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Abstract 

Unobserved heterogeneity across space, time, and crash type is often non-negligible in crash 
frequency modeling. When multiple crash types with spatial and temporal features are analyzed, 
multivariate spatio-temporal models should be considered. For this study, we analyzed the yearly 
county-level fatal, major injury, and minor injury crashes in Iowa from 2006 to 2015 using a 
multivariate spatio-temporal Bayesian model. The model adopted a multivariate spatial structure, 
a multivariate temporal structure, and a multivariate spatio-temporal interaction structure to 
account for possible correlations across injury severities over space, time, and spatio-temporal 
interaction, respectively. Income and weather indicators were found to have no significant effects 
on crash frequencies in the presence of vehicle miles traveled and unemployment rate. Both spatial 
and temporal effects were found to be important, and they played nearly the same roles for all three 
crash types in the studied dataset. Counties located in north and southwest Iowa were found to tend 
to have fewer crashes than the remaining counties. All three crash types generally showed 
descending trends from 2006 to 2015. They also had significantly positive correlations between 
each other in space but not in time. The crude crash rates and predicted crash rates were generally 
consistent for major injury and minor injury crashes but not for low-count fatal crashes. High-risk 
counties were identified using the posterior expected rank by the predicted crash cost rate, which 
was more able to truly represent the underlying traffic safety status than the rank by the crude crash 
cost rate.  

Keywords: multivariate spatio-temporal, Bayesian, crash frequency, posterior expected rank 

1 Introduction 

Traffic crashes have been one of the major sources of fatalities and injuries in the United States. 
Crash frequency analysis is often used to identify key factors influencing the propensity of crashes, 
which is important for policymakers as they propose interventions to prevent road traffic crashes. 
However, unobserved heterogeneity is often an issue in crash frequency modeling, because many 
crash-related elements are often unavailable. Neglecting unobserved heterogeneity may produce 
biased and inefficient results (Mannering et al., 2016).  
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Unobserved heterogeneity may come from many sources. Crashes are usually classified into 
multiple types by different criteria, and their underlying correlations may produce some 
unobserved heterogeneity across observations when they are analyzed simultaneously (Mannering 
and Bhat, 2014; Mannering et al., 2016). Thus, multivariate models, such as the multivariate 
Poisson log-normal (MVPLN) model, are often adopted (Ma et al., 2008; El-Basyouny and Sayed, 
2009; Aguero-Valverde and Jovanis, 2010; El-Basyouny et al., 2014; Zhao et al., 2017). In 
addition, crash frequency data are always aggregated over space and time, which may also produce 
unobserved heterogeneity, as crashes that occur close in space or time are very likely to share some 
unobserved characteristics (Lord et al., 2005; Lord and Mannering, 2010; Savolainen et al., 2011; 
Mannering and Bhat, 2014; Mannering et al., 2016). Previous studies have shown that spatial 
correlations of traffic crashes may exist across states/provinces (Erdogan, 2009; Truong et al., 
2016), counties (Aguero-Valverde and Jovanis, 2006; Song et al., 2006; Eckley and Curtin, 2013), 
census tracts (Wang and Kockelman, 2013), traffic analysis zones (Matkan and Mohaymany, 
2013), intersections (Ahmed and Abdel-Aty, 2015; Liu et al., 2015) and segments (Aguero-
Valverde and Jovanis, 2008; Wang et al., 2009, 2011; Aguero-Valverde, 2011; Jiang et al., 2014; 
Zeng and Huang, 2014). The similarity of economy, culture, land use, weather, traffic laws, and 
driving behavior within a given region may explain the spatial correlations in traffic crashes. When 
multiple crash types with spatial correlations need to be analyzed, multivariate spatial models have 
been proved to be more powerful than univariate spatial models, as multivariate spatial models can 
account for correlations across crash types in space in addition to spatial correlations (Miaou and 
Song, 2005; Song et al., 2006; Aguero-Valverde, 2013; Wang and Kockelman, 2013; Aguero-
Valverde et al., 2016; Barua et al., 2016). Temporal correlations of traffic crashes may exist across 
year (Wang and Abdel-Aty, 2006; Brijs et al., 2008; Andrey, 2010; Wang et al., 2011; Yannis et 
al., 2011; Matkan and Mohaymany, 2013; El-Basyouny et al., 2014), month (Quddus, 2008a; Hu 
et al., 2013), week (Kilamanua et al., 2011; Sukhai et al., 2011; Liu et al., 2015), and day (Brijs et 
al., 2008). Temporal correlations occur because many traffic-related factors, such as driver 
behavior, economy, weather, environment, law, and travel demand, often exhibit some temporal 
features. Similarly, when multiple crash types with temporal correlations need to be analyzed, 
multivariate temporal models should be considered, as they can account for correlations across 
crash types in time in addition to temporal correlations (Serhiyenko et al., 2014; Michalaki et al., 
2016).  

Crashes often have both spatial and temporal features. When only one crash type is analyzed, the 
univariate spatio-temporal modeling has been proved in some studies to be superior (Miaou et al., 
2003; Aguero-Valverde and Jovanis, 2006; Truong et al., 2016; Liu and Sharma, 2017). When 
multiple crash types need to be analyzed, a multivariate spatio-temporal model may be needed. 
Ma et al. (2017) used the bivariate spatio-temporal model to analyze the daily non-injury and injury 
crash rates on 100 roadway segments of I70 in one year at the micro level, and Boulieri et al. (2017) 
used the bivariate spatio-temporal model to analyze the yearly low severity and high severity 
accidents of 7932 electoral wards in England from 2005-2013 considering only vehicle miles 
traveled (VMT). Both studies showed the superiority of the bivariate spatio-temporal model to the 
univariate spatio-temporal model in terms of goodness of fit.  
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In this study, we used the multivariate spatio-temporal Bayesian model to analyze the yearly 
county-level fatal, major injury, and minor injury crash frequencies in Iowa. The goal of this study 
was to accurately identify the long-term effects of economy and weather on crash frequency in 
Iowa and to explore the spatial and temporal correlations of crashes. Additionally, the counties 
were ranked to identify high-risk areas for safety improvement programs, as funding available for 
safety improvements are often limited and proper ranking can significantly influence the 
appropriate distribution of safety funding toward areas with more critical needs. Raw crash data-
based ranking is easy to use but crude and inefficient (Miaou and Song, 2005). In Bayesian cases, 
one statistical ranking method is the posterior expected rank (PER), i.e. the posterior mean of the 
rank by ranking indicators (Miaou and Song, 2005). When rankings are the main interest, the PER 
method is recommended (Shen and Louis, 1998). The most common ranking indicator is crash 
rate, but crash rate considering crash cost by injury severity, called the “crash cost rate” in the 
following analysis, is strongly recommended when injury severity and associated costs are the 
main concerns (Miaou and Song, 2005). Thus, the PER of the crash cost rate would be used to 
rank the studied areas based on the predicted results of the multivariate spatio-temporal Bayesian 
model in this study.         

 

2 Data Description 

Traffic crash data from Iowa’s 99 counties from 2006 to 2015 were obtained from the Iowa 
Department of Transportation. Crashes were divided into five categories by severity: fatal, major 
injury, minor injury, possible injury/unknown, and property damage only. Fatal crashes, major 
injury crashes, and minor injury crashes were analyzed in this study, as these three types of crashes 
often lead to significant economic loss and casualties. VMT data for each county in each year from 
2006 to 2015 were downloaded from the website of the Iowa Department of Transportation (2016). 
In addition, unemployment rate data were downloaded from the website of Iowa Community 
Indicators Program (2016), and per capita personal income data were downloaded from the website 
of the U.S. Bureau of Economic Analysis (2016) of the U.S. Department of Commerce. Meanwhile, 
weather data regarding rainfall, snowfall, and the number of days with minimum temperature 
exceeding 32°F (TH32) were downloaded from the website of the Iowa Environmental Mesonet 
(2017). These weather data are collected based on the daily climate observations from the National 
Weather Service’s Cooperative Observer Program. A summary of the variables is given in Table 
1. All three crash types have over-dispersion, as their variances are much larger than their means. 
Additionally, the highest correlation among the covariates was -0.338 (between snowfall and 
TH32). Thus, no explanatory variables showed strong positive or negative correlations.  

Table 1 Descriptive statistics of collected variables 

Variables Min. Median Mean Max. Std. Error 
Fatal crash 0 2 3.383 35 3.818 
Major injury crash 0 8 13.680 245 22.042 
Minor injury crash 1 23 49.060 894 93.742 
VMT (1,000,000 miles) 0.047 0.186 0.320 4.215 0.487 
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Unemployment rate (%) 2.000 4.600 4.846 10.200 1.347 
Income ($10,000) 2.247 3.877 3.877 6.464 0.666 
Rainfall (inch) 17.850 38.610 38.390 64.990 8.570 
Snowfall (inch) 0 35 34.560 85.100 14.377 
TH32 (days) 174 221 222.600 272 15.733 

Note: VMT, vehicle miles traveled; TH32, number of days with minimum temperature exceeding 
32°F. 

