An Arnthmetic Test Suite for Genetic
Programming

Dan Ashlock * Jim Lathrop
April 2, 1996

Abstract

In this paper we explore a number of ideas for enhancing the tech-
niques of genetic programming in the context of a very simple test
environment that nevertheless possesses some degree of algorithmic
subtlety. We term this genetic programming environment plus-one-
recall-store (PORS). This genetic programming environment is quite
simple having only a pair of terminals and a pair of operations. The
terminals are the number one and recall from an external memory.
The operations are a unary store operation and binary addition, +,
on natural numbers. In this paper we present the PORS environment,
present a mathematical description of its properties, and then focus
on testing the use of Markov chains in generating, crossing over, and
mutating evolving programs. We obtain a surprising indication of the
correct situations in which to use Markov chains during evolutionary
program induction.

*Mathematics Department ITowa State University, Ames, TA, 50010, email:
danwell@iastate.edu

TComputer Science Department, lowa State University, Ames lowa, 50010, email:
jil@iastate.edu. This research was supported in part by National Science Foundation
Grant CCR-9157382, with matching funds from Rockwell International, Microwave Sys-
tems Corporation, and the Amoco Foundation.

1 Introduction

1.1 A Brief Introduction to Genetic Programming

In this paper we will introduce a test environment for genetic programming
systems. A genetic programming system is software that is used to maintain a
population of evolving computer programs, usually stored as parse trees. This
population is generated at random initially, then improved by evolution until
resources run out or an acceptable program appears in the population. In this
context, evolving is meant in a sense similar to the biological one. Programs
or parse trees that are more fit are allowed to “have children” that displace
less fit programs. The famous evolutionary theory of Charles Darwin suggests
that, over time, more nearly fit programs will appear. Genetic programming
is, in essence, a biologically inspired program induction technique.

There are important differences between biological evolution and genetic
programming. In a biological environment an individual’s fitness is measured
by the degree to which it manages to reproduce. In the artificial evolution
of genetic programming the number of children an individual program has is
determined from an abstract fitness heuristic which measures the program’s
performance. In a biological environment, the fitness ranking of an individual
is based on its genetics, environment, and a healthy dollop of luck. In the
artificial selection used in this paper, fitness is found with a function chosen
to match the programming task that maps the parse trees in our population
into the real numbers.

An example of a parse tree (labeled with the values computed at each
step) is shown in figure 1. The parse tree represents the program that could
be described in English as follows: “Add one and one, store the result in
memory, then add what you stored to the result of recalling the contents of
memory.” When space is at a premium we may also use LISP-like notation
in which the tree in figure 1 would read

(+ (Sto (+ 1 1)) Rel).

The parse trees used in genetic programming are rooted trees in the com-
binatorial sense. The vertices of the trees are program statements with the
leaves called terminals and the interior vertices called operations. Taken to-
gether the terminals and operations of a parse tree are called nodes. To
execute a program, each operation, starting with the root, is executed recur-
sively on the values returned by its sub-trees. Terminals return immediate

\lo/ \Rel)
()2

//1 !

.y Y

Figure 1: An example of a PORS parse tree

values, either constants or arguments of the program. The value returned by
the root operation is the value returned by the entire program.

Within a genetic programming environment the evolving programs are
typically in a special programming language made up for the problem under
assault. It is impractical to use standard programming languages such as
C, Pascal, C++, or Fortran for genetic programming because almost all
randomly generated programs in these languages are not syntactically valid.
A special purpose language can be designed so that there is a set of random
programs, closed under whatever operations we use to drive our evolution,
that are all syntactically valid. In addition to solving the problem of program
syntactic validity, a specially designed language can be made to be more
likely to contain solutions to the problem being treated. The designer simply
includes appropriate operations. Our special purpose language is described
in section 1.2.

A program in a genetic programming environment is not restricted to
a single parse tree. The practice of using automatically defined functions
(ADFs) gives genetic programs a structure equivalent to the subroutines and
procedures of more standard programming environments. These subroutines
or functions are stored as auxiliary parse trees and called by the original
parse tree as operations. During evolution, an ADF operation is used like
any other in the “main” parse tree. Whenever an operation associated with
an ADF is called, the parse tree for the ADF is executed.

ADFs are only one possible subroutine-like structure for genetic program-
ming. There is another such structure. In their paper on co-evolving high
level representations Angeline and Pollack [1] define the process of module
acquisition in which tree fragments which are used by many parse trees are
transformed into new operations dynamically during evolution. The tree
fragments are saved in a library and some effort is spent deciding when to
remove modules from the library.

The details of the genetic programming system we will use are contained
in the experimental descriptions later in the paper. We are using standard
analogs to sex and mutation of the sort described in Koza’s foundational text
for genetic programming [3]. Readers interested in additional discussion and
examples of genetic programming should consult [2].

