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ABSTRACT 

 Climate-smart agriculture is a framework to develop and implement agricultural systems 

that facilitate reduced greenhouse gas emissions and increase resilience and productivity in the 

context of a changing climate. Winter cover crops are known to decrease soil erosion, increase 

soil carbon, improve water retention and have been hypothesized to reduce nitrous oxide 

emissions. Therefore they offer the potential to buffer projected climate change impacts for 

Midwestern agriculture, including increased rainfall variability.  The overall objective of this 

dissertation research was to evaluate the mitigation and adaptation potential of cover crops in 

determining their efficacy as a climate-smart agricultural practice.  In a global meta-analysis, it 

was found that cover crops do not universally reduce nitrous oxide emissions from the soil 

surface but that grass species and chemical termination methods are less likely to increase 

emissions.  An analysis of seven years of crop and soil data found that the long-term use of a 

winter rye cover crop in a no-till maize-soybean rotation improved water retained in the soil 

profile and increased plant available water content by 21-22%, without sacrificing maize or 

soybean growth and yields.  Finally, the simulation of a winter rye cover crop in a future climate 

predicted the practice’s ability to reduce nitrous oxide emissions by up to 34%, offset soil carbon 

decline by 3% and decrease erosion losses by 11-29% without significantly impacting maize or 

soybean yields. However, the cover crop is not predicted to offset crop yield declines that may 

occur because of temperature and water stressors. Taken together, this research illustrates that in 

the context of climate adaptation and mitigation, the greatest potential benefits from a winter rye 

cover crop in this region are preventing soil erosion, improving soil water retention, and 

potentially reducing nitrous oxide emissions from the soil surface.
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CHAPTER 1 

 GENERAL INTRODUCTION  

 

“Out of the long list of nature’s gifts to man, none is perhaps as utterly essential as the soil.” 
-Hugh Hammond Bennett 

 
“A community might explore what kind of agriculture it should put on the landscape that would 
continue to produce a sufficient amount of food anticipating three shocks: oil reaching $300 a 

barrel, having only half the amount of freshwater currently available, and experiencing twice the 
number of severe weather events. Imagining a farming system that would be sustainable under 
those circumstances might prepare the community for some of the changes coming their way in 

the decades ahead.” 
-Fred Kirschenmann 

 

Agriculture in a Future Climate 

Future climate change poses tremendous risks to agricultural productivity.  These risks, 

specific to field crops, include declines in yield, increased stressors due to floods, droughts, 

weeds, pests and diseases, the degradation of soil and a reduction in reliability of water resources 

(Hatfield, 2014; Porter et al., 2014; Walthall, 2013). A great deal of attention has been paid to the 

future impacts for the Midwestern United States, and the state of Iowa in particular, given that it 

is a national leader in commodity crop production, growing 15.5% of domestic corn and 12.5% 

of soybeans (USDA-NASS, 2014b). Further, the Midwestern “Corn Belt” produces one-third of 

corn (Zea mays) globally and one-quarter of its soybeans (Glycine max) (FAOSTAT, 2015; 

USDA-NASS, 2015). Therefore, climate impacts to agriculture in this region have global 

implications. 

Scientists in Iowa recognize that major agricultural impacts will center on changes to the 

hydrological cycle (ICCIC, 2010). One reason for a focus on water impacts is that Iowa sits at 

the nexus of two dueling moisture regimes: the Gulf of Mexico to the south, where moisture is 



 2

projected to increase and the North American monsoon to the west where moisture is projected 

to decrease (Takle, 2010).  This makes precise projections for precipitation more difficult as 

actual changes will be a result of how those broader continental patterns shift. However, analyses 

of historical records indicate that rainfall variability has already increased and research with 

climate models indicates that it will continue to do so. Over the Midwestern United States, 

Groisman et al. (2012) found that compared to the 1948-1978 period, in the most recent 30 years 

of analysis there was a 40% increase in the frequency of daily rain events above 3 inches and 

multiday rain events above 6 inches.  Mallakpour and Villarini (2015) analyzed stream flow data 

from 1962-2011 and found a significant increase in flood frequency in 34% of the stations 

analyzed, including approximately two dozen locations in Iowa. Global climate model analyses 

included in 2014 National Climate Assessment projected there will be increases in the number of 

days in the top 2% of heavy rainfall, the amount of rain falling in the wettest five days of the 

year, as well as a greater number of consecutively dry days (Pryor et al., 2014). In another 

assessment of a regional climate model for the Midwest, Daniel (2015) found that for the period 

of 2041-2070 there was an increase of 9% for the wettest 99th percentile of days and 15% for 

wettest 99.9th percentile of days compared to the 1971-2000 period.  These observations are in 

agreement with the 5th IPCC Assessment’s that the relationship of a warmer atmosphere and an 

increase in water vapor as extremely likely, where the positive feedback loop with temperature 

amplifies erratic and variable hydrological patterns (IPCC, 2013).  

Given the projected trend toward more rainfall variation in the Midwest, it is important to 

note how such variation impacts the agricultural landscape. Drought years have proven 

problematic for soil quality and agricultural productivity.  In 2012, one of the lowest 10% years 

for rainfall and number one warmest average year on record for Iowa (IEM Climodat, 2015), 
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100% of counties in the state experienced severe drought with negative impacts to soil structure 

such as crusting, cracking and a deterioration of soil aggregates.  Such negative indicators of soil 

tilth reduce the ease of plant root water access, which ultimately has the potential to decrease 

grain yield (Al-Kaisi et al., 2013).  This situation became reality when Iowa corn yields in 2012 

averaged 137 bushels acre-1, roughly 24% below the trend line (Al-Kaisi et al., 2013; USDA-

NASS, 2014b). Interactions with increased temperature trends become important, as rising 

temperatures are projected to not only decrease corn and soybean yields significantly but to 

increase variability in yield (Challinor et al., 2014; Diffenbaugh et al., 2012; Schlenker and 

Roberts, 2009). Further, Lobell et al. (2014) projected that maize drought yield declines, 

resulting from increased water stress factors, will grow more prominent given the management 

trend toward yield gains from higher planting densities.  

On the other end of the rainfall spectrum, impacts from flood events create their own 

detrimental effects. In 2008 for example, floods and heavy rainfall in Iowa resulted in some 

regions of the state losing more than 50 tons of soil per acre (Rogovska and Cruse, 2010) or 

approximately 4.2 mm year-1.  Putting that number into a longer-term sustainability context, 

Montgomery (2007) calculated a soil production rate aggregated over 1,600 studies to be 0.036 

mm year-1.  Therefore, these parts of Iowa lost more than 100 times the rate of soil production in 

a single year. Further, erosion rates are predicted to grow non-linearly with precipitation 

increases, with changes ranging from 16-58% increases (Nearing, 2001).  In Iowa, soil erosion 

has the potential to greatly impact economic output given the documented decline in corn yields 

that accompanies the loss of topsoil (Schertz, 1983).  Further, more intense periods of rainfall 

offer greater likelihood of runoff, nitrogen and phosphorus losses (Tilman et al., 2001; VanLiew 
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et al., 2013), which perpetuates a cycle of declining soil productivity and adverse effects on 

water quality. 

Climate-smart Agriculture: Assessment to implementation 

Beyond the Midwest, the international community has begun to prioritize conservation 

technologies in agriculture.  The Food and Agriculture Organization (FAO) of the United 

Nations defines climate-smart agriculture as “agriculture that sustainably increases productivity, 

resilience (adaptation), reduces/removes GHGs (mitigation), and enhances achievement of 

national food security and development” (FAO, 2011). Adaptation efforts must create the 

capacity to cope with more frequent, increasingly difficult conditions and gradual changes in 

climate, even though it often is not possible to anticipate their precise nature (FAO, 2011).  

Climate-smart agriculture emerged as a framework in 2010, driven by the international 

community, as a concept to develop and implement agricultural systems that simultaneously 

facilitate climate adaptation and mitigation.  Climate-smart agriculture may include practices 

which are already in use, but the approach also emphasizes implementation (Scherr et al., 2012). 

In this vein, scientists note that the research community must document ways that farmers, 

industry, consumers, and government can move toward, expand, or shift the “space” allowing 

multiple benefits to be achieved from sustainable farming practices (Beddington et al., 2012) and 

to envision landscapes that are resilient to future change (Kirschenmann, 2010).  Further, other 

university scientists are prototyping such efforts to coordinate with multiple stakeholders in 

generating projects that simultaneously work to reduce economic and environmental risks faced 

by farmers, agribusiness and others (Jordan et al., 2013). Such efforts serve as possible models 

for facilitating adoption of climate-smart practices. 
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While there may be some broad continuity across the globe in defining climate-smart 

agriculture, this investigation must be done for all regions and must evaluate multi-functional 

goals, given the complexities of the current agricultural landscape (FAO, 2011). Moving toward 

a more resilient agricultural system is a complex task involving intertwined social, agronomic 

and economic factors that underpin individual on-farm decision-making, where perceived 

mitigation and adaptation efforts may be incongruent with reducing multiple climate risks. For 

example, a majority of farmers in Central to Eastern Corn Belt believe additional tile drainage is 

an adaptive measure for increased precipitation years (Loy et al., 2013). In addition, over the last 

several years, grassland conversion to row crops driven by high commodity prices has 

accelerated (Wright and Wimberly, 2013; Lark et al. 2015) thus, a combination of increasing tile 

drainage and intensive corn and soybean cropping systems have the potential to contribute to 

more nitrate loss in surface waters (David et al., 2010). Therefore a driving factor in this research 

is to understand what practices will keep cropping systems in the Midwest productive and 

profitable into the future given possible unintended consequences inherent in achieving a more 

multi-functional agricultural system (Figure 1). 

Climate Adaptation Strategies: Why soil conservation? Why cover crops? 

Many approaches are proposed to adapt agricultural systems to climate change 

(Easterling et al., 2007; Hatfield et al., 2011; Westgate and Hatfield, 2011; Wolfe, 2013), 

including improvements in plant genetics (e.g. genetic modifications for drought, enhanced root 

architectures), soil conservation (e.g. reduced tillage), agronomic management (e.g. shifting 

planting dates), water technologies (e.g. irrigation) and financial instruments (e.g. crop and 

weather insurance) (Table 1). Uncertainty around the magnitude of extremes makes adaptation 

somewhat difficult in how to best prioritize research resources.  However, since it is known with 
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some certainty that rainfall variability is an important impact for the Midwest, this is a valuable 

place to start in framing the discussion around adaptation.  Of many of the strategies proposed 

for adaptation, the focus of this research is on a particular management practice – cover crops – 

that has promising potential to buffer such rainfall variability into the future because cover crops 

may offer soil conservation in both wet and dry years.  Thus, expanding the use of cover crops 

should be one in a list of options that have potential as climate-smart practices for the Midwest 

and offer an important prioritization of soil and water conservation management practices 

(Delgado et al., 2011; Lal et al., 2011; White, 2015). 

Cover crops offer numerous antidotes to the previously discussed climate risks: 

protection from soil erosion, retention of nutrients and improved water storage (Kaspar and 

Singer, 2011).  Previous erosion studies in Iowa show that oat and cereal rye crops reduced rill 

erosion by 42-95% and interill erosion by 51-62% (Kaspar et al., 2001), which is on the same 

order of magnitude that Nearing (2001) projected erosion rates to increase in the future.  In 

addition, the use of cover crops are found to add organic carbon to cropping systems through 

root and shoot decomposition, known to enhance many physical characteristics of soil, such as 

improving aggregate stability and reducing compaction (Blanco-Canqui et al., 2013), known 

benefits to improve soil response in drought (Al-Kaisi et al., 2013). Two global meta-analyses 

document significant increases in carbon when a cover crop is a component of a crop rotation. 

McDaniel et al. (2014) found that including cover crops in crop rotations led to an average 8.5% 

increase in total carbon concentration and Poeplau and Don (2015) calculated an average 

increase of 0.32 Mg C ha-1 yr-1.  However, understanding the impact of cover crops on nitrous 

oxide emissions is critical to determining the overall greenhouse gas budget of the practice 

(Basche et al., 2014). Further, there is a body of evidence demonstrating improved soil physical 
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characteristics from the use of a cover crop that contribute to soil water dynamics, including 

increased porosity, decreased bulk density, increased hydraulic conductivity and greater 

aggregate stability (Klik et al., 1998; Rachman et al., 2003; Sainju et al., 2003; Steele et al., 

2012; Villamil et al., 2006). Given the prior evidence suggesting the ability of cover crops to 

reduce climate risks, it is important to further quantify their impacts and benefits within 

agricultural systems in the Midwest.   

 

Impact in 

Cover Crop 

System 

Idealized ecosystem need in 

climate change scenario, (ie: 

ability to buffer flood and 

drought effects) 

Hypothesized 

Cover Crop 

Change: 

Improvement 

(+),  Decline (-) 

or Neutral (+/-) 

Indicator 

of 

Adaptation 

or 

Mitigation 

Soil Water 

(SW) 
Improved soil water storage and 

infiltration, reduced evaporation 
+ Adaptation 

Nitrous oxide 

emissions 

(N2O) 

Less nitrous oxide emissions +/- Mitigation 

Soil erosion (E) More erosion prevention, 

nutrient rich topsoil remains on 

fields, less water quality 

impairment 

+ Adaptation 

Soil carbon (C) More soil organic matter added 

to fields, improved soil structure 

and water holding capacity 

+ Adaptation 

and 

Mitigation 

Cash crop 

yields (Y) 
Cover crops will not decrease 

yields and could eventually lead 

to an increase 

+/- moving to + Adaptation 

 
Figure 1. Conceptual map of cover crop adaptation and mitigation impacts to Midwest 
Agriculture evaluated in this study. Hypothesized benefits and direction of change (table, top) 
and magnitude of changes (diagram, below). 
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Figure 1 continued.  Hypothesized magnitude of changes related to cover crop impacts quantified 
or predicted in this study. 
 
 
 
Table 1. Approaches to agricultural climate adaptation, expected outcomes, limitations and costs. 
Adapted from Easterling et al. 2007; Wolfe 2013; Hatfield et al. 2013; Westgate and Hatfield 
2011 
 

Approaches Expected outcomes Limitations and costs 

Plant genetics: plant 
breeding or genetic 
modifications  

Emphasis for major 
Midwest crops on drought 
and heat tolerance, 
improved performance in 
extreme years  

Potential for high seed and research 
costs, only successful if implemented in a 
year when it is actually hotter or drier, 
could prove difficult to mobilize seed 
resources in accordance with forecast of 
particular conditions in timely manner 

Soil management: soil 
conservation, tillage, 
cover cropping, 
agroforestry, soil 
carbon sequestration, 
integration of perennial 
vegetation 

Conservation practices 
that improve carbon, 
subsequently structure and 
water holding capacity, 
should buffer both dry and 
wet seasons – better water 
utilization and more water 
in the soil profile 

Potential additional costs in labor and 
management. Need for more funds in 
research and demonstration of practices. 
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Table 1 (Continued)  

Agronomic 
management: Planting 
dates, diversified crop 
rotations, cultivar 
choices, pest and weed 
management, 
equipment changes to 
accommodate faster 
planting 

Planting earlier or later to 
accommodate for variable 
weather should lead to 
favorable yield outcomes. 

Requires that new cultivars, shifting 
planting dates, are mobilized in 
accordance with forecast of particular 
conditions and in a timely matter.  
Mobilizing resources in such a manner 
may be difficult.  New technology to 
plant/harvest in narrower windows is 
expensive and not an option for all 
producers. 

Water: Irrigation, 
enhanced water 
monitoring technology, 
harvesting technologies 

More irrigation has 
potential to reduce 
impacts of drought.  
Monitoring could help 
manage resources in flood 
years. 

Comes at a high cost with potential 
challenge of unsustainable use of water 
depending on region. 

Financial instruments: 
Crop instruments, 
diversified income 
streams 

Insurance could protect 
against yield loss in both 
flood, drought or heat 
scenarios 

High public investment that has the 
potential to grow with extreme events 
and market volatility  

Human capital: 
Improved capacity for 
information sharing, 
extension and local 
resources strengthened 

Increased capacity, 
infrastructure and end user 
tools could aid in 
dissemination under all 
climatic outcomes 

Requires time and human capital but if 
coordinated efficiently and effectively 
costs need not be high (See Beddington 
et al. 2012, Jordan et al. 2013). 

 

 

Challenges and Barriers 

Despite known benefits, it is estimated that cover crops are used on only 2.3% of 

harvested agricultural land in the Midwestern United States and on only 1.6% of the land for 

Iowa (USDA-NASS, 2014a).  Arbuckle and Ferrell (2012) found that in a survey of Iowa 

farmers 61% of respondents believe there is not enough time between harvest and winter to 

justify their use.   Farmers cite challenges with the additional labor, time and management 

required for cover crop use as well as their potential to decrease cash crop yields as concerns 

with the practice (SARE-CTIC, 2013).  Arbuckle and Roesch-McNally (In Press) also found that 

higher levels of perceived risks, such as compromising cash crop yields and delaying spring 
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planting, were negatively associated with cover crop adoption for Iowa farmers.  This analysis 

also concluded that more access to information and technical assistance were critical factors for 

those farmers in their decision to adopt the practice. Similarly, Singer et al. (2007) also point to a 

need for more educational programs focused on cover crop management. Leading practitioners 

and researchers cite a need to better quantify longer-term impacts; specifically, research 

supporting an absence of yield decrease, which may help offset short-term producer concerns 

(Carlson and Stockwell, 2013; Mine et al., 2014). Therefore the objectives of this research are 

aimed toward advancing our understanding of long-term cover crop impacts with the ultimate 

goal of informing their broader adoption on the landscape. 

Dissertation Organization 

The overall objective of this research was to advance scientific understanding of how 

cover crops impact the long-term carbon, water and nitrogen dynamics in Midwest cropping 

systems.  Specifically, this research will focus on quantifying nitrous oxide emissions, soil water 

dynamics, cash crop yield trends, soil erosion and changes in soil carbon. In the aggregate, 

quantifying these impacts will help determine the value of cover crops as a climate-smart 

strategy for the future. The overarching hypothesis motivating this work is that cover crops can 

improve key adaption and mitigation indicators to Midwest cropping systems. 

Chapter one investigates nitrous oxide (N2O), a major agricultural greenhouse gas loss, in 

agroecosystems including cover crops, using meta-analysis methodology. The objectives of the 

meta-analysis were to summarize quantitatively the effect of cover crops on nitrous oxide 

emissions and to improve an understanding of the mechanisms behind this effect, through 

evaluating the effect of both environmental and management variables.   
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Chapter two is an analysis of data collected over seven years (2008-2014) from a long 

term research site in Central Iowa to understand how the continuous use of cover crop affected 

crop and soil dynamics over a series of wetter and drier years, given that more rainfall variability 

is projected for the Midwest.  My research questions for this project were: How is soil water 

content affected by the winter rye cover crop?  How is soil water storage affected by the cover 

crop? Which soil water retention properties are affected by the cover crop? Does the water use 

from the cover crop negatively impact maize and soybean growth? 

Chapter three utilizes a cropping systems platform (APSIM) calibrated with data from a 

field site in Central Iowa with a winter rye cover crop and control treatment for more than 

thirteen years.  The APSIM platform was specifically designed to answer questions on 

interactions of management and climate and the goal of this project was to quantify several 

indicators of climate adaptation and mitigation, such as long term yield impacts, organic matter 

changes, soil erosion and nitrous oxide emissions. 
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CHAPTER 2 

 

DO COVER CROPS INCREASE OR DECREASE NITROUS OXIDE EMISSIONS?  

A META-ANALYSIS 

 

A paper published in the Journal of Soil and Water Conservation 

 

Andrea D. Basche1,2, Fernando E. Miguez3, Thomas C. Kaspar4, and Michael J. Castellano5 
 

 

Abstract 

There are many environmental benefits to incorporating cover crops into crop rotations, 

such as their potential to decrease soil erosion, reduce nitrate leaching and increase soil organic 

matter.  Some of these benefits impact other agroecosystem processes, such as greenhouse gas 

emissions.  In particular, there is not a consensus in the literature regarding the effect of cover 

crops on N2O emissions. Compared to site-specific studies, meta-analysis can provide a more 

general investigation into these effects.  Twenty-six peer reviewed articles including 106 

observations of cover crop effects on N2O emissions from the soil surface were analyzed 

according to their response ratio, the natural log of the N2O flux with a cover crop divided by the 

N2O flux without a cover crop (LRR).  Forty percent of observations had negative LRRs, 

indicating a cover crop treatment which decreased N2O, while 60% had positive LRRs indicating 

a cover crop treatment which increased N2O. There was a significant interaction between N rate 

and the type of cover crop where legumes had higher LRRs at lower N rates than non-legume 

species.  When cover crop residues were incorporated into the soil, LRRs were significantly 
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higher than those where residue was not incorporated. Geographies with higher total 

precipitation and variability in precipitation tended to produce higher LRRs.  Finally, data points 

measured during cover crop decomposition had large positive LRRs and were larger than those 

measured when the cover crop was alive.  In contrast, those data points measuring for a full year 

had LRRs close to zero, indicating that there was a balance between periods when cover crops 

increased N2O and periods when cover crops decreased emissions.  Therefore, N2O 

measurements over the entire year may be needed to determine the net effect of cover crops on 

N2O.  The data included in this meta-analysis indicate some overarching crop management 

practices that reduce direct N2O emissions from the soil surface such as no soil incorporation of 

residues and using non-legume cover crop species.  However, our results demonstrate that cover 

crops do not always reduce direct N2O emissions from the soil surface in the short term and that 

more work is needed to understand the full global warming potential of cover crop management. 

Key words: cover crops—global warming potential—meta-analysis—nitrous oxide  

 

Introduction 

Agricultural soils account for 69% of nitrous oxide (N2O) emissions in the United States 

(US EPA 2013).  This occurs because nitrogen (N) is an essential nutrient for agricultural 

production: N is added to soil as N fertilizer and manure, released from soil organic matter, and 

has high reactivity and mobility in terrestrial ecosystems (Robertson and Vitousek 2009).  

