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ABSTRACT

Workneh, F, Tylka, G. L., Yang, X. B., Faghihi, J., and Ferris, J. M. 1999.
Regional assessment of soybean brown stem rot, Phytophthora sojae, and
Heterodera glycines using area-frame sampling: Prevalence and effects
of tillage. Phytopathology 89:204-211.

The prevalence of brown stem rot (caused by Phialophora gregata),
Heterodera glycines, and Phytophthora sojae in the north central United
States was investigated during the fall of 1995 and 1996. Soybean fields
were randomly selected using an area-frame sampling design in col-
laboration with the National Agricultural Statistics Service. Soil and soy-
bean stem samples, along with tillage information, were collected from
1,462 fields in Illinois, lowa, Minnesota, Missouri, and Ohio. An addi-
tional 275 soil samples collected from Indiana were assessed for H.
glycines. For each field, the incidence and prevalence of brown stem rot
was assessed in 20 soybean stem pieces. The prevalence and recovery
(expressed as the percentage of leaf disks colonized) of P. sojae and the
prevalence and population densities of H. glycines were determined from

Missouri to 73% in Illinois; 68 and 72% of the fields in Minnesota and
lowa, respectively, showed symptomatic samples. The incidence of
brown stem rot was greater in conservation-till than in conventional-till
fields in al states except Minnesota, which had few no-till fields. P.
sojae was detected in two-thirds of the soybean fields in Ohio and
Minnesota, whereas 63, 55, and 41% of the fields in lowa, Missouri, and
Ilinois, respectively, were infested with the pathogen. The recovery rates
of P. sojae were significantly greater (P < 0.05) in conservation-till than
in conventional-till fields in all states except lowa. H. glycines was
detected in 83% of the soybean fields in Illinois, 74% in lowa, 71% in
Missouri, 60% in Ohio, 54% in Minnesota, and 47% in Indiana. Both the
prevalence and population densities of H. glycines were consistently
greater in tilled than in no-till fields in al states for which tillage
information was available.

Additional keywords: bioassay, minimum-till, Phytophthora root and stem
rot, soybean cyst nematode, tillage practices.

the soil samples. The prevalence of brown stem rot ranged from 28% in

The north central United States accounts for approximately 80%  stem rot (caused byhytophthora sojae Kaufmann & Gerdemann),
of the nation’s soybean production with slightly more than 22 milliorand brown stem rot (caused Biialophora gregata (Allington &
hectares planted with the crop (4). Soybean cultivation in thi®. W. Chamberlain) W. Gams) ranked first, second, and fifth, re-
region is rapidly changing as the importance of maintenance afectively. There is growing evidence that the three pathogens are
residue cover for soil conservation is becoming increasingly recogffected by tillage practices. Population densitiedHofglycines
nized. The Conservation Technology and Information Center (CTIG)ere reported to be greater in conventionally tilled plots than in
now estimates that conservation tillage accounts for more thamo-till plots (13,31), whereas severity levels of brown stem rot and
50% of the total area under soybean production in this region, doutitytophthora root rot were greater in no-till than in conven-
the percentage area of a decade ago (4). In addition to increased ¢ionally tilled plots (1,27).
phasis on residue cover, the advent of drill planters has encour-Reliable information on the prevalence and distribution of dis-
aged growers to adopt narrow rows for better weed control. Thisases and pathogens is vital for prioritizing research needs. How-
shift in tillage practices is expected to have a significant impact oaver, currently there is little or no such information on the preva-
soybean diseases in the region. lence of any of the major soybean diseases or pathogens in the

Numerous studies have described various aspects of soybeamrth central United States or any other region. A few published
pathogens and diseases of economic importance in the north cetudies in which pathogen or disease distribution were determined
tral United States (39), with primary emphases on etiology, ecoby systematic, experimental approaches were limited to one state
ogy and epidemiology, and resistance. Doupnik (8) reported thé25,26) or part of a state (30). In most of the studies, sample site-
diseases in this region caused estimated losses of as muchsatection processes were either arbitrary or intentionally biased
$1.3 billion annually from 1989 to 1991. Of the 20 soybean distoward specific objectives (24,28,33,35). In some cases, the data
eases reported to have contributed to the losses, the soybean omginated from samples submitted to diagnostic clinics through
nematode Heterodera glycines Ichinohe), Phytophthora root and extension personnel from fields suspected of having problems
(21,28). Data collected by these methods are not unbiased repre-
sentations of the disease and pathogen situation in the areas
sampled.

