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I. INTRODUCTION 

Sampling techniques are being used with increased 

frequency, and it is now widely recognized that a properly 

conducted sample survey can often be a good substitute for a 

complete census when it is desirable to gain information about 

some characteristics of a population. 

The errors associated with a sample survey may be classi

fied into two types of errors, namely sampling errors and 

nonsampling errors. The sampling error is determined by 

the sampling design and the estimation procedure. One of the 

widely used methods in survey sampling for lowering the 

sampling error is the judicious use of supplementary informa

tion. 

If data on an auxiliary characteristic X correlated 

with the characteristic Y under study is available, then it 

is customary to use this data to provide a more efficient 

estimate of Y, the population mean. This can be done either 

(i) by selecting the sample with probability proportional 

to size or (ii) using ratio or regression methods of esti

mation after selecting the sample by simple random sampling. 

In order to select the sample with probability proportional 

to size, it is necessary to have in advance the data in regard 

to size for all the units in the population. This may not 

always be the case and therefore cannot be used in the 

selection process, but usually it can be collected in the 
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course of the survey itself and used in a variety of ways at 

the estimation stage to provide more efficient estimates of 

the population characteristics under study. We do not con

sider the sample design aspect but refer to Sampford (1967) 

and his bibliography in this subject matter. 

Frequently the situation is such that the auxiliary 

characteristic X is positively correlated with Y. In that 

case if an estimate of the population mean Y is sought and 

population mean X is known, then, under certain conditions, 

the classical ratio estimator of Y, given by 

= I 
X 

is more efficient than the mean per unit estimate y. 

An example of the use of the ratio estimator is the 

estimation of the average surface area of the leaves in a 

basket. The average weight of all the leaves would be easy 

to determine. Hence weight would be the auxiliary variable 

X. Since surface area is difficult to determine, an estimate 

of this average could be found by determining the average 

surface area of a small sample and then using the ratio 

estimator. 

The estimator y^ is in general biased and the bias 

is given by -cov(^, x). This bias is negligible if the 
x 

relationship between Y and X is linear and passes through 

the origin or if the sample size is sufficiently large. 



3 

Several lines of research have been considered for 

reducing the amount of bias. Hartley and Ross (1954), con-

- 1 % ̂ i sidered the estimator r = — Z — and obtained its bias. 
^ i=l*i 

Estimating the bias and then adjusting the estimator r for 

bias, they developed an unbiased ratio type estimator of Y. 

Another method of reducing bias is the technique developed 

by Quenouille (1956), Murthy and Nanjamma (1959), Durbin 

(1959) for estimating the bias of a ratio estimator un-

biasedly to the-second order of approximation based on inter

penetrating , subTsaiiç>les. This estimator may then be used 

to correct the ratio estimator for its bias, thereby getting 

a ratio estimator, which is unbiased to a second order of 

approximation. Another technique consists in modifying the 

sampling procedure so that the ratio estimator ̂  becomes 

unbiased. The procedures suggested by Lahiri (1951) and 

Midzuno (1950) are of this type. 

No matter what type of ratio-estimator is used, its 

usefulness is somewhat restricted. The ratio estimator is 

at its best when the relationship between Y and X is linear 

and the line passes through the origin. Cochran (19 63) 

discusses conditions under which the ratio estimator is 

optimum. 

Even though Y and X are correlated and the relationship 

between the two variables is linear, it is often the case 

that the relationship does not pass through the origin or the 
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correlation between Y and X is not sufficiently high to 

recommend the use of a ratio type estimator. 

In such situations the use of regression type estimators 

is usually recommended. A frequently used estimator of this 

type is the so-called difference estimator suggested by 

Hansen, Hurwitz and Madow (1953), defined as 

= y + 3q(X-x), 

where 3^ is a fixed constant, assumed to be known. The 

value of 3q that minimize V(y^) is easily shown to be 

2 
^Q~^2~ ̂ 12/^1 ' where gg is the regression coefficient of Y 

on X. If no reliable guess can be made about the value of 

the regression coefficient, the usual practice is to esti-

mate it from the sample by where s^g s^ are 

unbiased estimates of S^2 respectively and we use 

as an estimator of Y, the regression estimator y^^ defined 

as 

y^ = y + §2 (x-x) . 

The difference estimator y^ is an unbiased estimator of 

the population mean Y and its variance is given by 

a/(l-p2) 

: 
where 
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ô = 

The regression estimator on the other hand is generally 

biased/ the bias vanishing when the relationship between Y 

and X is linear. Further its variance to terms of order 

1 . , —y is given by 
n 

(1 + n' • 

If we are fairly certain about the guessed value 

of $2/ it would be desirable to use y^ as an estimator of 

Y. If however, this is not the case and our guessed value Bq 

is likely to differ from » it may be preferable to use the 

regression estimator y^. Sometimes, however, it may not be 

obvious whether our guessed value is close enough to or 

not, and in such situations it would be desirable to choose 

between the two estimators on the basis of a test of 

significance of the relative closeness of Bq to B2 « The 

problem of estimation subsequent to tests of significance 

has been considered by several authors. 

Although inference procedures involving preliminary 

tests of significance have been extensively used in the past 

by statisticians, only recently, have attempts been made to 

evaluate properties of such inference procedures. Bancroft 
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(1944) was the first to study the overall properties of 

inference procedures which incorporated a preliminary test of 

significance with subsequent inference of prime interest. He 

calls such procedures "Inferences for incompletely specified 

models" (1965). Many authors have covered various areas 

concerning aspects of preliminary testing. 

Kitagawa (1959) discusses biased estimation of linear 

regression coefficients under an incompletely specified model 

and gives sequential designs of experiments in two and three 

stages where preliminary tests of significance are used to 

decide whether to perform further experiments in order to 

obtain a better fit. 

Larson (1957) and Larson and Bancroft (1963a) derived 

the bias and mean square error of the predicant Y in 

multiple regression with k coefficients for the case when a 

preliminary test is made to see if the last m, where m<k, 

regression coefficients considered jointly are all equal to 

zero. 

The consequences of the use of two common sequential 

decision rules for determining, in situations of uncertainty, 

the number of predictors to be included in a final fitted 

regression model with regard to the bias and mean square 

error of the predicant Y were developed by Larson (1960) and 

Larson and Bancroft (1963b). 

Johnson (1967) studied the effect of pooling two 



7 

regression lines. 

Kennedy (1971) considered the technique of model building 

for prediction in regression analysis, based on repeated 

significance tests. 

A survey of the work done in this area reveals that not 

much has been done in the field of survey sampling. Ruhl and 

Sedransk (1967) , consiLsred the problem of estimating the 

mean of a population based on a preliminary test of signifi

cance. Their work dealt primarily with the consideration 

of pooling information from two or more sample survey mean 

estimates. Carrillo (1969) considered the problem of esti

mation of variance in stratified sampling subsequent to a 

preliminary test of significance of the homogeneity of strata 

variances. Tang (1971) considered in detail the problem of 

allocation of sample sizes to the different strata based on 

a preliminary test of significance and investigated its 

efficiency with respect to proportional allocation and 

modified Neyman allocation. 

We shall consider the problem of choosing between the 

difference estimator y^ and the regression estimator y^. 

We develop a sometimes regression estimator which chooses 

between y^ and y^ on the basis of a preliminary test of 

significance of the relative closeness of Bq to gg* We also 

study the efficiency of the new estimator with respect to 

the difference and regression estimators. Finally, an 
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analogue of the sometimes regression estimator has been 

developed for the case of stratified sampling and its 

efficiency investigated with respect to current estimators 

in use. 
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II. REGRESSION TYPE ESTIMATOR y BASED ON s 

PRELIMINARY TEST OF SIGNIFICANCE 

Consider a population of N distinct units U^(i = 1,2,...N) 

from which a sample of n units has been drawn by simple 

random sampling without replacement. Let Y be the character

istic under study and X an auxiliary characteristic which is 

correlated with Y. Let (Y^, i = 1,2,...N, denote the 

values of the characteristics Y and X respectively, corre

sponding to the ith unit of the population. Consider the 

problem of estimating the population total Z Y. or the 
i=l 1 

mean 

when data on the auxiliary characteristic X is also avail

able. 

A frequently used estimator is the difference esti

mator y^ given by 

where y and x are the sample means, X is the population mean 

of the characteristic X and Bq is some fixed constant which 

is assumed to be known. This is an unbiased estimator and 

its variance is 

N 

(2.1) 

Yd = y + 6o(X-x) ( 2 . 2 )  
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= F'°2'+Go'°l'-28o°12' 

if the population is infinite or the finite 

correal 

unity ; 

(N~n ) 
correction factor can be assumed to be 

N—1 

where 

= E(Y-Y)^, (2.4) 

= E(X-X)^, (2.5) 

and 

°12 " E[(Y-Y) (X-X)]. (2.6) 

^12 
If 6q is in fact equal to ~ —^ # the regression coeffi-

_ ^1 
cient of Y on X, then y^ is the minimum variance unbiased 

estimator of Y. 

When ^2 the regression coefficient of Y on X is not 

known, it is customary to estimate it from the sample with 

a consistent estimator of given by 

§2 = (2.7) 
=1 

where 
1 n _ _ 

^12 " I (x^-x) (y^-y) (2.8) 

n 
with Z indicating the sum over all the units in the sample 

i 
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and 

(2.9) 

The estimator of Y, so obtained, is known as the regression 

estimator and is given by 

In general, this estimator will be biased and the bias is 

given by 

The variance of this estimator to the first order of approxi 

mation is 

n 

*^12 where p = is the correlation coefficient between Y and 

X. If the joint distribution of Y and X is bivariate normal, 

then the bias of the regression estimator reduces to zero 

and its variance is given by 

y^ = y + (2.10) 

Bias (y^^) = -Gov (§2/ %) (2.11) 

(2.12) 

(2.13) 

It is known C see for example, Hasel (1942)) that if sampling 
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is with replacement/ E(y^j|x^) = a + V(y^j|x^) is a 

constant that is independent of x^, then the regression 

estimator is optimum in the sense that it is unbiased and 

has minimum variance. 

From past experience * we are often able to make an 

intelligent guess about gg the regression coefficient of Y 

on X. Let Bq denote the guessed value of gg* If 6q is 

relatively close to it would appear from the above that 

y^ is more appropriate than y^ as an estimator of Y. If 

however, 6q is not relatively close to gg; the regression 

estimator would appear to be the most appropriate of the 

two estimators. We therefore propose an estimator which 

chooses between y^ and y^, based on a preliminary test of 

significance of the relative closeness of g^ to This 

estimator to be called sometimes regression estimator, may 

be defined as 

y = y + gg(X-x) if the preliminary test indicates 
that gg is relatively close to g^, 

= y + §2(X-x) otherwise. (2.14) 

A common method of making a test of the relative closeness 

of $2 to Sq is the usage of the statistic 

•n-2 (g.-g.) s, 
t = ° W2 (2.15) 
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where 

= H=r zCYi-y)^ • (2.16) 

Using the test statistic t defined in (2.15) for testing 

the relative closeness of to Bq/ the sometimes regression 

estimator now takes the form 

Yg = y + Bq(X-x) if teA 

(2.17) 

= y + @2 (^x) if teA^, 

where A is the acceptance region in the sample space and 

A® is the rejection region. 

Now we need to look at a criterion for deciding whether 

or not the proposed estimator has any advantages over y^ 

and Commonly, statisticians use squared error as a loss 

function. This then leads to considering the variance of 

the estimator y^ if it is unbiased, or the mean square error 

of yg if it is biased. We then have the expected value of 

y^ given by 

E(yg) = E(y^|A)P(A) + E(y^lA°)P(A°) , (2.18) 

and the mean square error of y^ is given by 

M.S.E. (fg) = E(Fg-Y)^ 

= E [ (y^-Y) ̂ I A] P (A) +E [ (fj^-Y) ̂ IA^] P (A°) . (2.19) 



14 

The acceptance and rejection regions will depend upon 

the a priori information available concerning the possible 

range of values of 6^ « In. order to evaluate fully the ex

pected value and mean square error of the estimator y^, it 

is necessary to define precisely the acceptance and re

jection regions and make suitable assumptions about the 

joint distribution of Y and X. This will be done in the 

next section. 
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III. EXPECTED VALUE AND 

VARIANCE OF y 
S 

As stated in the previous section it is necessary to 

make suitable assumptions about the joint distribution of X 

and Y in order to obtain a closed form for the expected 

value and the variance of y^. A widely used and quite often 

closely fitted distribution for large populations is the 

normal distribution. In what follows, we assume that the 

population is infinite and that X and Y have a bivariate 

normal distribution function. Under the hypothesis that 

^2 = 3q and the assumption that X and Y have a bivariate 

normal distribution, the test statistic t defined in (2.15) 

has a central "Student's t" distribution with n-2 degrees 

of freedom. We shall consider three different cases, de

pending upon the a priori information available concerning 

the range of values of 62• These are : 

Case I : 

From past experience, it is hypothesized that $2 6q/ 

but nothing further is known about ^2 - The estimator to 

be used here is 

ïs = yg i'l 1 tg 
(3.1) 

= yji if ltl > tQ 

where t^ is a fixed positive constant. 
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Case II; 

From past experience, it is hypothesized that $2 Bq 

and also it is further known that ^2 ̂  3q. The estimator 

in this case is defined as 

Fs = t Z. to 

(3.2) 

= if t < tq 

where t^ is some fixed constant. 

Case III; 

From past experience, it is hypothesized that $2 is gg 

and also it is further known that gg ^ estimator 

now reduces to 

^-^0 (3.3) 

if t > t. 

where t^ is a fixed constant. 

