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I. INTRODUCTION 

This dissertation is composed of two parts: (l) a study of esti

mators for the simultaneous equation model with lagged endogenous vari

ables and autooorrelated errors, and (2) an econometric study of the 

U.S. farm lab^r market. 

A. Estimators for Simultaneous Equation Models with 
Lagged Endogenous Variables and 

Autocorrelated Errors 

Estimators for the simultaneous equation model under the 

assumption of independent errors were developed in the 19^0's (see 

Goldberger (28), Johnston (^9))- Since most of the economic data used 

in this model are of a time series nature, the assumption of independent 

errors may be violated. In addition, economists have been increasingly 

interested in specifying partial adjustment hypothesis (Nerlove and 

Addison (60)) in their simultaneous equation models. For this reason, 

lagged endogenous variables often appear in the set of predetermined 

variables of simultaneous equation models. 

With these motivations, we shall consider in Part One the estimation 

of a simultaneous equation model with lagged endogenous variables and 

autocorrelated errors. In Chapter 2, we shall review the limited informa

tion and full information estimation methods for simultaneous equation 

models with autocorrelated errors. Chapter 3 is devoted to developing 

asymptotically efficient limited and full information estimation methods 
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for the parameters in such models and to studying the properties of the 

estimators. And, we shall conclude Part One with Chapter where a 

Monte Carlo experiment is used to evaluate the finite sample performance 

of our estimators-

B. An Econometric Study of U.S. Farm Labor Market 

Excess labor in agriculture and income disparities between the 

farm and the non-farm sector have been major problems in the farm labor 

market. Various reasons have been suggested to explain this phenomenon. 

Heady (^3) suggests that these problems are mainly due to three factors. 

They are: (l) maladjustment in resource structure due to economic growth, 

(2) output-increasing technology, and (3) inelastic demand for agricul

tural commodities. The purpose of this study is to increase our quanti

tative knowledge about this market for agricultural labor. To achieve 

this end, we develop econometric models for U.S. farm labor market and 

estimate the parameters using alternative estimation methods. 

We shall begin Part Two with Chapter 5, which consists of a review 

of previous econometric studies of the United States farm labor market 

along with the construction of an econometric model for the Uni"" id States 

farm labor market. In the following Chapter 6, we shall use different 

estimation procedures to estimate the parameters of the farm labor market 

models and analyze the economic end statistical implications of the 

results. The last chapter uses the econometric models derived in Chapter 

6 to forecast the size of the United States farm labor force in the I98O's. 
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II. A REVIEW OF AUTOCORRELATION IN SIMULTAMEOUS 

EQUATION SYSTEM: TIME DOMAIN 

A. Introduction 

In general, there are two approaches to the estimation of simultan

eous equation models. One approach is based on the maximum likelihood 

principle; the other can be interpreted as the use of intrumental vari

ables. Based on the maximum likelihood principle, two estimators were 

developed: one is the full information maximum likelihood estimator 

(FIML) suggested by Koopmans (53) and the other is the limited infor

mation maximum likelihood estimator (LIML) suggested by Anderson 

and Rubin (^>5). It is well known that the maximum likelihood esti

mator is the best asymptotically normal estimator in the class of 

consistent estimators when the errors are normally and independently 

distributed and certain regularity conditions are satisfied. However, 

the computational aspects of FIML and LIML are burdensome. For compu

tational simplicity, Basmann (8) and Theil (71) independently developed 

the two stage least squares method (2SLS) and demonstrated that the two 

stage least squares estimator is asymptotically equivalent to the LIML 

estimator. The two stage least squares estimator can be interpreted as 

the use of instrumental variables. (See Klein ($0), Madansky ($4).) 

Later, Zellner and Theil (86) developed the three-stage least squares 

estimator. Sargan (68) and Rothenberg and Leenders (65) showed that 

three-stage least squares is, asymptotically, as efficient as the FIML 

estimator. 
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In the presence of lagged endogenous variables and autocorrelated 

errors, none of the estimators described above are consistent. It is 

for this reason that the estimation of simultaneous equation models with 

lagged endogenous variables and autocorrelated errors has received atten

tion in recent econometric literature. For discussion purposes, we pre

sent the model: 

YB + XT + Y_^C = U (2.1) 

where Y is an Nx X matrix of endogenous variables, X is an NxA 

matrix of exogenous variables, Y_^ is an Nxi matrix of endogenous 

variables lagged one period, and U is an NxX matrix of structural 

disturbances; the matrices of structural coefficients, B, F. amd C 

are of dimension SL-x.1, A x Ji and ixi, respectively. The error 

structure of model (2.1) is assumed to be 

U = U_^R + e (2.2) 

where U ̂  is an N x X matrix of U lagged one period and R is 

N 
Z x l  m a t r i x  a n d  R  c o n v e r g e s  t o  t h e  n u l l  m a t r i x  a s  N  g o e s  t o  i n f i n 

ity. We further assume that the vectors = (e^jy , 

t = 1, 2, ..., N are independently distributed as multivariate normal 

random variables with a zero mean vector and a non-singular covariance 

matrix ^ = {a. .} . 
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B. Full Information Estimators 

We first discuss the meaning of full information estimation methods 

and limited information estimation methods. In general, the full infor

mation methods use all of the prior information in estimating all of the 

parameters in the model. On the other hand, the limited information 

estimation methods use only part of the prior information in estimating 

the parameters of a single structural equation. This section is devoted 

to the full information estimation methods of Sargan (66), Hendry (^5), 

Chow and Fair (13), Fair (21), and Dhrymes (l6). 

Sargan (66) considered the maximum likelihood estimation of a 

system of dynamic simultaneous equations with errors satisfying a vector 

autoregressive process. Hendry (4$), following Sargan's work, applied 

numerical methods to the log concentrated-likelihood function to obtain 

the maximum likelihood estimate of the structural coefficients. 

Model (2.1) can also be written in a manner similar to the model of 

Sargan and Hendry as : 

(2 .3 )  

where 

A = (B, r, C) 
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E is a matrix of autocorrelation coefficients. In matrix 

form, Equation (2.3) may be written as 

AZ' - RAZ^^ = e* (2.k) 

where the subscript -1 is used to denote the matrix of one period 

lagged value of Z • 

In our notation, Sargan writes the log likelihood function for 

(2.4) as 

L = K + N 4n |B| - ̂  N4n |^| - | tr ^"^(AZ'ZA - 2RZ^^ZA + RAZ;j^Z_^Z'R) 

(2.5) 

Maximizing (2.5) with respect to % and R , 

2 = zls (2.6) 

^ 1 
R = AZ'Z_^A(AZ^^Z_^A) . (2.?) 

Substituting (2.6) and (2.7) into (2.5), Sargan obtained the con

centrated log likelihood function 

L = K + N 4n |B1 + I 4n jAZ'ZA - A'ZZ^^(AZ_^Z^^A)"^AZ;^ZA1 • (2.8) 

Hendry (4$) applied the conjugate Gradient method (due to M. J. D. 

Powell (62)) to obtain the estimate of A which maximizes (2.8). Then, 
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based on the invariance property of the ML estimator, Hendry found the 
A 

maximum likelihood estimate of ^ and R by substituting ^ into 

(2.6) and (2.7), respectively. The asymptotic covariance matrix of A 

(see Hendry (^6)) is 

Var(A) = -N"^ plim 
N —> 00 ÔA 9A' 

(2.9) 

= [(^'^ ® PH'QHP') - (R'Z"^® Z_;^QHP') 

(E"^R ®PH'QZ_^) + (R'E"^R® 

where 

f = (n'z I) , n = B"^(P, CQ) 

H = [X, Y_^] and Q = (l - Z_^A'(AZ^^Z_^A')"^AZ^3_) • 

Hendry discussed two test statistics for the restrictions on structural 

equation: one deals with the overidentification restriction on the 

model; the second deals with the restrictions implied by the autoregres-

sive transformation. 

Hendry's use of Powell's algorithm has the following advantages: 

(1) Powell's numerical optimization method does not require 

the computation of first and second derivatives for the 
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concentrated log likelihood function (2.8) in the process of 

iteration, 

(2) Powell (62) has proved that his algorithm converges at the 

P = 2j0 + A-th step iteration, P being the number of param

eters estimated at a given time, 

and the following disadvantages : 

(1) As Powell pointed out, his algorithm tends to be inefficient 

for more than ten parameters, 

(2) The estimator of the asymptotic covariance matrix of A 

requires additional computation. 

Chow and Fair (13) also suggest a computing method for obtaining 

the full information maximum likelihood estimates of the coefficients 

of Model (2.1). We write (2.1) in a slightly different way as 

YB' XT' + Y T C' + U 
-1 

(2.10) 

z  r '  +  u  (2.10A) 

u u.i R' + c 

where 

z = [X, Yj , r' = [r';C'] 

From (2.IOA), we can write (2.10) 

YB' - Y ,B'R' - Z r' - Z T r'R -JL -JL e • (2.11) 
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The concentrated log likelihood function of (2.11) with respect to ^ 

is 

L = Constant - jgn [ | ^ e'e| / |b|^]^ . (2.12) 

Based on Chow's work (11, 12), they write (2.12) as 

L = Constant - I  jln [ | s | / |w |  ] (2.13) 

where 

S = I e'e and W = B'Y'YB . 

There are two advantages of writing the concentrated log likelihood 

function in the form of (2.I3); (i) it is obvious that the estimates 

which maximize the likelihood function are also equivalent to the esti

mates which minimize the variance ratio | ̂  e*el / | ^ B'Y'YBj , and 

(ii) after introducing prior restrictions on the coefficient of B and 

r, it is easy to obtain a set of normal equations given the value of 
A A 

Z and R . 

Setting the partial derivatives of (2.I3) with respect to the un

known coefficient 0 s [B, B, F, F ] to zero yields the following 

system of normal equations 
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'15 1 

s^h' 
l.-l^G 

"6,-1^ 

B, 

B 
G 

B, 

B 
G 

G 

'i h " ̂ h 

% I E 

(2.14) 

where 

5 - (S^l,.l. •••> ^'^\,-l' S^\,...,S=\, 8llZi_.i,...,8GlzG 

and are the (l,j)-th elements of S~^ and W respectively, 

defined in (2.13), = (S^^ - W^^), B^ is the i-th row of the matrix 

B' = B'R' defined in (2.1l) and r| is the i-th row of the matrix 

r' = f'R' defined in (2.11). 

The system of equations can be written compactly 

f(0) = 0 (2.15) 
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They apply the Newton method to the system of normal equations (2.15) 

and obtain 

qY+1 = QY + [F(@Y)]-1 f(QY) (2.16) 

where 6^ is the value of 0 in the r-th iteration and F(0^) is the 

matrix of partial derivatives of the elements of f with respect to 

the elements of 0 evaluated at the estimate obtained at the y-th 

iteration. 

It is clear that there are linear restrictions on the elements of 

0 . In this case, B is equal to R B and F is equal to RT • Hence, 

the set of unknown parameters 0 h (b, B, R, r, P) are functions of a 

reduced set of parameters 0 = (B, T, R). 

Assuming R as given, Chow and Fair derived the relationship be

tween the unrestricted likelihood function and restricted likelihood 

function as follows : 

f*(G) 

al 
aB 

* 
oti 
a r — 

R, I, 0, 0 

0, 0, R, I 

al 
aB 

aSL 

aB 

ça 
a f  

al 

(2.17) 

H M f(0) , 
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and 

F*(0*) = M F(G) M' . (2.18) 

Then the value of (B, r), given the value of R at the r-th iteration 

is 

Q*y^i ̂  0^+[-j.*(qY) ]-i/(QY) . (2.19) 

From (2.19), they find the value of B and F given the initial value 

of R . Now, treating B and T as given, they maximize (2.13) with 

respect to R . This is equivalent to maximizing the following likeli

hood function 

T I 1 I = Constant - - 4n | ̂ e'e| • 

since | ̂ B'Y'YBj is a constant. 

In this case, the maximum likelihood estimator of R is equivalent 

to the least squares estimator of R , 

A A A _ A A 

« - (":i u.i)' 

where 

A A A  A  

U = YB' - X r' - Y_^C' (2.20) 
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A 

Inserting R back into Equation (2.13), Chow and Fair suggest 

repeating the two-step iterative process until it converges* 

Chow and Fair's method has the following weaknesses: 

1. Their estimate will converge to the maximum likelihood estimate 

if the two-step process converges. However, they have not 

given the conditions under which the two-step process converges. 

2. They recommended F (G^*) evaluated at 0^* as an asymptotic 

covariance matrix of 0*. This asymptotic covariance matrix 

of 0 is valid only if there are no lagged endogenous vari

ables among the set of predetermined variables. 

Dhryraes (l6) proposed two procedures to deal with the estimation 

of Model (2.1). We first discuss his linearized full information 

maximum likelihood estimator. Model (2.1) can also be written as 

^t. = ^t.® ^ ̂ t-i.c + *t.^ "t. 

"t. = Vl.^ ̂ ®t. ^ == 

where 

y^ is the row vector of observations on the £, current 

endogenous variables-

y is the row vector of observations on the i endogenous 

variables lagged one period. 
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X is the observations vector on the A exogenous variables. 
t • 

is the j^-component row vector of errors. 

s. _ MIN(0 , 2 ) ' 

Neglecting the terras which vanish as N —> œ , we can write down 

the log likelihood function for (2.2l) in our notation as 

L = k - l^en 1^1- |in|(l-B)'(l-B)l - | tr (ZA-Z_^AR)'(ZA-Z_^AE)] . 

(2.22) 

Adding and subtracting the term ^ | | to (2.22), Dhrymes obtained 

L = k - l2l-|jto 1 ^1 -| in l(l-B)' ̂  (I-B)l 

- I tr [(ZA - Z_^AE)' (ZA - Z_^AE)] (2.23) 

where 

Zt. = (rt.' rt-i.' %t.) ' A = " c' " r'] ' 

V (I - N*)Y , N* = Q (Q'Q)"^ Q' , 

Q = (Y_^, Y_2, X X_^) and Z = (Y, X) • 
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Maximizing (2.23) with respect to ^ , they obtain 

$ = i (ZA - Z_^ AR)' (ZA - Z_^AR) . i2.2k) 

Substituting (2.24) into (2.23) yields the concentrated log likeli

hood function 

L = k'- I JTO 1 ^ 1-|JEII|(ZA - Z_^AR)' (ZA - Z_^AR)1 

+ ̂  4n 1(I-B)* (I-B)| . (2.25) 

Differentiating (2.25) with respect to R and to the columns of A , 

they derive the following 

A ^ 

R = (U^i u_^)"^ u (2.26) 

6 = [(Z*- (R* ® I) Z*^) (S"^ ® I) (Z*- (R* ® I)Z*^) -V*(S"^®I)V*]"^X 

(Z*- (R' ® I)Z*^) (z"l 0 1) [y- (R* ® I)y_3_] - V**(S'^ e I)y , 

(2.27) 

where 

6 = [Gjy ^2' '•*' ^ ' ^i ~ ^^i^ '^i' ^i^ 



l6 

Z - Diag ^2' ' ' ' > 

V 
'* 

Diag [V^, Vg, ..., V^] 

V. = [v., 0, 0 ] i = 1, 2, ..., 4, 

and 

S = (I - B)' ̂  (I - B) . 

We note that (2.24), (2.26) and (2.27) is a system of nonlinear 

equations. This system of equations can be solved by iteration methods 

(see Hamming (35))* Dhrymes applied the direct iteration method and 

suggested iterating back and forth among Z, R and 6 until convergence 

is reached. The final estimates are the maximum likelihood estimators of 

R and 6 if the iteration converges. 

Another full information estimator suggested by Dhrymes (l6) is 

called "Full Information I^namic Autoregressive Estimator (FIDA)." This 

method is mainly a combination of the Cochran-Orcutt type autoregressive 

transformation and three-stage least squares. FIDA is derived by mini-

mizing 

tr Z"^(ZA - Z_^AR)' (2A - Z_^AR) (2.28) 

where 

Z = (Y, Y_^, X) and Y 
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subject to prior consistent estimates of Z and R • 

Differentiating (2.28) with respect to the columns of A , they 

derive the estimator 

[(Z* - (R' ® I)Z*^)'(^"^ ® I) (Z*- (R' ® l)Z*^)]6 = (Z*- (R»®I)Z*^) X 

A - A 

(^ 0 I) (y - (R' ® l)y_i), -where Z = [I^®Z] . (2.29) 

Dhrymes and Erlat (l8) studied the asymptotic properties of LFIML 

and FIDA estimators. However, they offered only a conjecture on the 

limiting distribution of their estimators. Based on the result that 
A A 

plim ^ = plim S = ^ , they claim that the FIDA estimator has the 
N y 00 N > 00 

same asymptotic distribution as the LFIML estimator. 

In the present context, Dhrymes*s estimators suffer from the follow

ing weaknesses: 

1. The speed of convergence of the direct iterative method is 

slower than that of the Newton method (see Chow (12)). 

2. The direct iterative method may not converge (see Hamming (3$)), 

therefore, the LFIML and FIDA may never converge to the FIML 

estimator. 

3» The asymptotic covariance matrix of A has to be computed 

separately from the estimation of A . 

Fair (21) extended the work of Brundy and Jorgenson (lO) to take 

account of autocorrelated errors in dynamic simultaneous equation models. 
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His procedure, called "Full Information Efficient Instrumental Variable 

(FIBIV)," is equivalent to the following: 

1. Apply the instrumental variable method to each equation to 

obtain initial consistent estimates of the structural 

coefficients and autocorrelation coefficients. 

2. Write the reduced form of Model (2.1) with independent errors 

as 

Y = -XTB"^ - Y_^CB~^ + + X_^rRB"^ + Y_gCBB''\eB"^ . 

(2.30) 

Substituting the initial consistent estimates of B , C , F 

and R into (2.3O), Fair obtained the generated value of 

Y = Y . 

3. Define the instrumental variables W = (jC ® 1} Z where 
_* _ A _ _ _ _ 
Z = [ Z - (R ® l)Z_^] and Z = Diag [Z^, Z , ..Z^] , 

Zi = [ Y., Y_i, X] . 

6 = (W'Z)"^ W Y* (2.31) 

where 

_* ^ 
Y  =  ( y -  ( R 8 l ) y _ ^ )  ,  ^  ^2 '  ^ 4 ^  

Z = Diag [Z^y Zg, '-•> Z^], Zj. = [Y^, * 

The final estimator is obtained when (2.30) and (2.31) converge. 
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The consistency of the estimator in (2.31) follows from the consis

tency of the initial instrumental variable estimates of Z, and R • 

The purpose of the second stage instrumental variable procedure is to 

improve the efficiency of the first stage estimation. This estimation 

method the cclt.9 weaknesses as Dhrymes' LFML and F IDA estimators-

C. Limited Information Estimators 

Now, we review the limited information methods suggested by Theil 

(71), Sargan (66), Madansky Amemiya (l), Fair (20, 2l), Fuller (22), 

and Dhrymes, Berner and Cummins (l?). The limited information methods 

proposed by Theil and Madansky deal with a model containing only exogen

ous variables, but with autocorrelated errors. 

The i-th structural equation of the model considered by Theil (71) 

and Madansky ($4) can be expressed as 

^i = Zi^i ^i 

^ = "i"i-l + =1 

(2.32) 

where = [Y^, X_], 6^ = [B^, r^] • Denote as the exogenous 

variables in the system but not in the i-th equation , where there is no 

lagged endogenous variables in the model-

Theil's generalized two-stage least squares procedure consists of 

two steps: (l) given a value of p, transform all the exogenous variables 
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by p and obtain Y. - p.Y._, by regressing Y. - pY.-. on X. - pX ,, 
X X X""-L X"X. X X**X 

Xg - pX2_^ , (2) regress y^ - py^_j^ on Y^ - \ to 
A 

obtain the final estimate 6^ • 

Madansky's generalized instrumental variable estimator consists of 

three steps: (l) replace the true covariance matrix of the i-th struc

tural equation E.. by S.. where 8.. can be obtained from the resid-
11 11 11 

uals of two-stage least squares applied to (2,32), and (2) multiply 

Equation (2.32) by the matrix X* , the transpose of the matrix of 

observations on all the exogenous variables in the system, to obtain 

X'y^ = X'Z^G. + X'u. , (2.33) 

(3) apply generalized least squares to (2.33) to obtain 

6^ = [z:x(x's..x)"^'z.]~^ Z'X (X'S.^X)"^ X'y^ . (2.3%) 

Wicken (85) has shown that Theil's generalized two-stage least 

squares with a consistent estimator of the covariance matrix and 

Madansky's estimator are consistent- He also demonstrated that Theil's 

estimator with a consistent estimate of the covariance matrix is at 

least as efficient as Madansky's estimator-

Sargan, in 19^2, developed a limited information maximum likelihood 

estimator (SLi). Amemiya (l) modified Sargan's estimator and called 

it Sargan's two-stage least squares (S2SLS)-
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Sargan's limited information maximum likelihood estimator (SLi) 

for the i-th structure equation in Model (2.1) is 

Pi Yi Yi - Y (I-$(#'*)$)Y , 
*' * 
Yi Xi, 

*» * 

^i ̂ i-l 

Ti 
= 

*» * 
XiYi 

*' * 
Xi Xi, 

*» * 
?i.l 

*» * *' * 
?i.lXl' <-iVi 

-1 

* «  *  

* * 
^i-l^i 

(2.35) 

p = (yj -

(^i-l'^i-l^i "^i-l^i •^i-2^i^'^^i-l "^-l^i "^i-l^i "^i-2'^i^ 

(2.36) 

where 

. Pj ̂i Pj 
^n p. W p. 

"^i " ^i " Pi^i-1' ^i ^i ~ ^i^i-l' ^1-1 ^i-1 ' ̂i^i-2' 
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*• *, X- *.-1 X't * * r 
W. ^ Y [I - H.(H. H.) H. 1 Y , H. : [X^, Y._^] 

W = Y' [I - #($'*)*']Y 

# , [X, X_1, Y_1, Y,^] . 

Araemiya sets = 1 in (2.35) and calls this estimator Sargan's 

two-stage least squares (S2SLS). Since plim X =1 (see Theil (71)), 
N —» 00 " 

it follows that S2SLS is asymptotically equivalent to SLI estimator. 

In practice, the autocorrelation coefficient is seldom known. Con

sequently, Amemyia applied a direct iteration method between (2-35) and 

(2.36) by assuming an initial value for . Amemyia also presents an 

asymptotic covariance matrix of 0^ s F^] where there are only 

lagged exogenous variables among the set of predetermined variables in 

the model-

It may be worthwhile to mention that S2SLS uses a large number of 

predetermined variables in the first stage regression of S2SLS. Hence, 

it is possible that the matrix ($'$) ̂  may be singular. 

With the objective of reducing the number of predetermined variables 

in S2SLS, Fair (20) suggests an estimation procedure which amounts to 

the following : 

1. Regress Y^ on a set of predetermined variables selected from 

(X, X , Y T, Y -). This set of instrumental variables should 
— J. —J- —^ 

at least include Y. -, Y. X , and X and then obtain 
1—X l-c -X 
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the "predicted" matrix Y. • 
A A 

2. Regress (y.^ - p on " P " P 

(X^ - P l) various p's in the interval (-1, l) and 

select that regression for which the sum of the squared resid

uals is minimized. From this equation, he obtains an estimate 

of = [B^, C^], and p^, 6^, p^, respectively. Fair 

also discusses "X2SIJS" which is exactly the same as the above 

estimation procedure except that he obtains a consistent 
A 

estimate of p^, p^ to replace the unknown p^ used in the 

second stage regression. 

Dhrymes (I7) and Fair (2l) independently suggested an iterative 

instrumental variable procedure. This procedure is the same as Fair's 
A 

FIIV in (2.31) except that f. and the autocorrelation matrix are diagonal 

matrices. Then, the single equation iterative variable estimator of 0^ 

becomes 

6i = (W'Z^)"^W'y* (2.37) 

where 

Wj = [ Zi - , Zl = [Ï1, Xj] 1 = 1,2,..., 

Z. . [ÏJ, XJ] , yj » (Yi - Pj yj.i) 

A 
A A A A A A 

"l = "her: \ " (^1 - - XlTi 
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and are obtained from Step 1 of FIIV. 