The present study was initiated to determine the prevalence of
brown stem rotP. sojae, andH. glycines in six states of the north
central United States that account for approximately 78% of the
soybean production in the region (4). The research was conducted
in cooperation with the National Agricultural Statistics Service

Journal paper J-17889 of the lowa Agriculture and Home Economics Experiment
Station projects 2869 and 3288.
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(NASS), which has been regularly collecting and disseminating
information on various aspects of crop production, including yield
estimates. Estimates on crop forecasts by NASS are unbiased and
are the basis for future management decisions and marketing plans
made by many farmers and agribusinesses. Other researchers have
utilized similar cooperative methods of data collection with NASS
to assess the prevalence of nematodes in agricultural soils (19,25).

Because of the increasing use of conservation tillage practices,
there is a need for unbiased assessments of tillage effects on the
prevalence of the soybean pathogens. In addition, information on
the prevalence of pathogens may be useful for obtaining better
yield loss estimates and for directing disease-resistance breeding
efforts. The primary objectives of this project were to determine
the distributions of brown stem rot and the two pathogens, P. sojae
and H. glycines, in six of the major soybean-producing states in
the region and to assess the effects of tillage practices on their
prevalence and population densities.

MATERIALSAND METHODS

Field selection. During the last several decades, NASS has been
using a sampling procedure known as an area frame to arrive at
unbiased estimates of aspects of crop production with measurable
precision (7,32). The sampling design initialy includes the com-
plete frame of the land area (a state or a region) for which esti-
mates of crop production are desired and incorporates stratifica-
tion and randomness in a multistep procedure. Initialy, the land
area is stratified into several categories on the basis of its use
(e.g., cities, lakes, or agriculture) using a variety of map products,
satellite imagery, and computer software packages. Intensively
and extensively cultivated land areas fall into separate strata,
enabling more weight to be given to intensively cultivated areas.
Each stratum is further stratified into primary sampling units and
then into segments. The segments are uniform blocks of land areas
and, usually in agricultural areas, are 1.6 km? in dimension. For
crop-production estimates, NASS randomly selects these seg-
ments and, in the process, selects soybean fields by their associa
tion with the segments. For example, random samples of 435 seg-
ments are surveyed each year in lowa to select 240 random soybean
fields that represent the total soybean-production areain the state.
The selected fields are the basis for crop-production estimates by
NASS and served as a basis for our sample collection as well.
Accordingly, during each of the 1995 and 1996 seasons, 240 fields
each in lllinois and lowa, 180 in Indiana, 120 in Minnesota, 170 in
Missouri, and 160 in Ohio were identified for sample collection.
During each season, soil and soybean stem samples were collected
sometime between the last week of September and the first week
of November.

Soil and soybean stem sampling. In each selected field, NASS
establishes and maintains two yield-assessment plots, located at
two randomly selected sites, from which it derives seasonal crop-
production estimates. Every year between the end of July and crop
harvest, field enumerators employed by the National Association
of State Departments of Agriculture visit the plots monthly to
collect data on the stages of soybean growth and development. For
our research, the enumerators in each state except Indiana were
trained to collect soil and soybean stems in addition to their regu-
lar tasks as they walked from one yield-assessment plot to the
other in each field. A liter or more of soil and 20 pieces of soy-
bean stems were collected in a zigzag pattern from the area
between the plots. The overall zigzag pattern contained 10 corners,
a which the enumerators stopped and collected approximately
100 to 200 cm® of soil and two soybean stem pieces 20 cm long
(measured from the soil ling). Soil was collected with atrowel at a
depth of 0 to 20 cm, and the soil from the 10 corners was bulked.
The composite soil samples were thoroughly mixed, and approxi-
mately 1 liter of soil was subsampled. The soil and stem samples
were shipped to the laboratory by second-day express mail and

stored at 4°C until they were processed. In Indiana, soil samples
were collected five paces into the field beyond each of the two ran-
domly located yield-assessment plots (each plot was 1 m long and
two rows wide). At each plot, two samples, each 15 cm deep and
5 to 10 cm from the bases of the plants, were collected with a trowel.
Approximately 1 liter of composite sample from both plots was col-
lected and transported to Purdue University for assessmentghf
cines. The prevalence of brown stem rot &ebjae was not assessed
for the state of Indiana, and tillage information was not available.

