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I. INTRODUCTION

Problems in "moderatsely thick" plates may be distin-
guished from problems in "thick" plates by the menner in which
the boundary conditions at an edge of the plate are given (10,
p.458-8). 1In thick plates the stresses have prescribed values
at every point of the edge while in moderately thick plates
the stresses are represented by thelr forece- and couple-~ re-
sultants taken along & vertical element of an edge. It is
true ﬁhat nmoderately thick plate solutions may not be exact
but Saint-Venant's principle states that they will sufflclent-
1y approximate the exact sclutions for all points which are
not too close to the edge of the plate (10, p.131-2).

Although solutions for the digplacements of thin plates
were obtasined in the first half of the ninteenth century,
Saint~-Venant (2, p.337) found the first solution for a moder-
ately thlck plate in 1883. It was after 1900 before A, E. H.
Love (10, p.465) found the correct solution for a moderately
thick circular plate under a2 uniform lecad. He used s method
developed by J. H. Mitchell (11) in 1899.

C. A, Garabedian (4) was the first to solve successfully
problems 1In moderately thick clrcular plates by a method ine
volving the assumption that the dilsplacements can be expanded
in a serles of rational integral powers of a small parameter.

This method of solution was introduced by G. D. Birkhoff (1)
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in 1922. During the years 1924 -~ 32 Garabedlan (5, 6, 7)
published results for a moderately thick rectangular plate
subject to a uniform load for several types of edge conditions.
He never published his method for rectangulsy plates except to
say (5) that it is similar to his method for circuler plates.
In 1930, B. G. Galerkin (3) published an entirely different
method for solving problems in moderately thick plates. In
1931-2 he (3) published genersl, but no specific, results for
both elrcular and rectengular plates. He expressed the stres-
ses and dilsplecements in terms of three functions §,, $. end
fas where Agdy = Ca, 2402 = Cp and Ayds = G5 and where C,,

‘ &
Co and C4 are arbitmy onstants and L * 3‘ + a
® i =y e A"zax* = 3¢

In 1931, H., W, Sibert {(12) sclved problems in moderately
thick circular plates by a2 method simlilar to that used by
Garabedian, However, he succeeded in eliminating the parameter
used by Garsbedian and in expsnding the displacements directly
in positive integral powers of z. He also succeeded in finding
the general terms for hisg serles. It seems desirsble to extend
Sibert's method of analysls to problems in rectanguler plates.

v?his Investigation leads to a solution for the displace-
ments in asn elastlc isotroplc moderately thick rectanguler
plate under the actlon of & given distribution of load and with
prescrlibed boundary condltions at the edges. The method, anal-
ogous to that used by Sibert (12) for a circular plate, is
based on the fundemental assumuptlion that the components of dis-
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placement can be developed in positive lntegral powers of z.
In this type of problem the dlsplacements must satisfy (a) the
stress equations of equilibrium throughout the body, (b) the
surface traction conditions on the upper snd lower faces, (c)
the boundary conditions at the edges.

In chapter II, the first two of these conditions are sat-
iafied for aeny normsl load which can be expressed as s polyno-
mial in x,y continuous over the entire plate. The result is
& set of differential equations vhich define the displacements.
In chapter III, these differential equations are solved for
the normal load P(l + ﬁa; + %’1) on the upper face subject to
three different sets of edge condltiona: pimnned-pimned, pin-
ned-free and pinned-clamped where these terms are defined In
the following manmner. Iet T, 8, N be the components of the
atress-resultant belonging to an edge~line s, and H, G be the
components of the stress-couple belonging to the same line.

T 1s a tension, S and N are shearing forces tangential and
normal to the middle plane, G 1s a flexural couple, and H a
torsional couple (10, p.455). Then at a free edge T, S, m-%%,
G vanish. At & pinned edge the displacement w of a point on
the middle plane at right angles to this plane vanishes, and T,
5, & also vanish. At a clamped edge, the displacements wu, v, w
of a point on the middle plane vanish, anﬂ.gg'also vanishes, n
denoting the directlion of the normal to the edge-line (10,p.
462).
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II. GENERAL THEORY

L. Form ef the Displacements Necessary o
tis he 'qmtiena of Equilibrium

From the fundamental assumption of expsnsion in positive

Integral powers of z, the displacements u, v, w are given by

we-Eng. v-Sug. --Eud.

where Uy, Vi, W, are continuous and econtinuously differenti-
able functions of x end y.

The eguations of equilibrium in terms of displscements,
with bedy forces zero, are (10, p.l126, 134)
(2.1}...'%4-3% +%* {1 ~ 2p) (Aga+§.._§) o,

ax 3

2.2) % + 3% + (1 - )<A *aﬁvz
(2.2) 2%+ S0+ 28 20) (bav + Zg)= 0

)

X 2
2.3) 2% +3%_ 4+ (1.2 w+ 2(1 - 3w
{ ) m W ( p) A?a ( f)) -é-;g- = 0
where throughout this paper Ag = %23 + %:..ﬁ and the number o
is "Poisson's ratio”. When equations (1) are substituted in
the equilibrium eguetions (2) and the coefficients of like

powers of z are equated to zerc, there results
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(3.1} Opc = ‘i“é‘“‘[ G - 2)abep + Z2 + TR e,

(3.2) Vi = y=Lo [(1»2@) BaVi-2 + 32}&-&: + 3“21;:—3 + 5‘%-1] .