Theorem 3.1; 

yg is an unbiased estimator of the population mean 

Y, that is 

E(yg) = Y . (3.4) 
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Proof; 

Consider the estimator as defined in its most general 

form in (2.17) . Then, we have 

E(yg) = E(y^lA)P(A) + E(y^|A®)P (A°) 

= E(y|A)P(A) + E(yjA°)P(A^) 

+ BqEE (x-x) |A]P(A) 

+ E[$2 (X-x) 1a°]P(A®) . 

Under the assumption of bivariate normality, we have that x 

2 2 
and (s^ , Sg , s^g) are statistically independent, and 

therefore 

E [ §2 (X-x) I A°] P (A°) = E (X-X) E [ §2 1 P (A°) • 

Also 

E[ (X-x) jA]P(A) = E(X-x) =0. 

Hence 

E(yg) = E(y|A)P (A) + E(y|A°)P(A^) 

= E(y) 

= Y. 

Hence the theorem is proved. 

Since y^ is an unbiased estimator, we now obtain the 

variance of y^. 
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V(yg) = E(yg-Y)2 

= E (Fg) 

= E(y^^lA)P(A) + E(f^^|A^)F(A^)-Y^ 

= E(y^^)-Y^ + E(y^^lA°)P(A^) - E(y^^|A^)P(A°) 

= V(f^) + Et(y + g2(X-x))^|A^]P(A°) 

-E[(y + 3q(X-x))^|a°]P(A°) 

= V(y^) + 2E[ (32-^0) (X-x)y|A°]P(A°) 

+2 3qE[ (§2-BQ) (X-x)^1A®]P(A°) 

+ E[(e2-6o)2(x-x)2|aC]p(aC) ^ 

Under the assumption of bivariate normality, we have that 

(x/ y) and (s^ , Sg , are statistically independent, and 

therefore 

_ _ 20- _ 
V(yg) = V(y^) - E[(B2-6O) |A^1P(A°) 

2 2 

+- E[(g2-go) 1A°]P(A°)+-^[ (B2-6O)^|A°]P(A^) . 

(3.5) 

In order to further evaluate this, we need an expression 

for E[(32~3q)^|A®]P(A°) for h = 0,1,2. This is obtained for 

general h and is given in Lemma 3.1. Although in practice 

tg will always be negative in Case II and positive in Case 

III, for completeness, the variance will be developed allowing 
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tg to be any real number. It will be assumed that the 

sample size is n^4. 

Lemma 3.1; 

Case I : 

KP(lt|>tQ)E[(62-Bo)^Mtl>tQ] 

• -p /h+i+1 X p /n+i-h-l\ 

= i z C^) r(m) ' \ 
1-U u 

(3.6) 

: , 26 r r (2±2|dri, h+2i+i 

i!o S' Frnm 
1+0 

M 
if h is even; (3.7) 

I : , 26 ,2i+i r r (a«i±) ^+21+2 

i 1+0 j (3.8) 

\ if h is odd. 
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Case III; 

KP(t>tu)E[ (82-65)''I t>to] 

„  2 i  r r  ( 2 i 2 i ^ )  

00 •! r r fSiizîîZi.̂  
, 1 r / ,xh+i+l, 25 \ 1 2 2 i' ,n-2 ,h+i+l^ 
2 Jo'"'' -—niTii % ' '-T-' ' 

if h is even and tQ<0; (3.12) 

2g 2i+l r(h+^i+2)r(*+2i-h) 

00 i T /h+i+l\ r, ,n+i-h-l. 
1 ^ , T\h+i+l , 26 2 ' 2 \ ,n-2 h+i+1, 

1+0 

if h is odd and tg<0; (3.13) 

. „ ,h+i+lt„ ,n+i-h-l\ 
1 26 2 2 % ,n-2 h+i+1, 
2 ^ <7=^' FTÎ+X5 % <-2-' -T—> ' 

'1+6  ̂ " 

if tQ>0. (3.14) 
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where „ ^ 

(p- 4-i) 

6 = 

Cl-p2)l/2 

(3.15) 

m. = —5» f (3.16) 

®0 

1*0 (a-b) = 573751 j, (3.17) 

B(a'b) = ''U+M' (3-18) 

and 

a, h ^ 
K= ( £—) (~i) (1+Ô-) . (3.19) 

O^'l-pZ 

Proof; 

In order to find the expectation, the joint density 

function for the variables over which the expectation is 

taken is needed. It is well known that the joint density 

s 12 
function for s,, s, and r = —— is given by 

± z S^Sg 
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f (s^fSg/r) 

n-2 11—4 

Ki(31^32^) ^ (1-r^) ^ 

= / 

X exp[- ^ ̂  2 ( 
Sn 2p3,s-r 3p 
±y + -^5") ] 

2(l-p") 

if 0<s^<<», 0<S2<°'/ and r <1, 

0 otherwise. 

with 

= (n-1) n-1 

n-1 

Trr (n-2) [(l-p^)a^^02^] 

Making the transformation 

(n-l)Si^ 
u = 2 J- ' 

2ai (1-p^) 

V = 
(n-l)rs^s2 

201*2(1-P^) 

and 

w = 
(n-l)s2^ 

2*2^ (l-p2) 

and noting that the Jacobian of the transformation is 
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J = 3 (UyV/W) -1 

* 1 ^ 2 )  
2 (n-1) uw ' 

the joint density of u, v, and w is 

f(u,v,w) =< 

n-4 
2 2 

Kg(uw-v ) exp[-(u-2pv+w) ] 

2 for 0<u<™, 0<w<», and v <wu; 

otherwise; 

where 

Ko = 

n-1 

2*"3(l-p2) 2 
2 Trr(n-2) 

In terms of the transformed variables u, v, and w 

rs. 
3o = 

va, 

ûô\ 

and with 
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we have 

ua 

^ 80' 

(uw-v ) 
172 

Consider the transformation 

u = u 

V = V 

and 
va_-B-ua^ . _ 2 t' = 

(uw-v^)^/^a 

Noting that the Jacobian of the transformation is 

J = I 3(UfV/t') 
I 3 (u,v,w) 

-1 

-2(v-

ut .3 

and the fact that if t'>0 then 

uo 
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and if t'<0 then 

the joint density function for U/ v and t' is 

6-ua, n-2 

,2 
exp[-(u-2pv+ 5 + --)], f(u,v,f)= "3 u 

with 

and 

in R^; (3.20) 

"3 u|f|°-^ exp[-(u-2pv+ 

in Rj; (3.21) 

0 otherwise ; 

n-1 
?n-2.^ 2. 2 

^3 = Trr(n-2) ' (3.22) 

uCi 6o 
Rl = {0<u<®, 0<t'<~, v> (3.23) 

UCiBn 
^2 ~ {0<u<«>, -oo<t'<0, v< —^—> . (3.24) 

In order that f(u,v,t') be in a useful form, it is 
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necessary to work with the exponent and express it in a 

more convenient form. Now 

<v- , 
O V 

exp[- (u-2pv+ -f + -y ] 
ut'^ ^ 

2 2 1+t*^ 
= exp[-(u(l-p^) (l+ô^) + (v- -2—^) 

^2 ut'^ 

J9 Pn 
-2 6'l-p2(v_ -O-A))]. 

°2 

Then expanding the last term of the exponent as an infinite 

series, the joint density f(u,v,t') can be expressed in 

the form 

2 2 1+t'^ 2 
f(u,v,t')= exp[-u(l-p^) (1+6^)- ] x 

ut'* ^ uf ^2 

. 2i(v-

^ 
in R^; (3.25) 

K, 
—; -rr=T exp[-u(l-p ) (1+6 ) ^ 
ult'I ut'^ 

ft nrr i. 
. (-l)^2^1v—^^1 6i(l-p2)2 

Z 
i=0 

2. f2:î^,2, ̂  

Ni+1) 

in *2' (3.26) 
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= 0, otherwise . (3.27) 

Let 

'6 = ̂ ' 
/n-2 

where t. is a positive number. 

P(t<tQ)E((g2-Go) 

= P(t'<t^)E((62-6o)h|t'<ta) 

Vff, , 

The region of integration can now be split into two mutually 

exclusive regions namely R2 and 

GnUOr 
Rg = {0<u<«, 0<t*<tQ/ —-— <v<«>}. 

Then 

P(t'<t')E( (32-6o)^|f<t^) 

[ (v- -2-—)——] f(u,v,t')du dv dt' 
^2 ^^1 

6 uai ff, h 
[ (v —)-^] f(u,v,t')du dv dt' 

^2 ^^1 
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Now, 

^2 = 
Bn**! S ̂  

[ (v —)——] f(u,v,t')du dv dt' 
02 uo^ 

'0 f"f ^ h , h+1 1 ^xp[-u(l-p^) (1+6^)] x ru r=r—-— n , n+J. ± 

Z (-l)^"^^exp[-ii^(v-^2^)^] 
i=0 ut'^ *2 

3rtUa, n+h+i-2 

I- ^ i 
X p (i+i) ( 26'l-p^) dv du dt' 

Making the change of variables 

u = u, 

f = t' , 

and 

V- 'o"°l 

— = ^l+t'2 ( ) , 
/F /il ( t' I 

we get 

fO f"fO « o " / 1 \h+i „2..i 
'2 = r(gj-' 
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n+i-h—3 

u 
n+hli-l" exp(-f-) du df 

(l+t'2) 2 

where 

n—h—3 n-1 

y _ (*2) 2 2 (l-p2) 2 
^4 - Trr (n-2) 

In order to evaluate the above/ it is necessary that we have 

the following lemma which is stated without proof. 

Lemma 3.2: 

n -ix2 
x| e dx 

1 2 œ n -^x 
1x1 e dx 

n 
= (-1) 

n-1 

= 2 ^ r (^) . 

Because the series is the result of expanding the exponential, 

the order of summation and integration may be interchanged. 

Hence upon evaluating the integrals in x and u. 
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h+i „ i r(n+i-h-l)r(n+h+i-1) 

13= K5(-1) (—) rriîïl 
I h+i 

n+h+i—1 df 

(l+t'2) 2 

where 

^5 = <5^1 
2°"^(1-0^)^ 

n—h-1 

Trr (n-2) (1+6^) ^ 

Making the variable change 

y = ——J , 
1+t' 

we have 

h+i-1 n-4 
#00 

^'''^%+i-i =Tr (i-y) ' y ^ dy 

(i+f^)^^ 

df = I f (1-3 

r (2^) r (h+i+i) 

Hence, we have 

'1+6^ 

with 
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= 

(i-p2)2 

h 
2 

n—h—1 

111" (n-2) (1+6^) 

Again without proof the following useful lemma is given. 

Lemma 3.3: 

. T j-3 
r(^)r(^)2 = r(j-2)/7 

Using Lemma 3.3, we have 

, 1 : . _h+i. 26 / r(^)r(E^) 

2 2K ^ , y r(i+l) 
'l+6^ 

The same steps used in finding I2 can also be used to 

find I^. These are given below without explanation. 

^3 = [ (v —>^^5—3 f(u,v,t')du dv dt' 

= K. 
t' °° *^2 ^ 1 1 2 2 

(i?) ^^-^xp[-u(l-p^) (1+6^)]X 
ugo*! ""l (t')* 1 

00 

Z 
i=0 

.2 e ua 2 e ua ^ ̂  ̂  ̂  
exp[--^ % (V- u i) ] (V- •^) (26'l-p) dvdudt' 

ut'^ ^2 ^2 
r(i+i) 
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n+i—b—3 
h+i 

— n+kli-l ®==P<- A du df 

(l+t'2) 2 

:i!o io 2+1+1 "̂'= 
J-+Û d+t' ) 

1+0 

1+0 

where 

1 
•"o = 

l+t'2 

Considering the cases of h being even and odd separately 

and combining and gives the result for tQ>0 in Caise II. 
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Now consider Case II where tg is negative. Again, the 

same steps used in finding Ig and I^ can be used. For this 

case 

P(t<to)E((g2-6Q)h|t<to) 

enUOi cr, h 
[(V- f(u,v,t')du dv dt', 

Og uoi 

*4 

where 
ua, 

= {0<u<«>, t'<tQ, V < —-—} . 

Hence 

P(t<tQ)E( (§2-20)^1 t<tQ) 

u3o®l 
ftlf»f —-— a, h -, h+1 , 00 

(25''l-p^)^dvcluaf 
r, n\h+i Ut'"^ ^2 ^2 

^ 

= '""''"Jo 
/r~2,± 

n+i—h—3 

u . |h+i 
h-hll'i exp(-|-) dx du dt' n+h+i 

(l+f^) ^ 
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= K, 
00 

z 
i=0 ' " \—y mm 

1+a 

^6 it'i^"*"^ 

-c»(i4.t'2)B±h±iZl 
dt 

oo r T" 

^=0 »i^ ° 

oo r V fSliZÈ2l\ 
1 r , n\h+i, 26 ,i ^ ̂ ""1 2 % ,n-2 h+i+1, 
^i-o 7=T nrm \^~' 

1+6 

This gives the desired result for t^^O for Case II. 

The result for Case III can be obtained by using 

techniques analogous to those used in deriving Case II. 