Brown stem rot assessment. In each of the soybean stem
pieces, the presence or absence of characteristic vascular and pith
discoloration caused by. gregata (3) was visually assessed after
the stems were split longitudinally. Subsamples of stems with
typical symptoms of brown stem rot and those suspected to have
symptoms caused by pathogens other tRagregata were kept
for verification by isolation. A small segment of each stem was
surface sterilized in 0.5% NaOCI solution for 1 min, and pieces of
internal tissues from such stems were plated onto the semiselec-
tive medium PGM (18) and acidified potato dextrose agar. After
the plated stem pieces were incubated at 22 to 24°C, emerging
fungal colonies were subcultured and examined under a micro-
scope for typicaP. gregata cultural characteristics and conidial
shape and attachment to conidiophoRegregata cultures devel-
oped from stems with typical brown stem rot symptoms. How-
ever, a large proportion of the symptomatic stems from both the
1995 and 1996 Ohio samples and the 1995 Missouri samples were
also colonized with other fungi, precluding visual assessment and
subsequent verification oP. gregata by isolation. Therefore,
assessments of all the Ohio samples and the 1995 Missouri sam-
ples were not included.

P. sojae bioassay. Each soil sample was assayedRosojae by
the leaf-disk bioassay method (20). The soil samples were taken
out of cold storage and maintained at 22 to 24°C for 2 weeks
before the bioassays were conducted. The soil was forced through
a 6-mm screen to obtain uniform aggregate sizes across all sam-
ples. For the 1995 samples, the bioassay was conducted on two
60-cnt subsamples of each sample. Results of preliminary assays
on selected 1996 soil samples indicated that the propagule den-
sities of many of the samples were greater than those of the 1995
samples (data not shown). Therefore, to avoid colonization of all
the leaf disks, the volume of soil used in the bioassay was reduced
to 20 cnd per subsample in 1996. The samples were spread on top
of 9-cm-deep columns of pasteurized sandy clay loam contained
in 475-ml perforated plastic cups. They were then saturated and
left to drain on greenhouse benches for 96 h. The temperature and
matric potential of the samples in the cups during this period were
monitored with a micrologger attached to four Watermark-200
sensors (Campbell Scientific, Logan, UT) in four additional cups
containing arbitrarily selected samples set up in a similar manner.
The soil temperatures in the cups ranged from 22.4 to 26.6°C, and
the matric potentials of the soil increased from 1.1 to 16.0 kPa
during the incubation period. After the incubation, the samples
were flooded with distilled deionized water, and 10 soybean leaf
disks 0.8 cm in diameter were floated on the surface of the water
pooled above the soil surface. The leaf disks were obtained from
young but fully unrolled leaves of the cultivar Sloan, which is
susceptible to all knowR. sojae races. After 24 h, the leaf disks
were removed and surface sterilized with 0.05% NaOCI for 30 s
and then plated onto a selective medium (five disks per 9-cm-
diameter plate) amended with 40 mg of hymexazol per liter for
inhibition of Pythium spp. (16). The plates were incubated in the
dark at 22 to 24°C, and the percentage of leaf disks colonized by
P. sojae was determined after 4 days of incubation. Typical cul-
tures of the isolates obtained by this process were subsequently
shown to be pathogenic to susceptible soybean cultivars. Forty
arbitrarily selected isolates subcultured from the leaf disks during
the preliminary investigation of this project (37) were identified to
races by the hypocotyl-inoculation method (40).
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H. glycines assays. Two techniques were used to assess soil sample was designated infested whithglycines if one or more
samples for the presence of H. glycines from al the states except ~ females were observed on the roots of the soybean bioassay
Indiana. A semiautomatic elutriator (5) was used to recover cysts plants. If no eggs were detected in a soil sample but the bioassay
of H. glycines from 100-cm® aliquots of soil from each sample. was positive, the sample was considered infestedhivighycines.