-1 3.1 avk«-ll
) -~ 1 - 2p) BgWp + =+ .
‘35)%”5‘(1"57[( 2p) Be¥iop * 2= ¥ g
By successive gpplications of the recurrence relstions
(3) » 1t 1s possible to express Uy, Vi, W, directly in terms
of Uy, Uy, Vo, Vi, Wy, Wi. A materisl simplification of these
formulas is obtalned by the introduetion of two new functions

defined by

(4.1) (1 - 2p)W, = ‘W g,;.g + Uy,
au., . av ,

(¢.2) 2(1 - p)W, = .s.iz + .%EE - BgWo.

The final results are

; W

(5.2) Vep = (=1)Asp~z [ﬁa‘% +n ‘gy“awz] »
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, | = n re _ [3Y ava)x
(5.3) Wopty (-1) &gﬁ { (L -~ 2p =~ n)wl . (o&—- + —a-;-' s
(6.1) Ugngar = (=1 }nﬁﬁnwg [Aﬁgl +n Ziol »

; oW
(642) Vopey = (=1)PAgnes [ﬁavl +tn Ql s

=

it av
{6,3) Wpp = («1)Aenwe [(ﬁ -2+ 2p)W, + 5-& Wi‘]

Formulas (5) involve only Uy, Vg, Wy while formulas (6)
involve only Us, Vi, Wp. When formulas (5) and (6) are sub-
stituted in eguations (1) there results

(7.1) u = nZ (=<1 8gnm2 [&aﬁﬂ +n 'g?i}‘} (%\

enty

+ 2 (e [Awﬁa TR 3“'} oI

(7.2) v = Z (~1)82n~2 {ﬁs‘% +n -§§—’=] R

Wa ] g0+

+ Z (wl) bopeg [ﬁgVi + n 5_—- W R

(7.3) w= Z {*1}:15&34-@ [_(n -2 F ‘ap)‘@o + (gg{ + %;.E)] g:n “
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+3 (-1P8en [(2 - 20 - )W -(552 + %g)] smts

These expressions for the displacements satlsfy formally
the stress equations of equllibrium throughout the body.

B. Surfece Traction Eguations
iﬁﬁoaéﬁ on the Displacements

& right-handed coordinate system with its origin at a
corner of the middle plane of the plate wlll be used. Thus
the equations of the faces of the plate are z = ¥h, x = 0,
x=8, y=0and y = b. The x,y and 2z components of the sur-
face tractions will be designated by I,, J3 and P; respective-~
1y on the upper face and by Iy, Jg and Py respectively on the
lower face. Using the notation of Love (10, p.77) where the
capital letter indicates the direction of the component
stress and the small letter the direction of the normal to the
plane on whlch the stress acts, the surface traction conditions

on the upper and lower faces mey be written as
(Xz) = = L2, | (?%92#4&” Lg

(8) (Yg) g=h = 5’: » (Y‘_z) Z=-h = Je »

(Zﬁ) z=h = P1 , (zz) z=.h = Pg .



The stresses in terms of dlsplacements are (10, p.101-2,

(9.2) X, =G (g:g + %)

F)

vhere the quantity & 1s the "modulus of rigldity". Replace
the diaplacements in (9) by their values from (7) and substi-
tute the results in the surface traction conditions (8). Then
take the sum and difference of the two resulting values of Z,,
X, and ¥z, Finelly, eliminate W, and W, by mesns of relations
(4). The resulting equations are

oD

(10) ; (-1)Aon-2 [ﬁeﬁl + ‘i‘_“g (‘%";“‘ ‘%

- D=l4p (awﬁ>] ¢ Yo Ly +Lg
ip 22 \5x/| EmU < E ¢

n . [B%V 3%y
(11) Z (*l}nﬁmnz[&ﬂvl + .1%5 (éy 14 & 1)

-agke o (39) A - 5%
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(2) 2 (e [0y 0ot - 332y (32 + 3] oy

= La~P

»

KD

n=o

2({n+ oWy h2n Ly-Lg
*"‘—éﬁl:x~. ’&"] Tenti)l ~ “B6n °

oy 2y 2%y
(61 2 (00 aan [aato + 553 (350 + 533)

) OV an 337

Equations (10), (11) and (12) involve only W,, Uy and V,
and equations (13), (14) and (15) involve only Uy, Vo and Wi,
These two simultaneous systems of equations can be solved by
an indirect process due to Sibert (12, p.337). This process
requires that Up, Vo, Wy, Uy, Vy and Wy be expressed as Infi-
nite sequences of terms of ascending order of megnitude. Let
8 represent a first degree function of x, y. Order of magnl-
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tude may then be defined es follows: If » and t are two
functions of 8 which contain the same number of terms, t 1is
defined to be of the nth order of msgnitude as compared to r
if each term of &t 1s proporiional to (%)’1 times the corres-
ponding term in r. It then follows that h®3A,,r 1s of the 2nth
order of magnituda as compared to r. It is necessary to as-
sume that Uy, Vo, Wo, Uy, V, and W, are expressions in x,y
whilch involve h in such s menuner that their berms can be
grouped and arranged Iin ascending order of magnitude.