1.2 The Test Environment

Although the PORS test environment has very few operations and terminals,
it contains both easy and hard problems for use in testing the performance
of genetic programming environments. The language has two terminals, the
number 1 and a recall command. The recall command reports the contents
of an external storage location, like the memory of an inexpensive pocket
calculator. There are two operations, a store command that takes a single
argument, the value of which is stored in the external memory and returned
to the ancestor of the store operation, and the binary operation of addition
with the usual definition. An example of a parse tree that computes the
number 4 in this simple genetic programming language is shown in Figure
1. The tree in Figure 1 is labeled with the numbers returned by the various
subtrees.

We do not use automatically defined functions but rather have a notion
of macros. Macros amount to adopting a particular point of view about code
fragments that appear quite often in the course of evolution. The two most
common macros in the PORS environment are shown in Figure 2. They take
whatever value is computed in the parse tree T and multiply it by two and
three respectively. These macros are the same as the modules discussed in
Angeline and Pollack’s work on coevolving high level representations [1], but
we do not dynamically acquire them during the process of evolution. We
define macros only to allow us to more easily discuss the structure of our
parse trees.

L
o~y

Figure 2: Subroutines for multiplying tree T' by 2 or 3.

Since storing and recalling must occur in some order to have a well defined
meaning, we adopt the standard that the left-hand branch of a parse tree is
evaluated before the right-hand branch. In both the subroutines shown in
Figure 2, this means that all the storing takes place before all the recalling
(outside of the tree T'). In a randomly generated or evolved parse tree there
is no guarantee that a recall operation will not be requested before a store
operation. To prevent this from being a problem, the external memory is
initialized to 0 before a parse tree is evaluated.

2 The Test Problems

In the PORS environment, there are two very natural problems; one easy,
one hard. The first problem, the easy one, which we term efficient node use,
is to describe the largest possible number with a fixed number of nodes. The
second problem, the difficult one, which we term minimal description, is to
find the minimal number of nodes needed to describe a particular number. A
bit of mathematical theory will help us find the true answer to the efficient
node use problem and, with that in hand, we can solve some cases of the
minimal description problem.

Let 7T be the set of all PORS trees. Let ¢ : 7 — N be the evaluation
map that computes the number a tree describes. For a tree T, let |T'| denote

the number of nodes in the tree. Let f(n) be the largest number that can
be described by a PORS tree with n nodes. Call a tree T optimal if ¢(T') =
f(T)). For a tree T', denote by o(T') the contents of the storage register after
the tree has been evaluated. Finally for a tree T denote by T the result of
replacing all the 1s in T" with recalls.

Lemma 1 Any optimal tree with six or more nodes contains a store instruc-
tion.

Proof:

A tree without store instructions is a simple binary tree whose leaves are
either recall or 1 and whose interior nodes are pluses. This forces an odd
number of nodes so we need not consider trees on an even number of nodes.
Without a store to put something other than zero in memory each recall
contributes nothing. An optimal tree without any store instructions may,
thus, be assumed to consist entirely of the terminal 1 and the operation plus.
From this we see that such optimal trees contain 2k — 1 nodes and describe
a value of k. Examine the trees in figure 3 with seven, eight, and nine nodes.

Figure 3: Good trees using the store instruction on 7, 8, and 9 nodes.

We see that these trees describe the numbers 4, 6, and 8 respectively
and hence do at least as well as a store-free trees on seven, eight, and nine

nodes. By using the macro for multiplication by two, in Figure 2, we can
extend these three examples to a family of trees that includes every odd
number of nodes in excess of six and which describe numbers larger than the
corresponding store-free trees. O

Lemma 2 [n an optimal tree, the right descendant of a plus may be assumed
not to be a store.

Proof:

Suppose that the right descendant of a plus was a store. If we delete
that store and insert a new store as the immediate ancestor of the plus in
question, the value of the tree increases or stays the same without changing
the number of nodes in the tree. O

Lemma 3 An optimal tree that contains a store instruction may be assumed
to contain a store instruction as the immediate left descendant of its topmost
plus.

Proof:

Let the subtrees branching off of the topmost plus in a tree be called the
major subtrees. First, we claim that a tree containing a store contains a store
in the left major subtree. To see this, assume we have an n-node optimal
tree with a store but no store instructions in its left major subtree and let
the tree have k nodes in its left major subtree and n — k& — 1 in its right
major subtree. Clearly, the left major subtree is optimally composed of 1s
and pluses. It hence returns (k — 1)/2 for its value and has 0 in the memory
when it finishes. Lemma 1 implies, thus, that the left major subtree contains
at most five nodes and the fact such trees have an odd number of nodes
forces the left major subtree to have one, three, or five nodes. In the right
major subtree, we have a store instruction and, hence, a store instruction
that is executed first. Since the tree is optimal, the argument of this store
is itself an optimal store-free tree and, hence, has one, three, or five nodes.
Now we have a pair of optimal, store-free trees, the left major subtree and
the argument of the first store executed in the right major subtree. If we
replace the left major subtree with (Sto T') where T is the larger of these two
trees and put the smaller starting where the store had been, replacing all 1’s
in the right major subtree with recalls, then the value described by the tree

will not decrease. We may, thus, assume a store instruction is present in the
left major subtree of an optimal tree. With the claim in hand we may now
obtain the lemma by induction on the following transformation:

