
This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TKDE.2020.3029146, IEEE
Transactions on Knowledge and Data Engineering

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING 1

Parallel Fractional Hot-Deck Imputation and
Variance Estimation for Big Incomplete Data

Curing
Yicheng Yang, Jae Kwang Kim, and In Ho Cho∗

Abstract—The fractional hot-deck imputation (FHDI) is a general-purpose, assumption-free imputation method for handling
multivariate missing data by filling each missing item with multiple observed values without resorting to artificially created values. The
corresponding R package FHDI [1] holds generality and efficiency, but it is not adequate for tackling big incomplete data due to the
requirement of excessive memory and long running time. As a first step to tackle big incomplete data by leveraging the FHDI, we
developed a new version of a parallel fractional hot-deck imputation (named as P-FHDI) program suitable for curing large incomplete
datasets. Results show a favorable speedup when the P-FHDI is applied to big datasets with up to millions of instances or 10,000 of
variables. This paper explains the detailed parallel algorithms of the P-FHDI for large instances (big-n) or high-dimensionality (big-p)
datasets and confirms the favorable scalability. The proposed program inherits all the advantages of the serial FHDI and enables a
parallel variance estimation, which will benefit a broad audience in science and engineering.

Index Terms—Parallel fractional hot-deck imputation, incomplete big data, multivariate missing data curing, parallel Jackknife variance
estimation.

F

1 INTRODUCTION

INCOMPLETE data problem has been pandemic in nearly
all scientific and engineering domains. Inadequate

handling of missing data may lead to biased or incorrect
statistical inference and subsequent machine learning [2].
In the ”imputation” methods, the active research areas of
missing data-curing, two major questions arose and have
been answered for the past decades. These questions involve
”accuracy” and ”computational efficiency”: how to handle
missing values by minimizing the loss of accuracy? Is there
any software for handling missing values?

There is a variety of approaches regarding the first
question. A simple approach is available in the literature
such as removal of instances with missing values [3] and
pairwise deletion [4]. Yet, the report by the American
Psychological Association strongly discourages the use of
removal of missing values, which seriously biases sample
statistics [5]. A relatively better simple strategy is to
replace the missing values by the conditional expected
values obtained from a probabilistic model of incomplete
data, which is subsequently fed into particular learning
models [6]. Recently, theoretical approaches such as a
model based method [7] or the use of an imputation
theory have received great attention. Imputation theory
is essential to replace a missing value with statistically
plausible values. In terms of the number of plausible values

• Y. Yang and I. Cho are with the Department of Civil Engineering, Iowa
State University, Ames, IA, 50011.
{yicheng, icho}@iastate.edu.
∗: corresponding author, M. IEEE

• J.K. Kim is with Department of Statistics, Iowa State University, Ames,
IA, 50011.
E-mail: jkim@iastate.edu

Manuscript received October 30, 2019; revised October 30, 2019.

for each missing item, there are two distinct branches:
single imputation and repeated imputation. Amongst
many methods of the ”repeated imputation” paradigm,
the multiple imputation and fractional imputation have
been widely used and investigated in the literature. The
multiple imputation (MI) proposed by Rubin [8] retains
the advantages of single imputation but overcomes its
downside by replacing each missing item with several
values representing the distributions of the possible values.
MI can handle multivariate missing data using chained
equations (MICE), and the imputed values are generated
from a set of conditional densities, one for each variable
with missing values [9]. Many existing packages support
MI and MICE on different platforms, e.g., SOLAS and SAS
[10]. However, an inappropriate choice of model for MI may
be harmful to its performance. Furthermore, the so-called
”congeniality” and ”self-efficiency” conditions required for
the validity of MI can be quite restrictive in practice [11],
[12].

Fractional hot-deck imputation (FHDI), proposed by [13]
and extensively discussed by [14] and [15], is a relatively
new method to handle item non-response in survey
sampling, which creates several imputed values assigned
with fractional weights for each missing instance [16]. A
serial version R package FHDI was developed by some
of the authors of this study [1] to perform the fractional
hot-deck imputation and also the fully-efficient fractional
imputation (FEFI) [17]. The FHDI can cure multivariate,
general incomplete datasets with irregular missing patterns
without resorting to distributional assumptions or expert
statistical models. It also offers variance estimation using
the Jackknife replication method. Besides, other popular
imputation methods include multiple imputation with
predictive mean matching (PMM) by [18], sequential

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TKDE.2020.3029146, IEEE
Transactions on Knowledge and Data Engineering

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING 2

regression multivariate imputation by [19], Fuzzy C-
Means (FCM) imputation by [20], and K-Harmonic mean
imputation by [21].

As we enter into the new era of big data [22], harnessing
the potential benefits of analyzing a large amount of
data will positively influence science, engineering, and
humanity. However, curing the big incomplete data remains
a formidable challenge. To the best of our knowledge,
a powerful, general-purpose imputation software for big
incomplete data is beyond the reach of global researchers.
Recently, in some specific areas, parallel computing
techniques are gradually adopted for imputation. [23]
parallelized single-chain rules of the sampler as a first
attempt by using the parallel Markov chain Monte Carlo for
Bayesian imputation on missing data. The computational
methodology of disk-based shared memory leads to decent
scalability. However, a negative aspect of this approach
is the need for highly customized, setting-specific, and
parallelized software. [24] developed the so-called PaRallel
Epigenomics Data Imputation with Cloud-based Tensor
Decomposition (PREDICTD) to impute missing experiments
for characterizing the epigenome in diverse cell types.
Because of the immensely large genome dimension, it
employs a parallel algorithm to distribute the tensor across
multiple cluster nodes. However, PREDICTED is restricted
to imputation for bio-informatics, and they did not present
strong parallel efficiency.

Parallelized imputation methods, particularly for
untyped genotypes in genetic studies, are investigated
by [25]. They applied parallelism to break the entire
region into blocks and separately imputed the sub-blocks
if the chromosomal regions larger than a size criterion.
They showed that the efficacy of the parallel imputation
is significantly better than the whole-region imputation.
[26] introduced genotype imputation using the parallel
processing tool ChunkChromosome, which automatically
splits each chromosome into overlapping chunks, allowing
the imputation of chromosomes to be run in multiple
lower memory. However, this simple parallelism decreases
imputation accuracy at the chunk borders. [27] used a
GPU to accelerate parallel genotype imputation. The GPU
implementation can reach a ten times speedup for a small
sample and gradually increases with size of the dataset.
The method had a limitation of maximum site number to
impute due to an excessive memory issue. All of these recent
parallel imputations appear to be restricted to applications
in particular bio-informatics domains. The Microsoft R
Server 2016 had parallelized many predictive models as well
as statistical algorithms. Still, the latest-release server does
not yet implement any paralleled imputation algorithm. The
missing values are simply omitted during computation.

Despite its generality and efficiency, the serial version
of the FHDI may have poor performance for curing ”big”
incomplete data due to the required excessive memory
and prohibitively long execution time. To transform the
FHDI into the big data-oriented imputation software,
we developed a first version of the parallel fractional
hot-deck imputation (named as P-FHDI) program which
inherits all the advantages of the serial FHDI and
overcomes its computational limitations by leveraging
algorithm-oriented parallel computing techniques. Since the

algorithmic foundation is the same as that of the serial
FHDI, the first version of FHDI is focusing on large data
with big instances (the so-called ”big-n” data) and that with
many variables (the so-called ”big-p” data) in Fig. 1. Our
program also implements a parallel fully-efficient fractional
imputation (denoted as P-FEFI), but it is not recommended
in practical big-data application since P-FEFI essentially
uses all possible donors for each missing value, which may
be prohibitively expensive for big data.

(a) big-n data (b) big-p data (c) ultra data

Fig. 1: Different types of datasets: (a) n � Kp; (b) n 6 Kp;
(c) n and p are both very large, where K is the number of
categories of imputation cells

The significance of this study in the context of data
science and machine learning is noteworthy. Reliable
imputation may play an important role in potential data-
driven research. The impacts of the FHDI on the subsequent
machine learning have been investigated in [2]. Following
the same methodology, we compare the impact of different
data curing methods on machine learning and statistical
learning in Fig. 2. The input data is the Energy Efficiency
from the UCI Machine Learning Repository [28], which has
768 observations and 9 variables with 30% response rate.
Note that all parameters in machine learning models are
default settings. Fig. 2 shows that the FHDI, PMM, and
FCM imputations have a noticeable positive influence on
improving the subsequent machine learning and statistical
learning compared to the simple naive method, which fills
in missing data using mean values of attributes. The FHDI
slightly outperforms the PMM and the FCM imputations.
Although this relative performance of the FHDI depends
on the adopted incomplete data, this result along with
similar prior investigation [2] underpins the positive impact
of the P-FHDI on big-data oriented machine learning and
statistical learning.

The outline of the paper is structured as follows:
we briefly demonstrate backbone theories of the serial
FHDI that are segmented by (i) cell construction, (ii)
estimation of cell probability, (iii) imputation, and (iv)
variance estimation. After an instructive introduction to
the adopted parallel computing techniques, we explain
key parallel algorithms of the P-FHDI. We validate and
evaluate the performance of the P-FHDI with synthetic
datasets, and propose a cost model. Finally, we introduce
an updated approach embedded in the P-FHDI, particularly
for imputing big-p datasets. Comprehensive examples in
the Appendix illustrate how to use the program easily with
simple and practical data.

