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Abstract 
 The so-called t1 noise, which arises due to random instabilities in the spectrometer hardware, remains the primary source of noise that 
limits the sensitivity of most 2D NMR experiments, particularly in the expanding group of solid-state NMR methods that utilize dipolar-recoupling.  
In this communication we revisit the relationship between the signal intensity and the t1 noise produced.  It is shown that since the latter scales 
linearly with the signal strength, the use of a conventional relaxation delay of 1.3T1 may prove far from optimal. In cases where the fluctuations 
occur on a shorter timescale than the recycle delay, a considerably shorter relaxation delay should be used to maximize the time sensitivity in a 2D 
experiment than what is used to maximize the sensitivity in 1D.  This is demonstrated with the acquisition of 1H{13C} Dipolar-mediated 
Heteronuclear Multiple-Quantum Correlation (D-HMQC) type spectra in which the sensitivity could be nearly doubled by choosing a very short 
relaxation delay corresponding to 0.2T1. 
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 One of the main factors limiting the application of advanced 
two-dimensional (2D) nuclear magnetic resonance (NMR) methods is 
the prevalence of t1 noise.  This noise, generally, occurs due to various 
instrumental instabilities, which lead to random fluctuations of NMR 
intensities between the scans during the acquisition of the 2D dataset.[1] 
As a result, the Fourier-transformed 2D spectrum exhibits ridges of 
intense noise along the indirect dimension, wherever a peak appears in 
the directly-detected dimension. Common sources of t1 noise include 
temperature changes, magnetic field fluctuations, as well as instabilities 
of radiofrequency (rf) power and phase.[2]  Despite the dramatically 
improved stability of modern NMR spectrometers, this artifact can 
significantly reduce the overall signal-to-noise ratio (SNR) of an 
otherwise sensitive experiment. 

A number of solutions have been reported for reducing t1 
noise, including various post processing methods[3,4,5] and spreading 
the t1 noise more thinly along F1 through oversampling.[6]  The t1 noise 
from particularly strong resonances, such as those originating from 
solvents, can be further suppressed through presaturation.[7]  Recently, 
Mo et al. have also demonstrated that t1 noise in lengthy 2D NOESY 
spectra could be significantly reduced if the experiment were cut into N 
shorter experiments, each consisting of 1/N scans.[8]  This strategy 
succeeds in reducing the t1 noise resulting from slow changes in the 
magnetic field and temperature, which carry a smaller weight when the 
experiment is concluded quickly. The t1 noise may also be minimized 
by carefully managing the overall stability of the spectrometer 
performance and maintaining constant sample and ambient 
temperatures.[9] 
 In the case of magic-angle-spinning (MAS) solid-state NMR 
(SSNMR), by far the most important source of t1 noise is the instability 
in the rotor spinning.[10]  The long-established methods relying on 
cross-polarization (CP) and spin-diffusion-based approaches are 
reasonably insensitive to the MAS frequency and the rotor phase.[9,10]  

However, the rotation frequency can have a large impact on the signal 
amplitude when a recoupling experiment is used to acquire dipolar 
heteronuclear multiple-quantum correlation (D-HMQC)[11,12] or 
double-quantum single-quantum (DQ/SQ)[7] correlation experiments. 
The so-called non-“γ-encoded” sequences are particularly sensitive, as 
these require a precise control of the MAS rotor’s phase with respect to 
the timing of recoupling sequences. Changes in the MAS frequency 
(albeit not phase) can also alter the efficiency of these sequences as they 
depend on the ratio of the rf power and the rotation frequency being 
preserved.[13]  As a result of these instabilities, t1 noise of this type is 
typically seen to increase as a function of the t1 evolution period.  Lastly, 
secondary motional modes of the rotor, such as the in-out mode, affect 
the tuning of the probe and lead to changes in the rf power and phase 
from scan to scan.  These sources of instabilities occur on a timescale 
that is shorter than the recycle delay and cannot, thus, be eliminated by 
the approach of Mo et al.[8]  Recently, Nagashima et al. have attempted 
to address one of these sources of t1 noise, namely the sensitivity to the 
rotor phase, with their dipolar-heteronuclear universal-quantum 
correlation (D-HUQC) which makes use of γ-encoded dipolar 
recoupling.[14] 

