
k

(
ν

2

)
ν ≥ 2

Z3
jZk 4a3

jak 2

(
ν

2

)
ν ≥ 2

Z2
jZkZm 12a2

jakam 3

(
ν

3

)
ν ≥ 3

ZiZjZkZm 24aiajakam

(
ν

4

)
ν ≥ 4

The non-centralized fourth moment of a general pseudo-residual Di is

E
((
D2
i

)2
)

= E

(∑
j,k

ajakZi+jZi+k

)2

= 3
∑
j∈J

a4
jσ

4
i+j + 3

∑
j 6= k∈J

a2
ja

2
k

{
1 + 2ρ2

‖j−k‖
}
σ2
i+jσ

2
i+k

+ 6
∑
j 6=k

a3
jakρ‖j−k‖σ

3
i+jσi+k (4.5)

+ 6
∑

j 6=k 6=m

a2
jakam

{
2ρ‖j−k‖ρ‖j−m‖ + ρ‖k−m‖

}
σ2
i+jσi+kσi+m

+
∑

j 6=k 6=l 6=m

ajakalam
{
ρ‖j−k‖ρ‖k−l‖ + ρ‖l−m‖ρ‖j−l‖

+ρ‖k−m‖ρ‖l−m‖
}
σi+jσi+kσi+lσi+m.

The expectation of D2
iD

2
j when i 6= j is a bit more complex because the relative

position of i and j should be taken into account when combining the filter applied terms.
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Table 4.2: Number of Z’s fourth order terms in D2
iD

2
j when Zi+J and Zj+J are overlap-

ping on one node

Terms # of Combinations

Z4 1

Z2
jZ

2
k ν2 − 1

Z3
jZk 2(ν − 1)

Z2
jZkZm (ν − 1)(ν2 + ν − 3)

ZiZjZkZm (ν − 1)2(ν − 2)
(
ν+2

4

)

E
(
D2

iD
2
j

)
=E

( ∑
k1,k2∈J

ak1ak2Zi+k1Zi+k2ρ||k1−k2||
∑

m1,m2∈J

am1am2Zj+m1Zj+m2ρ||m1−m2||

)

=3
∑

k−m= j−i

a2
ka

2
mσ

4
i+k + 3

∑
k−m 6= j−i

a2
ka

2
m

(
1 + 2ρ2

‖i−j+k−m‖
)
σ2
i+kσ

2
j+m

+ 3
∑
k 6=m

ρ‖i−j+k−m‖(a
3
kamσ

3
i+kσj+m + aka

3
mσi+kσ

3
j+m)

+ 6
∑

m1 6=m2
k−m1 6=j−i
k−m2 6=j−i

a2
kam1am2

(
2ρ‖i−j+k−m1‖ρ‖i−j+k−m2‖ + ρ‖m1−m2‖

)
σ2
i+kσj+m1σj+m2 (4.6)

+ 6
∑
k1 6=k2

k1−m6=j−i
k2−m6=j−i

ak1ak2a
2
m

(
2ρ‖j−i+m−k1‖ρ‖j−i+m−k2‖ + ρ‖k1−k2‖

)
σi+k1σi+k+2σ

2
j+m

+
∑

k1 6=k2,m1 6=m2

ak1ak2am1am2

(
ρ‖k1−k2‖ρ‖m1−m2‖ + ρ‖i−j+k1−m1‖ρ‖i−j+k2−m2‖

+ρ‖i−j+k1−m2‖ρ‖i−j+k2−m1‖
)
σi+k1σi+k2σj+m1σj+m2 .

The number of unique fourth order terms ZiZjZkZm for any possible arrangement

of indices i, j, k, and m, which belong to J , is shown in Table 4.1 for the fourth order

terms of Di. In Table 4.2 the number of fourth order terms are shown for the covariance

between D2
i and D2

j where the filter applied observations Zi+J and Zj+J overlap on a
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Table 4.3: Number of Z’s fourth order terms in D2
iD

2
j when Zi+J and Zj+J are overlap-

ping on two nodes

Terms # of Combinations

Z4 2

Z2
jZ

2
k ν2 − 1

Z3
jZk 4(ν − 1)

Z2
jZkZm 2(ν − 2)(2ν − 3)

ZiZjZkZm (ν − 2)(3ν − 7)

single point. Table 4.3 shows the same information as Table 4.2 but the filter applied

observations overlap on two points. Depending on ν, the order (size) of a filter, the total

number of unique terms is determined. From these three tables, we see that there are

many error terms to rising in variance function estimation An analytical study becomes

complicated as ν increases and a filter becomes less “sparse” (i.e. Zi+J and Zj+J overlap

at most one node), and we rest to simulation study to investigate the risk of the variance

function estimation.

4.3 Properties of Difference Filter

As noted in Conditions 1 and 2 of Section 4.2.1, we require the weights of a linear

filter L to sum to zero and the sum of squared weights to be one. Then, for any stationary

random field Xs with a constant variance σ2, the h-scale difference filtered process of Xs

has mean zero and the variance as the L-filter-variogram, 1− %L(h). With Condition 3

in Section 4.2.1, we expect the weight center of L to be within the closed periphery of L

so that a minimal shift bias is introduced from the center of L should the filter have a

symmetric weight distribution. As we have discussed in Section 4.2.2, the variance of our

variance estimator is dependent on the design of filter L. To achieve statistical efficiency

in the variance of the estimator at a fixed location or in the functional estimation, we

should explore different filter configurations and weight options.
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4.3.1 Configuration of Difference Filter

We investigate five configurations of difference filters to estimate a nonstationary

process variance function. Four of these five are suggested by Hall et al. (1991) as two-

dimensional difference filters for independent and identically distributed error variance

estimation. They recommend compact, linear, or sparse configurations, where sparsity

means the overlap between two off-set configurations occurs at most on one node.

a2

a1

a4

a3

a1

a3 a5

a7

a2

a4

a6

a8 a1

a2 a3

a4

a5

a2a1

a3

a4

a5

a2

a1

a4

a3

a2 a6

a8

a4

a1 a7

a3 a5

•
a9•

a3

a1

a2

a3

a1

a2

Figure 4.2: Five different configurations. In the top row from left to right, there are
Square3, Square2, two crosses of h =

√
2 and 1. In the bottom row from left to right,

there are Y, four rotated line filters making a star, and a single linear filter of h =1 and√
2.