This transformation cannot decrease the value of a tree and clearly allows
us to percolate store instructions up until one is the left descendant of the
topmost plus in the tree. O

Theorem 1 For n > 6 we have that
Fin) = Maz {f(n — k= 2)(f(k) + 1) s 1 <k < (n - 3)}.

Proof:

Let T' be an optimal tree on n > 6 nodes. By the hypothesis, T" has at
least six nodes and hence contains a store instruction by Lemma 1. We know
from Lemma 3 that we may assume T4 has the form:

@o T)

where |T1| = (n — k —2), [T2] = k, and T'1 and T2 are themselves optimal
trees. A moments thought shows that because we replaced the 1s in T2 with
recalls (this is the meaning of T'2") that

(T) = (T1) - («(T2) + 1).

Since optimal trees on r nodes evaluate to f(r) we have the theorem. O

This theorem, together with a small amount of easy hand enumeration,
permits us to easily tabulate the values for f(n), as in Figure 4. We do not
yet have a nice closed form, but one is strongly implied by the entries of
table.

n|f(n) | n |[f(n)]| n |f(n)
1 1 10 9 19 | 72
2 1 111 12 | 20| 96
3 2 121 16 | 21 | 128
4 2 13 | 18 | 22| 144
) 3 14 | 24 | 23| 192
6 4 151 32 | 24 | 256
7 4 16 | 36 | 25 | 288
8 6 171 48 | 26 | 384
9 8 18| 64 | 27| 512

Figure 4: The first few values of f(n).

3 Some Combinatorial Results

In order to explain the observed behavior in our genetic programming systems
we need information about the space of PORS trees. To this end we derive
some relevant counting formulae in this section.

Lemma 4 The number of PORS trees on k nodes is

S ()

n=1

Proof:

Suppose we group the terminals recall and 1 together as leaves of our
parse trees. If we ignore store instructions we obtain from a PORS tree an
underlying binary tree with n leaves and n — 1 internal nodes corresponding
to pluses. Since we have k nodes in the PORS tree we have at least one

leaf and at most [£41]

leaves in this underlying binary tree. The index of
summation in the formula above is over the possible number of leaves in the
underlying binary tree. The Catalan numbers C,, = * 2: 12
ber of types of binary trees with n leaves giving the ﬁrst term of the formula
being summed. Once we know the leaf count and type of the underlying

binary tree we must decide if each of the n leaves are Rcl or 1 yielding 27

) count the num-

choices and the second term of the above summed formula. Finally we must
place the store instructions in the tree. A store instruction may appear be-
fore the top plus in the tree or as the left or right descendant of any of the
n — 1 pluses in the tree yielding 2n — 1 total places a store could be placed
in the tree. Any number of store instructions can be placed in each of these
locations which makes the number of ways to place the store instructions a
simple balls-in-bins problem. There are £—2n+1 nodes not in the underlying
binary tree which must be stores and they must be placed without restriction
in each of 2n — 1 locations which can happen

R R

ways yielding the last term of the summed formula. O

Corollary 1 The number of PORS trees on k nodes in which each leaf exe-
cuted before the first store is executed is a 1 and each leaf executed after the
first store is executed a recall is

k1

(] 1{2n—=2\[k—1

~n\n—1/\2n—-2)

Proof: The counting formula is derived exactly as in Lemma 4 save that

there is no choice in the identity of leaves. O
We will denote this restricted class of PORS trees by 7.

M-

10

Lemma 5 The number of PORS trees in which a store instruction never has
a store instruction as an immediate descendant is

[] 1{2n—2 2n — 1
— 2n .
: 1n n—1 kE—2n+1

n=

bl
Wi
A

bl
vl
[V}

Proof:

Adopt the notion of underlying binary tree from Lemma 4. Assume we are
considering underlying binary trees with n leaves. The index of summation
for the formula given in this lemma is still the number of leaves but now
the 2n — 1 location in which a store may be placed must equal or exceed the
number of stores. There are k—2n+1 stores so we see that k—2n+1 < 2n—1,
and hence n > [%1, which verifies the index of summation. The next two
terms are the Catalan numbers and number of ways to choose the leaves of
the tree as in Lemma 4. When we place the store instructions, though, we
have 2n — 1 locations available. Each location may receive at most one of
the kK —2n + 1 store instructions. The choices involved are thus counted with
a simple binomial coefficient (2=l), and the formula is complete. O

kE—2n+1
We will denote this special class of PORS trees by 7.