Soil was suspended in flowing water agitated by air in the elu- For Indiana samples, the soil was thoroughly mixed, and
triator. The soil suspension passed through a 250-um-pore sie260 cni was suspended in water and poured through nested 710-
on whichH. glycines cysts, if present, were trapped. EggsHof  and 250-pum-pore sieves. The contents on the 250-um-pore sieve
glycines were extracted from the cysts by grinding the sedimentsvere examined for the presence of cysts under a dissecting micro-
collected on the 250m-pore sieve with a stainless steel pestlescope. The cysts were subsampled and further examined under a
with 1-mm-deep grooves at 2,500 rpm for 60 s (21). Finally, eggsompound microscope to determine whether they were cysts of
were recovered on a 25-um-pore sieve and stained by heating tigcines. After confirmation, they were crushed and the released
egg-sediment suspension to boiling in an acetic acid—acid fuchseggs were counted. Soil samples in which cysts were not detected
stain (21). Samples were observed and eggs counted with a digere planted to the susceptible soybean cultivar Williams 82 in
secting microscope at 50x. A sample was considered infested witl®-cm pots and placed in the greenhouse at 24°C with 16 h of
H. glycinesif one or more eggs were observed. light and 8 h of darkness. After 6 to 8 weeks, the plants were

If sufficient soil remained in a sample following extraction with uprooted, and the roots were examined for the presertdeghf-
the semiautomatic elutriator, a greenhouse bioassay test was peinres females.
formed as a second test férglycines infestation. Soil was placed  Tillage system designations. Tillage systems are classified into
in a 250-cr-capacity container, and three seeds of the susceptibieveral categories on the basis of the amount of surface residue
soybean cultivar Corsoy 79 were planted. Plants were thinned (d). Conservation tillage systems (including no-till, mulch-till, and
one per container within 7 to 14 days after planting. After incubaridge-till) are tillage practices that maintain greater than 30%
tion at 26°C in a greenhouse for 28 to 35 days with a photoperiagsidue after planting. Tillage practices that maintain 15 to 30%
of 16 h of light and 8 h of darkness, soil was carefully removedesidues are categorized as reduced-till or minimum-till, whereas
from the roots of the plants, and the roots were observed with thieose that maintain less than 15% residue cover are classified as
unaided eye for the presencetbfglycines females. If no females conventional-till. Terms such as reduced-till, minimum-till, and
were detected, the roots were observed subsequently at 12x witimalch-till are loosely and often interchangeably used by farmers
dissecting microscope for the presencéHofjlycines females. A and agricultural professionals, even though there are strict defini-
tions based primarily on the amount of surface residues. It is often
difficult to distinguish the various forms of tillage practices that
range between conventional-till and no-till. For our research, till-
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Fig. 1. Locations of randomly selected fields in Illinois, Indiana, lowa, Min-
nesota, Missouri, and Ohio from which soil and soybean stem samples were Fig. 2. Relationships between the percentage of no-till samples from each
collected during the fall of 1995 and 1996. Each dot represents onefield. state and the estimated percentage of no-till fieldsin 1995 and 1996.

TABLE 1. Numbers of soil samples collected and processed from no-till (NT), minimum-till (MT), and conventional-till (CT) fields in five states of the north
central United States during the fall of 1995 and 19962

1995 1996
State NT MT cT NT MT cT Total
llinois 62 (32)° 70 (36) 61(32) 62 (31) 75 (37) 64 (32) 394
lowa 45 (24) 66 (34) 80 (42) 42 (20) 103 (50) 63 (30) 399
Minnesota 4 (4) 26 (28) 62 (68) 2(2) 27 (28) 66 (70) 187
Missouri 36 (29) 38(30) 51 (41) 37(33) 45 (40) 31(27) 238
Ohio 48 (39) 23(18) 52 (43) 63 (52) 24.(20) 34(29) 244
Total 195 223 306 206 274 258 1,462

a Based on the numbers of samples processed for Heterodera glycines eggs.
b Numbers in parentheses are the percentages of samples per year in each state that were from the three tillage categories.
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age information for individua fields was obtained from farmers
by NASS during interviews conducted before data collection.
Fields that were not either conventional-till or no-till but received
various degrees of tillage operations and had various amounts of
surface residues ranging between that of no-till and that of con-
ventional-till were designated minimum-till. Therefore, our cate-
gorization of tillage practices, other than conventional-till and no-
till, may not necessarily fit the CTIC definitions.