Figure 4.2 shows the filters we investigate. There are two square-shaped filters on the

top left, which are in fact two different configurations. Both have h = 1, but the leftmost

one, name it Square3, spans 2
n
× 2

n
with ν = 8, whereas the second one, name it Square2,

spans 1
n
× 1

n
and has ν = 4. Following these to the right are two cross-shaped filters with

ν = 5. These are the same configurations except for the rotation and the scale h: the

×-configuration has h =
√

2, and the + configuration h = 1. On the bottom left, the Y

configuration is asymmetrical about a3. For such asymmetric filters, in order to reduce

a potential directional bias introduced by the interaction with the underlying estimating



81

function, we apply a rotation matrix R where φ’s are at 90◦, 180◦ , and 270◦ angles about

a3. For the final estimation, we average the four directional Y estimation results. For the

line configuration at the bottom right, the same rotation idea applies, but the diagonal

lines need the scaling of h =
√

2 like the × configuration. Applying the rotation matrix

R to Jl again at 45◦ with h =
√

2 , 90◦ , and 135◦ with h =
√

2 and combining those

line filters . From both Y and line filter rotations, we get the star configuration filter as

in the middle of the second row. However, they have different weights applied to each of

the star node.

4.3.2 Determining Weights

The conditions imposed on a differencing filter do not determine the weights uniquely

unless the number of conditions matches the order ν of a filter. The Conditions 1, 2,

and 3 in Section 4.2.1 contain four conditions for the weights because Condition 3 has

two equations for the weights one each in the x and y directions. Hence, the weights for

any filter with ν ≤ 4 are uniquely paired with a weight center p0 under Conditions 1-3.

For ν ≥ 5 we impose an additional condition:

Condition 4. Let the weights be symmetrically distributed about (0,0).

We call a filter symmetric if it satisfies Conditions 1-4. If a filter does not sat-

isfy Condition 4, for example a Y configuration in the lower left of Figure 4.2, then

we apply a rotation matrix R to J and combine the fully rotated filters so that the

resulting averaged filter should meet Condition 4. For a Y configuration, we have

J = {(0, 1), (1, 0), (0, 0), (−1,−1)} and AY = {1, 1,−3, 1}/
√

12, whose weights are

centered at (0,0), but not all the grid points at distance 1 or
√

2 from (0, 0) having the

weight 1/
√

12. Hence, we apply a rotation matrix of degree 90◦, 180◦, and 270◦ to the Y

configuration and complete the symmetry. For Square2, Square3, and + configurations,

there is no need to apply a rotation matrix due to their symmetry in configuration un-

less a rectangular lattice requires an adjustment to the filter configuration. In Appendix



82

A.2.1, we list the five configurations of Figure 4.2 with symmetric weights. The weight

derivations for Y, +, and Square3 filters are shown in Appendix A. Since Square3 has

ν = 8, it does not have a unique set of weights satisfying Conditions 1-3. However, using

the last symmetry condition and the non-zero weight implication from ν = 8, we get

A = {−1, 1,−1, 1,−1, 1,−1, 1}/
√

8.

We refer to the filter weights as Hall-Kay-Titterington weights, in short HKT weights,

when they are computed to minimize the variance of a difference-based variance estima-

tor. Hall et al. (1991) assume independent and identically distributed errors and derive

the weights analytically for filters with ν ≤ 4 and numerically for ν ≥ 5. When the un-

derlying error process is independent and identically distributed, the fourth order terms

of the pseudo residuals have a relatively concise expression compared to those in equa-

tions (4.5) and (4.6) since any odd order of combination Zj’s would render 0 for the

expectation of the fourth order terms. Assuming we can find a stationary process {Xs}

for a mean 0 nonstationary {Zs = σ(s)Xs}, we impose the following condition for HKT

weights:

Condition 5. Let the weights minimize
∑

j1 6=j2,k1 6=k2∈J

aj1aj2ak1ak2E(Xj1Xj2Xk1Xk2).

For independent error processes, the optimal HKT weights are shown in Appendix A.2.2.

The weight centers of these filters are loaded on one end of the configuration, with numer-

ical rounding error shifting the center slightly away from each filter, as marked with ‘×’.

For correlated processes, the optimal weights must be different from the HKT weights for

independent and identically distributed processes due to all combinations of j1, j2, k1 and

k2 E(Xj1Xj2Xk1Xk2) being non-zero for a mean-zero correlated process {Xj}. Instead of

driving conditions e use the HKT weights for an independent and identically distributed

process in the simulation study and compare the variance estimation results against the

case for symmetric weights in Section 4.4.
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4.3.3 L−filter variogram

An L-filter variogram (Definition 4.2.1) is determined by a set of weights A, the rel-

ative locations J of a filter L, and the underlying correlation structure ρ(·) of the data.

As it summarizes the dispersion of multi-dimensional correlated data by applying a dif-

ference filter L and squaring, the name contains L-filter and variogram. The expectation

of the cross-terms in a squared pseudo-residual depends on the filter L. In Table 4.4,

assuming an exponential correlation structure, we provide the L-filter variogram values

for both symmetric and HKT weights for h = 1 of the five filters showcased in Figure

4.2 and for × shape with h =
√

2. Table 4.5 shows the regular variogram values with an

exponential correlation function. They are in a range similar to that of the symmetric

L-filter variograms in Table 4.4. When the weights are symmetrically distributed about

(0,0) and the correlation is approximately ρ(h) between cross-terms, the sum of sym-

metric filter cross-terms is approximately −ρ(h) since the coefficients of the cross-terms

should sum to negative one as mentioned in Remark 4.2.1.