Since equations (10), (11), (12), (13), (14) and (15)
have been arrsnged so that only ¢ven powers of h oeccur in
thelir left members, it is only necessary to provide for even

orders of megnitude. Therefore, Vg, Up, Vg, Wy, U and V,; may

e written
Wy = Z Ven,o » Wy = i Wen,2
(16){ To= > Uam,o > Uy = > Vem,a
Vo= 3 Van,o | v, = i Vem,1 ,

where Wen,o, Usn,0» Van,0s ¥Wen,1, Usn,1 and Vep,; are of the
2nth order of magnitude as compared to Woo, Uoo, Voo, Wo,, Uoa
and Voi respectlively. It is assumed that Voo, Uoo, Voo, Woi,
Uoy &and Vo3, being the terms of lowest order of magnitude, do



»l4u

not vanish identieally unless W,, Uy, V5, Wy, Uz and V, respec-
tively are identically zero.

Fﬁ? simplicity, the problem will now be restricted to the
case of & normal surface load 6nly. This means that Ly = Lg =
Jy = Jg = 0. In Chapter IV the case of & shearing load will be
solved. DBy superposling these solutions, the solutions for more

complicated problems can be obtalined,

C. General Solutions for W,, U, and V,

In order to solve equations (10), (11) and (12) it 1s
necessary to write esch one as an infinlite system of equations
by equating terms of the same order of magnitude. Before this
can be dome the order of magnitude of the right member of equa-
tion (12) must be determined. Assume 1t to be of the same or-
der of magnitude a8 AgWoo. Let Py -« Py = ~py where py 1s a
function of x,y. Then the equations of lowest order of magni-
tude in (10), (11) and (12) mey be written

(10,0) gy +§’%_.w =0,

(11.0) Voy + 2W00 = o |

oy

» , 3oy , 3Vga = P2 .
(12.0) AgWgo + S0 + 5583 = Zhy .
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However 2 19 0 +<§i%%;ml glves Aglpo + S5@2 ~§§1 =0 .

This result is inconsistent with (12.0). Therefore géﬁ mist be
of the fourth or higher order of msgnitude as compared to Wpg.
At present, it will be assumed that g& 1a of the fourth order
of magnitude as compared to Woe. It will be shown later that
this assumptlion is correct.

The infinite systems of equatlions from (1C), (11) and (12)

wlll now be given.

(16;0) Uu}_ ko -?ﬁ-% = 0 ,

92Upa 9BV
e[t o g (2002 2
(10#1 ) Ugi +* -Fi‘- - [ 8Y01 e} Jx=» W

@i;)] -0,

1~P
3 =Y, 3=y
(10.2) Ugy + WW - [A,;HM - (......g...sisl * Sy m)

-2 a%g) B2 o A | AL 2 (a-”Uoz
T<p Ag( 5% ] -é-r + Ag [AﬂUgl + T....-p maxﬂ




dlgo , 1 A%V,  O%Ugy

(142) Vaa + == - [Ag‘f’“ = (““‘“‘ﬁ"‘ay * sy
Wao\] ne 2 [3%Vg,
..IE_..& ( )]%{‘*Az[&:avﬁ: +.i.:.§(......%..

89{301 & ~ aW(,o)‘l hﬁ - ‘
Zle) L gme. (Feo) | Br-o,

W,
(11.3) Vey + -é%g - [ﬁaV&i + 'i&l-p

agv‘l + BG‘UQ;
Jy?  oxdy

T 1p fe (—%—)] or * he [ﬁ”v“ 1% ("5‘,?‘:7"‘

* Eggé) h %:tg be <?§§2>} % ~ bq [A:avoz



Lo

..wl + O@gﬁeﬁ A»W.,N.nv

Xp

™ +
®he

Ao,

ie Ae

- ae

= Tpe

.ﬁ&.&.@ + nvﬂ.mf#ﬂ«‘w mmimw;mw

mmmm + OBy®y (1°3T)