The Pearson correlation coefficients of fatal, major injury, and minor injury crashes were shown 
in Table 2. All three crash types were highly positively correlated. That is, locations where many 
fatal/major injury/minor injury crashes were observed likely also had many crashes of the other 
two types.  

Table 2 Pearson correlation coefficients of crash counts 

Pearson correlation coefficient Fatal crash Major injury crash 
Major injury crash 0.837  
Minor injury crash 0.835 0.971 

 
The county-level yearly average fatal, major injury, and minor injury crash counts in Iowa are 
shown in Figure 1. A cluster of high fatal crash frequencies can be observed in the central counties 
around the dark red-shaded area, where the largest city in Iowa, Des Moines, is located. A cluster 
of low crash frequencies can be observed in the northern and southwestern regions of Iowa (lightly 
shaded areas). A cluster of comparatively higher numbers of major injury crashes can also be 
observed in the central counties. However, no obvious clustering trends can be observed for minor 
injury crashes. Next, spatial correlations of crashes are examined statistically.  
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Figure 1  County-level yearly average fatal, major injury, and minor injury crash counts (2006–
2015) 

Moran’s I statistic is commonly used to test spatial correlations in traffic crash analyses (Quddus, 
2008b; Guo et al., 2010; Xie et al., 2014; Zeng and Huang, 2014). The global Moran’s I is defined 
as (Anselin, 1988):  

 𝐼𝐼 = 𝑛𝑛∑ ∑ 𝜔𝜔𝑖𝑖𝑖𝑖(𝑦𝑦𝑖𝑖−𝑦𝑦�)�𝑦𝑦𝑖𝑖−𝑦𝑦��𝑖𝑖𝑖𝑖

∑ 𝜔𝜔𝑖𝑖𝑖𝑖𝑖𝑖≠𝑖𝑖 ∑ (𝑦𝑦𝑖𝑖−𝑦𝑦�)2𝑖𝑖
 (1) 

where n is the total number of observations; 𝑦𝑦𝑖𝑖  and 𝑦𝑦𝑗𝑗  are the values of observation 𝑖𝑖  and 
observation 𝑗𝑗, respectively; 𝑦𝑦� is the average value of observations; and 𝜔𝜔𝑖𝑖𝑗𝑗 is the spatial weight 
between observations 𝑖𝑖 and 𝑗𝑗.  

Negative Moran’s I values indicate negative spatial autocorrelation, positive Moran’s I values 
indicate positive spatial autocorrelation, and zero indicates no spatial autocorrelation. The z-score 
of Moran’s I shows if the spatial autocorrelation is significant.  
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The global Moran’s I statistics of crashes in each year from 2006 to 2015 were calculated using 
the “spdep” package (Bivand and Piras, 2015) in the R platform (R Core Team, 2016) with queen 
contiguity spatial weights, where counties with a shared border or vertex were considered 
neighbors. When areas were neighbors, the spatial weights were 1; otherwise, they were 0. The 
results are shown in Table 3.  

Table 3 Global Moran's I statistics of crash counts in each year 

Year 
Fatal crash Major injury crash Minor injury crash 

Standardized 
Moran's I p-value Standardized 

Moran's I P-value Standardized 
Moran's I p-value 

2006 1.986 0.024* 1.752 0.041* 0.971 0.166 
2007 2.091 0.018* 1.555 0.060 1.141 0.127 
2008 1.520 0.064 0.688 0.246 0.871 0.192 
2009 1.661 0.048* 1.181 0.119 0.764 0.222 
2010 2.486 0.006* 1.586 0.056 1.106 0.134 
2011 1.919 0.027* 1.883 0.031* 1.101 0.136 
2012 1.240 0.108 2.017 0.022* 1.108 0.134 
2013 2.387 0.009* 2.218 0.013* 1.555 0.060 
2014 1.241 0.107 1.877 0.030* 1.252 0.105 
2015 2.300 0.011* 2.770 0.003* 1.468 0.071 

Note: * significant at p = 0.05. 

Fatal crash and major injury crash counts showed significant spatial autocorrelations in seven and 
six out of 10 years, respectively, at a 95% confidence level, but minor injury crash counts did not 
show any significant spatial autocorrelations at a 95% confidence level in any year. Additionally, 
the p-values of fatal crash and major injury crash counts were much smaller than those for minor 
injury crashes. Thus, fatal crashes and major injury crashes were highly likely to be spatially 
correlated compared to minor injury crashes. These trends may be site specific. As an example, 
Aguero-Valverde and Jovanis (2006) found injury crash frequencies to have a significant spatial 
correlation and fatal crash frequencies to not be significantly correlated in counties of Pennsylvania. 
Although minor injury crash frequencies did not show significant spatial autocorrelations, it does 
not mean the absence of spatial autocorrelation for minor injury crashes; they may still have weak 
spatial correlations. The different strengths of spatial autocorrelations imply that the three crash 
types may have different spatial model parameters.  

Temporal correlation was not directly tested, as there were only 10 time points for each crash type. 
However, as shown in Figure 2 by the yearly state-level counts of all three crash types from 2006 
to 2015, they all generally exhibited descending trends, with some dipping and heaving and 
different descending rates.  
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Figure 2 Iowa state-level yearly crash counts (2006-2015) 

 

3 Methodology 
3.1 Statistical Framework 
The statistical framework used a Bayesian hierarchical architecture, including both spatial and 
temporal as well as spatio-temporal interaction components. The statistical model is presented in 
equations (2) and (3) (Ma et al., 2017):  

 𝑦𝑦𝑠𝑠𝑠𝑠𝑠𝑠~𝑃𝑃𝑃𝑃𝑖𝑖𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃(𝜆𝜆𝑠𝑠𝑠𝑠𝑠𝑠) (2) 

 log(𝜆𝜆𝑠𝑠𝑠𝑠𝑠𝑠) = 𝛼𝛼𝑠𝑠 +  𝑋𝑋𝑠𝑠𝑠𝑠𝑇𝑇 ∗ 𝛽𝛽𝑠𝑠 + υ𝑠𝑠𝑠𝑠 +  𝜈𝜈𝑠𝑠𝑠𝑠 + 𝜑𝜑𝑠𝑠𝑠𝑠 + 𝜃𝜃𝑠𝑠𝑠𝑠 + 𝜂𝜂𝑠𝑠𝑠𝑠𝑠𝑠 (3) 

where 𝑃𝑃 is the space number, i.e. county number in this case, 1, 2, …, 99; 𝑡𝑡 is the time point, i.e. 
year number in this case, 1 (2006), 2 (2007), …, 10 (2015); 𝑘𝑘 is the crash injury severity number, 
1 (fatal crash), 2 (major injury crash), 3 (minor injury crash); 𝑦𝑦𝑠𝑠𝑠𝑠𝑠𝑠 is the crash count of injury 
severity 𝑘𝑘 of space 𝑃𝑃 in time 𝑡𝑡; 𝜆𝜆𝑠𝑠𝑠𝑠𝑠𝑠 is the mean crash frequency of injury severity 𝑘𝑘 of space 𝑃𝑃 in 
time 𝑡𝑡; 𝛼𝛼𝑠𝑠  is the intercept term of crash type 𝑘𝑘; 𝛽𝛽𝑠𝑠 = (𝛽𝛽𝑠𝑠1,𝛽𝛽𝑠𝑠2, … ,𝛽𝛽𝑠𝑠𝑘𝑘) is the m-dimensional 
regression coefficient vector of crash type 𝑘𝑘  and 𝑚𝑚  is the number of covariates; 𝑋𝑋𝑠𝑠𝑠𝑠 =
(𝑋𝑋𝑠𝑠𝑠𝑠1,𝑋𝑋𝑠𝑠𝑠𝑠2, … ,𝑋𝑋𝑠𝑠𝑠𝑠𝑘𝑘)  is the m-dimensional covariate vector of space 𝑃𝑃  in time 𝑡𝑡 ; υ𝑠𝑠𝑠𝑠  is the 
structured spatial random effect of crash type 𝑘𝑘 in space 𝑃𝑃; 𝜈𝜈𝑠𝑠𝑠𝑠 is the unstructured spatial random 
effect of crash type 𝑘𝑘 in space 𝑃𝑃; 𝜃𝜃𝑠𝑠𝑠𝑠 is the structured temporal random effect of crash type 𝑘𝑘 in 
time 𝑡𝑡; 𝜙𝜙𝑠𝑠𝑠𝑠 is the unstructured temporal random effect of crash type 𝑘𝑘 in time 𝑡𝑡; and 𝜂𝜂𝑠𝑠𝑠𝑠𝑠𝑠 is the 
spatio-temporal interaction effect of crash type 𝑘𝑘 in space 𝑃𝑃 and time 𝑡𝑡.  