The result for Case I can be obtained as follows. We 

have 

= [(V- f(u,v,t')du dv dt' 
J ^2 

r BoUOi ^2 ^ 
+ [(V- f(u,v,t')du dv dt' 

J Rg ^2 ^^1 
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where 

Rj = {0£U<", V > "g , 

We obtain the desired result immediately by recognizing that 

is the same as Case II with t^^O, and Ig is Case III with 

t6>o, 

Remark 3.1: 

Upon setting h=0 in Case II and using Lemma 3.3 we 

get the distribution function of the t statistic and hence 

the power function of the t test is given by 

» 2 i r (^+2i-l) 

—7^ r(i+i) r(2^) (1+6"^) 

for tQ>0; 

4z(-i, i (2^, i|i,, 

for tg^O. (3.28) 

Upon recognizing that 
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r(ii±|izi) g2 i , ^ 
n-1 i = 0,1,2 ... r (i+l) r (ii^) 1+5" 1+6 

is the density function of the negative binomial, we get 

upon simplification 

P(t<to) = 1- I z (-^) — 

1+5 r(i^)r 2 

for tQ>0; 

for tg^O. (3.29) 

Remark 3.2; 

Referring to (3.25) and (3.26), if we integrate out u 

and V and make the transformation t = /n-2 t', we get 

the density of the t statistic, 

CO (S±%ZL) 

f (t/5 ) = Z n+i-1 2 a+i-1' 

/n-2 irr(n-2) i=0 r (i+l) (1+5^) ^ (l+^^Y^ ^ 

for -<»<t<®° 

= 0 ,  o t h e r w i s e  .  (3 . 3 0 )  



38 

When 6=0 this reduces to the central "Student's t" density 

function with n-2 degrees of freedom. 

It is possible to define a sometimes estimator of the 

regression coefficient as 

^2s 

if teA 

3, if teA"^. 

There are three different cases for this estimator, analogous 

in nature to those of the sometimes regression estimator. 

They are: 

Case I : 

^2 s " g. 

Case II; 

B 2s 
l«2 

Case III: 

'2s 

if 

if 

if 

if 

if 

if 

to 

t|> t. 

t 1 to 

t < to' 

t 1 to 

t > t„ 

Using the results of Lemma 3.1 we get the expectation 

of the sometimes estimator of the regression coefficient. 

In general ^2^ is a biased estimator of 6^. Noting that 
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Etggg) = Bo + £[(§2-60) lteA°]P(teA°) , 

we obtain from Lemma 3.1 the following corollary; 

Corollary; 

Case I: 

o_^l-p^ °° r 2i+l 

T. ,n+2i-lt 
_ ^ ^ 5 % ,n-2 2i+3\ 

r(^, ' —'• 

Case II: / ? 
— ajWs 
E'Gzs) = Bo + — 

n-2 
: , 6 i ,n-2 i+2, 

2aj^(i+6*) ' r(=y^) 
—„,n-l, 1=0 l+« I''—' 

if tQ>0; 

= «0 + n-2 

20^(1+6^) ^ r(2^) 

2 (-1)1+1 (—§—) 
i=0 

"^1+? 

r(S±#) 
2 ,n—2 i+2. 

(-0—/ -?-) 
r(i^) "0' 2 ' 2 

if to<o 
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Case III; 

S'Szs)  =  60 +  

+ ^_2 ; (-1) i+2 (_i_) 

2aj^(l+Ô^) ^ r(5^)^ ° 

M 2 ^ ^ i+2, 

if tQ<0 ; 

" '• °' rkÏ 'ot' \ • 
20^(1+6") ' r(iY:) 

if tQ>0. 

From Lemma 3.1 for Case II with tQ>0 

E[(62-6o)'|t<t„JP(t<to) = (^2-^,2. 1 ^ 

r(2^)/?{i+ô^) 2 

r : , 25 2i r(^)r(S±|izl) 

rrsmr-
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1 : , 26 r(i|i)r(aiiz3, 

Using Lemma 3.3 

^l-p2 =(2i+l)r(*+2i-3) 

E[(B2-Bo)'lt<to]P(t<to) = (-^-—) [ .Z ,,,,214-2...n-3 
1 i=o (n-3 ) r (i^) r (^) 

-i. "tTl" . 
" \ # 1 . 

Since 

r f^'*'2i~3^ 2 i n-3 

r(iii|2ma^, 'if?' ^ 

is the negative binomial density function, 

2 S^l-P^ ̂ 2 1 
E[(e2-3o)^lt<to]P(t<tQ)= ( 0^ ) + -EZ3 

- Jo \ ¥> I • "-3" 

4r(ii^)r(S^) (1+6^) ^ 
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From (3.5) and using the relationship of ô 

(3.32) 

Using the result of the corollary and (3.31) and upon 

substituting into (3.32) we get the result in the following 

theorem for Case II with ^^>0. The other results of the 

following theorem may be obtained by using analogous tech

niques on Lemma 3.1 to those used in obtaining (3.31), using 

the corollary, and substituting the results in (3.32). 

Theorem 3.2; 

Case I: 

V(yg)=V(y^) 
2*2^(1-9^) 

2 
i=0 

00 r (2~^) 

n n+2i-l 

r(i+l)r(^) (1+6^) 2 

a2^(l-p^) 
. Z 
i=0 

OO (2i+l) r (S±2izl) gZi (2i+l) r ( 

n n+2i-3 

2r(i+l) r(îî^) (1+6^) 2 

n—2 2i+3t —, —^) 
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Case II: 

0 2(i_p2) 
V(y^) = v(y^) + (l-(n-3)6 ) 

; r (2±|=2) i+2 

n . „ n+i-2 ^ 2 ' 2 ' 1=0 . ^ , « —= 0 
r (i^i) r (2ji) (1+6 I 

^ ,n_2 i+3, 

n i,o \ ̂ ' 2 ' ' 
4r(i|2.)r(2ji-) (1+6^) 

if t„>0; 

•  ̂i. .'-"''"̂ "'1. ¥• 

r(i|^)r(2^) (1+5^) ^ 

c/(i-p2) ; (_i)i(i+i)r(5±i:l)5i ^ 

n .__ n+i-3 ^ 2 ' 2 ' ' 

4r(^)r(^) (1+6^) ^ 

if tQ<0. 
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Case III : 

,2, 
VfYs) = + n(n-3) (l-(a-3)a ) 

*2'(1-P') Z (_l)i+2p(n±i::2)gi+l 

^ i=0 i+1 n 1 2 ̂ *2"^ *0 2 ' 2 
r(^)r(S^) (1+6^) ^ 

a/(l-p2) ; (_i)i+2 (2+1:3) gi 

n . . n+i-3 ^ 2 ' 2 ^' 

4r(i|^)r(2^) (1+6^) ^ 

if tQ<0; 

- v%,. ^ 4 

r(i^)r(Sçl) (1+5^) ^ 

a/(^ g (iH-l)r(S±|z3)S^ 

n if 0 n+i-3 iUq ^ 2 ' 2 ) ' 

4r(iii)r(S^) (1+6^) ^ 

if tQ>0 . 

Remark 3.3; 

As tg -)-« in Case II, as tg-*—» in Case III, and as t^-^O 

in Case I, then V(yg) becomes 
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Lim V(y ) = V(y.) 

^0 

o 2(l-p2) 
= — (1+ ' 

which is to be expected since the estimator y^ in those 

cases reduces to y^. 

Remark 3.4: 

As tg^—« in Case II/ as t^^* in Case III and as t^^™ 

in Case I then V(y^) reduces to 

which is to be expected since the estimator y^ in those 

cases reduces to y^. 
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IV. COMPARISON OF DIFFERENT 

ESTIMATORS 

In this chapter a comparison is made of the sometimes 

regression estimator with both the difference estimator and 

the regression estimator for all the three cases. It will 

be assumed that the sample size is n > 4. 

A. Comparison of the Sometimes Regression Estimator 
with the Difference Estimator for Case I 

For this case we have 

o 2(i_p2) CO 2r(*+2i-l)52i+2 

V(yJ = V(y,)- [ 2 
s -^d n i=o n+2i-l 

r (i+1) r(^) (1+6^) ^ 

_ : (2i+i,r(S±^)«2i 

i=0 , B+21-3 ""o ^ ^ 

2r(i+i)r(S_±)(i+6^) 

Let 

nr(^) (1+5^) ^ 

^2 (1-p ) 

(4.1.1) 

D*(8, m^) = ^^ (V(yg)-V{y^)) . (4.1.2) 

Since 
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n—3 

nr(î~i) (l+ô^) ̂  
2^ > 0, 

D*{0, iUq) has the same sign as VCy^) -V(y^) , and we have 

• I " . . . .  •  j .  

- ,i, i'i«"— \ "f' W' «•»•« 

- r (S±2^) e^i 
= 2Tii+l) t(2j+l)-2to+2j-3)e'']. (4.1.4) 

Let j=i-l in the first summation of (4.1.3), then we have 

r(S^,i (2^, 3) 

D|(6, mg) = 5 

+ ^=45x1-

(4.1.5) 

r' 
0 
2 

+ e-3 ^,(24±^ 
j=0 r(j+l) niQ^ 2 ' ^4b+l) - (n-2^ 2 j+5^ 

mQ 2 ' 2 

(4.1.6) 
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Consider first the effect of variation in 6. 0 will 

vary over the interval (-1, 1) since ô may vary over the 

interval (-=, =») . 

Using (4.1.6), D^(8, m^) can be expressed in the form 

(4.1.7) 

where 

(4.1.8) 
2 

j= 0,1,2 (4.1.9) 

Lemma 4.1: 

For a>l, b>l and h>0 

B(a, b+h) < B(a,b) (4.1.10) 

Proof : 

The lemma follows from the fact that 

0 

= B(a,b) . Q.E.D 
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Define 

I'(a,b) 
E^(a,b,b+h) = (4-1-12) 

= B(a,b+h) ^ 0< X < 1 ,  

B(a,b)(1-x)* 

where 
d I (a,b) 

Ii(a,b) = ^ . (4.1.13) 

Lemma 4.2: 

There exists an x* 3 0<x*<l and for which 

R^(a,b,b+h) < 1 0<x<x* 

= 1 x=x* 

> 1 x*<x<l, where h>0. 

Proof: 

Also 

RgCafbfb+h) < 1. 

Lim R (a,b/b+h) = +». 
x-*l- * 

The result now follows on noting that R^(a,b/b+h) is a 

strictly increasing continuous function of x for 0<x<l. 

Q.E.D. 
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Lemma 4.3: 

I^(a,b) ̂  I^(a,b+h) for a>l, b>l and h>0, 

Proof; 

From Lemma 4.1, 

B(a/b) _ n 
B(a,b+h) 

> 1. 

Since 

Lim I (a,b) = Lim I (a,b+h) 
x->-0 * x-»-0 ^ 

= 0, 

we have 

I (a,b+h) I'(a,b+h) 
Lim -2L—— = Lim —--— 
x-»-o+ IjjTaTb) x-).o+ X 

= B(a,b) 
B{a,b+h) 

= I 

> 1. 

Hence for given 

e = 2-1 

> 0 , 

36>0, such that for 0<x<6 

I {a,b+h) 

' I <a,b) ^ 
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that is 

i (a,b+h) 

1 " -Jx(a,b) ' 2%-l 

Hence for 0<x<ô 

I^(a,b) < I^(a,b+h) . (4.1.14) 

From Lemma 4.2, 3 x* 3 for 0<x<x* 

I^(a,b) < I^(a,b+h) . 

Let x^ be an arbitrary but fixed number such that 0<x^<x*. 

Also let 

I' (a,b+h) - I' (a,b) 
1 1 

c = — = (4.1.15) 

> 0 

be given. Then since I^(a,j) is a continuous function in 

X, 3 0^>0, and such that 

i) for |x-x^l < 6^, 0<I^(a,b)<l/ 

and 

Let 

ii) for |x-x^| < 6^' I^Xa,b+h)>I^ (a,b+h) - E ,  

iii) for |x-x^| < 6^, I^(a,b) < (a,b) + E .  

AIx^(a,j,g) = I^^^g(a,j) - I^^_g(a,j) (4.1.16) 
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and 

6 = Min(6^, 6^, 

Then, we have by the Mean Value Theorem that 

AI (a,b+h,5) I' (a,b+h)-E 
^1 ^ ^1 

AI (a,b,6) I' (a,b ) + E  
Xi 

= 1 . (4.1.17) 

Hence by (4.1.17) 

AI^(a,b,6) < AI^(a,b+h,ô) (4.1.18) 

for every xe(0,x*). 

Therefore by 4.1.14 and 4.1.18 for X E(0, X * ] ,  

I^(a,b) < I^(a,b+h) . (4.1.19) 

Now let X be such that 

X *  <  X  < 1. 

Then we have from Lemma 4.2 

I^(a,b) > I^(a,b+h) . 

Let X.2 be an arbitrary but fixed number such that X*<X2^1. 

Then using the Mean Value Theorem, and proceeding in a 

manner analogous to that used in obtaining (4.1.17), we find 
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that ,3 ô > 0 3 

AI (a,b,A) 
2 

ÂI (a,b+h,6) ^ 
*2 

Hence 

Al^(a,b,ô) 

AI^(a,b+h,ô)^ ^ 

for every XE(X*, 1]. 

Hence if for some 3 X*<X2<1 

I (a,b) >I (a,b+h), 
^3 ^3 

then by (4.1.20) 

I^(a,b) > I^(a,b+h) 

for every xeLx^/ 1]. 

But this contradicts the hypothesis that 

I^(a,b) = I^(a,b+h) = 1. 