Corollary 2 The number of PORS trees in T*N7; is

[] l 2n — 2 2n — 1
1n n—1 k—2n+1)"

Proof: The counting formula is derived exactly as in Lemma 5 save that

H

[+

bl
ol
[V}

n=]

there is no choice in the identity of leaves. O

We will denote 7N 7 by 7.

Each of the three restricted families of parse trees described above has
special properties that are enjoyed by optimal trees. To see this read carefully
the proof of Lemma 3. If we start our search for an optimal trees within
these families we make discovery of optimal trees more likely. Since the
counting formulae derived above do not induce in a non-combinatorialist an
immediate sense of how fast these functions grow we show the numerical
values for enumeration of trees on 1 < k < 16 nodes in Figure 5.

11

T T 1. T T[T
2 1 2 1 0.500
2 1 2 1 0.500
6 2 4 1 0.167
14 4 12 3 0.214
42 9 28 5 0.119
122 21 34 11 0.090

384 51 240 25 0.065

1206 127 720 55 0.046

3922 323 2208 129 0.033

12914 835 6348 303 | 0.023
43190 2188 21616 721 | 0.017
145950 5798 63880 1743 | 0.012
498170 15511 221744 4241 | 0.009
1714926 41835 719696 10415 | 0.006
5940014 113634 2352384 25761 | 0.004
20712646 310572 7737600 64095 | 0.003

e T T S e
S AR e DD 0~ O T WD

Figure 5: Enumeration of various types of PORS trees.

4 Markov Chains for Efficient Node Use

In this section, we will report experimental results for solving the efficient
node use problem with genetic programming. Since this problem is solved
much more efficiently by Theorem 1 the solution to the problem isn’t the
point. Rather we wish to use different Markov processes to generate the
initial population and check to see to what degree this enhances or impairs
solution of the efficient node use problem by the genetic algorithm. Thus far
in genetic algorithms people have tried to enhance their original population
and mutation operators by choosing something other than a uniform distri-
bution on the nodes that make up their random parse trees. An example of
this appears in Teller’s experiment with evolved controllers for virtual bull-
dozers [6]. The bias in the probability of selection of various program nodes
can be viewed as containing some knowledge Teller had about the problem
he was trying to solve.

12

Using Markov chains extends this idea. Using a nonuniform distribution
to select the nodes of a parse tree is a zeroth order structure with no depen-
dence on ancestry. A Markov chain allows higher order bias of selection of
nodes. The selection of nodes is allowed to have dependence on history. The
restricted classes of parse trees in Section 3 can all be generated by Markov
processes. Details of the algorithmic implementation of the Markov processes
follow.

4.1 Experiment Description

We will use four different methods of generating the initial population, cor-
responding to sampling from 7,77, and 7. The initial population will
consist of 500 parse trees with exactly k nodes. We will run a steady state
genetic algorithm until a parse tree that correctly solves the maximization
problem on k nodes is found or until we have completed 25,000 mating events
whichever comes first. A mating event consists of breeding two parse trees to
produce two new parse trees, a total of four, and then placing the two most
fit of the four in place of the two originally chosen. This is a strongly eleitist
mating scheme.

Steady state genetic algorithms are described very well by Reynolds [4]
and were discovered independently by Syswerda [5] and Whitley [7]. We
decided to use the steady state algorithm because we are measuring success
by computing evolutionary time until a correct answer appears in our pop-
ulation. A steady state algorithm gives much finer time resolution than a
standard genetic algorithm with discrete, simultaneous generations.

A breeding event consists of four steps. First we copy the two origi-
nal trees. Second we exchange uniformly chosen sub-trees of these copies
(crossover). Next, with 50% probability for each of the new trees, we replace
a uniformly chosen subtree with a sub-tree of the same size chosen uniformly
from 7 (mutation). Mutation is done with new sub-trees taken from 7 in all
four experiments - the Markov processes are used only to generate the initial
population. Finally, if either of the new trees have in excess of k£ nodes we
iteratively choose an immediate descendant of the root node to replace the
tree until it has k£ or fewer nodes. We term this last process chopping and it
is not yet standard in genetic programming.

For each of the four methods of generating the initial population we ran
100 initial populations and record the fraction that have found a correct

13

Figure 6: Fraction of populations with correct answer as a function of thou-
sands of mating events with K' = 16 nodes.

100 T

80

60

% Population with Correct Solution

0 2000 4000 6000 8000 10000 12000 14000 16000

Mating Cycles

solution as a function of the number of mating events. The is results are
shown in Figure 6.
The algorithms for generating our initial populations are as follows.