Like a variogram the larger the range parameter of a correlation function is, the

smaller the L-filter variogram value is at a fixed h/n. Also, by comparing the scales of

the + and × shapes in the last two columns or by implicitly changing the scale as we

vary n from 40 to 100, we see that when the scale h/n is larger, the L-filter variogram

value is larger. We also note that the HKT weights have a larger L-filter variogram at a

fixed h/n. In symmetric filters, the weights are evenly distributed among the nodes on

the periphery, so the cross-terms between the central node, which is the weight center,

and the peripheral nodes take large negative coefficients while the cross-terms generated

among the peripheral nodes take small positive coefficients. In HKT filters, a weight

considered in an absolute scale is loaded at one end; therefore the cross-terms have

coefficients of the same scale with negative signs except for the pairs with the loaded

node. This results in larger values of L-filter variograms for HKT weights than symmetric

weights.
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Table 4.4: L-filter variogram at the smallest possible scale h for each filter with two
weight options mentioned in Section 4.3.2

Weight n θ

Symmetric
40

θ = 0.1 0.16 0.18 0.16 0.14 0.16 0.22
θ = 0.01 0.89 0.91 0.87 0.86 0.88 0.96

100
θ = 0.1 0.07 0.07 0.06 0.06 0.06 0.09
θ = 0.01 0.56 0.59 0.53 0.51 0.54 0.68

HKT
40

θ = 0.1 0.31
N/A

0.28 0.37 0.25 0.40
θ = 0.01 0.96 0.96 0.99 0.94 0.97

100
θ = 0.1 0.14

N/A
0.12 0.17 0.11 0.20

θ = 0.01 0.75 0.73 0.85 0.67 0.82

Table 4.5: Exponential variogram 1− ρ
(

1

n
; θ

)
Q

Q
Q

QQ
n θ 0.1

0.01

40
0.22 0.92

100
0.10 0.63
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Here we provide the formulae of L-filter variograms for the five configurations in

Figure 4.2. Instead of our usual notation ρh,n or ρh standing for ρ
(
h
n

)
, we use ρ(h) for

the readability of the scale parameter.

(a) Square2, 2× 2 square (ν = 4):

%L(h) = 1 + 2(a1a3 + a2a4)ρθ
(√

2h
)

+ 2(a1 + a3)(a2 + a4)ρθ (h)

(b) Square3, 3× 3 square (ν = 8):

%L(h) = 1 + 2(a1a2 + a2a3 + a3a4 + a4a5 + a5a6 + a6a7 + a7a8 + a8a1)ρθ (h)

+2{a2(a5 + a7) + a4(a7 + a1) + a6(a1 + a3) + a8(a3 + a5)}ρθ
(√

5h
)

+2(a2 + a6)(a4 + a8)ρθ

(√
2h
)

+ 2(a1a5 + a3a7)ρθ

(
2
√

2h
)

+2(a1 + a5)(a3 + a7)ρθ (2h)

(c) + configuration (ν = 5):

%+(h) = 1− 2(a3)2ρθ (h) + 2(a1 + a5)(a2 + a4)ρθ

(√
2h
)

+ 2(a1a5 + a2a4)ρθ (2h)

(d) × configuration (ν = 5): Scale h in (c) by
√

2

(e) Y-configuration (ν = 4):

%Y (h) = 1 + 2a1(a2 + a3)ρθ (h) + 2(a1a2 + a3a4)ρθ

(√
2h
)

+ 2(a1 + a2)a4ρθ

(√
5h
)

(f) Line configuration (ν = 3):

%∗(h) = 1− 2(a2)2ρθ (h) + 2a1a3ρθ (2h)

4.4 Simulation Study

We have undertaken a simulation study to measure relative filter efficiency and to

circumvent the complicated derivation of filter bias and variance as the analytical formu-

lae show in equations (4.1), (4.5), and (4.6) along with the number of the fourth order

terms summarized in Tables 4.1, 4.2 and 4.3.
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4.4.1 Data Model and Measures of Estimation

We simulate a Gaussian random field with an exponential correlation function on a

regular square lattice design over a unit square, [0, 1]2. The numbers of sampling points

per square lattice are N = 40× 40 and 100× 100. The dependence structure has three

levels: independent, weak correlation with the exponential function range parameter set

to θ = 0.01, and strong correlation with the range parameter θ = 0.1. The following

three standard deviation functions are multiplied to stationary error processes to generate

heteroscedastic processes with mean 0.

Model A. σ(sx, sy) = sx + 2sy + 1

Model B. σ(sx, sy) =


1 for 0 ≤ sx < 1/2

4sx − 1 for 1/2 ≤ sx < 3/4

2 for 3/4 ≤ sx ≤ 1

Model C. σ(sx, sy) = 4− exp

(
− 0.122

(sx − 0.3)2 + (sy − 0.3)2

)
Figure 4.3 displays the standard deviation function Models A, B, and C from left to

right, and the top row shows two-dimensional heat maps and the bottom row has three-

dimensional perspective drawings. The three standard deviation functions represent

Figure 4.4 showcases a realization of a random field under the Model A set-up where

the top row has n = 100 and the bottom row n = 40. Column-wise from left to right,

the data process is generated using an independent model, weak correlation, and strong

correlation.

In terms of the range of values, Model A σ(·) has a range between 1 and 4, Model B

between 1 and 2, and Model C between 3 and 4. When they are transformed to variance

functions, the range widens. For any estimating location s, the larger the signal σ2(s),

the larger the estimation error. Thus, we define a standardized deviance ε(s) at any



87

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

1.0

1.5

2.0

2.5

3.0

3.5

4.0

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

1.0

1.2

1.4

1.6

1.8

2.0

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

3.2

3.4

3.6

3.8

4.0

x
0.0

0.5
1.0

y

0.0

0.5

1.0

z

1

2

3

4

x
0.0

0.5
1.0

y

0.0

0.5

1.0

z

1.0

1.5

2.0

x
0.0

0.5
1.0

y

0.0

0.5

1.0

z
3.5

4.0

Figure 4.3: Three σ(sx, sy) functions in a heat-map (top row) and a 3-dimensional
perspective drawing (bottom row). The first column shows Model A, the middle Model
B, and the last Model C.
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Figure 4.4: Examples of nonstationary data with σ(sx, sy) of Model A. The top row has
100 × 100 points and bottom row has 40 × 40 points. Column-wise, from left to right,
we see independent error (left), exponential correlation function with the range θ = 0.01
(middle), and θ = 0.1 (right).
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location s ∈ [0, 1]2

ε̂Λ(s) =
σ̂2

Λ(s)− σ2(s)

σ2(s)
(4.7)

as a scaled the raw error, σ̂2
Λ(s) − σ2(s). It is a reasonable error term when comparing

statistical efficiency of the variance estimation at two different locations.

