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I. INTRODUCTION 

The problem that we are trying to solve is: Given an excitation 
source, which is known to us, and a scattered field, which we can mea
sure (albeit somewhat inaccurately, because of noise and the like), 
determine the spatial distribution of the electromagnetic parameters, 
~, and cr, where ~ is the magnetic permeability and a the electrical con
ductivity. This allows us to determine the structure of a body in free 
space, or the structure of an internal flaw (or anomalous region) within 
a given body whose properties, such as size, shape and electrical para
meters, are known to us. Throughout this paper we will consider only 
isotropic bodies, which means that the conductivity and magnetic perme
ability are scalar functions of positions. 

Our approach to solving this problem consists of the following steps: 

1. transform Maxwell's equations into the spectral domain 

2. define inverse source and inverse scattering models 

3. derive a system of equations from the inverse scattering 
model by using mu1tifrequncy excitation 

4. solve the system in a least-squares sense by using the 
QR-decomposition, Singular Value Decomposition, or other 
suitable numerical algorithm [1,2]. 

5. take the inverse Fourier transform via the Fast Fourier 
Transform (FFT) algorithm. 

II. THE FIELD EQUATIONS IN THE SPECTRAL DOMAIN 

Electromagnetic models are usually derived from Maxwell's field 
equations. The time-harmonic version of these equations, with sources 
acting in free-space, is given by: 
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VxE -jw~oM-jw~ if 
o 

VxH = jWE:oE+J, 

(1) 

where M and J are the sources of the scattered field due to the ferrous 

body. M is the magnetization vector (magnetic moment per unit volume), 

and J the electric current vector. The first equation in (1) is the 

point form of Faraday's law when we recall that 

(2) 

We solve for the fields E and H by superposing the partial fields due 

to the sources acting independently. The solution for the fields in 

the region exterior to the sources is given by the two-dimensional 

Fourier transforms: 

where 
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(4) 

Upon taking two-dimensional Fourier transforms of the measured fields, 

E and H, over the plane z = 0, we get the algebraic system: 

jw~ _ '" 1 _ _ 
E(kx,ky) = -2-0- R(k) ·M(k)+ 2WE S(k) .j(k) 

o 

(5) 

in which 
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0 
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This is the basic system from which we derive our model equations. 

Before defining the inverse source and scattering models, however, we 

should point out the following facts about (5): 

1. because k·E = 0 and k·H = 0, there are only two independent 

field components in the region exterior to the sources. 

2. E(k ,k ), H(k ,k ) are two-dimensional transforms of measured x y x y 
data 

3. M(k) and J(k), the three-dimensional transforms of the sources, 

are known only on the sphere k·k = k2 
o - -

4. DET(R(k»=O, DET(S(k»=O. 

III. INVERSE SOURCE MODEL 

By using the inverse source model we seek to determine the Fourier 

transforms of the source densities, J and M, and then invert the trans

forms to compute the spatial distributions of the sources. Because 

of the facts outlined at the end of the last section, this program is 

generally impossible. For example, the source transforms are known only 

over a sphere in the spectral domain, and it does no good to change the 

frequency (thereby changing the radius of this sphere) because at each 

frequency we introduce a new source field distribution. In addition 

the matrices it and S in (5) are not invertible. This means that in 

order to determine the source densities, one needs additional informa

tion, such as the fact that the source densities may be solenoidal. The 

source model cannot distinguish between the electric and magnetic sources, 

using measurements made outside the source, unless additional information 

is available, such as J=O, or M=O, or that only certain components of 

J or M are nonzero. For these reasons we will not pursue the inverse 

source model, but will go on to the inverse scattering model. 

IV. INVERSE SCATTERING MODEL 

In this model we write the sources in terms of the electric and 

magnetic field and the electrical conductivity and magnetic perme

ability. Then the problem is solved iteratively by computing the actual 

fields within the anomalous region, as in a classical direct scattering 

problem. This approach, though rigorously correct, is time consuming, 
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so approximations are usually made to allow the computations to proceed 

quickly. 