Hence for all x 9 0£x<_l 

I^(a,b) ̂  I^(a,b+h), 

and the lemma is proved. 
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lemma 4.4: 

3 5 3 5 
For a = If J, 2, 2 ' " c = 1, Y' 

I (a,c) I (a,c+ j) 

^ I^(a,c. i) - '' 

Proof; 

Since 

Lim I^(a,c) = Lim I (a,c+l) = Lim I (a^c+s-) 
, X + * + 

x-*-0 x-*-0 x+0 

= Lim I (a,c+y) = 0, 
_ + 

x-»0 

and 

I'(a,c) c+j I'(a,c+|-) 
Lim =T-7 r-TT- = —;— < r = Lim — 

we have by L*Hospital's rule 

c c+j 

Let 

C+j 
El = i—j - i+c^/2 > 0 

a+c+Y 

and let ^2 be such that 

I 
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Then for 

e = Min(e^/ Eg) 

there exists a ô>0 3 for 0<x<6 

c Ix(a,c) 

° < i+H ' ̂ ^ I„(a,c+1) " ̂  < e 
a+o+l 

- e 

I (a,c+l) 

< I^(a,c+2) < 
a+c+j 

+ e. 

Hence for 0<x<ô, 

I„(a,c) I (a,c+i) 
/ — #— < 1 X  

I_(a,c+1) 
X  lx(a,c+5-) 

(4.1.21) 

Now consider 

(j)(x) = I^(a,c+1) I^(a,c+|-)-I„(a,c) I^(a,c+j) (4.1.22) 

By (4.1.21) (j)(x)>0 for 0<x<ô. We must show that (j)(x)^0 

for 0<x<l. 

*'(x)= 
B (a,c) B (a, c+^) 

•[B (1-x) ̂ f*y*"l(l-y) °dy 
J n 

+B(l-x) [ y^~^(l-y) ^dy-(l-x)? 
J n 

r^'^(i-y) day 

y^"^(1-y) ^dy] (4.1.23) 
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for 0_<x<^l, 

where -, 
(a+c) (c+y) 

B = 5—^ 1. 
(a+c+^) c 

Since 4^0) = ^(1) = 0 then in order to show that cf)(x)_>0 

for 0_^x<_l, it will be sufficient to prove that there exists 

an x' such that 

4)' (x) ̂ 0 0£x£x' 

< 0 x'<x<l 

Now consider 

(J)^(x) = B(l-x) ^(l-y)^dy + B(l-x) y^ ̂ (1-y) ^dy 
0 

-(1-x) y^ ̂ (l-y)^ ^dy -
rx c + j  

Y  a - Y )  dy (4.1.24) 
0 

and recognize that (})' (x) and <j)^(x) have the same sign in the 

interval 0<x<l. 

We shall first consider the case when a>4, we have 

*{(x) = 2(B-l)x^ ^(1-x)^ ^-|(l-x) y^~^(l-y)^dy 
4rx 

—B 

1 1 
f X . c-y ^ y 
y ~ (1-y) dy + y(l-x) y^ ̂ Xl-y)C ^dy , (4.1.25) 

for 0<x<l. 
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*;(x) = [-(B-1) (2c+|)x^ 
fX 
y^"^(i-y)^dy 

3 

+2 (a-1) (B-l)x^"^(l-x)^'^^-|-(l-x) y*"l(l-y)C-ldy](l-x) ^ 
^ J 0 

(4.1.26) 

for 0£x<l. 

Let 

*2(x) = - (B-1) (2c+|)x^ l(l-x)C+l_B y^~^(l-y)^dy 
0 

+2 (a-1) (B-l)x^"^(l-x)^'^^-|-(l-x) 

for 0<x<l. 

X  

y^~^(l-y)^"^dy , 

Note that <}>2 (x) and (j)^ (x) have the same sign in the interval 

0<x<l. Then, we have 

*^(x) = [ (B-1) (c+1) (2c+|)-|-|]x^~^(l-x)'^ 

-(a-1) (B-1) (4c+^§jx*"2(i_x)C+l+2(a-l) (a-2) (B-l)x*"3(i_x)C+2 

4  
y^ ̂ (l-y)^~^dy. 

for 0<x<l. 
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<J)2 (x) = {-[ (B-1) c(c+l) (2c+|-)—^ x^ 

+2(a-l)(a-2)(a-3)(B-1)(1-x)^ 

+ (a-l) [3 (B-1) (c+1) (2c+3)-| - |]x^(l-x) 

-(a-1) (a-2) (B-1) (6c+^^jx(l-x)2}xa"4(i_x)C-l 

for 0<x£l. 

Let 

5 Be 3c 3 3 
(x) = -[ (B-1) c (c+1) (2c+^)—^ ^]x 

+2 (a-1) (a-2) (a-3) (B-1) (1-x)^ 

+ (a-l) [3(B-1) (c+1) (2c+3)-| - |]x^(l-x) 

-(a-1) (a-2) (B-1) (6c+^)x(l-x)^, 

for O^x^l. 

Note that <1)2 (x) and ^^(x) have the same sign for 0<x<l. 

For aM, 4(x), * '(x), $^(x), ̂ ^(x), <}»£(x), <^>2 ^^c) , 

<{>2 (x) and (j)^ (x) are all continuous functions for O^x^l with 

the exception that $^(x) and (J>£(x) are discontinuous at 1. 

Since #(0) = $' (0) =0 and $(x) is positive in a neighborhood 
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of zero, it must be true that $'(x) is positive in a 

neighborhood of zero. Thus #^(x) must also be positive in 

a neighborhood of zero. 

By using the same reasoning as used on ^'(x), it can be 

shown that 4)£(x) , 4>£(x) , (}>2 (x) , $^(x), (x) and ^^(x) are 

all positive in a neighborhood of zero. 

As (j)^ (x) is a cubic function of x it can have at most 

two stationary points. Since 4*3 (x) must be positive in a 

neighborhood of zero and ^>3 (1) < 0 then it is allowable 

that <p (x) be of the form 

4>3(X) > 0 0^x<x^ 

= 0 x=x^ 

< 0 ^1<% 
= 

0 X=X2 

> 0 X2 <X£X3 

= 0 x=x^ 

< 0 Xg <x^l 

for some x^, x^ and x^. But $2(1) < 0 and 4^(1) > 0. 

It follows that (J>3 (x) can have no other possible form. This 

implies that (j)^ (x) be of the form 

4*2 (x) = 0 x=0 

> 0 0<x<x^ 

= 0 , x=x^ 

< 0 x^<x<xg 
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= 0 x=xg 

> 0 xg<x£l 

for some and Xg. 

Hence it is necessary that 4^(x) be of the form 

4*2 (x) = 0 x=0 

>0 0 <x<Xg 

= 0 x=xg 

< 0 xg<x£l 

for some Xg. It can now be seen that <j>£ (x) , (|)^ (x) , 4»^ (x) 

and ({)' (x) have necessarily the same form as with the 

exception that ^^(x) and (p^(x) are discontinuous at x=l. 

9 Hence the lemma is proved for a=4, 5... . 

For a = Y the only real change is that (j)^ (x) is dis

continuous at x=0 at which point Lim (j)i' (x) = It can be 
+ ^ x-»0 

argued that all of the functions retain the same form as be

fore. 

When a=3 we have 

^2^^^ ~ I (B-1) (c+1) (2c+^) - x^ ̂ (1-x)^ 

-(a-1)(B-1)(4c+i|) x^"^(1-x)c+1 

+2{a-l) (a-2) (B-1) (l-x)^^+| *y^"i(1-y)°"ldy / 
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*2(x) = {[-(B-l)c(c+l) (2c+|)+Ç + |]x^ 

+ (a-l) [2(B-1) (c+1) (c+2)-| - |]x(l-x) 

-(a-1) (a-2) (B-1) (6c+^) (1-x) (1-x) 

*3(x) = [-(B-l)c(c+l) (2c+|)+^ + ̂  + |]x2 

+ (a-l) [2 (B-1) (c+1) (c+2)-| - |]x(l-x) 

-(a-1) (a—2) (B-1) (60+^") (1-x) 

and hence ^^(x) is now a quadratic function. It can be 

reasoned that the form of (j)^ (x) is 

< 0 0<x<x^ 

= 0 x=x^ 

> 0 x<x<x2 

= 0 X=X2 

< 0 Xg <x£l 

for some and x^. 

$2(0) > 0/ but otherwise it can be reasoned that the func

tions are of the same form as before. 

When a = ̂  then (f>2 (x) and 4>2 Cx) are discontinuous at x=0. 

The necessary form of (j)^ (x) is 
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OgCx) < 0 0£X<X^ 

= 0 x=x^ 

> 0 x^<x<x2 

= 0 X=X2 

< 0 X2<x£l 

for some x^ and x^. 

Here Lim <|)~ (x) = -<» and Lim $'(x) = With the exception 
+ + 

x->-0 x-*0 

of these changes the functions remain the same. 

When a=2 we have 

*^(x) = [(B-1) (c+1) (2c+|)-| - |]x(l-x)°-(B-l) (4c+^) (l-x)C+l 

rx 
*2 (X) = - (B-1) (2c+|) x(l-x) y (1-y) ®dy 

0 

42(x) = {[3 (B-1) (cfl) (2c+3)-| - |] (1-x) 

+ [-c((B-l) (c+1) (2c+^)-^ - ̂ )+^]x} (1-x) ^ 

and 
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4)3 (X) = [3(B-1) (c+1) (2c+3)-| - |] (1-x) 

+ [-c((B-l) (c+1) (2c+|-)-^ -

(^>2 (x) is linear in this case. Further > 0 and 

*3(1) < 0. 

Then the form of <|»3 (x) is 

(|>3 (x) > 0 0^x<x^ 

= 0 x=x^ 

< 0 x^<x^l 

for some x^. Also 

(f>2 (x) < 0 0£x<x 

= 0 X=X2 

> 0 X2<x£l 

for some , and 

<i)2 (x) > 0 0£x<X3 

= 0 X=X3 

< 0 X3<X£1 

for some X3. 

The rest of the functions are of the same form as 

before. 

For a = #2 (x) , tl>2 (x) , (x) , (p^ (x) are discontinuous 

at x=0/ and 
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*3(x) = [-(B-l)c(c+l) (2c+|) + ̂  + ̂  + |]x^ 

+ |(B-1) (1-x) ̂+i[3 (B-1) (c+1) (2c+3)- I - |]x^(l-x) 

+ |(B-1) (6c+^)x(l-x)2, 

*^(x) =[-3(B-l)c(c+l) (2c+|)-|(B-1) (c+1) (2c4-3)+^|^+^|+~]x^ 

+ [3 (B-1) (C+1)(2c+3)~J ~ f" ~ ̂ (B-1) (6C+^) ]X(1-X) 

+ j(B-l) (6c+|) (l-x)2, 

and 

*%(x) = t-6(B-l)c(c+l) (2c+|)-6(B-l) (c+1) (2c+3) 

+ j(B-l) (6c+^)+ ̂  + I + |c + 6]x 

+ [3 (B-1) (c+y (2c+3)-6(B-l) (c+D- I - f] (1-%) . 

For (x) , 

Coefficient of x < 0, 

and the constant term is negative for c small and positive 

for c large. Since ^^(x) is linear in x then either 

$2(x) < 0 for all x. 
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or 

4)^(x) >0 0£x£x^ 

= 0 x=x^ 

< 0 x^<x£l 

for some x^. 

For either case the required form of (x) is 

(J)^(x) > 0 0<X<X2 

= 0 X=X2 

< 0 x_<x<l 

for some x^. 

Hence it can be shown that it is necessary that 

(x) >0 0£x<X2 

= 0 x=x. 

< 0 xg<x^l 

for some x^, 

(j)^ (x) < 0 0<x£x^ 

= 0 x=x. 
'4 

> 0 x.<x<l 
4 — 

for some x^. 

^2(x) > 0 0<x<xg 

= 0 x=xp 

< 0 x_<x<l 
D — 

tor some Xg. 
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9  
The rest of the functions are the same as when a = 4, 

When a = 1 

(j)J(x) (2c+|) -|a-x)r(l-y)''"^dy] 

3 0 0 

x(l-x) ^ 0<X<1, 

*2(x) = -(B-1) (2c+|) (l-x)^"^^-||*(l-y)°dy-|(l-x)| (l-y)°"^dy *(l-y)°dy-|(l-x) f 
0 ^ J 0 

0<x<l, 

(j)^ (x) = [ (B-1) (c+1) (2c+|) -|-|l (1-x) c+§.j*(l-y)ddy 

0<x<l, 

*2(x) = [-( (B-1) (c+1) (2c+|)-|-|)c+|] (1-x) 

0<x£l, 

and 

$2(x)= -((B-1) (c+1) (2c+^)-^|-)c+l" 

< 0 

0£x£l. Q.E.D. 

Lemma 4.5; 

For 0<mQ^l CgCmg), 0^(0^), C*(mQ), ... is a sequence of 

numbers such that 3 K > 0 such that 
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C^{mo) >0 j < K 

<0 j > K . 

Proof: 

21+3 
4(3+1} 

is a decreasing function of j. By Lemma 4.4 

I 2i+3, 
*0 2 ' 2 

,n-2 2j+5. ^ 0/1/2 ... 

is an increasing function of j. We therefore have that 

2i+3 _ _::o 
4(j+l) ,n^ 2i+5 

2 ' 2 ' 

j = 0,1,2 

is a decreasing function of j. We have 

I' 
eg (mg ) - 2 ^ ® * 

Now suppose 

C*(m_) >0 j = 0,1,2 ... . (4.1.27) 
] u — 

This implies that 

D*(e, m^) > 0 0<e<l . (4.1.28) 

But by (4.1.4) for 6 = — + e with e > 0 
/2 
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[ (2j+l) -2 (n+2 j-3) e^]=2j+l-2 (n+2 j-3) [y +e^+ /2e] 

<0 j = 0,1,2 

and hence 

DÎ (—— + e, m») < 0 
2 ^ 0  0 -

This contradicts (4.1.28) and also (4.1.27). Hence there 

exists a k such that 

Ct(mo) <0 j = K, K+1, K+2, 

and therefore the leirana is proved. 

q.e.d. 