The spatial component of each observation consisted of two parts: υ𝑠𝑠𝑠𝑠 +  𝜈𝜈𝑠𝑠𝑠𝑠, and the temporal 
component also consisted of two parts: 𝜑𝜑𝑠𝑠𝑠𝑠 + 𝜃𝜃𝑠𝑠𝑠𝑠.  
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3.1.1 Spatial Component 
3.1.1.1 Univariate Spatial Model 
The spatial component of each observation, υ𝑠𝑠𝑠𝑠 + 𝜈𝜈𝑠𝑠𝑠𝑠, was assumed to follow the Besag-York-
Mollie (BYM) model (Besag et al., 1991). The BYM model has been proved to be powerful in 
traffic crash analysis (Aguero-Valverde and Jovanis, 2006; Wang et al., 2013; Xie et al., 2014; 
Boulieri et al., 2017; Ma et al., 2017). For the BYM model, the structured spatial effect, υ𝑠𝑠𝑠𝑠, is 
modeled using an intrinsic conditional autoregressive (ICAR) structure, and the unstructured 
spatial effect, 𝜈𝜈𝑠𝑠𝑠𝑠, follows a normal distribution.  

 υ𝑠𝑠𝑠𝑠|υ(𝑖𝑖≠𝑠𝑠)𝑠𝑠 ~ 𝑁𝑁(
∑ υ𝑖𝑖𝑖𝑖𝑖𝑖∈𝑁𝑁(𝑠𝑠)

#𝑁𝑁(𝑠𝑠) , σ
2
𝜐𝜐
𝑖𝑖

#𝑁𝑁(𝑠𝑠)
) (4) 

 𝜈𝜈𝑠𝑠𝑠𝑠~𝑁𝑁(0,σ2𝜈𝜈
𝑠𝑠) (5) 

where 𝑁𝑁(𝑃𝑃) is the neighbors of space 𝑃𝑃; #𝑁𝑁(𝑃𝑃) is the number of neighbors of space 𝑃𝑃, and σ2𝜐𝜐
𝑠𝑠 

and σ2𝜈𝜈
𝑠𝑠 are two independent variances of crash injury severity 𝑘𝑘 in space.  

Two counties adjacent to each other were considered to be neighbors; otherwise, they were not 
neighbors. The ICAR part accounted for unobserved heterogeneity produced by possible spatial 
correlations between counties, and the unstructured part was responsible for county-specific 
heterogeneity. In the univariate BYM model, both the structured and unstructured spatial effects 
across crash injury severities were assumed to be independent for each observation.  

3.1.1.2 Multivariate Spatial Model 
The multivariate BYM (MBYM) model, shown in equations (6) and (7), is the extension of the 
BYM model in multivariate cases (Boulieri et al., 2017; Ma et al., 2017):  

 υ𝑠𝑠.|υ(𝑖𝑖≠𝑠𝑠). ~ 𝑁𝑁(
∑ υ𝑖𝑖.𝑖𝑖∈𝑁𝑁(𝑠𝑠)

#𝑁𝑁(𝑠𝑠) , Σ𝜐𝜐
#𝑁𝑁(𝑠𝑠)

)  (6) 

 𝜈𝜈𝑠𝑠.~𝑁𝑁(0, Σ𝜈𝜈) (7) 

where υ𝑠𝑠. = (υ𝑠𝑠1, … , υ𝑠𝑠𝑠𝑠) is the k-dimensional structured spatial random effects of space 𝑃𝑃; 𝜈𝜈𝑠𝑠. =
(𝜈𝜈𝑠𝑠1, … , 𝜈𝜈𝑠𝑠𝑠𝑠)  is the k-dimensional unstructured spatial random effects of space 𝑃𝑃 ; 𝑁𝑁(𝑃𝑃) is the 
neighbors of space 𝑃𝑃; #𝑁𝑁(𝑃𝑃) is the number of neighbors of space 𝑃𝑃; and Σ𝜐𝜐 and Σ𝜈𝜈 are the two 
independent 𝑘𝑘 ∗ 𝑘𝑘 variance–covariance matrices in space. 

The MBYM model consisted of a multivariate ICAR component and a multivariate normal (MVN) 
component. Different from the univariate BYM model, both the structured and unstructured spatial 
random effects of each observation are correlated across crash injury severities. Thus, they could 
account for possible unobserved heterogeneity across crash injury severities in space for each 
observation.  

3.1.2 Temporal Component 
3.1.2.1 Univariate Temporal Model 
The structured temporal effect of each observation, 𝜑𝜑𝑠𝑠𝑠𝑠, was modeled with the 1st order random 
walk (RW1) structure. The unstructured temporal effect of each observation, 𝜃𝜃𝑠𝑠𝑠𝑠 , followed a 
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normal distribution. This temporal component was still called the RW1 model in the following 
analysis, although it actually consisted of a RW1 model and an error term.  

 𝜑𝜑𝑠𝑠𝑠𝑠|𝜑𝜑(−𝑠𝑠)𝑠𝑠~

⎩
⎪
⎨

⎪
⎧ 𝑁𝑁 �𝜑𝜑(𝑠𝑠+1)𝑠𝑠 ,𝜎𝜎2𝜑𝜑

𝑠𝑠�                             𝑓𝑓𝑃𝑃𝑓𝑓 𝑡𝑡 = 1

𝑁𝑁 �𝜑𝜑(𝑡𝑡−1)𝑖𝑖+𝜑𝜑(𝑡𝑡+1)𝑖𝑖

2
, 𝜎𝜎2𝜑𝜑

𝑖𝑖

2
�                𝑓𝑓𝑃𝑃𝑓𝑓 𝑡𝑡 = 2,3, … ,9           

𝑁𝑁 �𝜑𝜑(𝑠𝑠−1)𝑠𝑠 ,𝜎𝜎2𝜑𝜑
𝑠𝑠�                           𝑓𝑓𝑃𝑃𝑓𝑓 𝑡𝑡 = 10

 (8) 

 𝜃𝜃𝑠𝑠𝑠𝑠~𝑁𝑁(0,σ2𝜃𝜃
𝑠𝑠), (9) 

where σ2𝜑𝜑
𝑠𝑠 and σ2𝜃𝜃

𝑠𝑠 are two independent variances of crash injury severity 𝑘𝑘 in time. 

It was easy to find that the RW1 model was a special case of applying the ICAR model shown in 
equation (4) in time. In the univariate RW1 model, both the structured and unstructured temporal 
effects across crash injury severities were assumed to be independent for each observation.  

3.1.2.2 Multivariate Temporal Model 
The multivariate RW1 (MRW1) model is the extension of the RW1 model to multivariate cases 
(Boulieri et al., 2017; Ma et al., 2017) and is defined as: 

𝜑𝜑𝑠𝑠.|𝜑𝜑(−𝑠𝑠).~

⎩
⎨

⎧ 𝑁𝑁�𝜑𝜑(𝑠𝑠+1)., Σ𝜑𝜑�                            𝑓𝑓𝑃𝑃𝑓𝑓 𝑡𝑡 = 1

𝑁𝑁 �𝜑𝜑(𝑡𝑡−1).+𝜑𝜑(𝑡𝑡+1).

2
, Σ𝜑𝜑
2
�           𝑓𝑓𝑃𝑃𝑓𝑓 𝑡𝑡 = 2,3, … ,9           

𝑁𝑁�𝜑𝜑(𝑠𝑠−1)., Σ𝜑𝜑�                          𝑓𝑓𝑃𝑃𝑓𝑓 𝑡𝑡 = 10

                                  (10) 

 𝜃𝜃𝑠𝑠.~𝑁𝑁(0, Σ𝜃𝜃) (11) 

where φ𝑠𝑠. = (φ𝑠𝑠1, … ,φ𝑠𝑠𝑠𝑠) is the k-dimensional structured temporal random effects of time t; 𝜃𝜃𝑠𝑠. =
(𝜃𝜃𝑠𝑠1, … ,𝜃𝜃𝑠𝑠𝑠𝑠) is the k-dimensional unstructured temporal random effects of time 𝑡𝑡, and Σ𝜑𝜑 and Σ𝜃𝜃 
are the two independent 𝑘𝑘 ∗ 𝑘𝑘 variance–covariance matrices in time. 

The MRW1 model consists of a multivariate RW1 component and a MVN component. Different 
from the univariate RW1 model, both the structured and unstructured temporal random effects of 
each observation were also correlated across crash injury severities. Thus, they could account for 
possible unobserved heterogeneity across crash injury severities in time for each observation.  