Fertilizer N recovery efficiency for major cereal production is less than 50% and even as low as 

20% (Cassman et al. 2002), which potentially makes large quantities of N available for the 

biological processes that release N2O.  Nitrous oxide, which has 300 times the radiative forcing 

per mass unit compared to carbon dioxide (CO2), has been calculated to be the largest contributor 
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to global warming potential from agricultural cropping systems (US EPA 2013; IPCC 2007; 

Robertson et al. 2000). Therefore, small reductions in N2O emissions from agricultural soils can 

have an overall large impact on global warming potential.  The challenge is to find agricultural 

management practices with consistent reductions in N2O emissions across locations, cropping 

systems, and years given the high spatial and temporal variability of emissions (Venterea et al. 

2012).  

Emissions of N2O from terrestrial ecosystems are a function of available mineral N, soil 

water content, the availability of electron donors (such as labile C) and soil physical properties 

(Davidson et al. 2000; Firestone and Davidson 1989, Venterea et al. 2012).  Cover crops may 

impact aspects of all these processes in ways that could potentially increase or decrease N2O 

emissions as is outlined in table 1.  For example, a growing cover crop can decrease soil mineral 

N by incorporating it into its biomass, while a legume cover crop may increase soil mineral N via 

N fixation (Kaspar and Singer 2011).  While alive, cover crops can decrease soil water through 

transpiration.  After termination, the mulching effect of cover crop residues on the soil surface 

may increase soil water and the potential for denitrification depending upon timing of 

precipitation (Dabney 1998).  Additionally, decomposing cover crop residues can temporarily 

immobilize soil N and then later increase soil pools of labile C and inorganic N (Kaspar and 

Singer 2011; Steenwerth and Belina 2008) which will also impact dynamics of N2O emissions. 

There are many well researched benefits to incorporating cover crops into crop rotations, 

such as their potential to decrease soil erosion, reduce nitrate (NO3
-) leaching, increase soil 

organic matter, reduce pest and weed pressure, and provide additional soil N for cash crops 

(Kaspar and Singer 2011; Doran and Smith 1991).  However, the net impact of cover crops on 

N2O is not well understood (Cavigelli et al. 2012; Cavigelli and Parkin 2012).  Although cover 
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crops may temporarily decrease soil nitrate (NO3
-) pools and leaching losses, C can be the 

substrate limiting N2O emissions in some agroecosystems; in these situations, a cover crop’s 

contribution to the labile C pool can enhance N2O emissions from the soil surface (Mitchell et al. 

2013). 

 Meta-analysis is an approach that can be used to improve understanding of the factors 

affecting N2O emissions through the systematic review and quantitative summary of effect size 

from individual studies.  Many studies investigating cover crops and N2O are conducted on short 

time scales (≤ 2 years) under specific management and climate conditions which may make it 

difficult to detect differences.  Meta-analysis allows these studies to be pooled and the factors 

affecting N2O emissions investigated. The effect of other conservation practices on N2O 

emissions have been similarly evaluated using meta-analytic methods (Six et al. 2004; Van 

Kessel et al. 2013) but none to our knowledge that have used meta-analysis to examine the 

existing literature on cover crops effects on N2O. 

The objectives of this study were to use a meta-analysis approach to:  1. examine the 

relative impact of cover crops on N2O emissions; and, 2. determine what management and 

environmental factors contribute to variability in cover crop effects on N2O emissions.  There 

were several factors that we hypothesized would have a large contribution to this variability. 

First, we hypothesized that the type of cover crop (legume versus non-legume) would have 

different effects on N2O emissions; namely legumes would have a greater potential to increase 

N2O emissions versus non-legumes.  Second, we hypothesized that precipitation and cover crop 

biomass would impact N2O emissions because denitrification also requires anaerobic conditions 

and C.  Finally, we hypothesized that the timing of measurements was influential in how cover 

crops impact N2O, namely that the period immediately following cover crop termination and the 
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subsequent decomposition would have the largest N2O emissions because of N and C release 

from residues.   

Materials and Methods 

 Database Development. For the purposes of this study, we defined a cover crop as a plant 

not intended to be harvested that is grown during a fallow period between harvest and planting of 

two cash crops. This included treatments labeled as cover crops, green manures, or catch crops.  

A literature review utilizing electronic databases Google Scholar and Web of Science was 

conducted with the following search string: “nitrous oxide emissions or greenhouse gas 

emissions and cover crops or green manures or catch crops.” This combination of key terms 

resulted in approximately five thousand papers.  To reduce the number of papers included in the 

meta-analysis the following criteria were applied:  

1.  Studies in which the cover crop is not harvested and is grown between the harvest and 

planting of cash crops. 

2.  Studies reporting N2O measurements. 

3.  Studies with a control treatment varying only in the inclusion of a cover crop and keeping all 

other management practices such as tillage and N additions equal. 

4.  Studies that provided enough information (standard errors, standard deviations, coefficients of 

variation, etc.) about experimental error either in the published paper or in information that was 

provided by the authors when contacted to allow for an estimate of within study variance.  

5.  Studies published before December 2012. 

 

On the basis of these criteria, 26 peer reviewed studies, representing 19 field expeririments (83 

observations), two growth chamber studies (9 observations), and five modeling experiments with 
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validation data (14 observations) were selected for inclusion in a database (table 2, n=106 

observations). 

We omitted studies measuring emissions from cover crop treatments where the cover 

crop was not grown in the soil on which the measurements were taken (Bhattacharyya et al. 

2012; Petersen et al. 2013).  We also omitted papers analyzing emissions of varied cropping 

rotations if they did not have a true control treatment aligning with the cover crop treatment, as 

these would not allow for a proper comparison (Liebig et al. 2010; Gomes et al. 2009).  If an 

experimental design matched our criteria, but the publication did not include enough detail to 

perform required calculations, authors were contacted when possible to obtain this information.  

 Data Analysis. Environmental and management factors were included in the database to 

examine factors that might be correlated with variabilility among observations.  The full list of 

these factors is summarized in table 3 and describes categorical versus numeric variables and the 

number of observations included in each analysis.  For some of the factors, information that was 

not directly available in the studies was derived from other sources and is described below. 

Precipitation: Unless the rainfall data was explicitly reported by the experiments, 

NOAA’s Global Historical Climatology Network-Daily database was utilized 

(http://www.ncdc.noaa.gov/oa/climate/ghcn-daily/index.php) from the closest available stations 

over the specific range of dates when N2O was sampled.   

Soil Properties: Reported values for soil texture (% sand, silt, clay), pH, organic C and 

drainage class categorization, were directly included in the database.  If these values were not 

reported, the Web Soil Survey (Soil Survey Staff 2012) or literature for experiments conducted 

on the same fields was utilized.  Drainage for non-U.S. sites was determined either via contacting 

individual authors or by soil classification.  Soil classification was determined by the referenced 
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literature and all sites were converted to one of the World Reference Base Group and US Soil 

Classification Group equivalents using Krasilnikov et al. (2009).   

Period of N2O measurement:  The included experiments varied in the length of time and 

time of year over which N2O emissions were measured. Thus, we divided the observations based 

on the time periods into the following categories: 1. Full year; 2. Cover crop growth; 3. Cover 

crop decomposition; 4. Cash crop growth. 

These divisions allowed for an analysis of how cover crops influence N2O fluxes at 

different times of the year.  For full year, the included observations measured throughout the 

entire span of at least one entire year.  For cover crop growth, the period coincided with the time 

that the cover crop was alive and growing.  In many studies, this aligned with the winter season. 

For cover crop decomposition, the period coincided with the time of cover crop termination and 

potential incorporation into the soil.  Depending upon the design of the experiments, this period 

lasted between two weeks at minimum and two months at maximum.  This period often aligned 

Table 1. Drivers of N2O loss and potential influential factors investigated in the meta-
analysis. A full description of database variables appears in Table 3. 
 

Denitrification Driver Database Factor 

Mineral nitrogen • C:N residue ratio  
• Type of cover crop  
• Incorporation of residue  
• N fertilizer rate  

Tillage 

Reactive carbon • Soil Organic Carbon  
• Biomass input from cover crop  
• Type of cover crop  
• Incorporation of residue  
• Tillage  

Soil water • Biomass input from cover crop  
• Precipitation  
• Drainage  

Soil physical properties • Bulk density  
• Soil texture  
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with the spring season as well as fertilization events.  For cash crop growth, the period coincided 

with the growth of the main cash crop.   This period often aligned with the summer and fall. 

The dependent variable was the ratio between the N2O flux with a cover crop treatment to 

N2O flux without a cover crop: 
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Response ratios (RR) were calculated for all combinations of cover crop and no cover crop 

(control) treatments within studies where these treatment pairs varied solely in the inculsion of a 

cover crop.  Thus, the number of observations obtained from each study for the meta-analysis 

varied according to the study’s experimental design.  Within studies, different cover crop 

treatments (factorial experiments investigating for example tillage and cover crops), 

measurement periods (N2O emissions reported by season or by individual years), or different 

species of cover crops were all counted as individual observations and response ratios were 

determined for each of them. 

Then equation [1] was natural log transformed (Hedges et al. 1999) to normalize the data.  

The log ratio ensure that changes in the numerator and denominator are affected equally.  

 

��� = ln ��           [2] 

 

 Within study error (Vi) was calculated following the method of Hedges et al. (1999), 

using reported estimates of variances and converting to standard deviations based on 

experimental replications:   
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where SDcc is the standard deviation of the cover crop treatment, ncc is the replications of the 

cover crop treatment, ycc is the mean N2O emissions of the cover crop treatment and ncc 

represents the N2O emissions of the control or no cover crop treament.  Equation [3] assumes 

that reported means are normally distributed. 

The first step of the analysis was to determine if there was homogeneity among the LRR 

values from all the studies in the dataset (Hedges and Olkin 1985; Miguez and Bollero 2005). 

This tests the assumption that all of the LRR values came from the same population.  If the test is 

significant, the effect of cover crops varied among observations and other factors were affecting 

the response.  If the test was not significant, then we could conclude that the cover crops had a 

similar effect across observations. 

An inverse variance weighting factor (Wi) was used in this step to weight each of the 106 

LRR values, where studies with larger variances were weighted less heavily in the analysis.  This 

is one way by which we can account for the assumed unequal variances among studies (Hedges 

et al. 1999). 

 

!� = 1
��#           [4] 

 

In the next step of the analysis, mixed model regression analyses were conducted to 

individually examine the relative effects of each of the 18 environmental and management 

factors on LRR (ln of response ratio) while accounting for the variation between studies (St-
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Pierre 2001) with the weighting factor [4].  The database’s environmental and management 

factors were treated as fixed effects while study and intercept were treated as random effects.  

The statistical model used was: 

 

Lij = βo + si + β1Aij + biAij + eij       [5] 

 

Lij is natural log of the response ratio of ith study, receiving jth level of fixed factor A 

(factors in the analysis, table 3). βo is the overall intercept across all studies. si is the random 

effect due to the ith level of study (i = 1,…,26). β1 is the fixed regression coefficient of Li on A 

across all studies. bi is random effect of study i on the regression coefficient β1.  eij is the residual 

error.  This general model was first used to test each of the 18 factors individually. In these 

analyses, the N rate factor was found to have the largest effect on Lij.  Next, a second series of 

regression analyses were performed using models with the N rate factor plus one of the other 17 

factors and its interaction with N rate.  The statistical analysis was performed using the MIXED 

procedures of SAS (SAS Institute 2010). 

For studies that simultaneously measured changes to NO3
- leaching, response ratios were 

generated to estimate the effect of the cover crop on these N fluxes.  These response ratios 

represent the natural log of NO3
- leaching in the study’s cover crop treatment divided by the 

measured value from the no cover crop treatment. When analyzed alongside the N2O LRR values 

created in the same manner, these values provide a more complete understanding of a cover 

crops role in these parts of the N cycling.   

Finally, a sensitivity analysis was performed in order to test the robustness of the 

database and overall conclusions.  We repeated the homogeneity test and mixed model 
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regression analyses excluding all individual field and growth chamber studies one at a time as 

well as for a subset of the data excluding all of the modeling studies (Tudoreanu and Phillips 

2004; Philibert et al. 2012).  This provided an indication of whether the dominant factors were 

still significant as the database changed. 

 
Table 2. Summary of studies included in the meta-analysis 

Cash Crop(s) Cover Crop(s) Location Reference 

Oats Non-Legume and 
Legume 

Scotland, UK Baggs et al. 2000 

Corn Non-Legume and 
Legume 

Maryland, USA Rosecrance et al. 2000† 

Rice-Wheat Legume Ludhiana, India Aulakh et al. 2001 
 

Rice Legume Jiangxi, China Xiong et al. 2002 
Wheat-Corn Non-Legume and 

Legume 
England, UK Baggs et al. 2003 

Corn Non-Legume England, UK Sarkodie-Addo et al. 2003 
Corn Legume Nyabeda, Kenya Millar et al. 2004 
Barley Non-Legume Foulum, Denmark Olesen et al. 2004* 
Soybean Non-Legume Iowa, USA Parkin et al. 2006† 
Corn-Soybean Non-Legume Iowa, USA Parkin and Kaspar 2006 
Corn-Soybean Non-Legume Illinois, USA Tonitto et al. 2007* 

 
Corn-Soybean Non-Legume and 

Legume 
Iowa, USA Farahbakhshazad et al. 

2008* 
 

Corn-Soybean Non-Legume Michigan, USA Fronning et al. 2008 

Grapes Non-Legume California, USA Steenwerth and Belina 2008 

Rice Non-Legume and 
Legume 

Kanto Plains, Japan Zhaorigetu et al. 2008 

Corn-Pasture-
Alfalfa 

Non-Legume Pennsylvania, USA Chianese et al. 2009* 

Corn-Soybean Non-Legume Iowa, USA Jarecki et al. 2009 
Corn Silage Legume Turin, Italy Alluvione et al. 2010 
Corn-Tomato, 
Tomato-Cotton, 
Tomato-
Safflower-Corn-
Wheat 

Non-Legume and 
Legume 

California, USA De Gryze et al. 2010* 

Tomato Legume California, USA Kallenbach et. al 2010 
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Notes 
*Model simulation experiment 
†Growth chamber experiment 

 

Table 3. Description of database factors included to analyze variability in the cover crop effects 
on N2O. 
 

Factor Description of Categorical 

Factors and Range for 

Numerical Factors 

Number of 

Observations 

Tillage No Tillage, Conventional 
Tillage  

74 

C:N residue ratio 9-48 57 
Soil bulk density 1.2-2.65 67 
pH 5.5-8.1 89 
Type of cover crop Legume, Non-Legume, 

Biculture 
106 

N rate (kg ha-1) 0-303 (kg/ha) 103 
Soil incorporation of residues Yes, No 84 
Kill date Days between cover crop 

termination and cash crop 
planting (1-25) 

71 

% Sand 8%-80% 106 
% Silt 11%-73% 106 
% Clay 5%-45% 106 
% Organic carbon 0-30 cm  0.38% -2.10%  97 
Cover crop biomass (kg/ha) 280-14400  65 
Total precipitation (mm) 11-906  77 
Standard deviation 
precipitation (mm) 

0.5-40 77 

Drainage Well-drained, Poorly-drained 69 
Period of measurement Full Year, Cover crop growth, 

Cover crop decomposition, 
Cash crop growth 

80 

Experiment type Field, Model, Growth 
Chamber  

106 

 

Table 2 (continued)   
Corn Non-Legume Michigan, USA McSwiney et al. 2010 
Tomato Non-Legume California, USA Barrios-Masias et al. 2011 
Corn Non-Legume New York, USA Dietzel et al. 2011 
Barley Non-Legume Foulum, Denmark Petersen et al. 2011 
Corn-Soybean Non-Legume Indiana, USA Smith et al. 2011 
Tomato Non-Legume California, USA Smukler et al. 2012 
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Results and Discussion 

Overall. A test of homogeneity for the data set was significant (entire data set p=<0.0001, 

excluding modeling studies in sensitivity analysis p=<0.0001), indicating that the LRRs varied 

significantly among observations.  This means that the effect of cover crops varied among the 

data points in our analysis and that other factors were affecting the response.  Forty percent of 

the studies assessed in this analysis showed that cover crops decreased N2O emissions (negative 

LRR) and 60% of the studies showed that cover crops increased N2O emissions (positive LRR; 

figure 1). To analyze these general trends, other factors that potentially affect N2O emissions are 

discussed separately.  Table 4 presents the results of the regression analysis of factors affecting 

the LRR including regression coefficients for the continuous variables.  Positive coefficients 

indicate that LRR increases with increases the independent variable, while negative coefficients 

 
Figure 1. Natural log of response ratios (LRR) for 106 observations in the dataset, where the 
response ratio represents the N2O flux with a cover crop divided by the N2O flux without a cover 
crop. 
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indicate that the LRR decreases with increases in the independent variable. 

 Nitrogen Rate. It is well documented that higher N rates increase N2O emissions 

(Eichner 1990; Bouwman et al. 2002; Stehfast and Bouwman 2005).  Our statistical analyses 

evaluating management and environmental factors revealed that N rate explained more of the 

LRR variability than other factors (table 4).  In the sensitivity analysis, N rate was significant (at 

the p<0.0001 level) when excluding the modeling experiments and in 100% of the regression 

analyses when excluding each of the 19 field and 2 growth chamber studies.  As a result, 

interactions with N rate and other factors were investigated.  

 

  

 

 
Figure 2. Response ratios of legume versus grass cover crop species as a function of 
fertilizer N rate.  At the 0 N rate, legume cover crops have a higher response ratio 
than grass cover crop species.  Across a range of N application rates, the response 
ratio for non-legume cover crop species only increases slightly; for legumes the 
trend declines.   
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There was a significant interaction between the type of cover crop and N rate (figure 2).  

When no additional N is applied (0 N application rate), legumes exhibited higher LRRs than 

non-legume species. This is consistent with the results of Gomes et al. (2009) who found that 

legume cover crop residues, which have C:N ratios less than 25, stimulated N mineralization 

rates in maize systems with no additional N applications.  Because a significant quantity of 

mineralized N is subsequently nitrified, this many enhance NO3
- substrate for N2O production.  

Table 4. F, p values for all environmental and management factors in the 
mixed model regression analysis. Regression coefficients are presented for 
the continuous variables analyzed. 
 

 

Source DF Error 

DF 

Regression 

Coefficient 

F 

Value 

Pr > F 

Tillage 1 54  2.7 0.106 

C:N residue ratio 1 43 -0.04 2.17 0.1483 

Soil bulk density 1 51 0.97 2.7 0.1063 

pH 1 65 0.68 15.57 0.0002 

Type of cover 
crop 

2 78  2.51 0.0878 

N Rate 1 77 0.00 364.58 <.0001 

Soil 
Incorporation 

1 64  5.84 0.0186 

Kill Date 1 53 -0.03 1.14 0.2901 

% Sand 1 79 0.36 0.36 0.5494 

% Silt 1 79 -0.24 0.12 0.7297 

% Clay 1 79 -1.23 0.65 0.4217 

% OC 1 74 -0.56 4.05 0.0478 

Cover Crop 
Biomass 

1 49 0.00 0.74 0.3947 

Total 
precipitation 

1 58 -0.00 8.49 0.0051 

Standard 
deviation 

precipitation 

1 58 0.11 10.66 0.0018 

Drainage 1 54  0.03 0.8693 

Period of 
Measurement 

3 57  54.94 <.0001 

Experiment Type 2 80  0.73 0.4862 
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In a laboratory incubation experiment, Huang et al. (2004) observed that low C:N crop residue 

ratios increased N2O emissions. Consistent with the negative relationship between crop residue 

C:N ratios and N2O emissions in the absence of additional N inputs, non-legume cover crops 

showed a slight increase in LRRs as N fertilizer rate increased, reflecting the importance of both 

C and N for the denitrification process.  

 

There was also a significant interaction between N rate and tillage system (figure 3). 

Mechanical soil disturbances have been observed to stimulate C mineralization and net N 

mineralization (House et al. 1984; Beare et al. 1994; Omonode et al. 2011) due to the disruption 

of soil aggregates which expose organic C to microbial decomposition.  In no-till systems, LRRs 

 

Figure 3. Response ratios (natural log of N2O flux with a cover crop divided by the N2O flux 
without a cover crop) of conventionally tilled and no tilled systems as a function of  N 
application rate. Cover crops reduced response ratios at higher N rates in conventionally 
managed systems. No till systems increased response ratios slightly (compared to 
conventional tillage) as N rates increased. 
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slightly increased with increasing N rate.  This may have occurred because increasing cover crop 

biomass on the soil surface with increasing N fertilizer rate could have mulched the soil surface 

keeping it slightly wetter.  In conventionally tilled systems, lower N rates tended to result in 

positive LRRs. This suggests that at higher N rates in a conventionally tilled system, the cover 

crop may contribute to a reduction in  N2O emissions relative to the control treatment without 

cover crops.   

Further, even negative LRRs (cover crop treatments reduced N2O) may not reflect a large 

reduction in the overall magnitude of N2O emissions, particularly with high N fertilization rates.  

Table 5 includes a subset of studies reporting N2O in kg ha-1 (LRRs were generated using the 

reported units which varied by study and the length of measurement) to demonstrate the 

magnitude of changes with and without cover crops. Cover crops reduced N2O emissions at high 

N rates (~1-2 kg N2O difference in study 1 & 2) or by a neglibile amount at 0 N rates (study 3).  

In other studies, cover crops increased N2O emissions by 2 to 4 kg ha-1at higher N rates (study 4 

& 5). Finally, study 6 indicated a large increase (~40 kg N2O) in N2O emissions at a 0 N rate, 

given the large N contribution from a legume cover crop and the anaerobic soil conditions in the 

cropping system. Further, this large release of N2O occurred while the cover crop was 

decomposing, a period observed to have high N2O emissions (figure 5, discussion below).  

 Type of Cover Crop. Cover crops were categorized into the following types: legume 

(such as clover, vetch, field bean, pea varieties), non-legume (such as cereal rye, annual ryegrass, 

oats, wheat, radish mustards), and bi-culture species (such as vetch and rye mixes).  In general, 

legumes typically resulted in positive LRRs while the LRRs for non-legume and biculture 

species were close to zero (figure 4).  Statistical analysis revealed that there was a significant 

difference at the p<0.10 level in response ratios between the legume, cover crop type non-legume 
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and bi-culture groups.  In the sensitivity analysis excluding the five modeling studies, type was 

found to be significant (p=0.002) and we thus cannot reject our hypothesis that cover crop type 

influences cover crop impact on N2O emissions.  Because cover crops take up N that might 

otherwise be lost to leaching or because legume cover crops can fix N, cover crops may increase 

soil N availability during decomposition and thus, may increase the available NO3 substrate for 

denitrification and N2O emissions within agricultural fields.   