Theorem 4.1: 

For hIq fixed such that 0<mQ£l, there exists a 0^ where 

0<6q<1 and 

D^(8, iRq) < 0 -1<6<-0Q 

= 0 8=-8o 

> 0 -8o<8<Go 

= 0 6=6„ 

< 0 8Q<8<1, 

and hence 

V(yg) < V(y^) -i<0<-e^ 

= V(F^) 8=-0q 

> V(ya) -8n<8<8n 
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= 9=00 

< V(y^) 8 o < 8<l. 

Proof; 

Since from (4.1.6) D^(8, hIq) is symmetric in 0/ it is 

necessary only to consider D|(0, m^) for 0 positive. 

From (4.1.5) 

T \ -r 3 » 
D|(0. m,, = ' 2' 

> 0 0<mQ£l. 

From (4.1.4) for 0 = — + e with e > 0 
/2 

[(2j+l) - 2(n+2j-3)0^] <0 ] — 0/1/2/.../ 

/2 
0= —^ + e 

and we have 

D*(— + E/ m^) < 0 0<mQ<l . 
•/2 

Since D^(d, m^) is continuous then there exists a 0q such 

that O<0Q<1 and 

03(80, "o' = 0 

We now show that D^(0/ m^) <0 for 0 > 0^. By Lemma 

4.5 there exists a K such that 
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C*(mg ) > 0 for j < K 

< 0 for j > K. 

Hence 

2 CtfauieZi = 0 
j=0 3 u u 

x.e. 

=  0 ,  

Since D^(6, dIq) is a power series in 0 which converges for 

-1<0<1/ we get 

for O<0<1, 

3D*(0, iHq) 

30 8=0, 
Z 2j Ct(mo)02i-1 
j=l 3 u u 

< 2K Z C.(m_)0ni"l 
- j=l 3 0 0 

_ "2K CQ (hiq) 

C 

<  0 .  

It can be similarly shown that if 

D*(0*, m^) < 0 
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3D* (9, m.) 
3 8  <  0 .  

0=0* 

Therefore we have that with fixed, as 0 increases, 

D^(8, hIq) becomes negative in sign and stays negative. 

Hence the theorem is proved. 
Q.E.D. 

Next consider the variation of D^(8, m^) due to 

with 0 fixed. 

Lemma 4.6: 

(a,c+l) 

(a,c,c+l) = °(a,c) 
U TOq 

is a decreasing function of m^ for 0<mQ^l. 

Proof; 

3Q (a,c,c+l) 

m. a-1 (l-mo) 
c—1 m^ m. 

_ B(a,c)B(a,c+l) [ 
x&"l (1-x) ddx- x*"l(l-x) °dxl 
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But 

m, m, 
°x*"l(l-x)c-ldx. 

Hence 

9Q (a,c,c+l) 
™0 

Bnirt 
< 0 . 

Hence Q (a,c,c+l) is a decreasing function of 
®0 

Q.E.D. 

Lemma 4.7: 

If for fixed 6/ there exists an m* e (0,1) such that 

3D* (6, TOq) 

3 m-
= 0 

then 

9D*(8, Hq) 
^ > 0 0<mQ<m* 

"0 
= 0 • mQ=m* 

< 0 m*<mQ<l. 

Proof: 

Let 

r (2±^ )̂ 8^3 
Ht (8) = ^rTj+l) [(2i+l)-2(n+2j-3)8^] j = 0,1,2.. 

then from (4.1,4) 
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CO 

and 

02(8, m.) = Z Ht (6)1 , 
^ " j=0 J ®0 

2 1 
For 8 > Y 

(2j+l) - 2(n+2j-3) e ^  

is a decreasing function of j. Since 

then 

HQ(0) < 0 

Ht(8) <0 j = 0,1,2, 

2 1 
Hence for 8 ^ j we have 

3D*(8, m^) 

2 1 
For Q < J 

(2j+l) - 2(n+2j-3) e ^  

is an increasing function of j. Let 

2-48^ 

(4.1.29) 

(4.1.30) 
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where [ ] is the greatest integer function. 

Then 

Ht(e) < 0 j 1 L 

>0 j > L 

Suppose that is such that 0<m_ <1 and 

3D* (6, dIq) 

9m. 
= 0. 

*0=^0. 

Then noting that 

„ ,n-2 2i+3 2L+3x 
( 2 ' 2 ' 2 ' 

"2 

I: (S^, 

r, ,n-2 2L+3x 
—T") 

j = 0,1,2 

we have 

3D^ (0, iUq) 

3m^ 

= E H^(0)R^ (2^, 
'°'02 " ^ - j=0 - "Oj 

= 0 

Since I • (^, > 0, 

O2 

then 
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j=0 3 
(4.1.31) 

Now 

n-2 2i+3 2L+3. 
®mo' 2 ' 2 ' 2 

B(S^, 2£«, 

B(aji, 24!) (l-ao)S-j 
(4.1.32) 

Hence for e>0 

„ ,n-2 2j+3 2L+3\ 
niQ^ 2 ' 2 ' 2 ' 

R 
m, 

, _ /n-2 Z]+3 2L+3v ^ 1-m 
•••t 1—3 / _ / = ; I 

l-m.-E^ ^ 
( ) 

> 1 j—0 /1/2 « « .Ii~l 

= 1 j=L 

< 1 j=L+l, L+2 

Let m_ = + e for e>0 such that m. <1, then 
"3 "2 3 

9D«(9, !»(,) _ " „ ,n-2 21+3 

3mo 
"0="03 3 

By (4.1.32) for bg, b^/ b|, ... such that 

„ ,n-2 2i+3 2L+3\ 
niQ ^ 2 ' 2 ' 2 ^ 

j I ,n-2 2j+3 2L+3. ^ 0,1/2 
m_ ( 2 ' 2 ' 2 ^ 
"2 

we have 

bg>bj>b|> ... >b*_^>b* = l>b£^^>b£^2.... 
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and 

3D* (8, dIq) 

*0=*03 

= I' 2 Ht(6)btR 
2 2 j=Q ] ] 2 2 2 

=  0 ,  

3D* (6, iUq) 
Hence we have that if is zero at then 

SniQ O2 

it is negative for niQ>mQ . Hence the lemma is proved. 

Q.E.D. 

Theorem 4.2; 

There exists 6£>0 and 8^^ defined as 

and 

02(6*, 1) = 0, 

8* = Inf 8, 

°2 

where 

Ug = {8: 8>0, 1^2 nig) £ 0 for all m^ B 0<mQ£l}; 

such that 
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a) for 0 fixed and e[-0^, 0£] 

D^(8, iUq) >0 for 0<mQ^l 

and hence 

V(y ) > V(y,) for 0<m.£l; 

b) for 0 fixed and e{{-0*, -0*)U(0*, 0*)> , 3 

m* 9 0<m*<l, and 

D*(0, IUq) > 0 0<mol"o 

< 0 

and hence 

VfYg) > V(y^) 0<mQ<in* 

< V(y^) ni*<niQ<l; 

c) for 0 fixed and e{(-1, -0|]U[0|/ 1)} 

D^(0, dIq) £ 0 for 0<inQ_<l 

and hence 

V(y ) f.V(y,) for 0<ni-£l. 
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Proof : 

Since D^(U, itIq) is symmetric in 0, it is necessary only 

to consider D*(8, for 6 positive. 

Suppose that for 9 fixed 3 0<8<1, 3 m* 5m* 6 (0,1) and 

d*(8, m*) =0. 

Since 
3D*(8, m ) 

Lim D*(0, m_) = Lim = 0, 
mQ+0 ^ " mg+O ^0 

it follows from Lemma 4.7 that if 

3D* (8, m ) 

in a neighborhood of #^=0, then 

3D*(8, m_) 

amp < ° 

Hence there could not be a point m* 3 0<m*£l and 

D*(8, m^) =0. 

Hence in order that D*(8, m*) = 0 it follows that there must 

exist an m** such that 

0<m**<m*<l 

and 
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DD*(0, m ) 

= 0 ni=mî * 

< 0 

Hence if 

D*(8, m*) = 0 

then for mQ>m* 

D*(8, Mg) < 0. 

By above if for 6=0^ 

D*(8^, 1) > 0 

then 

D*(8i,mQ) >_ 0 0<mQ<_l, 

If further for 6=02 

D*(02, 1) < 0, 

then by Theorem 4.1 

Hence 

If 

8* = {8: 8>0 and D*(6, 1) 

D*(6, 1) < 0 
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then either 8=82 

and 

05(83, mq) <0 0<mo<l, 

or 

8=8. and 3 m* 3 

D*(8^, nig) > 0 0<mQ<m* 

= 0 ^0^0 

< 0 

Now for 

°2<®3' %' 1° 

and 

03(84 ,  mQ^)  >  0 ,  

then by Theorem 4.1 

®4-®3* 

ii^<mo<l. 

Hence 

8* = Inf 8 

and the theorem is proved. 
Q.E.D. 

Now let us look at the efficiency of y^ with respect 

to y,. We have 
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V(ya) = 

° 2  2 2 
=~a-p ) (1+5 ). 

Therefore 

relative efficiency of with respect to y^ 

= e*(6, hIq) 

_ 

vcy^) 

D* ( e ,  m„) •  
1* 2 %=T 

r(2^) (i+«2) 2 

Imiaediately from Theorems 4.1 and 4.2 we have Theorems 

4.3 and 4.4. 

Theorem 4.3; 

For fixed such that 0<mQ^l there exists a 9^ with 

O<0Q<1 ^ 

e|(ô/ m^j) > 1 -1<0<-6q 

= 1 

< 1 -8o<8<So 

= 1 e=e(, 

> 1 0Q<e<i . 
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Theorem 4.4: 

Let 6* and 0* be as in Theorem 4.2 then 

a) for 6 fixed and 0*] 

e* (6, m^) <1 for 0<mQ_<l, 

b) for 0 fixed and g {(-8*, -0*)U(e*, 8*)} 

j m* 3 0<m*<l and 

c) for 6 fixed and -8*]U[8*, 1)} 

e^(5, m^) for 0£mQ_<l. 

Theorem 4.5: 

For Cq fixed such that 0<eQ<l, there exists an m* such 

that for niQ—""o 

By Lemma 4.7 for fixed 6 or equivalently for fixed 

e*(ô, m^) 
< 1 for 0<m^<m* 
— U—" u 

>  1  for m*<mQ<l 

Proof : 

6,3 m^ ( 0) 3 

e* ( 6 , m^ ) 1 

1 + 
D*(8, mg) 

n-1 

r(^) (1+6^) ^ 

> e 
0 0<mo_<mo (0) 
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Here hIq ( 0 ) may be 1. 

Pick 

m* = Inf m (0) . 
O<0<1 

Hence 

eg(6, mg) ̂  eg(m*, ô) 

> eg for 0<mQ<m* 

and for any 6 e[0, <») 

B. Comparison of the Sometimes Regression Estimator 
with the Regression Estimator for Case I 

In this case we have 

o_2(i_p2) 

VtYg) = Vfy^) + a (3 - E:?) 

o 2(i_p2) 
+ D*(6, mg). (4.2.1) 

nr (^) (1+0^) 2 

Let 

D*(8, m^) = ^(V(yg)-V(y^)). (4.2.2) 

Og^d-p^) (1-e^) 2 

Then 
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D*(e, iUq) EI 
(1-0^) 2 

n-3 

(n-3)(1-0^) ^ 

\ <¥' I' 

n-3 

„ 2r(2î2§:i)e23« 

j=o r ( j+i) r (S^) ' 4(i+i) 

T /B-Z 3. 

1 
n—1 n—3 n—3 

(1-0^) ^ (n-3)(1-0^) ^ 

j=o r(j+i)r(2^) % ^ 

2,^3 

" 'rb+TT " T ,n-i M+gr' • (4.2.3) 
mgl 2 ' 2  '  

Consider first the effect of variation of 0. 

Theorem 4.6: 

For iUq fixed such that 0<ii1q£1/ there exists a 8^ 

such that O<0Q<1 and 
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D*(0, hIq) > 0 —1< 0< —0, 

= 0 

< 0 

= 0 

> 0 

0=-eo 

8o<8<Go 

0=00 

9n<8<l, 

and hence 

V(yg) > V(y%) 

= vfTt) 

< v(Fa) 

= V(F^) 

> V(7t) 

—1< 0 < — 0 

e=-0. 

-8Q<8<8Q 

0=0« 

8o<8<l 

Proof : 

3D*(0, hIq) 

90 
0 (l-0^) + (n-l) 0^ 

n+1 

(1-e^) ^ 

<» (4i+4)r(*+2i 

r(Sy^) j=o r(j+i) 

X ( 
4(j+l) 

(4.2.4) 
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Let 

M«(e, !«(,)- ^ r(j+i) < 4(j+i) 

^0 

1 : 4(j^i)r(al|2zi)^ 

/Szl^ 4=n TO+Il m ( 2 ' 2 ^ r(^) j=o 

I (^, 

" , ,n-2 ±-1+^ 
mgl 2 ' 2 ) 

8D* ( e ,  m ) 
If M*(8, Mg) is nonnegative then g-g > 0 and 

D£(0/ Bg) is an increasing function of 0. 