The following measures are used for summarizing estimation errors on a lattice where

the estimating variance function is relatively flat.

• DMSEΛ(Lν) =
1

Nl

∑
i∈Rl

(
σ̂2

Λ(i)− σ2(i)
)2

• MADΛ(Lν) =
1

Nl

∑
i∈Rl

∣∣σ̂2
Λ(i)−mediani∈Rl

(
σ̂2

Λ(i)− σ2(i)
)∣∣

• MAXΛ(Lν) = max
i∈Rl

∣∣σ̂2
Λ(i)− σ2(i)

∣∣
A nonstationary process often has a wide range of values of a variance function, so we

use the standardized deviances ε̂(s) defined in (4.7) in place of the estimated raw errors

and call them relative DMSE (rDMSE), relative MAD (rMAD), and relative MAX

(rMAX).

• rDMSEΛ(Lν) =
1

Nl

∑
i∈Rl

ε̂Λ(si)
2

• rMADΛ(Lν) =
1

Nl

∑
i∈Rl

|ε̂Λ(si)−mediani∈Rl
ε̂Λ(si)|

• rMAXΛ(Lν) = max
i∈Rl

|ε̂Λ(si)|

Multiplying 100 to the standardized deviances should show the overall percentage of

deviation from the true signal when plugged into the relative summary measures above.

Note that the MAX and rMAX measures are different in that the location-by-location

measures do not correlate linearly unless the surface of estimation is relatively flat. To

be precise, the relative measures scale the raw deviations by the true variances, and

the percentage difference in the error provides new information. Briefly we note that

the Model B estimation summary is in Table 4.6, which is further explained in the
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next subsection, and in the last column of MAX the absolute scale measure is more

reasonable as the summary mean is 1.17 with the standard error of 0.3 than the rMAX

with the average about 233% and the standard error of 80%. These large rMAX values

must be from where the true functional value is small yet the deviation is relatively

large. In Figure 4.3 Model B, in the middle column, which has two levels of constant

functions and the steep plane to join them, the large rMAX occurred near the steep

plane on the low constant surface, while the large MAX occurred on either levels of

constant surface. When we collapse the two-dimensional structure of the data to a one-

dimensional measure, we lose sight of where the maximum deviation occurs and what

the relative size of the spread is. Hence, it is worth considering the originating location

of the summary measures by dividing sections on the lattice.

4.4.2 Results

There are three main conclusions we draw from the simulation study. First, the

dependency structure of the data affects the weighting options of linear filters. HKT

weights are the most efficient for independent and identically distributed error variance

estimator under certain regularity conditions on a mean function as shown in Hall et al.

(1991) through the minimization of the estimator variance. When we assume indepen-

dent yet changing levels of errors as in the leftmost side-by-side boxplot of Figure 4.5,

the HKT filter weights (in blue) still show better statistical efficiency for nonstationary

independent error random field variance function estimation than the symmetric weights

(in white) do. However in the rightmost side-by-side boxplots where the correlation is

strong, the symmetric weight filters display greater statistical efficiency in the estimation

than the HKT weight filters. When the correlation structure is present but weak, there

is not a clear choice of a weighting scheme for a statistical efficient difference filter. The

answer depends heavily on the configuration of a filter.

In Figure 4.6 we compare the two weighting schemes specifically for three configura-
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Figure 4.5: HKT weight (in light blue) versus Laplace weight (in white) filter estimation
comparison using all six filters in Figure 4.2 in the order of: line, +, ×, Square2, and
Square3. The summary measure is the rMSE for Model C.
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Figure 4.6: Symmetric (in white) and HKT (in light blue) weight filter compared using
three configurations: directionally-averaged line, Square2, and +. The summary measure
is rMSE; the underlying σ(·) is Model C; and n = 100. In each plot there are three
levels of dependency presented: independent error from the first pair, θ = 0.01 in the
middle, and θ = 0.1 in the third pair.

tions: directionally-averaged line configuration in the left plot, Square2 in the middle,

and + in the right plot. For a directionally-averaged line configuration, both weight-

ing schemes show a similar range of rDMSE. Yet, when the correlation is strong (i.e.

θ = 0.1), the symmetric weight filter performs quite better than the HKT weight filter.

Notice that the Square2 configuration provides a similar story but with a clearer contrast

when the correlation is weak to none. The HKT weight shows a smaller rDMSE for

independent and weakly correlated error random fields, but when the dependency be-

comes strong, both weighting schemes perform similarly. For the + configuration, when

a random field is correlated (i.e. θ ≥ 0.01), the contrast is obvious: the symmetric weight

filter has a smaller rDMSE than the HKT weights. Taking the estimation results of the

× and Square3 configurations from Figure 4.5, we also see the same phenomena as the

+ configuration.

The second conclusion regards the effect of directional rotation and averaging. The

line filter estimation averaged over four directions gives the smallest rDMSE among all

other configurations of filters regardless of the weighting scheme. The estimation sum-
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maries reveal that the line and Y configurations that are directionally-averaged perform

the best. Directional rotation and averaging helps the efficiency of estimation more than

applying a symmetric difference filter. Since the symmetric weight filters perform better

than HKT filters, or at least not worse for a Square2 configuration under strong cor-

relation, we compare the performances among symmetric weight filters and investigate

filter choices for a random field with θ = 0.1. The summaries of Model B estimation are

in Table 4.6. The raw and relative scale summaries of DMSE, MAD, and MAX are

shown. In parentheses are the standard error of each summary measure from simulation.