 

Table 5. Magnitude of N2O changes with and without cover crops for database subset.  

 

No cover 

crop N2O 

emissions 

(kg N/ha) 

Cover crop 

N2O 

emissions 

(kg N/ha) 

Cropping 

system and 

CC species 

Measurement 

period 

N 

application 

rate 

Reference 

7.5  5.3  Corn in 
Corn 
Soybean, 
70% rye/ 
30% oat 

Full year 175 kg/ha Jarecki et 
al. 2009 

3.7  2.3  Soybean, 
Winter Rye 

Winter (cover 
crop growth) 

195 kg/ha Parkin et al. 
2006 

1.5  1.4  Soybean in 
Corn 
Soybean, 
Annual 
Ryegrass 

Full year 0 N Smith et al. 
2011 

11.3  15.4  Corn in 
Corn 
Soybean, 
Winter Rye 

Full year 215 kg/ha Parkin and 
Kaspar 
2006 

3.8  5.1   Corn in 
Corn 
Soybean, 
Annual 
Ryegrass 

Full year 193 kg/ha Smith et al. 
2011 

9.3  50.2  Rice-
Wheat, 
Sesbania 

Spring (cover 
crop 
decomposition) 

0 N (176 
kg/ha from 
legume CC) 

Aulakh et 
al. 2001 
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 Period of Measurement. Based on the period of measurement, cover crops influenced 

N2O dynamics differently throughout the year (p<0.0001).  The sensitivity analysis further 

revealed that period of measurement was significant (at the p<0.05 level) in 95% of the statistical 

models when excluding individual studies.  Data points based on measurements made across an 

entire year had an average response ratio close to zero compared to the other periods of 

measurement (figure 5). This may suggest that there is a net neutral effect of a cover crop on 

N2O emissions when measured over longer timescales.  Figure 5 illustrates that even if particular 

periods of the year see larger N2O impacts of a cover crop, a full year time scale may actually 

find a net neutral effect.  More long-term field experiments measuring N2O over the entire year 

are needed to better understand these dynamics. 

Our analysis indicated that the highest LRRs were data points measuring during the cover 

crop decomposition period, consistent with our hypothesis.  Rosecrance et al. (2000) observed 

the largest N2O fluxes over the course of a growth chamber experiment in the five days post 

cover crop termination with rye, vetch and a mixture of both (C:N of 21, 10 and 14 respectively).  

They concluded that additional C substrate plus available mineral N contributed to high N2O 

emissions during this period. Aukulah et al. (2001) also found that N2O production was highest 

in the initial four week period following legume cover crop soil incorporation in a flooded rice 

system. They attributed this to the interaction between NO3
-and organic C availability, given that 

soil water content and temperature remained consistently favorable for denitrification.  Sarkodie-

Addo et al. (2003) measured NO3
-, NH4

+ and N2O for 55 days post incorporation of a wheat and 

winter rye cover crop with and without fertilizer.  Fertilized plots had positive LRRs and non-

fertilized plots had negative LRRs.  They reported that the decrease in N2O emissions with cover 

crops in the non-fertilized plots could be a result of temporary N immobilization from the cover 
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crop’s C contribution.  The results of the studies measuring N2O during the cover crop 

decomposition period suggest that N2O emissions are affected by the interaction of C input and 

N availability.  Cover crop residues with low C:N ratios generally increased N2O emissions 

(positive LRR, figure 6) during the decomposition period. This is consistent with observations of 

Millar et al. (2004) that N2O from systems with legume cover crops were positively correlated 

with residue N content. Further, the positive LRR observed during the growth of the cash crop 

may indicate that there is still some cover crop decomposition happening during this period.   

Studies measuring during the growth of the cover crop period had the lowest mean LRR 

of all the periods of measurement (figure 5). This could be a result of cover crop N uptake as 

well as the fact that this period often occurred during the winter when temperatures are lower.  

Temperature is important because microbial process rates including N mineralization, 

nitrification and denitrification exponentially decline with decreasing temperature (Stanford et al. 

1975).  In a growth chamber study, in which temperature was controlled, Parkin et al. (2006) 

found that winter rye cultivated with manure treatments reduced available soil NO3
- as well as 

N2O emissions compared with levels measured in the no cover crop treated pots.  This suggests 

that crop N uptake creates a larger sink for the soil mineral-N pool than N2O emissions or NO3
- 

leaching.  Dietzel et al. (2011) measured N2O emissions in a maize-winter rye cover crop system 

over two winter and spring seasons. The two years varied significantly in winter conditions 

which altered the soil water status by changing the frequency of freezing and thawing cycles. 

The warmer winter resulted in more negative LRRs than the colder winter when more freeze 

thaw cycles were present.  In this study, the cover crop response ratio’s dependence on weather 

variability may further illustrate the value of measuring over multiple seasons or years (larger 

time scales) to better understand annual cover crop N2O dynamics. 
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Figure 4. Mean response ratios (and 95% confidence intervals) for management factors included 
in the meta-analysis: the type of cover crop and soil incorporation of cover crop residues. 
 

 
 
 
Figure 5. Mean response ratios (and 95% confidence intervals) for environmental factors included 
in the meta-analysis: the period of measurement, the total precipitation over the measurement 
period and the standard deviation of precipitation over that period. 
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Soil Incorporation. In our analysis, LRRs for studies that incorporated cover crop 

residues into the soil were significantly higher than those for studies that left the residues on the 

soil surface (p=0.02; figure 4).  Of the studies where incorporation where reported, 19 of the 20 

highest positive response ratios in the database where incorporation was reported were cover 

crop treatments where residues had been incorporated into the soil.  The sensitivity analysis also 

found that soil incorporation was significant (p<0.05) in 81% of the models when excluding 

individual studies.    Incorporation of cover crop residues contributes to an increase in N2O 

emissions through several potential effects:  incorporation of cover crop residues increases N 

mineralization rates of both soil organic matter and cover crop residues and it contributes to 

greater NO3
- availability and denitrification (Firestone and Davidson 1989).  Incorporation of 

cover crops residues also likely increases soil temperature and thus, the potential for 

denitrification compared with soil covered with residues (Omonode et al. 2011).  Lastly, 

anaerobic conditions for denitrification of cover crop N is  more likely to occur if the residues 

are incorporated with tillage rather than left on the surface (Kaspar and Singer 2011).  Thus, our 

analysis indicated that incorporating aboveground cover crop residues led to relative increases in 

N2O emissions through a variety of mechanisms. 

 Precipitation. The episodic nature of N2O emissions results in part from the requirement 

for denitrification for anaerobic soil conditions, which usually occur following large or intense 

precipitation events (Davidson et al. 2000).  Cover crops may alter the soil water status and the 

potential for anaerobic conditions in several ways, including decreased soil evaporation, 

increased rainfall infiltration, and transpiration of stored soil water during cover crop growth 

(Unger and Vigil 1990).  To evaluate the soil water status and potential for anaerobic condition 

of a study, we utilized total precipitation over the measurement period as well as the standard 
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deviation of the rainfall as indicators for conditions favoring development of anaerobic soil 

conditions and denitrification.  Similarly, the DNDC model (Li et al. 1992) uses daily 

precipitation along with other variables as a predictor of the N2O emissions.  Other models like 

APSIM (Thorburn et al. 2010) use water filled pore space as a predictor of N2O emissions.   

 

In the statistical model testing the effect of precipitation values on LRRs, total 

precipitation and (p=0.005) and the standard deviation of precipitation (p=0.002) were 

significant (figure 5).  As we hypothesized, precipitation is an important factor impacting the 

LRRs. Total precipitation, however, was significant at the p<0.1 level in 86% of the statistical 

models excluding individual studies, while the standard deviation of precipitation was significant 

  
Figure 6. Response ratios for observations measured during the cover crop decomposition 
period as a function of the residue C:N ratio.   Legume species and those species with lower 
C:N ratios frequently led to an increase in N2O emissions, as indicated by the positive 
response ratios. 
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at the p<0.05 level in 95% of the statistical models.  Studies with legume cover crops had a more 

pronounced trend toward increased response ratios as the total precipitation and standard 

deviation of precipitation increased.  All of the observations (20 points representing seven 

different studies, where 77 total points were included in this part of the analysis) with a standard 

deviation of precipitation above 8.8 mm had positive LRRs.  This may indicate that regardless of 

other factors (such as cover crop type), above a threshold of rainfall variability, a cover cropped 

agroecosystem is more susceptible to N2O emissions than one without a cover crop. Novoa and 

Tejeda (2006) noted that N2O emissions from applied plant residues were predicted in part by 

rainfall.  This could be a result of a cover crop residue maintaining higher soil moisture and 

providing labile carbon, along with the timing of high intensity rainfall events. 

 Soil Organic Carbon. Soil organic carbon (SOC) has a strong impact on N 

transformations including the denitrification process (Davidson et al. 2000).  In addition, many 

models (APSIM, DAYCENT, DNDC, EPIC, ecosys) capable of simulating N2O emissions 

include SOC as a predictor (Li et al. 1992; Adler et al. 2007; De Gryze et al. 2010; Thorburn et 

al. 2010). Cover crops are a source of C and therefore the amount and quality of additional 

biomass has the potential to alter N2O emissions.  Two factors were categorized and analyzed to 

evaluate the effect of SOC on LRRs: percent organic C in the topsoil and total cover crop 

biomass. The percent organic C of the topsoil was found to be significant in the statistical model 

testing its effect on the LRR (p=0.04).  With larger SOC values in the topsoil, the LRR showed a 

small decline.  Bouwman et al. (2002) found significantly larger N2O emissions in soils with 3-

6% organic C versus those with 1-3%.  However, the experiments included in this analysis had a 

much smaller range of SOC values (0.38%-2.10%, table 3) which may be one reason we 

observed no relationship between SOC and N2O emissions.  It is possible that at lower 



 41

background levels of SOC, higher LRRs could be a result of a larger cover crop effect due to C 

limitation.  Additionally, our analysis indicated that the total amount of cover crop biomass did 

not have a significant effect on LRRs, although there was a trend toward higher LRRs as 

biomass increased (data not shown).  Contrary to our hypothesis that cover crop biomass would 

be an important factor controlling N2O emissions we found inconclusive evidence of this.  The 

sensitivity analysis found cover crop biomass significant at the p<0.10 level in 62% of the 

regression analyses excluding individual studies.  Robinson and Conroy (1999) found that when 

elevated CO2 levels increased plant productivity, subsequent additional C substrate for microbes 

contributed to consumption of more soil oxygen than could be replaced by diffusion.  This led to 

anerobic soil conditions and increased denitrification.  This mechanism seems consistent with 

our analysis, given the relationships in the dataset with LRRs, SOC, cover crop biomass and 

precipitation.  It also underscores multiple interconnections between C and N cycling in 

agroecosystems. 

 Cover Crops and Global Warming Potential. Nitrate lost through leaching from 

agricultural fields is subject to denitrification and N2O emissions off-site, which would not be 

reflected in the on-site measurements of N2O emissions from the soil surface. Therefore, given 

the ability of cover crops to reduce nitrate leaching, cover crops may contribute to an overall 

decrease in net global warming potential.  Mosier et al. (1998) estimated indirect N2O emissions 

resulting from leaching and runoff to be 2.5% of total leached N.  They further calculated that 

indirect denitrification (for example, from leaching and runoff) emissions constitute 25% of 

global N2O emissions from agricultural soils.  For studies measuring leaching losses in this meta-

analysis, mean change in NO3
- loss with a cover crop was significantly lower than the slight 

increase to neutral effect on direct N2O emissions (figure 7).  This is consistent with the results 
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of Tonitto et al. (2006) who found that on average non-legume cover cropped systems reduced 

nitrate leaching by 70% and legume cover cropped systems reduced nitrate leaching by 40%.  

Even though indirect estimates of N2O emissions are variable, this is an important impact to 

consider that would not be included in the LRR for direct emissions used in our analysis. 

 

One modeling experiment (De Gryze et al. 2010) and two field experiments (Fronning et 

al. 2008; Smith et al. 2011), reported net global warming potentials (GWP)  that were neutral or 

negative (indicating mitigative potential) when cover crops were present.  In our database, only 

these three studies included full net global warming potentials, measuring change in SOC (or soil 

 

 
 
 

Figure 7. The mean nitrate leaching response ratios (natural log of the nitrate leaching with a 
cover crop divided by the nitrate leaching without a cover crop) and 95% confidence intervals 
compared to the mean N2O response ratios from three studies measuring both.  Ten of the 11 
points were measured during the cover crop growth period.  Although this represents only a 
small subset of the data base, it could further suggest that cover crop N uptake during growth 
decreases leaching losses and subsequent indirect N2O emissions. 
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CO2 respiration), N2O and CH4.  De Gryze et al. (2010) found that the net decrease in global 

warming potential was primarily a result of increased SOC storage in cover cropped systems.  

More multi-year field trials and modeling efforts are needed to better understand the long term 

effect of cover crops on the net global warming potential of agroecosystems. 

 

Summary and Conclusions 

 This meta-analysis found that cover crops increased N2O emissions from the soil surface 

in 60% of published observations while cover crops decreased N2O emissions from the soil 

surface in 40% of observations.  There are both environmental and management factors that 

modified the impact of cover crops on N2O emissions, including fertilizer N rate, soil 

incorporation, the period of measurement and rainfall. Legume cover crops had higher relative 

N2O emissions at low N rates and lower emissions at high N rates whereas N2O emissions of 

non-legume cover crops increased as N rate increased.  In general, it seems that cover crops have 

a greater potential to reduce N2O emissions when non-legume species are utilized and cover crop 

residue is not incorporated into the soil.  Our analysis also found that cover crops on average 

only lead to a small or negligible increase in N2O emissions when measured for time periods of 

one year or greater.  To understand the full global impact of cover crops on N2O emissions, more 

field research with measurements over extended time periods is needed to examine the temporal 

component of N2O emissions and better accounting for cover crop reductions in indirect N2O 

emissions from leached N should also be considered. 
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SOIL WATER IMPROVEMENTS WITH THE LONG-TERM USE OF A WINTER RYE 

COVER CROP 
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Abstract 

The Midwestern United States, a region that produces one-third of maize and one-quarter of 

soybeans globally, is projected to experience increasing rainfall variability with future climate 

change. One approach to mitigate climate impacts is to utilize crop and soil management 

practices that enhance soil water storage, reducing the risks of flooding and runoff as well as 

drought-induced crop water stress.  While some research indicates that a winter cover crop in 

maize-soybean rotations increases soil water availability, producers continue to be concerned 

that water use by cover crops will reduce water for a following cash crop.  We analyzed 

continuous in-field soil water measurements from 2008 to 2014 at a Central Iowa research site 

that has included a winter rye cover crop in a maize-soybean rotation for thirteen years. This 

period of study included years in the top third of wettest on record (2008, 2010, 2014) as well as 

years in the driest bottom third (2012, 2013). We found the cover crop treatment to have 

significantly higher soil water storage from 2012-2014 when compared to the no cover crop 
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treatment and in most years greater soil water content later in the growing season when a cover 

crop was present. We further found that the winter rye cover crop significantly increased the 

field capacity water content by 10-11% and plant available water by 21-22%. Finally, in 2013 

and 2014, we measured maize and soybean biomass every 2-3 weeks and did not see treatment 

differences in crop growth, leaf area or nitrogen uptake. Final crop yields were not statistically 

different between the cover and no cover crop treatment in any of the seven years of this 

analysis.  This research indicates that for this location in Central Iowa the long-term use of a 

winter rye cover crop can improve soil water dynamics without sacrificing cash crop growth. 

 

 Introduction 

 There is a need to maintain or improve soil productivity in the 21st century in light of 

climate change and increasing agricultural demands (Amundson et al., 2015; Lal et al., 2011). 

Currently, most of the Midwestern United States, where one-third of global maize and one-

quarter of global soybeans are grown, is not limited in water or soil resources and this in part 

contributes to its immense productivity (FAOSTAT, 2015; USDA-NASS, 2014).  However, 

climate projections point to increased rainfall variability (Daniel, 2015; Winkler et al., 2012) 

beyond what has already been observed over the last several decades (Groisman et al., 2012; 

Mallakpour and Villarini, 2015) which threatens the soil and water resources currently available 

in the region.  Further, projections for crop yields indicate declines into the 21st century, without 

changes to current management (Challinor et al., 2014; Walthall, 2013).  However, other 

research indicates that the impacts of climate change can be reduced or prevented with 

conservation practices in this region (Basche et al., 2015; Panagopoulos et al., 2014; VanLiew et 

al., 2013).  
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 Employing management practices that improve soil water dynamics (i.e. processes such 

as increased storage and enhanced infiltration) is one approach to mitigate the impacts of 

extreme precipitation events, on a field and landscape scale. Several alternative cropping systems 

have been tested to determine their impacts on soil water dynamics in the Midwestern United 

States.  Qi et al. (2011) found that a rye cover crop increased soil water storage, compared to a 

maize-soybean cropping system. Brye et al. (2000) found that a prairie ecosystem maintained 

higher soil water content deeper in the soil profile, and had larger evapotranspiration and less 

drainage than a maize cropping system. Further, Daigh et al. (2014b) attributed lower cumulative 

drainage and decreased peak flows in prairie and cover cropped systems to higher 

evapotranspiration and lower soil water, beneficial improvements for heavy rainfall events.  

 Further, there is a complex interaction of soil physical, and chemical properties that 

contribute to soil water storage capacity, including soil carbon, aggregation and porosity 

(Emerson, 1995; Hudson, 1994; Kay, 1998). There is a body of evidence that cover crops can 

increase soil carbon (Kaspar and Singer, 2011; McDaniel et al., 2014; Moore et al., 2014; 

Poeplau and Don, 2015) as well as soil physical properties which improve soil water dynamics 

(Daigh et al., 2014a; Steele et al., 2012; Villamil et al., 2006). Growing an over winter cover 

crop between the harvest of maize and soybeans does not take acres out of production and is one 

strategy for mitigating environmental impacts of Midwestern agriculture (EPA, 2008; INRS, 

2012).  However, survey data (SARE-CTIC, 2013, 2014) and leading practitioners (Carlson and 

Stockwell, 2013) indicate that producers are concerned that cover crops may reduce water 

availability for the following cash crop. Thus, even though cover crops provide many benefits, 

producers might be reluctant to adopt them if they increase the risk of water stress for the cash 

crop.   
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 Therefore to increase adoption of cover crops it is important to determine (and 

demonstrate in the long-term) whether cover crop water use reduces water availability for the 

following cash crop. It is also important to improve our understanding of how a cover crop alters 

water dynamics over wetter and drier seasons to evaluate their benefits in mitigating rainfall 

variability impacts.  Our research questions were: How is soil water content affected by a winter 

rye cover crop?  How is soil water storage affected by the cover crop? Which soil water retention 

properties are affected by the cover crop? Does the water use from the cover crop negatively 

impact maize and soybean growth? To answer these questions, we analyzed an extensive dataset 

from a long-term field site that included seven years of continuous soil water content 

measurements recorded over years with very different weather patterns and treatments with and 

without a cereal rye winter cover crop. We also collected crop growth data and soil hydraulic 

property samples from the most recent two years of the experiment. 

 

 Materials and Methods 

Field site 

The field site is located in Boone County, IA (42.05° N, 93.71° W) and was established 

in 1999. It is a randomized complete block design with four replications and includes different 

tillage, nitrogen management, and cover crop treatments within a maize-soybean cropping 

system, where maize is planted in the spring of   the even-numbered years and soybeans in the 

spring of the odd-numbered years.  This study evaluated the differences between the no-till 

winter rye and no-till control plots without a cover crop.  The winter rye plots were first 

established within the maize-soybean rotation in fall 2000 and it represents a long-term record of 

winter rye impacts within the predominant cropping system found across the Midwest. The 
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winter rye cover crop was established either by drilling after harvest of maize and 

soybeans (2007-2011) in the fall or by broadcast seeding before in the late summer 

(2012-2014).   Further information on the site management can be found Table 1, as well 

as in Kaspar et al. (2007) and Kaspar et al. (2012). 

 

Table 1.  Management dates and operation information 

Year Cash 

Crop 

Cover Crop 

Termination 

Date 

Cash Crop 

Planting Date 

Harvest 

Date 

Cover 

Crop 

Planting 

Date 

Total N 

applied 

kg ha-1 

 

2008 
 

Maize 
29-Apr 14-May 28-Oct 29-Oct 

198  

2009 
 

Soybean 
21-May 22-May 28-Sep 28-Sep 

  

2010 
 

Maize 
19-Apr 29-Apr 16-Sep 17-Sep 

198  

2011 
 

Soybean 
5-May 18-May 29-Sep 30-Sep 

  

2012 
 

Maize 
23-Apr 4-May 19-Sep 4-Sep* 

175  

2013 
 

Soybean 
13-May 23-May 20-Oct 4-Sep* 

  

2014 
 

Maize 
10-Apr 6-May 17-Oct 9-Sep* 

196  

 *Winter rye cover crop was broadcast seeded before maize and soybean harvest  

 

Soil water and soil physical property analysis 

Soil volumetric water content (θ) was estimated using a TDR Theta Probe Soil 

Moisture Sensor (Model Type ML2x, Delta-T Devices, Cambridge, United Kingdom) 

hourly at depths of 5, 10 and 15-cm from 2008-2011 and at 5, 15 and 30-cm from 2012-

2014. Voltage measurements were converted to a dielectric constant then to the 

volumetric water content, using the calibration equation for Des Moines Lobe soils based 
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on the work of Kaleita et al. (2005).  The TDR Probes were installed at two locations in three of 

the four experimental replications, vertically at 5-cm and horizontally at the lower depths. 

Sensors were removed only when necessary to accommodate field machinery operations and 

were replaced immediately following completion.  Soil water storage was calculated by 

sectioning the available depths (0 to 5-cm, 5 to 10-cm, and 10 to 15-cm in 2008-2011; 0 to 5-cm, 

5 to 15-cm and 15 to 30-cm in 2012-2014), assuming that the soil water content (θ) level was 

equal throughout that whole depth and multiplying the depth (cm) by corresponding soil water 

level (mm3 mm-3). The cumulative soil water storage (SWS) values were calculated by 

integrating over the individual storage values for the three available depths.   