+ Tous + 9ON%9 (0°2T)
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Since & 1g'ﬁ +‘§_3%?:.‘?;L = (12.0), 1t is necessary to form

another system of equations by subtracting a(z_g;n) + a(lgn)

from (12.n). The resulting system may be written as follows:
(17.0Y 0 =0 ,

(17.1) 8 [ (2-9) ("a*w;" + %""]‘) - phatioo] =ZB2

[ 3U,, V
(17.2) 8g | (2-p) (~§ * 5’33‘5) - paa%l

~ b [ (3-p) (V&giﬁ’ + ag;‘) - {1+p )ﬁawoo]?%'—lﬁ =0,

{17.3) &B[ (2-p) ('?gji}" + ?%g—-’”) - pﬂa‘%c}

BUgy . OV | o
- be [(3"?) (*-'-fé%- + —%{) w (1+p)AgWag ] ___r_“s ghg

T ) '
+ &s[ (4-p) (‘3;;1 * ag?" - (2'*‘9)132?"00]6'3- l=0 »

au, 3 i -
T [(&m ( B:; ¥ aa?) - (lw}aswg] 6 :asf;



+ &6[ (4=p) (a‘g;i FCAL NI (2+$3}A-gﬁ'ae} ___17\____6-3'11‘

4
{5
—
P in ™
w©
TN
'g
Q
o
+
&
b
10
M
\—/
]

(3*9}&\.2%3] 6:4°h

ey 4GhS
wvhere D = 3(i-p) °

Systems (10), (11) and (17) can now be solved simultan-

eously for Wan,0 , Ugn,» @nd Vap,3 . Egquations (17.1) and
, Y g - 9(10,0) , 8(11.0) [ - (E‘»Uoz
the Leplacian of “%x + 5 become Ap | {(2~p) —21

B’V , A , , dUg av
+202) - oaioo] =2 n , ana saf (L2 + 22) + hatio]

= __ﬁ_:?.pl dg Tespectively where bo = 1 and dp = 0. The simul-

taneous solution is

BaWloo = B2 | (2-p)do-bo] ., s (agj’: + avo,_) =22 fpg, + bo] -

Equations (17.2) and the Laplecilan of a(g'l) + 3(1%;}_2 pecome

~ dUgy , 3Vay 2
&a[ (2-p) (TU? + —~§~") - p&e%e] = 2L b0sp2 , end
Ag[ (é.g%& + ﬁ%&) + ﬁgvfsw] - %ﬁ dibedy respectively where
by = % and dy = m . The sirmltaneous solution is

;= hRAgDa - " dUgy , IWas) _ hRA
balizo = BBa2 [(2-p)ar-ba] , 8o (Tg22 + 32) = HO06R [0g,4n,] -
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Continuing in the merner indicated, by solving (17.n+l) with
; : ¢ 8(10.n a({ll.n) . . .

the Laplacien of “i”ggrl + 55 ¢ one obtains the general
solutions. They are

h2%A L.
(18} AuVign,0 = ““*""ﬁﬁ—'&pﬁ [(Q”ﬁ)dn - hn] s

{19) A,a(?%&+§i§%&) xw {an'*‘bn] , where

n-{ -
_ - Gyt £142) {(442)bpea-1 - (A+1)(1=-p)dg-z-i
(20) by = 6 Z (=1)% . T n-1-1}

(11 = 1,2,5,#0;)’

n-|

- 431 (1+1)bpeget - 3(1-pldpea-1
(21) dn Z (-1)! mens =

(n = 1,2,3’0!‘)-

For clarity, the first few equations from each of the
general formulas (18), (20) end (21) will now be listed

(18.0) AgWgo = - %%. .

(18.1) Aalizo = - L3780 mos Wy,

18.2) Agligo = - ——SBLLBT0 . 1é4,ligg

r
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(18e3) AgWlo = = 267910 W AyoVioo
4e¥eo 24.35.53.7(1-p) 1000
(18.4) hgVWigg = + -—72965-5;9-*4358*2&-—- ha digWoo

21 +3%.54.72.11(1~p)

As (18.0) 1s the differential equation which defines the normal
displacement in thin plate theory (10, p.488), Woo 1s the ver-

tical displacement of the correspondling thin nlate.

(20.0Y bo=1 , (21.0) g = 0 ,

(20.1) bs a% . (21.1) 4, = 'ﬂ%ﬂ ,

(é@gﬁ) be = ~'§3%%§T§ R (21.2) dp = EET%ZET ,

({£0.3) by = - gfs.g%sa.v ’ (21.3) o = - 2‘«3%;7(1-9) ’
(20.4) g = - 27@2‘%&?3?11 - (21.4) &g = - 25~35‘2§i~7(1~m )

Sibert (12, p.344) has given the upper bounds of these seguenc-

€3 as

‘ bn i - g""" 5 ; Gn i < 3}1*1%4.(1 .Q) (n = 233,4:“-*»)‘
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It is desirable to cambine (18), (19) and (10) to obtain
Upn,1 in terms of Wgn,o and to combine (18), (19) and(1ll) to
obtain Von,y in terms of Wep,o instead of listing equations
(19) in their present form. The first few resulting relations
for each case together with the general form are glven here.