Dhrymes and Fair s'jggest iteration between (2.37) and (2.30)- If 

the procedure converges, it is claimed that the asymptotic distribution 

of iterative instrumental variables will converge to that of the LIML 

estimator for Model (2.1). However, they did not prove that the itera

tion converges. 

Fuller (22) proposed a single equation estimator for the model 

similar to Model (2.1). His procedure can be described as follows: 

(1) obtain initial consistent estimates of 6^ = [EU, F^] and of 

by the instrumental variable procedure, (2) transform all the vari-

A A 

ables using p. and obtain Y. - p.Y._. by regressing Y. - P.Y. , 
1 1 1 1 J- 1 1 1 "J. 

A A A 

on X - Y^_^ - and u^_^ , and (3) regress 

^i " ̂ i^i-1 ^1 " ^1^1-1 ' " ̂ i^i-1' ^1-1 • ̂1^1-2' 

to obtain the one-step estimates 6^^ , and p^ = p^ + Ap^ where p^ is 

obtained from (l). 

The advantage of Fuller's estimator is that it estimates 6^^ and 

p^ simultaneously. Also, a consistent estimate of the asymptotic 

covariance matrix of (s^y pj^) is a by-product of the last stage 

regression. 
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III- LIMITED INFORMATION AND FULL INFORMATION ESTIMATORS 

This chapter is devoted to developing asymptotically efficient limited 

information and full information estimators for Model (2.1, 2.2).^ One 

general approach will be as follows: First, we construct an initial 

estimator whose error is Qp(N ̂ ). Then using this initial estimator, 

we construct a revised estimator. The properties of the proposed esti

mators shall be investigated and the asymptotic covariance matrix of the 

derived reduced form for Model (2.1, 2.2) are also presented. To facili

tate our discussion, we first introduce the assumptions needed in the 

rest of the chapter. 

A. The Model and Assumptions 

Consider a dynamic simultaneous equation model of the following 

form: 

YB + XT + Y_^C = U (3.1) 

where Y is an Nx A matrix of endogenous variables, X is an NxA 

matrix of exogenous variables, Y_^ is an NxjJ matrix of endogenous 

variables lagged one period, and U is an Nx ̂  matrix of structural 

After the author had finished his research for this thesis. 
Professor Hatanaka called the author's attention to his unpublished 
paper (ko). In (4o) Hatanaka has independently developed similar pro
cedures from entirely different motivations-
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disturbances; the matrices of structural coefficients, B, r, and C 

are of dimension JLxIL, A x and 4x4. The error structure of Model 

(3.1) is 

U = U_^R + e (3.2) 

where U ̂  is an N x 4 matrix of U lagged one period and R = diag 

(p^, Pg, .p^) where |pu| <1 for i = 1, 2, f . We further 

assume that the vectors - (e^^, t =1, 2, N 

are independently distributed as multivariate normal random variables 

with a zero mean vector and a non-singular covariance matrix = {1. ,} . 
^ J 

The reduced form of Model (3*l) is 

Y = -XrB'^ - + U_^RB'^ + eB~^ . (3-3a) 

Equation (3*3a) is equivalent to 

Y = -X r B"^ - Y_^ C B"^ + Y_^BRB"^ + X_^ r RB"^ + Y_^ C RB"^ + gB"^ 

Xni + Y_^TTg + X_^TT2 + Y_2n^ + V 

- F TT + V (3.3b) 

where V = eB ^ , F = [X, Y ̂ , X Y_2] , Y_g is the matrix of elements 

of Y lagged two periods, and rr is partitioned to conform to the 
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partition of F . 

The i^^ structural equation of Model (3-1) may be written as 

i — Ij 2j • • • > Si  (3.4) 

where 

^i ~ C|] ; 

,th is the i column of Y; is the NxjJ^ matrix of the explana

tory endogenous variables in the i^^ equation; is the NxA^ 

matrix of exogenous variables appearing in the i^^ equation and Y, .  

is the N X X, matrix of observations on endogenous variables lagged one 

i th 
period. The coefficients of Y., X., Y/ \ .are the i column of B, 

•i' 1' '(-l),i 
.th 

r, and G, respectively. The error vector is the i column of 

U and is assumed to satisfy 

^i " Pi*i-1 + *1 (3.5) 

where is the i^^ column of e defined in (3*2). 

The complete model of (3.^) may compactly be written as 

y - Z6 + u , (3.6) 

where 

y' " [y{, yg' yj] ' Z = Block diag [Z^, Z^] , 
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6' = 6^, Sp and u = [uj_, u^, u^' . 

Asymptotic properties of estimators for [6^, p^] , i = 1,2, 

are obtained under the following assumptions: 

Assumption 3.1: Every equation is identified 

and the parameter matrix B is nonsingular. 

Assumption 3*2: The elements of the matrices X^, i=l, 2, i ,  

are uniformly bounded fixed vectors. 

Assumption 3-3: The matrices 

plim è 2'Z and plim = Z'O are 
N • 00 N > 00 

finite and positive definite, where 

Z = Block diag [ Z^, Z^, •••, Z^] 

Zi = [ Y^, X^, , 

Y^ is the Nx4^ submatrix of Y = Prr defined 

in (3-3b) and E( uu') = fi . 

Assumption 3-^: The matrices 

plim |h'H and plim | ® I)H are 
N —00 ^ N —y 00 

finite and positive definite, where ^ = E(e? e. ) 
"C • *c • 

H = Block diag [ H^, Hg, , 

^li ^ ^li^ %ii' 
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^(t-l),l " Pi^(t-2),i' Vl,i^ 

t - 2.} 3j • • • J N , 

is the t^^ row of defined in Assump

tion 3* 3' 

(1-Pp^ 

-Pi 

0 

0 

1 

0 

0 

1 

0 0 

0 0 

0 0 

1 

0 -p. 

0 

0 

0 

0 

1 

(3-7) 

and u ̂  is the vector of one period lagged 

values of Uj^ . 

Assumption 3*5• The matrices 

lim ^ Z X! X.^, := D^"'' <00 exist for 
„ „ N t,l *- t+h-

h = 0, 1, 2, .where is the t^^ row of 

X . 

Assumption 3-6: The Model (3*l) is a stable dynamic model, i.e., 

all roots of the polynomial equation in q 
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i - TT^q. - TTi[ 1 = 0 

are less than one in absolute value, where 

and are defined following (3*3b)-

B. Limited Information Estimators 

To estimate the unknown structural parameters of the dynamic simul

taneous equation model with autocorrelated errors we proceed as follows. 

First, we construct an initial estimator whose error is pp(N • Then 

using this initial estimator, we construct a revised estimator. Using 

this approach, we now present three single equation estimators for the 

parameters of Model (3.^, 3•5)» The first estimator is called auto-

regressive two-stage least squares l(A2SLSl). 

The estimation procedure of the i^^ equation contains the follow

ing steps: 

(1) Treating the lagged endogenous variables as endogenous vari

ables, the method of instrumental variables (24) or the modi

fied limited information maximum likelihood estimator (25) is 

used to estimate the parameters 6^ = [B!y r^, C^]' . Either 

the set of all exogenous variables ^ = [X, X or a sub

set of these variables will serve. Using these initial 

estimates, we obtain the residuals, 

A A 

^i " ^i " ̂ i^i (3-8) 

A 

where 6^ are the instrumental variable (or MLIML) estimators. 



31 

The autocorrelation coefficient is estimated by 

N A A 

A "it "l.t-l 

. (3.9) P 
N A 

z 
i,t-l 

Z u? 
t=l 

(2) Expanding the i structural equation in a Taylor series 
A A 

about [6^, p^] and rearranging the terms yields 

(i-pf)i B. . (a-p|)* x^.r^ + (i-pf)i Y(o)iC. + cu 

" "1 ° (^tl " * '"ti " "1 (3-10) 

t =2, 3^ ' ' ' > N 

A ,  A 

where u^ ^ ̂ is the (t-l) elements of u^^ defined in 

(3'8) and u^^ = 0 . 

(3) Apply two-stage least squares to (3.10). At the first stage, 

^ 1 
estimate by - F(F'F)" F'Y^ where F = [X, X_^, 

Y Y_2] • The final estimator is given by 
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Wi = 

Ap^ 

Ap. 

A A 

A A _ A A 

= (H!H.r H'T. y. 

where H. = [E.^T.X., , 

(3.11) 

A 1 A 

(i-of)i Yu 

\x ~ Pi^ii 

and is defined in (3*7) evaluated at p^ = p^ . 

Hence, the improved estimator of p^ is p^ = p^ + APj^ where 

Ap^ is the last element of w^ defined in (3*ll)- The large sample 

A A 

covariance matrix of P^) is estimated by (H! H^)~^ S? where 

s? - [N - - j0^-l] e[ e^, - T^y^ - , and T^ is T^^ 

evaluated at p^ = p^^ and 6^ is defined in (3.II). 

The shortcoming of this estimator is the large number of predeter

mined variables used in the first-stage estimation. In estimating 

large econometric models, the number of predetermined variables may 

exceed the sample size. 
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The next estimator is proposed to reduce the number of predeter

mined variables used in the first stage estimation of A2SLSI. This esti

mator is called autoregressive two-stage least squares option Il(A2SLSIl). 

The procedure is as follows : 

(1) Use the procedures outlined in Step (l) of A2SLSI on each of 

the £, structural equations (3*^) to obtain initial estimates 
A A A 

for 6., u., and p. i = 1, 2, ..., . 
i' 1 1 ' 

(2) Create the Nx f matrix of estimated endogenous variables 

from the derived reduced fom 

A  A  ,  A A ,  A A A ,  

Y = - X r B" - Y_J_ C B + R B" , (3-12) 

A A A A A 

where B, r, C, R and U ^ are obtained from Step 1. 

Expanding the i^^ equation in a Taylor series about 
A A pw 

(ô!y p^) and substituting Y^^ for Y^^ yields 

Hi (^ti  "  ̂ i  ^t- l j i )  ̂ ®i •*" (^-t i  "  ̂ i *t- l , i^  ̂ ^i^  ̂ ^(t- l) , i" '^i^(t-2), i^ ^^i 

+ ^Pi Vl,i + Hi ®ti ̂ ®i 

t = 2, 3, •••. N 

where 
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i_th 
A A A A 

e. . is the t element of , 

[AB!, irl, AC^, ACL] = [(B. -B.)', (r. -T.)', (C. -C.)', 

(p^ - P^)] 

\-l,i Given in (3-8) and e^. = Y^. - Y^. 

(3) The one-step estimator of [ôj, p^j] is 

^i 

^1 

^i 

\ Pi 

I 
AFi 

AC. 
1 

A p 

% ^ -1 % A 
(H- H.)- H: e. , (3.13) 

where 

H. = - [EX, T^X^, , 

^ 1 23 
Eu -[(l-p?)" Y^^, (Ygi - PiY^i)'^***(Yjii - 1 

The asymptotic covariance matrix of (6^, p^^) is estimated by 
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(H^ H^) ̂  where ^ = [N - (4^ + + l)] c[ , 6^ = Ty^ -

T^ is T^ evaluated, at and obtained from (3*13)• 

This estimator has two shortcomings: (l) to obtain from the 

derived reduced form, we need initial estimates for the parameters of the 

complete model, and (2) the performance of this estimator may be affec

ted by mis-specification of other equations in the model. 

The last estimator we suggest is called the transformed instrumental 

variable estimator. This estimator is motivated by the article of 

Amemiya and Fuller (2, p. 5lU). The procedure consists of the following 

three steps: 

(1) The first step is the same as Step 1 of A2SLSII. 

(2) The estimated endogenous variables are constructed as per 

(3*12) and the instrumental variable matrix = [E^, T^X^, 
A A 

VC-l),i' computed. 

(3) The transformed instrumental variable estimator (TIV) is 

given by 

(3.1k) 

where 

A A A A 

«i = Vi' V(-1),1' "-i.i: ' 

is given in (3.I3) , 

A A 

and u_^ . are defined in (3*11), (3*8) . 
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C. Full Information Estimators 

In this section we suggest three full information estimators which 

are the generalizations of the three limited information estimators of 

Section B- The first estimator is referred to as autoregressive three-

stage least squares I (A3SLSI). This procedure consists of the follow

ing operations : 

(1) Apply two-stage least squares or modified limited information 

to each of the H structural equations treating the lagged 

endogenous variables as endogenous to obtain initial estimates, 
A A A 

6., u , . and p. i = 1, 2, 4 . 
1 -1^1 1 

(2) Expand the i^^ structural equation in a Taylor series about 
A A 

[6!, p^] and rearrange the terms to yield 

c-i)* + (M)* ''ifi + ^11 

(^ti "Pi^t-l,i) " (^ti " Pi^t-l,i)Bi ̂  (%ti " '^i^t-l,i^ ^i 

A A 

^^(t-l),i • '^i^(t-2),i^^i ^ A ^i \-l,i ®ti 

t = 2, 3, . N (3.15) 

A ,  .  A 

where ^ ̂  is the (t-l) element of defined in (3-8) 

and s 0 . 
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Estimate by 

= F(F'F)"^ F' Y^ 

where 

F = [X, X_i, Y_^, Y_2] 

A 

and replace Y^^ in (3-15) by Y^^ . The resulting system of 

equations can be written in matrix form, 

A ^ sa 

T y = H W + e B + e  ( 3 * l 6 )  

where 

A A 

T = Block diag [T^, T^, - T^], 

A A 

is defined in (3*7) evaluated at pL = , 

A  A A A  

H = Block diag [H^, H^] , 

^i ' [(l-P?) ïji' (^2i "^i^li)'' " " ^^Ni " ̂i^N-l,i^'^* ' 

W [W{, W^, ..., W^]' , 
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W- [B!, r-, c^, AP^] = [sy A Pi] 

A p. = Pi - Pi , 

y is defined in (3-6) , 

Block diag [e^y e^, ..e^] , 

Si = ?! - ?! 

A A 

Using e. . = u - p.u T . where p. was defined in (3'9) 
ul *ol X 1 

A 

and Ui in (3»8) estimate the elements of the covariance 

matrix ^ by 

A 1 X N A A 

a.^ = (N-Ki)"^ (N-Kj)"^ ®ti®tj' l,j =1,2,...,4 . (3-17) 

Apply Aitken's generalized least squares to the system of 

equations (3.l6). The estimator of [W^, Wp is 

given by 

W - [H' ® H' ® I)T y (3-l8) 

A 

where the elements of ^ are defined in (3*17)• The estimates 

of ®i J r'i» ^i are given by the proper elements of and 
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the improved estimator of is CL = +A where A Pj^ is 

the last element of • 

The second full information estimator is called autoregressive 

three-stage least squares II (A3SLSII)• This estimator is an iterative 

estimator which can be used to obtain the full information maximum 

likelihood estimator for Models (3-^, 3-5)• The procedure is as follows: 
A 

(1) Follow Step (1) of A3SLSI to obtain initial estimates, 6^ , 

A 

u_l  ̂  and p^, i = 1, 2, . .£ • 

(2) Create the Nx f matrix of estimated endogenous variables 

from the derived reduced form 

py A A _ A A _ A A A _ 

Y = - X r - Y_^ C + U_^ R B , (3-19) 

A A A A A 

where B, r, C, R and U are obtained from Step 1. 

Expanding the i^^ equation in a Taylor series about 
A A 

[ôj, pu], retaining only the first order terms, and substitut

ing for Y^^ yields 

:11 " (1-Pi)= TÏ1 ABi + Xli AFi + (l-%^)*?(o)i ACj. +Vli ABi + 

®ti " (^ti " ̂i\-l,i^ AB^ + (X^i - Pi^t-lfi) ̂ ^1+ ^^(t-l),i"^i^(t-2),i^ 

^ APi Vl,i ' ̂ti , t = 2, 3, N , 
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where 

A .  .  A A A A 

e,. is the t element of e- = T/Yj - T.Z.6. , 1 1  1  X I  1 1 1  

[AB[, Aq, Ap. ]  = [(B. - B.)', (r. - r.)', - C.)', (p .  -p . ) ] *  

and • The resulting system of equations can 

be written in matrix form 

A % ~ 
e = H AW + e + V ÛB (3-20) 

where 

A A A 

e - [e^y Gg, •  '  • }  e^] }  

A A A A 

®i " '^i^i " ̂ i^i^i ' 

H 5 Block diag [H^, E^, .H^] , 

Hi - [E^, T^X^, ' 

i. Ri 
E. = [(l-pf^ïl-, (ï^i-PAi)'' •••' (?Ni - ' 

ûw = [  aw^,  . . , ,  4wy ,  
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V 5 Block diag [V^, - -, V^] • 

(3) Estimate the elements of the covariance matrix ^ , by (3*17)• 

The estimator of [( AW^)', (AW^)', •••, (iîW^)']' is given by 

AW = 0 l)e , (3.21) 

where 

AW^ = [  AB[, ATI, AC[, Ap.] • 

A A 

The estimator of (6Î, p^) is (6|, + AW^^ • The covari

ance matrix of this estimator is estimated by the inverse 

matrix of the last step regression , that is by 

The third full information estimator is named full information 

transformed instrumental variable (FITIV). The procedure consists of 

three steps : 

(1) Use Step (1) of A3SLSI to obtain initial estimators of p^^ 

and u^_^ ) i = 1, 2j ..., . 

(2) Use Step (2) of A3SIJSII to obtain initial estimate of Y 

defined in (3-19)* 

(3) We write the system to be estimated as 



1^2 

A 

«1 0 .  .  0 

% = 
0 «2 • .  .  0 

A '  

• 

• 

_ ^4^4 __ 0 0 
• • 

^1 / ®1 ̂  

W2 
+ 

62 
+ Qp(N"^) 

' 
(3.22) 

and define the estimator by 

W = ® l)Ty (3.23) 

where 

H is defined in (3-20), 

H = Block diag [H^, H^] , 

is defined in (3-1^) , and 

A 

is defined in (3*16) . 

% C(~X "1 
Since (H'(^ ® I)H) is non-symmetric, two problems are created 

(1) a separate computation is required to obtain a symmetric covariance 

matrix, (2) large rounding errors may be encountered in the inversion 

of the nonsymmetric matrix. 

By proper modification these three full information estimators are 

applicable to models with vector autoregressive errors and (or) higher 

order autoregressive errors. 
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D. The Properties of the Estimators 

In this section, we show that the difference between the full 

estimators and the true parameters normalized by N® converges in dis

tribution to the multivariate normal distribution with zero mean vector 

and covariance matrix A = plim [N ̂  H'(^ ^ ® l) H] ̂  • The properties 
N ^ CO 

of the limited information estimator follow from the properties of the 

full information estimator under the assumption that contemporary correla

tions among equations are zero. 

We first prove several lemmas required in the main theorems of this 

section. 

Lemma 3*1: Given Model (3.4), (3-5)and Assumptions 3*1 through 3*6, 

then 

(1) I H. Hj -  '  (3.24a) 

I n.p. Hj ' r ̂  ̂ 

1 N 1 
(3) Vl,i Hj " Op(N"2) , i,d =1, 2, (3-2l^c) 

where X' , Y' are t^^ columns of X* and Y' defined in (3-3a)-u" X"p- —p 

Proof : By Assumptions 3.2 and 3.3, we have 



N H. Hp 
= 0 

"^jj 

1 N 
— S x ;  X,  
N^ t=i t' 

O(N'l) 

Treating the first three observations on as fixed and using 

Assumption 3-6, the vector can be expressed as 

n.- \ "t "i ^ "3 ""Ir-l. * % "i-T 
T=0 T=0 T=0 

Where the ix S, matrices satisfy the recurrence relation, 

^-"2Vl-^ÙV2 = 0 

subject to the initial conditions 

Pq I, P_J_ = P_2 0 . 

It follows that E(Y' e+.) - 0 for p > 1 , t = 1, 2, N and 
o-p- tj 

i)j 1, 2, • • • )  a  •  

Now Y' e. . is uncorrelated with Y' e. i. for t \t' . By 
t-p. tj t-p. t'j \ 

Assumption 3.3, it follows that 
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= 0(N"^) , P = 1, 2 

and conclusion (2) is established. Conclusion (3) follows by similar 

arguments. Q 

Lemma 3-2; Given Models (3'^), (3*5)^ Assumptions 3.1 through 3-6, and 
A A 2 

initial estimators 6^^ cuch that (6^^ - 6^^) = Op(N ^), i = 1, 2, ..., i ,  

then 

^ 1 
p.  = p .  H- 0 (N"B) , i = 1, 2, 4 , (3.25) 

A 

•where p^ is given by (3.9). 

Proof; From (3*8) and (3-5) we have 

A A 

u^ = u. - z.(6. - 6.) , 

A 

where u. is the Nxl vector of the estimated residuals defined in 
A A A A 

(3.8). Let u_^ ^ •-= (0, Uj^^, Ugj^, . Using Assumption 3.2, 

Lemma 3-1 and (ô^ - 6^) = O Ĉn"^) ^ we have 

A ^ A A ^A A ^ 

^i " N ̂ i *-l,i( N *-l,i *-l,i) 
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W "-1,1 ®i ( N ^-li"-li^ 

p. 4 Op(N"^) . D 

lemma 3•3• Given Assumptions 3*1 through 3*6 and initial estimators 
A A _l  

6^ , satisfying (6^ - 6^) = , then 

A 1 
"ij = Op(N"2) , i,j = 1, 2, 4 , (3.26) 

A 

where cr. . is defined in (3'17) • 
^ J 

Proof: We have 

A  A A A  

®ti " \i " ̂ i "t-l,i ' t =2, 3, 

and 

ti ®ti " " Pi^t-l,i)(Gi - Sj) - - Pi) 

I (p. - Pi)Zt_i,i(5i - Si) 

It follows that 
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N A 

t=2 

(N-K.)& (N-K 
J- J 

r 1 4 e. + 0 (N'h 
(N-K.)2 (m-K.)2 ^ ^ 

Lemma 3-^• Given Models (3'^), (3-5) and Assumptions 3*1 through 

3.6, the autoregressive three-stage least squares estimator I defined 

in (3*18) satisfies 

N^(W -W) = [N"^ ® I)H ]"^ [n"^ « I)e] + 0 (u"^) ,  
P 

(3-27) 

where 

W _ w = [(%! - W^)', (Wg - Wg)', (W^ - W^)']' 

and 

(W^-W.) = [ ( B . (r.-r^)\ (c.-c.)\ ( p . - p . )  ] '  

1 = 1^ 2^ j i  • 

ta % 
Proof; Using the result that e is orthogonal to P , where e is 

defined in (3.I6) and F = [X, Y_^, X_^, ̂ -2^ ; ve may write 

W = W + ® I)e + Op(N"^) • 
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A 

Expanding in a Taylor series, we find 

A _ A A ^ A 

+ {F(n\ - TTj^) - Y^(p^ - p^), M^(p^) X^(pu - p^) , 

(3.28) 

where is defined in Assumption 3.l|-, M^(p^) is the NxN matrix of 

partial derivatives of the elements of the matrix evaluated at 

* * * 
Pi = p^ where p^ lies between p^ and p^ • 

Using Lemma 3'1, Lemma 3,2, and (3.28), it can be shown that 

and 

,  A A 

«"IKj 5 Hi Hj + OpC'^) (3-29) 

1 
N'-i - H; E, (3-30) 

Letting ^ ̂ , we have 

+ Op(N"^) , (3.31) 

by Lemma 3-3' 

From (3.29), (3*30), and (3-31), we have 
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- I ® I)H I Op(N"^) 

I « l)e := I H'CK"! ® I)e + O^dï"^) 

therefore, 

N2(W -W) = [ I H'(r^ ® l)H]"^ [N"2 ® l)e] + O^Cn"^) . Q 

Theorem 3-1- Let Models (3-^), (3*5) and Assumptions 3-1 through 

3'6 hold. Then 

(W - W) —^ N(0, A) , (3-32) 

where 

A = plim [N"^ 
N > 00 

Proof: From (3-27), 

N^(W - W) = [ i ® I)H]"^ N"^ <8 l)e + 0 (N~^) 
•W fv P 

1 "IT 
A  typical subvector o f  H ' ®  l ) e  is 2 a ^ HÎ s. • 

j=l ^ ^ 



50 

By arguments used in the proof of Lemma 3*1 we can express as 

a sum of fixed and random parts 

ft. = St. + %t. ' 

where 

T=0 

and P was defined in Lemma 3*1' 
T 

Let 

where 

( k )  
^t-l. " *t-l,i •' ^t-l,i ' 

b, = z p v; 
T=k+1 
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and define the normalized sums 

.1 N 

t=l 
= "t-p . Ctj P ' 1' 2 

and 

1 N 

^ ̂ t!l =tj 

Kcfw, 

Var{N-i I i . . ) . i 2 p tv\ P = 1, 2 
t=l T=K+1 

and —• 0 as k —> 0 because is an absolutely summable 

sequence of matrices [see Fuller (24), p. 2-92]. Similarly, 

1 N 0= N-l CO 
Var(N"^ Z C e ) = g (N-h)( E pl^ p of) 

t=l ^ h=N-l T=k+1 ^ 1 

00 2afaf N-l œ 

5-V + ^ I Pi «ri 
T=kl 1 h=0 T=k.+1 

!±i 
N 

( 2 
T=k+1 

IPTI ) = G, 
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and —* 0 as k —> œ because (pT) is an absolute summable 

sequence. Therefore, we may choose k so that the distribution of 

W _ i  N 
N ̂  E 1] g and N ̂  Z u, , . 6+ • differ little from those of 

t=l t=l t-l'i 

N~^ Z Tlf^^ e. . and N ® E uf^] . e., , respectively. The variables 
t=l t=l Jt 

(5t-p . .) Gjt ' P = 1' 2 ' ̂  4-1 i Gjt order 

dependent time series with mean zero and finite moments by Assumptions 

3.2, 3-3, and 3'5« Therefore, following the arguments of Anderson ( 3 )  

and Fuller (2U), we can demonstrate that an arbitrary linear combination 

of 

N T N 
a"? 