3.1.3 Spatio-Temporal Component 
The spatio-temporal interaction effect of each observation across crash injury severities, 𝜂𝜂(𝑠𝑠𝑠𝑠)., was 
used to account for unobserved heterogeneity not explained by other components. It was assumed 
to follow a zero-mean multivariate normal distribution.  

 𝜂𝜂(𝑠𝑠𝑠𝑠).~𝑁𝑁�0, Σ𝜂𝜂� (12) 

where 𝜂𝜂(𝑠𝑠𝑠𝑠). = (𝜂𝜂𝑠𝑠𝑠𝑠1, … , 𝜂𝜂𝑠𝑠𝑠𝑠𝑠𝑠)  is the k-dimensional spatio-temporal interaction effect of each 
observation and Σ𝜂𝜂 is a 𝑘𝑘 ∗ 𝑘𝑘 variance–covariance matrix. 
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The structure of Σ𝜂𝜂  could account for the remaining possible correlations across crash injury 
severities for each observation. 

To select an appropriate model, there were four models built in this study, as shown in Table 4. 

Table 4 Summary of models developed in this study 

No Model Spatial component Temporal component Spatio-temporal 
component 

1 𝑆𝑆𝐵𝐵𝐵𝐵𝐵𝐵𝑇𝑇𝑅𝑅𝑅𝑅1 BYM RW1 MVN 
2 𝑆𝑆𝐵𝐵𝐵𝐵𝐵𝐵𝑇𝑇𝐵𝐵𝑅𝑅𝑅𝑅1 BYM MRW1 MVN 
3 𝑆𝑆𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝑇𝑇𝑅𝑅𝑅𝑅1 MBYM RW1 MVN 
4 𝑆𝑆𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝑇𝑇𝐵𝐵𝑅𝑅𝑅𝑅1 MBYM MRW1 MVN 

Note: BYM, Besag-York-Mollie; MBYM, multivariate BYM; RW1, 1st order random walk; 
MRW1, multivariate RW1; MVN, multivariate normal. 

3.2 Priors Settings 
All four models were built within the Bayesian hierarchical structure. The priors of parameters 
were set as:  

 𝛼𝛼𝑠𝑠~𝑈𝑈𝑃𝑃𝑖𝑖𝑓𝑓𝑃𝑃𝑓𝑓𝑚𝑚(−∞, +∞) (13) 

 β.𝑗𝑗 ~ 𝑁𝑁(0, Σ𝛽𝛽) (14) 

 σ2𝜐𝜐
𝑠𝑠 ,σ2𝜈𝜈

𝑠𝑠,σ2𝜑𝜑
𝑠𝑠,σ2𝜃𝜃

𝑠𝑠 𝑖𝑖𝑖𝑖𝑖𝑖~  𝐼𝐼𝑃𝑃𝐼𝐼𝐼𝐼𝑓𝑓𝑃𝑃𝐼𝐼 −  𝐺𝐺𝐺𝐺𝑚𝑚𝑚𝑚𝐺𝐺(1,0.0005) (15) 

  Σ𝛽𝛽 , Σ𝜐𝜐, Σ𝜈𝜈 , Σ𝜑𝜑 ,Σ𝜃𝜃, Σ𝜂𝜂
𝑖𝑖𝑖𝑖𝑖𝑖
~ 𝐼𝐼𝑃𝑃𝐼𝐼𝐼𝐼𝑓𝑓𝑃𝑃𝐼𝐼 −𝑊𝑊𝑖𝑖𝑃𝑃ℎ𝐺𝐺𝑓𝑓𝑡𝑡(𝐼𝐼𝑠𝑠,𝑘𝑘) (16) 

where 𝑘𝑘(= 1, 2, 3) is the crash injury severity number, 1 for fatal, 2 for major injury, and 3 for 
minor injury; j(= 1, 2, 3, 4, 5, 6)  is the 𝑗𝑗th  covariate number; β.𝑗𝑗 = �β1𝑗𝑗,β2𝑗𝑗 ,β3𝑗𝑗�

𝑇𝑇
 is the 

regression coefficient vector of the 𝑗𝑗th covariate across crash injury severities; Σ𝛽𝛽 is the variance–
covariance matrix of the regression coefficients of covariates across crash injury severities; σ2𝜐𝜐

𝑠𝑠, 
σ2𝜈𝜈

𝑠𝑠 , σ2𝜑𝜑
𝑠𝑠 , and σ2𝜃𝜃

𝑠𝑠  are independent variances of the structured spatial effects, unstructured 
spatial effects, structured temporal effects, and unstructured temporal effects of crash injury 
severity 𝑘𝑘  in univariate models ,  respectively; Σ𝜐𝜐, Σ𝜈𝜈 , Σ𝜑𝜑 , and Σ𝜃𝜃 are independent variance–
covariance matrices of the structured spatial effects, unstructured spatial effects, structured 
temporal effects, unstructured temporal effects in multivariate models, respectively; Σ𝜂𝜂  is the 
spatio-temporal interaction effects; and 𝐼𝐼𝑠𝑠 is the k-dimension identity matrix. 

The regression coefficients (𝛽𝛽) were given a multivariate normal prior with means being zero to 
accommodate their possible correlations across crash injury severities. A flat prior was set for 
intercept terms (𝛼𝛼) to ensure identifiability of the model (MRC Biostatistics Unit, 2004). All the 
variances were set to have a minimally informative prior of 𝐼𝐼𝑃𝑃𝐼𝐼𝐼𝐼𝑓𝑓𝑃𝑃𝐼𝐼–𝐺𝐺𝐺𝐺𝑚𝑚𝑚𝑚𝐺𝐺(1,0.0005) 
(Blangiardo et al., 2013), which also had been proved to be effective in our former study (Liu and 
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Sharma, 2017). All the variance–covariance matrices were assigned an inverse-Wishart prior with 
the scale matrix being an identity matrix and a degree of freedom of 𝑘𝑘 to provide weak information.  

3.3 Initial Values Settings 
Markov chain Monte Carlo (MCMC) simulation was used to get the posterior distributions of 
parameters and desired latent variables for this study. To start MCMC simulations, initial values 
have to be given for each unknown parameter and latent variable. Good initial values help MCMC 
simulation converge quickly to the true distributions of parameters, whereas bad initial values may 
make MCMC simulation converge slowly and even become stuck at some data points. OpenBUGS, 
a popular Bayesian analysis software using MCMC simulation, was used in this study (Lunn et al., 
2009). When initial values are not given, OpenBUGS randomly generates initial values, which 
usually works after long MCMC iterations. However, that was not the case in this study, as some 
variances and variance–covariance matrices of some chains were often stuck at some points using 
the randomly generated initial values of OpenBUGS. Thus, the posterior distributions of 
parameters did not converge well. Finally, we ran the MCMC simulation twice. The results of the 
first MCMC simulation were used as the initial values for the second MCMC simulation, which 
converged very well. Based on the first MCMC simulation result, initial values of the second 
MCMC simulation were set as:  

σ2𝜐𝜐 = �σ2𝜐𝜐
1,σ2𝜐𝜐

2,σ2𝜐𝜐
3� = �1

5
, 1
1500

, 1
1500

�,  σ2𝜈𝜈 = �σ2𝜈𝜈
1,σ2𝜈𝜈

2,σ2𝜈𝜈
3� = � 1

1800
, 1
5

, 1
600
� ,σ2𝜑𝜑 =

�σ2𝜑𝜑
1,σ2𝜑𝜑

2,σ2𝜑𝜑
3� = � 1

2000
, 1
2000

, 1
2000

�, σ2𝜃𝜃 = �σ2𝜃𝜃
1, σ2𝜃𝜃

2,σ2𝜃𝜃
3� = � 1

2000
, 1
2000

, 1
2000

� , Σ𝜐𝜐−1 =

�
10 0 0
0 10 0
0 0 10

�, Σ𝜈𝜈−1 = �
10 0 0
0 10 0
0 0 10

�, Σ𝜑𝜑−1 = �
11 0 0
0 11 0
0 0 11

�, and Σ𝜃𝜃−1 = �
18 0 0
0 18 0
0 0 18

� .  

3.4 Model Checking and Comparison 
Deviance information criteria (DIC) is a generalized version of Akaike information criterion (AIC) 
for evaluating hierarchical models (Spiegelhalter et al., 2002). The deviance is defined as 𝐷𝐷(𝜃𝜃) =
−2𝑙𝑙𝑃𝑃𝑙𝑙�𝑝𝑝(𝑦𝑦|𝜃𝜃)�, where y is the data, 𝜃𝜃 is the unknown parameters, and 𝑝𝑝(𝑦𝑦|𝜃𝜃) is the likelihood 
function. DIC is defined as (Spiegelhalter et al., 2002): 

 𝐷𝐷𝐼𝐼𝐷𝐷 = 𝐷𝐷(�̅�𝜃) + 2𝑝𝑝𝐷𝐷 = 𝐷𝐷� + 𝑝𝑝𝐷𝐷 (17) 

where �̅�𝜃 is the posterior mean of the parameters; 𝐷𝐷(�̅�𝜃) is the deviance at the posterior mean of the 
parameters, a measure of data fit; 𝑝𝑝𝐷𝐷  is the effective number of the model, a measure of 
complexity computed as the difference between 𝐷𝐷� and 𝐷𝐷(�̅�𝜃); and 𝐷𝐷� is the mean of the sampled 
deviances from MCMC simulations. 