Next we look at M*(6, ) and determine that for fixed 0 

if M*(0, iUq) is ever negative then its smallest value is 

when m =1. 
0 

Let J 2i+3) 

hMj, m„) = I (2^2, 2j|5, - "" n-j! 2 \ * S .  '  

" 2 ' 2 ' 

(4.2.6) 

where j = 0,1,... . 
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By Lemma 4.5 h*(j, m^) is a sequence of numbers in j 

which start out positive and become negative as j increases 

and stays negative. 

Also, 

is an increasing function of m^. Hence if 

h*(i, mg) < 0, 

then for e>0 

h* (j , mg + e ) < h* ( j , m^) £ 0 . 

But at ®Q=1 h*(0, 1) < 0. Hence for all j, 

h*(j, 1) < h*(j, m^j) 0<mQ<l. 

Therefore 

M*(8, 1) < M* ( e ,  m^) for 0^Q<1. 

Since for 0 fixed 

9 (l-62) + (n-l) 8^ 
n+1 

(1-0^) ^ 

is a positive fixed constant in m^, we have 
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(1-6^) ^ 

1 re(i-e^) + (n-i)e^ 

~7W-(1-8 ) ^ 

00 r (B±2^) e^i Sji 
-02 (1-6^) ^ (2j+l)] 

j=0 Tr-^)Tij+l) 

But 

T,,n+2j—Ix n-1 
' 2_J_ 923 (1-9=^) ^ 

r (Szl) r ( j+i) 

is negative binomial for j=0,l 

Hence 

3D*(9, mg) 1 ,6(1-6^)+(n-1)9^ _ 9^(n-1) 

39 - 2^ 1-0^ 1-8^ 
(1-6^) 

_ 9(1-82) 

1-9^ 

=  0 .  

Hence D£(9, m^) is a nondecreasing function of 9 for fixed 

mQ 

We have 
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D*(0, hIq) < 0. (4.2.7) 

By Remark 3.3, for tQ=0 and hence mQ=l, the sometimes regres

sion estimator becomes the regression estimator and we have 

d*(8, 1) = 0. 

By Theorem 4.2 for 0 in a neighborhood of 1. 

D* (0, m^) > D*(0, 1) , 

therefore 

Lim D*(0, m ) >0 0<m»<l . (4.2.8) 
0-^1 " 

By (4.2.7) and (4.2.8) and the fact that D^{Q, m^) is 

a nondecreasing function in 0, the theorem is proved. q e d 

Next we consider the effect of m^ with 0 fixed. This 

result is given in Theorem 4.7. 

Theorem 4.7: 

With 0 fixed D*(0, ) varies with D*(0, m^) as a 

function of m^. For 0 fixed such that 0^0<1 then D£(0, m^) 

falls in one of the following three categories: 

a) D^(0, Mg) is always increasing as a function of m^ 

for 0<mQ£l; 

b) 3mg such that 0<m*<l and D*(0, m^) is increasing 

as a function of m^ for inQ<m* and decreasing for mQ>m*; 
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c) D*(0, hIq) is always decreasing as a function of 

for 0<mQ_<l. 

Proof: 

The proof follows from the fact that 

Dj(e, m^) 

(1-e^) ^ (n-3)(1-e^) 2 

D*(0, Bg) 

' r(B^) ' 

and Lemma 4.7. Q.E.D. 

If we define by e*(ô, m^) the relative efficiency of 

yg with respect to y^, we have 

vfy.) 
e*(6, m_) = —^ (4.2.9) 

V(yg) 

then the following two theorems are direct consequences 

of Theorems 4.6 and 4.7. 

Theorem 4.8; 

For m^ fixed such that 0<mQ^l; there exists a 0q such 

that 
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e*(6, hIq) < 1 

= 1 

> 1 

1 

< 1 

Theorem 4.9; 

For 6 fixed and contained in (-1, 1), e£(ô, TOq) and 

e|(ô, iUq) vary in the same manner as a function of m^ for 

0<mQ£l. 

C. Comparison of the Sometimes Regression Estimator 
with the Difference Estimator and the Regression 

Estimator for Case II with tg^O 

In this case the range of ô will be 0] since it is 

assumed that $2—^0' this case we have 

a2(l-p2) 
V (y g ) =V (y^) 

nr (2^) (1+6^) 

00 (-1) ̂ (i+1) r (2±^ 
2 £— 

n-2 i+3 (4.3.1) 
0 

for -oo<0< 0 
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But (4.3.1) is the same as 

V(yg)=V(y^)-

nr (1+6^) 

ag^Cl-pZ) 

Z 
i=0 

00 (i+1) r (S!:̂  
(4.3.2) 

for 0<^ô<<». 

It will be noted that V(^) as given in (4.3.2) is 

exactly the same as V(y^) for Case III given by (4.4.1) 

when tg^O and 0<ô«». Hence the two cases are symmetric in 6. 

In the next section, we compare V(y^) with V(y^) for Case 

III. The findings of that investigation will apply to 

Case II in a symmetric manner. Likewise, the results of 

the comparison of V(yg) and V(y^) in Section E apply to 

Case II in a symmetric manner. 

D. Comparison of the Sometimes Regression Estimator 
with, the Difference Estimator for Case III with tg^O 

For this case we have 

V(yg)=V(y^) -

nr(2^) (1+6^) 

a / a - p ^ )  
n+i-2\fi+1 
2 ^ ,n-2 i+2\ 

i+1,,,^,2,-2- ° 

z 
i=0 

CO (i+1) r (ii^^) Ô 
(4.4.1) 1 

4r(i|^) (1+6^)2 
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With 6 = —— 

^1+6^ 

and let 

n-3 

n (î^) (1+6^) 
D-(0, m_) = = (V(y^)-V(y,) . (4.4.2) 

Since 

n-3 

nr(^) (1+5^) ^ 
4 2 > 0, 
o ^(1-p^) 

02(6, iUq) has the same sign as V(y^)-V(y^), and we have 

Letting j=i-l in the first simmation and j=i in the 

second summation of (4.4.3) we get 

I' 
D_(6/ m^ ) — 
'2'"' "'0' Ï 

^ (4.4.4) 
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Ï  - *  2 ' ( z r W  

\'¥' ¥> 

Letting j=i-l in the second summation and j=i in the 

first summation of (4.4.3) 

r (^2^) 6 ^_2 
DjO, mg) = -

00 r (11+221)63 
+ z  — I (2^, - (n+j- 3 ) e ^ ) .  (4.4.6) 
j=0 2r(% ®0 ^ ^ 

Consider first the effect of variation in 6. 6 will 

vary only over the interval [0, 1) since it is known that 

62IG0 

where 

Using (4.4.5), ̂ 2(6, m^) can be expressed in the form 

00 
D_(8, m^) = S C. (mu)8] (4.4.7) 
^ u i=o ] " 

r (^2^) ^_2 3 
Co(*o) = Imo^ir^' !r) (4'4'8) 
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2 

n-2 
2 

i+4 
2 

•} 

(4.4.9) 

j = 0,1/2,3 ... . 

Lemma 4.8; 

For 0< m Q < l  C q(m^) , C^tm^), ... is a sequence 

of numbers which starts out positive and becomes negative 

and stays negative. 

Proof; 

^ is a decreasing function of j, and by Lemma 4,4 

is an increasing function of j. Hence 

i+2 _ _ 
2(j+l) J 

I 
m, 0 

is a decreasing function of j. 

Co (mo) ' 0  

and 

C^(mQ) > 0. 
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Now suppose Cj (iiIq) ^ 0 for all j, but then DgfU, m^) ^ 0 

for all U and m_. But by (4.4.6) with &>0, D_ (— + , m.) 
/2 

0 for 0<mQ<l. Hence there exists a j such that CjCrn^) < 0 

and therefore the lemma is proved. 

Q.E.D. 

Theorem 4.10: 

For TOq fixed such that 0<mQ£l, there exists a 6^ where 

0<6g<l and 

Dgfe, m^) > 0 0<8<8o 

= 0 0=0^ 

< 0 8 <8<1 , 

and hence 

VfYg) > V(y^) O<0<eQ 

= V(y_j) 

> V(y^) 8Q<e<l . 

Proof : 

From (4.4.5) 

r(^) n-2 3 
D2(0, m„) = |) > 0. 

From (4.4.6) if fors >0,8 = — +e<l, then since 
/2 

- (n+j-3) {— + e)^ < 0 
/2 
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for all j, we have 

D, ( ~ + e , m^) < 0 
/2 " 

So there exists a 0q such that O<0q<1 and 

°2 (Go' ~ ° 

We shall now show that DgfO, m^) < 0 for 0>0Q. By 

Lemma 4.8 there exists a K such that 

Cj (mg ) > 0 for j < K 

£ 0 for j ̂  K, 

Hence by the fact that DgfOg, m^) = 0 ,  

CO 

i.e. since 0q>O 

00 

0 

9D2 ̂ ® ' nig ) 
Z jC.(mn)0^"^ 
j=l ] 0 30 

302(0, ̂ 0^ 
=.i,3=j<»o)So^"^ ' 

b=eo 3-1 

00 . -

< K Z C.{mn)0n^ 
- j=l 3 0 0 

30 
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4" 

It can be similarly shown that if 

DgfB*, itIq) < 0 

then 

30% (8, HIq) 

30 
< 0 

3 = A* 

Therefore we have that with fixed, as 6 increases, 

DgfG, iHq) becomes negative in sign and stays negative. Hence 

the theorem is proved. 
q.e.d. 

Now consider the variation of DgfG, m^) due to . 

It will be assumed that t^sCO, °°) and hence m^cfO, 1] , 

because if t^ were allowed to be less than one, then 8^ 

could be rejected when 

Lemma 4.9: 

If for fixed 0, there exists an m*e(0, 1) such that 

aogfe, H q )  

3mo 
= 0 

mQ m* 

then 
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3D,(6, m^) 
> 0 0<mQ<mg 

= 0 my=m* 

< 0 

Proof: 

-r (^) 

r(5±^)8i-i 
H. (6) = 4m - (n+j-4) 0^) j = 1,2,3,..., 
] 2 T i ^ )  ^  

then from (4.4.6) 

D_(8, m.) = Z H.(0)I (ii^, ji^) (4.4.10) 
^ 0 j_Q ] "o 

and 

m_) °° n—2 4+2 

For 0^> j 

i >- fn+"i—4^ ^ (n+j-4) 0 

is a nonincreasing function of j. Since Hq(0) and H^(0) are 

j 
2 1 

nonpositive then H.(0) < 0 for all j. Hence for 0 ^ ̂ we 

have 

3D, (0 , nin) 
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2 1 T 2 
For 0 ^ 2' 2 ~ (a+j-4) 0 is an increasing function of 

j. Let 

L = 

where [ ] is the greatest integer function. Then 

Hj(e) < 0 j < L 

>0 j > L . 

Suppose that m_ is such that 0<m_ <1 and 
"2 "2 

3D, (0, m.) 

Then noting that 

_ ,n-2 j+2 L+2 
5^0 ( 2 ' 2 ' 2 •  •  •  f  

we have 

aOgtO, niQ ,n-2 j+2 L+2. 
(—'2 '-2") 

0 

Since 

then 
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E H (0) R_ = 0. 
j=0 ] ' 2 ' 2 ' 2 

"2 

(4.4.12) 

Now 
C ,11-2 L+2. 

B(^, ̂ ) (l-mg) 2 

(4.4.13) 

Hence for e>0 

\ '¥ '  ¥-¥' (l-niQ-e) 
hll 

2 

(l-niQ) 
ici 
2 

j >  1  j=0,l,2,...L-l 

= < = 1 j=L 

< 1 j=L+l, L+2, L+3. 

Let m. =m_ +e for e>0 such that m. <1, then 
°3 °2 °3" 

aOgte, m^) 

3^ 
"^0=^0 

By (4.4.13) for b^, b^, bg... such that 

¥' ¥> 

"2 

j = 0 , 1 , 2 ,  

we have bQ>b^>b2 .. 
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3D*(0, iHq 

3m, 

<11 (M-, % s H. (e)E„ (2^2., î , L±i) 

"53 

— 0 • 

2 'j:Q - 2 - 2- 2 

30*(0, m.) 
Hence we have that if is zero at m. then 

SSq O2 

it is negative for #^>0^ . Hence the lemma is proved. 

^ Q.E.D. 

Theorem 4.11: 

There exists 6^>0 and defined as 

DgtBi, 1) = 0, 

and 

8- = Inf (0) 

%2 

where 

U,={6; Dg(0, m^) £ 0 for all m^3 0<mQ£l}, '2 "2""' "'O' -

such that 

a) for 0 fixed and e[0, 0£] 

DgtG, m^j) > 0 

and hence 

V(yg) > V(y^) 

0<mQ£l, 

o<°^o—1; 
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b) for 0 fixed and c{Q^ , 0^) , then 3 in;!f •} 0<m*<l 

and 

DgfO, itIq) > 0 

= 0 

< 0 

and hence 

VfYg) > V(y^) 

= 

> V(f^) 

c) for 6 fixed and £[02' ' 

DgtG, IUq) £ 0 GCOQ^I, 

and hence 

V(yg) IV(y^) 0<mQ<l. 

Proof: 

Suppose that for 0 fixed 5 0<8<1, 3 m* 9 in*e(0, 1) such 

that 

DgtG m*) = 0 . 

Since 
3D_(8, m. ) 

Lim D„(9, 0) = Lim 
niQ-^O ^ HIQ^O ^"^0 

=  0 ,  

it follows from Lemma 4.9 that if 

x z 

0<mo<m* 

mo=m* 

m*<mo<l. 