'"t-l.l :tj) ' 

i,j = 1, 2, ..., 4, p = 1, 2 converges in distribution to a normal 

random variable. Hence, by the multivariate central limit theorem (24, 

63), we have 

N"^ ® I)e N(0, plim [ ̂ ® I)H)]) . 
N —*• 00 

Because N^(W-W) - [N"^ ® I)h]'^ N"^ H(^"^ ® l)e = 0 (n"^) and 
P 
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[N"^ ® l)H] = Op(l) we have 

# (W - W) —^ N(0 , plim [N"^ » I)H]"^) • D 
~ N •> 00 

We note that the result of Theorem 3*1 holds under weaker conditions. 

The assumption of normal errors can be replaced by the assumption of inde

pendent errors with finite ^ + 6, 6 > 0 moments and the assumption of 

bounded X's can be weakened (2h). Theorem 3-1 permits us to apply the 

techniques of usual regression theory in large samples. The covariance 

matrix for the estimated coefficients is estimated by the inverse of the 

last step regression. 

In Theorem 3-2, we demonstrate that A3SLII has the same limiting 

distribution of A3SIJSI. 

Theorem 3-2; Given the assumptions of Theorem 3*1> then 

# (W - W) = (W - W) + Op(w"'^) , 

% 

and W is given by (3-21). 

Proof: From (3.20) and (3.21) we have 

(W - W) = [ I ® I)H]"^ [ I ® I)E] 

1 % ^ 1 ^ —1 1 % ^ 1 % 
+ [ ̂ H'(^ ® I)H] [| ® I)V A B] 
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where V and AB are defined in (3.20). The i^^ subvector of 

1 %  ̂ 1 % +1. 
[ ̂ H'(^" ® l)VAB] is - Z G J H! V.AB. , where the t row of 

N j =1  ̂ J J 

is 

\i ' [(̂ ti" Pî t-l,i)' ^̂ ti • î̂ t-l,î ' ^̂ (t-l),i " î̂ (t-2),î  ' \-l,î  

By a Taylor's expansion with remainder about the true parameters 

(B, r, C, R) , we obtain 

A A A 

H, -  H. = {g[F, (6-6), (R-R), 6 ,  R ]  -  Y (p - p  )  
IX - X d. X 

.^i 

* A 
M^(P^)X_I^^(P^ - FU),NU(P^)Y(_2) ^(P^-PU),Z_^ ^(6^-61)} (3'33) 

where 

Y. -Y 5 g [F, (6 -  6), (R -  R), 6, R] 

X {[ RB"^(B-B)B"^] - [(r-r )B'^]3 + Y {[CB"^(B-B)B"^] 

+ [(C-C)B"^] - [BRB"^(B-B)B"^] I [B(R-R)B"^]+ [(B-B)RB"^]} 
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+ x_^ [ [r (R-R )B"^] - + [(r-r )RB"^]} 

+ Y_p [[B"^(R-R)C] - [CRB"^(B-B)B"^] :• [(C-C)RB"^]} 

the subscript . identifies the appropriate columns of the matrix 

in the { } brackets, and is defined in Assumption 3*^* 

Next, consider 

V = Y - Y = [V^, VG, V^] 

using the results 

u_i = - Y_1 (B - b) -  x_I(r -  r)  - y_^{c - c) ,  

A A  ̂ ,  A  A A ^ A  ^  

r B" - TB" = (r -  r)B"^ - r  B" (b - B)B" , 

A  A  .  ,  A  _  A  A  .  A  .  

c b' - CB" = (C - C)B" -  c B (B - B)B" , 

A  A  ̂  ^  A  ^ A A , A  .  

R B - RB" = (R - R)B" - R B (B - B)B~ , 

%  A  A  A  A  A  

V = [E + [Y(B - B) + X(r -  r)  -I Y_^(C - C) - U_^(R - R)] 

A  A  A  ^  

- [Y_i(B - B) H- X_^(r -  r)  I Y_2(C - C)]R}B"-^ 
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and 

^  A  A  A A A  

= {e + [y(b - b) + x(r  -  r)  + y_^(C -  c)  - u_j^(r - r)] 

- [Y_^(B - B) + X_^(r -  r) -h Y_̂ {C - C)]R}B"1 (3.34) 

where B ^ denotes the ZxJL. submatrix of B ^ . By Lemmas 3*1? 3-2, 
• 1 

3-3, (3-33), and (3-3^), we have 

= Op(N~^) (3.35) 

( | « 1 V  "  I  H! Hj+ Op(N-2) 

and 

Hence 

+ Op(N~2) 

[ I ® I)H]"^ = [ I ® I)H]"^ -I- 0 (N" = ) , 
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I ® I)e = I « I)e < > 

I H'(^"^ ® I)V AB = Op(N"l) . (3-36) 

Therefore 

(W - W) = (W - W) + OP(N"^) . 0 

Theorem 3'3' Given the assumptions of Theorem 3*1, then 

1 = 1 1 
N2(w - W) = #(w - w) r Op(w"2) 

where W is defined in (3*23)• 

Proof : We have 

(W - W) = [ I H'(r^ ® [ I H ® I)e] + 

1 1 ^ 1 *1 
A typical submatrix of N H'(^ (8> I)H is N a ^ Hi H. where H. 

1 J 1 

is 

?! Xi' ?! ?(.!),i' (3-37) 

and where is defined in Assumption 3-^' 

By (3-33) and (3-37), 
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' i "i "j " V'*) (3-38) 

and it follows that 

N"^ [H ® I)H] = N"^ [H(^"^ ® I)H] + Op(N"^) (3.39) 

by Lemma 3*3 and (3'38). 

Using arguments similar to those used to obtain (3-36), we have 

N~^ ® I)e] = N"^ ® I)e + 0 (n"^) . (3-40) 
<v/ rw P 

The desired result is an immediate consequence of (3*39) and 

(3.40). 0 

We now compare the asymptotic covariance matrix of ASSLSI with the 

inverse of the information matrix associated with the full information 

maximum likelihood estimator. The models (3.3*5) can be written 

compactly as 

y = Z 6 + u 

The proof of asymptotic normality of the maximum likelihood 
estimator is not immediate since the observations are not independent. 
Bar-Shalom (7) has derived a set of seven regularity conditions under 
which the maximum likelihood estimator obtained from dependent observa
tions are weakly consistent and asymptotically efficient. 
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u = (R ® l)u_^ + e (3.41) 

or 

y = Z 6 +(R ® l)(y_i - Z_^ 6) + e 

Under the assumption that the first 3 observations on Y are fixed, 

the likelihood function for (3'^l) is 

M 1 1 
" 2  1  -  è  e '  S  I ) s  

Z = (2t t) det 8 l |  2  e ^ ~ . ( 3 - ^ 2 )  

The logarithmic likelihood function of (3-^2) is defined as 

jenL = |£n£ = k + ̂ det ® l) - ̂  » l)e • (3-^+3) 

We consider the transformation form g to Y defined in (3"^l)' 

The resulting logarithmic likelihood function now becomes 

M L = k + ̂  det 1^"^® 1I+ § 4n \j\ - ̂  [y - ZÔ - (R®l)(y_^-Z_^ ô)] 

® I) [y - Z 6 - (R ® l)(y_^ - Z_^ 6)] (3-^^) 

where |j| is the absolute value of Jacobian of the transformation from 

e to y , that is 
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J = det [liiL] 
Ô Yjtt J 

where g., and y.,, represent typical scalar elements of e and y 
it Jv /V 

In our case, ordering the equations of (3'^l) in groups from the same 

time period, the Jacobian transformation from e to y is equal to 

det^ |B| because jjj is an upper triangular matrix. Thus, Equation 

(3'%-) becomes 

L = k + i det ^ ̂  ^ |det B] - ̂  [y - Z6 - (R ® l)(y_2 ~ 

@ I) [y - za - (R @ i)(y_i - z_^ô)] . (3.45) 

We evaluate the matrix V ^ where 

V = - plim N 
N —» 

-1 

jgn L 

m ôw 

9^ jgn L 
d Vec (^)9 W 

&n 1, 
ÔW B'Vec(2) 

5 .to L 
a Vec(%; a 'Vec(%) 

(3.46) 

V, V. 

^2 V,, 
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where Vec(^) denotes the vector composed of the columns of % . 

The asymptotic covariance matrix of the FIML estimator of (6^j P^) 

i = 1, 2, 4 is equal to = [V^ - . Under certain 

regularity conditions, Koopmans and his associates (53) have shown that 

V,^ is also equal to plim -[N ^ ^ ^— ] where y is the 
1 N-^oo ay ay 

parameter vector containing the elements of 6^ and i = 1, 2, ... 

I and in L* is a concentrated likelihood function with respect to E 

In our case, Jin L* is 

in L = k + in jdet B| + ̂  in det S (3*^7) 

where the ij^^ elements of S is 

^ij - B ̂  [Yi - 2^6. -

^̂ 3 ' - pj(y-i,j - %-i,jGj)] 

We first find the second partial derivatives of ( 3-^ 7) with respect 

to 6. and p. i = j = 1, 2, ..., i . Following Rothenberg and 
U 

Leenders (65), using Lemma 3.I and Assumptions 3*1 to 3.6, we obtain 

the matrix • The ij^^ submatrix of is denoted by 
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Q. . = plim N 
N —>• 00 

-1 

*. * 
Yi'Yi 

X*'Y* 
1 1 

*. * 
?l'%l 

*. * X. 'X. 
1 1 

*. * *. 
"-1,1 

*. * 
^1 Y(-l),l %i'*-l,l 

* * 
u -, .u T . 

where 

and 

X^ - Xi - X_i^i , 

•(-1),1 Y(-l),l " ̂ 1 ̂ (-2),i ' 

"-1,1 = y-i,i " 2-1,1 ' 

which is equivalent to the submatrix of A defined in (3'32)- Therefore, 

we have shown the equivalence of the two matrices. 

By arguments similar to those used to obtain the properties of full 

information estimators, we can demonstrate, under the assumption of 

diagonal covariance matrix % , that the distribution of the A2SLSI 
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estimator converges to a multivariate normal with asymptotic covariance 

matrix N~^(h! H. )'^ cr? • Further, the A2SLSII and TIV estimators have 
1 1 1  

the same limiting distribution as A2SLSI-

E. The Asymptotic Covariance Matrix 
of the Derived Reduced Forms 

The derived reduced form of a structural model is useful for policy 

analysis and forecasting. Goldberger^ Nagar and Odeh (29) derived the 

asymptotic covariance matrices of the reduced form coefficients for a 

structural model with independent errors. Fuller (22) independently 

obtained the result. The purpose of this section is to derive the 

asymptotic covariance matrix of the derived reduced form for a dynamic 

simultaneous equation model with autocorrelated errors. 

We first introduce the necessary notations. The model of (3-4, 3.5) 

is 

YB H- xr + Y_^C = U 

U = U + e 

The reduced form of (3*^) and (3*5) with independent errors can also be 

written as 

Y = -XrB"^ - Y_^CB"^ i- U_^RB~^ + eB"^ 

= G tt -i V (3.48) 
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where 

G = [X, Y_^, U_^] n' = [-(TB"^)', (RB"^)'] • 

We introduce a ^ the z{h 3&)xl vector of estimated structural 

coefficients arranged by structural equations, that is "by columns of 

[B; r, C, R] . Therefore, 

where 

ti " •••> Pii, •••, P41)' 

(Bii, Bj., D^., D^., 

Vm,i' \i^' 

where k - A + 24 . 
A  

Let the asymptotic covariance matrix of a be denoted by 
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E{(a - a)(a - a)'} = 

/ '11 
'21 

'a 

z 
12 

"22 
. . z 2Z 

/ 
where is a (A -i 3j^) x (A + 3^) covariance matrix for the estimated 

coefficients of the i^^ and structural equations. 

We write 

tt 

Vec(n) = 

tt . 2  

\ 

where 

TT^. - (n.^, n-g, TT„)' . 
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Then the asymptotic covariance matrix of Vec(n) is given by 

_ a _ a __ 

E [(Vec(tt) - Vec(n)) (Vec(n) - Vec(n))'] 

Ù 11 

0, 
211 

SLl 

n 12 

'22 

n u 

Q. 2i 

/ 

n 

where 

tt 

a a 

r b"^ \ 
a a 

C B 
-1 

a a 

\ R B 
-1 

a a a a 

and B,r,C,R are estimates obtained from A3SLSI or A3SLSII and is 
a a 

ij 

the k x k covariance matrix of the tt. , with tTJ 1 • J • 

We state three lemmas required in our derivation of this formula. 

Lemma 3'3' Let (X^) be a sequence of a real valued k-dimensional 

random variable such that plim 
N 

,n 
Let g(x) be a function 

mapping the real k-dimensional vector X into a real p-dimensional 

space. Let g(x) be continuous. Then 
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pliiti g(X ) g(x) . 
N —> 03 

Proof ; (See Fuller {2h), p. 5-I7.) 

Lemma 3-6; Let be a sequence of a real valued k-dimensional 

random variable satisfying 

In = t ' 

where ^ - (XiQ, Xgn' ' ' *lm'' ' Î " '^1' ®a' ' and 

0 as n —œ . Let g(x) be a function mapping the real k-

dimensional space into a real p-dimensional space. Let g(X) have 

continuous partial derivatives of order three at a then 

S g(a) 
g(X ) = g(a) + (X - a) + 0 (Y?) 

^ ̂ ^ V /-W» i* 

Proof ; This result is an immediate generalization of Corollary 

5.15 of Fuller (see Fuller (24), p. 5-23? 5-2U). 

Lemma 3*7: Let be a sequence of random variables where 

both X and Y are of dimension k . 

Z 
Zn * I 

X ^ > c 
~n ^ 

where C is a fixed vector, then: 
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i) X I Y ^ > C • Y 

<£ 
ii) C'Y > C'Y . 

Proof: (See Fuller (2i<-), p. $-3^, 5-35-) 

By Theorem 3*2, Lemma 3*5> and expanding Vec(n) in a Taylor series 

around a , we have 

Vec(n) = Vec(tt) + F(a ) (a - a) + Op(N"^) (3-^9) 

where 

and 
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ô tt 11 
o 

» "il 

tt 

s "2i 
ôa. 

ôtt, 2i 
ôa 

ô tt, 2i 
ô a 

2^1 
ôa , ôa ̂  

^ y 

ôa , 

Multiplying by on both sides of (3*^5)j we have 

1 , ^ _ 1 ~ _i 
N® (Vec(n) - Vec(n)) - F(a) R^(a - a) + 

By Theorem 3*2 and Lemma 3-7, we have 

i — — £ 1 
W2 (Vec(tt)-Vec(n)) > N(0, plim [N F(a) $ F'(a)] ) 

N 

Now we evaluate the matrix F(a) • From (3-^8), we see that 

tt . 

I 
- ^ fiu : 

u'=l 

Uj j - 1; 2, A 
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i 
- E 
d.-l 

^id B AM, A+j& 

"ij 

i 
Z 
k=l 

Plk B j = A I-44 1, k 

Differentiating with respect to we have 

- E 
u-1 lU 

5 B 
à B 

uj 

mn 

JL 
- E 
u=l ̂ iu 

(- B"m B*J) 

= E ,nj 
H 
E 
u=l 

^iu® 
um 

-  TT. un 
(3.50) 

if 

0 , otherwise 
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Ô TT. . 
= - B J , if i - e 

^ ̂ ef 

= 0 , otherwise , 

Ô TT. . . 
T—^ , if i = p 

0 , otherwise • 

From the above result, we have 

W' ^kxk'- •••' Ifcxk» 

i=lj 2, •'•) a } 

hence 

F(a) = (B"^)' ® [TT, 

where k = A 2ji • 

We summarize our discussion in the following theorem. 

Theorem 3-4: Let Model (3-^) and (3'5) and Assumptions 3*1 through 

3-6 hold- Then 

i — — Z 
N2 (Vec(n) - Vec(n)) > N(0, G) 
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where 

G = plim [N"^(F(a) 9 F'(a)] 
n ^ co ~ ~ 

F(a) = (B-1)' ® [ n, 

and 

k = A + 24 . 

-1 — In practice, B and t t  are unknown, by Lemma 3 - 5 ,  we can replace 

-1 — — B and tt by the consistent estimator B and n obtained from A3SLSI 

or A3SLSII. From Theorem 3A, it is clear that the asymptotic covariance 

matrix of the reduced form coefficients for a structural model with 

independent errors is an inconsistent estimator in our case. On the 

other hand, the asymptotic covariance matrix of A3SLSI and A3SLSII pro

vide all the required information for the computation of the consistent 

estimator for the asymptotic covariance matrix of the reduced form 

coefficients for a dynamic simultaneous equation model with autocorrelated 

errors. 



73 

IV. A MONTE CARLO STUDY 

In Chapter 3, we have investigated the limiting behavior of the 

proposed estimators. It is natural to ask to what extent the asymptotic 

results will hold in small samples. To partially answer this equation, 

a Monte Carlo study was undertaken in this chapter. 

A. Generating the Data 

We consider the following model: 

^tl ®12 ̂ t2 •*" ^11 ̂ t-1,1 ^11 ̂ tl ^12 ̂ t2 •' ^01 ̂  Si 
(4.1) 

^t2 " ®21 ^tl ' ^22 yt-1,2 ^23 ̂ t3 ^^24 ^t4 ^02 ^t2 

^1 = Pi "t-1,1 + Si 

"t2 ^2 *t-l,2 ®t2 

The y's are endogenous variables while the X's are exogenous vari

ables. y^ ̂  i = 1, 2, are one period lagged endogenous variables. 

The vector t ~ 1, 2, ..., N, are independently dis

tributed as a bivariate normal with zero mean vector and variance-

covariance matrix 

I 1.0 1.21 \ 
^ = . (4.2) 

\ 1.21 2.21 I 
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We considered four sets of parameter values, with differences in 

the magnitudes and signs of the autocorrelations and in the magnitude of 

coefficients of lagged endogenous variables (see Table 4.l). 

Samples of size 30 and 60 were created using the X-values of Kmenta 

and Gilbert ($2): 

1, 3, 0, 9, 1, 6, 3, 8, 6, 7, 

Xg 0, 1, 1, 1, 0, 1, 0, 1, 0, 0, 

x_ 0, 10, 8, 0, i6, 0, 0, h, 10, i4, 

\ 1, 0, 0, 0, 0, 1, 1, 1, 1, 1 . 

In a sample of size 30, the sequence of ten numbers was repeated 3 times. 

The u^^ were defined by 

"li = 

"tl = "i Vl,l 'ti t»2, 3, i=l, 2, 

where are bivariate normal independent variables with zero 

mean vector and covariance matrix specified in { k .  2 ) .  

For a sample size N, N + 20 observations on the endogenous vari

ables were calculated using the reduced form of structural equation 

(^'l) and initial values 
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'01 

'02 

-Sl2 \ 
-1 

I ^11' ^12' 

\-®21 0, 0, Tg,, ly 

X. 

X, 

\ 1 

where X^^ = 4.4, Xg = 0.5, = 6.2 and Xj^ = 0.6. The first twenty 

observations were discarded, and the last N observation constituted 

the sample. 

Table 4.1. Parameter values 

Equation 1 Equation 2 

Model 
®12 ®21 

Model 
®12 ^11 ^11 ^12 r^io Pi ®21 ^22 ^23 

-1
 

r 
^ 20 ^2 

1 1.0 0.8 2.0 1.0 1.0 0.9 —1*0 0.5 0.9 4.0 1.0 0.9 

2 1.0 0.2 2.0 1.0 1.0 0.9 -1.0 0.5 0.9 4.0 1.0 0.3 

3 1.0 0.8 2.0 1.0 1.0 0.9 —1 • 0 0.5 0.9 4.0 1.0 -0 • 6 

4 1.0 0.8 2.0 1.0 1.0 0.9 -1.0 0.5 0.9 4.0 1.0 0.0 

B. Alternative Estimators 

For each model and sample size, 200 samples were generated. The 

parameters of each model were estimated by four procedures, (l) A3SLSI, 

(2) A3SLSII, (3) transformed instrumental variable estimator and 

(4) autoregressive two-stage least squares given by Fuller (22) 

(FA2SLS). The estimation procedure of FA2SLS was discussed in Section 
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C of Chapter 2. In all models, the modified limited information maximum 

likelihood estimator (& = 4 MLIMIj(4)) was employed as the initial esti

mator. To shed some light on the effect of different consistent initial 

estimators on the performance of these four estimators, Model 1 and k were 

estimated again by these four estimators employing MLML (a = l) and 

MLIML (a = 0 and X = 1, i.e., instrumental variable estimates) as 

initial estimators* 

In our case, we treat lagged endogenous variables in the system as 

endogenous. The procedure of modified limited information maximum 

likelihood with arbitrary a for the first equation of the Model (^.l) 

is described as follows: 

(4.3) 

where 

T = sample size 

n excluded exogenous variables in the i-th equation. 

k^ 5 exogenous variables in the i-th equation 
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^3 " 

12 

22 

32 

01 

11 

31 

Y Y N2 Vl,l 

X, 

11 

X, 
21 

X 
31 

12 

X 22 

X 
32 

1 

1 

1 

X is the smallest root of 

|B - X, W| = 0 , 

W = ^11' *12 

*21' *22 

W = [Y'(I - Z(Z'Z)"^Z')Y] , 

Z -

^11 ^12 ^13 ^01 ^02 ^03 ^ 

^21 ^22 ^23 ^11 ^12 ^13 \h  ̂

^31 *32 *33 *3^ *21 *22 *23 \k ^ 

_ ̂ N1 ^N2 ^3 *lA- *N-11 *N-12 *N-13 *N-1^ ^ 

(4.4) 

B = [Y'(I - XgCX^Xgi'^X^XY] , 
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11 

21 

12 

22 

31 32 

01 

11 

21 

Y Y Y 
NI N2 N-11 

X 
11 

X, 21 

X 

X 
12 

X, 22 

31 ^32 

1.0 

1.0 

1.0 

Xjji Xj^2 

a a a a a 
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and , 

" \l " ®12 ̂ t2 " ̂ 11 ^11 ̂ tl • ̂12 ̂ tS " ̂ 10 ' 

The MLIML(q:) was also applied to Equation 2 of the Model (k.l) 

to obtain the initial estimates. The value of a is chosen to be 4, 

which is based on Corollary 2 of Theorem 2 of Fuller (25)• 

C. Analysis of the Results 

For Model 1, autocorrelation in both equations is equal to 0.9* 

This model provides an ideal situation for FA2SLS. Table 4.2 pre

sents the ratio of the root mean square error to that of A3SLSI. For 

Equation 1 of Model 1 with sample size 30, on the basis of BMSE, A3SLSII 

and A3SLSII perform the best, followed by FA2SLS and then by FITIV. The 

initial estimator has the largest IMSE. As expected, full information 

estimators outperform the single equation estimators when the errors in 

different equations are contemporaneously correlated. As the sample 

size is increased, the EMSE of all estimators decrease roughly as 1/N . 