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TKDE.2020.3029146, IEEE
Transactions on Knowledge and Data Engineering

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING 3

Fig. 2: The impact of data curing methods on the
subsequent machine learning methods [artificial neural net-
works (ANN) and extremely randomly tree (ERT)] and
statistical learning [generalized additive model (GAM)].

2 KEY ALGORITHMS OF THE SERIAL FHDI

For a comprehensive description of the FHDI and P-FHDI,
we provide a universal basic setup throughout. Suppose
a finite population U with p-dimensional continuous
variables y = {y1,y2, . . . ,yp}, and yil represents the ith
instance of the lth variable where i ∈ {1, 2, . . . , N} and
l ∈ {1, 2, . . . , p}. Then categorize the continuous variables y
to discrete variables z, so-called “imputation cells,” where
z takes values within categories {1, 2, · · · ,K} for each
variable. Express yi,obs and yi,mis to denote the observed
and missing part of the ith row of y, respectively. Also, we
can write zi,obs and zi,mis as the observed and missing part
of the ith row of z.

Let A be the index set with size of n selected from the
finite population U. Let AM denote a set of sample indices
with missing values such that AM = {i ∈ A;

∏p
l=1 δil = 0};

alternatively index set with fully observed values is AR =
{i ∈ A;

∏p
l=1 δil = 1}. A response indicator function δil

takes value of 1 if yil observed, otherwise δil = 0. Let z
be discrete values of the continuous variables y ∈ Rn×p to
form imputation cells. It consists of missing patterns zM =
{zi | i ∈ AM} and observed patterns zR = {zi | i ∈ AR}.
Let the index set of unique missing pattern be ÃM = {i, j ∈
AM | ∀i 6= j, zi 6= zj} of size ñM , alternatively ÃR =
{i, j ∈ AR | ∀i 6= j, zi 6= zj} with size of ñR represents
the index set of unique observed patterns such that ñ =
ñM + ñR is the size of total unique patterns. Sequentially,
z̃M ∈ NñM×p denotes the unique missing pattern where
z̃M = {zi | i ∈ ÃM} and z̃R ∈ NñR×p denotes unique
observed pattern where z̃R = {zi | i ∈ ÃR}. Note that if
yil is missing, an imputed value y∗il will be selected from the
same jth donor to fill in.

Suppose variable yl partitioned into Hl groups such that
zl takes values in {1, . . . ,Hl}. The cross classification of all
variables form imputations cells z and we assume a cell
mean model such that:

y | (z1 = H1, . . . ,zp = Hp) ∼ (µH1,...,Hp ,ΣH1,...,Hp) (1)
where µH1,...,Hp is a vector of cell means and ΣH1,...,Hp is
the variance-covariance matrix of y in cell (H1 . . . Hp). Then
utilizing a finite mixture model under missing at random

(MAR) condition, the conditional distribution of f(yi,mis |
yi,obs) is approximated by

f(yi,mis | yi,obs) ∼=
∑H
g=1 p(zi = g | yi,obs)f(yi,mis | yi,obs, zi = g)

(2)
where p(zi = g | yi,obs) is the conditional cell probability
and f(yi,mis | yi,obs, zi = g) is the within-cell conditional
density of yi,mis given yi,obs derived from (1). The FHDI
consists of four subsections as (i) Cell construction (ii)
Estimation of cell probability (iii) Imputation, and (iv)
Variance estimation. An illustration of each subsection is
presented as follows.

2.1 Cell construction

The pre-determination of the imputation cells had not
been discussed by Kim [15]. Im et al. [29] proposed an
approach to generate imputation cells z using the estimated
sample quantiles. Suppose we wish to categorize yl with G
categories. Considering the estimated distribution function
of yl:

F̂l(t) =

∑
i∈A δilwiI(yil ≤ t)∑

i∈A δilwi
(3)

where I is an indicator function taking value of one if true
and zero if false and wi represents the sampling weight of
unit i. Given a set of proportions {a1, · · · , aG} satisfying
0 < a1 < · · · < aG, the estimated sampling quantile of yl
for ag is defined as:

q̂ag = min{t, F̂ (t) > ag}. (4)
Hence yil will be categorized as an imputation cell g if
q̂ag−1 < yil < q̂ag .
We propose a new mathematical notation for the iteration
of operations to facilitate the description of the FHDI and
P-FHDI. A new mathematical symbol ’

∑
’ denotes a loop

which repeats a sequence of the same operation S(x) with
discrete input augments within a fixed range. The following
is the simplest proposal of the loop symbol of an operation
S

b∑
i=a

S(xi) ≡
{
S(xa), S(xa+1), . . . , S(xb−1), S(xb)

}
(5)

where i = a, . . . , b. We have an extension of

∑b
i=a

∑d
j=c S(xij) =

S(xac) S(xa(c+1)) . . . S(xad)

S(x(a+1)c) S(x(a+1)(c+1)) . . . S(x(a+1)d)
...

...
...

...
S(xbc) S(xb(c+1)) . . . S(xbd)

(6)

where integer indices i = a, . . . , b and j = c, . . . , d.
However, the initial discretization may not give at least

two donors for each recipient to capture the variability from
imputation. Identification of the unique observed patterns
z̃R and unique missing patterns z̃M is crucial for selection
of donors for each recipient. First of all we need to sort
missing patterns zM ∈ NnM×p such that zM = {zi | i ∈
AM ; ‖zi‖ 6 ‖zi+1‖}. Note that ‖zi‖ takes the string format
of zi which is comparable by its numerical value. Thereby,
the unique missing patterns z̃M will be obtained by

z̃M =
nM∑
i=1

zMiI(‖zMi‖ < ‖zM(i+1)‖) (7)

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TKDE.2020.3029146, IEEE
Transactions on Knowledge and Data Engineering

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING 4

where zMi ∈ zM . Similarly, sort observed patterns zR ∈
NnR×p such that zR = {zi | i ∈ AR; ‖zi‖ 6 ‖zi+1‖}. So we
have the unique observed patterns z̃R by

z̃R =
nR∑
i=1

zRiI(‖zRi‖ < ‖zR(i+1)‖) (8)

where zRi ∈ zR. Suppose Di ∈ NMi be the set recording
indices of donors of the ith recipient zi = {zi,obs, zi,mis}
where Di = {j ∈ ÃR | zi,obs = zj,obs} with size of Mi. Mi

represents the number of donors of the ith recipient. By z̃M
and z̃R, we determine the set of number of total donors of
all recipients M = {Mi | i ∈ ÃM} by using

M =
ñM∑
i=1

ñR∑
j=1

I(‖zi,obs‖ = ‖zj,obs‖)

 (9)

Note that ‖zi,obs‖ = ‖zj,obs‖ claims that each entity of
string ‖zi,obs‖ and string ‖zj,obs‖ should be identical,
respectively. Further, the actual index set of donors of all
recipients L = {Di | i ∈ ÃM}} can be written as

L =
ñM∑
i=1

ñR∑
j=1

jI(‖zi,obs‖ = ‖zj,obs‖) (10)

The minimum entity of M ∈ NñM is denoted by m.
If m > 2, the initial generation of imputation cells
have at least two donors as candidates for each recipient.
Otherwise, we apply a cell collapsing procedure to adjust
the categories of imputation cells to produce more donors
and stop only if every recipient has at least two donors.
For instance, a dummy z has a recipient (NA, 1) and all
donors are listed in the left panel of Table 1 after initial data
categorization. However, the recipient has only one possible
donor (3, 1). Hence cell collapsing occurs by merging the
original categories 1 and 2 of p2 as category 1 to complement
deficient donors. Now, (3, 1) and (2, 1) both serve as donors
for the recipient (NA, 1).

TABLE 1: An illustrative example for cell collapsing with
initial categories of 3 for p1 and p2. Left: initial imputation
cells. Right: final imputation cells after cell collapsing.

p1 p2

3 1
2 2
1 3

p1 p2

3 1
2 1
1 2

The number of categories of imputation cells will
affect the number of unique observed patterns ñR, the
number of unique missing patterns ñM , and the number
of iterations in the cell construction. The input dataset in
this simulation has 500 observations and 4 variables with
20% missingness. Table 2 shows that a growing number
of categories increases the number of unique patterns until
some threshold. Meantime, it requires a larger number of
iterations to guarantee at least two donors for all unique
missing patterns. In addition, the number of categories will
affect subsequent regression analyses. Regression coefficient
estimates of y1 given y2 in Fig. 3 (a) shows that 12 categories
optimize the effect of the FHDI on regression analyses. Note
that the true values of the slope and intercept are 0.5 and
0, respectively. Fig. 3 (b) shows that a growing number of
categories will increase the standard errors of the intercept
and slope. A similar discussion about the effect of number of

categories on regression in [30] has a good agreement with
our results.

TABLE 2: The number of unique observed patterns (ñR),
number of unique missing patterns (ñM), and the number
of iterations of the cell construction with a growing number
of categories.

Categories ñR ñM Iterations
3 54 130 9
6 103 215 112
12 97 243 227
24 90 243 275
35 88 240 286

(a) (b)

Fig. 3: Effect of a growing number of categories on (a)
regression coefficient estimates and (b) their standard errors
of y1 given y2.