0<mo<m* 

mo=m* 

m*<mo<l; 

u— 
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SDgfG, HI q) 

< 0 in a neighborhood of 01^=0 

then 

and hence there couldn't be a point ^ 0<m^^l and 

D2(6, m*) = 0 . 

Hence in order that d g f g ,  m*) =  0  it follows that there must 

exist an mg* such that 

0<m**<m*£l 

and 

302(6, m^) 

= 0 

< 0 

Hence if d g f g ,  m * )  =  0  then for mq>m* 

DgCG, m*)< 0 

By the above if for 6=0^ 

1) > 0 

then 

irig) ^ 0 0<mQ£l. 
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If further for 8=82 

DgtGg, 1) < 0 

then by Theorem 4.10 

8; > 81. 

Hence 

0* = {0: DgCe, 1) = 0} 

If 

02(8, 1) < 0 

then either 

or 

0=02 and 02(03/ 01^)^0 0<mQ 

0=6^ and 3 m* 3 

02(84, ITIQ) > 0 0<mQ<m* 

= 0 mQ=m* 

< 0 m*<mQ<l . 

Now for 

°2<®3' ""O^' 1 " 
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and 

D2 (64 / niQ^) i 0 / 

then by Theorem 4.1 

i ®3' 

Hence 

0* = Inf 0 

°2 

and the theorem is proved. 

Q.E.D, 

Now let us look at the efficiency of y^ with respect 

to y^. We have 

v(ya) = 

"2 2 2 = (1-p^) (1+5"^) . 

Therefore 

relative efficiency of y^ with = egCG, ̂ Q) 
respect to y_ 

= 1^ 

D, ( e ,  m ) 

1 + —  ^ — 2 3  

r(^)(i+6^) 2 

(4.4.14) 
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Immediately from Theorems 4.10 and 4.11 we have 

Theorems 4.12 and 4.13. 

Theorem 4.12: 

For m^ fixed such that 0<mQ£l there exists a 8^ with 

0<8o<l 

eg (6, m^) < 1 

= 1 8=80 

> 1 8q<8<1. 

Theorem 4.13: 

Let 0^ and 8^ be as in Theorem 4.10 then 

a) for 0 fixed and e[0, 8^^, 

eg (6, mg) < 1  0<mQ_<l; 

b) for 0 fixed and e(8j^, Bg) 

3 m* 9 0<m*<l and 

Ggfa, m^) < 1 0<mQ<m* 

= 1 mQ=m* 

> 1 m*<mQ<l; 

c) for 8 fixed and sEBg, 1], 

egfô, m^) > 1 0<mQj<l. 
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Theorem 4.14: 

For eg fixed such that 0<eQ£l, there exists an m* 

such that for 

62(4, i«o) > eg 

Proof: 

By Lemma 4.7 for fixed 0 or equivalently for fixed 

6, 3 (6) 3 

D (0, m.) 
1 + £ bL 

n—1 

r(^) (1+6^) ^ 

> ep 0<mQ<mQ(e) 

Here #^(0) may be 1. 

Pick 

mî = Inf m.(0) 
O<0<1 

Hence 

eg (6, itIq) ^ e^ (m*, 6) 

> eQ for 0<mQ<m* 

and for any ôe[0, <=°), 
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£. Comparison of the Sometimes Regression Estimator 
with the Regression Estimator for 

Case III with tQ>0 

Now a comparison shall be made between the sometimes 

regression estimator and the regression estimator in 

Case III. Consider first the effect of variation in 0. 

0 will vary over the interval [0, 1) . 

Noting that 

V(ya) = V(y^) + («:- HTj) • 

Then ^ _ 
*2 (1-P ) 

V(y3) = V(ya)+ ___2 mg) 

nr(S^) (1+6^) ̂  

_ o,2(i_p2) o-Zfl-pZ) 
=v(ya) + -^--E (a -

nr(^) (1+6^) 2 

(4.5.1) 
Let 

D^(0, mp) 2 _^(v(y^)-v(y^)) 

Y 

T 3. 

_ 1 
n—1 n—3 2 (n—3) 

(1-ef) ^ (n-3) (1-0^) 2 

j!o r(S;l)r(% ' 2 ' 2 ' 
2 

T i+2t. 
-^mo , 2 (4.5.2) 
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Then 

9D^{9, dIq) ^ e(i-e2) + (n_i) 03 
56 n+T 

(i-ef) 2 

: (j+i,r(S±^)ej i±iwJ±2 

3=0 \ ' 2 ' 2 ' 'sW 

A)' 2 
Lemma 4.10: 

rW p̂T' • 

For n = 1/2,3,... and k = 1,2,3,... 

B,|, B(|, £^) 

7 n  k+l\ —  „  , n  k+2 

Proof: 

®^2' ®^2' ~2~^ 

/H 1\ T» /k\ T-i /H+k^X\ -p 1\ -n /k^2 \ B (J, -^) r (j) r (—^—) r (—^—) r (—) 

B(|, r (5^) r (^) r (^) r (S±^) 

B(|-

= [ (n+k-1) (n+k-3) (n+k-5) ... (k+1) ]^ 
(n+k-2) (n+k-4) ... (k) (n+k) (n+k-2) ... (k+2) 

> 1. 
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Theorem 4.15: 

For fixed such that 0<mQ<l, there exists a 0q such 

that O<0Q<1 and 

D^(8, m^) < 0 O<0<8Q 

~ 0 6=0q 

and D^(0, m^) is strictly increasing for 

B(^, I") 
0  < 0  <  -

2B(^, 1) 

and hence 

V(yg) < V(y%) O<0<8o 

= V(y^) 0=0 Q 

Proof : 

3D^(0, 1) ̂  8(1-62) +(n-1) 0^ 
30 n+1 

(1-0^) ^ 

CO (j+i)r(^"^j 

i=o 

. 0(i-eV(n-i)ei . ; r(S±2i=i,8^j+:(2j+i) 

p ̂  j=o 2r(2^)r(i+i) 
(1-0 ) 

=0 0^^"^^(2j+2) 
- I  —  

j=o 2r(^)r(^^) 
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But 

r(2±2^rl) 62j (I_e2) 2 

j,_;i 3 ~ 0/1/2/ ... 
r(j+i)r(î~) 

is the negative binomial density function, and therefore 

j=0 r(j+i)r(î^ • 
( i - e ^ )  

Hence, 

30^(8, 1) «> Q2j+1 r(9+2j-l) (2j+i) r(2±il) (2j+2)0 

^ j=o ^r(j+i)r(îiS r(^ii^)r(S~) ̂ 

(4.5 

For 

r (^+2j-i) p (2j^^ r (S^) (2 j+1) 

r(îij^)r(j+i)r(2i|i) (2j+2) 

B(2^, (2j+i) 

j+1) (2j+2) ^ 0,1/ 2 . . . ,  

the jth term is positive. 

By Lemma 4.10 

G(j) < e(j+l) , j = 0,1,2, 
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Therefore for 

B(^, |) 
0 < - ^ 

2B{^, 1) ' 

D^(0, 1) is an increasing function of 0. 

Since is an increasing function of 

and by Lemma 4.6 

is an increasing function of . Hence if 

I  (Sz?. iii) ( 1+2 _ ° ) 
m. ' 2 ' 2 ' '2 ( j+1) . -222 j+4, ' 

mgl 2 ' 2 ' 

becomes negative as m^ increases, then it continues to 

decrease. But 

(2#rT - y,^' iii'' i ° . 
1 ^ 2 '  2  ̂  

(4.5.5) 

Hence since 

8Dj_(e, 0) ̂  e(i-e2) + (n-i) 0^ 
n+T ' 

(1-0^) ^ 

and applying (4.5.5) to (4.5.3), we have 
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3D,(0, 1) 3D (6, m ) 
3-8 < 0<mo<l. 

Hence for fixed hIq , D^(6, ) must continue to increase as 

6 increases as long as D^(6, 1) increases. Hence we have 

that D^(8, m^) is strictly increasing for 

|) 

e < -
2B(2^, 1) 

For fixed such that 0<mQ£l 

D^(0, m^) < 0. 

Also 

n-1 

=1 (1-0^) ^ Dj_(0, mg) 
0=1 

and D^(8, m^) converges for 8 in a neighborhood of 1. Hence 

D^(0, m^) >0 

in a neighborhood of 8=1. 

Hence the theorem is proved. 

Q.E.D. 

The theorem does not give any idea concerning the 

efficiency of y^ with respect to y^ for 6>0q. On the basis 

of the results obtained so far and the numerical evidence, 

it is strongly felt that the following result is true. 
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Conjecture : 

For ÏÏIq fixed such that 0<mQ<l, there exists a 0^ such 

that O<0Q<1 and 

D^(G, iUq) < 0 0<8<Qg 

= 0 e=0Q 

> 0 8Q<8<1, 

and hence 

V(yg) < V(y^) o<e<0Q 

= V(y^) 8=8o 

> v(ya) 8o<8<i . 

Theorem 4.16: 

For 6 fixed and E[0, 1), D^(8, m^) and DgfS, m^) vary 

in the same manner as a function of m^ with 0<mQ<l. 

Proof: 

This theorem follows by observing that 

0 2 1 DgCG, Mg) 

°l(G' ̂ 0^ 2^3"*" r ,n-l. ' 

(1-0^) ̂  (n-3)(1-0^) ^ 2 

Q.E.D. 

If e^(6, m^), the relative efficiency of the sometimes 

regression estimator with respect to the regression esti

mator , is defined as 
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v ( y , )  
c,(6, m ) = —— , (4.5.6) 

V(yg) 

then we have the following results concerning the efficiency 

of yg with respect to y^. 

Theorem 4.17: 

For iUq fixed such that 0<mQ<l, there exists a 9q 

such that 0<6q<1 and 

e^(Ô, irig) > 1 OOOq 

= 1 6=8q . 

Theorem 4.18: 

For 6 fixed and E[0, 1), 6^(6, m^) and eg(6, vary 

in the same manner as a function of m^ for 0<mQ^l. 
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V. STRATIFIED REGRESSION TYPE ESTIMATOR y BASED 
"s 

ON A PRELIMINARY TEST OF SIGNIFICANCE 

In this section we shall extend some of the results ob

tained so far and develop a sometimes regression estimator 

appropriate to the case of stratified sampling. 

Consider a population classified into k strata, the ith 

stratum having a proportion W. of the units in the popula-
k 1 

tion so that Z W. = 1. Let Y be the characteristic under 
i=l ^ 

study and consider the problem of estimating the population 

mean 

_ k _ 
Y = Z W.Y. 

i=l ^ 1 
k 

based on a stratified random sample of size Z n. , where n. 
i=l ^ ^ 

units are drawn at random from the ith stratum, i = 1,2,3...k. 

An unbiased estimate of Y is 

_ k _ 
y = Z W.y , (5.1) 

i=l 

where y^ is the sample mean based on n^ units drawn at random 

in the ith stratum. The sançle mean y^ in the ith stratum 

is an unbiased estimate of the ith stratum mean Y^. Let X 

be the auxiliary characteristic on which information is 

available for all units in the population. If X and Y are 

correlated and the relationship between them is linear, 

within each stratum, regression type estimators may be used 
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to estimate the population mean Y. A commonly used esti

mator is the difference estimator defined as 

_ k 
y = 2 W.y , (5.2) 
"d 1=1 

where 

\ «0. ' 

Bn is some fixed constant that is assumed to be known, and 
_ i __ 

and are population and sample means respectively in 

the ith stratum. This is an unbiased estimator and its 

variance is given by 

2 
_ k W. N.-n. 9 

k W.^ 
= I 

2 2 
where a, , a. and _ are the variance of Y, the variance 

i i i 
of X and the covariance of Y and X respectively in the ith 

stratum. When is in fact the regression coefficient of 
i _ 

y on X in the ith stratum, i = 1,2,...,k, the estimator y 
_ d 

is the minimum variance unbiased estimator of Y. 

When g- , the regression coefficient of Y on X in the ith 
i 

stratum is not known, it is customary to estimate it from the 

sançle with a consistent estimator of given by 
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^12 i 
3, = —5 i = l,2...,k, " 'I 

where 

n. 
1 1 _ _ 

X (x. .-X.)(y•.-y•) , 
'12. n.-l ^ ij 1' 'Jii 

and 

n. 

^1. = • 

1 1 j=l 

This estimator of Y, so obtained is known as the regression 

estimator and is given by 

y», = /, Vl.' <5.3) 
I 1=1 1 

where 

In general this estimator will be biased and the bias is 

given by 

Bias (y ) = - Z W. CovCBo / x.) . 
i=l 1 1 ^ 

The variance of this estimator to the first order of 

approximation is 
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_ k - N.-n. °2. 
= -, (^) (__^) 

k w2 
= Z at (1-pf) , 
i=l^i 2i 'i 

where 

"l.°2 . 
X  1  

is the correlation coefficient between Y and X in the ith 

stratum. 

It would appear that if 6„ is an intelligent guess 
i _ 

for 3^ then the difference estimator y, would be more 
i i 

appropriate. On the other hand if there is little or no 

knowledge of then regression, estimator y^ would have 
i i 

advantage. We therefore propose an estimator based on a 

preliminary test of significance of the relative closeness 

to 62^. 