However, it seems that the BMSE of the initial estimator decreases at a 

slightly slower rate than that of the other estimators. 

In Model 2 and Model h, we encounter large rounding errors in invert

ing the last stage non-symmetric matrix of the FITIV estimator for about 

one half of the 200 samples. With the same degree of computational pre

cision, no problems were encountered with the other estimators. Thus, 

we do not present summary statistics for the FITIV estimator. 
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In Model 4 the disturbances in the second equation are serially-

independent. In this case, ASSLSI seems to have a slight edge over 

A3SI£II. 

Based on sample summary statistics, FA2SLS performed quite well 

in Models 2, 3 and k. This was contrary to our expectations because 

of the differences between and pg in these models. The good 

performance of FA2SLS may be due to the use of substantially fewer 

predetermined variables in the first stage estimation or due to the 

special nature of the models we considered (i.e., there is only one 

explanatory endogenous variable in each equation of the model). 

From Table U.3, it is clear that the initial estimator 

MLIML (a = 1|) yields some estimators with significant bias in all four 

models. Most of the estimators display significant biases for the 

structural parameters at sample size 30. There is no general agreement 

in the direction of the biases in the estimated coefficients of the 

lagged endogenous variables. There are significant downward biases 

in the estimators of all positive autocorrelation coefficients. The 

absolute value of the biases decrease as sample size increases to 60. 

The full information estimators yield uniformly smaller estimated biases 

in the estimated autocorrelation coefficients than FA2SLS. 

The estimated standard errors of MLIML obtained by application of 

the formula stated (^«5) is known to be inconsistent when the dis

turbances are autocorrelated. The standard errors of our proposed 

estimators are consistent estimators, of the standard errors of the 

limiting distributions. We compare the mean of the 200 estimated 
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standard errors with the empirical standard errors.^ From Table 4.4, 

we see that the agreement for MLBtL (a = 4), as expected, was poor in 

the equations with large positive autocorrelation coefficients. The 

asymptotic standard errors of the other estimators seem to slightly 

overestimate the corresponding empirical standard errors in most cases. 

As the sample size increases to 60, the agreement becomes quite good. 

The theoretical percentiles of the t distribution with 25 and 55 

degrees of freedom, were also compared with the sample "t-statistic" 

computed from the regression output of the last step of the three improved 

estimators. The results are consistent with the results of the compari

sons reported in Tables 4.5 to 4.8. Because of space limitations, 

we only present the sample "t-statistic" for parameters in Equation 1 of 

our models. 

Sample summary statistics of the three initial estimators and their 

corresponding improved estimators are given in Table 4.q. On the 

basis of RMSE, we see that MLIML (a = l) performs best, followed by the 

instrumental variable estimator (X = 1, and a = O) and then by MLIML 

(a = 4). The large RMSE of MLIML (a = 4) is due to relatively large 

bias. The rank of the initial estimators also holds for the rank of the 

corresponding improved estimators. 

In summary, the Monte Carlo results are generally consistent with 

the theoretical results of Section D of Chapter 3* In view of sample 

^The empirical standard errors are the square roots of the sample 
variances computed from the 200 Monte Carlo samples. 
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summary statistics, MLML (a = l) can be recommended for initial esti

mators . For the improved estimators, we have found that A3SLSI and 

A3SLSII perform best followed by FA2SLS. The transformed instrumental 

variable estimators gave less satisfactory results. Because of cost 

consideration, we did not consider further iteration of these estimators. 

Before accepting the general validity of these findings, it is desirable 

to study these estimators under alternative models with different degrees 

of mutlicollinearity among exogenous variables and different numbers of 

explanatory endogenous variables in the equation. However, these sam

pling experiments have provided us some evidence of the small sample 

properties of the estimators we considered. 
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Table h. 2 Ratio of root mean square errors of alternative estiniators 
to that of A3SLSI (percent) 

Model Estimation 
Parameters 

B 
12 11 11 12 "-̂ 1 21 22 23 2h 2̂ 

MLIML(k) 

A3SLSII 

FA2SLS 

TIV 

MLIML(i^) 

A3SLSII 

Sample size 30 

119 182 132 208 — 215 173 215 203 — 

99 lOk 100 102 99 91 90 89 9k 96 

97 119 100 121 111 

188 139 109 197 162 

132 220 

95 100 

FA2SLS 97 126 

3 MLIML(4) 163 149 

A3SLSII 96 105 

FA2SLS 110 113 

h mliml(4) 148 147 

A3SLSII 97 103 

FA2SLS 100 107 

1 MLIML(k) 126 184 

A3SLSII 98 100 

FA2SLS 100 116 

TIV 149 129 

2 MLIML(4) 145 210 

A3SLSII 98 100 

FA2SLS 102 121 

156 217 -- lOU 125 114 120 

98 103 96 lOU 1C4 101 106 101 

103 127 115 — — 

158 192 — 170 176 159 201 

100 105 101 110 103 109 112 98 

116 119 116 — — 

IU8 192 — 110 1^3 124 120 

102 104 98 103 106 107 110 100 

107 119 ll4 

Sample size 60 

139 235 — 238 200 239 153 — 

99 98 101 98 97 98 99 98 

100 122 115 

101 166 165 — -

L46 218 — 108 129 119 125 

99 100 100 102 106 102 102 99 



Table Estimated bias of estimators computed from 200 replicates (estimated parameter-true 
parameters) 

Parameter 
Model Estimator 

B 
12 '11 11 12 

B 
21 "22 23 2h 

Sample size 30 

MLIML(4) -0.005 0.078* 0.019 0.4i6* —  —  0.189* -0.139* -0.123* -1.090* 

A3SLSI -0.007 0.006 0.007 0.003 -0.147* 0.047* -0.037* -0.022* -0.050 -0.110* 

A3SLSII 0.005 0.015* 0.009 0.073* -0.151* 0.027* -0.016* -0.010* -0.010 -0.108* 

FA2SLS 0.003 0.023* 0.003 0.138* -0.155* — —  —  - - — 

TIV 0.023* 0.029* 0.018* 0.151* ..0.167* -  - —  —  —  —  

MLIML(i^-) -O.Oit-0* 0.080* -0.020 -0.430* —  - 0.020 -0.010 -0.010 -0.040 —  —  

A3SLSI -0.010 0.000 -0.010 0.030 -0.110* 0.010 0.006 -0.010 0.050 -0.080* 

A3SLSII 0.000 0.010* -0.010 0.110* -0.110* -0.010 0.020* 0.010 0.180* -0.080* 

FA2SLS 0.000 0.010* 0.000 0.100* -0.l40* —  —  

MLJML{k) -0.061 0.024* 0.043* 0.152* — 0.047* -0.052* -0.035* -0.265* —  -

A3SLSI -0.015* -0.001 -0.016* -0.048 -0.116* -0.003 0.025* -0.001 0.094 0.035* 

A3SLSII -0.003 0.007 -0.013* 0.108* -0.131* -0.042* 0.029* 0.023* 0.290* 0.045* 

FA2SLS 0.001 0.009 -0.003 0.092* -0.144* — 

MLIML(i+ ) -0.054% 0.032* -0.033* 0.191* —  —  0.022* -0.016 -0.017* -0.084 

A3SLSI -0.018* 0.003 -0.016* 0.067* -0.115* 0.003 0.026* 0.002 0.128* -0.030* 

A3SLSII -0.005 0.013* 0.013 0.126* -0.126* 0.04l* 0.043* 0.026* 0.336* -0.026* 

FA3SLS -0.002 0.008 -0.006 0.085* -0.144* —  —  —  —  —  —  

Significant at the 5^ level. 



Table k.3 Continued 

Parameter 
Model Estimator 

B 
12 '11 11 12 B 21 '22 23 24 

1 MLIML(4) -0.008 0.047* 0.011 

A3SLSI -0.008 -0.004 0.001 

A3SLSII -0.001 0.000 0.002 

FA2SLS 0.001 0.008 0.000 

TIV 0.010 0.007 0.003 

2 MLIML(4) -0.030* 0.050* 0.012 

A3SLSI -0.009* 0.002 -0.006 

A3SLSII -0.003 0.005 -0.003 

FA2SLS 0.002 0.006 0.000 

Sample size 6o 

0.240* — 0.119* -0.089* -0.080* -0.750* 

-0.034 -0.061* -0.020* -0.015* -0.013* -0.060 -0.065* 

-0.004 -0.063* 0.012* -0.007 -0.007* -0.046 -0.064* 

0.040 —0.066* —— —— —— — — —— 

0•040 —0.o48* —— —— —— — — —— 

0.237* — 0.009 -0.002 -0.007 -0.033 

0.022 -0.040* 0.001 0.012* 0.001 0.044 -O.O37* 

0.048* -0.043* 0.012* 0.019* 0.009* 0.096* -0.036* 

0. o46* —0. o64 * —— —— —— —— —— 
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Table h. h. Ratio of the empirical standard errors of the alternative 
estimators to the mean of the 200 estimated standard errors 
(percent) 

Parameters 
Model Estimators 

®12 ^11 ^11 ^12 Pi ®21 ^22 ^23 

-1
 

P2 

Sample size 30 

1 MLIML(U) 6l 86 81^ 81 -  - 81 66 69 81 — 

A3SLSI 95 86 99 87 105 102 103 96 91 112 

A3SLSII 90 eh 101 85 100 106 100 94 87 107 

FA2SLS 95 96 102 95 112 

2 MLIML(il) 62 22 80 66 94 102 99 102 - -

A3SLSI 9U 82 95 83 103 109 111 107 102 96 

A3SLSII 91 81 9^ 82 116 111 111 110 105 94 

FA2SLS 94 9^ 99 91 117 

3 MLIML(it-) 63 73 81 74 - - 119 92 102 101 

A3SLSI 88 83 91 84 111 104 95 104 94 104 

A3SLSII 90 88 9^ 86 104 111 98 111 99 101 

FA2SLS 93 88 98 90 117 

MLIML(4-) 63 73 82 72 98 97 98 97 — 

A3SLSI 100 86 95 86 117 108 110 109 105 98 

A3SISII 95 88 99 86 109 111 113 112 108 99 

FA2SLS 9^ 90 100 91 116 

Sample size 60 

1 MLIML(4) 52 69 70 62 — — 59 50 50 60 — 

A3SLSI 98 89 103 79 97 97 94 89 83 101 

A3SLSII 98 88 103 79 96 104 95 91 83 97 

FA2SLS 102 96 10^4- 85 100 

2 MLIML('+) 55 51 70 52 — 92 95 93 100 — 

A3SLSI 102 93 103 86 100 106 98 100 100 90 

A3SLSII 102 91 102 84 97 105 102 100 100 89 

FA2SLS 102 9U 106 88 100 -
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Table 4. 5. Comparison of theoretical t distribution with computed t 
for Equation 1, Model 1 

Sample size = 30 

Observed percentile 
Probability 

percent 
Theoretical 
percentile® 

Bl2(4) Cii(4) Probability 
percent 

Theoretical 
percentile® 

A38L8I A3SLSII FA2SLS A3SLSI A3SLSII FA2SLS 

1 -2.48 -2.63 -2.35 -2.31 -1.99 -1.82 -2.19 

5 -1.71 -1.92 -1.59 -1.66 -1.4l -1.35 -1.50 

10 -1.32 -1.22 -1.07 -l.lk -1.13 -0.97 -1.06 

50 0.00 -0.06 0.06 -0.02 0.08 0.11 0.28 

90 1.32 1.10 1.22 1.27 1.18 1.22 1.49 

95 1.71 1.42 1.67 1.79 1.63 1.63 1.90 

99 2.1+8 2.23 2.34 2.43 2.10 2.22 2.55 

^Theoretical percentile for Student's distribution with 25 d.f. 

Table k . 6 .  Comparison of theoretical t distribution with computed t 
for of Equation 1, Model 1 

Sample size = 30 

Observed percentile 
Probability-

percent 
Theoretical 
percentile 

ri2(4) Probability-
percent 

Theoretical 
percentile 

A3SLSI A3S1SII FA2SLS A3SLSI A3SLSII FA2SLS 

1 -2.48 -2.40 -2.54 -2.64 -2.00 -1.75 -2.12 

5 -1.71 -1.54 -1.47 -1.70 -1-55 -1.4l -1.15 

10 -1.32 -1.16 -1.14 -1.37 -1.15 -I.06 -0.98 

50 0.00 0.16 0.10 0.07 -0.03 -0.09 0.10 

90 1.32 1.40 1.43 1.39 1.16 1.22 1.51 

95 1.71 1.79 1.82 1.70 1.46 1.55 1.84 

99 2.48 2.63 3.22 2.69 2.46 2.32 2.81 
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Table h. "J. Comparison of theoretical t distribution with computed t 
for of Equation 1, Model h 

Sample size - 30 

Probability Theoretical 
in percent percentile 

Observed percentile 
Probability Theoretical 
in percent percentile 

Bl2(4) 1 Probability Theoretical 
in percent percentile 

A3SLSI A3SLSII FA2SLS A3SLSI A3SIBII FA2SI5 

1 -2.48 -2.89 -2.54 -2.46 -1.69 -1.87 -2.06 

5 -1.71 -1.86 -1.43 -1.56 -1.50 -1.43 -1.62 

10 -1-30 -1.38 -1.18 -1.16 -1.23 -1.11 -1.08 

50 0.00 -0.21 -0.03 0.01 0.02 0.l4 0.15 

90 1.30 0.95 1.19 1.21 1.18 1.27 1.25 

95 1.71 1.48 1.59 1.70 1.64 I'll 1.68 

99 2.48 1.93 2.22 2.39 2.34 2.78 2.21 

Table 4.8. Comparison of theoretical t distribution with computed t 
for of Equation 1, Model 4 

Sample size = 30 

Probability Theoretical 
in percent percentile 

Observed percentile 
Probability Theoretical 
in percent percentile 

ri2(4) Probability Theoretical 
in percent percentile 

A3SLSI A3SLSII FA2SLS A3SLSI A3SISII FA2SIS 

1 -2.48 -2.57 -2.82 -2.68 -1.74 -1.43 -1.94 

5 -1.71 -1.60 -1.69 -1.60 -1.20 -1.10 —1.41 

10 -1.30 -1.39 -1.39 -1.35 -0.93 -0.78 -1.00 

50 0.00 -0.16 -0.21 -0.07 -0.05 0.16 0.09 

90 1.30 1.15 1.11 1.29 1.22 1.30 1.34 

95 1.71 1.49 1.72 1.61 1.79 1.87 1.83 

99 2.48 2.21 2.48 2.38 2.64 2.57 2.55 



Table . 9> Estimated bias of estimators from 200 replicates (estimated parameters - true 
parameters) 

Model Estimators 
Parameters 

Model Estimators 

®12 Cll Til ^12 ^1 ®21 ^22 

cn CM 

^24 °2 

1 MLIML(4) -0-005 0.078 0.019 0.U16 —  —  0.189 -0.139 -0.123 -1.090 —  —  

MLIML(l) 0.003 0.011 0.013 0.0^3 — 0.043 -0.032 -0.033 0.270 —  —  

MLIML(O) 0.003 0.015 0.013 0.06k —  —  0.064 -o.o4o -0.047 0.391 

A3SLSI(U) -0.007 0.007 0.003 0.003 -0.1U7 0.047 -0.037 -0.022 -0.050 -0.110 

A3SLSl(l) -0.010 0.001 0.003 -0.014 -0.144 -0.04l -0.031 -0.024 -0.090 -0.127 

A3SISI(0) -0.011 0.000 0.002 -0.017 -0.145 0.042 -0.033 -0.025 -0.098 -0.128 

A3SLSIl(i+) 0.005 0.015 0.009 0.073 -0.151 0.027 —0.016 -0.010 -0.010 -0.108 

A3SLSII(1) 0.003 0.008 0.005 0.C42 -0.143 0.012 0.006 0.004 0.013 -0.126 

A3SLSII(0) 0.003 0.008 0.007 0.045 -0.146 -0.014 -0.007 -0.004 0.013 -0.125 

FA2SLS(4) 0.003 0.023 0.003 0.138 -0.155 —  —  — 

FA2SLS(l) 0.003 0.020 0.00k 0.118 -0.153 -- — — 

FA2SLS(0) 0.003 0.021 0.003 0.123 -0.155 

k MLIML(U) -0.0514. 0.032 -0.033 0.191 — 0.022 -0.016 0.017 -0.084 — —  

MLIML(O) -0.011 0.011 -0.003 0.078 -0.017 —0•010 0.013 0.053 —  —  

A3SLSl(i^ ) -0.018 0.003 -0.016 0.067 -0.115 0.003 0.026 0.002 0.128 -0.030 

A3SLSI(0) -0.017 0.005 0.01k 0.071 -0.117 0.002 0.025 0.002 0.118 -0.036 



Table k - . 9 .  (Continued) 

Model Estimators 
Parameters 

Model Estimators 

®12 Cll TU ^12 ^1 ®21 *^22 •"23 

-1
 

h A3SLSII(4) -0.005 0.013 0.013 0.126 -0.126 O.OUl 0.0k3 0.026 0.336 -0.026 

A3SLSII(0) -0.005 0.013 -0.012 0.12i<- -0.125 o.oUo 0.014-2 0.026 0.326 -0.026 

FA2SLS(U) -0.002 0.008 -0.006 0.085 -O.lk^ — — — — — — — — — — 

FA2SLS(0) 0.003 0.010 -0.005 0.089 -0.14? - — - - — — — — 



Table 4.10. The root mean square errors of alternative estimators 

Model Estimators 
Parameters 

B 
12 11 11 12 

B, 
21 '22 23 2h 

MLIML(ll) 

MLIML(l) 

MLIML(O) 

A3SLSI(4) 

A3SLSl(l) 

A3SLSI(0) 

A3SLSII(U) 

A3SI5II(1) 

A3SLSII(0) 

FA2SLS(4) 

FA2SLS(l) 

FA2SLS(0) 

MLIML(4) 

MLIML(O) 

A3SLSI(4) 

A3SLSI(0) 

0.089 

0.093 

0.092 

0.075 

0.075 

0.076 

0.07k 

0.073 

0.073 

0.073 

0.073 

0.072 

0.108 

0.091 

0.073 

0.072 

0.135 

0.116 

0.110 

0.074 

0.067 

0.069 

0.077 

0.067 

0.070 

0.088 

0.082 

0.084 

0.112 

0.114 

0.073 

0.074 

0.l4i 

0.152 

0.152 

0.107 

0.109 

0.106 

0.107 

0.103 

0.104 

0.107 

0.105 

0.106 

0.147 

0.146 

0.099 

0.099 

0.847 

0.788 

0.740 

0.408 

0.380 

0.388 

0.417 

0.377 

0.388 

0.494 

0.462 

0.475 

0.756 

0.364 

0.393 

0.395 

0.213 

0.204 

0.205 

0.211 

0.197 

0.201 

0.237 

0.224 

0.229 

0.194 

0.191 

0.228 

0.129 

0.133 

0.106 

0.095 

0.098 

0.096 

0.092 

0.091 

0.129 

0.132 

0.117 

0.108 

0.187 

0.137 

0.122 

0.108 

0.096 

0.100 

0.097 

0.095 

0.095 

0.150 

0.148 

0.108 

0.109 

0.152 

0.090 

0.088 

0.071 

0.065 

0.067 

0.063 

0.063 

0.063 

0.103 

0.105 

0.083 

0.083 

1.477 

0.993 

1.004 

0.728 

0.671 

0.679 

0.682 

0.684 

0.680 

0.947 

0.962 

0.787 

0.787 

0.198 

0.185 

0.189 

0.190 

0.183 

0.187 

0.178 

0.179 



Table 4.10. (Continued) 

Model Estimators 
Parameters 

Model Estimators 

®12 Cll Til ^12 Pi ®21 ^22 ^23 ^24 ^2 

4 A3SLSII(4) 0.071 0.078 0.101 o.kog 0.191 0.121 0.115 0.089 0.807 0.178 

A3SLSII(0) 0.071 0.077 0.100 0.408 0.190 0.120 0.116 0.090 0.864 0.179 

PA2SLS(U) 0.073 0.081 0.106 0.467 0.222 — — — — — — — — — — 

FA2SLS(0) 0.073 0.080 0.106 0.467 0.221 — — - — 
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V. REVIEW OF U.S. FAiRM LABOR MARKET 

This chapter consists of four sections. The first two sections 

review the historical movement and previous econometric studies of the 

U.S. farm labor market. The last two sections discuss the theoretical 

concepts on which the econometric model is based and the sources of data 

used in the estimation of this model. 

A. Historical Trend of Farm Labor 

U.S. farm labor employment reached a peak in 19l6. Since that time 

the trend has been downward except for 1931-35 and a brief period follow

ing World War II. Table 5*1 presents the annual rates of decline in 

farm labor for the period of 19^1 to 1973* The annual rates of decline 

in family farm labor range from -8.U^ to -1-5^ for the period 1950 to 

1969. However, this downward trend has stabilized substantially since 

the beginning of 1970. Hired farm labor, which constitutes about 27^ of 

the total farm labor force, followed a pattern similar to that of family 

farm labor. Hired farm labor fluctuated around II60 thousand from 1970 

to 1973* The recent change in the downward trend in farm labor can be 

explained by the following three factors: (l) expanded demand for U.S. 

agricultural commodities due to poor world crops and the devaluation of 

the U.S. dollars, (2) high unemployment rate in the rest of the economy, 

and (3) an apparent decline in the growth rate of agricultural produc

tivity. 



Table $.1. Annual rate of decline in family and hired farm workers, 

19^1-73 

Year 
Family 

farm labor 
Hired 

farm labor 
Year 

Family 
farm labor 

Hired 
farm labor 

k2 -0.8 -3.7 58 -2.5 2.2 

U3 0.8 -U.7 59 -2.4 -1.5 

UU -0.3 -8.4 60 -4.9 -3.4 

1^5 -1.3 -5.0 61 —1.9 0.3 

k6 2.9 3.3 62 -3.1 -3.3 

0.1 3.6 63 -2.8 -2.6 

48 -1.1 3.1 64 -4.9 -9.9 

1^9 -3.9 -3 «6 65 -8.4 -7.6 

50 -1.5 3.4 66 -6.6 -8.2 

51 -3 • 8 -4.0 67 -5.3 -7-9 

52 -h.2 -4.1 68 -3.1 -3.2 

53 -3.3 —2.6 69 -3.3 -3.1 

5^ -3.0 -0.4 70 -2.1 -0.1 

55 -3.4 -2.2 71 -2.2 -1.2 

56 -7.0 -4.1 72 -1.4 -1.3 

57 -U.i —0.6 73 -1.8 1.9 

B- Previous Studies of U.S. Farm Labor Market 

Based on the nature of data used, previous econometric studies of 

U.S. farm labor market can be classified into three categories: (l) time 

series studies, (2) cross-sectional studies, and (3) pooled cross-

sectional and time series studies. 
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Time series data have been widely used in econometric studies of 

the farm labor market. Such studies include Johnson (^8), Tweeten (73), 

Heady and Tweeten (44J, Schuh (70), Tyrchniewicz and Schuh (7^^ 75), 

Arc us (6), Martinos (59)? and Hammonds, Yadav and Vathana (36). 

Johnson (%8) examined both demand and supply functions of U.S. hired 

and family farm labor for three time periods, 1910-57? 1929-57 and 19^0-

57- He specified demand for farm labor to be a function of real farm 

wage rate, prices of substitutable resources and prices received for 

farm products. The supply equation was a function of real farm wage 

rate, non-farm wage rate and the unemployment rate. A Nerlove-type 

distributed lag hypothesis was introduced into each demand and supply 

function to obtain long-run and short-run elasticities. Ordinary"" least 

squares and two-stage least squares were used to estimate the parameters 

of his models. He also applied his national models to each of the nine 

census regions. 

For the demand function of family labor, significant coefficients 

were attained by using the national data. Only the farm wage rate 

remained significant in all of Johnson's sub-period models. The prices 

received variable was significant only in the two periods, 1920-57 and 

1940-57. Results at the regional level were not sufficiently well 

defined to draw definite conclusions. 