The abovementioned D-HMQC techniques have been recently 
gaining remarkable popularity as they are far more robust with respect 
to quadrupolar interactions and offset than CP-based approaches since 
only two 90° pulses are required on the indirect channel.  For instance, 
D-HMQC experiments allow for the measurement of correlation spectra 
between spin-1/2 nuclei and quadrupolar nuclei,[15,16,17] between 
pairs of quadrupolar nuclei,[18] and to spin-1/2 nuclei with large 
chemical shift anisotropies.[19,20] The t1 noise is therefore, once again, 
an important limitation for the application of 2D SSNMR spectroscopy.  
 The t1 noise is perhaps best described with the synonym: 
multiplicative noise (Nmult).[1]  Namely, unlike conventional, additive,  
noise (Nadd), which is constant and independent of the NMR response, t1 
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noise depends directly on the intensity of the NMR signal.  This is an 
important distinction since most 2D SSNMR experiments are performed 
in such a way that maximizes the sensitivity in F2 and thus also increases 
the t1 noise along F1.  For example, the intensity of the NMR signal in a 
single scan (S) following saturation is given by: 
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where d1 is the recycling delay, T1 is the spin-lattice relaxation time and 
Seq. is the amplitude of signal at equilibrium, per scan.  When accounting 
for the fact that additive noise scales only as the square root of the 
number of scans while the signal scales linearly, the time averaged SNR 
is given by: 
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where Nadd corresponds to the noise level in a single scan, and is defined 
as a variance of the noise over all data points  
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with n denoting the number of data points and Ni the noise contribution 
to the ith data point. Independently of Seq. and Nadd, expression 2 has one 
maximum at d1/T1 of ca. 1.3.[21]  In the absence of t1 noise, the best 
choice for d1 is thus 1.3T1, which is commonly used to maximize the 
sensitivity per unit of time.   
 In the presence of multiplicative noise equation 2 is no longer 
valid and its use can lead to important sensitivity losses.  The noise level 
in F1 can be determined as follows: 
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with Nmult expressed as: 
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where x is the ratio between the t1 and t2 noise levels at equilibrium (i.e. 
with a recycle delay ˃ 5T1) and corresponds to the hypothetical 
multiplicative noise level from a single scan. This choice of this 
parameter was made as it renders the solution of the subsequent 
equations independent of Seq. and the exact noise levels.  In direct 
analogy to equation 2, we can then express the signal-to-noise ratio in 
the F1 dimension of a 2D NMR experiment as: 
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If we then take the derivative of equation 6 over d1 we can determine the 
function's maximum and determine the following relationship between 
x and the relaxation delay that maximizes sensitivity per unit of time: 
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 This relationship, of course, reproduces the expected d1/T1 
ratio of c.a. 1.3 when x is equal to 0 and also suggests the use of shorter 
relaxation delays when x > 0.  Unfortunately, it is not possible to isolate 
d1 in order to have a convenient, and exact, closed-form solution to 
equation 7.  If we assume that x is large (and thus d1/T1 is short) it is 
possible to considerably simplify equation 7 using a Taylor expansion 
with a first term equal to: 
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This relationship nearly perfectly reproduces equation 7 when x ˃ 2 (see 
Figure 1).  Accordingly, in cases where t1 noise is significant, the 
relaxation delay should be set to the following value in order to 
maximize the SNR in the F1 dimension: 
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 The factor 〈Nadd〉/〈Nmult〉eq. includes the noise levels in F2 and 
F1 dimensions corresponding to a relaxation delay of 5T1, which can be 
easily measured.  Note that our conclusion is counter to earlier 
suggestions that recycle delays of 5T1 should be applied to minimize t1 
noise, which seems to be unnecessary if proper presaturation is 
performed.[1]  In cases when x is relatively small the sensitivity gains 
available by shortening the relaxation delay are minor and thus a 
relaxation delay of 1.3T1 can be used.  Equations 7 and 8,9 are plotted 
in Figure 1 where the relationship between the optimal relaxation delay 
and t1 noise level can be more clearly visualized. 
 