Data analyses. The soybean fields sampled in 1996 were differ-
ent from those sampled in 1995 because of the corn-soybean
rotation schemes followed in the states that were sampled. In
addition, there were no interactions between year and tillage for
any of the pathogen or disease assessments (data not shown).
Therefore, analyses were conducted on pooled results of samples
from both years as the samples were collected from randomly
selected locations each year. The amounts of residue maintained
on the surface of minimum-till fields are greater than those on
conventional-till fields, even though there are considerable varia-
tions among fields in the amounts of residue. Since P. gregata and
P. sojae have been reported to depend primarily on residues for
long-term survival (2,27), data from minimum-till and no-till sam-
ples were pooled and reclassified under the category “conserva-

tion-till” and compared with data from conventional-till. In con-

trast, since the abundance and spatial distributiod. aflycines

pieces with brown stem rot were transformed by arcsine trans-
formation, and the differences between the tillage categories were
determined by Studenttstest. Values oH. glycines egg densities
were transformed to logarithmic scale (g 1) and analyzed for
tillage effects by Studentstest. Relationships between egg den-
sities of H. glycines and its prevalence and the number of years
elapsed since its discovery in each state were determined with the
Pearson correlation statistic. All analyses were conducted with
SAS software (SAS Institute, Cary, NC).

RESULTS

During the 2 years of the study, 1,737 fields from six states
were sampled (Fig. 1); of these, 1,462 samples from five states
contained tillage information (Table 1). The percentage of each
tillage system in the samples was similar to that estimated by the
CTIC for each state (Fig. 2). For example, during the 1995 season,
it was estimated that no-till soybean fields in lllinois represented
33.5% of the total soybean production in the state. In our random
samples, 32% of the 193 total samples from lllinois were from no-
till fields.

There was wide variation among states in the prevalence of
brown stem rotP. sojae, andH. glycines. Soybean fields in Illi-
nois, lowa, and Minnesota had similar levels of brown stem rot

are influenced more by soil disturbance associated with tillagprevalence, ranging from 68 to 73%, whereas Missouri had the
(41) than by residues, data from minimum-till fields were groupedowest level of disease prevalence with 28% of the fields having
with data from conventional-till fields into the category “tilled” symptomatic samples (Table 2J. sojae was detected in solil

and compared with data from no-till fields.

samples from approximately two-thirds of the soybean fields in

In this paper, the term “prevalence” is used to describe the pelewa, Minnesota, and Ohio. lllinois had the lowest prevalence of
centage of fields in a state in which the disease or the pathogln sojae with 41% of the fields showing a positive bioassay.
was detected and the term “incidence” is used to describe th@onversely, lllinois had the highest percentage of fields in which
percentage of samples from a field in which the disease or thHe. glycines was detected (83%), followed by lowa (74%) and
pathogen was detected (42). The prevalence of brown steR rot,Missouri (71%).
sojae, andH. glycines in each state was summarized by tillage The prevalence of brown stem rot was significantly greater in
category, and the differences in prevalence between the tillag@nservation-till fields than in conventional-till fields in lllinois
categories were determined by the chi-square test. The percentagel lowa P = 0.001 and 0.008, respectively) (Table 3). However,
of leaf disks colonized by. sojae and the percentage of stem there was no significant difference in prevalence of the disease

TABLE 2. Prevalence of brown stem rot, Phytophthora sojae, and Heterodera glycines in six states of the north central United States in samples collected

during the fall of 1995 and 1996

Brown stem rot P. sojae H. glycines

No. of Positive No. of Positive No. of Positive?
State fields (%) fields (%) fields (%)
Ilincis 383 731 399 414 3% 82.7
Indiana . 275 46.5
lowa 365 723 397 62.9 399 74.2
Minnesota 183 68.3 188 67.0 187 535
Missouri 95¢ 284 229 54.6 238 714
Ohio - - 231 68.0 244 60.3

a Samples with detectable egg population densities or positive greenhouse bioassays.

b Indiana samples were assessed onlyHfaglycines.

¢ Data shown are for 1996 stem samples. Presenehiabphora gregata in symptomatic stem samples for the 1995 Missouri samples and Ohio samples for
both years could not be verified by isolation because of excessive overgrowth of other fungi.