Bayesian models with smaller DIC values are desired. Roughly, differences of more than 10 might 
definitely rule out the model with the higher DIC, differences between 5 and 10 are substantial, 
and differences less than 5 might mean that the models are not significantly different (MRC 
Biostatistics Unit, 2004).  

Although DIC can be used for model comparison, it cannot evaluate the quality of fit of a model 
with observed data. Posterior predictive density is often used for checking the assumptions of a 
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model and its goodness of fit. Assume there is a test statistic 𝐷𝐷(𝑦𝑦,𝜃𝜃), which is a summary function. 
If the model is correct, one can use the posterior predictive distribution to generate replicated 
values 𝑦𝑦𝑟𝑟𝑟𝑟𝑟𝑟, which are expected to be close to the observed data 𝑦𝑦𝑜𝑜𝑜𝑜𝑠𝑠. The test statistic is used to 
check the assumption under investigation and measure discrepancies between the data and the 
model (Gelman et al., 1996). Based on the posterior predictive distribution, the posterior predictive 
p-value is defined as (Meng, 1994) 

𝑃𝑃𝑃𝑃𝑃𝑃𝑡𝑡𝐼𝐼𝑓𝑓𝑖𝑖𝑃𝑃𝑓𝑓 𝑝𝑝 − 𝐼𝐼𝐺𝐺𝑙𝑙𝑣𝑣𝐼𝐼 =  𝑃𝑃(𝐷𝐷(𝑦𝑦𝑟𝑟𝑟𝑟𝑟𝑟,𝜃𝜃) > 𝐷𝐷(𝑦𝑦𝑜𝑜𝑜𝑜𝑠𝑠,𝜃𝜃)|𝑦𝑦𝑜𝑜𝑜𝑜𝑠𝑠)                           (18) 

P-values around 0.5 indicate that the distributions of the replicated and observed data are close, 
whereas values close to zero or one indicate differences between them (Gelman et al., 1996). In 
this study, the mean values of crash frequencies were used as the test statistic, as the mean is the 
major parameter for a Poisson model.  

3.5 Random Effects Analysis 
3.5.1 Spatial Fraction Analysis 
For spatial analysis, one point of interest is to identify the contribution of the structured spatial 
effects, 𝜎𝜎𝜐𝜐2,  over the total marginal spatial variability, 𝜎𝜎𝜐𝜐2 + 𝜎𝜎𝜈𝜈2  (Boulieri et al., 2017). The 
spatial fraction of interest is given by  

 𝑓𝑓𝑓𝑓𝐺𝐺𝑓𝑓𝜐𝜐 = 𝜎𝜎𝜐𝜐2

𝜎𝜎𝜐𝜐2+𝜎𝜎𝜈𝜈2
 (19) 

When the spatial fraction is close to 1, the structured spatial effects explain most of the variability 
of the model in space. Otherwise, the unstructured spatial effects play the main role.  

3.5.2 Temporal Fraction Analysis 
Similarly, the temporal fraction is defined as the variance of structured temporal effects, 𝜎𝜎𝜑𝜑2, over 
the total marginal temporal variability, 𝜎𝜎𝜑𝜑2 + 𝜎𝜎𝜙𝜙2: 

 𝑓𝑓𝑓𝑓𝐺𝐺𝑓𝑓𝜑𝜑 = 𝜎𝜎𝜑𝜑2

𝜎𝜎𝜑𝜑2+𝜎𝜎𝜃𝜃2
 (20) 

When the temporal fraction is close to 1, the structured temporal effects explain most of the 
variability of the model in time. Otherwise, the unstructured temporal effects play the main role.  

3.5.3 Spatial and Temporal Effects Comparison 
When both spatial and temporal effects exist, it is also of interest to determine their relative 
importance. The relative importance of spatial effects is defined as the variance of spatial effects 
over the marginal variability of spatial and temporal effects:  

 𝑓𝑓𝑓𝑓𝐺𝐺𝑓𝑓 𝑆𝑆
𝑆𝑆+𝑇𝑇

= 𝜎𝜎𝜐𝜐2+𝜎𝜎𝜈𝜈2

𝜎𝜎𝜐𝜐2+𝜎𝜎𝜈𝜈2+𝜎𝜎𝜑𝜑2+𝜎𝜎𝜃𝜃2
  (21) 

3.6 PER by Total Crash Cost Rate  
In the “safety improvement candidate location” methods of Iowa (Pawlovich, 2007), the costs of 
fatal, major injury, and minor injury crashes were set as 200, 100, and 10 units, respectively. They 
were adopted to calculate the total crash cost rate as shown in equation (22), where crash rate was 
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the crash count per million VMT. The PER using the predicted total crash cost rate as well as the 
crude rank using the crude total crash cost rates would be computed and compared, respectively. 
The county ranked as 1st had the largest total crash cost rate.  

𝑇𝑇𝑃𝑃𝑡𝑡𝐺𝐺𝑙𝑙 𝑓𝑓𝑓𝑓𝐺𝐺𝑃𝑃ℎ 𝑓𝑓𝑃𝑃𝑃𝑃𝑡𝑡 𝑓𝑓𝐺𝐺𝑡𝑡𝐼𝐼 = 𝐹𝐹𝐺𝐺𝑡𝑡𝐺𝐺𝑙𝑙 𝑓𝑓𝑓𝑓𝐺𝐺𝑃𝑃ℎ 𝑓𝑓𝐺𝐺𝑡𝑡𝐼𝐼 ∗ 200 + 𝑀𝑀𝐺𝐺𝑗𝑗𝑃𝑃𝑓𝑓 𝑖𝑖𝑃𝑃𝑗𝑗𝑣𝑣𝑓𝑓𝑦𝑦 𝑓𝑓𝑓𝑓𝐺𝐺𝑃𝑃ℎ 𝑓𝑓𝐺𝐺𝑡𝑡𝐼𝐼 ∗ 100 +
𝑀𝑀𝑖𝑖𝑃𝑃𝑃𝑃𝑓𝑓 𝑖𝑖𝑃𝑃𝑗𝑗𝑣𝑣𝑓𝑓𝑦𝑦 𝑓𝑓𝑓𝑓𝐺𝐺𝑃𝑃ℎ 𝑓𝑓𝐺𝐺𝑡𝑡𝐼𝐼 ∗ 10                                                                             (22) 

 

4 Results 
All fours models were implemented in OpenBUGS in R (R Core Team, 2016) through 
“R2OpenBUGS” (Sturtz et al., 2005). OpenBUGS uses the Metropolis-Hastings algorithm to 
sample data. Three simulation chains were run with 50,000 iterations for each chain, the first 
25,000 samples were discarded as burn-in and the remaining 25,000 samples were retained to get 
the posterior distributions of parameters with a thinning interval of 5. Thus, 5,000 samples were 
recorded per chain. On an Intel(R) Xeon(R) CPU at 3.70 GHz with 16 GB random access memory, 
it took about 3.5 hours to run each model. The trace plots of estimated parameters showed that 
posterior samples converged well after the burn-in iterations. In addition, the Gelman and Rubin’s 
convergence diagnostic, i.e. potential scale reduction factors of variables, was also calculated to 
check the convergence of multiple chains (Gelman and Rubin, 1992). The DIC values for the four 
models listed in Table 4 are shown in Table 5.  

Table 5 DIC values of four models 
No Model DIC 
1 𝑆𝑆𝐵𝐵𝐵𝐵𝐵𝐵𝑇𝑇𝑅𝑅𝑅𝑅1 14,330 
2 𝑆𝑆𝐵𝐵𝐵𝐵𝐵𝐵𝑇𝑇𝐵𝐵𝑅𝑅𝑅𝑅1 8,519 
3 𝑆𝑆𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝑇𝑇𝑅𝑅𝑅𝑅1 10,970 
4 𝑆𝑆𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝑇𝑇𝐵𝐵𝑅𝑅𝑅𝑅1 8,371 

 
Compared to the SBYMTRW1 model, the DIC values of both the SMBYMTRW1 and the SBYMTMRW1 
models were much smaller. In addition, the DIC value of the SMBYMTMRW1 model was much 
smaller than that for the SMBYMTRW1 and the SBYMTMRW1 models. This implied that unobserved 
heterogeneity across crash injury severities existed in both space and time, thus the SMBYMTMRW1 
model was preferred for this study. In addition, the posterior p-values of the mean values of fatal, 
major injury, and minor injury crashes were 0.500, 0.497, and 0.495, respectively, close to 0.5, 
which meant that the SMBYMTMRW1 model matched the data well. Mean and 95% credible interval 
(CI) values of estimated parameters of the SMBYMTMRW1 model are shown in Table 6.  