We focused our analysis on two key periods of the year when the cover crop might have 

an important impact on soil water dynamics.  The first period was during the spring (between 

early April and mid-May) about ten days before the cover crop was terminated through about ten 

days after the cash crop was planted.  These dates varied depending on whether maize or 

soybeans were the cash crop that year. The second period was during summer (mid-July through 

mid-September), when maize and soybeans enter reproductive growth and crop water demand is 

critical for optimizing yield (Claassen and Shaw, 1970a, b; NeSmith and Ritchie, 1992). 

Intact soil cores (7.6-cm by 7.6-cm) were sampled to approximately 4 to 11.6-cm and 21 

to 28.6-cm depths in July 2013 when soybeans were in the V4 developmental stage.  Two 

subsamples per plot were taken at each depth, with one subsample in a typically wheel trafficked 

row and one a typically non-wheel trafficked row to try to capture within plot variability and any 

differences resulting from wheel traffic compaction. For the purposes of this experiment, we 

define field capacity as the water retained in the soil at -33 kPa pressure, an approximation 

thought to represent the ability of the soil to retain water after internal drainage has ceased 
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(Hillel, 1998), which we also considered the upper limit of plant available water 

(Veihmeyer and Hendrickson, 1950).  We define the permanent wilting point as water 

retained at -1500 kPa, an approximation thought to represent the soil wetness at which 

point a plant cannot recover turgidity (Hillel, 1998) which we also considered to be the 

lower limit of plant available water (Veihmeyer and Hendrickson, 1950). Cores were 

analyzed at the Soil, Water and Plant Testing Laboratory at Colorado State University for 

water retention (water content) at field capacity (-33 kPa) with a pressure plate cell 

apparatus and at saturation (0 kPa) by wetting intact cores and weighing for percent water 

content (Klute, 1986). To detect treatment differences at the lower end of the water 

retention curve (-1500 kPa), in April 2015 we utilized soil samples from October 2014 at 

0-15-cm and 15-30-cm using the Decagon WP4C Water Potential Meter (Dew Point 

PotentiaMeter, Decagon Devices, Inc, Pullman, WA). Water potential meters, such as the 

WP4C, convert sample readings of temperature and dew point to water activity 

(Campbell et al., 1973) and it is suggested that these types of instruments are best suited 

for measurement of very dry soils (Gee et al., 1992) when hydraulic conductivity is too 

low for water equilibration to occur in the soil sample (Gee et al., 2002).  We mixed 

approximately a 30-g sample of air-dry soil with 6-mL of water according to suggested 

protocol to wet soils to a water content wetter than -1500 kPa. We then equilibrated the 

soil samples in closed vessels for several days at room temperature.  Then we added 

approximately 3.5-g of soil to the instrument’s stainless steel sample cups, capped with a 

lid and allowed the samples to equilibrate for another 24 hours.  Matric potentials of the 

samples were measured in the WP4C chamber after which they were weighed, air-dried 

for a short period (20-40 minutes) and this procedure was repeated at least three times. 
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This procedure allowed us to bracket the -1500 kPa water potential. Samples were then dried at 

103°C for 48 hours and weighed to calculate water content at the corresponding matric potential 

readings. Values for the water content corresponding to -1500 kPa were interpolated using a 

regression line from the three sample readings (Campbell, 2007).  Finally, the particle size 

analysis was performed using the pipette method (Gee and Or, 2002). 

Crop growth and partitioning analysis 

Two randomly selected 0.76 m2 areas of above ground plant material were harvested by 

cutting at the ground level every 2-3 weeks during the growing season of the maize and soybeans 

in each of the experimental replicates. Biomass sampling began about three weeks after planting. 

Green leaf area was determined using a bench-top leaf area meter (LI-3100 Area Meter, LI-COR 

Inc., Lincoln, NE) divided by the sampling area (i.e. 0.76 m2).  Samples were then dried at 60°C 

until constant weight.  Using a Thomas-Wiley mill (Model 4, Thomas Scientific, Swedesboro, 

NJ) dried samples were ground through a 1-mm sieve, a subsample taken, and the percentage 

nitrogen was determined by combustion at 950°C in either a LECO analyzer (Model CHN- 2000, 

LECO Co., St. Joseph, MI) or a VarioMax (Variomax CNS, Elementar, Hanau, Germany).  

Soybean samples were separated into leaves, stems and pods for dry weight and partitioning 

analysis. Maize samples were separated into leaves, stems, ears and husks for dry weight 

analysis and leaves, stems and kernels were ground separately for the partitioning analysis 

beginning at the R3 stage (Abendroth et al., 2011).  Whole plant soybean samples were ground 

and analyzed, while after the second sampling date, maize samples were chopped into smaller 

pieces and subsampled before passing through the Wiley mill.   

Statistical analysis 



 59

 Volumetric soil water content data has a number of characteristics: 1. It has a high 

measurement frequency (sub-daily); 2. Measurements are highly correlated (i.e. one day of soil 

water content measurement is very similar to the previous day); 3. Measurements are highly 

influenced by precipitation events which cause sudden increases in the values. To capture the 

pattern of this type of data we chose to use a smoothing splines approach. Splines are constructed 

from polynomial interpolation between knots which need to be estimated (Silverman, 1985). We 

fit individual equations for θ at each depth (5-cm, 10-cm, 15-cm, 30-cm) and each time period 

(spring and summer) using a generalized linear mixed model (SAS Institute, 2008).  For 

simplicity we conducted separate analyses for each year and depth.  In our approach we 

accounted for the autocorrelation by fitting an autoregressive model.  Similar approaches have 

been used to describe the relationship of daily evapotranspiration over a season (Hankerson et 

al., 2012) and nitrogen fluxes in time (Cook et al., 2010; Dietzel, 2014). We manually adjusted 

the number of splines in each time period and depth analysis and we also evaluated residual plots 

and considered AIC (Akaike information criteria) and BIC (Bayesian information criteria) 

values. These criteria represent the relative skill in model selection that optimizes parameters 

with residual error, necessary steps for selecting the most appropriate statistical model 

(Archontoulis and Miguez, 2015).  Treatment and time (day of year) were considered fixed 

effects. In analyzing treatment differences (cover crop versus no cover crop) in water content, we 

chose to emphasize specific days as the average treatment differences over an entire period are 

not necessarily relevant (Cleveland and Devlin, 1988). As stated previously, we chose to focus 

our water content analysis on the spring and late summer periods. For soil water storage we 

explored differences over the entire growing season (April through October) for each year in our 

dataset, summed over the depths available, with the same generalized linear mixed model where 
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treatment and time (day of year) were considered fixed effects.  We assessed statistical 

significance at p<0.10 for soil water content values and soil water storage values given the large 

potential for variability between plots. 

  To assess treatment differences in soil texture, saturation, field capacity, permanent 

wilting point and plant available water, we used a mixed model where treatment and depth were 

fixed effects and block was considered random. For these factors we assessed significance at the 

p<0.05 level. To assess treatment differences in plant growth and plant nitrogen uptake, we used 

a repeated measures analysis where sampling date was the repeated term and treatment nested in 

blocks was the sampling unit. We used an autoregressive variance-covariance structure which 

satisfied convergence criteria and produced smallest AIC and BIC values.  For the plant analyses 

we assessed significance at the p<0.05 level. 

 

Results and Discussion 

Research question 1: How is soil water content affected by the cover crop?   

 We hypothesized that during the spring period we would see evidence that the growing 

cover crop depleted θ.  We also hypothesized that if the cover crop had caused accumulated 

improvements in soil properties (i.e. surface residue cover, aggregation, soil organic matter, 

porosity) over time, there could be evidence of greater θ in later periods of the year. Several 

patterns emerged in separating differences in soil water content in the cover crop and no cover 

crop treatments.  In comparing θ on individual days we found that during the spring periods (ten 

days before cover crop termination and ten days after cash crop planting) of 2009, 2010 and 

2013 there were some days that had significantly lower θ in the cover crop plots compared with 

the no cover crop plots (Table S1).  In 2009, for example, it took five days for θ to return to the 
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same levels in the two treatments, where the cover crop plots were 0.03-0.04 mm3 mm-3 (0.016 

mm3 mm-3 standard error), representing a 10-15% lower valuethan the no cover crop plots from 

May 23 to May 27 (DOY 143-147) at the 5-cm and 10-cm depths (Figure 1, Table S1).  In spite 

of the lower spring soil water levels in the cover crop treatment plots, in five of the seven years θ 

was replenished to the statistically same level as the no cover crop treatment plots by the time 

cash crop planting occurred. We conclude that the cover crop does use water in the spring, but 

rainfall is usually able to replenish soil water levels, even over a series of wetter and drier springs 

(197mm of rain in 2008 compared to 21mm of rain in period in 2012 during the periods 

illustrated in Figure 1). Cover crop water use in this region has been estimated to be between 20 

to 60 mm by simulation models where soil evaporation is predicted to be reduced by a cover 

crop between 2-18% (Basche et al., 2015; Malone et al., 2007). Spring cover crop transpiration 

of 20 to 60 mm represents approximately 5% of the total precipitation in Central Iowa or 10-30% 

of the historical April-May average rainfall which is 194 mm (IEM, 2015). At our field site, this 

only reduced soil water levels to statistically different levels at maize and soybean planting in 

two of seven spring seasons.  

During the summer period, in six of the seven years (all but 2011), we found 

higher average values of θ at lower depths in the soil profile (15-cm and 30-cm) in the 

cover crop plots.  For example, during August and September of 2009, there was 

significantly higher θ (0.02-0.03 mm3 mm-3 with a standard error of 0.016 mm3 mm-3, 

representing an increase of 8-12%) at the 15-cm depth for about a two week period, a 

year when total rainfall equaled 946mm, an above average rainfall year (815mm is 100-

year average for this location) (Figure 1).  Further, there were several days in late 

September and early October 2012 (data not shown) when θ at 15-cm and 30-cm depths 
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were significantly higher in the WCC by approximately 0.02-0.03 mm3 mm-3 (8-12%). This was 

a year when total annual rainfall equaled 637mm, which was below average for this location.  

We also detected about a two-week period in mid-August 2014 when θ at 15-cm was 0.02-0.03 

mm3 mm-3 higher (standard error of 0.013 mm3 mm-3, or a 9-13% increase) in the cover crop 

treatment. Because of measurement and experimental error, we found that the average θ needed 

to be different by approximately 0.02-0.03 mm3 mm-3 between treatments to detect significant 

differences. These values for least significant differences are similar with those observed by 

other research in similar soils and cropping systems (Daigh et al., 2014a; Daigh et al., 2014b).  

In general we found that the cover crop plots demonstrate higher θ at the 15 and 30 cm 

deeper depths of the soil profile later in the growing season (Figure 1). This could be evidence of 

reduced soil evaporation (Dabney, 1998; Unger and Vigil, 1998). It could also indicate that the 

long term use of the cover crop increased porosity (Villamil et al., 2006), reduced soil bulk 

density (Steele et al., 2012; Villamil et al., 2006), increased hydraulic conductivity (Klik et al., 

1998) or increased aggregate stability and aggregation (Liu et al., 2005; Rachman et al., 2003; 

Sainju et al., 2003; Villamil et al., 2006), physical properties of the soil that would facilitate 

faster downward movement of water and enhanced capacity for water storage. Further, increases 

in soil carbon could account for the increases in soil water storage capacity (Hudson, 1994; Kay, 

1998; McDaniel et al., 2014; Poeplau and Don, 2015).   

It is important to note that the years included in our analysis were very different in their 

rainfall patterns.  For example, 2012 was one of the driest (lowest 10%) and hottest years (one in 

121 years for  days above 21°C, one in 121 years for warmest average temperature) in the 

historical record while 2008 and 2010 were two of the top three wettest years in the 122 year 

historical record (IEM Climodat, 2015) (Table 2). In spite of these differences and the inherent 
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soil variability, we are still able to detect the general pattern of increased soil water 

deeper in the soil profile later in the growing season.  We are also able to discern that 

early season water use by the cover crop is replenished by spring rains and is not lower 

than the control treatment at cash crop planting in the majority of years. 

 

Spring Summer 

Figure 1. Soil water content at 15-cm across the seven spring and summer days of year (DOY)  
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Figure 1 (Continued) 
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Figure 1 (Continued) 

 
 
 
 
Table 2. Annual precipitation (IEM, 2015) and spring precipitation (from field site rain gauge) 
during the years of the analysis. 

Year Annual 

Precipitation 

(mm) 

April-May 

Precipitation 

(mm) 

2008 
 

1274 242 

2009 
 

946 216  

2010 
 

1287 178 

2011 
 

816 209 

2012 
 

637 35 
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Table 2 (Continued)  

2013 
 

695 335 

2014 
 

1023 230 

Avg 954 206 

 

Research question 2: How is soil water storage affected by the cover crop?  

We hypothesized that the calculated soil water storage (SWS) values, based on the sum 

of the soil water content values multiplied by the measurement depth, would show evidence of 

higher levels with the inclusion of the cover crop, given the potential for the cover crop to reduce 

soil evaporation as well as to accrue changes (i.e. carbon, porosity) that facilitate water storage. 

We found a significant effect of treatment for average SWS during the entire growing season 

(DOY 100 through DOY 300) in 2012, 2013 and 2014 (Table 3), where soil water storage in the 

cover crop treatment was generally higher throughout the season (Figure 2). These are the three 

years for which we had measurements down to 30-cm as opposed to measurements from 2008-

2011 only at the 0 to 15-cm depth.  Thus, our results demonstrate higher SWS lower in the soil 

profile with a cover crop, similar to the pattern in θ and suggest that the effect of the cover crop 

may be more pronounced at depths greater than 15-cm.  Similar to our study, Daigh et al. 

(2014a) used daily measurements of volumetric water content to calculate SWS values and also 

found that a rye cover crop led to an increase in soil water storage during the drought of 2012 at 

a closely located field site. A cover crop contributing to improved SWS increases could be a 

result of several soil physical changes reported to occur after their continued use, including 

increased porosity and enhanced aggregation (Liu et al., 2005; Rachman et al., 2003; Sainju et 

al., 2003; Villamil et al., 2006).  
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Table 3. Soil water storage effects over the April through October growing season period (Day of 
year 100-300) 
 

Source Year 

 2008 2009 2010 2011 2012 2013 2014 

Treatment 0.264 0.968 0.478 - 0.101 0.015 0.039 
Spline*Treatment <0.0001 <0.0001 <0.0001 - <0.0001 <0.0001 <0.0001 

Pr>F values. In 2011 sensors were only functioning in one replication each treatment. Spline 
represents the curve fitting parameter  

 
 

  

  
Figure 2. Soil Water Storage (cm of water for the 0-30cm depth) in 2012, 2013, 2014 from 
early April through late October (DOY - day of year 100 through 265) where the cover crop 
soil water storage was significantly higher than the no cover crop treatment 
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Research question 3: Which soil water retention properties are affected by the cover crop?  

There are a few reports of a cover crop increasing water retention at field capacity (Bilek, 

2007; Lal et al., 1979; Patrick et al., 1957) or increases in plant available water content (Villamil 

et al., 2006) and therefore we hypothesized that we might see an increase in plant available water 

due to water retention properties with the addition of the cover crop.  We found a significant 

effect of treatment for the water content at field capacity where the change in the cover crop 

treatment represented an increase of 10.9% and 10.0% at the 0-15-cm and 15-30-cm depths, 

respectively (Table 4).   The pattern in the field capacity increase observed in the cover crop 

plots is not likely attributed to differences in soil texture between the treatments, as the cover 

crop plots had slightly less clay and higher sand contents content than the no cover crop plots 

(Table 4), which might actually lead to a decrease in field capacity water content.  There was still 

a significant difference between the mean treatment value for field capacity in the two treatments 

when we analyzed the data using both sand and clay as covariates (data not shown). As a result 

of higher field capacity values in the cover crop treatment, we found increases of 21.1% and 

21.9% for plant available water at the 0-15-cm and 15-30-cm depths, respectively (Table 4). 

The observed increases in water retention at field capacity are known to occur from both 

increases in soil carbon as well as changes to soil aggregation.  First in terms of carbon, Emerson 

(1995) demonstrated the relationship of increasing carbon in the soil to increasing water held at 

10 kPa matric potential. Hudson (1994) further demonstrated that an increase in plant available 

water, largely at the range of water potentials near field capacity, followed increasing levels of 

carbon in the soil. Because treatment-driven changes in carbon can be difficult to detect and 

require large numbers of samples, particularly in soils with naturally high levels of soil carbon 

(Karlen et al., 1999; Kaspar et al., 2006), we did not measure carbon extensively enough to 
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detect treatment differences (Necpálová et al., 2014) in this experiment.  However, in 

another nearby cover crops experiment that was initiated at the same time (Moore et al., 

2014), researchers did measure 15% more soil organic matter in the 0-5-cm soil layer 

after 10 years of a cereal rye cover crop. 

In terms of soil aggregation, there is a known relationship between water retention 

and aggregate size distribution (Guber et al., 2004). In general, aggregation and a mixture 

of aggregate size classes increases the number of mesopores in the soil.  Mesopores are 

thought to contain the water between 10 kPa and 1500 kPa, and can be influenced by 

management such as  cover crops in no-till systems (Kay, 1998).  The contribution of 

cover crop roots was found to be essential for improvements to soil aggregate stability to 

occur, compared to incorporation of only the aboveground plant residue (Benoit et al., 

1962). In a maize-soybean rotation in Illinois, Villamil et al. (2006) found that winter 

cover crops increased water aggregate stability, soil organic matter and mesoporosity, 

which in turn increased plant available water.  Dao (1993) attributed greater water 

availability at equivalent suction gradients to increased porosity when comparing a no-till 

to a moldboard plow tilled soil. Franzluebbers (2002) found an important effect of 

management by depth, evidenced by greater infiltration rates related to a higher ratio of 

carbon in the 0 to 3-cm and 6 to 12-cm depths in no-till compared to conventionally tilled 

soils. Thus, it seems reasonable that the increase in soil water content at field capacity in 

our study could be a result of cover crop shoots and roots increasing soil carbon and soil 

aggregation as well as pore space.  
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Table 4. Soil texture, bulk density as well as the volumetric water content at saturation, field 
capacity, permanent wilting point and plant available water for the treatments at two depths. 
 

Depth Treat-

ment  

Bulk 

Density 

g cm-3 

(SE) 

Sand 

%  

(SE) 

Silt 

% 

(SE) 

Clay 

 %  

(SE) 

SAT 

mm3 

mm-3 

(SE) 

FC 

mm3 

mm-3  

(SE) 

PWP 

mm3 

mm-3  

(SE) 

PAW  

mm3  

mm-3   

(SE) 

0-15cm Cover 
Crop  

1.31a 
(0.04) 

35.8a 
(4.8) 

37.7a 
(2.9) 

26.5ab 
(2.0) 

0.571a 
(0.025) 

0.347a 
(0.014) 

0.175a 
(0.010) 

0.172a 
(0.009) 

0-15cm No 
Cover  

1.30a 
(0.04) 

33.8ab 
(4.8) 

40.4b 
(2.9) 

25.9a 
(2.0) 

0.558 a 
(0.025) 

0.311b 
(0.014) 

0.169)a 
(0.010 

0.142b 
(0.009) 

          

15-30-
cm 

Cover 
Crop  

1.28ab 
(0.04) 

35.6a 
(4.8) 

36.9a 
(2.9) 

27.5ab 
(2.0) 

0.553a 
(0.025) 

0.341ab 

(0.014) 
0.174a 
(0.010) 

0.167a 
(0.009) 

15-30-
cm 

No 
Cover  

1.20b 
(0.04) 

32.0 b 
(4.8) 

40.2b 
(2.9) 

27.8b 
(2.0) 

0.574a 
(0.025) 

0.310b 

(0.014) 
0.174a  
(0.010) 

0.137b 
(0.009) 

 
Values with the same lowercase letters (by column) indicate no significant differences (treatment 
by depth difference at p<0.05) 

 

Research Question 4: Does the water use from the cover crop negatively impact maize and 

soybean growth? 

 

 We hypothesized that we would not see negative impacts to maize or soybean growth 

between the two treatments, particularly if the cover crop showed increases in soil water during 

the main crop growing season.  In general we found the growth and N accumulation patterns of 

soybeans in the cover crop and no cover crop treatments to be very similar. Over the soybean 

sampling period in 2013, we did not detect any notable differences in biomass or leaf area 

between the cover crop and no cover crop treatments (Figure 4).  However one sampling date 

(August 21, DOY 233) did show significantly higher biomass in the cover crop treatment.  There 

were also no significant differences between treatments in total plant N for any of the sampling 

dates (Table S2). Final soybean grain yields in 2013 were nearly identical in both treatments, 

equaling 2.99 Mg ha-1 in the cover crop treatment and 2.96 Mg ha-1 in the no cover crop 

treatment. For maize in 2014, we similarly did not detect differences in biomass and leaf area 
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between the cover crop and no cover crop treatments (Figure 4). Further, in our analysis of plant 

nitrogen (Figure 5), we found that there was significantly higher total nitrogen in the cover 

cropped maize plants on two sampling dates (DOY 174 June 23 V7 and DOY 198 July 17 VT).  

On the last sampling date of the season (DOY 251 Sept 8 R5) there was no significant difference 

in total plant nitrogen (leaves, stems and kernels) combined between the treatments, yet the 

harvested maize kernels showed significantly higher nitrogen content (kg N ha-1) in the cover 

crop treatment (Figure 5). Similar to soybeans in 2013, final maize grain yields in 2014 were 

nearly identical in the two treatments, where the cover crop treatment yielded 12.4 Mg ha-1 and 

the no cover crop treatment 12.5 Mg ha-1.  Although we did not measure biomass throughout the 

growing seasons of 2008-2012, there were no significant differences (at the p<0.05 level) 

between the cover crop and no cover crop treatments in final yields for maize or soybeans (Table 

5) (Kaspar et al., 2012). In the drought year of 2012, the grain yield of the cover crop treatment 

was of 0.5 Mg ha-1 (9 bushels acre-1) less than yield without a cover crop, which was close to the 

least significant difference of 0.6 Mg ha-1, but there was no evidence to indicate this was a result 

of water stress, as soil moisture levels were higher in the cover crop treatment during the summer 

period (Figure 1).  