Consider a system in which a current sheet excites a plane-parallel 

ferrous plate containing a localized anomalous region. The exciting 

current flows in the x-direction and is uniform in the x- and y

directions. The sensors are located at the plate z=O. The fields within 

the unflawed plate are independent of x and y: 

E (r,w) = E (z,w)a 
o 0 x 

H (r,w) = H (z,w)a 
o 0 y 

(6) 

In the presence of the flaw, we use the same fields and write for the 
source densities: 

J (x,y,z,w) 
a 

M (x,y,z,w) 
a 

E (z,w)cr (x,y,z)a 
o a x 

(7) 

H (z,w)~ (x,y,z)a 
o a y 

where the material parameters a (x,y,z,), ~ (x,y,z) of the anomalous 
a a 

region are the unknowns. The approximation that allows us to write 

(7) follows from the fact that the anomalous region is small, and 

therefore does not greatly perturb the field that existed at the same 

point in the unflawed plate. This approximation allows us to decouple 

the direct scattering problem from the inverse problem. 

Next we partition the plate 

then expand E (z,w)a (x,y,z) and 

into N layers in the z-direction and 
z 

o a 
H (z,w)~ (x,y,z) in pulse functions 

o a 
with respect to this partition. Then, upon taking the three-dimensional 

Fourier transform of the source functions, and evaluating them over 

the appropriate sphere in k-space, we get: 

'j (k ,k ,a. ) 
a x y 0 

Nz 
M (k ,k ,a. ) = 2 E 

a x y 0 

i=l 

sin(o. 0/2) 
jo.oZi 0 E (z.w)cr.(k ,k) 

e ---0.--- 0 1 1 X Y 
o 

jo. z. sin(o. 0/2) 
e 0 1 ___ 0 ___ H (zi'w)~. (k ,k ) 

a. 0 1 X Y 
o 

(8) 

where z. is the midpoint of the ith layer and 0 is the z-length of a 
1 

layer. 

The surviving equations in the spectral domain are found from (5) 

to be: 
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h(k ,k w) = ~ 
x y 2 
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Consider the y-component of the H-equation; it becomes 

. M 1 
Hy(kx,ky'W) = -t-- (k;-k~) ~ - ---2-- J a 

o 
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(9) 

a 

0 

(10) 

which couples the two sources. This equation has the advantage, however, 
~ 

in not having the coefficients of M or J vanish for any values of k a a 
(except for k =k , which is not an "essential zero"). On the other hand, 

y 0 
we can uncouple the sources by taking the x-component of the H-equation 

and the y-component of the E-equation: 
k k 

~ ~ ~M~ H (k ,k ,w) = 2 (11) 
x x y a a 

o 
k k 

we: E (k ,k ,w) =(-a H +k H ) = ~ J 
o y x y 0 x x z 2a a 

o 

where we have used the second of Maxwell's equations, (1), to rewrite 

E in terms of Hand H. We do this because we assume that it is y x z 
easier to measure the magnetic field rather than the electric field at 

the low frequencies of interest here. In (11) we see that there is an 

essential singularity at kx=O and ky=O. We will come back to this point 

shortly. 

Upon substituting (8) into either (10) or (11), we get the follow

ing generic forms: 

B (k ,k ,w) 
1 x' Y 

B (k ,k ,w) 
:2 x y 

B (k ,k ,w) 
3 x y 

N 
z 

L 

i=l 

N z 
L 

i=l 

N 
~ 

L 

i=l 

ja z. 
o ~ e 

ja z. 
o ~ e 

ja z. 
o ~ e 

j (k2 _k2 ) 
Y 0 H (zi,w)~.-E (z.,w)cr. (12) a o ~ 0 ~ ~ 

, 
0 

H (z. ,w)~i o ~ 

E (zi'w)cr. o ~ 
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In all these cases, there are 2N unknowns, ~.(k ,k ), a.(k ,k ), for z 1.xy 1.xy 
each spectral-pair (k ,k). Hence, in order to get a linear system x y 
whose solution will be these unknowns, we need to evaluate (12) at a 

number of different frequencies. Hence, the inverse scattering model 

involves multifrequency excitation. The number of frequencies ought to 

be larger than 2Nz in order to provide an overdetermined system for a 

least-squares solution of the first equation in (12). We can use N z 
frequencies if we measure the two independent components, Hx ' Hz' of 

H and solve the second and third equations in (12). 