Table 6 Estimated parameters of the SMBYMTMRW1 model with all covariates 

Variables 
Fatal crash Major injury crash Minor injury crash 

Mean 95% CI Mean 95% CI Mean 95% CI 
Intercept 0.168 (–1.591, 1.630) 2.185* (1.212, 3.095) 3.028* (2.505, 3.611) 
Income 0.081 (–0.054, 0.228) –0.036 (–0.119, 0.053) 0.018 (–0.052, 0.085) 

Unemployment rate 0.037 (–0.029, 0.102) –0.055* (–0.103, –0.009) –0.062* (–0.092, –0.033) 
Rainfall –0.005 (–0.013, 0.003) 0.001 (–0.004, 0.006) 0.002 (–0.002, 0.005) 
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Snowfall –0.002 (–0.006, 0.003) –0.001 (–0.004, 0.002) 0.000 (–0.002, 0.001) 
TH32 0.001 (–0.005, 0.008) 0.000 (–0.004, 0.004) 0.000 (–0.002, 0.002) 
VMT 0.732* (0.538, 0.903) 0.970* (0.746, 1.160) 1.132* (0.893, 1.301) 
𝜎𝜎2𝜐𝜐 0.305 (0.103, 0.644) 0.412 (0.116, 0.903) 0.491 (0.136, 1.088) 
𝜎𝜎2𝜈𝜈 0.124 (0.067, 0.203) 0.188 (0.100, 0.299) 0.231 (0.124, 0.362) 
𝑓𝑓𝑓𝑓𝐺𝐺𝑓𝑓𝜐𝜐 0.681 (0.383, 0.890) 0.651 (0.314, 0.889) 0.643 (0.305, 0.887) 
𝜎𝜎2𝜑𝜑 0.261 (0.081, 0.759) 0.253 (0.078, 0.708) 0.246 (0.078, 0.698) 
𝜎𝜎2𝜃𝜃 0.229 (0.074, 0.634) 0.214 (0.071, 0.576) 0.218 (0.072, 0.589) 
𝑓𝑓𝑓𝑓𝐺𝐺𝑓𝑓𝜑𝜑  0.527 (0.219, 0.816) 0.533 (0.228, 0.820) 0.525 (0.226, 0.809) 
𝑓𝑓𝑓𝑓𝐺𝐺𝑓𝑓 𝑆𝑆

𝑆𝑆+𝑇𝑇
 0.487 (0.235, 0.718) 0.573 (0.314, 0.792) 0.618 (0.368, 0.813) 

𝜎𝜎2𝜂𝜂 0.047 (0.031, 0.067) 0.029 (0.022, 0.037) 0.018 (0.014, 0.022) 
Note: CI, credible interval; TH32, number of days with minimum temperature exceeding 32°F; 
VMT, vehicle miles traveled; 𝜎𝜎2𝜐𝜐, 𝜎𝜎2𝜈𝜈, 𝜎𝜎2𝜑𝜑, 𝜎𝜎2𝜃𝜃, and 𝜎𝜎2𝜂𝜂 are variances; 𝑓𝑓𝑓𝑓𝐺𝐺𝑓𝑓𝜐𝜐 is the spatial 
fraction; 𝑓𝑓𝑓𝑓𝐺𝐺𝑓𝑓𝜑𝜑 is the temporal fraction; 𝑓𝑓𝑓𝑓𝐺𝐺𝑓𝑓 𝑆𝑆

𝑆𝑆+𝑇𝑇
 is the relative importance of spatial effects; 

*covariates significant at the 95% credible interval.  

4.1 Regression Coefficients Analysis 
The intercept term was insignificant for fatal crashes but was significant for major injury and minor 
injury crashes. As expected, VMT showed significant positive effects for all three crash types. In 
addition, both intercept and VMT coefficients increased as crash injury severity decreased, which 
was consistent with the magnitude of crash counts. 

Income was statistically insignificant for all three crash types, although income had generally 
increased for counties in Iowa from 2006 to 2015. Unemployment rate did not have significant 
effects on fatal crash counts but did have significantly negative effects on major injury and minor 
injury crash counts; that is, the number of major and minor injury crashes decreased as the 
unemployment rate increased. The unemployment rate has been thought to have mixed effects on 
traffic crash frequencies (Wagenaar, 1983; Leigh and Waldon, 1991). On one hand, high 
unemployment is associated with more mental stress in the population, related to both job loss and 
fear of job loss, which could lead to more aggressive driving patterns and more traffic crashes 
(Wagenaar, 1983). On the other hand, high unemployment also brings with it less driving and thus 
fewer traffic crashes (Wagenaar, 1983; Leigh and Waldon, 1991). The latter seemed to 
predominate in Iowa, which was consistent with what was found in Michigan, where 
unemployment had negative effects on crash counts (Wagenaar, 1983).  

Rainfall, snowfall, and TH32 did not show significant effects on any crash type. Although these 
weather indicators had great variability within the time span studied, they were not related to traffic 
safety problems in the long term. Adverse weather, such as snowstorms and flooding, may result 
in more crashes in the short term but may also reduce people’s travel in the following time, leading 
to lower crash numbers. The two opposite effects seemed to offset each other.  

It should be noted that all regression coefficients were assumed to be fixed for this study as shown 
in equation (3). That is, the effects of covariates on crash frequencies were thought to be 
homogeneous over space and time. However, these effects might be heterogeneous in practice in 
the presence of spatial instability and temporal instability, where fixed parameters models might 
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produce biased coefficient estimates and incorrect inferences (Mannering et al., 2016; Mannering, 
2018). For example, snowfall might affect crash frequencies differently in rural areas and urban 
areas due to different travel demands and travel modes. Thus, spatio-temporal-varying parameter 
models might be considered to get more accurate results in future studies.      

Because most covariates were found to be insignificant, the SMBYMTMRW1 model was re-run with 
significant variables, and the results were shown in Table 7. The posterior p-values of the mean 
values of fatal, major injury, and minor injury crash counts for the new model were 0.493, 0.495, 
and 0.500, respectively, which meant it fitted the data well. Mean and 95% CI values of estimated 
parameters were found to be generally consistent with those shown in Table 6. 

Table 7 Estimated parameters of the SMBYMTMRW1 model with significant covariates 

Variables 
Fatal crash Major injury crash Minor injury crash 

Mean 95% CI Mean 95% CI Mean 95% CI 
Intercept 0.685* (0.395, 0.983) 2.073* (1.726, 2.430) 3.153* (2.850, 3.468) 

Unemployment rate – – –0.051* (–0.095, –0.006) –0.060* (–0.092, –0.030) 
VMT 0.794* (0.594, 0.978) 1.039* (0.798, 1.251) 1.222* (0.954, 1.452) 
𝜎𝜎2𝜐𝜐 0.281 (0.098, 0.591) 0.366 (0.118, 0.847) 0.431 (0.136, 1.039) 
𝜎𝜎2𝜈𝜈 0.127 (0.070, 0.203) 0.192 (0.105, 0.297) 0.234 (0.130, 0.358) 
𝑓𝑓𝑓𝑓𝐺𝐺𝑓𝑓𝜐𝜐 0.662 (0.373, 0.878) 0.622 (0.322, 0.878) 0.614 (0.311, 0.878) 
𝜎𝜎2𝜑𝜑 0.248 (0.079, 0.695) 0.246 (0.078, 0.682) 0.244 (0.076, 0.707) 
𝜎𝜎2𝜃𝜃 0.213 (0.072, 0.565) 0.209 (0.071, 0.554) 0.200 (0.070, 0.519) 
𝑓𝑓𝑓𝑓𝐺𝐺𝑓𝑓𝜑𝜑  0.530 (0.225, 0.817) 0.533 (0.232, 0.818) 0.538 (0.241, 0.818) 
𝑓𝑓𝑓𝑓𝐺𝐺𝑓𝑓 𝑆𝑆

𝑆𝑆+𝑇𝑇
 0.487 (0.246, 0.715) 0.563 (0.311, 0.781) 0.609 (0.356, 0.809) 

𝜎𝜎2𝜂𝜂 0.047 (0.031, 0.067) 0.029 (0.022, 0.037) 0.018 (0.014, 0.022) 
Note: CI, credible interval; VMT, vehicle miles traveled; 𝜎𝜎2𝜐𝜐, 𝜎𝜎2𝜈𝜈, 𝜎𝜎2𝜑𝜑, 𝜎𝜎2𝜃𝜃, and 𝜎𝜎2𝜂𝜂 are 
variances; 𝑓𝑓𝑓𝑓𝐺𝐺𝑓𝑓𝜐𝜐 is the spatial fraction; 𝑓𝑓𝑓𝑓𝐺𝐺𝑓𝑓𝜑𝜑 is the temporal fraction; 𝑓𝑓𝑓𝑓𝐺𝐺𝑓𝑓 𝑆𝑆

𝑆𝑆+𝑇𝑇
 is the relative 

importance of spatial effects; *covariates significant at the 95% credible interval.  