TABLE 3. Prevalence of brown stem rot (BSR) &igtophthora sojae in samples collected from conservation-till and conventional-till fields in five states of

the north central United States during the fall of 1995 and 1996

Conservation-tift Conventional-till

Conservation-till Conventional-till

No. of % with No. of % with No. of % with No. of % with
State fields BSR fields BSR P>x? fields P. sojae fields P. sojae P>x?
lllinois 262 79.7 121 58.9 0.001 272 42.7 127 38.6 0.44
lowa 238 76.8 127 63.9 0.008 254 64.2 143 62.9 0.81
Minnesota 59 71.2 124 66.9 0.56 60 76.7 128 62.5 0.05
Missouri 7> 29.2 23 26.1 0.71 151 57.0 78 50.0 0.32
Ohio .Lh e 152 71.7 79 60.8 0.09

a Contains samples from no-till and minimum-till fields.

b Data shown are for 1996 stem samples. Presenehialophora gregata in symptomatic stem samples for the 1995 Missouri samples and Ohio samples for
both years could not be verified by isolation because of excessive overgrowth of other fungi.
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between the two tillage categories in Minnesota and Missouri.
Overall, the disease was present in more than 58% of the fieldsin
both conservation-till and conventional-till fields in al states
except Missouri, where it was detected in less than 30% of the
fields.

In most of the states, there was no significant difference in
prevalence of P. sojae between tillage systems. The exception was
Minnesota (P = 0.05), where the pathogen was detected in 77% of
the conservation-till fields and 63% of the conventional-till fields
(Table 3). Overdl, the percentage of fields in which P. sojae was
detected ranged from 43 to 77% in conservation-till fields and
from 39 to 63% in conventional-till fields.

The trend in effect of tillage practices on the prevalence of H.
glycines was similar in all states surveyed (Table 4). Of the five
states, H. glycines prevalence was greatest in Illinois; 87% of the
tilled fields and 74% of no-till fields were infested. Eggs were
present in more tilled fields than in no-till fields in Illinois, lowa,
Missouri, and Ohio (P = 0.002, 0.02, 0.11, and 0.04, respectively).
In Minnesota, only six no-till fields were randomly selected com-
pared with 181 tilled fields. Thus, there were too few no-till sam-
ples to make any statistical inferences about the effects of tillage
on the prevalence of H. glycines.

The incidence of brown stem rot was significantly greater in
conservation-till fields than in conventional-till fields in Illinois
and lowa (P = 0.001 and 0.002, respectively). However, there was
no significant difference in incidence between the tillage cate-
gories in Minnesota and Missouri (Fig. 3). In the two states in
which the differences were significant, conservation-till fields had
10 to 12% greater incidence of the disease than conventional-till
fields. Overall, the mean incidence of the disease per field was

TABLE 4. Prevalence of Heterodera glycines in tilled and no-till fields in
five states of the north central United States sampled during the fall of 1995
and 1996

No-till Tilled?
No. of % with No. of % with
State fields H.glycines fields H.glycines P>%?
Illinois 124 74.2 270 86.7 0.002
lowa 87 64.4 312 76.9 0.02
Minnesota 6 333 181 54.1 0.32
Missouri 73 64.4 165 74.6 0.11
Ohio 111 53.2 133 66.2 0.04

a Contains samples from conventional-till and minimum-till fields.
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Fig. 3. Mean incidence of brown stem rot, expressed as the percentage of
symptomatic stems, in conservation-till and conventional-till fields in lllinois,
lowa, Minnesota, and Missouri. Bars with the same letter within each state
are not significantly different according to Studentist.
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less than 30% in al the states in which the disease was assessed.
Missouri showed an incidence of slightly less than 10%.

In all states, recovery of P. sojae (expressed as the percentage of
leaf disks colonized) was greater in conservation-till fields than in
conventional-till fields. The percentage of leaf disks colonized was
significantly greater in conservation-till than in conventional-till
fields in Illinois, Minnesota, Missouri, and Ohio (P = 0.04, 0.05,
0.01, and 0.04, respectively) but not inlowa (P = 0.43) (Fig. 4).

In all states except Minnesota, H. glycines egg population den-
sities were greater in tilled than in no-till fields. Overall, egg
densities in tilled fields were 1.5 to 2.5 times greater than in no-
till fields. The differences in egg population densities between the
tillage categories were significant in Illinois (P = 0.01), lowa (P =
0.002), and Ohio (P = 0.01) (Fig. 5). There was aso a strong
correlation between mean egg population densities of H. glycines
in each state and the percentage of fields infested (r = 0.91; P =
0.01) (Fig. 6A), indicating that prevalence was greater in states
that had fields with high egg densities than in states that had fields
with low egg densities. In the six states of the north central United
States, the soybean cyst nematode was discovered for the first
time in various years between 1956 and 1987 (22). The mean
population density of H. glycines eggs in each state was moder-
ately correlated with the number of years that had elapsed since it
was first detected in soybean fields of that state (r = 0.74; P = 0.1)
(Fig. 6B).