T We generate trees in 7 recursively according to the following rules. A
tree on k£ = 3 or more nodes is uniformly chosen to be either a store
with a £ — 1 node tree as an argument or a 4+ with the remaining
k — 1 nodes split between its left and right arguments by generating
a uniformly distributed random number. A tree on k = 2 nodes is of
the form store with a one node tree as an argument. Trees with k =1
nodes are chosen to be 1 or recall with equal probability.

14

/]'*

/]'*

We generate trees in 7* recursively according to the following rules. A
tree on k£ = 3 or more nodes is uniformly chosen to be either a store
with a £ — 1 node tree as an argument or a 4+ with the remaining
k — 1 nodes split between its left and right arguments by generating
a uniformly distributed random number. A tree on k = 2 nodes is of
the form store with a one node tree as an argument. Trees with k =1
nodes are chosen to be 1 if the leaf in the tree is not in a position where
a store instruction has been generated otherwise it is chosen to be a
recall.

We generate trees in 7, recursively according to the following rules. A
tree on £ = 4 or more nodes that is not the immediate descendant of a
store node is uniformly chosen to be either a store with a k—1 node tree
as an argument or a + with the remaining £ — 1 nodes split between its
left and right arguments by generating a uniformly distributed random
number. If a tree on four or more nodes is the immediate descendant
of a store node then it is a plus with the remaining nodes uniformly
divided between its descendants. A tree on £ = 3 nodes is a + with two
one node trees as descendants. A tree on k = 2 nodes is of the form
store with a one node tree as an argument. Trees with £ = 1 nodes are
chosen to be 1 or recall with equal probability.

We generate trees in 7. recursively according to the following rules. A
tree on £ = 4 or more nodes that is not the immediate descendant of a
store node is uniformly chosen to be either a store with a k—1 node tree
as an argument or a + with the remaining £ — 1 nodes split between its
left and right arguments by generating a uniformly distributed random
number. If a tree on four or more nodes is the immediate descendant
of a store node then it is a plus with the remaining nodes uniformly
divided between its descendants. A tree on £ = 3 nodes is a + with two
one node trees as descendants. A tree on k = 2 nodes is of the form
store with a one node tree as an argument. Trees with £ = 1 nodes are
chosen to be 1 if the leaf in the tree is not in a position where a store
instruction has been generated otherwise it is chosen to be a recall.

15

5 Discussion of experimental results

As we can see see in figures 6 with k£ = 16 nodes the Markov chains were uni-
formly helpful. The worst performance is in the populations initially drawn
from 7, the populations initially drawn from 7 and 7, have performance
plots that repeatedly cross one another, and the populations initially drawn
from 7 are substantially better than all three other sets of populations.
There are a few oddities, for example the populations initially drawn from
7T, included a few populations that had a hard time converging. As we will
see soon this is likely because they had fallen into a large local optimum.

Another measure of the effect of the Markov chains is the number of
populations that contained a solution in the initial population of which failed
to find the solution in 25,000 mating events. In Figure 7 we tabulate both
these for each of the four different types of initial populations.

k T T 7T, Tr
Initial Final Initial Final Initial Final Initial Final
Success Failure | Success Failure | Success Failure | Success Failure

6 T4 0 100 0 100 0 100 0

7 100 0 100 0 100 0 100 0

8 43 0 100 0 99 0 100 0

9 4 0 46 0 21 0 100 0
10 3 0 78 0 43 0 100 0
11 1 0 40 0 20 0 100 0
12 0 5 1 2 1 6 12 7
13 0 0 15 0 7 0 99 0
14 0 0 2 0 2 0 38 0
15 0 29 0 32 0 50 0 58
16 0 0 1 0 0 0 35 0

Figure 7: Populations (out of 100) that contained a solution in the initial
randomly generated population and which failed to find a solution.

If Figure 7 we see that the experiments with £ = 15 nodes show the
Markov generation of initial populations to result in degraded performance.
The experimental probability of a population will not find a solution in 25,000

16

mating events goes from 0.26 to 0.58 as we add Markov generation to our
genetic algorithm. A closer look at the table will show that & = 15 is an
extreme example of another odd effect. While the efficient node use problem
gets harder to solve with a genetic algorithm as the number of nodes increases
it also shows a dependence of difficulty on the congruence class of the number
of nodes (mod 3). There is a good explanation for this a priori bizarre feature
of the problem.

Examine Figure 4. It’s not too hard to see with a computer and Theorem
1 that the following suggestive facts hold if one has & > 9: f(3n) = 27,
fBn+1)=9-2""2 and f(3n +2) = 3-2""1. A factor of three can come
from the macro 3z or from a tree of the form (+ (+ 1 1) 1) while a factor of
two can come from the macro 2x or a tree of the form (4 1 1). In addition,
a three of either sort has two possible forms: (+ (+ 1 1) 1) or (+ 1 (+ 1 1)).
The form of either sort of two is unique. In all of our experimental runs, every
efficient node use solution is made of twos and threes of the sort specified
above. Keeping all this in mind this means there is a unique solution to the
efficient node use problem on 3n nodes. When we have 3n + 1 nodes the
answer contains n “factors” two of which are threes and the rest of which
are twos. There are (;) ways to order the factors and two different forms
the threes can have for a total of 2n(n — 1) solutions to the efficient node
use problem. On 3n + 12 nodes we have n factors with one three giving
a total of 2n solutions. This variation in the size of the global optima of
the search space in step with the congruence class (mod 3) goes a long way
toward explaining the observations reported in Figure 7.