 The strong relationship between cumulative plant biomass and cumulative transpiration is 

well documented for both irrigated and rainfed cropping systems (Stockle et al., 1994; Suyker 

and Verma, 2009; Tolk and Howell, 2009; Walker, 1986).  We did not detect differences in 

aboveground maize and soybean biomass (as well as final crop yields) between the cover crop 

and no cover crop treatments (Table, which suggest similar transpiration patterns between the 

treatments. This further suggests that differences in soil water between treatments may not be 

attributable to differences in main crop plant transpiration, at least in the two seasons for which 



 72

we have biomass measurements during the growing season.  In addition, there were not any 

years with significant differences in drainage from 2002-2012, and on average the cover crop 

reduced annual drainage flow by 26 mm (Kaspar et al., 2007; Kaspar et al., 2012). Thus, 

considering all components of the water balance, if transpiration of main crop is unchanged and 

drainage is slightly decreased, if at all, then it seems reasonable that the cover crop treatment 

reduced soil evaporation and/or increased soil water storage at our research site.  

 We can draw further inferences from our data in terms of maize and soybean crop water 

limitations following a winter rye cover crop.  While small maize yield decreases after cereal 

cover crops in the North Central region of the United States are not uncommon (Miguez and 

Bollero, 2005), our results do not suggest that the cover crop’s water use or nitrogen uptake 

negatively affected maize or soybean growth at any stage of development. Mourtzinis et al. 

(2015) measured maize growth partitioning and final yields and found that a winter rye cover 

crop did not have a significant effect on grain yields in six environments but did increase maize 

biomass (stover) in one location.  We recognize that our results are specific to a region that is 

generally not water-limited, although lessons from the cover crop’s impact and subsequent 

management recommendations as a result are applicable to regions receiving less water.  Whish 

et al. (2009) found that simulations for 31 locations in wheat producing regions of Australia that 

a millet cover crop ahead of wheat as opposed to fallow only negatively impacted wheat growth 

in 2% of seasons if the cover crop was planted early or removed after 50% cover was achieved. 

Joyce et al. (2002) found reduced runoff and increased water storage up to 47mm with a winter 

cover crop in the Sacramento Valley of California, but that to avoid impact to following cash 

crops, the cover crop must be terminated prior to additional evapotranspiration driven water 

losses.  We found evidence in two of seven years that spring precipitation did not replenish soil 
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water levels after the transpiration depletion from a growing cover crop before main crop 

planting.  Producers concerned about high cover crop biomass and low precipitation in the spring 

can effectively use early termination, a method that has proven successful in other drier regions.. 

Table 5. Maize (even-numbered years) and soybean (odd-numbered years) crop yields for the 
years included in this analysis. There were no significant differences between treatments in any 
of the years at the p<0.05 level. 
 

Year Main crop yield  

cover crop  

Mg ha-1  

 

Main crop yield  

no cover crop 

Mg ha-1 

Least significant 

difference 

Mg ha-1 

2008 
 

13.5  13.3  
 

0.4 

2009 
 

2.4  
 

2.4  
 

0.2 

2010 
 

11.1  11.1  1.6 

2011 
 

3.6  
 

3.6  0.2 

2012 
 

10.9  11.4  0.6 

2013 
 

3.0  
 

3.0  0.2 

2014 
 

12.4  
 

12.5  0.6 

Average Maize  
12.0  

Soybean 
3.0  
 

Maize  
12.1  
 

Soybean 
3.0  
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Figure 4. Soybean biomass and leaf area for measurement days of year (DOY) during the 
growing season in 2013(above). Maize biomass and leaf area for measurement days of year 
(DOY) during the growing season in 2014 (below). 
 
 

  

Figure 5. Soybean biomass N by plant part for measurement days of year (DOY) during the 
growing season in 2013 (left) and maize biomass N by plant part in 2014 (right). 
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Conclusion 

In this study we found that over a seven-year period, including a series of wetter, hotter and drier 

years, that the consecutive use of a winter rye cover crop contributed to improved soil water 

content and soil water storage in a maize-soybean cropping system.  We detected evidence of 

soil water use of a transpiring cover crop in the spring but that rainfall was able to replenish the 

soil to the same level in both the cover crop and no cover crop treatments by maize and soybean 

planting most springs.  The cover crop increased the water retained in the soil at water potentials 

associated with field capacity (-33 kPa) by 10-11% as well as increasing plant available water by 

21-22%. In the most recent two years of the experiment we further found that the rye cover crop 

did not have any negative effects on maize or soybean biomass and leaf area and did not 

significantly change final crop yields in any of the seven years of this study.  Our analysis 

indicates that the long-term use of a winter rye cover crop in this region, if managed 

appropriately, can improve soil water dynamics without sacrificing cash crop growth and yield. 
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CHAPTER 4 

 

SIMULATING LONG-TERM IMPACTS OF COVER CROPS AND CLIMATE 

CHANGE ON CROP PRODUCTION AND ENVIRONMENTAL OUTCOMES IN THE 

MIDWESTERN UNITED STATES 
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Abstract 

 

It is critical to evaluate conservation practices that protect soil and water resources from climate 

change in the Midwestern United States, a region that produces one-quarter of the world’s 

soybeans and one-third of the world’s maize.  An over-winter cover crop in a maize-soybean 

rotation offers multiple potential benefits that can reduce the impacts of higher temperatures and 

more variable rainfall; some of the anticipated changes for the Midwest.  In this experiment we 

used the Agricultural Production Systems sIMulator (APSIM) to quantify how winter rye cover 

crops impact crop production and environmental outcomes, given future climate change. We first 

tested APSIM with data from a long-term maize-soybean rotation with and without winter rye 

cover crop field site.  Our modeling work predicted that the winter rye cover crop has a neutral 

effect on maize and soybean yields over the 45 year simulation period but increases in minimum 

and maximum temperatures were associated with reduced yields of 1.6%-2.7% by decade.  Soil 

carbon decreased in both the cover crop and no cover crop simulations, although the cover crop 
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is able to significantly offset (3% less loss over 45 years) this decline compared to the no cover 

crop simulation.  Our predictions showed that the cover crop led to an 11-29% reduction in 

erosion and up to a 34% decrease in nitrous oxide emissions (N2O).  However, the cover crop is 

unable to offset future predicted yield declines and does not increase the overall carbon balance 

relative to current soil conditions.   

Keywords: climate change, cereal rye cover crop, maize, soybean, greenhouse gas, soil carbon, 

soil erosion, APSIM, Midwest United States 

 

Introduction 

 The Midwestern United States is known for its high agricultural productivity, as the 

region is a national leader in commodity crop production, specifically maize and soybeans 

(USDA-NASS, 2015). The Midwest “Corn Belt” region accounts for >80% of national 

productivity for these two commodities which represents approximately one-quarter to one-third 

of global output (FAOSTAT, 2015; USDA-NASS, 2015). Therefore, potential climate change 

impacts to agriculture in this region have global implications.  Climate change is already known 

to threaten the built-in adaptive capabilities of the Earth System’s ecology (Steffen et al., 2015).  

In agro-ecological managed systems, human decision-making is required to develop adaptive 

management capabilities for climate risks that directly threaten the soil and water resources and 

agricultural productivity (Amundson et al., 2015; FAO, 2011; Hatfield, 2014; Porter et al., 2014; 

Ray et al., 2015; Walthall, 2013). 

In general, analyses performed using historical data for the Midwest over the last several 

decades indicate an increase in the frequency of heavy rainfall (Groisman et al., 2012) and flood 

events (Mallakpour and Villarini, 2015).  Further, global climate model analyses agree that 

trends of increased rainfall variability will continue and potentially increase in the region 
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(Daniel, 2015; Winkler et al., 2012).  Increases in rainfall variability can have many impacts on 

agriculture, and range from waterlogged soils delaying spring planting and decreasing  crop 

productivity  to drought-driven crop failure as was experienced across the region in 2012 (Al-

Kaisi et al., 2013; ICCIC, 2010). In light of these climate-driven risks to production and natural 

resources, advancing our understanding of soil and water conservation management practices as 

well as increasing their levels of adoption are urgent priorities (Al-Kaisi et al., 2013; ICCIC, 

2010; Lal et al., 2011; SWCS, 2003; VanLiew et al., 2013).  

 To mitigate risks from both excess rainfall and drought events, management practices 

that improve water infiltration, store soil water, and reduce runoff and erosion should be 

employed (Stewart and Peterson, 2015). The addition of an over-winter cover crop in an annual 

cropping system, such as maize and soybeans where the soil is left bare without living plants for 

about half of the year, is one approach that could help meet all of these goals (Kaspar and Singer, 

2011). Improved water infiltration may be achieved both by structural soil changes as well as by 

the addition of soil organic matter (Bhogal et al., 2009; Hati et al., 2007; Hudson, 1994). Several 

studies highlight the soil water or soil structural improvements (i.e. decreasing bulk density, 

increased water-aggregate stability; increased macroporosity) of utilizing a cover crop for several 

years in maize-based systems (Kaspar and Singer, 2011). Cover crops are also known to increase 

soil organic matter between 9% and 85% depending upon biomass accumulation and region-

specific soil and climate conditions (Kaspar and Singer, 2011). More recent research in Iowa 

found a 15% higher soil organic matter content (at 0-5cm depth) nine years after a winter rye 

cover crop was added to a maize silage rotation (Moore et al., 2014). Further, in a global meta-

analysis, Poeplau and Don (2015) calculated that cover crops increased soil carbon in the 0-22-

cm depth by 0.32 Mg ha-1 over several decades. Cover crops have reduced erosion from rainfall 
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events by up to 95% (Kaspar et al., 2001) and cropping systems with full cover compared to bare 

soil are found to decrease erosive soil losses by at least 50% (Labrière et al., 2015).  

  Given that most field experiments are conducted in the short-term (<5 years) and even 

longer-term experiments (>10 years) cannot take into account future weather trends, one way to 

extrapolate short-term results in time is by using process-based simulation models. The APSIM 

platform, the Agricultural Production Systems sIMulator, is an advanced simulator of cropping 

systems capable of simulating growth of several crop species, water balance, carbon and nitrogen 

transformations, and soil erosion (Holzworth et al., 2014; Keating, 2003). It was developed to 

predict the long-term impacts of cropping systems such as crop rotations in relation to 

greenhouse gas emissions and climate change (Biggs et al., 2013; Huth et al., 2010; Thorburn et 

al., 2010).  As one example, modeling platforms, like APSIM, can be used to understand how 

climatic change will impact soil carbon given that the long-term balance is a result of the 

interactions of climate, crop, soil and management conditions.  In Iowa’s naturally carbon-rich 

soils, field data confirms that it can be difficult to detect how alternative management affects soil 

carbon (Guzman and Al-Kaisi, 2010; Karlen et al., 1999; Kaspar et al., 2006).  

There are several model-based evaluations of the impact of cover crops 

(Farahbakhshazad et al., 2008; Feyereisen et al., 2006b; Li et al., 2008; Malone et al., 2007; 

Malone et al., 2014; Qi et al., 2011a). Much of this work, however, was focused on simulating 

cover crop reductions of nitrate leaching losses (Feyereisen et al., 2006b; Malone et al., 2007; 

Malone et al., 2014) while others were theoretical studies without measures of cover crop growth 

(Farahbakhshazad et al., 2008; Schipanski et al., 2014). While it is important to predict the 

impact of cover crops on nitrate leaching losses given the emphasis on cover crops as a water 

quality improvement tool (EPA, 2008; INRS, 2012), there are other in-field soil benefits to 
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utilizing cover crops, such as erosion prevention and organic matter accumulation, which have 

not been measured or simulated for long-term cover crop use in this region.  

 We hypothesize that the addition of a cover crop will lead to an improvement in 

environmental variables and crop production in the context of climate change.  We had two 

major objectives in this study.  The first was to use APSIM to assess predicted long-term impact 

of cover crops on maize and soybean production.  Our second objective was to assess the 

predicted improvements that cover crops offer to several environmental variables, including soil 

carbon, soil erosion and nitrous oxide emissions.  We utilized both future climate scenarios as 

well as long term weather data with no greenhouse gas forcing to meet both of these objectives.  

Using the two sets of weather scenarios should demonstrate the relative impact of climate change 

on both crop production and environmental goals. Given the predominance of maize production 

globally, enhancing our understanding of conservation practices within the Midwest can serve as 

a model for other maize growing regions.  

 

Materials and Methods 

Overview 

In this study we simulated maize and soybean production as well as environmental 

variables using APSIM (version 7.5).  We based our model performance testing and simulations 

on data from a long-term field site in Central Iowa. The cropping systems model APSIM was 

chosen because of its flexible modules, particularly in management and cropping sequences 

(Holzworth et al., 2014).  Recently Archontoulis et al. (2014a) tested several APSIM modules for 

Central Iowa and found acceptable model predictions. In this study the following APSIM 

modules were configured into the simulation platform: maize, soybean, soilN (organic matter 
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and N), surfaceOM (residue), SWIM (Soil Water Infiltration and Movement), soil temperature, 

erosion and a modified wheat module to represent the winter rye cover crop.  

  The Kelly Tile Experiment was established in 1999 in Boone County, Iowa (42.05N, 

93.71W) on a 3.7-ha field. The site includes six experimental treatments in a maize-soybean 

rotation with four replicates (30.5-m wide and 42.7-m long). For the purposes of this modeling 

study we utilized data from two treatments: the no-till maize/soybean rotation and the no-till 

maize/soybean rotation with a winter rye cover crop grown every year. These treatments 

represent a long-term record of cover crop impacts within maize-soybean cropping systems, the 

predominant land use pattern across the Midwest Corn Belt.   

Maize was planted between mid-April and early May in even-numbered years and 

soybeans in early to mid-May in the odd-numbered years.  In maize years, nitrogen fertilizer was 

applied at planting and post planting as a side-dress in mid-June at rates varying from 246 kg ha-1 

in the early years to 175 kg ha-1 in the latter years.  Higher N rates were used in the early years 

because of the transition to no-till and to provide non-limiting N supplies.  The winter rye cover 

crop was drilled following maize and soybean harvests every year except for the fall of 2001, 

2002, 2012 and 2013 when it was overseeded into the standing crops in the late summer.  The 

winter rye cover crop was terminated with glyphosate prior to maize and soybean planting where 

timing depended upon the following crop and weather conditions.  The major management dates 

including cover crop planting and termination dates are outlined in Table 1. For more details 

related to field site management, see Kaspar et al. (2007) and Kaspar et al. (2012). 

Subsurface drainage tiles consisting of 7.62-cm diameter perforated plastic were installed 

at the onset of the experiment lengthwise down the center of each plot at a depth of 1.2-m in 

1999.  Soil moisture sensors were installed in 2008 in three of the four experimental replications 
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to measure volumetric water content.  Two TDR Theta Probe Soil Moisture sensors (Kaleita et 

al., 2005; Parkin and Kaspar, 2004; Unidata Manual, 2007) were present in each replication to 

capture within plot variability.  From 2008-2011 continuous hourly measurements were reported 

at 5, 10 and 15-cm depths and from 2012-2014 at 5, 15 and 30-cm depths. 

2.2. Statistical analysis 

 Model performance was evaluated with root mean square error (RMSE) and relative root 

mean square error (RRMSE) providing indicators of the goodness of fit between the model 

predictions and field observed values. Model efficiency (perfect fit between predictions and 

observations equals 1) was also calculated to interpret the predictive ability of the model. These 

indices were calculated with the equations found in Makowski et al. (2007). Model application 

analyses comparing treatment effects (no cover crop versus with cover crop) and effects of 

weather (future climate change scenarios versus randomly generated weather scenarios) were 

performed using the MIXED procedures in SAS with each climate scenario as a random effect 

and weather and treatment as fixed effects. The interactions between treatment, climate scenario 

and GCM-generated or randomly-generated weather scenario were also included. The effect of 

time, in this case year into the future (2015 to 2060) was included as a repeated measure and the 

variance-covariance matrix of the residuals was modeled using an autoregressive structure (SAS 

Institute 2010).  

Calibration protocol 

For model calibration and validation, we utilized available data for grain yields, maize 

and soybean biomass, cover crop biomass, soil moisture, soil temperature and soil carbon as 

outlined in Table 2.  We utilized climate data from the Iowa Environmental Mesonet (IEM, 

2015). We incorporated the calibration dataset into APSIM to visualize model performance with 
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measurements (data from Table 2).  We then followed an iterative process in which we assessed 

how well the measured data fit to model simulations, following the order of crop phenology, soil 

temperature, soil water, soil N, plant biomass, maize and soybean carbon and nitrogen 

partitioning and yield. This same calibration protocol was followed by Archontoulis et al. 

(2014a). Maize and soybean genotypes changed over time in the field but in the model we 

considered the same cultivars over time due to the lack of cultivar specific information. This 

introduces some uncertainty and unexplained variation in model predictions as compared to 

measurements.   

Table 1. Management dates and operations 
 

Year 
Cash 

Crop 

Cover Crop 

Termination 

Date 

Cash 

Crop 

Planting 

Date 

Harvest 

Date 

Cover 

crop 

planting 

Total 

N 

applied  

kg ha-1 

Cover Crop 

Seeding Method 

2001         20-Aug     

2002 Maize 17-Apr 25-Apr 30-Sep 10-Sep 235 Aerial seeding 

2003 Soybeans 6-May 12-May 30-Sep 2-Oct   Aerial seeding 

2004 Maize 16-Apr 28-Apr 4-Oct 6-Oct 246 
Drilled after 
harvest 

2005 Soybeans 25-Apr 6-May 30-Sep 30-Sep   
Drilled after 
harvest 

2006 Maize 21-Apr 4-May 20-Oct 24-Oct 225 
Drilled after 
harvest 

2007 Soybeans 10-May 22-May 26-Sep 28-Sep   
Drilled after 
harvest 

2008 Maize 29-Apr 14-May 28-Oct 29-Oct 198 
Drilled after 
harvest 

2009 Soybeans 21-May 22-May 28-Sep 28-Sep   
Drilled after 
harvest 

2010 Maize 19-Apr 29-Apr 16-Sep 17-Sep 198 
Drilled after 
harvest 

2011 Soybeans 5-May 18-May 29-Sep 30-Sep   
Drilled after 
harvest 

2012 Maize 23-Apr 4-May 19-Sep 4-Sep 175 Aerial seeding 

2013 Soybeans 13-May 23-May 20-Oct 4-Sep   Aerial seeding 

2014 Maize 10-Apr 6-May 17-Oct 9-Sep 196 Aerial seeding 
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Given the extensive data available from the experimental site we utilized the field site 

measurements from 2003-2008 for model calibration and data from 2009-2014 for model 

evaluation. We ran APSIM sequentially and we considered a spin up period of 10 years for the 

fast decomposing organic matter pools to stabilize (referred to as BIOM for the microbial and 

FOM for the fresh organic matter pool) which for our objectives aligns with other APSIM work 

(Bryan et al., 2014).  Highlights from our model testing are detailed in the methods section and 

results of model application for future climate change appear in the results and discussion.  

 

Soil profile chemical and physical properties  

The parameter values to run the model (Table 3) are based on site-specific measurements 

supplemented with information from the Web Soil Survey (Soil Survey Staff) when necessary 

(depths > 1.2 m). These values are reasonable for our chosen field site as they are within the 

Table 2. Measured field data used in model calibration and validation 
 

Measured Data 

Dates of data 

utilized for 

initialization 

and calibration 

Dates of data 

utilized for 

validation 

References 

Yields: maize and 
soybeans 

2003-2008  2009-2014  
Kaspar et al. 2007, 
Kaspar et al. 2012, 
Kaspar (unpublished) 

Maize biomass, leaf 
area and C/N allocation 

 n/a 
In 2014 Every 2-3 
weeks during the 
growing season 

Basche (2015) 

Soybean biomass, leaf 
area and C/N allocation 

 n/a 
In 2013 Every 2-3 
weeks during the 
growing season 

Basche (2015) 

Soil carbon 2003 2010, 2014 
Kaspar et al. 
(unpublished), 
Supplemental Material 

Cover crop biomass 2003-2008 2009-2014 
Kaspar et al. 2007, 
Kaspar et al. 2012, 
Kaspar (unpublished) 

Soil moisture 2008 2009-2014 Basche (2015) 

Soil temperature  2008 2009-2014 Supplemental material 

 



 91

range of those used by Archontoulis et al. (2014a) and Malone et al. (2007) for Central Iowa 

APSIM studies. The partitioning of carbon into the more active and passive organic pools also 

followed the parameters utilized by Archontoulis et al. (2014a) and Malone et al. (2007). 

We tested the model at the site with respect to soil organic carbon dynamics in the 

relatively short period of the field study. The observed soil carbon data shows significant 

differences between years and between depths, but no significant differences between treatments 

(Figure S1a-S1b). At the field site, carbon data showed a small decline in 2014, while predicted 

carbon values begin to show declines after about twenty years of the simulation.  

 
Table 3: Soil module input parameters  

 
Depth 

(cm) 

Bulk 

density  

g cm-3 

Air 

Dry 

mm3 

mm-3 

Lower 

limit 

mm3 

mm-3 

Drainage 

upper 

limit 

mm3 

mm-3 

Saturation 

mm3  

mm-3 

Organic  

Carbon 

% 

pH Fraction 

biom 

carbon 

(0-1) 

Fraction 

inert 

carbon 

(0-1) 

0-15 1.30 0.115 0.161 0.300 0.430 2.986 6.6 0.035 0.40 

15-30 1.270 0.125 0.173 0.310 0.479 2.340 6.6 0.019 0.500 

30-60 1.30 0.125 0.173 0.310 0.459 1.200 6.6 0.014 0.640 

60-90 1.350 0.135 0.173 0.310 0.459 0.940 6.6 0.010 0.800 

90-120 1.420 0.155 0.173 0.310 0.453 0.940 6.7 0.010 0.800 

120-150 1.830 0.152 0.173 0.310 0.403 0.500 7.8 0.010 0.816 

150-180 1.830 0.152 0.173 0.310 0.403 0.350 7.8 0.010 0.816 

 

 Soil water  

The SWIM module in APSIM simulates water balance using the Richard’s equation and 

was selected over the default soil water module in APSIM (SOILWAT) because of its capability 

to simulate water flow in tiles (Malone et al., 2007). For a detailed description of the SWIM 

model see Verburg et al. (1996) and Huth et al. (2012).  Soil water dynamics were manually 

calibrated using the available field dataset from 2008-2014 (Table 2 & 3).  The main parameters 

we focused on were the drainage upper limit, lower limit, saturation and hydraulic conductivity, 
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which were manually calibrated. The model simulated 5-cm depth volumetric water content with 

a RRMSE error of 14% and RMSE of 0.05 mm3 mm-3 during model calibration and RRMSE of 

27% and RMSE of 0.06 mm3 mm-3 during model validation. At the 15-cm depth, the model 

simulated volumetric water content with a RRMSE error of 12% and RMSE of 0.04 mm3 mm-3 

during the calibration period and with a RRMSE error of 19% and RMSE of 0.06 mm3 mm-3 

during the validation period (Figure S2a, S2b). Overall the calculated statistical values fell within 

the range reported for soil moisture simulations (Archontoulis et al., 2014a; Dietzel, 2014).  