2.2 Estimation of cell probability

To estimate conditional cell probability using a modified
EM algorithm by weighting [31], we partition z into G
groups on basis of AM , denoted by z1, . . . , zG. Let the size
of all possible donors of zg,mis be Hg . Given a possible
imputed value z∗(h)

g,mis for zg,mis, the estimated conditional
cell probability is defined in E step:

π̂
(t)
h =

p̂(t)(zg,obs, zi,mis = z
∗(h)
g,mis)∑Hg

h=1 p̂
(t)(zg,obs, zi,mis = z

∗(h)
g,mis)

(11)

where p̂(t)(z) is the estimated joint cell probability
computed from the full respondents at iteration t. The joint
cell probability is updated in M step using weighting:

p̂(t+1)(zg,obs, z
∗(h)
g,mis) =

 n∑
i=1

wi

−1
n∑
i=1

wiπ̂
(t)
h

× I(zi,obs = zg,obs)
(12)

where n is the sample size and wi is the sampling weight
of unit i. An indicator function I takes a value of one
if zi,obs = zg,obs and zero otherwise. The EM algorithm
will terminate in case of convergence of p̂(zg,obs, z

∗(h)
g,mis) or

reaching maximum iteration max defined by users. Note
that

∑Hg
h=1 π̂h = 1.

2.3 Imputation

It is necessary to compute fractional weights in advance.
Let w∗ij be the fractional weights of the jth donor for the ith

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TKDE.2020.3029146, IEEE
Transactions on Knowledge and Data Engineering

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING 5

recipient given by:

w∗ij = π̂
(t)
z∗i,mis|zi,obs

wjI{zi,obs = zj,obs, zi,mis = z∗j,mis}∑Mi

j=1 wjI{zi,obs = zj,obs, zi,mis = z∗j,mis}
(13)

where z∗j,mis is the jth imputed value for the ith
recipient. In addition, we can verify computation of w∗ij by∑Mi

j=1 w
∗
ij = 1, where Mi denotes number of donors for

the ith recipient. In FEFI, all respondents are employed
as donors for each recipient and assigned the fractional
weights. Once donors and corresponding fractional weights
determined, FEFI estimator of Yl can be written as:

Ŷl,FEFI =
∑
i∈A

wi{δilyil + (1− δil)
∑
j∈A

w∗ij,FEFIyjl} (14)

and the fractional weights of the jth donor for the ith
recipient is defined:

w∗ij,FEFI =
G∑
g=1

aig

H∑
h=1

π̂h|g
wjδjajgh∑
l∈A wlδlalgh

(15)

where ajgh = 1 if (zj,obs, zj,mis) = (zg,obs, z
∗(h)
g,mis),

otherwise 0. However, it requires too much computation
with large input data.

Instead of using all the respondents, the FHDI selects
M donors among all FEFI donors using a systematic
probability proportional to size (PPS) method to compensate
for the recipient. Firstly, it sorts all FEFI donors in y
values by the half-ascending and half-descending order.
Considering L1 = 0, one can construct the interval of
(L1, LnRg) by

Lj+1 = Lj +M × w∗ij,FEFI (16)
for ∀ j ∈ [1 : nRg − 1]. Sequentially, successive intervals
will be computed by Eq. (16). Let RNg be a random number
from a uniform distribution U(0, 1). Then for i ∈ AMg , M
donors will be selected if:

L[j] ≤ RNg + i− 1

nMg
+ l − 1 ≤ L[j + 1] (17)

for l = 1, . . . ,M . In case of nRg 6 M , we take all FEFI
donors for the recipient. The FHDI estimator of yl with M
selected donors is

Ŷl,FHDI =
∑
i∈A

wi{δilyil + (1− δil)
M∑
j=1

w∗ijy
∗(j)
il } (18)

where w∗ij = M−1 and y
∗(j)
il is the jth imputed value for

yil.
Afterward, we can prepare imputation results Ŷ = {y∗(j)il |
i ∈ {1, . . . , n}; l ∈ {1, . . . , p}; j ∈ {1, . . . ,Mi}} along with
fractional weights w∗ij,FHDI as outputs. Let Á ∈ NnA be
index set of Ŷ where nA = nR +

∑nM
i=1Mi. And Á ∈ NnA

denotes the index set of sorted Á in the ascending order. We
can record the index mapping ψ ∈ NnA from Á to Á by

ψ =
nA∑
i=1

nA∑
j=1

jI(Ái = Áj) (19)

Eventually, imputation results Ŷ can be reorganized with
regard to the index mapping ψ easily as outputs.

2.4 Variance estimation

The Jackknife method is implemented for variance
estimation of the FHDI estimator. The Jackknife variance

estimator of Ŷl,FHDI is determined by the following steps:
S1: Identification of the joint probability p̂(z̃M) of unique
missing patterns z̃M by

p̂(z̃M) =
∑
j∈ÃM

p̂(zj,obs, z
∗
j,mis)

=
∑
j∈ÃM

 n∑
i=1

wi

−1
n∑
i∈A

wiπ̂jI(zi,obs = zj,obs)

(20)
where π̂j represents the conditional probability of the jth
recipient’s donors.
S2: Delete unit k ∈ A. If k ∈ AM , then w∗ij will not be
updated. If the size of p̂(zk,obs, z

∗
k,mis) is 0, skip to the next

iteration.
S3: If k /∈ AM , then w∗ij for the replicate k will be updated
by

w
∗(k)
ij =

w∗ij − w∗ij,FEFI if j = r

w∗ij + (w∗ir,FEFI)
w∗ij,FEFI∑
j 6=r w

∗
ij,FEFI

if j 6= r

w∗ij if k ∈ AM
(21)

where i ∈ AR and r is the index of the closest donor to k.
Eq. (21) updates the fractional weights and will be used in
parallel algorithm later, thus is denoted as FW in ease of use.
However, measurement of closeness in terms of the scale of
the data is challenging. We employ Mahalanobis Distance
(denoted as MD) to measure the distance from a replicate
to the other M donors by

MD =
√

(y − µ)TΣ−1(y− µ) (22)
where y = {yi1, . . . , yip}T is the vector of the ith observation
of y, µ = {µ1, . . . , µp}T is the vector of mean values of p
variables, and Σ is a covariance matrix. Hence, r is the index
of smallest value among MD.
S4: Considering the updated fractional weight w∗(k)

ij , we can
compute the variance V̂ (Ŷl,FHDI) by

V̂ (Ŷl,FHDI) =
n∑
k=1

ck(Ŷ kl,FHDI − Ŷl,FHDI)2 (23)

where ck denotes replicate factor associated with Ŷ kl,FHDI or
Ŷ kl,FEFI , which is the kth replicate estimator of yl defined
by

Ŷ kl,FHDI =
∑
i∈A

wki {δilyil + (1− δil)
M∑
j=1

w
∗(k)
ij y

∗(j)
il } (24)

where wki is the kth replicate of the fractional weight w∗ij .
The quantity y∗(j)il is the jth imputed value of yil. The FHDI
estimator is defined in Eq. (18). Similarly, we can determine
V̂ (Ŷl,FEFI) using the same equations.
We evaluate the variance estimation via relative bias of
standard error and confidence interval. In the simulations,
input data has 500 observations and 4 variables with 30%
missingness and Monte Carlo simulation size is 600. The
average relative bias less than 5% often indicates a good
variance estimation in Table 3. The average coverage rate of
95% confidence interval is close to 95%. Overall, the variance
estimation of the FHDI performs in a favorable manner.

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TKDE.2020.3029146, IEEE
Transactions on Knowledge and Data Engineering

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING 6

TABLE 3: Monte Carlo results of relative bias of standard
error, the average length of 95% confidence interval, and its
coverage rate based on 600 simulation runs.

Variable Rel.Bias (%) Ave.Length of CI Coverage rate
Variable 1 -3.62 0.1025 0.95
Variable 2 -2.83 0.1040 0.93
Variable 3 -7.88 0.1362 0.93
Variable 4 -4.28 0.1356 0.95

(a) (b)

Fig. 4: Two parallel schemes: (a) Internal parallelization
within the unbreakable implicit loop; (b) Typical divide and
conquer for embarrassingly parallelizable explicit loop.

3 PARALLEL ALGORITHMS FOR THE FHDI

Fig. 4 shows the two parallel schemes adopted for this study.
The two distinct schemes are needed since the primary
global loops for the majority of tasks are ”implicit”, and
thus a direct divide and conquer scheme is not applicable
such that parallelization is focusing on the separately
parallelizable internal tasks without breaking the implicit
loop. In contrast, some embarrassingly parallelizable tasks
such as Jackknife variance estimation are tackled by the
typical divide and conquer scheme. Suppose we have in
total Q processors indexed by {0, 1, 2, . . . , Q − 1}. The first
processor indexed by 0 (called master processor) will collect
work from all other processors (called slave processors)
via communication by the basic operations MPI Send
and MPI Recv (denoted as MPI SR in conjunction). The
pieces of distributed work will be assembled in the master
processor by MPI Gather (denoted as Ω). The Ωji (i 6= 0)
represents that the master processor gathers pieces of work
distributed to all slave processors ranking i to j. Generally,
if the entire domain Υ of a problem is divided into disjoint
domain Υq and no memory overlapping is required, thus
all work is done concurrently by

Υ = ΩQ−1
q=1

 ∑
xi∈Υq

S(xi)

 (25)

Another challenge of parallel computing is how a
problem can be partitioned efficiently to be tackled
concurrently, and how we can manage balanced computing.
To this end, we employ two work distribution schemes
in the P-FHDI, i.e., uniform distribution (denoted
as UniformDistr) and cyclic distribution (denoted as
CyclicDistr). They compute the beginning (denoted as s)
and ending index (denoted as e) of distributed work on

processor q. Fig. 5 illustrates the contrast between two
work distribution schemes visually. These two schemes are
summarized in Algorithms 1 and 2.