4.2 Random Effects Analysis 
4.2.1 Spatial Random Effects Analysis 
For the SMBYMTMRW1 model, the spatial fraction values for fatal, major injury, and minor injury 
crashes were 0.662, 0.622, and 0.614, respectively. This means that, for all three crash types, 
unobserved heterogeneity in space existed both between counties and within individual counties, 
and the structured spatial effects played slightly more important roles than did the unstructured 
spatial effects. Shown in Figure 3 are the exponentials of the posterior means of the structured 
spatial effects (exp(υ𝑠𝑠𝑠𝑠)) for each county for all three crash types; counties with exp(υ𝑠𝑠𝑠𝑠) lower 
than 1 tended to have fewer crashes and counties with exp(υ𝑠𝑠𝑠𝑠) greater than 1 tended to have more 
crashes. It is found that the counties located in the north and southwest regions of Iowa tended to 
have fewer fatal, major injury, and minor injury crashes. For fatal crashes, this finding is generally 
consistent with the empirically observed fatal crash distribution shown in Figure 1(a). However, 
for major injury and minor injury crashes, it is not obvious to see these trends in Figure 1(a) and 
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Figure 1(b). This finding is a good example showing that one main benefit of spatial analysis is 
the identification of the underlying spatial clustering of crashes.  

 

Figure 3 Exponential posterior means of the structured spatial effect (𝐼𝐼𝑒𝑒𝑝𝑝(υ𝑠𝑠𝑠𝑠)) of crashes in 
Iowa 

Moran’s I statistics of residuals of the SMBYMTMRW1 model were calculated to see if they still had 
spatial correlations. As shown in Table 8, the residuals of fatal and major injury crashes did not 
show any significant spatial correlation at a 5% significance level for any year. In addition, the p-
values were considerably larger than those shown in Table 3, which meant that unobserved 
heterogeneity in space was nearly completely covered by the spatial component. The p-values of 
Moran’s I test for the residuals of minor injury crashes also increased considerably in most years, 
which meant that the weak spatial autocorrelations of minor injury crashes were also eliminated. 
However, there were some exceptions in 2006, 2007, and 2011 for minor injury crashes, when the 
raw crash data did not show significant spatial autocorrelations, whereas their residuals showed 
significant spatial autocorrelations. It is thought that minor injury crashes might have trivial spatial 
autocorrelation in these three years but did have non-trivial spatial correlations in other years. 
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However, because the SMBYMTMRW1 model assigned fixed spatial random effects to the data for 
each year, the residuals would also have spatial effects as the complement in these three years. 
This needs further investigation to determine the true reason. This finding implies the importance 
of checking the necessity of adopting spatial models in crash analysis. We suggest making spatial 
tests before and after spatial analysis to justify the utilization of spatial models. In general, the 
spatial component covered nearly all unobserved heterogeneity of crashes in space. The results 
also generally verified the effectiveness of the spatial model. 

Table 8 Moran's I test results for the residuals of the 𝑆𝑆𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝑇𝑇𝐵𝐵𝑅𝑅𝑅𝑅1 model 

Year 
Fatal crash Major injury crash Minor injury crash 

Standardized 
Moran's I P-value Standardized 

Moran's I P-value Standardized 
Moran's I P-value 

2006 –1.285 0.901 0.003 0.499 1.835 0.033* 
2007 –0.195 0.577 –0.944 0.828 3.434 0.000* 
2008 –0.912 0.819 –0.130 0.552 1.174 0.120 
2009 –0.647 0.741 0.865 0.194 0.096 0.462 
2010 0.660 0.255 1.323 0.093 –0.407 0.658 
2011 0.099 0.461 0.489 0.313 3.586 0.000* 
2012 0.232 0.408 –0.171 0.568 –0.789 0.785 
2013 0.495 0.310 –0.021 0.508 –1.019 0.846 
2014 –0.430 0.666 0.355 0.361 –0.669 0.748 
2015 –1.409 0.921 –0.285 0.612 –1.579 0.943 

* Significant at P = 0.05. 

4.2.2 Temporal Random Effects Analysis 
For the SMBYMTMRW1 model, the temporal fraction values for fatal, major injury, and minor injury 
crashes were 0.530, 0.533, and 0.538, respectively. The structured temporal effects and the 
unstructured temporal effects played nearly the same roles for all three crash types. Thus, 
unobserved heterogeneity in time existed both between years and in individual years. Shown in 
Figure 4 are the exponentials of the posterior means of the structured temporal effects (exp(φ𝑠𝑠𝑠𝑠)) 
in each year for all three crash types. All three crash types generally showed descending trends 
from 2006 to 2015, whereas major injury and minor injury crashes had some fluctuations.  



18 
 

 

Figure 4 Exponential posterior means of the structured temporal effects (𝐼𝐼𝑒𝑒𝑝𝑝(φ𝑠𝑠𝑠𝑠)) of the 
SMBYMTMRW1 model 

 

4.2.3 Spatial and Temporal Random Effects Comparison 
The 𝑓𝑓𝑓𝑓𝐺𝐺𝑓𝑓 𝑆𝑆

𝑆𝑆+𝑇𝑇
 values for fatal, major injury, and minor injury crashes were 0.487, 0.563, and 0.609, 

respectively. This means that temporal effects played slightly more important roles for fatal 
crashes, whereas spatial effects played slightly more important roles for major injury and minor 
injury crashes. That is, the relative importance of spatial effects and temporal effects varied slightly 
by crash injury severity.  

4.2.4 Unobserved Heterogeneity across Crash Injury Severities 
The estimated variance–covariance matrices for all the random effects and the corresponding 95% 
credible intervals of the SMBYMTMRW1 model are shown in Table 9. 
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Table 9 Estimated variance-covariance matrices of the SMBYMTMRW1 model 

Structured spatial effects (υ𝑠𝑠.) 
Σ𝜐𝜐 Fatal crash Major injury crash Minor injury crash 

Fatal crash 0.281 (0.098, 0.591)   
Major injury crash 0.235 (0.035, 0.594) 0.366 (0.118, 0.847)  
Minor injury crash 0.253 (0.035, 0.661) 0.322 (0.063, 0.850) 0.431 (0.136, 1.039) 

Unstructured spatial effects (𝜈𝜈𝑠𝑠.) 
Σ𝜈𝜈 Fatal crash Major injury crash Minor injury crash 

Fatal crash 0.127 (0.070, 0.203)   
Major injury crash 0.110 (0.046, 0.190) 0.192 (0.105, 0.297)  
Minor injury crash 0.121 (0.051, 0.207) 0.173 (0.082, 0.279) 0.234 (0.130, 0.358) 

Structured temporal effects (𝜑𝜑𝑠𝑠.) 
Σ𝜑𝜑 Fatal crash Major injury crash Minor injury crash 

Fatal crash 0.248 (0.079, 0.695)   
Major injury crash 0.001 (–0.223, 0.231) 0.246 (0.078, 0.682)  
Minor injury crash –0.003 (–0.235, 0.227) –0.009 (–0.257, 0.208) 0.244 (0.076, 0.707) 

Unstructured temporal effects (𝜃𝜃𝑠𝑠.) 
Σ𝜃𝜃 Fatal crash Major injury crash Minor injury crash 

Fatal crash 0.213 (0.072, 0.565)   
Major injury crash –0.002 (–0.193, 0.191) 0.209 (0.071, 0.554)  
Minor injury crash –0.003 (0.182, 0.173) –0.007 (–0.186, 0.159) 0.200 (0.070, 0.519) 

Spatio-temporal interaction effects (𝜂𝜂(𝑠𝑠𝑠𝑠).) 
Σ𝜂𝜂 Fatal crash Major injury crash Minor injury crash 

Fatal crash 0.047 (0.031, 0.067)   
Major injury crash 0.002 (–0.007, 0.010) 0.029 (0.022, 0.037)  
Minor injury crash 0.000 (–0.005, 0.006) 0.006 (0.002, 0.010) 0.018 (0.014, 0.022) 

Note: Values shown are the posterior mean with the 95% credible interval in parentheses; Σ𝜐𝜐, Σ𝜈𝜈 ,
Σ𝜑𝜑 , Σ𝜃𝜃, Σ𝜂𝜂  are variance–covariance matrices of structured spatial effects, unstructured spatial 
effects, structured temporal effects, unstructured temporal effects, and spatio-temporal interaction 
effects, respectively.  