 Soil Temperature  

An alternative soil temperature model available in APSIM (APSIM Documentation) was 

utilized in this study as it performed better compared to the default model. Archontoulis et al. 

(2014a) found that both available soil temperature models in APSIM performed well in Iowa 

during the growing season, but the one based on Campbell (1985) and described and utilized by 

Chauhan et al. (2007) was superior to the default. The optional soil temp module requires 

additional inputs of boundary layer conductance (set to 20 J s-1 m-1 K-1) and clay content (25%) 

for the soil.  

Model predictions at the 5-cm depth had a RRMSE of 11.8% and RMSE of 2.2°C during 

the calibration period and RRMSE 12.2% and RMSE of 2.2°C during the validation period. At 

15-cm, APSIM predicted a RRMSE of 7.9% and RMSE of 1.4°C for the calibration period and a 

RRMSE of 10.4% and RMSE of 1.8°C for the validation period (Figure S3a, S3b).  The optional 

soil temperature module compared to the default module decreased RMSE from 5.7°C to 2.2°C 

at 5-cm and 5.0°C to 1.4°C (during the validation period).  Model efficiency values for soil 

temperature were 0.81 for the 5-cm depth calibration period, 0.86 for the validation period and 

0.91 for the 15-cm depth calibration period and 0.89 during the validation period. In general, 
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APSIM predicted lower soil temperatures in the month of April in the cover crop plots (pre-

termination) by about 1-2°C (0-30cm depths). 

Grain crop yields  

Cultivar specific parameters for maize and soybean were used based on the work of 

Archontoulis et al. (2014a, b). A typical 110 day maturity maize hybrid and group 2.5 maturity 

soybean cultivar were used.  The model simulated maize yields for both treatments with a 

RRMSE of 12% and RMSE of 1547 kg ha-1 and soybean yields for both treatments with a 

RRMSE of 25% and RMSE of 775 kg ha-1.  For the maize and soybean yields there is a slight 

trend toward over prediction (Figure S4a, S4b). This is most likely attributed to biotic factors 

that are not represented in the current APSIM version.  APSIM does not at this time represent all 

of the processes that might occur over a growing season, such as disease, weed, or pest pressure 

or allelopathic effects of rye before maize (Barnes and Putnam, 1986; Kessavalou and Walters, 

1997; Raimbault et al., 1990, 1991; Tollenaar et al., 1993) which might also lead to yield 

declines. This could also be a result of maintaining the same cultivar from year to year in the 

simulation.   

Winter rye cover crop  

Cereal rye is not listed as a crop model in APSIM version 7.5 so we chose to work with 

the APSIM-wheat crop module as it represented the most similar available plant.  When cereal 

rye is grown as a winter cover crop in the Midwest, it generally does not reach the heading stage 

of development.  Therefore we chose to focus model changes on the known differences between 

wheat and cereal rye impacting vegetative growth stages to try to improve its performance as a 

cover crop in Iowa, beginning with an American wheat cultivar (yecora) (Table S1).  
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In the wheat model, we changed the optimal temperature from 26 to 18°C and maximum 

temperature from 34 to 30°C (Nalborczyk and Sowa, 2001; Nuttonson, 1958) and left the base 

temperature at its default of 0°C. Daily biomass accumulation is calculated as the minimum of 

two processes, one limited by light (radiation use efficiency, 1.24g MJ-1) and the other by water 

(transpiration efficiency, 0.006 kPa g m-2). This daily dry matter is adjusted further to account for 

water and nitrogen limitations. Leaf development is driven by temperature based on a 

phyllochron interval (75 degree days °C). Between emergence and floral initiation (representing 

the whole of vegetative growth of a cover crop in the system we are modeling), vernalization 

effect on phenology was adjusted accordingly to fit our region. Higher vernalization values result 

in delayed accumulation of thermal time and slower phenological development. To improve 

model predictions we increased vernalization to a value of 5 units, the value used by Malone et 

al. (2007). In some years, rye cover crop was overseeded into standing maize and soybeans. 

Therefore we utilized the CANOPY module in ASPIM to allow crop competition for resources 

and better representation of intercropping aspects. When this rule is utilized, APSIM partitions 

the available radiation between the two growing plants according to their ability to intercept 

radiation.   

 We found that a major issue in the model’s ability to capture year-to-year variability 

came in the seeding method at the field site. Not surprisingly, the years (in the autumns of 2001, 

2002, 2012 and 2013) when the winter cover crop was broadcast seeded the model tended to 

overpredict rye biomass. Without any changes, the model would assume proper seed to soil 

contact, germination rates, and cereal rye plant populations that a broadcast seeding on the 

residue cover soil surface cannot achieve.  To correct this (as visual observations have confirmed 

slower germination and lower plant populations in the field) we delayed planting in aerial 
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seeding years by three weeks and reduced the seeding rate by 50%. Other aspects of cover crop 

management are outlined in the supplemental material. We also investigated nitrogen uptake of 

the cover crop including leaf nitrogen concentration. Improvements in rye biomass and nitrogen 

uptake predictions were derived by altering the parameters outlined in the supplemental material. 

 The average predicted biomass values over the calibration and validation period were 

reasonable (Figure S5a), with an RRMSE of 56% and RMSE of 895 kg ha-1. The default 

(uncalibrated) APSIM wheat crop module parameters results in an RRMSE of 91% and an 

RMSE of 1457 kg ha-1. Average winter rye biomass predicted by APSIM during this period was 

1411 kg ha-1 compared to average observed field values of 1596 kg ha-1. On average, APSIM 

predicted cover crop biomass well but did not always capture year to year variability especially 

in 2003, 2005, and 2011. The simulated N uptake values had an RMSE is 19 kg ha-1 and RRMSE 

is 41.9% (Figure S5b) which is higher than the range reported by Feyereisen et al. (2006a). We 

evaluated the statistics for the yields of the two cash crops combined with aboveground biomass 

for the cover crop in the rotation and these values had a predicted RRMSE of 19% and model 

efficiency of 0.94. This indicates very acceptable model performance for plant growth 

observations. 

 Erosion module 

The erosion model was coupled to the simulation for the model application phase of this 

study. We utilized the Freebairn erosion module in APSIM which is built from a modified USLE 

equation (Freebairn and Wockner, 1986a, b; Littleboy et al., 1989).  It was revised to include a 

greater effect of surface cover and runoff, the main factors that can be affected by management 

within the APSIM framework.  The calculation of erosion is based on cover and runoff volume 

and uses slope-length, erodibility, and supporting practice factors.  The surface cover value is 
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derived from the surface organic matter module and accounts for combined crop and residue 

covers on the soil surface. The runoff value is derived from SWIM. We assumed a soil 

erodibility factor of 0.29 based on a loam soil with > 2% organic matter (Stewart, 1975) and a 

slope of 1% for the experimental site. To estimate a range of values of erosion prevention for our 

region, we also investigated slopes of 2% and 5% in our model application. Further, we explored 

how changes in the USLE supporting practice factor (P) would change erosion predictions, as 

this is an explicit input in the erosion module while crop management (C) is not explicitly 

included as described above (APSIM Documentation).  We used a supporting practice factor for 

the cover crop of 0.9, which we consider to be conservative.  Arabi et al. (2008) used a 

supporting practice factor (P factor in RUSLE) of 0.55 in SWAT where residue cover equaled 

500 kg ha-1 which would be a low total for cover crop residue at our research site.  For the 

erosion application scenarios, we chose four representative global climate model future weather 

scenarios. 

Model application 

We generated future weather predictions using the methodology of the AgMIP Guide For 

Running Climate Scenario Generation Tools with R (AgMIP, 2013). We utilized 20 different 

Coupled Model Intercomparison Project 5 (CMIP5) global climate model (GCM) outputs and 

ran simulations through 2060. We utilized GCM outputs with representative carbon pathway 

(RCP) 4.5, which represents a “stabilization” scenario where radiative forcing stabilizes by 2100 

and an average global temperature increase of 1.8°C by 2100 relative to pre-industrial levels 

(IPCC, 2013).  We also utilized several randomly generated meteorological files based on 

current trends to look for differences between the long-term climate record compared to a future 
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weather accounting for changes due to greenhouse gas forcings (referred to as GCM-generated 

scenarios and randomly-generated weather scenarios) (Figure S6a-S6d). 

 For these simulations, we set soybean to be planted every odd numbered year on May 15 

and maize every even numbered year on May 1. We set maize to be fertilized on June 1 with a 

rate of 198 kg ha-1 of liquid urea-nitrate representing an average value for the field site.  For the 

cover crop, we utilized model set up to represent direct drilled planting after maize on October 

20 and after soybean harvest on October 1. The cover crop was terminated before the maize 

growing season on April 15 and soybean years on May 1.  Attempts to represent the cover crop 

management with the aerial seeding set up showed a bias toward over prediction that was not 

reflective of actual field growth. Therefore, we chose a more conservative cover crop planting 

window, which would better represent cover crop planting and termination dates between typical 

harvest and planting for a maize-soybean rotation in our region. 

 

Results and Discussion 

Crop Production Impacts of Climate Change and Cover Crops 

Cover crop impacts on maize and soybean yields  

 Yield predictions resulted in non-significant differences for both maize (p=0.92) and 

soybean (p=0.94) between the cover crop and no cover treatments over the simulation period 

(2015 to 2060) In the short-term (2000-2005), Kaspar et al. (2007) found one year with 

significantly lower maize yields in the cover crop treatment, which they attributed to 

management challenges with cover crop termination. The other four years of maize and soybean 

yields had non-significant differences between treatments.  For the later years of the experiment 

(2006-2010), Kaspar et al. (2012) reported no statistical differences between maize and soybean 
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yields in the following five growing seasons at the field site. This level of agreement with the 

field data gives us confidence in our predictions for yield differences between the two 

treatments. 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 1a. Maize yields predicted by APSIM through 2060 for the cover crop and no 
cover crop treatments for each of the 20 global climate model (future) generated 
future weather scenarios and the five randomly generated weather scenarios 
(random), beginning in 2015. Trend line in gray.   

 

 
 Figure 1b. Soybean yields predicted by APSIM. 
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To better understand the mechanisms behind the predicted differences between the 

treatments, we analyzed the movement of carbon, nitrogen and water in the model. Model 

predictions indicated that in the cover crop treatment the carbon levels in the two rapidly cycling 

carbon pools (BIOM and FOM pools) were higher compared to no cover crop treatment as a 

result of additional C input from the cover crop. We found greater nitrogen immobilization in the 

cover crop treatments most years from April until July (average increase between the two 

simulations of 13 kg ha-1 yr-1), as well as higher gross mineralization rates for the cover crop 

treatment (average increase between the two simulations of 17 kg ha-1 yr-1. The resulting net 

mineralization rate was only slightly higher in the cover crop simulation and this might be one of 

the reasons why the simulated rye cover crop had minor impacts on following crop yields 

(results not shown). We believe that the greater gross mineralization rate was the result of the 

low C/N ratio of the rye above ground biomass (~16) that contributes to higher N availability and 

the greater immobilization imposed by the high below ground root C/N ratio (~40). The amount 

of above and below ground rye biomass was variable from year-to-year, which generated 

variability in N cycling. 

In our analysis of water dynamics, APSIM predicted higher soil water levels in the cover 

crop plots before and after cover crop termination at both 5-cm and 15-cm, with a more 

noticeable increase at 5-cm, due to lower soil evaporation predictions during this period. In the 

field, we observed greater evidence of soil water depletion (as compared to APSIM predictions) 

as the winter rye cover crop grows, but in the simulations as well as in the field observations 

spring rainfall in Iowa restores soil moisture to the same level in both treatments.  Further, as 

cash crop growth proceeded, soil water predictions tended to be the same in the cover crop and 

no cover crop simulations (Figure S7a, S7b). APSIM predicted nearly identical maize and 
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soybean crop water use in the two treatments (results not shown) and field observations of maize 

and soybean biomass did not indicate growth differences between the cover and no cover crop 

treatments during two growing seasons (Basche et al., 2015). The predicted changes suggest that 

APSIM is representing the dynamics of reduced evaporation, improved infiltration and cover 

crop water use, but perhaps not to the extent that is observed in the field, where we saw greater 

evidence of crop water use or reduced evaporation. The small predicted differences in water and 

nitrogen could be the reason that the model predicts no major yield effects.  If the model was 

able to capture the full extent of cover crop impacts, there might be potential to yield 

improvements over time, as is often reported by farmers (SARE-CTIC, 2013, 2014, 2015). 

Climate change impacts on maize and soybean yields 

 Throughout the duration of the simulation period (through 2060), both maize and 

soybean (in the cover and no cover treatments) show a trend toward a decrease in yield (Figure 

1a, 1b) with an average decline of 1.6% by decade in maize and 2.7% by decade in soybeans for 

the GCM-generated weather scenarios. We found that the GCM-generated weather files predict 

several mechanisms that could lead to crop yield declines that are different than the randomly-

generated weather files, including more years with significant crop water stress as well as greater 

soil water demand and evapotranspiration (results not shown). The greenhouse gas forcing in the 

GCM-generated weather files and increased temperature trends (Figure S6a, S6b) appear to be 

responsible for driving the increase water demands and stressors.  We further found that the 

GCM-generated weather scenarios with a lower increased temperature trend lead to smaller rates 

of yield decline (results not shown). 

 In this analysis planting dates and cultivars were not changed for both the cash crops as 

well as for the cover crop.  Therefore our results may not fully reflect adaptation in management 
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for earlier cash crop planting dates and later cash crop maturities that farmers may utilize in the 

future (Sacks and Kucharik, 2011) which could lead to an advantageously longer growing season 

for maize and soybeans. This might in part account for the small yield decline in the randomly-

generated weather scenarios.  It should also be noted that our analysis does not include effects of 

increasing carbon dioxide atmospheric concentration, which has the potential to offset some, but 

not all, of the other future climate change impacts (Long et al., 2006; Long et al., 2004). Further, 

Hatfield et al. (2011) note that the potential impacts on water use efficiency from carbon dioxide 

increases will be offset by crop loss associated with heat stress, increases in evaporative demand 

and or decreases in water availability. The yield declines predicted by APSIM in our experiment 

are within the range predicted by other reported studies evaluating climate change scenarios. A 

summary of crop and climate change modeling studies, Porter et al. (2014) found that for the 

major cereal crops in temperature regions, average predicted declines were from 0-2% by decade 

into the future.  The IPCC’s summary also points to an increase in the number of studies 

reporting yield declines as well as an increase in the percent decline by decade as 2100 is 

approached.  

Winter rye cover crop biomass 

 During this 45-year simulation period, the average predicted cover crop biomass is 1300 

kg ha-1 (standard error of 800 kg ha-1) over all of the weather scenarios (Figure 2). We further 

observed a slight increase in cover crop growth in the GCM-generated weather scenarios that is 

not present in the randomly generated weather scenarios. This is further evidence that the 

predictions of a decrease in crop yields and an increase in over winter cover crop growth result 

from the increasing temperature trend.  However, there are years after 2040 where predictions of 

rye cover crop biomass are both very high (> 4000 kg ha-1) and very low (< 500 kg ha-1), which 
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demonstrates that even with a warming trend, not every year will experience very high cover 

crop biomass. In terms of water impacts, the cover crop treatment was predicted to reduce soil 

evaporation between 2-18% with the greater reductions coming in drier seasons.  Cover crop 

transpiration in the fall reached approximately 10 mm and 50 mm in the spring in high biomass 

years (results not shown).  One adaptation strategy for farmers not accounted for in our analysis 

is the lengthening of the growing season for maize and soybeans (3.1.2.).  However, the planting 

window utilized in our model application is conservative enough not to overestimate potential 

growing degree units available for cover crop growth into the future. The conservative planting 

window, even more so then utilized at our research site, is likely the reason that the randomly-

generated weather scenarios predict lower than observed cover crop biomass. 

 

 

 

 

 

 

 

 

 

 

 
Figure 2. Biomass predictions for the winter rye cover crop for each of the 20 global 
climate model (future) generated future weather scenarios and the five randomly generated 
weather scenarios (random), beginning in 2015. Trend line in gray. 
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Wet and dry year analysis 

 As addressed previously, APSIM predicted only minor, non-significant maize and 

soybean yield differences between the cover and no cover crop treatments which over the period 

of the 45-year simulation.  However, the yield declines that did occur in both maize and soybean 

in the cover crop treatments were predicted in years with lower rainfall totals. In general, 

declines ranged from 1-10% in maize and 1-30% in soybean in a limited number of years where 

rainfall was more than 25% below average (Figure S8a, S8b) or less than 690mm. We found that 

the model tended to predict more water stress in these years in the cover crop plots in the mid-

summer period (results not shown) which could account for the reduced crop yield. The 

predictions demonstrate that the cover crop could compete with the cash crop for water in 

abnormally dry years.  Whish et al. (2009) similarly found that a millet cover crop before wheat 

in a semi-arid region of Australia only impacted wheat years in 2% of years when properly 

managed. This trend of water stress in mid-summer is not something we observed in the field in 

2012, the single year on record at our site with close to this abnormally low amount of rainfall 

(637 mm). Although there was a non-significant maize yield reduction in the cover crop 

treatment, our analysis of the soil water record indicated higher moisture levels at 5-cm, 15-cm 

and 30-cm depths during the grain fill period for maize (Basche et al., 2015).  Even with the 

competition for soil water predicted by APSIM in the very dry seasons, yield reductions 

predicted in the cover crop treatment are relatively small in these years.  

 Environmental Impacts of Cover Crops and Climate Change 

Soil Carbon 

The model predicted increases in soil carbon at the 0-15-cm depths but decreases in the 

lower depths of the soil profile. In the GCM-generated weather scenarios, the cover crop 
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treatment showed a soil carbon increase of 0.12% while in the no cover crop treatment soil 

carbon was essentially unchanged with a predicted difference of -0.02% between 2015 and 2060 

at the 0-15-cm depth (results not shown).  This represented a significant difference between 

treatments (p<0.0001).  In the randomly generated weather scenarios, carbon at the 0-15-cm 

depth increased by 0.14% in the cover crop treatment and 0.08% in the no cover crop treatment 

(p=0.007 between treatments).  At the 0-30-cm depth, APSIM predicted carbon declines in both 

treatments and weather scenarios, although the declines were not uniform (Figure 3).  In the 

GCM-generated weather scenarios, predictions for the total mass of carbon over the 0-30cm 

depth show significant differences between the treatments (p<0.0001), with the no cover crop 

treatment losing an average of 5000 kg ha-1 more than the cover crop plots over the simulation 

period (annual loss of 110 kg ha-1y-1).  This represents a decline in carbon mass of 6% in the no 

cover crop treatment and 3% in the cover crop treatment over the 2015 to 2060 period.  The 

randomly generated weather scenarios show significant differences between treatments as well 

(p=0.01), with the no cover crop treatment losing an average of 71 kg ha-1 yr-1 (3% decline) more 

than the cover crop plots (2% decline). We also compared the relative contribution of weather 

scenario (GCM-generated versus randomly-generated) and treatment (cover or no cover crop) to 

this soil carbon decline. We found very similar effects of treatment (p=0.008) to the impact of 

future climate change (p=0.017) at the 0- 30-cm depth. However our analysis of statistical model 

residual error indicates a greater effect of a cover crop treatment than weather; although the 

comparison is somewhat imbalanced by the fact that we have more GCM-generated weather 

scenarios than randomly generated scenarios.  Our results seem to indicate that even without a 

warmer climate change scenario, soil carbon would decline over several decades at our research 

site.  The cover crop, however, is able to offset some of that declining trend. 
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These results are substantiated by long-term field trials as well as modeling efforts. Over 

sixty years of cultivation, wheat-fallow rotations in Oregon lost carbon at the 0-30-cm and 30-

60-cm depth (Rasmussen et al., 1998).  Rasmussen et al. (1998) note that few long-term 

experiments measure data below 30-cm, resulting in further uncertainty in soil carbon changes.  

In Illinois, the Morrow Plots measured carbon declines in the 0-20-cm depth over ninety years in 

multiple crop rotations even with adequate fertilizer (continuous maize, maize-oats, maize-oats-

hay) (Huggins et al., 1998; Odell et al., 1984).  Prior APSIM modeling results predict soil carbon 

declines into the 21st century in Iowa, where the incorporation of a winter rye cover crop can 

help to slow the rate of carbon loss (Dietzel, 2014). Luo et al. (2011) predicted temperature 

driven carbon declines at a particular site in Australia with levels of decomposable carbon 

similar to our research site.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 
Figure 3. Predicted soil carbon changes from 2015- 2060 at the 0-30cm depth for the cover 
(circles) and no cover crop (triangles) simulations. 
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Prior modeling suggests that management can have a greater influence on soil carbon 

sequestration than future climate change.  Thomson et al. (2006) reported that the cropping 

system (no-till double cropped wheat-maize versus conventional-till continuous wheat) had a 

more important influence on carbon sequestration than the climate change scenario.  Similarly, 

Lugato and Berti (2008) reported that recommended management practices (such as no-till, 

manure management and grassland conversion) had a greater effect on carbon sequestration than 

the climate change scenario. The relative contribution of these factors likely varies in different 

locations and cropping systems and even with the use of a biophysical model like APSIM can be 

difficult to discern. 