Algorithm 1 Uniform job distribution
Input: number of total instances n, number of available

processors Q, index of current processor q,
Output: boundary indices s and e

1: N1 = floor(n
Q−1)

2: N2 = n−N1(Q− 2)
3: s = (q − 1)N1

4: e = (q − 1)N1 +N2

The uniform distribution scheme in Algorithm 1 averages
work in N1 pieces over slave processors and squeezes the
residuals to the last available processor as N2. Then the
boundary indices s and e of distributed work in the current
processor q can be computed in lines 3 and 4, respectively.
Alternatively, the core of the cyclic distribution scheme in
Algorithm 2 is to assign the work to Q− 1 slave processors
recursively.

Algorithm 2 Cyclic job distribution
Input: number of total instances n, number of available

processors Q, index of current processor q,
and split processor qs

Output: boundary indices s and e
1: N3 = floor(n

Q−1)

2: N4 = (n−N3)qs
(Q−qs−1)

3: if q ≤ qs then
4: s = (q − 1)N3

5: e = qN3

6: end if
7: if q > qs then
8: s = qN3 + (q − qs − 1)N4

9: e = qN3 + (q − 1)N4

10: end if

Although it is easy to implement the uniform
distribution, this uniform decomposition will lead to
considerable work imbalance when the problem domain Υ
is severely irregular [32]. See Fig. 5 (a) for an illustration; an
irregular work domain Υ causes heavy workload in slave
processors 1 and 2 while slave processor 3 is almost idle.
As a successful remedy to this problem, cyclic distribution
can effectively balance the work domain among slave
processors. Fig. 5 (b) shows such a balanced situation with
all three slave processors being busy. Depending upon the
parallel tasks, we adopt the best choice of parallel job
distributions.

(a) Uniform distribution (b) Cyclic distribution

Fig. 5: Different methods distributing work to the slave
processors. A work domain Υ (represented by an irregular
area enclosed by dashed line) is handled by three slave
processors: Slave 1 (downward hatching), Slave 2 (upward
hatching) and Slave 3 (horizontal hatching).

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TKDE.2020.3029146, IEEE
Transactions on Knowledge and Data Engineering

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING 7

3.1 Parallel cell construction and estimation of cell
probability

The determination of initial imputation cells is
computationally cheap, i.e., Eqs. (3) and (4). However,
it may take considerably large iterations for the cell
collapsing process to guarantee at least two donors for each
recipient, i.e., Eqs. (7) to (10). The current algorithm of cell
collapsing is an implicit process which is non-parallelizable.
Considering the inevitable obstacle, we employ the internal
parallelization within the unbreakable implicit iterations in
Algorithm 3. In line 2 of Algorithm 3, we categorize input
data y to imputation cells z using the estimated sample
quantiles defined in Eq. (4). Before proceeding to line 4 of
Algorithm 3, the function ZMAT is explained explicitly in
Algorithm 4 to identify the unique patterns z̃M and z̃R for
the selection of donors. In lines 1 and 2 of Algorithm 4, we
employ the cyclic distribution for job division and adjust
the boundary indices accordingly. The function tunePoints
has been frequently used in the P-FHDI to adjust the border
indices (s and e) of work in each processor slightly to be
adjusted indices (sa and ea). The current parallel work
distribution scheme may lead to the boundary mismatch
issue. For example, we have a sample set {4, 2, 3, 3, 2, 4, 1}
indexed by {1, . . . , 7} and sorted as {1, 2, 2, 3, 3, 4, 4}.
The index mapping from the original sample set to the
sorted sample set will be ψ = {7, 2, 5, 3, 4, 1, 6}. However,
the uniform distribution upon four processors in the left
panel of Table 4 will result in the incorrect mappings
ψ1 = {7, 2}, ψ2 = {2, 3}, and ψ3 = {3, 1, 6}. Whereas,
the job distribution after adjustment will guarantee the
identical indices assigned to the same processor shown in
the right panel of Table 4. Hence the updated mapping will
be ψ1 = {7, 2, 5}, ψ2 = {3, 4} and ψ3 = {1, 6}. We identify

TABLE 4: Left: Uniform job distribution. Right: uniform job
distribution after adjustments by function tunePoints with
slave processors 1, 2 and 3 (denoted as S1, S2 and S3).

S1 S2 S3 S1 S2 S3
1 2 2 3 3 4 4 1 2 2 3 3 4 4

z̃
(q)
M in each processor q in line 4 of Algorithm 4 by

z̃
(q)
M =

ea∑
i=sa

zMiI(‖zMi‖ < ‖zM(i+1)‖) (26)

where zMi ∈ zM . After master-slave communications in
line 6, we obtain z̃M by gathering operation in line 7.
Similarly, we have z̃

(q)
R in each processor in lines 10 to 12

by

z̃
(q)
R =

ea∑
i=sa

zRiI(‖zRi‖ < ‖zR(i+1))‖ (27)

where zRi ∈ zR. we assemble z̃R after communication in
lines 13 and 14 and broadcast to all slave processors in line
15.

Before proceeding to line 5 of Algorithm 3, the function
nDAU is explicitly demonstrated in Algorithm 5 to get the
minimum number of donors m of recipients. We distribute
ñM to each processor cyclically in line 1 of Algorithm 5. The

set of number of total donors for all recipients is obtained in
line 3 by

M (q) =
e∑
i=s

ñR∑
j=1

I(‖zi,obs‖ = ‖zj,obs‖)

 (28)

Meantime, the actual indices of donors for all recipients will
be stored in line 4 by

L(q) =
e∑
i=s

ñR∑
j=1

jI(‖zi,obs‖ = ‖zj,obs‖) (29)

Then communication is processed between lines 6 and 8 to
assemble M and L. Note that all processors require results
of cell construction to continue cell probability estimation.
Thus we broadcast results from the master processor to
slave processors in line 9.

After explicit explanation of function nDAU in line 4 of
Algorithm 3, it will perform cell collapsing in case of m < 2
in lines 5 to 7. The recursive iterations will terminate if m >
2 in lines 8 to 10. Otherwise, the iterations will continue to
the max iteration (i.e., 2n).

Algorithm 3 Parallel cell construction
Input: raw data y
Output: imputation cells z

1: for ∀ i in 0 : max iteration do
2: Categorize raw data y to imputation cells z
3: Invoke function ZMAT(z)→ (z̃R, z̃M)
4: Invoke function nDAU(z̃R, z̃M)→ (M ,m,L)
5: if m < 2 then
6: Perform cell collapsing on z described in Table 1
7: end if
8: if m > 2 || i = max iteration then
9: break

10: end if
11: end for

Algorithm 4 Parallel function ZMAT
Input: imputation cells z
Output: unique observed pattern z̃R and missing pattern

z̃M
1: CyclicDistr(nR)→ (s, e)
2: tunePoints(s, e)→ (sa, ea)
3: for ∀ i in sa : ea do
4: Identify z̃(q)

M
5: end for
6: MPI SR(z̃(q)

M)

7: z̃M = ΩQ−1
1 z̃(q)

M
8: CyclicDistr(nM)→ (s, e)

9: tunePoints(s, e)→ (sa, ea)
10: for ∀ i in sa : ea do
11: Identify z̃(q)

R
12: end for
13: MPI SR(z̃(q)

R)

14: z̃R = ΩQ−1
1 z̃(q)

R
15: MPI Bcast(z̃M ; z̃R)

Algorithm 5 Parallel function nDAU
Input: unique observed pattern z̃R and missing pattern

z̃M
Output: number set of donors M

1: CyclicDistr(ñM)→ (s, e)
2: for ∀ i in s : e do
3: M (q).add(Mi)
4: L(q).add(Di)
5: end for

6: MPI SR(M (q); L(q))
7: M = ΩQ−1

1 M (q)

8: L = ΩQ−1
1 L(q)

9: MPI Bcast(M ; L)

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TKDE.2020.3029146, IEEE
Transactions on Knowledge and Data Engineering

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING 8

Similarly, estimation of cell probability is an implicit
and iterative process, which does not support simple
parallelism. The EM iterations start in line 1 of Algorithm
6 and terminate if the joint probability of z∗ = (zobs, z

∗
mis)

converges in lines 6 to 8. Let Aπ = {1, . . . ,HG} be local
index set of initial conditional probabilities π̂(t) with size of
nπ . We updatew ∈ Nnπ and π̂(t) ∈ Rnπ in line 2 where π̂(t)

is

π̂(t) =

Hg∑
h=1

p̂(t)(zg,obs, zi,mis = z
∗(h)
g,mis)∑Hg

h=1 p̂
(t)(zg,obs, zi,mis = z

∗(h)
g,mis)

(30)

Note that π̂(t) requires reorganization regarding the index
set Aπ = {Aπi ∈ Aπ | ∀i,Aπ(i+1) > Aπi} in the
ascending order. Before proceeding to line 4 of Algorithm
6, we explain the function Order in Algorithm 7 to generate
index mapping ξ of Aπ in lines 4 to 10 on each processor by

ξ(q) =
ea∑
i=sa

nπ∑
j=1

jI(A(q)
πi = Aπj) (31)

After communication in line 11, ξ will be assembled in line
12. By leveraging ξ in line 4 of Algorithm 6, π̂(t) can be
rearranged to update p̂(t+1)(z∗) in line 5 by

p̂(t+1)(z∗) =

 n∑
i=1

wi

−1
n∑
i=1

wiπ̂
(t)I(zi,obs = zg,obs)

(32)
In line 6, the EM algorithm will terminate if p̂(t+1)(z∗)
converges to a threshold ε (e.g., 10−6).