 
Figure 1.  The relationship between the optimal relaxation delay, 
expressed as a fraction of the T1 relaxation time, and the importance of 
t1 noise (x) is plotted.  The exact relationship (equation 7, solid line) and 
our analytical approximation (equations 8 and 9, dotted line) are 
compared. 
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 To demonstrate the improvements in SNR from rapid 
scanning, we have acquired 1H{13C} D-HUQC spectra of 13C,15N-
enriched glycine, using a 1.3-mm MAS probe with poor spinning 
stability (vide infra), a spinning frequency of ~40 kHz and relaxation 
delays varied between 0.125 s and 2 s.  The T1 relaxation time was 
measured to be 0.6 s using a saturation recovery experiment.  
Presaturation was used in order to ensure that each scan initiated at the 
same steady-state.  In all cases, the experiment time was maintained 
constant at 17 minutes.  Unlike the seminal paper of Nagashima,[14] we 
chose to use an m = 2 heteronuclear dipolar recoupling sequence 
(R1852)[22] in order to decouple the 1H homonuclear dipolar coupling 
interactions during the heteronuclear recoupling.  We have plotted the 
SNR that were obtained along F1 and F2 in Figure 2a and fit them using 
equations 2 and 5 with Seq/N = 250 and x = 6.  As can be seen from the 
data in Figure 2, the relaxation delay which provides the highest signal-

to-noise ratio for this 2D experiment is of only 0.2 T1 rather than 1.3T1.  
In this case, the use of the more conventional relaxation delay of 1.3T1 
would have led to a 50% reduction in SNR.  This can be clearly seen in 
Figure 2b where we compare the 2D spectra acquired with relaxation 
delays of 1.3T1 and 0.2T1.  Here, it is also worth mentioning that in 
experiments with severe t1 noise the optimal recycling delay may 
become shorter than the shortest allowable duty cycle.  Of course, in 
those situations the shortest safe recycling delay should be used, which 
was the case in our example. 
 In summary, we have demonstrated that that in case of 2D 
NMR measurements with strong t1 noise originating from fluctuations 
that are faster than the recycle delay, far shorter relaxation delays than 
the typically used d1 = 1.3T1 are required to maximize the sensitivity per 
unit of time. A simple expression is given in order to determine the 
appropriate value. 

 
Figure 2.  The signal-to-noise ratios measured along the F2 (black diamonds) and F1 (red squares) dimensions of 1H{13C} D-HUQC experiments 
lasting 17 minutes are plotted as a function of the recycling delay (a).  The data are fit using equations 2 and 5 with values of Seq/N = 250, x = 4.5, 
and T1 = 0.6 s.  Example 1H{13C} D-HUQC spectra are shown in (b) with recycling delays of 1.3T1 (i) and 0.2T1 (ii).  The ‘floor’ is set to the same 
relative level in each case.  As can be seen, although the use of a recycling delay lasting 1.3T1 yields the highest sensitivity in F2, a recycling delay 
of 0.2 T1 yields the highest overall sensitivity. 
 
Experimental 
 All experiments were performed on a Bruker AVANCE III 
400 MHz SSNMR spectrometer using a 1.3-mm MAS probe.  This 
probe, which was designed for rapid sample changing at low-
temperatures, suffers from additional instabilities caused by the VT and 
Venturi gas flows that increase the t1 noise.  For the 1H{13C} D-HUQC 
experiments a 13C,15N-enriched glycine sample, purchased from 
ISOTEC, was used.  The sample spinning frequency was set to 40 kHz 
and the rf magnetic fields for the 1H and 13C pulses were set to 100 kHz 
while those for the R1852 recoupling were of 180 kHz (4.5νR). The 
evolution in the indirect dimension was synchronized with the rotation 
frequency and a total of 128 t1 increments were acquired for each 
spectrum.  A minimum of 4 scans were acquired with a recycling delay 
[1] J. Granwehr, Multiplicative or t1 noise in NMR spectroscopy, Appl. 

Magn. Reson. 32 (2007) 113-156. 

of 2 s and this number was increased to 64 when the recycling delay was 
decreased to 0.125 s.  Purely absorptive phase 2D lineshapes were 
obtained using the States-TPPI method. 
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