(22,0) Uoy + H2 =0 ,

(22,1) Ugy + %ﬁl + ":i%; by (%‘W*) =0 |,

y o) Vao 2 3W 16 (B W
(22.8) Ugq + &0 4 Bl A ( ﬂ“0) o+ b S e ! A Voo 0
* oz~ " I-p 7 3x 6(1-p)® * \3x B

, aﬁ?gn o }13 6‘%3,3..9 2O
- " F “i’ i ‘b’ -
(23 n.) van’_; ‘—'ﬁ-—'— 1”9 Aa X

+ hPBAL, (.raﬁgﬂ) {-za,, + (9”"9)6—?:3 = b};'a] = 0

(ﬂ = 1,2,3,;.0)*

(23.0) Voy + _‘3?%3 =0 |,

) ¥ 2 SV,
(23.1) Vay + ”53? * Eir.; Sa (( 3§‘°> w0

av he oW, & e aw
(253.2) Vep + 280 4 B2 ) ( 20) , h*(5-2p) ( W) o
T T I Tt \Oy 61-p)2 *\FF /) ~° ¢



(23.n) Vgn,y + Wen,0 4 k2 5 (awéa-a,a)
oy L - N

+ NRMAL, <3W¢0) [ﬁﬁa.* (3~Q}gg“; - bn~1] =0

Jy -p

It is necessary to complete the proof that §§% is of the
fourth order of magnitude as compared to Wpoo. It has alresdy
been shown to be either of the fourth or of a higher order of
maghituﬁﬁ. Assume that 1ts order of marnitude as compared to
Woo 1s greater than the fourth. Then equations (17.1) and the
Laplacisn af,ﬁigg*o} + 3(%%50) become

Aa[ (2-p) (% + %) - pesgwoo] = 0 and

Aoz . Vg ;._) ‘ q ]
¥, : = T 2 " o
&g[ ( 3% +~w§§m + ApWioo 0 respectively

; 5 AV AV,
. PRS- solutlion 3 e 2= 01 4 Sl'oa =0,
The simulbeneous solution is AgWge Ag(—~§§~ "Ei’)

S8ince the triviel solution AgWen,0 = U does not depend upon
the load, p,; must occur on the »right hand side of some one of
equations (18). DBut since (12.0) is the equation of lowest or-
der of magnitude In the system (18}, its right member cannot be
zerc unless the right members of all equations of the system

are zero., From thls contradiction it follows that the term
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g% must be of the fourth order of magnitude as compared to
W{)g;

It VWgn,o is eliminated from equations (22) and (23) the
relation %A .B_}%&.%, 1s obtained. This relation combined

with equat:mna (19) gives

henAgy (g’%")
D

(ﬁ%) Aﬁgﬁﬁ’l =

(28) BqVan,2 = hm&gn W) [dez * bn] .

Finally, equations (18), (19), (24) end (25) substituted
in {16) glve the general solutions for W,, U; and Vy. They are

(26) d4VWp = z E”ffi%‘m [(2-p)an - bn |

(27) 84U, = Z hm&%n @%>

[ﬁﬁn + by |

(28) AgVy = Z hen Ban (%*») [Pdn + bn] s

h=o

(29) be (%‘i?: %?;&) i 3&? BznPa [Pdn + by)



D. General Solutions for W,, Uy and Vq.

The simmltaneous solution of equations (13), (14) and (15)
will now be obbtained in essentially the same manmer as that
used to cobtalin the simultaneous solution of (10), (11) and
(12).

Agsume that the order of magnitude of the right member of
equation (15) 1s the same as that of Wgir. It will be shown
later thaet this sssumption is correct. lLet Py + Pg = =pg
wvhere pe is a function of x,y. Then the three systems of equa-
tions whleh result from equating all terms of the same order
of megnitude in (13), (14) and (15) respectively may be written

as follows:

,  3%Uso Voo o

39'690 _ @ﬂgso :
(13.3) (1-2p)8aUa0 + —32 + =582 + 20 —g2*

- Au [(1*2@)633@0 + 3 (W o

+2{1‘l~9)§§%§]%’;z0 ,

32U, a%y av,
13.2) (1=2pn)AgU & 40 40 4 42
( j { Q) atan — 3 ...m 20 55

o~U a%v
- 1-2p }A.U, 30 4 20
ﬂa[( plas cv‘*iﬁ(axgg + axay)
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aw -
+ 2(1*@)'§§§i~§f-* Ag [(lnﬁp)&3U0°

agﬁm awao ) a‘f"fo J h‘
i . o+ e X -
° ( G | Oxdy 2(24p) —* g7 = O

- a vog 3%@{) 6\&4’01
(14.0) (1-2p)8aVoe + 53 e 2p =k )