Algorithm 6 Parallel estimation of cell probability
Input: Imputation cells z, sampling weight w
Output: cell probability p̂(z∗)

1: for t in 0 : max do
2: Update w and π̂(t)

3: Order(Aπ)→ ξ
4: ξ → π̂(t)

5: Compute p̂(t+1)(z∗)

6: if p̂(t+1) converged
then

7: Stop
8: end if
9: end for

Algorithm 7 Function Order
Input: index Aπ with size of nπ
Output: index mapping ξ

1: UniformDistr(nπ)→ (s, e)
2: tunePoints(s, e)→ (sa, ea)
3: Sort(A(q)

π)→ A(q)
π

4: for i in sa : ea do
5: for j in 0 : nπ do
6: if A(q)

πi = Aπj then

7: Record j to ξ(q)

8: end if
9: end for

10: end for
11: MPI SR(ξ(q))
12: ξ = ΩQ−1

1 ξ(q)

3.2 Parallel imputation
Imputation of the P-FHDI aims at selecting M donors for
each recipient in z̃M in lines 1 to 6 of Algorithm 8. The
FEFI fractional weights for all possible donors assigned to
each recipient are computed in line 2. We employ the PPS
method to randomly select M donors in lines 3 to 5 such
that w∗ij = {w∗ij | i ∈ ÃM ; j ∈ {1, . . . ,Mi}}. In particular,
it sorts all FEFI donors in y values by the half-ascending
and half-descending order to construct successive intervals
in lines 3 and 4. To prepare the results of fractional imputed

Algorithm 8 Parallel imputation
Input: raw data y, imputation cells z, number set of

donors M , cell probability p̂(zobs)
Output: imputed values Ŷ

1: for i in 0 : ñM do
2: Compute w∗ij
3: Sort FEFI donors
4: Construct (Lj , LnRg)

5: Select Mi donors
6: end for
7: Order(Á)→ ψ
8: Prepare Ŷ

values Ŷ, we obtain the index mapping ψ of sorted Á by
Order function in line 7 by

ψ = ΩQ−1
1

e∑
i=s

nA∑
j=1

jI(Á(q)
i = Áj) (33)

Note that the majority of computational cost occurs in line
7. Finally Ŷ has been enumerated in accordance with the
index mapping ψ in line 8.

3.3 Parallel variance estimation

The majority of expensive computation happens in variance
estimation because of the Jackknife estimate method of the
FHDI. The parallelized variance estimation is summarized
in Algorithm 9.

Algorithm 9 Parallel variance estimation
Input: raw data y, imputation cells z, sampling weights

w, index set A, number of donors M , imputed
values Ŷ

Output: variance V̂ (ŶFHDI)
1: Rep CellP(z)→ p̂(z̃M)
2: UniformDistr(n)→ (s, e)
3: for ∀ k in s : e do
4: if p̂(z∗k) = 0 then
5: Skip
6: end if
7: if np > 0 then
8: FW(w

∗(k)
ij)→ w

∗(k)
ij

9: end if
10: Compute ŶK,q

FHDI
11: end for
12: MPI SR(Ŷ

K,q

FHDI)
13: Ŷ

K

FHDI = ΩQ−1
1 (YK,qFHDI)

14: Compute Ŷ FHDI

15: Compute V̂ (Ŷ FHDI)

Algorithm 10 Function Rep CellP
Input: imputation cells z
Output: cell probability p̂(z̃M)

1: CyclicDistr(ñM)→ (s, e)
2: for ∀ j in s : e do
3: Compute p̂(q)(z̃M)
4: end for

5: MPI SR (p̂(q)(z̃M))
6: p̂(z̃M) = ΩQ−1

1 p̂(q)(z̃M)
7: MPI Bcast(p̂(z̃M))

Before proceeding to line 2 of Algorithm 9, a pre-
processing function Rep CellP is explicitly explained to
compute cell probability for unique missing patterns
recursively. By parallelizing ñM in line 1 of Algorithm 10,
we can determine p̂(q)(z̃M) on each processor q in line 3 by

p̂(q)(z̃M) =
e∑
j=s

 n∑
i=1

wi

−1
n∑
i=1

wiπ̂jI(zi,obs = zj,obs)

(34)

where π̂j represents the conditional probability of the jth
recipient’s donors. Note that each π̂j has to be rearranged

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TKDE.2020.3029146, IEEE
Transactions on Knowledge and Data Engineering

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING 9

according to its index mapping in Eq. (31) in advance. For
instance, let Aπ be the index set of π̂ and Aπ denotes the
index set of sorted Aπ . Because of the heavy computational
cost of linear searching, we implement binary search
(denoted as BS) [33] to record the mapping ξ of Aπ after
sorting. Considering m (i.e., nπ/2) as a middle index, Aπm
denotes the middle element of Aπ . We set a left index L to
be 1 and a right index R to be nπ . If Aπm 6 Aπi where
i ∈ {1, 2, . . . , nπ}, set L to be m. Otherwise, we set the R to
bem. IfAπm = Aπi,mwill be the output of the BS function.
Thus, we have the ξ(q) by

ξ(q) =
ea∑
i=sa

BS(A(q)
πi) (35)

After communication in line 5, p̂(z̃M) will be assembled in
line 6 and broadcast to all slave processors in line 7. After
demonstration of function Rep CellP in line 1 of Algorithm
9, by leveraging the unifrom job distribution in line 2, we
can compute replicate estimator matrix ŶK,q

FHDI ∈ R(e−s)×p

on processor q (Note superscript K is a simple notation for
distinction) in line 10 by

ŶK,q
FHDI =

e∑
k=s

Ŷ
k

FHDI =
e∑
k=s

 p∑
l=1

Ŷ kl,FHDI

 (36)

where Ŷ kl,FHDI is kth replicate estimator of yl. By
substituting Eq. (24), we have

ŶK,q
FHDI =

e∑
k=s

p∑
l=1

∑
i∈A

wki {δilyil + (1− δil)
M∑
j=1

w
∗(k)
ij y

∗(j)
il }

(37)

The function FW in Eq. (21) will update w∗(k)
ij if k /∈ AM .

After communication of ŶK,q
FHDI in line 12, ŶK

FHDI is
assembled in line 13. Also, the FHDI estimator Ŷ FHDI ∈ Rp
is computed in line 14 by substituting Eq. (18)

Ŷ FHDI =

p∑
l=1

Ŷl,FHDI

=

p∑
l=1

∑
i∈A

wi{δilyil + (1− δil)
M∑
j=1

w∗ijy
∗(j)
il }

(38)

Eventually, we determine V̂ (ŶFHDI) by

V̂ (Ŷ FHDI) =
n∑
k=1

ck(Ŷ
k

FHDI − Ŷ FHDI)
2 (39)

where ck = (n − 1)/n. Similarly, we can determine
V̂ (Ŷ FEFI) using the same algorithm.

4 VALIDATION

To validate the P-FHDI, it should have the same outputs as
the FHDI (e.g., standard errors) using an identical dataset.
The platform used in the paper for all the parallel computers
is Condo 2017 of Iowa State University in [34], consisting
of 192 SuperMicro servers and expandable to 324 servers.
Each server has two 8-core Intel Haswell processors, 128
GB of memory, and 2.5 TB local disk. For a convenient
description of synthetic datasets, let U(n, p, η) denote a
finite population with n instances and p variables issued
by η missing rate in proportion.

We generate yi = (yi1, yi2, yi3, yi4), i = 1, . . . , 1000,
from y1 = 1 + e1, y2 = 2 + 0.5e1 + 0.866e2, y3 =
y1 + e3, and y4 = −1 + 0.5y3 + e4, where e1, e2, e4 are

randomly generated by the standard normal distribution,
and e3 by the gamma distribution. Missingness is addressed
by the Bernoulli distribution as δi1 ∼ Ber(0.6), δi2 ∼
Ber(0.7), δi3 ∼ Ber(0.8), δi4 ∼ Ber(0.9) independently
to each variable. We create 25% missingness to the synthetic
dataset.

TABLE 5: Standard errors of naive, serial and parallel
estimators.

Estimator y1 y2 y3 y4

Naive 0.0419 0.0390 0.0490 0.0472
FEFI 0.0367 0.0378 0.0460 0.0457

P-FEFI 0.0367 0.0378 0.0460 0.0457
FHDI 0.0383 0.0372 0.0451 0.0453

P-FHDI 0.0384 0.0370 0.0449 0.0450

TABLE 6: Standard errors of the naive and the P-FHDI
estimators with datasets U(instances, variables, missing
rate).