For the supply functions of hired and family farm labor, Johnson 

found that the signs of the farm wage rate and that of the non-farm 

wage adjusted for unemployment were consistent with prior expectations, 

but none of them were statistically significant for the time period 
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1929-59* Empirical estimates for regional data also had large standard 

errors• 

Using time series data from 1929-56^ Tweeten (73) estimated 

national demand functions for hired and family farm labor. In the 

hired farm labor market, he hypothesized that the demand for hired farm 

labor was a function of the ratio of farm wage rate to prices received 

by farm products, the ratio of farm wage rate to prices paid for operat

ing inputs and machinery, the stock of product assets, an index of 

governmental policies and time trend. The results indicated that for 

the period I926-59, the farm wage rate, the prices received by farmers, 

the stock of productive farm assets and time were important variables 

affecting national demand for hired farm labor. 

Tweeten specified the national supply of hired farm labor to 

be a function of farm wage rate and the wage rate in manufacturing 

adjusted for the unemployment rate. Data for the years I926-59, except 

for the years 19^2-^5, supported these hypotheses when a dummy variable 

was included to separate the two periods, 1926-kl and 19^6-59. 

]h analyzing the national family farm labor market, Tweeten expressed 

demand as a function of the ratio of the average wage rate in manufac

turing to the residual farm income per farm worker, the unemployment 

rate, the ratio of proprietor's equity to liabilities in agriculture, 

the percentage of forced sales through bankruptcy, an^ index of government 

policies, the stock of productive farm machinery, and time. He reported 

that for the period I926-56, only the income ratio, the unemployment 

rate, the equity ratio and time trend had significant effects on the 
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quantity of family farm labor demanded. Ordinary least squares and 

limited information maximum likelihood estimator were employed in 

Tweeten's study. 

Heady and Tweeten analyzed regional demand functions for hired 

and family farm labor. Data for the nine census regions were examined 

using the national demand model originally developed by Tweeten (73)* 

Empirical results indicated that the farm wage rate was an important 

variable in demand for hired farm labor. The parity ratio was signifi

cant in the regressions for four of the nine regions while trend was 

significant in only one region. 

Schuh (70) made an empirical study of the U.S. hired farm labor 

market. His basic model assumed the simultaneous determination of the 

hired labor wage rate and hired labor employment. The demand function 

expressed hired farm labor as a function of (a) real wage of hired farm 

labor, (b) an index of the prices of agricultural products, (c) an index 

of the prices of other inputs, and a measure of technology. The supply 

function expressed hired farm labor as a function of (a) real wage of 

hired farm labor, (b) non-farm income, (c) unemployment, and (d) the 

size of civilian labor force. Time series data from 1929-57 and two-

stage least squares were used in this study. Schuh concluded that hired 

farm labor responded to economic stimuli with a distributed lag. 

Tyrchniewicz and Schuh (7^) applied Schuh's model for national 

hired farm labor market to each of nine census regions. The main pur

pose of their study was to test the hypothesis that regional supply of 

hired farm labor was a function of regional farm wage rate, national 
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non-farm income, the size of civilian labor force and a time trend. The 

analysis was made using time series data from 1929-59* Empirical results 

supported their hypothesis for most of the regions studied except for 

New England, the mountain and the Pacific regions. 

Tyrchniewicz and Schuh (75) constructed a simultaneous equation 

model consisting of six equations for the U.S. farm labor market. It 

took account of the interdependence among unpaid family, hired and opera

tor farm labor. The model was estimated by two-stages least squares with 

time series data from 1929 to I961. This study showed that the demand 

and supply elasticities were substantially different among the components 

and the interdependence among the three components was significant at 

10^ level. The estimated structural models were also used to evaluate 

a number of alternative policies that bear on labor use and labor returns. 

Arcus (6) estimated equations for farm employment in the U.S. and in 

ten production regions using data from 19^1 to 1963* Four measures of 

farm employment were used. They are farm population, hired farm labor, 

family farm labor, total farm labor and farm population. The farm employ

ment function was specified as a function of farm income, non-farm income, 

the unemployment rate, stock of farm machinery, amount of land farmed, 

and technology. Ordinary least squares was used to estimate the parameters 

of the farm employment function. 

Based on the estimated employment function and assumed values of 

exogenous variables, Arcus made projections of farm population and family, 

hired and total farm labor for the years 1970, 1975 and I980. 
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Martinos (59) conducted an empirical analysis of the farm labor 

market of the U.S., the north central United States, and three sub-

regions of the north central regions. This study dealt with three cate

gories of farm labor; hired, family and total farm labor. Simultaneous 

equation models were fitted to the data from 19^1 to 19^9 for each of 

the three subregions of the north central region. National demand for 

hired, family and total farm labor were estimated by Ordinary least 

squares and Generalized least squares. Results indicated that the farm 

wage rate and the prices received of farm product were important factors 

affecting the demand for farm labor. 

Hammonds, Yadov and Vathana (36) estimated the parameters of the 

hired labor market model developed by Schuh (70) using time series data 

from 19^1 to 1969* Results indicated that the demand elasticity of hired 

labor became more elastic over time. Using this result, they attempted 

to reconcile the conflicting outcomes that the wage demand elasticities 

obtained from cross-section data of 1959 (see Wallace and Hoover (80)) 

were more elastic than those obtained from time series data (see Heady 

and Tweeten (44), Schuh (70) and Tyrchniewicz and Schuh (75))* 

Wallace and Hoover (80) made a study of the effects of technology, 

measured by the expenditure of agricultural experimental stations exten

sion service activity, on the agricultural labor market. Their investi

gation was restricted to cross-sectional state data for the agricultural 

census year 1959- The model was composed of demand and supply functions 

of agricultural labor. The demand for agricultural labor, measured by 

agricultural man-day requirement, was specified as a function of the 
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farm wage rate, research and expenditure of experimental stations, the 

stock of land, other inputs, age and education- The supply function 

specified farm wage rate to be a function of agricultural labor, age, 

education and non-farm wage rate. All coefficients in the model had 

signs consistent with a prior theoretic expectations except the coeffi

cient of the education variable in the demand function. 

The primary purpose of Bauer's study (9) was to estimate the time 

path of the effects of technology, as measured by research and exten

sion expenditures, on the farm labor market. To accomplish this purpose, 

a rational distributed lag function was incorporated into a simultaneous 

equation model of the farm labor market developed by Wallace and Hoover 

(80). The modified model was estimated by 2SLS with a pooling of cross-

sectional state and time series data from 1951 to 1961. The estimated 

lag distribution, had an inverted V shape instead of the geometric-

decline shape implied by the Koyck-Nerlove type distributed lag. 

C. The Model 

The basic model postulated here contains a demand and a supply func

tion for farm labor. Since farm labor is one of the inputs in agricul

tural production, marginal productivity theory provides us with a guide 

for the specification of the demand for farm labor. Under the assumption 

of perfect competition in factor and product markets and given a produc

tion function, input demand of the individual firm is obtained from the 

individual firm's first-order conditions for profit maximization (4?). 

As a result, input demand is a function of input prices, price of output. 
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and the level of technology. The aggregate demand function of input 

is obtained by summing the individual input demand functions-

Under the assumption of occupational immobility, an individual's 

supply of labor is derived from the individual's first-order conditions 

for utility maximization. On this basis, the individual's supply of 

labor is a function of wage rate. Relaxing the assumption of occupational 

immobility, the market supply of labor is again obtained by summing up all 

individual supply functions of labor. As a result, the market supply of 

labor becomes a function of wage rate, alternative wage rates and factors 

influencing labor's occupational mobility. 

In economics, static analysis ignores the time required to adjust 

to changes in the exogenous variables in the system. It is very common 

that economic agents distribute their response to an economic stimuli 

over a period of time. Lags in their response may be due to institutional 

factors and to imperfect information about the future. In our case, the 

reasons for expecting a lag response in demand for farm labor are: 

(1) contractual obligations with hired labor may limit changes in demand, 

(2) uncertainty about the future and habit persistence may limit the 

extent of changes in demand. 

The reasons for expecting a lag in the response of the supply of 

farm labor to the changing economic conditions are: (l) a lack of train

ing or education may prevent many farm workers from competing for better 

non-farm Jobs, and (2) previously signed contracts may prevent farm labor 

from seeking alternative employment, even though alternative employment 

opportunities are available. 
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For these reasons, a Nerlove-type distributed lag hypothesis is 

introduced into each equation of the model. The partial adjustment 

hypothesis can be stated as 

y+ Z  a  X ,  . • (5-1) 
t 1 ti 

The y^ is long-run equilibrium quantity demanded. The observed 

variables may reflect a partial adjustment of economic unit from current 

to long-run equilibrium level. Nerlove specified the partial adjustment 

process as follows : 

^t - ̂ t-l = " ̂ t-l) ^ Y ® • (5-2) 

This states that the change in the observed magnitude is proportional 

to the difference between the long-run equilibrium level and the current 

level. Substituting ($.1) into ($.2), we have a statistical model in 

which all variables are observable. 

Based on the conceptual model discussed above, we derive the follow

ing statistical model: 

^It ' ^11 ^ ^12^2t ^ll^lt ''l2^2t ^ ̂ lO^lt-l "it 

( 5 - 3 )  

^It ^21 '' ^22^2t ^25^5t ^26^6t ^20yit-l "st 

IP.qI <1 i = 1, 2, 
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u It Pl"lt-1 ̂  ®lt 

|pj <1 i - 1, 2, 

u. 
2t P2"2t-1 ®2t 

\ 
'It 

®2t 

\ 

iid 

G 
*11' *12 

0 , I *21, *22 

where 

= farm employment in agriculture, 

y^^ = real farm wage rate or real farm income per farm, 

It 

X 2t 

real prices received by farmers for all farm 

products, 

a measure of level of technology, 

y^t-i " yit l&88cd one period. 

- real non-farm wage rate adjusted for the unemployment 

rate, 

Xg^ a time trend with 19^1 - 1 • 

The prior constraints on the parameters in the structural demand 

function are: (l) < 0, (2) > 0, and (3) 0 < < 1 • 
11 10 

For the structural supply function they are: (l) >0, (2) < 0, 
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(3) Fgg < 0, and (4) 0 < (B^q < 1 • There is no a priori basis for 

placing constraints on the coefficient of technology; it can be negative 

or positive. The above ineq.ualities are theoretical restrictions. 

Based on the necessary condition of identification (see Johnston 

(^9)), both equations are over-identified since the number of variables 

that do not appear in a given equation is larger than the number of 

endogenous variables in a given equation less one- Each will be iden

tified provided at least one of the identifying variables in each equa

tion has a coefficient that is different from zero. 

D. The Data 

In this section, we discuss various measures for the variables of 

the structural equation (5*3) and the sources of the data. Time series 

data covering the period from 19^0 to 1973 are used in this study. 

y^_^ represent farm labor, measured by the number of workers (in 

thousands) on farm. Data about hired, family and total farm labor are 

available in various issues of Agricultural Statistics (76). 

y^^ represents the real farm wage. Three measures for real farm 

wage were used in this study. The first measure for real farm wage rate 

is defined as the index of hired labor composite hourly wage rate de

flated by the consumer price index (1957-59 = 100). In the second 

measure of the real farm wage rate, the index of prices paid for living 

items in rural areas was used as deflator. One of these two measures 

for the real farm wage rate was treated as the price of hired farm labor 

and was assumed to be the "going" price of family farm labor. The index 
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of hired labor composite hourly wage rate and the index of prices paid 

for living items in rural areas are both obtained from Agricultural 

Prices (77)- Our source for the consumer price index is various issues 

of Survey of Current Business (79)-

x^^ is the index of real prices received by farmers for all farm 

products. It is defined as the ratio of the index of prices received 

by farmers for all commodities to the index of prices paid by farmers 

for production items, excluding the wage rate. These indices are avail

able in Agricultural Statistics (76). 

Xg^ stands for the level of technology. The technology index for 

agricultural production is not available. The agricultural productivity 

ratio is chosen as a proxy variable for technology on the grounds that 

increases in technology shift the production function upward. The pro

ductivity ratio is available in various issues of Agricultural Statis

tics (76). 

X , is the real non-farm wage rate adjusted for unemployment. It 

is calculated on the following three steps: (l) = A^(l - 5 • U^), 

_ 59 
(2) = K^/Z K^/3 ' 100.0, (3) = K^/CPI( 1957-59 = 100) 

t=57 

where A^ stands for the average hourly earnings of production workers 

on manufacturing payrolls. stands for the unemployment rate and 

CPI represents the consumer price index- This variable, reflecting the 

appeal of real wage earned in non-farm sectors and the opportunities of 

non-farm employment, is a slight modification of the variable first 

suggested by Johnson (48). It is assumed that when the umemployment 
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rate of the economy reaches 20%, there are no off-farm opportunities-

Consequently, this variable has a zero effect on the supply of farm labor. 

It is a recognized fact that when laborers leave the farm they go to 

various industries other than manufacturing industry. Empirically, how

ever, the hourly wage rate of production workers proved to be the best 

proxy for the alternative labor wage in the non-agricultural sector. 

denotes a trend variable which represents secular changes 

occurring over a period of years. These include raising levels of 

schooling in farm areas, gradual changes in interest for employment in 

agriculture and improvement in communication and transportation between 

the farm and the non-farm sectors. 
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VI. EMPIRICAL RESULTS 

The first three sections of this chapter discuss the statistical 

results for the family, hired labor, and total farm labor markets- The 

economic implications of structural elasticities are analyzed in Section 

D and the results of the dynamic analysis of the models are presented in 

Section E. Finally, Section F summarizes the main findings of this 

chapter. 

A. Analysis of Family Farm Labor Market 

We have estimated three versions of a dynamic model for the family 

labor market. Model 1 is identical to the basic model described in 

Section C of Chapter 5- A dummy variable was introduced into each equa

tion to capture the war effects on farm labor market for the period 

19^1-19^5* The resulting model is called Model 2. The substitution of 

real farm wage and non-farm wage by real net farm operator's income and 

real income per manufacturing worker adjusted for unemployment in Model 

2 resulted in Model 3- Each model was estimated by three estimation 

methods: (l) ordinary least squares (OLS), (2) two-stage least squares 

(2SLS) and (]) Fuller's autoregressive two-stage least squares (FA2SLS). 

The use of these estimation methods makes possible statistical compari

sons of the estimates obtained when the same economic relationship is 

fitted. The empirical results are presented in Equations (5*1) through 

( 5 .18). 
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Time period (19^1-73) 

(6.1) Demand, Ordinary Least Squares (OLS) 

y^t = -863.2i^ - 2.il yg^ + 12.55 + 0.55 xgt + 0'92yit_l 

( 9 9 0 . 6 3 )  ( 2 . 7 8 )  ( 3 . 2 3 )  ( 6 . 7 6 )  ( 0 . 0 6 )  

RMS = 1 1 0 6 2 . 8  , = 0.99 , d = 1 . 6 5  

( 6 . 2 )  Supply, Ordinary Least Squares (OLS) 

y ^ t  =  1 0 2 9 . 2  +  1 2 . 2 6  y g ^  -  4 . 5  -  5 3 - 2 2  x g^ + O . 8 2  y ^ ^ _ 3 _  

( 1 4 - 8 9 . 6 1 )  ( 2 . 2 1 )  ( 1 . 8 3 )  ( 1 0 . 6 7 )  ( 0 . 0 5 )  

RMS = 8 5 0 0 . 8  ,  R^ = 0.99 ,  d = 2 . 0 8  

( 6 . 3 )  Demand, Two-stage Least Squares (2SLS) 

y ^ t  =  - 7 8 9 . 7 6  -  1 2 . 2 5  y ^ t  +  2 0 . 8 1  x ^ ^  +  7 . 3 2  x g ^  +  o - g s  y ^ ^ _ ^  

( 1 2 0 2 . 5 6 )  ( 4 . 9 4 )  ( 4 . 9 0 )  ( 8 . 5 5 )  ( 0 . 0 8 )  

RMS = 16294.5 , d = 1.4l 

(6.4) Supply, Two-stage Least Squares (2SLS) 

y^^ = 1048. l 6  +  1 6 . 5 5  x ^ ^ - 6 3.24 xg^ + 0 . 8 0  y ^ t _ i  

( 5 2 1 . 8 )  ( 3 . 1 3 )  ( 2 . 1 0 )  ( 1 2 . 3 5 )  ( 3 . 0 6 )  

RMS - 9 6 6 2 . 9  , d = 1.97 
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(6.5) Demand, Fuller's Autoregressive Two-stage Least Squares (FA2SLS) 

f f ^ 
= 1472.25 - 19.25^2^ ' 20.l6x^^ + °'22uit_i 

(2052.5) (8.81) (6.25) (11.02) (0.15) (0.26) 

RMS = 20996.0 d = 1.78 = 0.23 + 0.22 = O.ij-3 

(6.6) Demand, Ordinary Least Squares (OLS) 

- - 1424.96 -0.73y2t+ii'08x^^ +3.68x2t + 0.96y?^_^+ 73.7x2^ 

(1156.8) (3.16) (3.59) (7.5^) (0.08) (78.1) 

RMS - 11109.2 R  ̂ - 0.99 d = 1.83 

(6.7) Supply, Ordinary Least Squares (OLS) 

= 1912.06 + 12.76y2^ - 4.25%^^ - 75• 32xg^ + 0.72y^^_^ -139• Ix^t 

(761.7) (2.19) (1.8) (18.1) (0.08) (92.95) 

RMS - 8145.1 R  ̂ - 0.99 d = 1.84 
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(6.8) Demand, Two-stage Least Squares (2SLS) 

= 147.511.-17.3972^^ 25.53x^^+^^.12x2^+0.737^^.3^-120.41x2^ 

(1764.5) (8.04) (7.7) (10.7) (0.15) (135.7) 

RMS = 22560.0 d - 1.27 

(6.9) Supply, Two-stage Least Squares (2SLS) 

ŷ t = 2125.57+ 17.55724-5-99x5̂ -91-03x5̂  + 0.68yĴ _̂ -lS9.3x3t 

(832.18) (3.19) (2.10) (20.86) (0.09) (101.7) 

RMS = 9604.0 d = 1.71 

(6.10) Demand, Two-stage Least Squares (2SLS) 

= -788.24 -12.46yg^+20.98x^t +7.46x2^ +0.82yit_i 

(1210.6) (4.98) (4.94) (8.61) (0.08) 

RMS = 16512.3 d = 1.40 
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(6.11) Demand, Fuller's Autoregressive Two-stage Least Squares (FA2SLS) 

ri F ^ 
= 1231.03 - I8.73y2t '• ' O.gzxgt I 0'7lyit-l ̂ °'l9*it-i 

(1971.6) (8.26) (6.19) (11.0) (O.lU) (0.27) 

RMS = 21697.3 p = 0.20 + 0.19 = 0.39 

(6.12) Supply, Fuller's Autoregressive Two-stage Least Squares (FA3SLS) 

= 3495.64+23.99y2t -4-73x^t -9l.23xgt + o'^sy^^-l -287.1x3^ 

(1706.9) (10.6) (3.4) (36.9) (0.21) (190.1) 

- 0'09u2t_i 

(0.27) 

RMS -- 12409-9 p - 0.39 - 0.09 = 0.30 

(6.13) Demand, Ordinary Least Squares (OLS) 

= -l4l6.59-0.20y|^+24,63x^^ i 2.59x2^ + 0.83y^^_3^ + 67.7x3^ 

(994.2) (0.07) (5-66) (6.7) (0.07) (61.4) 

RMS = 8777.8 = 0.99 d = 2.06 

(6.14) Supply, Ordinary Least Squares (OLS) 

y^^ = 2603.15 ' 0.l4y*^ -- 54 

(1027.59) (0.03) (0.11) (20.92) (0.10) (115.22) 

RMS - 10732.9 R^ 0.99 d = 1.47 
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(6.15) Demand, Two-stage Least Squares (2SLS) 

-946.24 - 0.'+2y2^+ 4l.06x^^ - 1-^5x2^ +0.65y^^_^ 

(1015.0) (0.16) (11.5) (6.66) (0.12) 

RMS = 11620.8 d = 1.79 

(6.16) Supply, Two-stage Least Squares (2SLS) 

y^^ = 2781.04 + 0.l7yj^ -o.lsxgt-60.98%^^ + 0.69y^^_^-211. 

(1047.7) (0.03) (0.11) (21.41) (0.09) (117.9^) 

RMS = 11128.1 d = 1.52 

(6.17) Demand, Fuller's Autoregressive Two-stage Least Squares (FA2SLS) 

= -1763.47-0.48YJ^+46.76X^^ + 3.17X0^+0.63YJ^_3^-0.02U^^_^ 

(1233.12) (0.15) (11.57) (7.82) (0.12) (0.22) 

RMS = 12882.3 P]_ = 0.03 - 0.02 = 0.01 

(6.18) Supply, Fuller's Autoregressive Two-stage Least Squares (FA2SLS) 

vît ^ 4 0.12 _ 0.39xg^ - 52.66xg^+0.52y^^_^- T7.28x^^+0.2%g^_^ 

(1219.9) (0.033) (0.l4) (19.2) (0.11) (111.9) (0.18) 

RMS = 7541.2 = 0.167 + 0.2 = 0.367 
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The notation of variables used here is defined in Section C of Chapter 5-

A superscript F beside represents the family farm labor. The 

numbers in parentheses are the standard errors of the estimated coeffi

cients. RMS stands for Residual Mean Square Errors (see Johnston (49), 

p. 128). We are reporting the Durbin-Watson d statistic (Johnston (^9), 

p. 251) for the OLS estimates and 2SLS estimates for sake of informa

tion, bearing in mind that this statistic was designed for single equa

tion regression models where the explanatory variables are exogenous. 

Also is only reported for OLS estimates because it is meaningless 

in the simultaneous equation context (Christ (l4), p. 5I9). 

The coefficient of farm wage rate y^^ in Equation ( 6 .1) had the 

expected sign but was non-significant. The high value of R^ is due to 

the presence of the lagged dependent variable in the equation. 

In Equations (6.3) and (6.4), 2SLS was employed to re-estimate 

Equations (6.I) and (6.2). Compared with OLS estimates, 2SLS produced 

an increase in the size of the coefficients of y^^ in both the demand 

and supply functions- For example, the OLS estimate of y^^ was only 

one-fifth the size of that of the 2SLS estimate. The coefficients of 

the lagged endogenous variable estimated by 2SLS were slightly smaller 

than those estimated by OLS. Although the asymptotic standard errors of 

2SLS were uniformly larger than those of OLS estimates, all 2SLS estimates 

were highly significant and had the expected signs, except technology 

variable. 

We present the final results of the re-estimation of Equation (6.3) 

by FA2SLS in Equation (6.5)- This procedure assumes a given order of 
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the autoregressive process in the errors and requires a set of initial 

consistent estimates of the parameters. The instrumental variable pro

cedure described in Section B of Chapter 3 is used to obtain a set of 

initial estimates. The overfitting procedure was applied to the esti-
a  

mated residuals u^ to determine the order of the autoregressive pro-
a  ^  

cess, where u^ is defined in (3*8) . The improved estimate is 

0.^3 = 0.23 + 0.22, where 0.23 is the initial estimate of autocorrela-
a  

tion and 0.22 is the coefficient of u^^ ^ in Equation (6.5). The 

resulting "t-statistic" of I.65 is significant at the 10^ level. Except 

for the technology variable, coefficients of all variables in Equation 

(6.5) were statistically significant and had signs in accordance with 

a priori expectations. 

In Model 2, dummy variables were introduced into each of the 

Equations (6.6) and (6.7) to capture the effects of war during the period 

of 19(4^1 to 19^5- The OLS estimate of the farm wage coefficient in the 

demand function was negative but statistically insignificant. The war 

dummy in the supply function had a negative coefficient which was sig

nificant at the 10^ level. 

Equations (6.8) and (6.9) present the 2818 estimates of Model 2. 

The coefficients of y^^ estimated by 2818 were larger than the corres

ponding coefficients estimated by OLS. As in Model 1, most of the 

estimated standard errors of OLS are smaller than those of 2SLS. The 

war dummy was non-significant in the demand function and therefore it was 

dropped. The modified demand function estimated by 2SLS is presented in 

Equation (6.I0) which indicated a strong negative relation between 
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quantity of labor demanded and farm wage. 