DISCUSSION

Brown stem rot, Phytophthora root rot, and soybean cyst nema-
tode are three of the most economically important soybean dis-
eases in the north central United States (8). Information on how
widely these pathogens are distributed is useful for making man-
agement decisions and for prioritizing research needs. In this
study, we determined the prevalence of brown stem rot (caused by
P. gregata), P. sojae, and H. glycines in five or six states in the
north central United States using soil and soybean stem samples
collected from randomly selected fields. We aso showed how the
prevalence and population densities of the pathogens were
affected by tillage practices in each state. The importance of these
pathogens has been described by various researchers utilizing the
results of localized experiments (39). However, the present study
was the first to assess the prevalence and distribution of the patho-
gens on aregiona scale with samples derived from a large num-
ber of fields selected in an unbiased manner. The use of the area-
frame sampling method provided soybean fields in every segment
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Fig. 4. Mean recovery of Phytophthora sojae, expressed as the percentage of
leaf disks colonized, in conservation-till and conventional-till fields in Illi-
nois, lowa, Minnesota, Missouri, and Ohio. Bars with the same letter within
each state are not significantly different according to Studetets



of the land area of each state where each field had a known
probability of being selected. This sampling approach also pro-
vided highly representative fields for estimation of how widely the
pathogens were distributed within the region. The sampling accu-
racy was evident from the fact that the percentage of our samples
from each tillage system closely matched the CTIC estimated
percentages of tillage systems in each state. The CTIC is an inde-
pendent (separate from NASS) organization that conducts annual
surveys for monitoring trends in conservation tillage practices for
al crops using of the point-sampling method. The similarity
between the percentages of each tillage system in our samples and
estimated tillage system frequencies for each state confirmed that
each tillage system was represented without bias.

Brown stem rot was detected in significantly more conserva-
tion-till fields than in conventional-till fields in Illinois and lowa.
Furthermore, the mean incidence of brown stem rot per field was
significantly greater in conservation-till than in conventional-till
fields in these two states. The survival of P. gregata in soybean
stem residues is well documented (2,12,14), and the survival of
the fungus has been shown to be greater in surface residues than
in buried residues (2) because surface residues decompose more
slowly than buried residues (11). Also, Adee et al. (1) showed in a
field experiment that disease severity of no-till plots is signifi-
cantly greater than that of conventional-till plots. Results of our
study demonstrate on a regional scale that brown stem rot inci-
dence is greater in conservation-till than in conventional-till
fields.

Because there were only six no-till samples from Minnesota
compared with 52 minimum-till and 132 conventional-till sam-
ples, data from the conservation-till category comprised mostly
that of minimum-till fields. No-till fields have greater residue
cover than minimum-till fields and, on the basis of published
reports, were expected to have greater brown stem rot incidence
(2). Hence, the absence of a large number of samples from no-till
fields in Minnesota may have contributed to the lack of differ-
ences in brown stem rot incidence between conservation-till and
conventiona-till fields. In Missouri, there was less than 10%
brown stem rot incidence in both conservation-till and conven-
tional-till fields, and the incidence may have been too low to show
differences between the tillage systems. Furthermore, data from
Missouri were from 1 year of samples only, and hence the sample
size is small compared with that of the rest of the states.

The difference in prevalence of P. sojae between the tillage
categories was not significant except in Minnesota, where it was
greater in conservation-till than in conventional-till fields. How-
ever, the recovery of the pathogen was significantly greater in
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Fig. 5. Mean egg population densities of Heterodera glycines in no-till and
tilled fields in Illinois, lowa, Minnesota, Missouri, and Ohio. Bars with the
same letter within each state are not significantly different according to
Student'st test.

conservation-till than in conventional-till fields in all states except
lowa, indicating that the difference between the tillage categories
may result from the level of infestation and not from the presence
or absence of P. sojae. This finding is in agreement with recent
investigations that showed that the recovery of P. sojae was
greater in no-till than in conventional-till fields and that the
amount of surface residue was positively associated with recovery
of the pathogen (37,38).

In most of the states, the prevalence and egg population den-
sities of H. glycines were significantly greater in tilled than in no-
till fields. Thisisin agreement with earlier findings by Tyler et al.
(31) and Koenning et a. (13) that H. glycines egg densities are
greater in conventionaly tilled fields than in no-till fields. Our
results further indicate that soil movement associated with tillage
isthe primary factor in distribution of H. glycines and suggest that
the increasing trend toward no-till practices in the north centra
region may counteract the effects of conventional tillage practices.