Data Method y1 y2 y3 y4

U(0.1M, 4, 0.25)
Naive 0.0029 0.0039 0.0047 0.0043

P-FHDI 0.0037 0.0034 0.0045 0.0045

U(0.5M, 4, 0.25)
Naive 0.0013 0.0018 0.0021 0.0019

P-FHDI 0.0017 0.0015 0.0020 0.0020

U(1M, 4, 0.25)
Naive 0.0009 0.0012 0.0015 0.0013

P-FHDI 0.0012 0.0011 0.0014 0.0014

On the basis of the dataset U(1000, 4, 0.25), we apply
the naive estimator, fractional imputation estimator, and
parallel fractional imputation estimator to be in contrast.
The naive estimator is a simple mean estimator computed
using only observed values. The results in Table 5 shows
that P-FEFI produces the same standard errors of y as
serial FEFI. Results generated by the P-FHDI slightly differ
from results of the serial FHDI in a tolerable manner. The
random number generators used for the selection of donors
in the FHDI and P-FHDI are library-dependent, which is
the main reason leading to the tiny residuals. Note that the
standard errors of the P-FHDI decrease asymptotically as n
increases gradually in Table 6. As expected, both the P-FHDI
and P-FEFI often outperform the naive method in terms of
standard errors. Some exceptions (e.g., y1 and y4 of Table
6) may be attributed to the large missing rate and simple
synthetic model used in the study case. We provide the step-
by-step illustration of the use of the P-FHDI in APPENDIX I.
All the developed codes are shared with GPL-2, and codes,
examples, and documents are available in [35].

To maximize the benefit of researchers, we provide
eleven adopted datasets in the supplementary material, as
summarized in Table 7. Synthetic data 1 is the dataset used
to validate the P-FHDI. Synthetic data 2 is a big-n dataset
with millions of instances. Synthetic data 3 to 5 are used to
compare the performance of the big-n and big-p algorithms.
We apply Synthetic data 6 to 8 to test the extreme
cases of the P-FHDI on high-dimensional datasets. Three
practical incomplete datasets, i.e., Air Quality, Nursery, and
Appliance Energy, are included [28]. The hybrid dataset (Air
Quality) is used to illustrate how to apply the P-FHDI to
real data in APPENDIX I. Note that Air Quality consists

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TKDE.2020.3029146, IEEE
Transactions on Knowledge and Data Engineering

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING 10

of a non-collapsible categorical variable (y1) and three
continuous variables (y2 ∼ y4). We test the extension of the
P-FHDI to categorical variables by Nursery. We investigate
behaviors of the big-p algorithm with a growing number of
selected variables by Appliance Energy. Users can practice
using the P-FHDI with these example datasets.

TABLE 7: Summary of the adopted datasets U(instances,
variables, missing rate).

Dataset Variable type Dimension
Synthetic data 1 Continuous U(1000, 4, 0.25)

Synthetic data 2 Continuous U(106, 4, 0.25)

Air Quality Hybrid U(41757, 4, 0.1)

Nursery Categorical U(12960, 5, 0.3)

Synthetic data 3 Continuous U(15000, 12, 0.15)

Synthetic data 4 Continuous U(15000, 16, 0.15)

Synthetic data 5 Continuous U(15000, 100, 0.15)

Synthetic data 6 Continuous U(1000, 100, 0.3)

Synthetic data 7 Continuous U(1000, 1000, 0.3)

Synthetic data 8 Continuous U(1000, 10000, 0.3)

Appliance Energy Continuous U(19735, 26, 0.15)

5 COST ANALYSIS AND SCALABILITY

It is crucial to build a cost model of the P-FHDI. It
will not only evaluate the performance of the P-FHDI
but also reveal potential memory risks. Note that when
it comes to the Big O notation of the function g(x), we
are usually talking about the worst-case scenario leading
to the upper time boundary O(g(x)) such that g(x) <
O(g(x)) as x −→ ∞. Considering a constant time for
a unit operation in the algorithm, we can estimate the
time complexity by computing the number of elementary
operations. It is essential to define the elementary cost
involved in computation and communication. Let α be the
computational cost per unit, β be the transfer cost per unit of
communication and L be communication startup cost. Total
running time T (Q) with Q available processors consists of
computational cost C and communication cost H, which
reads:

T (Q) ≈ α
′

Q
+ β

′
Q (40)

where α
′

= αψ1(n, p)O(n2) + αO(n3) and β′ =
βψ1(n, p)O(n). The quantity ψ1(n, p) is the number of total
iterations in cell construction, which guarantees at least two
donors for each recipient. Because of the implicit property
of cell construction and probability estimation, we can only
make an empirical approximation that ψ1(n, p) ∝ n ln (p).
In conjunction with Eq. (40), we have the scalability of
T (cpQ)
T (Q) by

T (Q)

T (cpQ)
= cp ×

α
′
+Q2β

′

α′ + c2pQ
2β′

(41)

where cp ∈ N+. Detailed derivations of Eqs. (40) and (41)
are presented in APPENDIX II.

To evaluate the performance of the P-FHDI in practice,
we perform parametric studies to investigate the impacts of
the number of instances n, the number of variables p and the
missing rate η on speedup and running time. We generate

synthetic datasets in the form of yi = (yi1, . . . , yip), i =
1, . . . , n using the same method presented in Section 4, and
the missingness is dynamically issued by δp ∼ Ber(ηp). By
fixing the other two parameters, nine synthetic datasets will
be generated by varying the target parameter in Table 8.

TABLE 8: Datasets U(instances, variables, missing rate)
prepared for parametric studies.

Parameter Dataset 1 Dataset 2 Dataset 3
n U(0.5M, 4, 0.25) U(0.8M, 4, 0.25) U(1M, 4, 0.25)

η U(1M, 4, 0.15) U(1M, 4, 0.25) U(1M, 4, 0.35)

p U(15K, 12, 0.15) U(15K, 16, 0.15) U(15K, 100, 0.15)

Note that the P-FHDI is particularly powerful towards
big data with massive instances and high missing rates.
The parametric studies on the number of variables will be
discussed in Section 6. An increasing number of instances
n and missing rate η increase the running time of the
P-FHDI in Figs. 7 and 9. But n and η are not likely to
significantly affect the speedup of the P-FHDI in Figs. 6 and
8. We provide speedups and running time of imputation or
variance estimation of the P-FHDI separately in APPENDIX
II. Overall, the number of instances is the dominating
parameter positively affecting speedup and running time.
All of these parametric studies have a good agreement with
the cost models of speedup and running time.

Fig. 6: Impact of the number of instances n on speedups of
the entire P-FHDI (i.e., imputation and variance estimation)
with datasets U(n, 4, 0.25): 4 variables and 25% missing rate
by varying n.

6 VARIABLE REDUCTION FOR BIG-p DATASETS

The current algorithm of the P-FHDI maybe not adequate
for imputing big-p data with too many variables (e.g.,
p > 100). We performed a parametric study with
increasing p and the results show weak speedups with
the big-n algorithm in Fig. 10. A gradual increment of p
significantly increases the total running time, which may
be attributed to the fact that many variables can lead to
exponentially increasing iterations to guarantee at least
two donors during the current cell construction algorithm.
This issue is theoretically related to so-called the curse of
dimensionality. There is a huge literature on the problem
of variable selection. To name a few, the least absolute

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TKDE.2020.3029146, IEEE
Transactions on Knowledge and Data Engineering

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING 11

Fig. 7: Impact of the number of instances n on running
time of the entire P-FHDI (i.e., imputation and variance
estimation) with datasets U(n, 4, 0.25): 4 variables and 25%
missing rate by varying n.

Fig. 8: Impact of the missing rate η on speedups of the entire
P-FHDI (i.e., imputation and variance estimation) with
datasets U(1M, 4, η): 1 million instances and 4 variables by
varying η.

Fig. 9: Impact of the missing rate η on running time of
the entire P-FHDI (i.e., imputation and variance estimation)
with datasets U(1M, 4, η): 1 million instances and 4
variables by varying η.

shrinkage selection operator (LASSO) in [36], ridge in [37],
principle component analysis (PCA) in [38] and smoothly

clipped absolute deviation (SCAD) method in [39]. The sure
independence screening (SIS) proposed in [40] is popular
for ultrahigh dimensional variable reduction. It filters out
the variables that have weak correlations with the response
based on correlation learning. To explain the idea, consider
a linear regression model

Y = Xβ + e (42)
where Y = (y1, y2, . . . , yn)T is vector of responses, X =
(X1,X2, . . . ,Xp) is an n × p random design matrix with
independent and identically distributed (IID) elements.
β = (β1, β2, . . . , βp)

T is a vector of parameters and e =
(e1, e2, . . . , en)T is a IID random errors. Let M∗ = {1 6 i 6
p;βi 6= 0} be the true sparse model. The covariates Xi with
βi 6= 0 are so-called important variables, otherwise as noise
variables. SIS is consist of two steps:

(1) Screening step: choose a subset of v variables such
that v < p. For any given γ ∈ (0, 1), sort the
correlations in a descending order and define sub-
models
Mγ = {1 6 i 6 p; |ri| is among the top of

largest ones}
(43)

where ri = corr(Xi,Y) is the sample correlation
between Xi and Y .

(2) Selection step: using the covariates in Mγ , apply
a penalized regression method to obtain the best
model.