3% 32y aw
(12.1) (1~20)0pVao + —22 + ~—B2Q 4 o5 2 B3
0 ldrVao P 353y P 5

-ww[ﬂémmmm*3(i¥°*§%§>

3®y a2, o\,
(14.2) (1=-2p)agV + 40 4 49 &1

2231 -3
- bg [iluzp)ﬁgv% + 3 (%3 + 53.5%)

SW
+ 2(14) 2] B, [ (1-2p)0aV00

L = f0%¥ 3Ry, OV, &
4+ 5 OO o0 > 01] -
("““‘ﬁ“ s axay)"‘" 2(2+p) o3 B2 =0,
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(15.0) p (-@%%9. + ?%g.?.) ¥ (1-p)Woy = - pa(l-2p) ,

(15.1) o (iggﬁ + _*?%_;__m) + (Lep)Vigy

+ Ag [(1‘-91 (-?waagﬁ + -—%—av‘m)* PWG:] %: =0 ,

-~ Y, av
{15.2) 9@-—5*;3 + —’ﬁ) + (1=p)Wgy

i T : 2
+ Ag | {1ep) (4?%%?4* %} + sz:] %i’

- b [(eepy (o + 2oo) (wmm}%; -0,

e

.- » * . A - L4 L4 * Ld . & & € = &% L4 - - » L] - - ] - . - - » -

* L4 * - L4 » * L * * » » * - » » -8 [ L3 - - L - - - - ” - L] -

The Laplacian of (15.0) and ?.Q%;x_‘?l + ﬁﬂl‘g.é.?l becomne

pls (a +

%9) + (1-p)AgWoy = -(1=2P)AsDs
5 (1-plhglios = S co and

38U Vv . -2p )
(1-p)Ag (‘»—-&-?9- .3.;5%?.) + phgloy = W 8o respectively

where @, = 0 and ¢o = 1. The simmltaneous solution 1s

&gﬁaz R %ﬁ" Labp [(1"&)@0 + m@] and

Ag (%3 ) 45 bePs [peo + (l-p)e@]



- 28 -

The Laplaclan of (15.1) and -éi%;l) + ‘3(1,3&1) become

; , 2
phs (%Q + %‘3) + (1=p)AgWas = ~ ——w—-&-———-—-—(}‘“ap)g APz o, and

e 2
(1-plag (aﬁ;’ + ﬁ‘%ﬁ) + phglipgy = (1~2p§§ 84P2 a; respec-

tively where g, = - % and ¢y = O, The simultaneous solution

: =
1s BaWgy = = By A4pa [(1-ples + paa]  and

Az (%ﬁ ?-g—y’?-?) = %;—- (9% Y [ma. + (1~p)a1] .

Continuing in the menner indicated, by solving the Laplaclen

of (15.n) with éilgin) + a:(lg%n) , one obtains the general

solutions. They are
| |
(30) BeWen,s = - rrepl bdgn+a Pe [(1,-f3}fcn + pgn.x

(31) & ( Jsn,0 , %‘-) Asn-m P2 [(l-P)ﬂn + p"'n]

where
n-1

(32) 8 = Z ( 1)1 (i+2)an~1~i :é?*’z‘)ﬁﬁ”;“i

(n == 1,2,5,.0:),

h-t
(33) on = Z (-1)% Mﬂ)smx«i);» len-a-1

(I! = 1,2’3’000 )u
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Sivert (12, p.344) has glven the upper bounds of these sequen-
cea of constants as

. 3 1 1 == sse }w
| an | <*§5 s l en | < 5%25 (n = 1,2,3, )

In order to complete the proof that the right member of

equation (15) is of the same order of magnitude as Woy assume
that it is of s higher order of magnituds than Wo;. Then the
Leplacian of {(15.0) and 3‘%§&0) + 3(1§§G) become

oo (Zoo + 200 4 (1p)aglor = 0 ana

{1.p)aa<§§§9 + §§§3> + plhgWoy = 0O respectively.

Th@\simulzaﬂeous'aolutimn is bpWpy = A“(agio * 8§§§> =0

Since the trivial solutlion AgWpn,y = O is of no particular in-
terest, ps must occur on the right hand side of some one of
equations (30). But sinece (30.0) is the equation of lowest
order of magnitude in the system of equations (30), its right
member carmot be zero unless the right members of all eguations
of the system are zero. From this contradiction 1t is evident
that pe 1s of the aame order afimﬁgﬁituﬁa as Woz.