Equations (6.11) and (6.12) present the results of FA2SLS estimates-

The improved estimates of and pg were 0.39 and O.3O, respectively. 

Based on the Monte Carlo results of Chapter h, FA2SIJS is expected to 

perform reasonably well in this circumstance. 

In Model 3> the farm operator's net income y*^ was used as an 

alternative price of family farm labor and adjusted real income per manu

facturing worker Xg^ was employed as an alternative price of non-farm 

labor. The OLS estimates for Model 3 were presented in Equations (6.13) 

and (6.1U). All variables had significant coefficients with expected 

signs, except the technology variable and the dummy variable in the 

demand function. Equations (6.I5) and (6.I6) report 2SLS estimates of 

the supply function and the demand function excluding the war dummy 

variable. It can be seen that the farm wage coefficients estimated by 

2SLS in both equations were somewhat larger than those estimated by OLS. 

By the order of the standard errors, 2SLS estimates were similar to the 

OLS estimates in Equation (6.l4). This was the only case we found in 

this section in which these two estimates were roughly equal. 

Finally, Model 3 was re-estimated by FA2SLS and the results are 

reported in Equations (6.I7) and (6.18). The Durbin-Watson d statis

tic in Equation (6.I6) failed to reject the null hypothesis of independent 

errors. However, the application of FA2SLS to Equation (6.I6) resulted in 

a highly significant estimate of the autocorrelation coefficient p^ = 

0.37 with an estimated standard error of O.18. This result provides 

us evidence of the low power of the d statistic in the case of a 
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dynamic simultaneous equation model with autocorrelated errors. The 

differences between 2S1S and FA2S1S estimates are similar to those made 

for previous models. 

In summary, the empirical results on the annual basis between 

19^1-73 strongly supported our hypothesis on the family farm labor 

market: (l) demand for family farm labor mainly depends on the price 

of family farm labor and the price of farm products, (2) supply of family 

labor is a function of price of family farm labor and prices of non-farm 

labor, and (3) the response of demanders and suppliers of family farm 

labor to changes in exogenous variables is spread over several time 

periods. Further, it was found that both farm wage and farm operator's 

net income per farm were satisfactory measures of the price of family 

farm labor. 

On the basis of empirical estimates, we found a considerable differ

ence in the estimates obtained by the three methods of estimation. The 

OLS estimates of endogenous variable coefficients were considerably 

smaller than those estimated by 2SLS and FA2SLS. This is consistent 

with prior theoretical results that OLS estimates are inconsistent in 

the simultaneous equation context. The FA2SLS estimates of lagged 

endogenous variables were the smallest of the three sets of estimates. 

Again the results support theoretical results that OLS and 2SLS estimates 

of lagged endogenous variables are biased upward in the case of auto

correlated errors. Consequently, the resulting coefficients of adjust

ment are downward biased and the long-run elasticities are inflated. 

The estimated standard errors of the FA2SLS were the largest. This 
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indicates that usual formulas of OLS and 2SLS for standard errors are 

biased in the dynamic simultaneous equation model with autocorrelated 

errors. 

B. Analysis of Hired Farm Labor Market 

The empirical results of hired farm labor are presented in Equations 

(6.19) to (6.30): 

Time period (19^1-73) 

(6.19) Demand, Ordinary Least Squares (OLS) 

y^t = 136.57 - g.ggygt ^ ^ ̂ '^^it-i 

(767-8) (4.6) (2.11) (3.19) (0.19) 

RMS = 36I4.O.9 = 0.98 d = l.it-3 

(6.20) Supply, Ordinary Least Squares (OLS) 

yît = ^28.39 - o.oky^t - s'lsxjt - 7-35xgt + 

{^k.6) (2.7) (1.1) (3.97) (0.13) 

RMS 1654.8 = 0.99 d = 2.33 



118 

(6.21) Demand, Two-stage Least Squares (2SLS) 

= 1968.78 - l6.85yg^ + + 4'39%2t + ̂ '^^y^t-l 

(1106.8) (7.77) (3.76) (k.8) (0.3^) 

RMS = 8317.4 d = 0.47 

(6.22) Supply, Two-stage Least Squares (2SLS) 

4 - 88-11 + s-oy^t - " 7'°% + 

(578.17) (2.99) (1.11) (3-5) (0.10) 

RMS = 2690.5 d = 1.94 

(6.23) Demand, Ordinary Least Squares (OLS) 

yj^ = 846.65 - 6.08yg^ + 3-8lX^^ - 0.38Xg^ + 0.68yJ^_^ - 130. 

(538.64) (2.45) (1.69) (2.6) (0.12) (35.2) 

RMS = 3317.7 R  ̂ = 0.98 d = 1.16 

(6.24) Supply, Ordinary Least Squares (OLS) 

y= 1014.78 + 0.36y2t - ̂. 39x^t - 7.21xg^ + 0.74yj^_3_ - i06.65%^^ 

(327.96) (1.5) (0.81) (3-01) (0.09) (26.77) 

RMS = 1602.4 d = 2.24 
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(6.25) Demand, Two-stage Least Squares (2SLS) 

=  2 6 9 6 . 3 7 - 2 3 . •  9 5 x i t  5 •  t l x g t  "  ° ' ^ ^ ^ i t - l  "  ' ^ 3 1  

(1245.8) (9.0) (4.35) (5.25) (0.39) (65.67) 

EMS = 9668.8 d =0.81 

(6.26) Supply, Two-stage Least Squares (2SLS) 

yj^ = 502.6 + 3.l8yg^ - 5.03x^t - 5-65xg^ + 0'87y^t-l " 93'8%3t 

(518.8) (2.6) (0.98) (3.41) (0.14) (30.2) 

RMS = 1806.3 d = 2.36 

(6.27) Demand, Two-stage Least Squares (2SLS) 

= 2575.12 - 22.73y2t + io.6ix^^ + 5.52x2% " 186.izx^^ 

(506.66) (2.67) (2.82) (4.69) (56.9^) 

RMS = 0686.2 d = 0.81 

(6.28) Demand, Theil's Autoregressive Two-stage Least Squares (TA2SL8) 

yj^ 3103.67 - 24.i8yg^ f 7.48%^^ + 5-13x2% - 74.68%^^ 

(393.98) (2.97) (2.23) (4.24) (59.81) 

A A 

RMS 3660.3 - 0.768 u^^_^ - 0.395 u^^_2 d = 1.92 

(0.16) (0.16) 
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(6.29) Supply, Fuller's Autoregressive Two-stage Least Squares (FA2SLS) 
(first iteration) 

yjt = -70-29 

(1112.1) (4.7) (1.0) (4.7) (0.3) (31-02) 

- 0-72 3^t_l 

(0.41) 

RMS = 1646.74 p = 0.12 - 0.72 = -0.60 

(6.30) Supply, Fuller's Autoregressive Two-stage Least Squares (FA2SLS) 
(second iteration) 

yjt ' 756.78 + 1.7lty2t-5-32xjt-5-mxg^ + 0.8lyj^_^-103.26x3^ 

(529.8) (2.54) (0.84) (3.27) (0.13) (30.11) 

A 

+ 0.07 

(0.17) 

RMS = 1650.8 p (2) = -0.24 + 0.07 = -0.l4 . 

The models for hired labor markets are similar to those for family 

H 
farm labor markets. The variable y^^ denotes hired farm labor employ

ment. Equations (6.19) and (6.20) report the OLS estimates of Model 1 

and their related statistics. The results were discouraging because the 

coefficient of farm wage rates were non-significant in both demand and 

supply functions- Furthermore, the coefficient of farm wage was 



121 

negative in the supply function-

The application of 2SLS to each equation significantly improved the 

results. In Equation (6.21), the coefficient of y^^ was negative and 

highly significant. The farm wage rate regression coefficient in Equa

tion (6.22) "became positive and significant at the 10% level. As before, 

the standard errors of 2SLS were larger than those of OLS. The price of 

farm product variable and non-farm wage had the expected signs and were 

significant at the 5^ level. These results suggested that the demand 

for hired farm labor increased as prices of farm product increased and 

the supply of hired farm labor decreased when non-farm wage rate in

creased. The coefficient of lagged endogenous variable in the Equation 

(6.21) did not statistically differ from zero, hence the corresponding 

coefficient of adjustment in the demand equation was not significantly 

different from one. 

The OLS estimates of Model 2 are reported in Equations (6.23) and 

(6.24). The addition of a dummy variable to Model 1 improved the re

sults. In the supply equation, the farm wage variable regression coeffi

cient was positive but the coefficient was only one-fourth the size of 

its standard error-

ij 
When Model 2 was re-estimated by 2SLS, the estimate of y^^ ^ in 

Equation (6.25) was not statistically significant and therefore y^^ ^ 

was dropped from the demand function. The modified demand function 

estimated by 2SLS is presented in Equation (6.2?). The d statistic of 

0.8 rejected the null hypothesis of independence in the residuals. To 

determine the order of autoregressive process, the second-order 
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autoregressive process was fitted using the residuals computed from 

Equation (6.27)* The resulting equation was 

"it = 0-7? "lt-1 - 0-39 "it-2 

(0.i6) (0.17) 

a  

The asymptotic t statistic indicated that the coefficients of 
a  ^  

and u^ ^ 2 were both significant. Therefore, the error term was 

assumed to follow a second-order autoregressive process- Since the 

modified demand function was a static model, Theil's autoregressive 

two-stage least squares (TA2SLS) was used in this case. Equation (6.28) 

reports the results of TA28L8. Comparisons of these estimates revealed 

that TA2SLS increased the size of coefficients of farm wage rate. 

FA2SLS was employed to estimate the supply function. The farm wage 

variable regression coefficient in Equation (6.29) was positive but non

significant. The improved estimate of pp , the autocorrelation coeffi

cient, was Pp = 0.12 - 0.72 = -0.6. The value of -O.72 was the esti-
a  

mated coefficient of u^ , ^ and four times larger than the magnitude j- ̂ "t"-!-

of = 0.18. Thus, a second iteration was carried out with initial 

estimate of Pg(2) = 0.12 - | (-O.72) = -0.24 and u^^ , calculated 

residuals from the Equation (6.29). The result of the second iteration 

a 
is shown in Equation (6.3o). The coefficient of u^ ^ ^ was O.o7 and 

the second step estimate of ^^(2) was -0.1^. The coefficient of the 

lagged endogenous variable in (6.29) had a coefficient of 1.0$, while 

the second iteration gave a value of 0-81. 
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In all previous equations, the coefficients of war dummy variable 

had negative signs and were statistically significant at the 5^ level. 

This result demonstrates two points: (l) during the war period, the 

supply of hired farm labor was reduced, and (2) the estimates obtained 

by Hammonds, et al. (36) and Martinos (59) studies were biased due to 

the amission of the war dummy variable in their models. 

In summary, in the demand for hired farm labor, farm wage rate and 

prices of farm product were significant at the 5^ level and had the 

expected signs, but the technology variable was inconclusive. A static 

model is preferred over a dynamic model for the demand for hired farm 

labor because the coefficient of lagged endogenous variables was not 

significantly different from zero. For the supply function, the non-

farm wage rate variable had a negative coefficient, which was highly 

significant. The coefficient of farm wage rate was positive but not 

significant. This result is similar to the result of the recent study 

by Hammonds, et al.(36) for the period of I941-69, but different from 

the previous studies by Schuh (70) and Heady and Tweeten (U4) for the 

period of 1929-57. 

The empirical estimates of this section provide us a basis for 

further comparisons of the effects of different estimation methods. In 

terms of significance of coefficients and correct signs, FA2SLS performed 

the best, followed by 2SLS. Ordinary least squares gave less satisfac

tory results. 
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C. Analysis of Total Farm Labor Market 

In this section we report the empirical results for the total farm 

labor market. Total farm labor is defined to be the sum of family farm 

labor and hired farm labor. Total farm labor market was specified in 

accordance with the Model 2 of family and hired farm labor markets. As 

before, three estimation procedures were employed to estimate the param

eters of total farm labor market. The estimated equations are presented 

in the following ; 

Time period 1941-73 

(6.31) Demand, Ordinary Least Squares (OLS) 

= -959-^3 - 3.76y2t ̂  ^ °'9^it-i 

(1681.2) (5.1) (5-01) (9-81) (0.08) 

RMS = 22861.4 = 0.99 d = 1.57 

(6.32) Supply, Ordinary Least Squares (OLS) 

y^^ = 2846.04 +13.oy^^ - 8.62x^t - 8o.44xg^ + " 236-9x3% 

(1095.8) (2.85) (2.37) (21.2) (0.08) (113.1) 

RMS = 14227.7 R^ 0.99 d = 2.03 

-69.8x j ^  

(106.58) 
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(6.33) Demand, Two-stage Least Squares (2SLS) 

yit = -5^6-31 - 1^.69yg^ + 22.95xit + 7.68x2^ + 0.83yit_i 

(1742.01) (8.1) (7-01) (10.47) (0.11) 

RMS = 28832.0 d = 1.31 

(6.3U) Supply, Two-stage Least Squares (2SLS) 

= 2277.03 + is.osy^t - i0.45x^t - 8o.5xgt + 0.-199-

(1191.5) (3.91) (2.66) (22.41) (0.09) (121.0) 

RMS = 15898.7 d = 2.04 

(6.35) Demand, Fuller's Autoregressive Two-stage Least Squares (FA2SLS) 

4 = 3180.96 -29.24,2^ + as.52xit -2-24%2t 

(4023-3) (19.2) (10.85) (15-46) (0.25) (0.25) 

RMS = 41697.6 = 0.21 + 0.16 = 0.37 

(6.36) Supply, Fuller's Autoregressive Two-stage Least Squares (FA2SLS) 

y^t = 2479.4 1 17.68yg^ -7.82x^t-6o.48x^^ + 0.737^^-1" 183-87x2% 

(1919.79) (7.8i+) (3.45) (24.74) (0.l4) (138.35) 

- 0.32u2%_^ 

(0.17) 

RMS = 15800.5 PG = 0.359 - 0.32 = 0.03 
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\ 

(6.37) Supply, Fuller's Autoregressive Two-stage Least Squares (FA2SLS) 

(28.9) (0.15) (139-5) 

0.20 - 0.07 = 0.13 

The parameters estimated by OLS were not very satisfactory because 

the farm wage coefficient in the demand function was insignificant. The 

application of 2SLS to the same structural equations excluding the dummy 

variable in the demand function resulted in improved results. The farm 

wage regression coefficients in both equations were highly significant 

and had expected signs- The coefficient of the technology variable was 

positive but insignificant. Finally, FA2SLS was used to estimate the 

model and the result is reported in Equations (6.35) through (6.37). 
a  

Since the estimated coefficient of u^^ in the supply function is 

larger than W ^ = O.i8, the second iteration of the Equation (6.36) was 
a  

performed with initial estimates of p/(2) = 0.359 + §(-0.32) = 0.20 and 

"at * YIT - *79.4 - n-6Sŷ  ̂ * 7-82xgt + so.mxg^ - 0.73??;.! + 

183.87X2^ . The resulting equation is reported in (6.37)- The improved 
a  

estimate of Pg(2) is 0.i3 with estimated standard of O.25. Consequently, 

the estimates of Equation (6-37) are similar to those of Equation (6.3^) 

estimated by 2SLS. 

'It - 3021.43 + i7.78y2t - 5t 

(1902.2) (6.67) (3-5) 

- 0.07 u, 

(0.25) 

2t-l 

EMS = 16770.3 p2(2) 
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The estimates of demand for and supply of total farm labor are 

relatively similar to those of the family farm labor market, compared 

to those of hired farm labor market. This is reasonable because family 

farm labor accounts for about 73^ of the total farm labor force. 

D. Structural Elasticities 

Having obtained the estimates of the models for farm labor markets, 

we now compute and analyze the structural elasticities. Two types of 

elasticities are computed: one at the mean and the other at 1973 levels. 

The structural elasticities of family farm labor are summarized in 

Table 6.1- The short-run demand elasticities with respect to the farm 

wage rate were in the range -0.22 to -0.33* This means that a ten percent 

increase in farm wage would result in decrease of 2.2 to 3*3 percent in 

the quantity of family farm labor demanded, other things being equal-

The price of farm products has an elasticity of 0-39j somewhat larger 

thai that for farm wage rate. This indicates that the demand for family 

labor is somewhat more responsive to farming profitability than to changes 

in the farm wage rate. The technology variable has a short-run elastic

ity of 0.02 in Model 2, though the parameter estimate is not significant 

at the 50^ level. 

The coefficient of adjustment in the demand function (6.II) of 

Model 2 is 0.29, indicating that about 30^ of the discrepancy between 

equilibrium and actual employment is eliminated in a given period of 

time by the demanders of labor. The coefficient of adjustment also 
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implies long-run elasticies that are slightly more than three times as 

large as the short-run elasticities. The long-run elasticities of the 

farm wage rate and price of farm product in Equation (6.11) were -1.12 

and 1.306, respectively. Since the coefficient of the lagged endogen

ous variable estimated by 2SLS are upward biased in the dynamic models 

with autocorrelated errors, we found that in both Model 2 and Model 3, 

the long-run elasticities computed from 2SLS estimates were more 

elastic than those computed from FA2SLS. 

Evaluating the elasticities at the 1973 level indicated each of the 

relevant elasticities has increased over time. This is a reflection of 

the secular increase in each of the independent variables concurrent 

with a decline in the family farm labor employment. 

In the supply side, the short-run farm wage elasticity at the mean 

was O.U28, considerably larger than the demand elasticity. The adjusted 

non-farm wage had an elasticity of -O.O8, considerably less than the 

farm wage elasticity. This indicates that suppliers of family farm 

labor are somewhat less responsive to non-farm income incentives than to 

farm-income incentives. This is reasonable because the major portion of 

family farm labor is farm operators who have a much stronger commitment 

to agriculture. The coefficient of adjustment in Model 2 is O.52, some

what larger than the corresponding adjustment coefficient in the demand 

function. This means that 52 percent of the discrepancy between equilib

rium and employment is eliminated in a given period of time by the 

suppliers of family farm labor. The long-run elasticities of farm 

wage and adjusted non-farm wage were 0.82 and -O.16, respectively. 



Table 6.1. The structural elasticities and coefficients of adjustment of family farm labor market 
19^1-73 

Equation 
Coefficient 

of 

Price of farm 
labor 

Price of farm 
product 

Price of non-
farm labor 

Index of 
technology 

adjustment Short 
run 

Long 
run 

Short 
run 

Long 
run 

Short 
run 

Long 
run 

Short 
run 

Long 
run 

Demand (6.10) 
at mean 
at 1973 

0.18 
-0.22 
-0.57 

-1.26 
-3.17 

0.39 
0.73 

2.23 
4.05 

0.12 
0.28 

0.69 
1.56 

Supply (6.9) 
at mean 
at 1973 

0.32 
0.31 
0.81 

0.98 
2.53 

-0.11 
-0.25 

-0.33 
-0.78 

Demand (6.11) 
at mean 
at 1973 

0.29 
-0.33 
-0.86 

-1.12 
-2.96 

0.39 
0.72 

1.31 
2.48 

0.02 
0.0k 

0.0= 
0.14 

Supply (6.12) 
at mean 
at 1973 

0.52 
0.43 
1.10 

0.82 
2.10 

— — — — — — -0.08 
-0.19 

-0.16 
-0.37 

— - -

Demand (6.I5) 
at mean 
at 1973 

0.35 
-0.24* 

-0.83* 

-0.69a 

-2.37* 

0.76 
1.U9 

2.17 
4.26 

— 

W » B 

-0.02 
-0.06 

-0.06 
-0.17 

Supply (6.16) 
at mean 
at 1973 

0.31 
0.1 & 

O.33& 
0.33* 
1.06% 

— — — — — — -0.1 t 

-0.25^ 1 
1 

0
 
0

 

00
 U
) 

Price of farm labor is measured by y^^^ real net farm operator income per farm. 

^Price of non-farm labor is measured by real income per manufacturing worker. 



Table 6.2. The structural elasticities and coefficients of adjustment of hired farm labor market 
1941-73 

coer^cient 
Equation of 

adjustment Short Long Short Long Short Long Short Long 
run run run run run run run run 

Demand (6.27) 
at mean -1.25 0.5l 0.29 
at 19T3 —2" 9+ 1.03 ——— 0 • 5T 

Supply (6.26) 0.13 
at mean O.I7 1.3^ -0.28 -2.14 —-
at 1973 OAO 3.05 — -0.55 -4.23 

Demand (6.28) 
at mean -1«33 0.43 0.27 
at 1973 -3*02 --- 0 « 72 --- —- 0.53 

Supply (6.30) 0.19 
at mean 0.33 0.53 -O.3O -1-58 
at 19T3 0*22 1» 16 —— ——— —0.59 —3*11 ——— 



Table 6.3* The structural elasticities and coefficients of adjustment of total farm labor market 
1941-73 

Equation 
Coefficient 

of 
adjustment 

Farm wage 
Price of farm 

product 
Adjusted non-

farm wage 
Index of 

technology-

Short Long Short Long Short Long Short Long 
run run run run run run run run 

Demand (6.33) 0.17 
at mean -0.19 -1.12 O.32 1.88 — 0.10 O.58 
at 1973 -0.30 -2.94 0.59 3.51 — 0.21 1.24 

Supply (6.34) 0.24 
at mean 0.24 1.00 ——— ——— —0.l4 "^*59 ——— ——— 
at 19T3 0.5l 2.^4 ——— ——— —O.31 —1.29 ——— ——— 

Demand (6.35) O.38 
at mean -0.39 -I.03 O.37 O.98 
at 1973 -0.99 -2.61 0.69 1.82 -0.06 -0.16 

Supply (6.37) 0.29 
at mean 0.24 0 « 82 ——— ——— —0.15 —0.52 — — — ——— 
at 19T3 0.60 2.07 --— --- -0.34 -I.i7 --- ---
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Similar to the demand relation, the long-run and the short-run 

elasticities of supply at 1973 levels were three times the corresponding 

elasticities at the means. 

The structural elasticities of hired farm labor market are shown 

in Table 6.2. The coefficient of adjustment in the demand side was not 

significantly different from one, indicating almost all the discrepancy 

between equilibrium and actual employment is eliminated in a given period 

of time by the demanders of labor. Evaluated at the means the elasticity 

of demand for hired farm labor with respect to the real farm wage was 

-1.25, compared to -0.33, the short-run wage demand elasticity of family 

farm labor. Price of farm products had an elasticity of O.6i, while the 

corresponding short-run elasticity of family farm labor was 0.39- This 

result supports the hypothesis that hired labor is the marginal labor 

input in the production process and hence is the one that farm operators 

manipulate most readily. 

In the supply side, the short-run wage elasticities taken at the 

means ranged from 0.17^ computed from 2SIJS estimates to O.i3, computed 

from FA2SIIS, both are computed from parameter estimates that were not 

significant at the 20^ level. This result is consistent with the recent 

study by Hammonds, et al. (36). Using time series data 19^1-1969 and a 

similar model, they found that the farm wage variable was non-significant 

in their hired labor supply function and had a short-run elasticity of 

O.2U. These results are inconsistent with the results of the earlier 

studies of Heady and Tweeten (44) and Schuh (70). Using data from 

1919-1957, they found that farm wage rate was highly significant in the 
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hired labor supply function and had short-run elasticities ranging from 

0.U8 to 0.65. One of the possible explanations for this situation is 

that the portion of hired farm labor that had greater mobility and 

alternatives to non-farm employment had immigrated out of the farm sec

tor in this period. Those remaining in the farm sector either have 

fewer alternative employment opportunities or have much stronger commit

ment to agriculture. This tentative explanation can be investigated 

by examining the demographic factors of hired farm labor. We will not 

pursue this topic of research further here. The adjusted non-farm wage 

had a short-run elasticity of -0.28, somewhat larger than for the farm 

wage rate. This suggests that suppliers of hired farm labor are more 

responsive to non-farm wage incentives than to farm wage incentives. The 

coefficient of adjustment was O.I7, indicating long-run elasticities that 

are approximately five times as large as their corresponding short-run 

elasticities, the short-run referring to the response within one year. 