For the SMBYMTMRW1 model, unobserved heterogeneity across crash injury severities had three 
sources: space, time, and spatio-temporal interaction. All the off-diagonal elements of Σ𝜐𝜐 and Σ𝜈𝜈 
were significantly positive, which meant there were strong positive correlations across crash injury 
severities for both structured and unstructured spatial effects. That is, with the increase of fatal 
crash counts in one county, the major injury and minor injury crash counts of this county, and the 
fatal, major injury, and minor injury crash counts of its neighboring counties were also expected 
to increase. This proves the necessity of using multivariate spatial models from another viewpoint. 
However, none of the off-diagonal elements of Σ𝜑𝜑 and Σ𝜃𝜃 were significantly different from zero, 
which implied that there were no strong correlations across crash injury severities for either 
structured or unstructured temporal effects. However, the DIC value of the SMBYMTMRW1 model 
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was still much smaller than that for the SMBYMTRW1 model (shown in Table 5). This implies that, 
although crashes may not show strong correlations in time, their correlations may still not be 
ignored, as weak correlations may still explain some variability in the data. For the spatio-temporal 
interaction effects, major injury crashes showed significantly positive correlations with minor 
injury crashes, but fatal crashes did not show significant correlations with the other two crash types.  

For each observation, because Σ𝜐𝜐, Σ𝜈𝜈 , Σ𝜑𝜑, Σ𝜃𝜃, 𝐺𝐺𝑃𝑃𝑖𝑖 Σ𝜂𝜂 are independent, the Pearson’s correlation 
coefficients of random effects across crash injury severities can be calculated as follows:  

 𝜌𝜌12 =
Σ𝜐𝜐12+Σ𝜈𝜈12+Σ𝜑𝜑12+Σ𝜃𝜃12+Σ𝜂𝜂12
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where 𝜌𝜌12 is the Pearson correlation coefficient of random effects between fatal and major injury 
crashes, 𝜌𝜌13 is the Pearson correlation coefficient of random effects between fatal and minor injury 
crashes, and 𝜌𝜌23 is the Pearson correlation coefficient of random effects between major injury and 
minor injury crashes.  

The posterior means and 90% credible intervals of Pearson correlation coefficients of random 
effects are shown in Table 10. The Pearson correlation coefficient between any two crash types 
was significantly positive at a 90% credible interval, but the Pearson correlation coefficient 
between major injury and minor injury crashes was generally larger than the other two values. That 
is, major injury and minor injury crashes had a stronger correlation compared to fatal crashes, 
which was consistent with the Pearson correlation coefficients of crash counts shown in Table 2.  

Table 10 Pearson correlation coefficients of random effects across crash injury severities 

Pearson correlation coefficient Mean 90% CI 
𝜌𝜌12 0.357 (0.047, 0.605) 
𝜌𝜌13 0.366 (0.066, 0.605) 
𝜌𝜌23 0.453 (0.145, 0.689) 

Note: CI, credible interval; 𝜌𝜌12, 𝜌𝜌13, 𝜌𝜌23, Pearson correlation coefficients between fatal and major 
injury crashes, between fatal and minor injury crashes, and between major injury and minor injury 
crashes, respectively. 

4.3 Site Ranking Results Analysis 
The crude crash rates and the predicted crash rates for all three crash types, which were calculated 
by dividing the crash counts by VMT, are shown in Figure 5. A linear regression model was built 
to check their correlation.  
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Figure 5 Crude crash rate versus predicted crash rate of fatal, major injury, and minor injury 
crashes 

The 𝑅𝑅2 value was 0.929, which means that the crude crash rates were generally consistent with the 
predicted crash rates. Specifically, for major injury and minor injury crashes, these two rates were 
very consistent, but for fatal crashes, they were inconsistent. Major injury and minor injury crash 
counts were very large, but fatal crash counts were very small, as shown in Table 1. Thus, 
occurrences of fatal crashes were more stochastic than major injury and minor injury crashes. It is 
thought that the multivariate structure could borrow information from major injury and minor 
injury crashes to estimate fatal crashes stably (Boulieri et al., 2017). Thus, the predicted data from 
the SMBYMTMRW1 model are expected to be smoother for unstable low-frequency fatal crashes, and 
could represent the underlying true distribution of fatal crashes better than the crude data could.  

The crash cost rates directly influenced the ranking results shown in Figure 6, where x-axis showed 
the crude rank by the crude crash cost rate and y-axis showed the PER by the predicted crash cost 
rate. The two ranking methods produced consistent results for major injury and minor injury 
crashes but had large differences for fatal crashes, which led to different ranking results for total 
crashes. 
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Figure 6 County rank by crude crash cost rate versus county posterior expected rank by predicted 
crash cost rate in 2015 

The top 10 risky counties using the two ranking methods are shown in Figure 7. Of the counties 
ranked by these two methods, seven appeared in the top 10 for both methods, whereas three 
counties appeared only in the top 10 of one or the other method; Lyon, Hamilton, and Mahaska 
Counties were in the top 10 list using the predicted crash cost rate PER but not in the crude crash 
cost rate ranking. Moreover, the rank orders of the seven counties appearing in both top 10 lists 
were also very different. For example, the highest ranked county by the crude crash cost rate, 
Marion County, was ranked only eighth by the PER of the predicted crash cost rate. The big 
differences between the two ranking methods show the importance of the multivariate spatio-
temporal Bayesian model, which is expected to better identify the underlying true status quo of 
traffic safety. The top 10 risky counties shown in Figure 7(b) should be the focus of future safety 
improvement programs. 
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Figure 7 Counties with the 10 highest crash cost rates using the two ranking methods 
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5 Discussion and Conclusions 
Unobserved heterogeneity of crashes over space and time is often a big issue in crash frequency 
analysis. When multiple crashes are analyzed, correlations across crash types may also produce 
unobserved heterogeneity, which may exist in space, time, and space–time interactions. In this 
study, we used the multivariate spatio-temporal Bayesian model to analyze the yearly county-level 
fatal, major injury, and minor injury crash counts in Iowa from 2006 to 2015. Income, rainfall, 
snowfall, and temperature did not have significant influences on the frequencies of any of the three 
crash types, whereas unemployment rate showed significantly negative influences on major injury 
and minor injury crash counts, and VMT showed significantly positive influences on all three crash 
types.  

All three crash types showed very strong spatial correlations. The counties located in northern and 
southwestern Iowa tended to have fewer crashes, whereas the remaining counties tended to have 
more crashes. All three crash types generally showed descending trends from 2006 to 2015. Both 
spatial and temporal effects were non-negligible, and they played nearly the same roles for all three 
crash types with slight differences. In addition, all three crash types showed significantly positive 
correlations between each other across space but not across time. The crude data and the predicted 
data were generally consistent for major injury and minor injury crashes but were very different 
for fatal crashes, the crude data of which were more stochastic due to the low counts. The predicted 
data from the multivariate spatio-temporal model were smoother than were the crude data. The 
crash cost rates were calculated based on crash rates and crash costs by injury severity and were 
used as ranking indicators. Two ranking methods, crude rank by the crude crash cost rate and PER 
by the predicted crash cost rate, were presented to identify the counties with higher risks for traffic 
safety. The two methods produced very different ranking results, and the latter method was thought 
to be able to better represent the true status quo of traffic safety. The ranking results would be 
helpful for transportation agencies drawing up traffic safety improvement programs in the future.  

In future research, the data may be analyzed using smaller space and time scales, which would 
produce more targeted and practical findings. In addition, as shown in Table 3, the spatial 
correlations of all three crashes were different in different years. That is, the spatial correlations 
may evolve dynamically over time. Similar situations may also appear in temporal correlations, 
whereby the descending rates of crashes in different counties may be different. Thus, dynamic 
spatio-temporal models should be considered in future studies. Meanwhile, in this study, only 
random effects were thought to be correlated in space and time, but regression coefficients might 
also be correlated in space and time. Thus, future researchers may want to consider spatio-
temporal-varying coefficient models. It is suggested that the review by Mannering (2018) about 
temporal instability in accident analysis be consulted for more ideas. All the above-mentioned 
directions would need more data or more complex statistical models, so computation may be a big 
concern, especially when using MCMC simulation to estimate Bayesian models. Some emerging 
fast Bayesian estimation tools, such as integrated nested Laplace approximation (Rue et al., 2009), 
should be considered. As was shown in this study, care should also be taken in the selection of 
appropriate priors and initial values for MCMC simulations. Finally, for this study we adopted two 
common spatial and temporal models; however, there are many other spatial and temporal models 
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available. Future researchers may also explore the effectiveness of other models in crash frequency 
analysis.  
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