V. NUMERICAL METHODS 

If we choose Nf frequencies then any of the equations in (12) 

becomes an Nf-by-N (or 2N ) system of linear equations. We solve 
z z 

this system in a least-squares manner [1, 2J. Because the system is 

usually ill-conditioned, we must regularize it by using a Levenberg

Marquardt parameter [lJ or some other suitable regularization technique, 

such as constrained least-squares [2J. The two methods of solving 

least-squares problems that are most attractive use either the 

QR-decomposition or the singular value decomposition (SVD). These 

methods are thoroughly described in references [1, 2J. The solutions 

of the equations are the two-dimensional Fourier transforms of the 

conductivity and permeability at the ith layer of the body. After 

solving the equations, we take the inverse Fourier transform, using the 

fast Fourier transform algorithm (FFT), to obtain the spatial distribu

tion of the material parameters. We use analytic continuation to con

tinue the transform solutions through the "essential zeros" that were 

described in the last section. 

Hence, we can summarize the inverse scattering model algorithm as: 

Measure the appropriate components of the H-field at Nf frequen

cies, w , .••.. ,wN ' and then compute the 2D FFT of these components. 
1 f 

Then, for each (k ,k ) we have a system of Nf equations in 2N unknowns, 
x y z 

~.(k ,k ), O.(k ,k ), i=l, .•• ,N. Let Nf~N (in fact, it's best to 1.xy 1.xy Z z 
have a strongly overdetermined system, with Nf several times larger than 

Nz)' and solve the resulting system in a least-squares sense, using a 

stabilizing method to reduce effects of noise. This gives ~.(k ,k ), 
1. x Y 

O.(k ,k ), which are, respectively, the two-dimensional Fourier trans-
1. x y 

forms of the magnetic permeability at the ith level of the anomalous 

region and the electrical conductivity. Use analytic continuation, 
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when necessary, to continue the solution through "essential zeros". 

Upon taking the inverse Fourier transform, we get ~.(x,y), a.(x,y), 
l l 

which is the three-dimensional distribution of the electromagnetic 

parameters throughout the anomalous region. 

VI. COMMENTS AND CONCLUSIONS 

385 

The approach that we have outlined in this paper is computationally 

intensive and requires efficient algorithms and computer hardware for 

execution. Such items are rapidly becoming part of the scientific and 

engineering scene. We have not performed any numerical experiments 

with this model, yet, but we have performed some on a similar model 

for nonferrous tubes. The results there were quite encouraging, and 

we hope to have similar results with the ferrous model soon. An 

additional feature of the present model is that it should allow the 

distinction between electrical conduction current and magnetic perme

ability effects in ferrous metals. This is desirable in, for instance, 

those problems in which a ferrous metal has been stressed, but not 

cracked, so that the magnetic permeability, but not electrical conduc

tivity, has been changed from its nominal value. Our inversion 

technique, in this case, should therefore inform us of such a condition. 
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DISCUSSION 

W. Lord (Colorado State University): The implication of your work is 
that you can determine the permeability and conductivity at any 
point in the material. What value of permeability would that be? 

H.A. Sabbagh: It would be the departure from the nominal permeability, 
which in our program was a relative permeability of 70. 

W. Lord: What does that correspond to in terms of the behavior of the 
material? Is that the initial permeability? 

S. Marinov (Dresser Atlas): Yes, it would be the initial permeability. 
It's a linear model; we are in the Rayleigh area. 

H.A. Sabbagh: That's exactly right. We are assuming a simple model 
and the initial permeability would be the reasonable thing we would 
use there. 