APSIM predictions for carbon decomposition rates are dependent upon soil temperature, 

soil water and the C:N ratio of the soil organic matter pools (Probert et al., 1998). Given the 

performance of carbon, water and temperature in model testing (Figure S1-S3), we also believe 

the long-term carbon predictions to be plausible.  The overall decline in carbon in the future 

weather scenarios could be a result of soil temperature increases projected into the future (Figure 

S6d) driving carbon decomposition to a declining level that the addition of a cover crop cannot 

completely reverse.  It could also be a result of the future weather scenarios predicting yield 

declines which resulted in lower overall carbon residue inputs. These simulations, however, do 

not take into account the effect of increasing atmospheric CO2 levels on cash crop or cover crop 

growth.  We conclude that the cover crop has the potential to serve as an adaptation strategy to 

slow some of the soil carbon loss.  However, the cover crop may not be able to completely 

overcome future climate change effects on soil carbon declines as the maize-soybean rotation 

results in soil carbon loss under the current climate.  
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Soil Erosion 

 Soil loss prevented in the cover crop treatment ranged from an 11% to 29% reduction in 

erosion (1% slope) compared to the no cover treatment (Table S2).  These percentages were 

basically unchanged when we increased field slope to 2% and 5%. We also explored the impacts 

of changing the supporting practice factor in the erosion module which resulted in predictions of 

erosion prevention from a cover crop increasing to 20% to 36% (Table S2). This range in erosion 

prevention resulted from the different future weather scenarios utilized.  We would expect this 

given that the APSIM erosion module predicts erosion in part based on runoff resulting from 

rainfall projections.  

 There are several limitations to our current erosion reduction estimates.  Model 

calculations rely heavily on ground cover and may not account for all of the physical forces by 

which a plant’s roots would prevent residue, soil, and water movement, which might explain in 

part why percentages showed only minor changes when slope was increased.  Further, surface 

roughness factors and peak runoff rates are not included in erosion calculations (APSIM 

Documentation). Finally there are limitations to the current downscaling capabilities of global 

climate models to accurately reflect daily precipitation changes into the future which might have 

the greatest impact on erosion.  Nearing et al. (2004) estimate that erosion increases will be 1.7 

times greater than annual rainfall increases in the future. If the increase in rainfall intensity is not 

well estimated by current downscaling techniques of global climate models then this could lead 

to an underestimation of erosion impacts in general. 

 In spite of these limitations, these estimates are reasonable considering that these are 

cumulative values (over wetter and drier years) and the direction of the model is consistent with 

our understanding of crop and soil processes.  At a field site closely located to the one used in 
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this study for calibration of the model, Kaspar et al. (2001) measured significant reductions in 

inter-rill erosion rates before cover crop termination in late April in three consecutive years 

(48%-62%) and even larger reductions in rill erosion rates (86%-93%) when a rye cover crop 

was grown over winter following no-till soybeans on a 4.5% slope. Thus, we believe for long 

term averages the APSIM predictions for cover crop reductions are reasonable and demonstrate 

that the cover crop, even in a no-till system, can have a significant effect on erosion reduction in 

the context of climate change. 

Nitrous Oxide Emissions 

 Prior work indicates that cover crops do not consistently reduce nitrous oxide emissions 

from the soil surface (Basche et al., 2014), given their ability to reduce soil N, increase surface 

residue, increase or decrease soil water, and increase soil carbon, all of which could increase or 

decrease nitrous oxide loss. Given these complex interactions, we utilized our calibrated model 

to explore the impact of the cover crop on N2O emissions with climate change scenarios. APSIM 

calculates N2O emissions based upon soil carbon, soil water, soil temperature, and soil pH and 

soil NO3-N (Thorburn et al., 2010). Predictions for nitrous oxide varied by future weather 

scenario utilized, where the range was from an increase in N2O with the cover crop of 0.2% and 

a decrease of 33.5% (Figure 4). Of the factors that a cover crop might influence – soil nitrate, 

active carbon, soil moisture and soil temperature – our analysis of selected weather scenarios 

found that the reduction in soil nitrate was most responsible for the cover crop’s reduction in 

nitrous oxide emissions (results not shown). In many years and weather scenarios there were 

large decreases in soil nitrate in the cover crop simulation and therefore we infer that this is the 

reason for the decreased nitrous oxide predictions. As a point of comparison, a meta-analysis 

found that the traditional management of a cover crop in a maize-soybean system in the Midwest 
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(non-legume plant species that is chemically terminated) does not lead to a net difference in 

nitrous oxide emissions (Basche et al., 2014). Further, the GCM-generated future scenarios with 

higher temperature projections tended to predict the greatest N2O emission reduction from the 

cover crop treatments, where those that project no temperature increases predicted smaller 

decreases in N2O emissions (as well as the one weather scenario predicting a minor N2O 

increase) from the cover crop (Figure 4). This indicates that in a warmer climate, the cover crop 

could act as a potential mitigation strategy. Field trials in Iowa maize-soybean rotations testing 

the effect of cover crops on N2O emissions are mixed. Parkin and Kaspar (2006) found small 

insignificant emissions increases in three of four site-experiment years, while Jarecki et al. 

(2009) and Mitchell et al. (2013) measured increases with a cover crop in some of their site-

experiment years.  A controlled environment study found more consistent declines in N2O 

 

 
Figure 4. Predictions of the nitrous oxide response ratio (with cover crop / no cover crop) from a 
subset of nineteen weather scenarios. Across a series of varied weather conditions, APSIM 
predicts that for our location and management, the cover crop generally reduces nitrous oxide 
emissions. 
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emissions after manure applications when a winter rye cover crop was alive and taking up nitrate 

(Parkin et al., 2006) after soybean harvest. In the aggregate, research in Iowa demonstrates a net 

neutral effect of cover crops on nitrous oxide emissions and whereas this modeling simulation 

predicts that under projected future climate conditions, a winter rye cover crop in a maize-

soybean rotation can lead to declines in N2O emissions. 

 

Conclusion 

 From this study, we conclude that in the long-term a winter rye cover crop had neutral 

long term effects on maize and soybean yields. However, climate change scenarios predict yield 

declines in both of the treatments.  An average cover crop biomass of 1300 kg ha-1 yr-1 results in 

significant improvements to environmental impacts, including an average erosion reduction of 

11-23%.  Although soil carbon declines at lower depths in the soil profile (>15cm) in both 

treatments and weather scenarios, the cover crop simulation is able to offset that loss by 3%. In 

the GCM-generated climate change scenarios, carbon decline results from declining crop yields 

and increasing soil temperatures. Most weather scenarios predict soil nitrous oxide emissions 

reductions with the winter rye cover crop.  Our results show that with future projected climate 

change, a winter rye cover crop does not lead to soil carbon increases and cannot offset future 

projected yield declines, however soil N2O emissions are generally decreased and erosion 

prevention is increased. Thus, there is evidence of the cover crop improving outcomes with 

future weather but perhaps not enough to offset all potential future changes that the region may 

experience.  Additionally, we understand that the model simulations do not fully reflect changes 

in soil structure, pest, diseases, and nutrient cycling that the cover crop cause over time.  Given 

the current understanding of regional climate changes, this research demonstrates that it will 
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continue to be a challenge to design cropping systems that enhance future soil and water 

resources. Future modeling efforts could investigate the potential benefit of carbon dioxide 

increases, longer growing seasons, and improved cover crop cultivars or species mixes to offset 

more of the anticipated climatic change in the Midwestern United States. 
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CHAPTER 5 

SUMMARY AND CONCLUSIONS  

 

The overall objective of this dissertation research was to evaluate the mitigation and 

adaptation potential of cover crops in the context of future climate change in Midwest 

agroecosystems.  Specifically, these projects quantified the impact of a winter rye cover crop on 

nitrous oxide emissions, soil water, cash crop yields, soil organic matter and soil erosion in 

maize-soybean crop rotations. This work aimed to advance scientific understanding of how cover 

crops impact carbon, water and nitrogen dynamics in Midwest cropping systems, using both 

process-based and statistical modeling approaches, to better inform their use with producers in 

the region. 

Chapter two found that cover crops do not universally reduce nitrous oxide emissions 

from the soil surface.  However, there is a greater chance for nitrous oxide reductions when 

cover crops are managed as they generally are in Midwest cropping systems, with a grass species 

and chemical termination method. Chapter three showed that a cereal rye cover crop increased 

water retained in the soil profile and led to 21-22% increases in plant available water content 

(30-cm depth). Further, over this series of seven characteristically different rainfall years, the 

cover crop did not demonstrate negative effects on cash crop growth and yields.  Chapter four 

found that in modeling the effects of future climate, a cereal rye cover crop in a no-till maize-

soybean rotation has the potential to reduce erosion losses by 11-29%, decrease nitrous oxide 

losses by up to 34%, and offset carbon declines by 3%.  However, our modeling efforts did not 

find evidence that the cereal rye cover crop would offset a trend in declining yields, induced by 

the expected increase in temperatures and water stress. 
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This research illustrates also that in the context of climate adaptation and mitigation, the 

greatest potential benefits from a winter rye cover crop are preventing soil erosion, improving 

soil water retention, and potentially reducing nitrous oxide emissions from the soil surface.  

Although in these projects it was not assessed, it is also well documented that cover crops have a 

large potential to reduce nitrate leaching, preventing further nitrous oxide emissions downstream.  

While the cover crop may add to greater levels of soil carbon compared to a no cover crop 

system, we did not find evidence the cover crop leads to a positive soil carbon balance, relative 

to current conditions. This work also did not find evidence that the continued use of a cover crop 

leads to yield improvements over time.  It should be noted, however, that increased maize and 

soybean yields is something continually reported by farmers (SARE-CTIC, 2013, 2014, 2015) 

and that the modeling platform utilized in this study may not incorporate all of the dynamics 

affected by cover cropping practices. 

 

Future Research 

This research demonstrates that it remains a challenge to design cropping systems that 

mitigate all potential risks posed by the changing climate. As a research community, we must 

work toward creatively expanding the current conceptualization of agricultural systems and 

envision those that achieve multi-functionality, as desired by producers and society.  Two major 

research areas can stem from this research, the first being the questions surrounding climate risk 

mitigation and the second related to cover crop management in the Midwest. 

Toward a climate-smart Midwest 

There are several big picture questions that can help focus the direction of future research 

related to climate mitigation and adaptation in the Midwest. For example: How much carbon is 
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needed to maintain a neutral to positive balance given future climate change?  Is soil carbon the 

critical component required to maintain agroecosystem functions? Are there cropping systems 

that would be regenerative versus extractive for soil and water resources? Will it be possible to 

prevent erosion and runoff in heavy downpour events or to prevent crop yield decline in a severe 

drought? What is the role of precision management? How can such systems be incentivized to 

expand acreage? How is food security integrated into a more strategic climate adaptation plan for 

the region?   

Investigating these complex questions will undoubtedly require multiple research 

approaches. As this work demonstrates, the use of a cover crop does not offset all future climate 

impacts so a similar investigation (potentially using long-term field data and process-based 

models) evaluating multiple practices – such as perennial crops, diversified crop rotations 

including small grains and integrated livestock systems - would be beneficial. We should also 

continue to analyze long-term datasets to tease out how weather impacts diverse cropping 

practices (Gaudin et al., 2015) where such data exists.  Soil carbon is known to be an important 

regulator of many agroecosystem functions, however given the high fertility in soils such as 

those found in Iowa, many research projects have demonstrated the difficulty in maintaining or 

increasing it over time (Dietzel, 2014; Huggins et al., 1998).  Thus it will be important to 

consider and investigate other important factors in the context of climate risk reduction, 

including how to manage the impacts of rainfall variability. In my upcoming research fellowship, 

I plan to investigate water impacts from conservation practices on a regional scale.  As outlined 

in the introduction, multiple climate risk management approaches exist; they range from plant 

genetics to financial instruments to agronomic management.  Soil management, as investigated 

in this study, is one of the most cost effective and broadly beneficial (for individual producers 
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and the public) of these strategies and should continue to be an emphasis of public research 

investment.  

Cover crops in the Midwest 

Increasing cover crop acreage not only in Iowa but also in the Midwest and across the 

country is a current focus of much research and dedicated programmatic efforts from 

government, non-profit and private sector entities.  Given that producers in the Midwest 

continually express that seeding and establishment is a major obstacle to utilizing and managing 

cover crops (Mine et al., 2014; SARE-CTIC, 2013, 2014, 2015), an important research need to 

scale up their use is to advance practices that ensure proper seeding and establishment within the 

timeframe available to maize-soybean systems. Further, receiving robust environmental benefits 

from cover crops, as quantified in this dissertation, requires adequate growth year over year, 

which cannot occur without successful seeding.  Options for expanding cover crop establishment 

range from advances in equipment technology to exploring the productivity of shorter season 

maize and soybean cultivars to diversifying crop rotations, all of which could allow for an 

extended cover crop planting window. 

Another specific challenge in Iowa will be the development of and research with non-

grass and mixed cover crop species.  Given the risk averse nature of many Iowa producers, it will 

remain important to continue studying the impacts of alternate cover crop species on cash crop 

yields beyond cereal rye (Arbuckle and Roesch-McNally, In Press).  Undoubtedly cereal rye is 

one of only a few species that can reliably be grown within the confines of the maize-soybean 

winter window, and therefore addressing issues with reliable seeding and establishment will 

allow for greater opportunities with more non-grass cover crop species. 
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Social science research aimed toward increasing cover crop adoption could include a 

more thorough economic analysis accounting for the positive environmental benefits, on a field 

and regional scale, provided by the use of cover crops and could build off of similar analyses to 

this investigation.  Focus group discussions with Iowa farmers uncovered a desire to fully 

quantify soil erosion and nutrient loss prevented with cover crops, such that costs and benefits 

are more equalized compared to non-conservation management (Roesch-McNally et al., In 

Preparation).  Another important social science inquiry should be on how outreach efforts target 

both producers and landowners. For example this includes the large percentage of women 

landowners in the state of Iowa who may have a different set of priorities as compared to land 

renters (Carter, 2015). The continued feedback of social and biophysical is critical to advancing 

conservation in the region.  
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APPENDIX A 

SUPPLEMENTAL MATERIAL CHAPTER 3  

Table S1 ANOVA table for the day of year contrasts evaluated for soil water content treatment 

differences 

Spring Period 

Year DOY Depth Estimated CC-NCC 

diff mm3 mm-3 

Standard 

Error 

DF t Value Adj P Notes / * Sig at 

P<0.1 

2008 110 5cm 0.01496 0.01779 72 0.84 0.4031   

2008 115 5cm 0.01396 0.01768 72 0.79 0.4323   

2008 120 5cm 0.007651 0.01752 72 0.44 0.6636 Cover Crop Term 
Date 

2008 125 5cm 0.01344 0.01764 72 0.76 0.4487   

2008 130 5cm 0.01663 0.01764 72 0.94 0.3489   

2008 135 5cm 0.01291 0.01752 72 0.74 0.4636 Maize Planting 
Date 

2008 140 5cm 0.004346 0.01768 72 0.25 0.8066   

2008 145 5cm 0.003607 0.01779 72 0.2 0.8399   

2008 110 10cm 0.01023 0.01106 72 0.92 0.3584   

2008 115 10cm 0.01027 0.01101 72 0.93 0.3539   

2008 120 10cm 0.005319 0.01093 72 0.49 0.6279 Cover Crop Term 
Date 

2008 125 10cm 0.01059 0.01099 72 0.96 0.3385   

2008 130 10cm 0.01204 0.01099 72 1.1 0.2769   

2008 135 10cm 0.01102 0.01093 72 1.01 0.3166 Maize Planting 
Date 

2008 140 10cm 0.00892 0.01101 72 0.81 0.4204   

2008 145 10cm 0.009503 0.01106 72 0.86 0.3932   

2008 110 15cm 0.003389 0.01117 72 0.3 0.7625   

2008 115 15cm 0.003024 0.01112 72 0.27 0.7864   

2008 120 15cm 0.001692 0.01104 72 0.15 0.8787 Cover Crop Term 
Date 

2008 125 15cm 0.004139 0.0111 72 0.37 0.7103   

2008 130 15cm 0.004462 0.0111 72 0.4 0.6889   

2008 135 15cm 0.003963 0.01104 72 0.36 0.7207 Maize Planting 
Date 

2008 140 15cm 0.003731 0.01112 72 0.34 0.7382   

2008 145 15cm 0.004268 0.01117 72 0.38 0.7036   

2009 130 5cm -0.01565 0.01555 36 -1.01 0.321   

2009 135 5cm 0.003273 0.01554 36 0.21 0.8344   

2009 141 5cm -0.03567 0.01553 36 -2.3 0.0276 * Cover Crop 
Term Date 

2009 142 5cm -0.04052 0.0155 36 -2.61 0.013 * So Planting 
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Table S1 (Continued)      

 

2009 145 5cm -0.0414 0.0155 36 -2.67 0.0113 * 

2009 146 5cm -0.02816 0.0155 36 -1.82 0.0776 * 

2009 147 5cm -0.01304 0.01554 36 -0.84 0.4069 SW takes 5 days 
to reach NS diff 

2009 150 5cm -0.01391 0.01554 36 -0.9 0.3767   

2009 130 10cm -0.02293 0.01004 36 -2.28 0.0284   

2009 135 10cm -0.01016 0.01003 36 -1.01 0.318   

2009 141 10cm -0.02486 0.01003 36 -2.48 0.018 * Cover Crop 
Term Date 

2009 142 10cm -0.02901 0.01 36 -2.9 0.0063 * Soybean 
Planting 

2009 145 10cm -0.03018 0.01 36 -3.02 0.0047 * 

2009 146 10cm -0.01876 0.01 36 -1.88 0.0688 * 

2009 147 10cm -0.00315 0.01003 36 -0.31 0.7551 SW takes 5 days 
to reach NS diff 

2009 150 10cm -0.00065 0.01003 36 -0.07 0.9483   

2009 130 15cm -0.00335 0.01433 36 -0.23 0.8163   

2009 135 15cm -0.00232 0.01433 36 -0.16 0.8721   

2009 141 15cm -0.00887 0.01433 36 -0.62 0.5398 Cover Crop Term 
Date 

2009 142 15cm -0.01184 0.01432 36 -0.83 0.4139 Soy Planting 

2009 145 15cm -0.013 0.01432 36 -0.91 0.3701 No SW 
differences at 15-
cm depth 

2009 146 15cm -0.00854 0.01432 36 -0.6 0.5549   

2009 147 15cm -0.00131 0.01433 36 -0.09 0.9276   

2009 150 15cm 0.002116 0.01433 36 0.15 0.8834   

2010 100 5cm 0.003672 0.01227 52 0.3 0.766   

2010 105 5cm -0.02031 0.01133 52 -1.79 0.0788 * 

2010 109 5cm -0.02775 0.01131 52 -2.45 0.0175 * Cover Crop 
Term Date 

2010 115 5cm 0.00558 0.01115 52 0.5 0.6188   

2010 119 5cm 0.009007 0.0116 52 0.78 0.4412 Maize Planting 
Date 

2010 125 5cm 0.001162 0.01133 52 0.1 0.9187   

2010 100 10cm -0.00647 0.01326 52 -0.49 0.6278   

2010 105 10cm -0.01837 0.01301 52 -1.41 0.1639   

2010 109 10cm -0.03085 0.01301 52 -2.37 0.0214 * Cover Crop 
Term Date 

2010 115 10cm -0.01062 0.01297 52 -0.82 0.4165   

2010 119 10cm -0.0045 0.01309 52 -0.34 0.7322 Maize Planting 
Date 

2010 125 10cm -0.00362 0.01301 52 -0.28 0.7817   

2010 100 15cm -0.00501 0.01152 52 -0.43 0.6655   

2010 105 15cm -0.01025 0.01141 52 -0.9 0.3733   



 128

Table S1 (Continued)      

2010 109 15cm -0.01575 0.01141 52 -1.38 0.1735 No SW 
differences at 15-
cm depth 

2010 115 15cm -0.0071 0.0114 52 -0.62 0.536   

2010 119 15cm -0.00172 0.01145 52 -0.15 0.8811   

2010 125 15cm 0.000127 0.01141 52 0.01 0.9912   

2012 105 5cm 0.01056 0.03686 54 0.29 0.7755   

2012 110 5cm -0.01339 0.03609 54 -0.37 0.712   

2012 114 5cm -0.00743 0.03609 54 -0.21 0.8377 Cover Crop Term 
Date 

2012 120 5cm -0.01094 0.03646 54 -0.3 0.7652   

2012 125 5cm -0.02055 0.03654 54 -0.56 0.5761 Maize Planting 
Date 

2012 130 5cm 0.01442 0.03609 54 0.4 0.691   

2012 105 15cm 0.01676 0.04226 54 0.4 0.6932   

2012 110 15cm -0.00354 0.04183 54 -0.08 0.9329   

2012 114 15cm -0.0006 0.04183 54 -0.01 0.9885 Cover Crop Term 
Date 

2012 120 15cm 0.003089 0.04203 54 0.07 0.9417   

2012 125 15cm -0.01981 0.04208 54 -0.47 0.6397 Maize Planting 
Date 

2012 130 15cm -0.003 0.04183 54 -0.07 0.9431   

2012 105 30cm 0.03821 0.04125 54 0.93 0.3584   

2012 110 30cm 0.01267 0.04078 54 0.31 0.7572   

2012 114 30cm 0.01587 0.04078 54 0.39 0.6987 Cover Crop Term 
Date 

2012 120 30cm 0.01875 0.04101 54 0.46 0.6493   

2012 125 30cm -0.00382 0.04105 54 -0.09 0.9262 Maize Planting 
Date 

2012 130 30cm 0.01464 0.04078 54 0.36 0.7209   

2013 125 5cm 0.000944 0.01237 72 0.08 0.9394   

2013 133 5cm -0.01158 0.01203 72 -0.96 0.339 Cover Crop Term 
Date 

2013 138 5cm -0.0331 0.01195 72 -2.77 0.0071 * 

2013 143 5cm 0.007225 0.01203 72 0.6 0.5499 Soy Planting- SW 
levels are same 

2013 148 5cm -0.01233 0.01158 72 -1.07 0.2903   

2013 125 15cm 0.01647 0.0125 72 1.32 0.1919   

2013 133 15cm 0.008097 0.01235 72 0.66 0.5141 Cover Crop Term 
Date 

2013 138 15cm -0.00153 0.01232 72 -0.12 0.9014   

2013 143 15cm 0.0149 0.01235 72 1.21 0.2316 Soy Planting 

2013 148 15cm -0.00459 0.01214 72 -0.38 0.7063   

2013 125 30cm 0.01169 0.01056 72 1.11 0.2721   

2013 133 30cm 0.007679 0.01053 72 0.73 0.4681 Cover Crop Term 
Date 
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2013 138 30cm 0.003506 0.01052 72 0.33 0.7399   