This is also bodes well for the efficient node use problem as a test problem
for genetic programming environments. There are three families of problems
within the efficient node use problem corresponding to the congruence classes
(mod 3). These problems have markedly different fitness landscapes. Con-
sider, for example, the local optima we alluded to previously when k£ = 15.
The local optima contains trees that evaluate to the number 27. Producing a
factor of three requires five nodes while produce a factor of two requires three
nodes (see Figure 2). The macros that produce three have two variants while
the macros that produce two have a unique form. This means the correct
solution on fifteen nodes, a tree that evaluates to 32, is a unique of depth 10
while the trees that evaluate to 27 come in eight distinct forms and are of
depth 9. Other multiples of fifteen nodes give search spaces with this same

17

pair of optima, powers of two and three, with the global optima remaining
unique while the local optima grows exponentially in size with the number
of nodes.

The three classes of problems within the efficient node use problem have
a single point global optima (k = 3n nodes), a global optima that grows
quadratically (k = 3n 4+ 1 nodes), and an optima that grows linearly (k =
3n 4 2 nodes), all within an exponentially growing search space. This gives a
fairly large set of well described test problems for use in evaluating a genetic
programming environment.

6 A mathematical discussion of the minimal
description problem.

We will let m(k) be the minimum number of nodes in a PORS tree that
evaluates to k. Out work on the efficient node use problem has already given
us some information about the minimal description problem. Recall then
f(k) is is the largest number that can be described by a PORS tree on &
nodes.

Lemma 6 [If f(k) =n then m(n) < k.

Proof:

This is obvious. O
Lemma 7 If f(k) =n and s > n then m(s) > k.

Proof:

If m(s) < k then the minimal tree for producing s is a witness that we
have a tree on k or fewer nodes that can produce a number bigger than n.
This contradicts the hypothesis f(k) =n. O

Looking at base two expansions of integers can give a much meatier

bound.

Lemma 8 Suppose that the base two expansion of k contains w ones and

that r = |logy(k)|. Then

m(k) <3r+2(w—1).

18

Proof:
Recall the definition of the macro 2z. Start with the parse tree

(20 (20 (20 (+11)-))

for computing 2". For each one other than the most significant in the base
two expansion of k break the parse tree between copies of 2z and insert a
+ whose other argument is one. The result is a parse tree that computes k
according to its Base 2 expansion. Each power of two requires three nodes,
each inserted one requires two. O

Corollary 3 m(k) <5 - |log,(k)].

Proof:

Adopting the notation of Lemma 8 note that w—1 < |log,(k)], substitute
into the formula given in Lemma 8, and simplify. O

In Lemma 8 the base two expansion of n implies a nice construction using
the macro 2z for a tree that computes n. The could be done in any base
and in a base where a number has a sparse expansion (most digits zero) the
upper bound may be better than the binary upper bound.

7 Markov Chains and Crossover

In this section we will explore a method for biasing crossover with a Markov
chain. We define a modification of crossover operator that incorporates in-
formation from a Markov process and investigate the effect on the speed
of convergence for various choices of the Markov process. The results are
somewhat unexpected but can be explained in retrospect by appealing to
the theoretical material developed in earlier sections. Simulations show that
in some instances the Markov crossover operator increases the speed of con-
vergence. In at least one instance, convergence is substantially slowed. In
all cases the gain from enhancing the initial population exceed that of the
Markov crossover operator but we conjecture this may be because of our
choice of Markov process rather than any general property of evolutionary
algorithms. We discuss possibly helpful modifications of the idea in the sec-
tion on future work.

19

The Markov crossover operator requires that we weight the edges of each
parse tree involved. Where before the Markov process we were using gave a
probability distribution on successor nodes during the generation of trees in
the initial population, we now use those probabilities to place weights on the
edges of parse trees. We soften the distribution by displacing deterministic
probabilities by a small amount, e.g. where the Markov process for generating
a tree of a certain type had an edge that was disallowed, probability zero, we
could place a weight of 0.05 on the type of edge in question. Likewise, edges
that were required by the Markov process we might assign edge weights of
0.95 for use in the Markov Crossover. These weights are used as binding
strengths.