This estimator to be called "sometimes regression 

estimator" may be defined as 

S  1 =1 1  

where, 
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^S. = ̂ d. t.EA 

= if 

is an estimate of the ith stratum mean, and 

t. = 

/n.-2 (g„ -6- )s^ 
1 

' (-2 -4 4 
i i i 

Again the acceptance and rejection regions will be 

dependent on the a priori information available concerning 

the possible values of g. . In order to evaluate fully the 
i _ 

expected value and mean square error of the estimator , 

it is necessary to define exactly the acceptance and rejection 

regions and make suitable assumptions about the joint distribu

tions of Y and X. It will be assumed as before that (Y, X) 

has a bivariate normal distribution within each stratum. 

Under the assumption of bivariate normality and since sampling 

is carried out independently in each stratum, the tests t^ 

are independent. Now the expectation and mean square error 

can be determined. 

E(y ) = Z W.E{y ) 
s i=l ^ ^i 

By the work of Chapter III 

E (y„ ) = w. Y. . 
s 
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Hence 

E(y^^) = Y . 

Further, 

_ k _ _ 
V(y„ ) = 2 w.^ V(y ) . 

i=l ̂  

Now the expression for V(y ) is dependent on the case into 
_ ^s 

which y falls. There are three cases given as 
®i 

Case I; 

= ^a. " I til 1 tg. 

/ 

X  

=  "  I  t i l  >  

Case II : 

^ s .  =  \  "  t .  >  t  
X X  X  

= t. < tj,^; 

Case III; 

= ^d. t. < 

= " ti > to.. 

In general, depending upon the a priori information 

available concerning the range of values of 3- , the 
_ _ i 

estimator y of Y. for the ith stratum (i = 1,2,...k) 
i 

may belong to any one of the three cases mentioned above. 
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It is possible that y is such that y is of Case I for 
^s ®i 

of the strata, is of Case II for k^ of the strata and is 

of Case III for the remaining strata- We shall consider the 

problem when no a priori information is available concerning 

the range of values of ^2 so that y is necessarily of 
_ i i 

Case I. The estimator y now takes the form 
s 

• '5.5) 
s 1=1  1 

where 

ÏS. = ïd. " 

if It. I > tg . 
1 1 

The following theorem gives the result regarding the ex

pected value of the general estimator y^ and its variance. 
s 

The variance result follows by using the result of Theorem 

3.2. The corresponding results when y for the ith stratum 
^i 

is not necessarily of Case I can be obtained in a similar 

manner. 

Theorem 5.1; 

The sometimes regression estimator y^ is an unbiased 

estimator of the population mean, i.e. 

E(y^ ) = Y . 
s 
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The variance of , when y^ (i = l,2,...k) are of Case I 
s i 

is given by 

V(V, )= £ M. [Vly.) 2— I 
"s j=l : "îj "j i=0 n.-l , n.+2i-l 

r(i+i)r(-l^)a+s, ) 2 ^ 3 

] 

2 2. n .+2i-3 
2 Pj ) ~ (2i+l)r(-J-^ )5. 

+ J y ± J 
"j i=0 n.-l ^ nj+2i-3 

2r(i+l) r(-^) (1+5/) 2  

j 

where 

Bo.'l. 

«j = ' 

(1-pj ) 

= 

1 + „. -2  

2 
a2 is the variance of Y in the jth stratum^ 
j 
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and pj is the correlation coefficient between X and Y in the 

jth stratum. 

Now we make a comparison of V(y ) with V(y ) . 
"s *d 

Define 

°2w<^s' 
S s d 

'A ' V' 
n^Cl+S/) 2 r(-^) 

where 
n -3 

^ 2 2 , . n r(-^)(l+6. ) 
D*. iti_ ) = ̂ 2 (V(y )-V(y )), 

i a 2 (1-P.2, " j 
j ^ 

= (e/i), 9(2), ... e^k)). 

(i) = A 

^l+6j2 

j — lf2/».»/k/ 

and 

/ • • • / ) • 

Define 

^So 1 ̂s' 
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if 

= (0 , 8 (2), ... 0 ) , 

and 

n (i) . o(i) 

Let 

and 

Q £0 i = 1, 2 , . . .  k 

0  =  ( 0 ,  0 ,  0 ,  . . .  0 )  

1 = (1, 1, 1, 1) -

We have 

Theorem 5.2: 

% of ou 
For m. fixed such that 0<m^ <1, there exists 6 °s "b-

where <1,3 DÎ.(e„, m. ) = 0 (j = 1,2,... k) and 
Sq u Uj 

D2w(%s' ) < 0 

= = 0 %_=-% 
S  S  

> 0  - %  < %  < _  

= 0 %°=%^ 

^ ^0 
< 0 # <# <1 

=0 s 

Hence 
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V(y„ ) < V(y ) -!<% <-% 
s 0 

> V(y„^, -\<K\ 

= 

where 

-9(2), ... -efk)). 

Proof; 

Using Theorem 4.1 we know that for fixed m_ there 
^ j 

exists a where 0<9q^^^<1 and such that 

D*j(8(i), *0 ) < 0 -i<8(i)<-8Q(i) 

= 0 0 (i)=-8Q 

> 0 -eQ^3)<e(j)<e^(j) 

= 0 8 (i)=8Q 

< 0 egfi)<8(])<!. 

Applying this result to (5.6) the theorem is proved. 

Q.E.D. 
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The following theorem gives the result regarding the 

effect of variation of m_ with fixed. 
°s = 

Theorem 5.3: 

There exists and defined as 

where 

D^j(@2 ^ f 1) — 0/ j — 1/2/3 ... k/ and 

^2 = (e/", 

where 

8_(i) =:bif efi), j = 1,2,... k 

with 

U2.= {efi); 8 >0 and m^ ) < 0 for 

all m. 3 0<m^ £1} j = 1,2,...,k, 
j j 

such that 

a) for fixed and e[-^£, 

D3w(%g, mq ) > 0 for %<mQ <1, 
s s 
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and hence 

V(y ) > V(y ) for #<m <1; 
~ ""d °s" 

b) for fixed and -6^)u(&2, 

3 m* = (m* , ...m* ) %<a^<l, and 

°2w '%s' *0 ' - 0 i^O 
S s 

< 0 m*<mQ <1, 
s 

and hence 

V(y^ ) 1 V(y^ ) jP* 
s d s 

< Vfy* ) mS<mo 11; 
d s 

c) for fixed and e{(-î, 

°2« (%s' ̂ 0 ' 1 ° ' 
S  s 

and hence 

v(y„ ) 1 v(7„ ) o<mj <1 . 
S  d s 

If we define 

Relative Efficiency of y with + /'V ~ , 
respect to ? "s = ®2 <®s' "°0 ' 

w, s s 

v(y„ ) 
S  
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then the following two theorems are a direct consequence of 

Theorems 5.2 and 5.3. 

Theorem 5.4: 

For iUq fixed such that £l, there exists where 
s s 0 

%<% m- ) = 0, (j = 1,2—k) and 
Sg ZJ U Uj 

e* 2s(%S' "b ) > 1 
s u 

= 1 % =-% 
^ ^0 

<1 -& <% <% 
^0 ^ ^0 

= 1 % ='^ 
^ ^0 

> 1  %  < %  < ï  .  
^0 ^ 

Theorem 5.5: 

For and , defined as in Theorem 5.3 

a) for fixed and e[-'^£, 

eSs(%s' ^0 ) ^ ̂ 1^; 
s s 

b) for fixed and e{(-'^2' %2)} 

3 m*=(m* , m* , ...m* ) 3&<m*<ï, and 

e S s ( 4 s '  ^  ̂  

> 1 for m*<mQ _<î; 
s 
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c) for fixed and e{(-î, 1)}, 

'2s(%s' 1 

Next we look at a conparison of the variance of the some

times regression estimator y and the regression estimator 
^s 

Let 

n. -3 

2 
. . (l-p.2)(l-8.2) ^ J J J \ 

= 2 [D*.(8l]', m )], (5.7) 
j=l "j 

where 

^ "l (1-P.2)(1-0 2) 2 
] : 

We then have the following theorem regarding the effect 

of variation of with ̂  fixed. 

Theorem 5.6; 

For fixed such that ?l(<mn <î, there exists a where 
's; °s- =0 

<ï, 9 (0QiQq ) =0, (j = 1,2,3. ..k) and 
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Dîs(%s' ^ ° 

=0 % =-? 
s Sq 

<0 -# <% <% 

= 0 % =% 
^ ®0 

> 0  %  < ï  

and therefore 

Proof : 

=0 ^ 

V(y„^) > V(y„^) -ï<%s<-%s^ 

> V(v, ) <%_<ï . 
"A =0 s 

The theorem is proved by applying the results of 

Theorem 4.6 to D£j(9^^^, ) for j = 1,2, ... k. 

Q.E.D. 

The following theorem which is a direct consequence 

'U 
of Theorem 4.7 is concerned with the effect of varying 

while holding fixed. 
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Theorem 5.7: 

For fixed and c(-l, 1) , D* (% , 'm_ ) will vary as 
-b s s ^ 

a function of m^ in the same manner as 0*^(0, m^ ) for 

%<3L <1. 
s _ 
Let us now consider the efficiency of y^ with respect 

s 
to y . Then we have 

£ 

Relative efficiency of y with respect to y = e* (% , m_ ) 
s Z ^ ® "s 

v(y„ ) 
S 

then we immediately have the following two theorems from 

Theorems 5.6 and 5.7. 

Theorem 5.8; 

For m. fixed such that %<m^ <î, there exists ^ 
s„ "s Sg 

where %<% <ï, and 

eis(%s' *0 ) < 1 
S 0 

> ^ 

\\ 
< 1 <%=<%. 

SQ S 
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Theorem 5.9: 

For fixed and e(-'i, 

function of hIq in the same 
s 

<ï. 
°s-

\), e*g(%g, TOq ) will vary as a 
s 

manner as ) for 
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VI. CONCLUSIONS AND RECOMMENDATIONS REGARDING THE 

USE OF THE SOMETIMES REGRESSION ESTIMATOR 

If conditions are such that the use of regression type 

estimators is warranted, the question arises as to when the 

sometimes regression estimator would be most appropriate. 

Actually, the sometimes regression estimator includes both 

the difference estimator y^ and the regression estimator y^ 

as special cases. Hence the sometimes regression estimator 

may be used whenever it is appropriate to use regression 

type estimators. 

Consider the effect of change in the relative closeness 

of 3q to ^2" Theorems 4.1 and 4.10 for Cases I and III 

respectively give the result that for fixed m^, i.e. fixed 

level of significance, V(y^) is greater than V(y^) for 6q 

close to $2/ but this relationship reverses itself as the 

distance of from increases and it remains reversed. 

Theorems 4.6 and 4.15 for Cases I and III respectively illus

trate that the situation is reversed for the relationship of 

the variance of the sometimes regression estimator to the 

variance of the regression estimator with the exception that 

Theorem 4.15 does not give a result for larger values of 6. 

Analogous results hold for the relative efficiencies. These 

results are illustrated in Figures 6.1, 6.3, 6.5 and 6.7 for 

Case III with n equal to 6 and 12 respectively. Figures 6.3 



Figure 6.1. Graphs of eg (6, nig) vs 6 for fixed levels of 

with n=6 for Case III 
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Figure 6.2. Graphs of ) vs for fixed levels 

6 with n=6 for Case III 
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8=1.25 

S=.4 



Figure 6.3. Graphs of e^(6, ITIQ) VS 6 for fixed levels of 

kIq with n=6 for Case III 
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Figure 6.4. Graphs of e^(6, m^) vs for fixed levels of 

6 with n=6 for Case III 



o en 00 KO o ro 
o» o 

ro 

00 

en 

00 

KO 

o 

o 00 m ro* o 



Figure 6.5. Graphs of 62(6, m^) vs 6 for fixed levels 

hIq with n=12 for Case III 
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62(8,itiQ) 

.7 .8 .9 1.0 1.7 1.2 0.0 .1 .2 .3 .4 .5 . 6  



Figure 6.6. Graphs of 6^(6, ) vs for fixed levels of 

Ô with n=12 for Case III 
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Figure 6.7. Graphs of e^(6, m^) vs 6 for fixed levels 

of hIq with n=12 for Case III 
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Figure 6.8. Graphs of e^(5, mg) vs for fixed levels of 

6 with n=12 for Case III 
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8=1.25 
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and 6.7 also give empirical justification to the conjecture 

following Theorem 4.15. The relative distance between ^2 

and is a fixed unknown quantity. However on the basis 

of past experience, it may be possible to have some idea 

about the likely range of values it can take on. 

The level of significance of the preliminary test and 

hence m^ can be fixed in any manner we please. If is 

fixed such that the probability of using y^ is very high, 

then the relative efficiency of y^ with respect to is 

close to 1. On the other hand if the level of significance 

is such that the probability of using y^ is high, then the 

relative efficiency of y^ with respect to y^ is close to 1. 

The effect of changing the level of significance of the 

test when the relative distance between 6q and ^2 is fixed 

is illustrated in Figures 6.2, 6.4, 6.6 and 6.8 for Case 

III when n equals 6 and 12 respectively. 

The guidelines for using the sometimes regression esti

mator may be stated as follows: 

1. If there is a priori information that Bq is the 

actual value of ^ very strong guess for 

then tg may be chosen so that the likelihood that y^ results 

in using y^ is high. This would tend to minimize the loss in 

efficiency of y^ with respect to y^. 

2. If there is a priori information that 3^ is the 

actual value of ^2 6q is not considered to be a strong 



153 

choice for gg then tg may be chosen so that the likelihood 

that Yg results in using is very high. This would tend to 

minimize the loss in efficiency of y^ with respect to y^. 

3- If there is a priori information that 6q is the actual 

value of $2 the strength of the Bq choice is unknown then 

a middle range value for the level of significance of the test 

may be used. 
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