2013 143 30cm 0.01175 0.01053 72 1.12 0.268 Soy Planting 

2013 148 30cm 0.000109 0.01048 72 0.01 0.9917   

2014 90 5cm 0.0284 0.02992 72 0.95 0.3457   

2014 100 5cm 0.01986 0.02917 72 0.68 0.4981 Cover Crop Term 
Date 

2014 110 5cm 0.006043 0.02949 72 0.2 0.8382   

2014 126 5cm 0.006411 0.02917 72 0.22 0.8266 Maize Planting 
Date 

2014 135 5cm 0.02108 0.02992 72 0.7 0.4834   

2014 90 15cm 0.02417 0.0124 72 1.95 0.055  * Sig higher in 
CC 

2014 100 15cm 0.01981 0.01206 72 1.64 0.1049 Cover Crop Term 
Date 

2014 110 15cm 0.01533 0.0122 72 1.26 0.2131   

2014 126 15cm 0.01637 0.01206 72 1.36 0.1788 Maize Planting 
Date 

2014 135 15cm 0.02094 0.0124 72 1.69 0.0955  * Sig higher in 
CC 

2014 90 30cm 0.02611 0.01077 72 2.43 0.0178  * Sig higher in 
CC 

2014 100 30cm 0.003441 0.01057 72 0.33 0.7458 Cover Crop Term 
Date 

2014 110 30cm 0.001536 0.01065 72 0.14 0.8858   

2014 126 30cm 0.003059 0.01057 72 0.29 0.7732 Maize Planting 
Date 

2014 135 30cm 0.004904 0.01077 72 0.46 0.6501   

 

Summer Analysis 

Year DOY Depth Estimated CC-NCC 

diff 

mm3 mm-3 

Standard 

Error 

DF t 

Value 

Adj P * Sig at 

P<0.1 

2008 200 5cm -0.01353 0.01506 112 -0.9 0.3708   

2008 210 5cm 0.00052 0.01498 112 0.03 0.9723   

2008 220 5cm -0.00904 0.01488 112 -0.61 0.5447   

2008 230 5cm -0.01198 0.01488 112 -0.8 0.4227   

2008 240 5cm -0.01422 0.01498 112 -0.95 0.3444   

2008 250 5cm -0.01649 0.01506 112 -1.09 0.276   

2008 200 10cm -0.00251 0.01178 112 -0.21 0.8317   

2008 210 10cm 0.009357 0.01173 112 0.8 0.4266   

2008 220 10cm 0.000752 0.01166 112 0.06 0.9487   

2008 230 10cm 0.00641 0.01166 112 0.55 0.5835   

2008 240 10cm 0.000064 0.01173 112 0.01 0.9957   

2008 250 10cm -0.00185 0.01178 112 -0.16 0.8757   

2008 200 15cm -0.00305 0.01179 112 -0.26 0.7962   
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2008 210 15cm 0.004487 0.01176 112 0.38 0.7035   

2008 220 15cm 0.000953 0.01173 112 0.08 0.9354   

2008 230 15cm 0.00555 0.01173 112 0.47 0.6371   

2008 240 15cm 0.001243 0.01176 112 0.11 0.916   

2008 250 15cm 0.001204 0.01179 112 0.1 0.9188   

2009 200 5cm -0.0079 0.01958 76 -0.4 0.6876   

2009 210 5cm 0.00179 0.01957 76 0.09 0.9273   

2009 220 5cm 0.01399 0.01953 76 0.72 0.476   

2009 230 5cm 0.008199 0.01953 76 0.42 0.6757   

2009 240 5cm 0.00382 0.01957 76 0.2 0.8458   

2009 250 5cm -0.01436 0.01958 76 -0.73 0.4656   

2009 200 10cm -0.00789 0.01323 76 -0.6 0.5528   

2009 210 10cm -0.003 0.01322 76 -0.23 0.8211   

2009 220 10cm 0.004287 0.01315 76 0.33 0.7453   

2009 230 10cm -0.00102 0.01315 76 -0.08 0.9384   

2009 240 10cm -0.00433 0.01322 76 -0.33 0.7439   

2009 250 10cm -0.00117 0.01323 76 -0.09 0.93   

2009 200 15cm 0.02157 0.0165 76 1.31 0.1949   

2009 202 15cm 0.02558 0.0165 76 1.55 0.1251   

2009 205 15cm 0.02703 0.01649 76 1.64 0.1054 * 

2009 206 15cm 0.02991 0.01649 76 1.81 0.0737 * 

2009 208 15cm 0.03374 0.01639 76 2.06 0.043 * 

2009 210 15cm 0.03476 0.01649 76 2.11 0.0383 * 

2009 212 15cm 0.0334 0.01639 76 2.04 0.045 * 

2009 215 15cm 0.03116 0.01645 76 1.89 0.062 * 

2009 218 15cm 0.03004 0.01645 76 1.83 0.0718 * 

2009 220 15cm 0.01978 0.01645 76 1.2 0.2329   

2009 222 15cm 0.02463 0.01645 76 1.5 0.1385   

2009 230 15cm 0.02341 0.01645 76 1.42 0.1588   

2009 240 15cm -0.0004 0.01649 76 -0.02 0.9807   

2009 250 15cm 0.00918 0.0165 76 0.56 0.5795   

2010 200 5cm 0.005325 0.009638 152 0.55 0.5814   

2010 210 5cm 0.001971 0.00963 152 0.2 0.8381   

2010 220 5cm 0.004115 0.009574 152 0.43 0.6679   

2010 230 5cm -0.00022 0.009574 152 -0.02 0.9816   

2010 240 5cm 0.000656 0.00963 152 0.07 0.9458   

2010 250 5cm 0.001292 0.009638 152 0.13 0.8935   

2010 200 10cm 0.000122 0.008721 152 0.01 0.9889   

2010 210 10cm 0.000961 0.008715 152 0.11 0.9124   

2010 220 10cm 0.001493 0.008678 152 0.17 0.8637   

2010 230 10cm -0.00388 0.008678 152 -0.45 0.6555   

2010 240 10cm -0.00094 0.008715 152 -0.11 0.9145   
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2010 250 10cm 0.000131 0.008721 152 0.02 0.9881   

2010 200 15cm 0.004461 0.007924 152 0.56 0.5742   

2010 210 15cm 0.004582 0.007919 152 0.58 0.5637   

2010 220 15cm 0.003805 0.007888 152 0.48 0.6302   

2010 230 15cm 0.000607 0.007888 152 0.08 0.9388   

2010 240 15cm 0.002231 0.007919 152 0.28 0.7785   

2010 250 15cm 0.002528 0.007924 152 0.32 0.7502   

2012 200 5cm -0.00575 0.01684 114 -0.34 0.7333   

2012 210 5cm 0.009478 0.01665 114 0.57 0.5703   

2012 220 5cm 0.01741 0.01666 114 1.05 0.2982   

2012 230 5cm 0.01256 0.0164 114 0.77 0.4454   

2012 240 5cm 0.01021 0.0164 114 0.62 0.5348   

2012 250 5cm 0.01812 0.01666 114 1.09 0.2789   

2012 260 5cm 0.007272 0.01665 114 0.44 0.6631   

2012 270 5cm 0.003873 0.01684 114 0.23 0.8185   

2012 200 15cm -0.00083 0.02234 84 -0.04 0.9705   

2012 210 15cm 0.001633 0.01985 84 0.08 0.9346   

2012 220 15cm 0.009554 0.02103 84 0.45 0.6508   

2012 230 15cm 0.005873 0.0203 84 0.29 0.7731   

2012 240 15cm 0.003858 0.02025 84 0.19 0.8493   

2012 250 15cm -0.00529 0.0209 84 -0.25 0.8007   

2012 260 15cm -0.00109 0.02025 84 -0.05 0.9571   

2012 262 15cm -0.00186 0.02061 84 -0.09 0.9283   

2012 264 15cm -0.00184 0.0203 84 -0.09 0.9278   

2012 266 15cm -0.00204 0.02036 84 -0.1 0.9204   

2012 270 15cm -0.00162 0.0203 84 -0.08 0.9364   

2012 280 15cm 0.01003 0.02103 84 0.48 0.6348   

2012 285 15cm 0.02861 0.02036 84 1.41 0.1636   

2012 286 15cm 0.03097 0.0198 84 1.56 0.1216   

2012 287 15cm 0.03234 0.02033 84 1.59 0.1154   

2012 288 15cm 0.03244 0.02091 84 1.55 0.1246   

2012 289 15cm 0.03114 0.02031 84 1.53 0.1289   

2012 290 15cm 0.02903 0.01985 84 1.46 0.1473   

2012 300 15cm 0.02493 0.02234 84 1.12 0.2676   

2012 200 30cm 0.01213 0.02339 84 0.52 0.6055   

2012 210 30cm 0.01378 0.02105 84 0.65 0.5144   

2012 220 30cm 0.01597 0.02217 84 0.72 0.4732   

2012 230 30cm 0.01577 0.02148 84 0.73 0.4651   

2012 240 30cm 0.01432 0.02143 84 0.67 0.5059   

2012 250 30cm 0.01227 0.02205 84 0.56 0.5792   

2012 260 30cm 0.01931 0.02143 84 0.9 0.37   

2012 262 30cm 0.01913 0.02177 84 0.88 0.382   
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2012 264 30cm 0.0191 0.02148 84 0.89 0.3765   

2012 266 30cm 0.01883 0.02153 84 0.87 0.3843   

2012 270 30cm 0.01089 0.02148 84 0.51 0.6134   

2012 280 30cm 0.004364 0.02217 84 0.2 0.8444   

2012 285 30cm 0.02565 0.02153 84 1.19 0.2369   

2012 286 30cm 0.03144 0.021 84 1.5 0.1382   

2012 287 30cm 0.0357 0.02151 84 1.66 0.1006 * 

2012 288 30cm 0.03703 0.02206 84 1.68 0.0969 * 

2012 289 30cm 0.03457 0.02149 84 1.61 0.1114   

2012 290 30cm 0.02969 0.02105 84 1.41 0.1621   

2012 300 30cm 0.01949 0.02339 84 0.83 0.4071   

2013 200 5cm 0.001702 0.009174 152 0.19 0.8531   

2013 210 5cm -0.00507 0.009159 152 -0.55 0.5806   

2013 220 5cm -0.00925 0.009055 152 -1.02 0.3087   

2013 230 5cm 0.000364 0.009055 152 0.04 0.968   

2013 240 5cm -0.00007 0.009159 152 -0.01 0.9939   

2013 250 5cm 0.001469 0.009174 152 0.16 0.873   

2013 200 15cm 0.01357 0.01402 152 0.97 0.3346   

2013 210 15cm 0.01239 0.01402 152 0.88 0.3782   

2013 220 15cm 0.009825 0.014 152 0.7 0.4839   

2013 230 15cm 0.001439 0.014 152 0.1 0.9183   

2013 240 15cm 0.01005 0.01402 152 0.72 0.4747   

2013 250 15cm 0.01126 0.01402 152 0.8 0.4234   

2013 200 30cm 0.02233 0.01668 152 1.34 0.1826   

2013 210 30cm 0.02127 0.01668 152 1.28 0.2042   

2013 220 30cm 0.01876 0.01668 152 1.13 0.2623   

2013 230 30cm 0.01809 0.01668 152 1.08 0.2799   

2013 240 30cm 0.02027 0.01668 152 1.22 0.2261   

2013 250 30cm 0.02068 0.01668 152 1.24 0.217   

2014 200 5cm 0.001294 0.02101 152 0.06 0.951   

2014 210 5cm -0.02726 0.021 152 -1.3 0.1962   

2014 220 5cm -0.02532 0.02093 152 -1.21 0.2282   

2014 228 5cm -0.02269 0.02093 152 -1.08 0.2801   

2014 231 5cm -0.01503 0.02082 152 -0.72 0.4712   

2014 233 5cm -0.01784 0.02093 152 -0.85 0.3954   

2014 235 5cm -0.02305 0.02093 152 -1.1 0.2726   

2014 240 5cm -0.00221 0.021 152 -0.11 0.9164   

2014 250 5cm 0.01877 0.02101 152 0.89 0.3729   

2014 200 15cm 0.01601 0.01352 152 1.18 0.238   

2014 210 15cm 0.02026 0.01351 152 1.5 0.1356   

2014 220 15cm 0.02877 0.01341 152 2.15 0.0335 * 

2014 228 15cm 0.02323 0.01342 152 1.73 0.0854 * 
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2014 231 15cm 0.023 0.01326 152 1.74 0.0847 * 

2014 233 15cm 0.02388 0.01342 152 1.78 0.0771 * 

2014 235 15cm 0.02803 0.01341 152 2.09 0.0383 * 

2014 240 15cm 0.009288 0.01351 152 0.69 0.4927   

2014 250 15cm 0.00575 0.01352 152 0.43 0.6712   

2014 200 30cm 0.002815 0.01807 152 0.16 0.8764   

2014 210 30cm 0.0049 0.01806 152 0.27 0.7865   

2014 220 30cm 0.02366 0.01798 152 1.32 0.1903   

2014 228 30cm 0.01733 0.01799 152 0.96 0.3369   

2014 231 30cm 0.01487 0.01785 152 0.83 0.4061   

2014 233 30cm 0.01773 0.01799 152 0.99 0.3259   

2014 235 30cm 0.01778 0.01798 152 0.99 0.3243   

2014 240 30cm 0.01504 0.01806 152 0.83 0.4064   

2014 250 30cm 0.006134 0.01807 152 0.34 0.7348   

 

Table S2 Aboveground plant sample dates, plant N and growth stages for cash crops in experiment.  
* represents a sampling date where there was a difference between treatments at the p<0.05 level 
 

2013 Soybeans Total Plant N  (n=4 reps) 

Date Cover   
kg ha-1 (SE) 

No Cover 
kg ha-1 
(SE) 

Growth 
Stage 

6/26/2013 5.1 (0.6) 5.0 (0.6) V2 

7/10/2013 33.6 (2.5) 32.9 (2.5) R1 

7/23/2013 65.3 (6.1) 71.0 (6.1) R3 

8/7/2013 109.8 (6.3) 100.6 (6.3) R4/R5 

8/21/2013 159.4 (11.4) 141.3 (11.4) R6 

9/10/2013 197.6 (12.5) 219.2 (12.5) R7 

 

2014 Corn Total Plant N Uptake (n=4 reps) 

Date Cover 
kg ha-1 

No Cover  
kg ha-1 

Growth 
Stage 

Notes 

6/2/2014 4.4 (0.7) 3.2 (0.7) V3  

6/23/2014 81.8 (1.4) 71.0 (1.4) V7 * 

7/3/2014 139.4 (2.9) 137.8 (2.9) V9  

7/17/2014 198.6 (6.3) 176.7 (6.3) V11/VT * 

7/31/2014 147.8 (8.4) 154.4 (8.4) R2 Kernels were too small to 
remove and grind 

8/13/2014 191.2 (6.4) 188.3 (6.4) R2/R3  

9/8/2014 287.5 (26.8) 251.4 (26.8) R5  
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SUPPLEMENTAL MATERIAL CHAPTER 4 

Table S1. Changes to the winter rye cover crop module 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Table S2. Erosion Predictions 
 
  Climate 

Scenario 

GCM or 

randomly 

generated 

Field 

Slope 

P Factor 

For Cover 

Crop 

Treatment 

Percent 

Erosion 

Reduced 

With 

Cover 

Crop 

Baseline: 
field 

slope 1% 
and no 
change 

in P 
factor 

ACCESS GCM 1% 1 23.5 

BCC-
CSM 

GCM 1% 1 20.3 

BNU-
ESM 

GCM 1% 1 19.3 

CanESM2 GCM 1% 1 10.6 

CCSM4 GCM 1% 1 19.2 

CESM1-
BGC 

GCM 1% 1 20 

GFDL-G GCM 1% 1 21.4 

GFDL-M GCM 1% 1 16.9 

Plant and 

Environment 

Default value  New value 

Optimum temp 26°C 18°C 

Ceiling temp 34°C 30°C 

Vernalization 
sensitivity 

2.5 5 

Soil water required 
for germination at 
seeding depth 

0 mm mm-1 0.15 mm mm-1 

Extinction 
coefficient 

0.5 0.35 

Management 

differences with 

seeding method 

Aerial Seeding  Direct Drilling 

Seeding depth 1mm 10mm 

Seeding rate 50 plants m-2 100 plants m-2 

Planting date Actual planting date 
from Table 2 plus three 
weeks (assumed 
additional requirement 
for germination) 

Actual planting date 
from Table 2 
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inmcm4 GCM 1% 1 15.2 

IPSL-LR GCM 1% 1 

met1 Randomly 
generated 

1% 1 18.8 

met2 Randomly 
generated 

1% 1 12.5 

met3 Randomly 
generated 

1% 1 13.9 

met4 Randomly 
generated 

1% 1 13.5 

met5 Randomly 
generated 

1% 1 10.7 

MIROC-
ESM 

GCM 1% 1 13.7 

MIROC5 GCM 1% 1 28.9 

MPI-LR GCM 1% 1 25 

MPI-MR GCM 1% 1 16.3 

CanESM2 GCM 2% 1 16.4 

Field 
slope 

changes 

CESM1-
BGC 

GCM 2% 1 10.3 

MIROC-
ESM 

GCM 2% 1 20.2 

MPI-MR GCM 2% 1 28.8 

CanESM2 GCM 5% 1 16.9 

CESM1-
BGC 

GCM 5% 1 10.4 

MIROC-
ESM 

GCM 5% 1 20.1 

MPI-MR GCM 5% 1 28.6 

CanESM2 GCM 1% 0.9 17 

P factor 
changes 

CESM1-
BGC 

GCM 1% 0.9 19.5 

MIROC-
ESM 

GCM 1% 0.9 28.1 

MPI-MR GCM 1% 0.9 35.8 
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Figure S1a Soil carbon predictions (lines) and observations (2003, 2010, 2014 symbols) 
for the cover crop and no cover crop treatments for the 0-15-cm depth  
 

 
 
 
Figure S1b. Soil carbon predictions (lines) and observations (2003, 2010, 2014 symbols) 
for the cover crop and no cover crop treatments for the 15-30-cm depth. 
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Figure S2a. Soil water at the 5-cm depth in the no cover crop plots. Gray dots represent 
plot level soil moisture in the field, black line represents APSIM predicted values. 

 

 
 
Figure S2b. Soil water at the 15-cm depth in the no cover crop plots. Gray dots represent 
plot level soil moisture in the field, black line represents APSIM predicted values. 
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Figure S3a. Soil temperature at the 5-cm depth with cover crop treatment.  Gray dots 
represent plot level soil temperature in the field, black line represents APSIM predicted 
values. 

 
Figure S3b. Soil temperature at the 15-cm depth with cover crop treatment.  Gray dots 
represent plot level soil temperature in the field, black line represents APSIM predicted 
values. 
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Figure S4a. Predicted (lines) and observed (n=4 replications) grain yields for 
maize (triangles) and soybeans (circles) in the cover crop treatment. 
 

 
 
Figure S4b. Predicted (lines) and observed (n=4 replications) grain yields for 
maize (triangles) and soybeans (circles) in the no cover crop plots treatment. 
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S5a. Predictions (line) and observed rye biomass data (circles, n=4 replications) from 
2002-2014. 
 

 
S5b. Predictions (line) and observations (circles, n=4 replications) of nitrogen in winter 
rye cover crop biomass for available field data from 2002-2010. 
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Figure S6a. Maximum temperature during the growing season (April through November) 
over the 45 years of the simulation. Randomly generated weather (met1-met5) represents 
simulations created with prior weather records. Future scenarios come from twenty different 
global climate models with RCP 4.5 following the AgMIP project protocol. Future weather 
shows an increasing trend from approximately 23°C to 26°C by 2060. 
 

 
 

 
Figure S6b. Minimum temperature during the growing season (April through November) 
over the 45 years of the simulation. Randomly generated weather (met1-met5) represents 
simulations created with prior weather records. Future scenarios come from twenty different 
global climate models with RCP 4.5 following the AgMIP project protocol. Future weather 
shows an increasing trend from approximately 12°C to 14°C by 2060. 
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Figure S6c. Rainfall during the growing season (April through November) over the 45 years 
of the simulation. Randomly generated weather (met1-met5) represents simulations created 
with prior weather records. Future scenarios come from twenty different global climate 
models with RCP 4.5 following the AgMIP project protocol. 

 

 
 

 
Figure S6d. Soil temperature predctions at 15cm during the growing season (April through 
November) over the 45 years of the simulation. Randomly generated weather (met1-met5) 
represents simulations created with prior weather records. Future scenarios come from 
twenty different global climate models with RCP 4.5 following the AgMIP project protocol. 
These predict an increase in soil temperatures (following the air temperature change) which 
could be responsible in part for the decline in soil carbon at lower depths. 
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Figure S7. A comparison of soil water simulations (S7a, top) and observations in 2008 
(S7b, bottom) during the spring period. In 2008, the cover crop was terminated on April 
29 and maize planted on May 14. APSIM predicts higher soil water levels during this 
period in the cover crop plots as well as subsequent decreases in soil evaporation. By the 
time cash crop planting occurs, APSIM predicts the same soil water levels in both plots. 
The general pattern observed at the field site for the late spring period was that the soil 
water in the plots were the same in both treatments or higher in the cover crop plots at the 
time of cash crop planting. 
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Figure S8a (above) and Figure S8b (below). Cash crop response ratio (yield with cover crop / 
yield without cover crop) as a function of rainfall.  Figure S8a represents the trend in maize and 
S8b in soybeans. Annual rainfall for the weather scenarios used in this analysis had a mean of 
923mm. The dashed line represents a 25% departure from the predicted mean of precipitation, 
or approximately 690mm. Below that threshold, APSIM generally predicts small yield declines 
in the cover crop treatment, as a result of competition for water in the early maize and soybean 
growing season. 

 
 