Hence, the long-run elasticities of the farm wage and the adjusted non-

farm wage were 1.23 and -2.13, respectively, the latter suggests that 

given a sufficient time period, suppliers of hired farm labors are highly 

responsive to change in non-farm wage. 

Table 6.3 presents the structural elasticities of the total farm 

labor market. Total farm labor is defined to be the sum of family farm 

labor and hired farm labor. Hence, the structural elasticities of the 

total farm market reflect its two components. The structural elastici

ties in Table 6.3 lie between those of their corresponding variables in 

the models for family and hired farm labor market. 
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For comparison purposes, we summarize the demand and supply elastic

ities of previous studies in Tables 6-h and 6.5* On examining these 

estimates, we found that, in the family farm labor market, our estimates 

of the demand and supply elasticities with respect to the farm wage were 

more elastic than those obtained by earlier studies using data from 1929 

to 1961, while the elasticities of prices of farm product and the non-

farm wage obtained by previous studies were somewhat larger than the 

corresponding estimates of this study. 

In the hired farm labor market, both short-run and long-run farm 

wage elasticities of demand have increased over time. For example, the 

short-run farm wage elasticity estimated by Schuh (70) for the period of 

1929-57 was -0.12. His long-run elasticity was -0.4. These elasticities 

are considerably less than those obtained by Hammonds et al. study (36) 

and our study. The farm wage elasticities of supply estimated by pre

vious studies ranged from 0.i3 to 0.66. Our estimates were 0.i3 and O.17, 

respectively. These results indicate that the responsiveness of the 

supply of hired farm labor to farm wage has still been inelastic. 

Finally, our estimates of the non-farm wage elasticities 

were inelastic in the short-run but highly elastic in the long-run. These 

results are similar to the results obtained by Schuh (70) and by 

Tyrchniewicz and Schuh (75)» 



Table 6.4. A summary of demand elasticity studies of family and hired farm labor market prior to 

1973 

Study 
Time 

period 
îfethods of 
estimation 

Farm wage Prices of farm product 

Short run Long run Short run Long run 

1. Heady and Tweeten (44) 1910-57 OLS 

2. Tyrchniewicz and Schuh 1929-61 2SLS 
(75) 

a. unpaid family 
labor 

b. farm operator 

3. Martinos (59) 1941-69 GIfi 

-0.l4 

.0.42 

-0.069 

-0.20 

Family farm labor 

-3.0 0.56 

0.66 
0.60 

3.99 

Hired farm labor 

1. Heady and Tweeten (44) 1929-57 OLS -0.26 -0.37 0.20 0.26 

1940-57 -0.46 -0.60 0.10 0.13 

2. Schuh (70) 1929-57 2SI£ -0.12 -0.4 0.15 0.52 

3. Tyrchniewicz and Schuh 
(75) 

1929-61 2SLS —0.26 -0.49 0.31 0.58 

4. Hammonds, et al.(36) 1941-69 2S1S -0.85 -1.05 — — — 

5. Martinos (59) 1941-69 GLS -0.55 — — — — — — — — — 



Table 6.5* A summary of supply elasticity studies of family and hired farm labor prior to 1973 

Study Time Methods of Farm wage Prices of non-•farm labor 
Study period estimation Short run Long run Short run Long run 

Family farm labor 

1 .  [lyrclmiewicz and Schuh 
(75) 

1 9 2 9 - 6 1  2SLS 

a. impaid family 
labor 

b. farm operator 

0 . 6 8  

0.005 

1.51 -I. u 7  

- 0 . 0 9  

-3.26 

Hired farm labor 

1 .  Johnson (48) 1929-57 2SLS 0 . 1 3  0 . 7 1  —0. 0 6  - 0 . 3 1  

2 .  Schuh ( 7 0 )  1929-57 2SLS 0 . 2 5  0 . 7 8  -0.36° - 1 . 1 1 ^  

3. Tyrchniewicz and Schuh 
(75) 1 9 2 9 - 6 1  2SIS 0 . 6 5  1-55 -1.42^ -3.38 

k. Hammonds, et al. ( 3 6 )  1941-69 2SLS 0.24 0 . 8 2  — — — — — — 

Indicates supply elasticity with respect to the non-farm income adjusted for unemployment. 
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E- Dynamic Analysis of the Models 

The derived reduced form has two major uses: (l) it can be used to 

evaluate the impacts of exogenous variables on endogenous variables dur

ing the sample period, and (2) given a set of estimated exogenous vari

ables, it can be used to predict future values of endogenous variables. 

In this section, derived reduced forms are employed to analyze the im

pacts of exogenous variables such as prices of farm product, the non-farm 

wage rate, etc. on farm labor employment. 

If we use the estimated structural equations and express current 

endogenous variables in terms of predetermined variables, we obtain a 

set of derived reduced form equations. The derived reduced form for 

family farm labor, hired farm labor are as follows : 

Family farm labor market (derived from Equations ( 6 . 9 )  and ( 6 .10)); 

yj^ = 1131.96 + 12.82xj^ +2.06x2^-2.98x^t-45.3x6% + 0'7yt-l-l^^'7*3t 

^2t " "56-62 + 0.73x2% + 0.12x2^+0.17x^^+2.6xg^ + 0.001y^_2 + l.u0x^^ 

(6.38) 

Family farm labor market (derived from Equations (6.11) and (6.12)) 

ŷ % = 22kh.89 + ll-hlx̂ t̂-0.̂ 1x̂ -̂2.12x̂ +̂ 0,60ŷ _̂̂ -126.̂ X^̂  

^ 2 t  "  " 5 4 * ^ 5  +  0 . 1 ^ 9 x ^ ^ + 0 . 0 2 x 2 ^  i  o . l l x ^ ^ +  2 . l 8 x g ^ + 0 . 0 5 y ^ ^ _ 2  +  6 . 8 6 % ^ %  

(6.39) 
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Family farm labor market (derived from Equations (6.I5) and (6.I6)): 

=  1 7 0 . 7 8  +  1 1 . 8 3 x ^ ^ - o . u 2 x 2 ^ - 0 . 0 9 3 x g ^ - i ^ 3 - ^ l x g ^  +  0 . 6 8 y ^ ^ _ ^ - 1 5 0 . 3 x 2 ^  

y*^ = -6317-^2 + 69.59x^^ - a-h-6x̂ _̂  + 0.22XQ  ̂+ 103-36xg^ - 0.06y^^_^ + 357-76x2^ 

(6.40) 

Hired farm labor market (derived from Equations ( 6 . 2 5 )  and (6.26)): 

yît ' tlt7-9t + l-26xj^^+0.65x2^-ltaltxj^-it.98xg^ + 0.77yjt.j_-lca.12x3^ 

ygt = 77-26 + 0.wx^^+o.a0x2t + 0.19x5^ + 0.21xg^-o.03y^t.;l-3a7x3^ 

(6.14-1) 

Hired farm labor market (derived from Equations (6.28) and ( 6 . 3 0 ) ) :  

ŷ t = 91^.33+0.5lx^^ + 0.3l^xg^ -k.96x^t - 5• 09xg^ + 0.75yit-i " 

ygt = 90.54 + 0.29x^^ + 0.20Xg^ + 0.21% +0'21xgt " °'°3yit_i " ' 

(6.42) 

Most of the coefficients of the predetermined variables have signs 

in accordance with our a priori expectation. The coefficients of these 

equations, which measure the effects of a one unit change in the 

V 
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exogenous variables in the current period, are called impact multipliers. 

According to our estimates of Equation (6.39) for family farm labor 

market, the impact of one percent increase in real farm prices is an 

increase in family farm labor employment by 11.4l thousand persons, while 

the impact of one percent increase in the adjusted non-farm wage is a 

decrease in family farm labor employment by 2.12 thousands. For the 

hired farm labor market, the effect of one percent increase in prices of 

farm product is an increase in hired farm labor employment by 1.26 

thousands while an increase is one percent of the non-farm wage rate 

reduce 4.^^ thousand hired farm labor. These results suggest that one 

unit increase in the farm product prices has a larger impact than one 

unit change in the adjusted non-farm wage rate on family farm labor 

employment. The situation is, however, reversed for hired farm labor 

employment. 

The derived reduced form discussed above presents a clear picture 

of the immediate response of endogenous variables to changes in the pre

determined variables. It enables us to estimate the effects of exogenous 

variables when the immediate past history of all endogenous variables is 

given- However, it does not answer the questions such as: what are the 

impacts of previous exogenous variables on current endogenous variables. 

By successive substitution and a given set of initial conditions of 

endogenous variables, the general form of the derived reduced equation 

in our case can be written as 



lUo 

'it 

N-l 
E Y' 
j=0 

Pr 
6 

+ e 
1=1 d=0 

N-l 
e y bi xi,t.j + «it-m ' (g'43) 

Since | Ŷ l  ̂ and. when N —b' œ the Equation (6.̂ 3) is 

'It .vi "o " ''ti + pi %it.a j=0 1=1 1=1 j=l 
(6.44) 

The coefficients attached to the lagged exogenous variables in 

Equation (6.44) are called interim multipliers or dynamic multipliers. A 

dynamic multiplier measures the effect of a one unit change in an exogen

ous variable on the endogenous variables in the current period, given 

that the increase is maintained in all intervening periods. The sura of 

all dynamic multipliers attached to a specific exogenous variable gives 

the value of long-run equilibrium multiplier for that variable- It 

measures the long-run effect of a permanent change in an exogenous vari

able. 

The estimates of the dynamic multipliers and long-run multipliers 

for the two components of farm labor are presented in Tables 6.6 and 

6.7. The main features of the results are the following: (l) As 

expected, all dynamic multipliers exhibit a geometric decline and con

verge to zero as the length of the time lag increases. (2) In the family 

farm labor market, changes in prices of farm product at time t have more 

far-reaching effects than changes in non-farm wage rate at time t . The 



Ihi 

Table 6.6. Dynamic multipliers for the time path of family farm labor 
employment, 19U1-73 

Lag 
Equation (6.38) Equation (6.39) Equation (6.4o) 

period 
*lt *5t *lt *8t° 

0 12.82 -2.98 ll.Ul -2.12 11.83 -0.09 

1 8.97 -2.09 6.85 -1.27 8.04 -0.06 

2 6.28 -1.u6 4.11 -0.76 5.57 -0.04 

3 4.^0 -1.02 2.46 -0.46 3.72 -0.03 

k 3.09 -0.72 1.48 -0.27 2.53 -0.02 

5 2.15 -0.50 0.89 -0.16 1.72 -0.01 

6 1.51 -0.35 0.53 -0.10 1.17 0.0 

7 1.06 -0.25 0.32 0.0 0.80 0.0 

8 0.74 -0.17 0.20 0.0 0.54 0.0 

9 0.52 -0.12 0.12 0 .0 0.37 0.0 

10 0.36 -0.08 0.07 0.0 0.25 0.0 

11 0.25 -0.05 0.02 0.0 0.17 0.0 

12 0.18 -0.04 0.0,1 0.0 0.12 0.0 

13 0.12 -0.03 0.0 0.0 0.08 0.0 

Ih 0.08 -0.02 0.0 0.0 0.05 0.0 

15 0.06 -0.0 0.0 0.0 0.04 0.0 

16 o.oU -0.0 0.0 0.0 0.03 0.0 

17 0.03 0.0 0.0 0.0 0.02 0.0 

18 0.02 0.0 0.0 0.0 0.01 0.0 

19 0.0 0.0 0.0 0.0 0.0 0.0 

42.73 multipliers -9.9 28.52 -5-3 36.97 -0.29 

^ f o r  r e a l  p r i c e s  r e c e i v e d  b y  f a r m e r s  f o r  a l l  f a r m  p r o d u c t s ,  

^ f o r  r e a l  n o n - f a r m  w a g e  r a t e  a d j u s t e d  f o r  t h e  u n e m p l o y m e n t  
^ rate, 

Xg^ for real non-farm income per manufacturer worker adjusted 
for unemployment. 



Table 6.7* Dynamic multipliers for the time path of hired labor employ
ment, lSkl-^3 

Lag 
Equation (6.4l) Equation (6.42) 

period 
''5t^ *lt *5t 

0 1 . 2 6  -4.44 0 . 5 1  -4. 9 6  

1  0.97 -3.42 0.38 -3.72 

2 0.75 - 2 . 6 3  0.29 -2.79 

3 0.58 -2.03 0 . 2 2  -2.09 

0.44 - 1 . 5 6  0 . 1 6  -1.57 

5 0.34 - 1 . 2 0  0 . 1 2  - 1 . 1 8  

6 0 . 2 6  -0.93 0.09 - 0 . 8 8  

7 0 . 2 0  -0.71 0.07 - 0 . 6 6  

8  0 . 1 6  -0.55 0.05 -0.50 

9 0 . 1 2  -0.42 o.o4 -0.37 

1 0  0.09 -0.33 0.03 - 0 . 2 8  

1 1  0.07 -0.25 0.02 - 0 . 2 1  

1 2  0.05 -0.19 0 . 0 1  - 0 . 1 6  

13 o.oU -0.15 0.0 - 0 . 1 2  

Ik 0.03 - 0 . 1 1  0.0 -0.09 

15 0.02 -0.09 0.0 - 0 . 0 6  

l6 0 . 0 1  - 0 . 0 6  0.0 - 0 . 0 5  

17 0.0 -0.05 0.0 -o.o4 

18 0.0 -o.o4 0.0 - 0 . 0 3  

19 0.0 -0.02 0.0 - 0 . 0 2  

Total 
multipliers 5.48 -19.30 2.04 -19-84 

^ x_, and x^, are defined in Table 6.6. 
It 5t 
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opposite situation occurs in the hired farm labor market- (3) Dynamic 

multipliers obtained from the structural equations estimated by FA2SLS 

damp more rapidly than those obtained from the structural equations 

estimated by 2SLS. 

The above analysis does not answer the question as to which exogen

ous variables were more influential in causing the change in farm labor 

employment during this sample period. The reason for this is that in 

any given year, the actual effects of each exogenous variable depends 

not only on the magnitude of impact multipliers but also on the actual 

values of exogenous variables- In order to examine the effects of current 

changes in exogenous variables on current changes in endogenous variables, 

a simple marginal analysis is performed. To do so, a first difference for 

each exogenous variable is multiplied by an appropriate impact multiplier 

in the derived reduced forms. Table 6.8 presents results of the simple 

marginal analysis for the two components of farm labor. Of the five 

exogenous variables, prices of farm product has both the largest and most 

variable effect on family farm labor employment. In 32 years, the margin

al impact of prices of farm product has changed signs (direction) 21 

times. The largest positive increase in farm labor, 16o.O thousand, 

occurred between 1972-1973» the largest decrease, 13O thousand, occurred 

between 19^8 and 19'+9* In the period of 19^2 to late 1950 ' s, the mar

ginal impact of the non-farm wage was a reduction in family farm labor 

employment, but the effect has been moderate since i960 except for i963 

to 196U. The marginal impact of the non-farm wage ranged from plus 

36.4 thousands in 195^ to minus 58*5 thousands in 19^2. The trend 



Table 6.8. Simple marginal analysis of family and hired farm labor employment functions, 1942-73 

Equation (6.38) Equation (6-39) Equation (6.4i) 
Year Year 

i2.a2.Ax -2.98.Ax_. 11.4l.AX]^t -2.12.Ax^^ -4.44'Ax 
5t 

k2 -159.77 151.72 -82.24 -130.6 135.0 -58.5 -128.9 14.9 -122.54 

h3 -5.28 150.66 -58.32 9.8 134.1 -41.5 -153.2 14.8 -86.9 

kh -62.3 -41.23 -20.83 -55.2 -36.7 -14.8 -130.9 -4.1 -31.04 

1^5 -7.80 34.47 16.06 -11.4 30.7 11.4 -134.8 3-4 23.9 

h6 142.70 74.46 36.60 117.5 66.3 26.0 76.97 7.3 54.5 

47 122.9 11.60 3.84 106.1 10.3 2.7 54.3 1.1 5.7 
48 -154.9 -121.95 -5.69 -145.1 -108.5 -4.1 38.3 -12.0 -8.4 

49 -239.7 -146.13 18.71 -212.1 -130.1 13.3 61.0 -l4.4 27.9 

50 -272.6 6.59 -l4.o4 -233.4 5.8 -10.1 -90.7 0.7 -20.9 

51 -76.9 82.37 -33.44 -60.3 73.3 -23.8 12.6 8.1 -49.8 

52 -332.2 -78.13 -14.99 -291.5 -69.5 -10.7 -104.4 -7.7 -22.3 

53 -35^.6 -81.49 -16.63 -307.6 -72.5 -11.8 -107.8 -8.0 -24.8 

54 -202.6 -41.70 43.00 -184.7 -37.1 30.6 13.4 -4.1 64.1 

55 -272.7 -54.32 -34.30 -235-4 -48.3 -24.4 -66.1 -5.3 -51.1 

56 -214.2 0.0 -16.10 -186.1 0.0 -11.5 -62.1 0.0 -23.9 

57 -385.1 -29.38 -1.19 -334.3 -26.2 -0.9 -73.6 -2.9 -1.8 

58 -94.8 53.18 51.14 -97.6 47.3 36.4 71.7 5.2 76.2 

59 -230.5 -54.07 -36.18 -197.5 -48.1 -25.7 -31.1 -5.3 -53.9 

60 -134.4 0.29 -4.80 -120.8 0.3 -3.4 -32.9 0.1 -7.2 



Table 6.8. (Continued) 

Equation (6 .38) Equation (6.39) Equation (6.4l) 

Year Year 
A F 
^It 1 2 . 8 2 - -2.98" A F 11.41* -2.12'AXgt < 1.26'A -4.44-Ax^. 

6l -218.6 -13-59 21.99 -1911.5 -12.1 15.6 -24-9 -1.3 32.8 

62 -130.4 13.02 -31.85 -110.1 11.6 -22.7 -46.6 1-3 -47.5 

63 -162.3 -13.30 -1.58 -145.6 -11.8 -1.1 -54.9 -1.3 -2.4 

6k -231.4 -26.18 -60.70 -189.49 -23.3 -43.2 -135.6 -2 • 6 -90.4 

65 -137.7 38.93 24.0 -126.6 34.6 17.0 -98.7 3.8 35-7 
66 -286.3 49.2 -20.86 -239.8 43.8 -l4.8 -126.7 4.8 -31.1 

67 -309-6 -74.97 -4.62 -273.5 -66.7 -3-3 -110.9 -7.4 -6.9 

68 -188.3 12.13 -14.42 -162.1 10.8 -10.3 -106.9 1.2 -21.5 

6$ -72.1 11.21 -3.55 -60.9 10.0 -2.5 -34.9 1.1 -5-3 
70 -163.5 -23.34 34.75 -148.5 -20.8 24.7 10.3 -2.3 51.8 

71 -89.9 -32.26 18.44 -94.4 -28.7 13.1 24.5 -3.2 ro
 

72 -44.2 72.83 -18.30 -33.4 64.8 -13.0 -36.6 7.2 -27.3 

73 81.6 179.72 -17.55 77.9 160.0 -12.5 -25.7 17-7 —26.2 
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variable, has had a constant negative effect on family farm labor employ

ment. 

In the hired farm labor market, the non-farm wage had the largest 

effect on labor employment. The range of its marginal impact was from 

negative $i0.4 thousand in 1^64 to plus 64.1 thousand in 195^. Simi

lar to the family labor market, farm product prices had the most variable 

effect on hired farm labor employment. 

If the goals of agricultural policy are to achieve higher farm in

come and to eliminate surplus farm labor, then these results have some 

policy implications: (l) The impact of price-support programs have 

larger positive effects on family farm income than on hired farm labor 

income. However, they will have adverse effects on the adjustment of 

surplus labor. (2) Increase in labor mobility, which is measured by 

the trend variable in this study, has the desirable effect of eliminating 

surplus farm labor and of raising farm income. Therefore, greater empha

sis should be put on education, training and labor market information 

programs. 

F. Summary and Conclusions 

In this chapter we have obtained some new quantitative information 

about the family farm labor market and the hired farm labor market. The 

empirical results support our hypotheses about the family farm labor 

market; (l) demand for family farm labor depends on the price of family 

farm labor and price of farm products, (2) supply of family farm 
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labor is a function of the price of family farm labor and the price of 

non-farm labor. Further, the demandera and suppliers of family farm 

labor spread their response to changes in economic stimuli over several 

time periods. In general, the structural elasticities of the family farm 

labor market have increased over time. The demand elasticities with 

respect to the farm wage and to the price of farm products are inelastic 

in the short-run but elastic in the long-run. In the supply function 

farm wage and non-farm wage elasticities are inelastic in both short-run 

and long-run. 

A static model was preferred to a dynamic model for the demand for 

hired farm labor. The coefficients of the farm wage and the price of 

farm products were statistically significant and had expected signs. 

The technology variable was inconclusive in both the family and the hired 

farm labor market. This does not necessarily mean that technology has no 

impact on the demand for farm labor. This inconclusive result may be 

due to the poor proxy for technology or due to the fact that the 

effect of technology is transmitted to the farm labor market through the 

relative decline in farm product prices- In the supply function, the 

non-farm wage had a negative coefficient which was highly significant. 

The farm wage regression coefficient was positive but insignificant. In 

comparison with the elasticities of previous studies, it was found that 

the demand elasticity with respect to the farm wage has increased sub

stantially. However, the farm wage supply elasticity has still remained 

inelastic. 
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There are two kinds of empirical evidence of the small-sample proper

ties of various estimators. One kind is Monte Carlo studies and the 

other kind is econometric studies of real world data in which two or more 

estimation procedures have been used for the same structural equations. 

This chapter provided us the latter kind of the empirical evidence of the 

small-sample properties of the following three estimators: (l) OLS, 

(2) 2SLS, and (3) FA2SLS. The major differences are: (l) compared to 

the rest of the estimates, OLS estimates are often unreasonable in signs 

and magnitude, (2) in most cases, OLS estimates of endogenous variables 

differ from those estimated by 2SIfi and FA2SI5, (3) FA28L8 estimates of 

the lagged endogenous variables are less than those estimated by 2SLS 

and OLS, especially in the case where the errors appear to be autocor-

related, and (4) OLS, 2SLS, and FA2SLS differ considerably in the magni

tude of estimated standard errors- These empirical results are consistent 

with the theoretical results on the properties of these estimators. 
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VII. FORECASTING THE SIZE OF FARM LABOR EMPLOYMENT 

A. Introduction 

The purpose of this chapter is to predict possible levels of farm 

employment in the next decade under different assumptions on future 

levels of exogenous variables. The projections of family, hired and 

total farm labor employment provide useful information for governmental 

long-term policy planning purposes, especially for the planning of educa

tional investment in agricultural sector. 

In general, three approaches have been devised to project future 

farm employment. These are (l) time trend extrapolation (Heady and 

Tweeten (^^)), (2) derived demand for farm labor based on the projections 

of consumer demand for agricultural products (Daly and Egbert (1$)), and 

(3) projections derived from an estimated single equation model and 

assumed behavior of independent variables (Arcus (6) and Martinos (59))-

The procedure undertaken here is closely related to the third approach, 

except that the estimated single equation is replaced by the estimated 

reduced forms of simultaneous equation models developed in Chapter 6. 

By inserting the future values of exogenous variables and 1973 observa

tions of endogenous variables, the reduced forms (restricted or unre

stricted) recursively generate time paths of farm labor employment from 

197^ to 1 9 8 5 .  

The validity of our projections rests on two key assumptions: 

(1) the estimated dynamic structure relationship within the sample 

period (19^1-73) holds in the future, and (2) the assumed values of 
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exogenous variables are their future true values. These are strong 

assumptions since in the next ten years, many events such as war, strong 

increase in foreign demand and technology innovation may happen. There

fore, three sets of projections of farm labor employment are provided 

under three possible conditions for the future values of exogenous 

variables. 

Section B discusses in detail the projection of exogenous variables. 

In Section C, three time paths of hired, family and total farm labor 

employment are presented. 

B. Projection of the Exogenous Variables 

The reduced form equations of Section D of Chapter 6 contain four 

exogenous variables. They are (l) the ratio of the index of prices 

received for all farm products to the index of the prices paid for pro

duction items excluding hired farm labor wage rate, (2) the technology 

index, (3) real non-farm wage rate adjusted for the umployment rate, and 

(U) real non-farm income per worker adjusted for the unemployment rate. 