Table 4.7 provides a five-point-summary of rMAD in percentage for the Model C

standard deviation function estimation where n = 100 using the line and Y configura-

tions, and in the last two columns are the mean performances of a single filter and the

directionally averaged filter. Comparing the top three estimation summaries of the line

configuration to the bottom three of the Y configuration without directional rotation and

averaging, we see that a single Y filter performs better than a single line filter with ν = 3.

The rotation angle does not affect the estimation performance for both configurations

due to the fineness of the observation on lattice (n = 100) in comparison to the changing

levels of the variance function. In other words, all four directions for the Y configura-

tion (i.e. 90◦, 180◦ and 270◦) and the line configuration for the line configuration (45◦,

90◦, and 135◦) show more or less the same range of estimation summary values. When

directional rotation and averaging is performed, however, the estimation performances

of the two filters become very similar as we see in the last column of Table 4.7. In

other words, a directionally averaged Y configuration estimation dose not improve on

the rMAD measure as much as the line configuration does. Two other variance func-

tions estimation give the same result. The underlying variance function and the filter

configuration have an interaction, and it is necessary to have a spread-out configuration

of a filter when constructing pseudo-residuals instead of a line configuration, as the fil-

ters should capitalize on the isotropic property of a random field. Hence, we recommend
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Table 4.6: Comparing six symmetric weight filters via discretized mean square error, me-
dian absolute deviation, maximum absolute deviation of Model B where the correlation
range parameter θ = 0.1

Filters

n

DMSE

Original
40

0.15 0.16 0.18 0.19 0.21 0.24
(0.06) (0.07) (0.08) (0.10) (0.10) (0.09)

100
0.04 0.04 0.05 0.05 0.06 0.07

(0.01) (0.01) (0.01) (0.01) (0.02) (0.02)

Relative %
40

4 4 4 4 6 6
(1) (1) (2) (1) (2) (2)

100
1 1 1 1 2 59

(0.2) (0.3) (0.3) (0.4) (0.4) (20.9)

MAD

Original
40

0.25 0.25 0.26 0.27 0.29 0.31
(0.04) (0.05) (0.05) (0.05) (0.06) (0.06)

100
0.13 0.13 0.14 0.14 0.15 0.16

(0.02) (0.02) (0.02) (0.02) (0.02) (0.02)

Relative %
40

15 15 16 17 18 19
(3) (3) (3) (3) (4) (4)

100
8 9 9 10 0.10 28

(1) (1) (1) (1) (1) (7)

MAX

Original
40

1.49 1.63 1.76 1.81 1.95 2.05
(0.50) (0.60) (0.66) (0.72) (0.67) (0.75)

100
0.95 0.98 1.02 1.05 1.11 1.17

(0.20) (0.21) (0.23) (0.24) (0.27) (0.30)

Relative %
40

88 81 85 85 104 97
(21) (22) (26) (23) (31) (32)

100
49 50 51 57 54 233

(11) (13) (13) (15) (14) (80)
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Table 4.7: rMAD comparison of line versus Y configurations. Without directional
rotation and averaging in the 5-point summary, Y gives a smaller rMAD (in %) across
the range of dependence structure in the data. With directional rotation and averaging
shown in the last column, both the line and Y configurations perform similarly.

rMAD (%)

Shape θ Min. Q1 Median Q3 Max. Mean (Stdev.) Dir. Avg.

0 5.10 7.10 8.20 9.20 12.20 8.20 (1.40) 6.52 (1.02)
0.01 5.00 7.10 7.80 8.60 11.80 7.80 (1.20) 6.13 (0.87)
0.1 5.70 7.20 7.90 8.60 12.10 8.00 (1.20) 6.11 (1.10)

0 4.80 6.10 7.00 7.80 9.30 6.90 (1.10) 6.69 (1.08)
0.01 3.80 6.10 6.60 7.20 9.50 6.70 (1.00) 6.26 (0.95)
0.1 4.50 5.80 6.60 7.30 10.10 6.60 (1.20) 6.17 (1.06)

a directionally averaged line and Y configurations or a + configuration to capture the

locally stationary neighborhood characteristics.

Figure 4.7 re-presents the information summarized in Table 4.6 via side-by-side box-

plots where the left plot contains the MAD summaries of Model B standard deviation

function estimation and the right plot contains the MAX summaries. In each plot, the

first set of six boxplots summarizes the estimation results for n = 40, and the second set

of six boxplots contains the summaries for n = 100; each set contains directionally aver-

aged line, directionally averaged Y, + configuration, 45◦ rotated + at h =
√

2, Square2,

and Square3 and of symmetric weights. Given that Model B σ(·)2 ranges from 1 to 4, it

is reasonable that the raw scaled MAD is between 0.15 and 0.45 for n = 40 and the same

measure ranges between 0.07 and 0.18 for n = 100. The MAX is much larger in scale

especially when n = 40 as the simulation result shows values between 0.9 and 4, and

when n = 100, the MAX is between 0.8 and 1.5. The ranges of summary measures vary

depended on the underlying functions of estimation, but the relative standing of each

configuration remains the same as shown in Figure 4.7. The first three configurations

(including directionally rotated and averaged and scaled for rotation in + configuration)

are preferred over the last two, which are Square2 and Square3, and the difference be-
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Figure 4.7: Side-by-side boxplots of six symmetric weight filters’ estimation summary.
The first six are for data with N = 40× 40. The second six are for N = 100× 100. We
use Model B σ(·)2 and set θ = 0.1

Table 4.8: rMAD % comparison of ν = 2 simple differencing filters on the shortest
direction vs. diagonal direction where n = 100.

rMAD (% )

θ Min. Q1 Median Q3 Max. Mean (Stdev.)

independent
4.49 6.28 6.99 7.96 10.22 7.16 (1.17)
4.95 6.62 7.17 7.75 10.10 7.23 (1.10)

dependent
(θ = 0.1)

5.36 6.99 7.81 8.93 12.45 7.94 (1.41)
6.34 8.21 8.98 10.13 14.26 9.26 (1.65)

tween the divisions is whether the point of estimation is included in the pseudo-residual

(the former group of configurations) or not (the latter group).