By ”sure screening property”, we know that all important
variables retain after applying a variable screen procedure
with probability tending to 1 by

P (M∗ ⊂Mγ)→ 1 (44)
as n → ∞ for some given γ. Inspired by the screening
step of SIS, we introduce a variable reduction method
with multivariate responses embedded into the P-FHDI
algorithm (so-called big-p algorithm). By assumption of
a cell mean model, an instance {zi | i ∈ AR} serves
as a donor of {zj | j ∈ AM} unless all observed
variables of zj is identical to corresponding variables in
zi. It will be difficult to guarantee at least two donors
for a recipient if p is large. We apply a correlation-based
screening step like SIS to filter out those variables that have
weak correlations with the response variables (i.e., missing
variables). Consequently, an instance {zi | i ∈ AR} serves
as a donor of {zj | j ∈ AM} if the selected variables
of zj is identical to the corresponding variables in zi.
Suppose we select v variables for a recipient such that
v < p. Let X = {X1, . . . ,Xq} be always observed and
Y = {Y 1, . . . ,Y w} be subject to missingness such that
p = q + w. Consider rk = (r1

k, r
2
k, . . . , r

q
k) be a vector of

sample correlations of Xi, i = {1, . . . , q}, given Y k. The
proposed big-p algorithm consists of four steps:

(1) Compute correlation vectors rk where k ∈
{1, . . . , w} and sort it in descending order.

(2) Define sub-covariate set Mk for imputing Y k, k ∈
{1, . . . , w} such that
Mk = {1 6 i 6 q;

∣∣∣rik∣∣∣ is among the top of

largest v,where rik ∈ rk}.
(45)

(3) We are implicitly assuming that
P (Y 1, . . . ,Y w |X1, . . . ,Xq) = P (Y 1, . . . ,Y w |X∗)

(46)

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TKDE.2020.3029146, IEEE
Transactions on Knowledge and Data Engineering

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING 12

where X∗ is the covariates such that M = ∩wk=1Mk

or M = ∪wk=1Mk.
(4) If number of selected covariates in M equals v, then

stop. Otherwise, repeat step (2) and (3) by setting
v = v + 1 until we obtain v selected variables.

By iterations of these steps for each recipient, we can
obtain the selected variables for all recipients. Following
sure screening property, the probability of the true model
among the built model is assumed to be

P (M∗ ⊂M)→ 1 (47)
as n→∞.

Besides, the temporary storage of p̂(z̃M) in line 1
of Algorithm 9 may need excessive memory for big-p
data. Hence, we jointly embed the function Rep CellP
into the L-Replication process of variance estimation to
avoid excessive storage of p̂(z̃M). As a result of the
implementation of the big-p algorithm, the weak speedups
have been enhanced to the linear speedups in Fig. 10.

Fig. 10: Impact of the number of variables p on speedups
of the P-FHDI using the big-n algorithm and the big-p
algorithm, with datasets U(15000, p, 0.15): 15000 instances
with 15% missing rate by varying p. Note that we adopt 4,
5, and 6 selected variables for U(15000, 12, 0.15), U(15000,
16, 0.15), and U(15000, 100, 0.15) with big-p algorithm,
respectively.

We further investigate the behaviors of estimates of the
big-p algorithm. Let U be a finite population of size N and
Ug be subsets of the finite population with size ofNg , where
g = 1, . . . , G. From Eq. (III.7) in the APPENDIX III, the ratio
of the means is given as

E(YN) + E
(∑Gv

g=1

∑
i∈Ug

(R−1
g δi − 1)(yi − µg)

)
E(YN)

→ 1

(48)
as v → p, where Rg = NRg/Ng , NRg =

∑
i∈Ug

δi, YN =∑N
i=1 yi, Gv is the number of imputation groups using v

selected variables, and µg is the weighted average of yi’s in
the subgroup g in the population. The parametric studies
of the number of selected variables in Fig. 11 (a) show that
the adoption of reduced variables won’t affect the average
ratio of means over all variables significantly. The choice of
reduced variables will slightly change Gv of each variable,
leading to additional bias in the second term of numerator.
That is, the slight fluctuation in Fig. 11 (a) is explained. In

future work, a theoretical number of v for a desired level
of bias will be addressed. Now consider the behaviors of
variance using the big-p algorithm. LetW be

W =
M∑
j 6=r

(
w∗ij,FEFI∑
j 6=r w

∗
ij,FEFI

y
∗(j)
i)− y∗(r)i (49)

where r is the index of closest donor to the kth replicate and
w∗ij,FEFI is defined in Eq. (15). Considering the update of
w
∗(k)
ij in Eq. (21), the ratios of V̂ (ŶFHDI) using v selected

variables to that using all observed variables can be derived
by Eq. (III.13) in APPENDIX III as∑n

k=1

(∑
i∈AM w∗ir,FEFI,vWv

)2

∑n
k=1

(∑
i∈AM w∗ir,FEFI,pWp

)2 → 1 (50)

wherew∗ir,FEFI,v andWv are built upon v selected variables
and w∗ir,FEFI,p and Wp are built upon all variables,
respectively. The ratio will approach 1 if v → p. Fig. 11 (b)
shows that the average ratio of the Jackknife variance over
all variables incrementally approaches 1 with a growing
number of reduced variables. The sum ofw∗ij,FEFI of the ith
recipient equals one. If v is much smaller than p, a recipient
will have more donors with v reduced variables such that
w∗ir,FEFI,v � w∗ir,FEFI,p, which is the dominating factor
leading to the ratio of V̂ (ŶFHDI) less than 1. The distance
W measures how far y∗(r)i is away from the mean of M − 1
donors of the ith recipient. Though ŶFHDI has additional
variance due to the donor selection procedure [15]. It leads
to Wp slightly smaller than Wv , which is trivial if v is
much smaller than p. As v → p, w∗ir,FEFI,v ' w∗ir,FEFI,p.
Sequentially, Wp < Wv will play an important role such that
the ratio of V̂ (ŶFHDI) can be slightly greater than 1. That
is, the trend of the average ratio of V̂ (ŶFHDI) in Fig. 11 (b)
is explained.

(a) (b)

Fig. 11: The average ratios of (a) mean and (b)
Jackknife variance estimator of the practical dataset
U(19735, 26, 0.15) using a growing number of selected
variables.

The extremely high-dimensional data we have tested
with the big-p algorithm so far has 10,000 variables. Fig.
12 shows that the speedups of the P-FHDI on extremely
high-dimensional data can scale up slightly lower than
the linear speedup. This performance may be attributed to
the fact that both parallel cell construction and estimation
of cell probability use an internal parallelization within
the unbreakable implicit iterations. The running time of
parallel cell construction and estimation of cell probability
take the majority of total execution time with the dataset
U(1000, 10000, 0.3). Also, the adoption of the uniform
distribution scheme in parallel variance estimation results in

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TKDE.2020.3029146, IEEE
Transactions on Knowledge and Data Engineering

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING 13

the fluctuation of the speedup due to considerable workload
imbalance when n is too small. Our HPC environment (8GB
memory per core) had some difficulty in handling datasets
with more than 10, 000 variables because of several “out
of memory” issues, which may be overcome by a large-
memory HPC environment. As a compromise, the present
P-FHDI will give users warning messages if the requirement
of memory is about to exceed the limitations.

Fig. 12: Speedups of the P-FHDI with an extremely high-
dimensional dataset U(1000, 10000, 0.3): 1000 instances and
10, 000 variables with 30% missingness. Note that we adopt
3 selected variables with the big-p algorithm.

7 FUTURE RESEARCH

In future work, a theoretical choice of the number of selected
variables v in the big-p algorithm which minimizes the
Jackknife estimate of variance will be addressed. Also, the
present big-p algorithm of the P-FHDI is not adequate
for extremely high-dimensional categorical variables. The
categorical variables violate assumptions for computing
correlation, of which all variables should be continuous.
One set of possible solutions rely on distance metrics such
that they can find associations between categorical variables.
Other possible proposals span various statistical metrics
(e.g., chi-squared statistics). The marginal association
measurement proposed in [41] other than correlation
learning will also be a good candidate criterion to filter
out unimportant categorical variables. Departing from the
current program, the next theoretical (e.g., cell construction
with k-nearest neighbors or fractional imputation using
density ratio model) and computational advancements (e.g.,
prudent data distribution algorithm) shall be focusing on
the ultra datasets and high-dimensional categorical data.

8 CONCLUSION

As we enter into the new era of big data, it is of
paramount importance to establish the big data-oriented
imputation paradigm. By inheriting the strengths of
the general-purpose, assumption-free serial fractional hot-
deck imputation program FHDI, this paper presents
the first version of the parallel fractional hot-deck
imputation program, named as P-FHDI. We document the
full details regarding the algorithm-oriented parallelisms,

computational implementations, and various examples of
the P-FHDI to benefit a broad audience in the science
and engineering domain. The developed P-FHDI is suitable
to tackle large-instance (so-called big-n) or large-variable
(so-called big-p) missing data with irregular and complex
missing patterns. The validations and analytical cost models
confirm that the P-FHDI exhibits promising scalability for
big incomplete datasets regardless of various missing rates.
This program will help to impute incomplete data, enable
parallel variance estimation, and ultimately improve the
subsequent statistical inference and machine learning with
the cured big datasets. The next version of P-FHDI will
focus on ultra datasets with both large instances and many
variables, which will call for specialized theoretical and
computational advancements. Toward the future extension,
this first version of P-FHDI will serve as a concrete
foundation. All the developed codes are shared with GPL-2,
and codes, examples, and documents are available in [35].

ACKNOWLEDGMENTS

This research is supported by the research funding of
Department of Civil, Construction, and Environmental
Engineering of Iowa State University. The high-performance
computing facility used for this research is partially
supported by the HPC@ISU equipment at ISU, some of
which has been purchased through funding provided by
NSF under MRI grant number CNS 1229081 and CRI grant
number 1205413. This research is also supported by NSF
under grants CBET-1605275 and OAC-1931380.