With the binding strengths in hand, we perform Markov crossover as
follows. In each of the two trees participating in the crossover we pick an
edge, choosing with probability proportional to the reciprocal of the binding
strengths. We then remove the subtrees starting below those edges and
compute the binding strengths that would exist in the new trees formed,
were we to complete crossover in the usual fashion. Independently for each
subtree, we use these putative binding strengths to decide if we will attach
the new subtrees. If a uniformly distributed random number is less than
the computed binding strength then the new subtree is attached. If we
do not attach the new subtree we generate a small random subtree using
the Markov generation algorithm that inspired the binding strengths. In
algorithmic form we would perform crossover of edge weighted parse trees T}
and Ty with binding strength function BS(A, B) defined on pairs of nodes
as follows:

1. For «e{1,2} in T; choose edges (A;, B;) with probability proportional
to the reciprocal of BS(A;, B;).

2. Compute p; = BS(A;, Bo—;) in the trees that would result in crossover
with subtrees rooted at B;.

3. With probability p; complete the crossover in the standard fashion,
independently for each value of .

4. For each tree where crossover was not completed in the usual fashion,
dispose of the unused subtree and generate a small new subtree with the
same Markov generation technique that induced the binding strengths.

20

Figure 8: Tree with associated binding strengths

Intuitively the Markov crossover should have the same benefits of urging
parse trees toward restricted classes that still contain correct solutions. The
pressure toward restricted classes is uniform throughout evolution instead
of being focused at the beginning of an evolutionary run, which may be
good or bad depending on the cost/performance ratio. Figure 8 shows an
example of a tree with its associated binding strengths. Figure 9 shows the
associated probabilities and illustrates the selection of a subtree for crossover.
An attempt is then made to attach the selected subtree to the crossover point
on the other tree as shown in Figure 10.

In the remainder of the section we will report two experiments that test
Markov crossover for particular choices of Markov process and hence of bind-
ing strength function. The first uses 75, the process in which the probability
of a store following a store is zero and all other possibilities are equally likely
whenever they are possible at all. For the 7, Markov process the binding
strength function is:

0.05 if P and C are both STORE nodes

BS,(P,C) = { 0.95 otherwise.

The examples given in figures 8, 9 use this binding strength function. While
not utterly forbidding a store to be the immediate descendant of a store this

21

Probability that the link between
the two store operations is
choosen is:

20/((100/95) = 11 +20) = 0.633

Figure 9: Tree with probabilities and selection shown

Connected if
random number is e
lessthanBS =0.95 -~

Figure 10: Binding a subtree with a tree

22

binding strength function greatly reduces the chance that two store nodes
are executed one after another in a parse tree. In the earlier experiments
reported in this paper crossover has no barrier beyond low fitness to joining
a store with a store.

In Figure 11 we see the fraction of 500 populations, each consisting of
500 parse trees, that have found the correct solution as a function of mating
events for four simulations. These simulations are a control in which the
initial population and crossover are uniformly random, a Markov generated
initial population with random crossover, a random initial population with
Markov crossover, and a Markov initial population with Markov crossover.

o
©
T

S/Control (random initial population with|random crossover)

o
o
T

- Random initial population with Markov| crossover

—— Markov initial population with random grossover

°
'S
T

Markov initial popualtion with markov ¢rossover

Percent of population with a correct solution

o
N
T

1 1 1

1
0 2000 4000 6000 8000 10000 12000

Mating cycles

Figure 11: Graph of percent solutions versus generations of Markov T

Before performing this experiment we conjectured that Markov crossover
would help a good deal more than Markov generation of the initial popula-
tion but that placing the expensive computations involved in implementing
the Markov crossover inside the innermost loop of the algorithm, in which
breeding takes place, would be quite costly. We conjectured that we would

23

have to do a quantatative cost/benefit analysis and some hand wringing be-
fore issuing a judgment as to the worth of Markov crossover. Figure 11
speaks for itself. Most of the difference between runs in the experiment was
due to Markov generation of the initial population. Since doing the Markov
computations only during the generation of the initial population is over-
head, swamped by the time spent doing simulated evolution, it is clear that
Markov crossover is simply not worth the trouble. We make no conjecture
that this is so outside of the PORS environment and have some thoughts, in
section 8, as to better ways to do Markov crossover.

We now will do essentially the same experiment with the 7 Markov
process, save that we will skip the trials using random generation with
Markov crossover for reasons that will become apparent momentarily. For
this Markov process we choose the binding strength function:

0.01 if adding the subtree causes the entire tree not to be
in 7, and not in 7*

0.05 if adding the subtree causes the entire tree to be in

BS(P,C) = 7, but not in T*

0.05 if adding the subtree causes the entire tree to be in
7 but not in 7,

0.95 if adding the subtree places the tree in 7.

In the last experiment there was little benefit from Markov crossover. To
our surprise the Markov crossover in this experiment substantially impedes
evolution. This can clearly be seen in Figure 12 where it is plotted against
simulations where normal crossover is used. In retrospect there is a good
explanation for this event.