When Wan,y is eliminated from (13) and (14) the relation

A3<§E§§ag> = Azcgz§§¢§> is obtained, This relatlon combined
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with (31) gives

(3¢) 2¢Uan,0 ‘}"i'g" 53:34*9(5%%) [(1'9)3:1 + anl and

zn
(358) BaVon,o0 argﬁm Sgn+n (?%g) [(lup)an + pcn] .
Finelly, equations (30), (31), (34) and (35) substituted

in {16) give the genersl solutlons for Wy, Up and Vo. They are

<~ Len
(36) bgWy = =~ Z % ban+z Do [(3-"{3 Jou + P‘anl »

fnizo

<

hﬂa

(37) 84Uy = z 2o Lents (?;&) EP@n + (1"'9)311]
(38) BgVg = i%’f Aents (%ﬂ) [pen + (1-.9)%] ,

(39) A @?ﬁ + %ﬁ) = i

The displacements u, v, w are glven by relations (7) when

2%

n
Apn+s Pa {pcn + (1"{3)3&1 .

the six funetions Uy, Vo, Ve, Uy, V; and W, are kmown. There-
fore one can say that the differential equations (26) - (29)

and (36) - {39) define the displacements. Furthermore the dis-
placements defined by these differential equations satisfy the

equlillbrium equations and the surface traction conditions for



any normal loed which can be expressed as a functlon of x,y
continuous over the entire plate.

In 1899, J. H. Michell (11, p».119) published the differ-
ential equation defining Wo in the form

- = . 1-p® (, aa) 32z _1tp (92
Lallo { Ba + az?) 9z | z=0 "ﬁg b2 \35°) gm0 °

It is desirsble to show that this solution becomes identical
with equation (26) when the stress Zy 1s expressed in terms of
the load. When the dlsplacements (7) are substituted in rela-
tion (9.1), there results

3y 3V 2k
zz 1”2 {Z{ 1} &gk [(pwk) (&9— + ﬁg) + (}.-.p_-.k)wl) %ﬁﬂ

¢‘§%§§%j :g; (mlikﬁak {(p'l“k) (62 *‘ggé)

+ (k-ltp )ég’@‘c} T%E‘k%

For values of ¥ ¥ 1 this equation may be expressed in terms
of the load by use of solutiors (26), (29), (36) and (39). By
retalning the terms for k=0 one gets

= 12%_{ (3!33 %&) + (1-p)Wy - é Z(“l)kﬁzk-g )

[ S romsanre 2o (xtan + o) + (aetoren) | (g

n=o
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| | ‘ < K
- 12 (an; L Y w) z + %(TLT'& Z( -1) bgk-g -

[Zhﬂnﬁm Pa {(k—»l)(l*p)ﬂn - kbn}} Tg%%?-r } y

n=o

This value of Zg substlitubted in the result given by Michell
yields equetion (26). Therefore the differential equation
defining Wy obtained in this investigatlon agrees with that
previously glven by Mlchell.

In the next chapter the displacements will be made to
satisfy the edge conditions for a particular load, This wlll
complete the determination of the displacements asg they will
then satisfy all tha‘requiraﬁ conditions, as given in the in-
troduction, for thls type of problem.
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IIT, COMPLETE SOLUTION FOR A SPECIAL CASE OF NORMAL LOAD

palx,y) = palx,y) = P(l + %‘- + %) .

A, Preliminsry Relstions

The displacements wlll now be found for a normal load
P(l + %5 + %) on the top surface of the plate where a and b
are the horizontal dimensions of the plate, a and f are arbi-
trary constants, and P is a uniform load per unit area. In
thig case the differential equations which define the displace-
ments reduce to
(40) Byl = - £ (14-&5%@2) ,

(41) 4,0y = % ’
(42) A Vy = %g
(43) bs (52 + G2) = <1 PR

(44) &a‘ﬁx = 0 »

(45) 4,Up = 0 ,
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(46) AgVp = ©

(47) Ag (gﬁ;ﬁ*%g) =0 .

he load is a linesr function of x,y and it is of the
fourth order of magnitude &s compared with W,,. Hence all
terms, whose orders of magnitude are sgqual to or greater than
gix, vanish. Therefore all infinite systems of equations from
the previous chapter reduce to finlite systems. Likewise all
infinite sequences of terms of increasing order of magnitude
become finlte sequences. The sums of the equations remaining
in each of the systems (22), (23) and (15) glve respectively

* -
(48) Uy = %—Q - I}%g; Ag (g-%) -5 _"_'92 Y <'g§2> »

(49) vy = - 3% _ b7, (awo) . b*(5-2 ,(a%)
oy 15 %2 &) “sip)r M \F)

(50) Wy = - -0 (e To) - Lomol? (14 x4 87) .

The infinite series (7) which pive the displacements in terms
of W, Uo, Vo, Wi, Uy and Vy reduce to the following series
whiech have a finite number of terms.

Y v e . . 13 (80 . 3V ) z®
(51)11--—13'6.4-'{11%0[&3119 +m§§ ('&- 5}""*1{1]?,'



. _ ; : U av, 2
(52) v = Vo + Vaz = [A,avﬂ redo2 (%9. AR wl) %
2 aw, 8 -y 2 AW, 3
+ 80 A [ o.) + 52 ....2) z
1% e (3F) 3T T et M ey ) B

- .
(53) w = Wo + Waz + zff—y AaWo + mm Bato - 22 ag¥o &= .