Lastly, the more compact a filter is, the more precise the estimation result is. In

Figure 4.7 and Table 4.6, between h = 1 and h =
√

2 of the + configuration, the

compact case of h = 1 has slightly smaller summary measures when n = 100. Table

4.8, additionally, summarizes the rMAD of a simple ν = 2 filter estimating Model A

at two scales h = 1 and
√

2. Since Model A is a linearly increasing standard deviation

function, the bias of the estimator is negligible, and the rMAD measure should be a

good proxy for the spread of the variance estimator. In the top two rows of Table 4.8
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Figure 4.8: Comparison of the line filter scale effect on the estimation depending on the
data dependency via the MAD summary of model A σ2(·) estimation using a 3-point
linear filter. N = 100 × 100 and the data are independent (gray), θ=0.01 (light blue),
and θ=0.1 (pink) for every set of three, when the scale h=1,2,3, to 4.

I1 I2 I3 I4

0.
05

0.
10

0.
15

0.
20

0.
25

% MAD

Figure 4.9: Study of the filter scale effect on the estimation depending on the correlation
structure of the data and grid size (n) via the MAD summary of model A σ2(·) estimation
using a 3-point linear filter. There are four settings on each filter scale h = 1, 2, 3 and 4.
The green boxplot represents n = 200 and θ= 0.01; the yellow boxplot n = 200 and θ=
0.1; the light blue boxplot n = 100 and θ= 0.01; and the pink boxplot n = 100 and θ=
0.1.
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where the simulated errors are independent, the performance of the estimators are the

same for both scales. In other words, in a small range the scale of a filter does not

have an impact on the spread of the variance estimator. However, in the bottom two

rows where the errors are strongly correlated, the nearest neighbor differencing of h = 1

filter shows a smaller measure of error than the diagonal differencing filter with h =
√

2.

These two cases do not imply that in every filter selection, the most compact and the

smallest h filter should guarantee the smallest error measures. The data size, as well as

the estimating function, should affect the estimation result.

In order to investigate the effect of scale h on the estimation, h is set at 1, 2, 3, and

4 for the line ν = 3 configuration. The simulated data contains Model A in the standard

deviation function, and there are three levels for the dependent structure: independent

(gray), weak correlation (light blue), and strong correlation (pink). Figure 4.8 contains

the estimation summary. From left to right, there are four sets of three side-by-side

boxplots displaying rMAD. The three colors display independent, weakly correlated,

and strongly correlated data, and the four sets are marked by the scale: l1 for h = 1,

l2 for h = 2, l3 for h = 3, and l4 for h = 4. In each set, except for l1 (h = 1), as

the correlation becomes stronger, the rMAD becomes larger; and the slope of increase

increases as the filter scale h becomes larger. When h = 1, the dependency structure

may not seem to affect the performance of the estimator because of the fineness of the

observation n = 100.

For further comparison, two levels of observation n=100 and 200 are used, each con-

taining two levels of correlation θ = 0.01 (weak) and 0.1 (strong). Four scales h = 1, 2, 3

and 4 of the line filter is applied to estimate Model A. Figure 4.9 contains the estimation

summary in four sets of four side-by-side boxplots. Each set of rMAD measures has two

boxplots colored in light blue and pink, which are the same ones as in Figure 4.8. Green

and yellow boxplots are the estimation of weakly and strongly correlated data respec-

tively with n = 200. When the correlation is weak, the estimation result gives smaller
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rMAD than strong. When n is large, the estimation result gives smaller rMAD than

n small. Between the fineness of grid size and the strength of correlation, the impact

of the lattice size is pronounced when the scale is small (h = 1) while the impact of

correlation on estimation is strongly exhibited as the scale grows. From the simulation

results displayed in Figures 4.8, 4.9 and Table 4.8 we see the interaction between the

observation scale and the dependent structure.

4.5 Discussion

As the underlying variance function is non-constant over the parameter space, local

averaging is necessary with a difference filter of a small scale h. Since we estimate the

variance function of a nonstationary correlated process, we recommend using a symmetric

weight filter for initial estimation. When the correlation is weak, the HKT filter should

work equally well or slightly better, but there is potential for large variance when the

function for estimation is a high-order polynomial function. In short, the weight applied

to the observed random field should be balanced to reduce variance of the estimator.

When the weight distribution is uneven, the leading direction in terms of filter weight

should not only interact with the underlying variance function to be estimated but also

introduce bias.

Throughout this chapter, we assume that the data is recorded on a square lattice.

In practice, the geo-referenced data may not be recorded in such a format. In those

situations, given that the points of observation are quite regular, the filter shape can

be more flexible to adapt to the data, or an interpolation can be used to map the

observations on a rectangular lattice. We have avoided discussing the practical problem

of bandwidth selection of the kernel function KΛ (·). The bandwidth controls the scope

of data averaging in the neighborhood of the estimation point and affects the overall

surface estimation result greatly. We recommend taking several nearby cross-sections of
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the data for both x− and y−axes and performing the bandwidth selection on the square

pseudo-residuals as in Chapter 3. This could potentially lead to another discussion where

an adaptive bandwidth selection is more promising, so we conclude the current discussion

here.
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CHAPTER 5. SUMMARY AND DISCUSSION

I have dealt with two topics of different flavors. The first topic focuses on an effective

spatial sampling design, and the second topic is concerned with a parameter estimation

of spatial data where we often encounter nonstationary process features.

In Chapter 2, I propose a two-stage systematic sampling design that has a higher

hotspot detection probability than any one-stage design under a fixed budget constraint.

For spatial sampling design systematic sampling is known to give small variance for

several parameter estimations. It is also efficient in hotspot detection. The proposed

sampling method innovates the well-known sampling method by transitioning the sam-

pling framework from estimation to a game theoretic approach under the objective of

maximizing the hotspot detection probability. Let us suppose that there are two intelli-

gent agents knowing the location of hotspots in each one half of all strata respectively.