Consider two parse trees that are in 7. and partition the nodes into two
sets P and () as follows. The set P of nodes are those executed before the first
store instruction is executed and the set () of nodes are those executed after
the first store instruction is executed. In Figure 13 the nodes represented
by circles belong to the set P and the nodes represented by squares belong
to the set). Under 7,7 Markov crossover, a subtree from one tree will
crossover normally, as opposed to causing a new subtree to be generated,
with high probability only if all nodes in the subtree are from the same half
of a P — () partition. It is not hard to see that for a 16 node tree such an
event occurs with low probability; most subtrees contain nodes from both
P and (). Worse still, this probability of useful crossover decreases the tree

24

__——=Control (random generation and random crossover)

= .
S

_——Markov generation and Markov crossover

Markov generation only with random crosover

0.6 |-

Percent of populations with a solution

0.2

0 5000 10000 15000 20000 25000

Mating cycles

Figure 12: Graph of percent solutions versus generations of Markov 17

approaches the left linear form of a correct solution. True crossover is thus
rare in this implementation of Markov crossover while generation of a new,
small subtree is common. Almost all useful work is performed by mutation,
yielding very slow convergence time.

8 Future Work

The next step we wish to take in this research is to attempt to save an idea
of which we are proud but which did not survive experimental testing in this
paper; Markov crossover. It is possible to argue at great length that this or
that Markov process might be the golden example that will provide a proot-
of-concept for Markov crossover. Having tested several Markov crossover

25

GG

Figure 13: Partitioning a parse tree

operators, two of which were presented in this paper, we propose, instead
of endless hacking, to put the problem back in the lap of Darwin. We draw
out inspiration from molecular biology where the binding strength of various
chemical bonds helps to dictate the pattern of activity of biological reactions.
Those systems whose patters of strong and weak bonds are more efficient
survive and reproduce. There is, in such a system, no need to design the
patters on strength and weakness in the binding. These patterns are simply
a gift given by evolution.

Generalizing the notion of Markov crossover as presented in this paper,
we intend to build random crossover strengths into our parse trees. As a
population improves in fitness, and declines in diversity, the binding strengths
should converge to a small set of values which will suggest, in a natural
fashion, a good Markov process. At least we conjecture this will be the case.
With such a Markov process in hand we can both test the Markov process
for use in generating new initial populations and we can check if the process
scales to larger instances of the same problem. This latter idea deserves a
bit more comment.

26

Suppose we are attempting to treat a given program induction problem
with a genetic programming system. In addition, imagine that the problem
comes in many sizes. It is not implausible that there are simple operations,
built of but not contained in the primitive operations of the genetic pro-
gramming system, that are useful in all or most of the instances of the target
problem. Using parse trees with evolving binding strengths, we can discover
these intermediate objects. They would appear as tree fragments with high
internal binding strengths and lower binding strengths on their periphery.
The location of such tree fragments was in fact the goal of Angeline and
Pollacks technique of module acquisition. It is, to a lesser degree, the motive
for including ADFs in a genetic programming system. Why, then, do we
suppose this binding strength technique to be worth trying?

With module acquisition, the modules were, perhaps unfortunately, re-
moved from the evolving portion of the code. In the environment we pro-
pose, the tree fragments would remain in the digital soup. The process of
exploration would continue to operate on the fragments as well as the trees
containing them. The use of binding strengths would transfer to evolution
the job of deciding which code fragments are important enough to save,
worth giving up, or in need of addition testing. The additional bookkeeping
is reduced to a modified crossover operator, a substantial reduction in the
support complexity.

References

[1] Peter J. Angeline and Jordan B. Pollack. Coevolving high-level repre-
sentations. In Christopher Langton, editor, Artificial Life I1I, volume 17
of Santa Fe Institute Studies in the Sciences of Complexity, pages H5-T1,
Reading, 1994. Addison-Wesley.

[2] Kenneth Kinnear. Advances in Genetic Programming. The MIT Press,
Cambridge, MA, 1994.

[3] John R. Koza. Genetic Programming. The MIT Press, Cambridge, MA,
1992.

[4] Craig Reynolds. An evolved, vision-based behavioral model of coordi-
nated group motion. In Jean-Arcady Meyer, Herbert L. Roiblat, and

27

Stewart Wilson, editors, From Animals to Animats 2, pages 384-392.
MIT Press, 1992.

Gilbert Syswerda. A study of reproduction in generational and steady
state genetic algorithms. In Foundations of Genetic Algorithms, pages
94-101. Morgan Kaufmann, 1991.

Astro Teller. The evolution of mental models. In Kenneth Kinnear, editor,
Advances in Genetic Programming, chapter 9. The MIT Press, 1994.

Darrel Whitley. The genitor algorithm and selection pressure: why rank
based allocation of reproductive trials is best. In Proceedings of the 3rd
ICGA, pages 116-121. Morgan Kaufmann, 1989.

28