It is interesting to note that there was great variability among
the states in H. glycines prevalence and egg densities. In addition
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to tillage effects, time of introduction may have significant impact
on the prevalence and distribution of the nematode in individual
states. It is believed that the soybean cyst nematode was intro-
duced into the United States in the 1950s (36). In the six states of
the north central United States, H. glycines was first discovered
between 1956 and 1987 (22). Egg population densities in each
state correlated with the number of years elapsed after first detec-
tion of the pathogen, suggesting that time is an important factor in
the spread and distribution of the nematode across each state. One
can conclude, therefore, that the prevalence of H. glycines within
a given state may be partly attributable to tillage practices and to
years elapsed after the introduction of the pathogen into that par-
ticular state.

Brown stem rot isfavored by cool conditions (6,10,23), and con-
sequently one may expect variations in incidence of the disease
between the states resulting from latitudinal positions. The fact
that soybean fields in Missouri had the least prevalence may be
attributed to this fact. Such latitudinal variation was evident in
Illinois, where incidence of the disease was greater in the northern
half of the state than in the southern half (data not shown). In
addition, there are many soybean cultivars with resistance to
brown stem rot (17,29), and they may have been planted in the
region in a nonrandom pattern. Therefore, our assessment of the
prevalence of the disease in randomly selected fields may not
have accounted for variations caused by differences in cultivar
resistance.

It is well documented that diseases caused by Phytophthora
species are affected by physical factors of the soil such as texture
(9,34). Saturation is generally prolonged in fields with high clay
content, a condition that predisposes plants to infection by the
fungus. The prevalence and recovery of P. sojae, therefore, may
depend on soil types in addition to tillage practices. Even though
the effect of tillage practices on recovery of the pathogen was con-
sistent across the states (except lowa), it is possible that variations
caused by soil types may have interacted with the effects of the
tillage practices. The relative contributions of tillage and soil type
is an areathat needs to be further investigated.

The degree of precision in assessing the prevalence of any patho-
gen or disease in a given area is strongly influenced by the
methods used in sample collection and in detection of the patho-
gens and diseases. In this study, samples were collected from
representative soybean fields that encompassed all tillage systems
in each state. For assessments of brown stem rot and the two
pathogens, we chose methods that are the most widely used by
scientists and that are feasible for handling large numbers of sam-
ples. Itis possible that P. gregata can be isolated from some of the
apparently healthy internal parts of stems. However, the main
objective of the project was to assess the disease and not the
presence or the absence of the pathogen in the stems. Further-
more, isolation from the nearly 30,000 stem pieces was not feasible
with our limited resources. The leaf-disk bioassay method best
measures the presence or absence of an organism in asample (15),
which in this case is the prevalence of P. sojae. It can also be used
to measure the relative abundance of an organism in different
treatments. Our description of the recovery of P. sojae in different
tillage categories from the five states, therefore, is a comparative
assessment and does not determine the absolute densities of the
pathogen in the soil. We used egg-population densities and green-
house bioassay methods for assessments of H. glycines. Even
though these methods are widely used, both have advantages and
disadvantages. Use of egg-population densities may result in
inclusion of false positives in the data, since there is a possibility
that eggs of nematodes other than H. glycines can be recovered
from the soil samples. Conversely, the bioassay method can yield
false negative results where infection of soybean roots may fail to
occur, even though viable eggs are present in the soil samples.

There are wide variations in tillage practices that are not either
conventional-till or no-till that may lead to inconclusive results of
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tillage effects. However, meaningful results were obtained by
grouping the tillage practices into categories of conventional-till
and conservation-till or tilled and no-till based on the ecology of
the pathogens. The six states surveyed in this study account for
approximately 78% of the soybean areain the north central United
States (4). The results of our investigations provide estimates of
how widespread brown stem rot, P. sojae, and H. glycines are in
these states. In addition, the study shows that tillage practices
have a significant impact on their prevalence. Population densities
of pathogens and the severity of diseases are dynamic in nature.
Even though we used statistically sound assessment methods, their
incidence and prevalence may change depending on weather con-
ditions and trends in tillage practices. However, we believe that
our data represent accurate assessments of the exiting conditions
that may be useful in loss assessments and prioritization of
research needs.
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