We first assume that the exogenous variables can be adequately 

approximated by the following autoregressive trend model: 

f(9: T) + u^ (7.1) 
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^ i.i.d. (0, cr|) 

where is the dependent variable, f(0; T) represents the mean 

function of time and u^ follows a p^^ order stationary autoregres-

sive process. 

For example, if f(0: T) = a + pT and u^ follows a second-order 

autoregressive process, then Model (7.I) is algebraically equivalent to 

the following equation: 

rt = 9o + + pg^t-l ^3^t-2 ®t • (7-2 

For forecasting purposes, Equation (7-2) is adopted and is estimated 

by ordinary least squares. In practice, researchers must decide on the 

order of the autoregressive process. In our case, the overfitting pro

cedure was used both for determining the order of polynomial trend and 

the order of the autoregressive process. Following the procedure men

tioned above, various forms of Equation (7-2) are fitted to the exogen

ous variables. The estimated equations are as follows: 

= h9-ho h i.05t i- 0.62x^^_^ - 0.26x^^_2 (7.3) 

(13.2) (0.3!^) (0.18) (0.16) 

RMS = 62.4 = 0.78 
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XG. - 28.55 I 0.66T + 0.33% 2t-l 
0.28X, 

2t-2 

(11.8) (0.29) (0.17) (0.16) (7.4) 

rms = 5.48 = 0.98 

X 
It 77.99 _ 2.45t + 0.05ut^ i 0.65x^^_^ - 0.17x^^_2 

(20.24) (0.6) (0.01) (0.21) (0.15) (7.5) 

rms = 17.38 R^ = 0.89 

xg = 114-84.1+5 + 55.5IT + 0.76xp^ + 0.29X, 
8t-l "8t-2 

(357.88) (13-44) (0.19) (0.15) (7.6) 

RMS = 12753-2 = 0.98 

The numbers in parentheses are the estimated standard errors of the 

coefficients- The projected values of exogenous variables from these 

equations are shown in Table 7-1- On examining the projected values of 

the exogenous variables, we found that projected real prices received 

for farm products grow rapidly after the I980's due to the influence of 

the second-degree trend term. This situation is considered less prob

able. Therefore, this data is extrapolated by the grafted polynomials 

developed by Fuller (23). 

The independent variable of the grafted polynomials for x^^, real 

prices received for farm products, are specified as: 
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= T T = 1 for I9I+I, .. T = 33 

for 1973 

Zg^ = (T-i8)2 t < 1 9 5 8  

= 0 otherwise 

Z^^ = (T-ll)2 t < 1951 

- 0 otherwise 

The resulting estimated grafted polynomial equation is 

= 95.36 + 0.15z^^ + o.uozg^ - l.olzgt 

( 4 . 5 )  ( 0 . 1 8 )  ( 0 . 0 5 )  ( 0 . 1 3 )  (7-7)  

RMS = 22.09 = 0.86 

The numbers in parentheses are the estimated standard errors of the 

coefficients. The data and the fitted grafted polynomial (7*7) is 

plotted in Figure 7*1' The projected values of based on Equation 

(7.7)  are also reported in Table 7-1'  

The second set of the assumed values of the exogenous variables 

is generated based on the assumption that recent observations have 

greater influences on the future behavior of exogenous variables. Vari

ous forms of Equation (7-2) are again fitted to exogenous variables 

from 1959 to 1973 and the resulting estimated equations are as follows: 



Table 7-1* The projected exogenous variables from 1975 to 1985^ 

Year 
Technology index 

Adjusted real non-
farm wage rate 

The index of real price 
received for all farm 

products 

The index of real price 
received for all prod

ucts 

('2t> 

1975 127.7 134.1 110.9 100.7 

76 129.3 135.1 113.4 100.8 

77 130.9 136.5 116.1 100.9 

78 132.6 138.1 119.1 101.1 

79 134.3 139.8 122.2 101.3 

80 135.9 l4l.4 125.5 101.4 

81 137.6 143.1 129.1 101.6 

82 139.3 144.7 132.9 101.7 

83 140-9 146.3 136.8 101.8 

8i^ 1u2.5 147.9 140.9 102.0 

85 144.2 149.6 145.4 102.2 

^The projected exogenous variables were computed from Equations (7*4 )> (7-3), and (7.5). 

^^It calculated from Equation (7-7)« 
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Figure 7.1. Actual and predicted real price received for all farm products, 19^1-1985 
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= 39-42 i 0.7ut 4. 0.52% ̂  ̂  

(17a) (0.72) (0.22) (7-8) 

RMS = 59.3 = 0.61 

>2^ = 92.17 + 1.u6t - 0.15x2^.1 

(2.17) (û.38) (0.26) (7.9) 

RM8 = 4.4 R2 = 0.88 

Again, the numbers in parentheses are standard errors of estimated 

coefficients. The projected values of , the technology index, and 

X , real non-farm wage rate adjusted for unemployment, are presented 
5't 

in Table 7-2. 

In the period 1959 to 1973, there are no discernible trend patterns 

in real prices received for all farm products. Hence, the ratio of the 

index of price received for all farm products to the index of prices 

paid for production purposes, excluding hired farm labor wage is assumed 

to follow a simple growth formula 

1,1973 . D ^2(1 + y2)» 

X.(l  ' Y.)® 
(7.10) 

where 
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stands for the average of the last three observations on 

the index of price received for all farm products, 

Xg stands for the average of the last three observations on 

the index of price paid for production purposes excluding 

hired labor wage rate, 

} i = 1, 2 represents compound annual growth rates of the 

i^^ variables, and 

D = (t - 1973) t < 1973 • 

Two pairs of growth rates are assigned to ( 7 .10). In the first 

pair, Yj assumed to be 3'0% for the index of price received for 

farm product and is equal to 2.0% for the index of prices paid for 

production purposes excluding hired farm labor wage rate. In the second 

pair, is equal to k-.G^ and remains the same as before. These 

two pairs of growth rates are used to reflect relative farming profitabil

ity due to an increase in foreign and domestic demand. The projected 

values based on these two pairs of growth rates are shown in Table 7-2 • 

C. Projection Results 

In this section, we present projected time paths of family, hired 

and total farm labor employment from 197^ to I985. They are calculated 

from the unrestricted reduced form and restricted reduced form of the 

dynamic econometric models developed in Chapter 6. The reduced form of 



Table 7.2. The projected exogenous variables from 1975 to I985 

Year 
Technology index Adjusted real non-

farm wage rate 

The index of real price 
received for all farm 

products 

The index of real price 
received for all farm 

products 

(^itd))" (=lt(2))* 

1975 125.7 127.9 105.5 105.3 

76 126.1 132.3 106.5 107.4 

77 127.5 135 .3 107.6 110.0 

78 128.7 137.6 108.6 111.6 

79 130.0 lUo.o 109.7 113.8 

80 131.3 141.3 110.8 116.1 

81 132.5 142.9 111.8 118.3 

82 133.8 144.5 112.9 120.7 

83 135.1 146.1 114.1 123.0 

8!+ 136.4 147.6 115.2 125.4 

85 137.6 149.2 116.3 128.0 

^ x^^(l) represents the projected value of x^_^ under the first assumption (i.e., = O. 3 ,  

Yg = 0.2). x^^(2) represents the projected value of x^_^ under the second assumption (i.e., = 0.^, 

Yg = 0.2). 

^ The projected exogenous variables are calculated from Equations (7-9) and ( 7 . 8 ) ,  respectively. 
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a simultaneous equation estimated by ordinary least squares is called un

restricted reduced form. The unrestricted reduced form equations used 

in this section are as follows; 

Family farm labor market 

yit = •12-tl>^t + 6.ftx2t-2.5-p<5t-^9-3xg^ + 0.72yj^_^-h3.73'(3t 

(1076.9) (2.06) (6.62) (1.69) (16.81) (0.08) (89.66) 

RMS = 7482.3 = 0.99 (7.11) 

ygt = -26.58 t-0.73c 1^-0.12x2^ +0.16x^^ + 2.7i^xg^-0.0073y^ _̂1 +0.935^3^ 

(67.44) (0.13) (0.42) (0.11) (1.05) (0.005) (5.62) 

rms = 29.38 r2 = 0.94 (7.12) 

Hired farm labor market 

= 732.2 +1.36 + 0.91 - 4.49%^^ - 5.04xg^ + 0. 

(334.39) (1.09) (2.8) (0.77) (7.13) (0.07) (28.36) 

RMS - 1565.8 R2 = 0.99 (7.13) 

y"^ = 83.04 I 0.41^x^^ + 0.08)^2 +̂0.16x^^+0.62xg^-0.03yJ^_^-2.65!c3^ 

(34.59) (0.11) (0.28) (0.07) (0.74) (0.01) (2.93) 

rms = 16.73 r^ = 0.97 (7.14) 
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As before, the number in parentheses are standard errors of the 

estimated coefficients- The restricted reduced forms are obtained from 

Section D of Chapter 6. We found that the coefficients of the restricted 

reduced form and the unrestricted reduced form are generally consistent 

in signs but are somewhat different in their magnitudes. Hence, it is 

interesting to observe the prediction performance of these two types of 

reduced forms. 

In projecting farm labor employment up to 1^8$, three sets of assumed 

values of exogenous variables are used and the corresponding three sets 

of projected family, hired and total farm labor employment are obtained. 

Under Case 1, real non-farm wage rate adjusted for the unemployment rate, 

and the technology index are assumed to grow according to their first-

order autoregressive trend functions from 1959 to 1973• The index of 

price received for farm product is assumed to increase 3*0^ annually and 

the index of prices paid for production purposes is to increase 2.0^. 

The projections of farm labor employment from 197^ to I985 are given in 

Table 7.3 and the actual and predicted family and hired farm labor 

employment under Case 1 are displayed from Figures 7*2 to 7'5* The pro

jected number of family farm labor in I985 is slightly over 166O (thou

sands). This number is approximately 4-0.0$ below the 1973 level. Hired 

farm labor is projected to be around 6OO (thousands), compared with II68 

(thousands) in 1973* 

In Case 2, the future values of exogenous variables are the same 

as those in Case 1 except that the index of the price of farm product 

received is assumed to grow at annually. The projected farm labor 



Table 7'3* Projected farm labor employment in the U.S., 197^-1985 (under Case l) 

Year 
Family farm labor 
calculated from 
Equation (6.38) 

Hired farm labor 
calculated from 
Equation (6.4^0 

Total farm 

labor 

Family farm labor 
calculated from 
Equation (7 .II)  

Hired farm labor 
calculated from 
Equation (7*13)  

Total fa: 

labor 

I97U 3008.8 1147.2 4156.0 2983.1 1159.6 4097.7 

75 2883.0 1103.8 3986.8 2868.6 1127.6 3996.2 

76 2750.1 1047.4 3797.5 2740.2 1080.1 3820.2 

77 2619.8 987.9 3607.7 2613.2 1027.9 3641.1 

78 2491.7 929.0 3420.7 2486-3 975.1 3461.4 

79 2366.4 870.2 3236.6 2361.4 921.5 3282.9 

80 2246.3 816.4 3062.7 2240.6 872.3 3112.9 

81 2127.5 764.9 2892.4 2120.1 824.8 2944.9 

82 2011.0 715-4 2726.4 2000.7 779.0 2779.7 

83 1897.5 667.6 2565.1 1886.2 734.5 2620.7 

8ii 1785.0 621.4 24O6.0 1771.6 691.3 2462.9 

85 1672.8 575.9 2248.7 1657.0 648.6 2305.6 
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Figure 7.2. Actual and predicted numbers of family farm workers in the U.S., 19^1-1985 (predicted 
estimates from Equation (6. 38) and projected exogenous variables are calculated under 
Case 1) 
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Fiture 7 . 3 .  Actual and predicted numbers of family farmworkers in the U.S., 19^4-1-1985 (predicted 
estimates from Equation (7-11) and projected exogenous variables are calculated under 
Case 1 )  
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Figure 7-4. Actual and predicted numbers of hired farmworkers in the U.S., 19^1-1985 (predicted 
estimates from Equation (6.U1+) and predicted exogenous variables are calculated under 
Case 1) 
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Figure 7.5. Actual and predicted numbers of hired farm workers in the U.S., 19^1-1985 (predicted 
estimates from Equation (7.I3) and predicted exogenous variables are calculated under 
Case 1) 
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employment under Case 2 is shown in Table J.h and the corresponding 

obser/ed and predicted farm labor employment are plotted from Figures 

7-6 to 7*9 • Family farm labor employment under Case 2 is projected 

to be 20U6 thousands or 5^0 thousands more than that under Case 1. Hired 

farm labor employment in I985 is projected to be around 460 thousands 

below the 1973 level, but k6 thousands more than that under Case 1. The 

projected farm labor employment under Case 2 is higher than those under 
r 

Case 1. This phenomenon reflects the impact of stronger demand for farm 

commodities on farm labor employment. 

In the third case, future exogenous variables are assumed to behave 

according to trend function from 19^1 to 1973* The projected farm labor 

employment under the third case is presented in Table 7-5 and the observed 

and predicted farm labor employment are plotted in Figures 7-10 to 7'13* 

Family farm labor is projected at 1200 thousands, compared with 319^ in 

1973, a 60 percent decline- Hired farm labor employment in I985 also 

remains below the 1973 level at 597 thousands, compared with II68 thou

sands in 1973' 

As expected, there is a difference between the projected farm labor 

employment generated from two different reduced forms, but the difference 

is not large. In this study, there is no definite conclusion on predic

tion performance of these two reduced forms. Comparing the 197^ observed 

values with the 197^ predicted values, the restricted reduced form per

forms better in predicting family labor employment, but slightly worse in 

hired farm labor employment. 
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Figure 7.6. Actual and predicted number of family farm workers in the U.S., 19^1-1985 (predicted 
estimates from Equation (6. 38) and predicted exogenous variables are calculated under 
Case 2) 
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Figure 7*7* Actual and predicted number of family farmworkers in the U.S., 19^1-1985 (predicted 
estimates from Equation (7.11) and predicted exogenous variables are calculated under 
Case 2) 
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Figure 7-8. Actual and predicted number of hired farmworkers in the U.S., 19^4-1-1985 (predicted 
estimates from Equation (6.44) and projected exogenous variables are calculated 
under Case 2) 
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Figure 7.9. Actual and predicted number of hired farmworkers in the U.S., 19^1-1985 (predicted 
estimates from Equation (7*13) and projected exogenous variables are calculated under 
Case 2) 
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Figure 7.10. Actual and predicted number of family farmworkers in the U.S., 1^41-1985 (predicted 
estimates from equation (6.38) and predicted exogenous variables calculated under 
Case 3) 
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Figure T-H- Actual and predicted number of family farm workers in the U.S., 19^1-1985 (predicted 
estimates from Equation (7»11) and predicted exogenous variables are calculated under 
Case 3) 
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Figure 7.12. Actual and predicted number of hired farm workers in the U.S., 19^^1-1985 (predicted 
estimates from Equation (6.4^) and projected exogenous variables are calculated under 
Case 3) 
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Figure 7-13- Actual and predicted number of hired farmworkers in the U.S., 194.1-198^ (predicted 

estimates from Equation (7*13) and projected exogenous variables are calculated under 
Case 3) 



Table 7*^* Projected farm labor employment in the U.S., 197^-1985 (under Case 2) 

Family farm labor Hired farm labor _ . . farm Family farm labor Hired farm labor , _ 
Year calculated from calculated from calculated from calculated from 

Equation (6.38) Equation (6.4l) labor Equation (7*ll) Equation (7-13) labor 

197^ 3008.9 1147.2 4156.1 2983-1 1159.6 4I42.7 

75 2880.1+ 1103.5 3983.9 2866.1 1127.3 3993.4 

76 2760.0 1048.3 3808.3 2749.8 1081.1 3830.9 

77 2657-4 991-7 3649.1 2650.6 1032.0 3682.6 

78 2556.5 935-6 3492.1 2551.5 98s.3 3533-8 

79 2464.4 880.5 3344.9 2460.6 932.6 3393.2 

80 2382.8 831-0 3213.8 2379.7 888.0 3267.7 

81 2306.3 704.4 3090.7 2303.2 845-7 3148-9 

82 2236.2 740.2 2976.4 2233.3 805.5 3038.8 

83 2169.2 697-9 2867.1 2166.7 766.9 2933-6 

8k 2106.0 657.6 2763.6 2104.1 730.1 2834.2 

85 2047.4 618.5 2665.9 2046.1 694.1 2740.2 



Table 7-5 Projected farm labor employment in the U.S ., 1974-1985 (under Case 3) 

Year 
Family farm labor 
calculated from 
Equation (6.38) 

Hired farm labor 
calculated from 
Equation (6.44) 

Total farm 

labor 

Family farm labor 
calculated from 
Equation (7.II) 

Hired farm labor 
calculated from 
Equation (7.13) 

Total farm 

labor 

I97U 3008.8 1147.2 4156.2 2983.1 1159-6 4I42.7 

75 2807.1 1071.5 3878.6 2805.0 1095.1 3900.1 

76 2622.1 1005.0 3627.1 2635.8 1037.8 3673.6 

77 2447.8 943.7 3391.5 2472.1 984.1 3456.2 

78 2281.7 885.9 3167.6 2313.6 932.7 3246.3 

79 2121.2 830.2 2951.4 2158.8 882.5 3041.3 

80 1963.3 776.2 2739.5 2005.0 833.4 2838.4 

81 1808.5 723.5 2532.0 1853.5 784.9 2638.4 

82 1654.9 672.2 2327.1 1702.7 737.3 2440.0 

83 1501.8 621.7 2123.5 1551.7 690.2 2241.9 

m 1350.5 572.0 1922.5 l4oi.8 643.6 2045.4 

85 1200.3 522.6 1722.9 1253.2 597.1 1850.3 
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In summary, farm labor employment will continue to decline in the 

next decade but at a slower rate. Total farm labor in I985 will be 

3^-57 percent below the 1973 level. As disparities between farm income 

and non-farm income become smaller, and if the increase in technology 

slows down, the demand for farm commodities and labor mobility will be 

dominant factors affecting the level of future farm labor employment. 

Further, the transfer of labor from farm to non-farm sectors will make 

a smaller net contribution to the growing non-farm labor force in the 

future. 
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Table Al. Actual values for the endogenous variables used in econometric analysis, 19^1-1973 

Family farm Hired farm labor Total farm labor Real farm wage Real income per farm 
y labor employment employment rate®* operator 

(000) (000) (000) 

19^1 8,017 2,652 10,669 51.16 1883.39 

42 7,949 2,555 10,504 59.08 2488.62 

k3 8,010 2,436 10,446 75.02 3216.82 

44 7,988 2,231 10,219 90.39 3295.81 

45 7,881 2,119 10,000 97.68 3412.46 

46 8,106 2,189 10,295 98.57 3734.11 

47 8,115 2,267 10,382 91.82 3750.29 

48 8,026 2,337 10,363 90.41 3276.87 

49 7,712 2,252 9,9#t 89.5k 2875.03 

50 7,597 2,329 9,926 86.93 2718.19 

51 7,310 2,236 9,546 88.62 3016.87 

52 7,006 2,144 9,149 93.03 2942.62 

53 6,775 2,089 8,864 95.46 2956.04 

54 6,570 2,081 8,651 93.43 2676.19 

^Real farm wage rate is defined as the index of hired farm labor composite hourly 
wage rate deflated by consumer price index (1957 - 59 = 100). 

Real income per farm operator is defined as current income per farm operator 
deflated by consumer price index (1957 - 59 = lOO). 



Table Al. (Continued) 

Year 

Family farm 
labor 
F 
rit 

Hired farm labor 
employment 

Y 
^It 

Total farm labor 
employment 

4 

Real farm wage 
rate^ 

Real income per farm 
operator 

47 

55 6,345 2,036 8.381 95.34 2593.91 

56 5,900 1,952 7,852 97-02 2787.23 

57 5,660 1,940 7,600 98.14 2500.42 

58 5,521 1,982 7,503 98.43 2975.68 

59 5,390 1,952 7,342 103.39 2733.93 

60 5,127 1,885 7,012 104.58 2874.18 

61 5,029 1,890 6,919 106.33 3178.63 

62 4,873 1,827 6,700 107.92 3247.10 

63 4,738 1,780 6,518 109.36 3305.76 

64 4,506 i,6o4 6,110 110.65 3507-66 

65 4,128 1,482 5,610 114.08 3797.10 

66 3,854 1,360 5,214 119.9k 4440.75 

67 3,650 1,253 4,903 125.36 3871.43 

68 3,536 1,213 4,749 129-93 3950.80 

69 3,419 1,176 4,595 135-86 4388.16 

70 3,348 1,175 4,523 137.97 4207.29 

71 3,275 1,161 4,436 138.48 3713.15 

72 3,228 1,146 4,374 142.06 4709.46 

73 3,169 1,168 4,337 145.98 6272.57 

74 3,116 1,178 4,294 5968.14 



Table A2. Actual values for the exogenous variables used in the econometric analysis, 19^1-1973 

Real price Technology 
index 

Adjusted real Family farm Hired farm Total farm 
Year received 

Technology 
index 

non-farm wage Time trend labor lagged labor lagged labor lagged 
by farmers 

Technology 
index index one period one period one period 

a b F H T t 
*lt *2t 5t *6t ^It-l ^It-l ^It-l 

(000) (000) (000) 

19^0 87.51 69.84 14.73 0 8,611 2,727 11,338 

^4-1 105.07 72.13 47.13 1 8,300 2,679 10,979 

k2 116.90 79.00 74.73 2 8,017 2,652 10,669 

^3 128.65 76.71 94.30 3 7,949 2,555 10,504 

44 125.44 77.86 101.29 4 8,010 2,436 10,446 

45 128.13 79.00 95.90 5 7 988 2,231 10,219 

46 133.94 82.44 83.62 6 7,881 2,119 10,000 

47 134.84 80.15 82.33 7 8,106 2,189 10,295 

48 125.33 85.87 84.24 8 8,115 2,267 10,382 

49 113.93 83.58 77.96 9 8,026 2,337 10,363 

50 114.44 83.58 82.67 10 7,712 2,252 9,964 

51 120.87 83.58 93.89 11 7,597 2,329 9,926 

52 114.77 87.02 98.92 12 7,310 2,236 9,546 

53 108.42 88.16 104.50 13 7,005 2,144 9,149 

54 105.16 89.31 90.07 l4 6,775 2,089 8,864 

x^^ is defined as the ratio of the index of prices received by farmers to the 

prices paid by farmers for production items, excluding the wage rate. 

^ The construction of variable x , is discussed in Chapter Y, Section 4. 

index of 



Table A2. (Cont inued) 

Real price Adjusted real Family farm Hired farm Total farm 
Year received 

ieunnuj.ogy 
index 

non-farm wage Time trend labor lagged labor lagged labor lagged 
by farmers index one period one period one period 

a b P H T t *lt 

•p 

*5t ^lt-1 ^lt-1 ^lt-1 

55 100.93 91.60 101.58 15 6,570 2,081 8,651 

56 100.93 93.89 106.98 16 6,345 2,036 8.381 

57 98.6k 95-04 107.38 17 5,900 1,952 7,852 

58 102.78 101.91 90.22 18 5,660 1,940 7,600 

59 98.57 103.05 102.36 19 5,521 1,982 7,503 

60 98.58 106.48 103.97 20 5,390 1,952 7,342 

61 97.53 107.63 96.59 21 5,127 1,885 7,012 

62 98.5k 108.77 107.28 22 5,029 1,890 6,919 

63 97.50 112.21 107.81 23 4,873 1,827 6,700 

64 95-46 109.92 128.18 24 4,738 1,780 6,518 

65 98.50 113.35 120.14 25 4,506 l,6o4 6,110 

66 102.3!+ 111.06 127.14 26 4,128 1,482 5,610 

67 96.49 114.50 128.69 27 3,854 1,360 5,214 

68 97-44 115.64 133.53 28 3,650 1,250 4,903 

69 98.31 115.64 134.72 29 3,536 1,213 4,749 

70 96.49 114.50 123.06 30 3,419 1,176 4,595 

71 93.97 123.66 116.87 31 3,348 1,175 4,523 

72 99-65 122.51 123.01 32 3,275 1,161 4,436 

73 113.67 121.36 128.90 33 3,228 1,146 4,374 