Both agents also know in advance the sampling strategies each other has planned. In

order to maximize the detection probability given the sampling plan of the other agent,

the corresponding agent should allocate sampling resource in a complimentary fashion

for each half of stratum. When two agents cooperate and use the sampling resources

stochastically efficiently, the hotspot detection probability is no less than a one-stage

design. In other words, the proposed two-stage sampling plan hinges on two agents co-

operating by knowing each other’s plan. For implementation, the sampling occurs in two

stages. Whether there is or not the prior knowledge of the hotspot dispersion scenario,

the sequential sampling gives the analogous story of cooperative sampling.

In Chapter 3, I discuss a difference-based variance function estimation for a one-
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dimensional nonstationary process and contrast it with difference-based estimation under

an independent error process and with a likelihood-based method. For a difference-based

method I introduce a local varogram, which is theoretically the multiplication of a vari-

ance function and a function involving correlation. A nonparametric idea is useful in the

variance function estimation because many real data could not be easily represented in

an analytical distribution form for a parametric method. Due to the correlated structure

of the data, it is crucial to estimate the correlation structure and adjust for it in variance

function estimation. Due to the correlated data process, bandwidth selection also needs

some adjustments in cross-validation.

In Chapter 4, I extend the difference-based variance function estimation to a two-

dimensional nonstationary random field. Using a simulation-based approach, several

difference filters in terms of configurations and weight, in addition to scaling and ro-

tation, have been investigated. Symmetry in weight distribution either by directional

rotation and averaging or using symmetric weight about the point of estimation is one

of the most important features. In variance function estimation a symmetric weight

filter performs better than a non-symmetric weight filter especially when the data are

strongly correlated. However, when the errors are independent, the HKT weight filter

whose weight is loaded on one end performs better as it has been derived to minimize

the variance of the estimator. Filters that include the node at the point of estimation

gives a more precise estimation. To be specific, a line, Y, and cross configurations are

preferred over a square-shaped Square2 and Square 3 configurations. This suggest a line

filter with directional rotation and averaging is the most efficient filter for the variance

function estimation among the filter configurations we have tested.
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APPENDIX A. ADDITIONAL MATERIAL

A.1 Derivations

A.1.1 Proof of Equation (2.3) in Chapter 2

Denote the total number of sampling sites as N , the number of sample as n, first-stage

sample size as n1, second-stage sample size as n2, and the number of sampling sites for

a hotspot as b. Using the same number of sample for a one-stage and two-stage designs,

we have n2 = n− n1. The event of hotspot detection through two-stage simple random

sampling (SRS) of total n sample is denoted as DSRS, two regardless of the sample size

split, the event of hotspot detection through one-stage simple random sampling (SRS)

of size n is denoted as DSRS, n, and the complement event of DSRS, n, i.e. non-detection

of hotspot through a one-stage simple random sampling (SRS) is denoted as DSRS, n.

Pr (DSRS, two) = Pr (DSRS, n1) + Pr
(
DSRS, n1

)
Pr (DSRS, n2)

= 1−

(
N − b
n1

)
(
N

n1

) +

(
N − b
n1

)
(
N

n1

)
1−

(
N − n1 − b

n2

)
(
N − n1

n2

)


= 1−

(
N − b
n1

)
(
N

n1

)
(
N − n1 − b

n2

)
(
N − n1

n2

)

= 1−

(N − b)!
n1!(N − n1 − b)!

N !

n1!(N − n1)!

(N − n1 − b)!
n2!(N − n1 − n2 − b)!

(N − n1)!

n2!(N − n1 − n2)!
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= 1−

(
N − b
n

)
(
N

n

)
= Pr (DSRS, one) (A.1)

�

A.1.2 Derivations for Chapter 3

Here is the detailed expansion of the variance of an h-lagged nonstationary process

with smooth mean and variance functions. This shows (3.3) in deriving the local vari-

ogram (3.4) as the main term of the expansion.

var

(
Z

(
s− h

2n

)
− Z

(
s+

h

2n

))
=V ar

(
Z

(
s− h

2n

))
+ V ar

(
Z

(
s+

h

2n

))
− 2Cov

(
Z

(
s− h

2n

)
, Z

(
s+

h

2n

))
=σ2

(
s− h

2n

)
+ σ2

(
s+

h

2n

)
− 2ρh,nσ

(
s− h

2n

)
σ

(
s+

h

2n

)
=2σ2(s) + 2

(σ2(s))
(2)

2!

(
h

2n

)2

+ o
(
n−2
)

− 2ρh,n

{
σ2(s)−

(
σ(1)(s)

)2
(
h

2n

)2

+
σ(s)σ(2)(s)

2

(
h

2n

)2

+ o
(
n−2
)}

=2σ2(s) (1− ρh,n) + 2
(
σ(1)(s)

)2
(1 + ρh,n)

(
h

2n

)2

+ o
(
n−2
)

(A.2)

Detailed calculation of (3.17) in Chapter 3.

Pij = ρ|i−j| (σiσj + σi+hσj+h)− ρ|i−j−h|σiσj+h − ρ|i−j+h|σi+hσj

σiσj = σi

{
σi + σ′i

j − i
n

+ σ′′i
1

2

(
j − i
n

)2

+ o(n−2)

}

σi+hσj+h =

{
σi + σ′i

h

n
+ σ′′i

1

2

(
h

n

)2

+ o(n−2)

}

×

{
σi + σ′i

j + h− i
n

+ σ′′i
1

2

(
j + h− i

n

)2

+ o(n−2)

}
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σiσj+h = σi

{
σi + σ′i

j + h− i
n

+ σ′′i
1

2

(
j + h− i

n

)2

+ o(n−2)

}

σi+hσj =

{
σi + σ′i

h

n
+ σ′′i

1

2

(
h

n

)2

+ o(n−2)

}

×

{
σi + σ′i

j − i
n

+ σ′′i
1

2

(
j − i
n

)2

+ o(n−2)