REFERENCES

[1] J. Im, I. Cho, and J. K. Kim, “An R package for fractional hot deck
imputation,” The R Journal, vol. 10, no. 1, pp. 140–154, 2018.

[2] I. Song, Y. Yang, J. Im, T. Tong, C. Halil, and I. Cho, “Impacts
of fractional hot-deck imputation on learning and prediction
of engineering data,” IEEE Transactions on Knowledge and Data
Engineering, 2019.

[3] T. A. Myers, “Goodbye, listwise deletion: Presenting hot deck
imputation as an easy and efficient tool for handling missing
data,” Communication Methods and Measures, vol. 5, no. 4, pp. 297–
310, 1999.

[4] J. W. Graham, “Missing data analysis: Making it work in the real
world,” Annual review of psychology, vol. 60, pp. 549–576, 2009.

[5] L. Wilkinson, “Statistical methods in psychology journals:
Guidelines and explanations,” American psychologist, vol. 54, no. 8,
pp. 594–604, 1999.

[6] A. J. Smola, S. Vishwanathan, and H. Thomas, “Kernel methods
for missing variables,” AISTATS, pp. 325–332, 2005.

[7] D. Williams, X. Liao, Y. Xue, and L. Carin, “Incomplete-data
classification using logistic regression,” Proceedings of the 22nd
International Conference on Machine Learning, pp. 972–979, 2005.

[8] D. Rubin, “Multiple imputation after 18+ years,” Journal of the
American Statistical Association, vol. 91, no. 434, pp. 473–489, 1996.

[9] I. White, P. Royston, and A. Wood, “Multiple imputation using
chained equations: Issues and guidance for practice,” Journal of the
American Statistical Association, vol. 30, no. 4, pp. 377–399, 2011.

[10] N. J. Horton and S. R. Lipsitz, “Multiple imputation in practice,”
The American Statistician, vol. 55, no. 3, pp. 244–254, 2001.

[11] S. Yang and J. K. Kim, “A note on multiple imputation for method
of moments estimation,” Biometrika, vol. 103, no. 1, pp. 244–251,
2016.

[12] X. Xie and X.-L. Meng, “Dissecting multiple imputation from
a multi-phase inference perspective: what happens when god’s,
imputer’s and analyst’s models are uncongenial?” Statistica Sinica,
vol. 27, no. 4, pp. 1485–1594, 2017.

[13] K. Graham and L. Kish, “Some efficient random imputation
methods,” Communication in Statistic-Theory and Methods, vol. 13,
no. 16, pp. 1919–1939, 1984.

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TKDE.2020.3029146, IEEE
Transactions on Knowledge and Data Engineering

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING 14

[14] R. E. Fay, “Alternative paradigms for the analysis of imputed
survey data,” Journal of the American Statistical Association, vol. 91,
no. 434, pp. 490–498, 1996.

[15] J. K. Kim and W. Fuller, “Fractional hot deck imputation,”
Biometrika, vol. 91, no. 3, pp. 559–578, 2004.

[16] S. Yang and J. K. Kim, “Fractional imputation in survey sampling:
A comparative review,” Statistical Science, vol. 31, no. 3, 2016.

[17] W. A. Fuller and J. K. Kim, “Hot deck imputation for the response
model,” Survey Methodology, vol. 31, no. 2, pp. 139–149, 2005.

[18] E. F. Akmam, T. Siswantining, S. M. Soemartojo, and D. Sarwinda,
“Multiple imputation with predictive mean matching method for
numerical missing data,” International Conference on Informatics and
Computational Science, pp. 1–6, 2019.

[19] Nurzaman, T. Siswantining, S. M. Soemartojo, and D. Sarwinda,
“Application of sequential regression multivariate imputation
method on multivariate normal missing data,” International
Conference on Informatics and Computational Science, pp. 1–6, 2019.

[20] K. Aristiawati, T. Siswantining, D. Sarwinda, and S. M.
Soemartojo, “Missing values imputation based on fuzzy c-means
algorithm for classification of chronic obstructive pulmonary
disease,” AIP Conference Proceeding, vol. 2192, no. 1, p. 060003,
2019.

[21] T. Anwar, T. Siswantining, D. Sarwinda, S. M. Soemartojo, and
A. Bustamam, “A study on missing values imputation using
k-harmonic means algorithm: Mixed datasets,” AIP Conference
Proceeding, vol. 2202, no. 1, p. 020038, 2019.

[22] IBM, 2012. [Online]. Available: http:// www-
01.ibm.com/software/data/bigdata/

[23] B. Caffo, R. Peng, F. Dominici, T. A. Louis, and S. Zeger, Eds.,
Parallel MCMC Imputation for Multiple Distributed Lag Models: A
Case Study in Environmental Epidemiology. The Handbook of
Markov Chain Monte Carlo, 2011.

[24] T. J. Durham, M. W. Libbrecht, J. Howbert, J. Bilmes, and
W. S. Noble, “Predictd parallel epigenomics data imputation with
cloud-based tensor decomposition,” Nature communication, vol. 9,
no. 1, pp. 1402–1402, 2018.

[25] B. Zhang, D. Zhi, K. Zhang, G. Gao, N. N. Limdi, and N. Liu,
“Practical consideration of genotype imputation: Sample size,
window size, reference choice, and untyped rate,” Statistics and
its interface, vol. 4, no. 3, pp. 339–352, 2011.

[26] E. Porcu, S. Sanna, C. Fuchsberger, and L. G. Fritsche, “Genotype
imputation in genome-wide association studies,” Current protocols
in human genetics, vol. 78, no. 1, pp. 1–25, 2013.

[27] X. Hu, “Acceleration genotype imputation for large dataset on
gpu,” Procedia Environmental Science, vol. 8, pp. 457–463, 2011.

[28] D. Dheeru and G. Casey, “Uci machine learning repository,” 2013.
[Online]. Available: http://archive.ics.uci.edu/ml

[29] J. Im, J. K. Kim, and W. A. Fuller, “Two-phase sampling approach
to fractional hot deck imputation,” In Proceedings of Survey Research
Methodology Section, pp. 1030–1043, 2015.

[30] S. Z. Christopher, T. Siswantining, D. Sarwinda, and A. Bustaman,
“Missing value analysis of numerical data using fractional
hot deck imputation,” International Conference on Informatics and
Computational Science, pp. 1–6, 2019.

[31] J. G. Ibrahim, “Incomplete data in generalized linear models,”
Journal of the American Statistical Association, vol. 85, no. 411, pp.
765–769, 1990.

[32] I. Cho and K. A. Porter, “Multilayered grouping parallel algorithm
for multiple-level multiscale analyses,” International Journal for
Numerical Methods in Engineering, vol. 100, no. 12, pp. 914–932,
2014.

[33] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein, Eds.,
Introduction to Algorithms. London: MIT press, 2009.

[34] Condo, “Condo2017: Iowa state university high-
performance computing cluster system,” 2017.
[Online]. Available: https://www.hpc.iastate.edu/guides/condo-
2017/slurm-job-script-generator-for-condo

[35] I. Cho, “Data-driven, computational science and
engineering platforms repository,” 2017. [Online]. Available:
https://sites.google.com/site/ichoddcse2017/home/type-of-
trainings/parallel-fhdi-p-fhdi-1

[36] T. Robert, “Regression shrinkage and selection via lasso,” Journal
of the Royal Statistical Society: Series B (Methodological), vol. 58, no. 1,
pp. 267–288, 1996.

[37] A. E. Hoerl and R. W. Kennard, “Ridge regression: biased
estimation for nonorthogonal problems,” Technometrics, vol. 12,
no. 1, pp. 55–67, 1970.

[38] L. Jolliffe, Ed., Principle component analysis. Berlin Heidelberg:
Springer, 2011.

[39] J. Fan and R. Li, “Variable selection via nonconcave penalized
likelihood and its oracle properties,” Journal of the American
statistical Association, vol. 96, no. 456, pp. 1348–1360, 2001.

[40] J. Fan and J. Lv, “Sure independence screening for ultrahigh
dimensional feature space,” Journal of the Royal Statistical Society:
Series B (Statistical Methodology), vol. 70, no. 5, pp. 849–911, 2008.

[41] D. Huang, R. Li, and H. Wang, “Feature screening for ultrahigh
dimensional categorical data with applications,” Journal of Business
Economic Statistics, vol. 32, no. 2, pp. 237–244, 2014.

Yicheng Yang received the MS degree in
civil engineering and minored in computer
science from Iowa State University (ISU)
in 2018. He is currently a PhD student in
civil engineering (specialization: intelligent
infrastructure engineering) from the department
of civil, construction and environmental
engineering (CCEE) of ISU in 2019. His
research interests include parallel imputation,
machine learning, and data-driven engineering.

Jae-Kwang Kim received the PhD degree in
Statistics from ISU in 2000. He is a fellow of
American Statistical Association and Institute
of Mathematical Statistics and currently a LAS
Dean’s professor in the department of statistics
at ISU. His research interests include survey
sampling, statistical analysis with missing data,
measurement error models, multi-level models,
causal Inference, data integration, and machine
Learning.

In Ho Cho (corresponding author) received
the PhD degree in civil engineering and minor
in Computational Sci and Eng from California
Institute of Technology, USA in 2012. He
is currently an assistant professor of the
department of CCEE at ISU. His research
interests include data-driven engineering
and science, computational statistics, parallel
computing, parallel multi-scale finite element
analysis, computational and engineering
mechanics for soft micro-robotics and nano-

scale materials.