}

Rewriting Pij with the Taylor expansions of the exponential functions and σiσj ex-

pansions gives:

Pij =
h2

n2

(
σ

(1)
i

)2

− σ2
i Υij − σiσ(1)

i

j + h− i
n

Υij

+
σiσ

(2)
i

2

[(
j + h− i

n

)2{
(si − sj)α −

(
si − sj −

h

n

)α}

+

{(
h

n

)2

+

(
j − i
n

)2
}{

(si − sj)α −
(
si − sj +

h

n

)α}]

+
(
σ

(2)
i

)2
[
h(j − i)
n2

{
(si − sj)α −

(
si − sj +

h

n

)α}
+

(
h

n

)2

(si − sj)α
]

+O(n−3−α)

(A.3)

where Υij = θ

{
2 (si − sj)α −

(
si − sj −

h

n

)α
−
(
si − sj +

h

n

)α}
.

A.2 Filter Weights

A.2.1 Simple Differencing: Symmetric Weight

(a) 2× 2 square (ν = 4) : %L(h) = 1 + ρθ

(√
2h

n

)
− 2ρθ

(
h

n

)

× weights:

-a a

a -a
a = ±1

2
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(b) 3× 3 square (ν = 8):

%L(h) = 1− 2ρθ

(
h

n

)
+

3

2
ρθ

(
2h

n

)
− 2ρθ

(√
5h

n

)
+

1

2
ρθ

(
2
√

2h

n

)
+ ρθ

(√
2h

n

)
Condition 1: (S1) a8 = a1 + a2 + a3 + a4 + a5 + a6 + a7

Condition 1 & 2: (S2)
∑7

i=1

∑7
j=1 aiaj = 1/2

Condition 3: (S3) a1 + a2 + a3 = a5 + a6 + a7 and a1 + a7 + a8 = a3 + a4 + a5.

Plugging (S1) into (S3): (S4) 2(a1 +a7 +a8)+a2 +a6 = 0 and 2(a1 +a2 +a3)+a4 +a8 = 0.

× weights:

-a a -a

a a

-a a -a

a = ± 1√
8

(c) + shaped cross (ν = 5): %+(h) = 1− 8

5
ρθ

(
h

n

)
+

2

5
ρθ

(√
2h

n

)
+

1

5
ρθ

(
2h

n

)

× weights:

a

a -4a a

a

a = ± 1√
20

(d) × shaped cross (ν = 5): %×(h) = 1− 8

5
ρθ

(√
2h

n

)
+

2

5
ρθ

(
2h

n

)
+

1

5
ρθ

(
2
√

2h

n

)

× weights:

a a

-4a

a a

a = ± 1√
20

Condition 1: (X1) a3 = a1 + a2 + a4 + a5

Condition 1 & 2: (X2) 2
(
a2

1 + a2
2 + a2

4 + a2
5

)
+2(a1a2+a1a4+a1a5+a2a4+a2a5+a4a5) = 1

Condition 3: (X3) a1 = a5 and a2 = a4.

Plugging (X3) into (X2) gives: (X4) 2(a1 + a2)2 + a2
1 + a2

2 = 1/2. This quadratic equation

does not have a unique solution of (a1, a2). Therefore, we could find infinite pairs of (a1, a2) such
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that (X1), (X2), and (X3) hold true. If we choose a1 = a2, then A(+/×) = {(a1, a2, a3, a4,a5) =

(a, a,−4a, a, a) where a = 1/
√

20}.

(e) Y-configuration (ν = 4): %Y (h) = 1− 1

3
ρθ

(√
2h

n

)
− ρθ

(
h

n

)
+

1

3
ρθ

(√
5h

n

)

× weights:

a

a -3a

a

a = ± 1√
12

Condition 1: (Y1) a3 = a1 + a2 + a4

Condition 1 & 2: (Y2) 2
(
a2

1 + a2
2 + a2

4

)
+ 2(a1a2 + a1a4 + a2a4) = 1

Condition 3: (Y3) a1 = a4 and a2 = a4 ⇒ a1 = a2 = a4. Plugging (Y3) into

(Y2) gives: (Y4) 6a2
1 = 1/2 ⇒ a1 = 1/

√
12. Therefore, A(Y ) = {(a1, a2, a3, a4) =

(a, a,−3a, a) where a = 1/
√

12}.

(f) Star-shape averaging over 4 directions with (ν = 3) linear filters:

%∗(h) = 1− 4

3
ρθ

(
h

n

)
+

1

3
ρθ

(
2h

n

)

× weights:

a

-2a

a

a = ± 1√
6

A.2.2 Variance Minimization under Independent and Identically Distributed

Errors: Hall-Kay-Titterington Weight

The following weights are obtained from Hall et al. (1991). They assume independent and

identically distributed errors and derive a variance of the variance estimator.
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(A) 2× 2 square (ν = 4) : %L(h) = 1− 1

3
ρθ

(√
2h

n

)
− 2

3
ρθ

(
h

n

)

× weights:

-3a a

a a

a =
1√
12

(B) 3× 3 square (ν = 8):

%L(h) = 1− 2

(
0.182ρθ

(
h

n

)
+ 0.145

3

2
ρθ

(
2h

n

)
+0.102ρθ

(√
5h

n

)
+ 0.125ρθ

(
2
√

2h

n

)
− 0.068ρθ

(√
2h

n

))

× weights:

-0.147 -0.114 -0.133

-0.114 -0.147

-0.133 -0.147 0.935

(C) + shaped cross (ν = 5):

%+(h) = 1− 2

(
0.053ρθ

(
h

n

)
+ 0.490ρθ

(√
2h

n

)
− 0.044ρθ

(
2h

n

))

× weights:

0.231

0.263 0.167 -0.892

0.231

(D) Star-shape averaging over 4 directions with (ν = 3) linear filters:

%×(h) = 1− 1

2

(
ρθ

(
h

n

)
+ ρθ

(
2h

n

))
× weights:

√
5 + 1

4
−1

2
−
√

5− 1

4
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