The problem of this investigation i1s restricted to moder-
ately thick plates because the tractions applied to the edges
ere represented by their force-asnd couple-resultants taken
along a vertlecal element of an edge. These classical condi-
tione at an edge have been defined, by Love, in terms of T, S,
G and N ~ g§ . Other wrlters do not mention S ss8 an edge con-
ditlon and it will not be used in this anslysis. The remaining
guantities T, G and H’~~§§:mﬁat be expressed in terms of the
displacements before they can be used here. They may be writ-
ten (10, p.101-4, 456)

h
Jxxﬂzz 'p [(lwp)g.niiep(%*g)]&z .

~h “h



h
s e gg) [ongeo @) -

When u, v and w are replaced by thelr values from equations
{51), (52) and (53) respectively and the indicated integrations
performed, there resultis
Yy m. o= 4Gh [8Ug 4 o OVo _ P ( ax . 31)
(54)?;“-5:5[&9- Q? ﬁ 1+ +
P - 23 =
oo () 3 (23]
2 (. | eV 3% [au v
- & | (1-p)a ( ‘}>+ (_94' °> s
%—{ Plog ? .5?5 35 -5—

) Q. = - 4GRS |3%Wo . 3o g.z
(56) @2 = - g11p [“af;:*" P 5= * ToTicey Mo
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- Bt 1%, Wﬂ)] ,

LGhS 32w, SRV -

Perhaps 1t is well to mention that in eguations (54) to (58)

inclusive

T3 = the tensile force per unit of edge x = constant,
Te = the tensile force per unit of edge y = constant,

Gy = the flexursal moment per unit of edge x = constant,

|

G = the [lexural moment per unlt of edge ¥y = constant,
Hy = the torsional moment per unit of edge y = constant,
Ng = the shearing force, normal to the middle plane, per unit

of edge y = coustant. A4lso, sinece Wy, Uy, Vo, Wi, Uy and V,
h&vajbaen wrltten as Infinite sequences of terms of increasing
order of magnitude, 1t is necessary to write these forces and
moments Iin the same way before they can be used as boundary
conditions. DBach of eguations (54) to (53) is equivalent to an
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infinite system of equations when terms of the same ordexr of
magnitude are equated to zero for use as edge conditions. On-
1y those equations fronm each infinite system which impose con-
ditions on the gquantlties that survive in thils problem will be
listed. They are

(54.0) %ﬁ% + ( ax 4 .?)
(54‘11) %{2 *+ p [(1*59 )ég aUQQ) .5“:; (aggo + ngo } ;

(55;0)%?%9%‘25%(1 +§;§+%>

(55.1) ma§§° + p -—%‘w"“ = %f [(1-&)% (—%%") + 'é'g': (..5;_.3300 + .5_3"0")}

~y 8°Voo 8%Wg0
56:(} - i G
( ) mg*‘ax p s
g "
(56.1) S Y=o

ax*

Wi

(56.2) 33%2 + p Va0 o grp pay, (aw%)
ax 10 3y
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w By

3x*® ’

3”2y a2, 2 8] 2 3®Woo
(57.1) 2Vs0 , o a0, _BSp  n®agWoo = 842 17 (
3y P 3= 10{1-p) ¢ ' C\TEE | ’

. 32 a?w , : 3*W
(57.2) ay;ﬁ + p EK;O = %{}m h2A2 ( _ax‘saO) s

3%gq + 2 W00 3%Wg0

5’8;3 g""
( Y« p)a ey T TS

= O n

- 3%, 3°W, Bpq (20
(2.1) (2-p) 22 + 555> * To2 b (ax”é;)

8 L] aﬁgo
¥ To(1-p hﬁ“*(“’””""’a}‘r) =0

. N 3%Wgo . 3%Weo +0 1.2 3%Wao) _
(s8.2) (2-p) o &2 na, Fre o .

Eguation (40) is the differentlal equation defining W,.
After Vg 1s determined U, and V,; can be obtained from rela-
tions (438) and (49) respectively. Vhen Ug and Vp as defined
by (45), (46) and (47) are Ikmown, Wy can be obtained from re-
lation (50). 1I% is obvious from an inspection of equations
{54) to (B8) inclusive that the conditions Gy = 0, Gg = 0
and Ng = ggﬁ = 0 impose restrictions on Wy whlle the condi-
tions Ty = 0 and Tp = ¢ impose restrictions on Uy, and Vq.
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The problem will now be completed for three different sets of
edge conditions.

B, Sclutlon for the Case of a Plate
Pinned on ALl Four Edges

The boundary {(edge) conditlons to be imposed on the solu-
tions of the differential eguations for this case are Wg = T,
= Gy = 0 along the edges x = 0,8 and W = Tg = G = O
along the edges y = 0,b,

The method of solution used in thils investigatlon does
not give Wp directly. First Woo is obtalned, then Wgo, ete.,
and finelly W ia‘abtained from equation (16). It has already
been pointed out that W,, is the vertlcal displacement for the
corresponding thin plate under the same normal swiace load.
By observing that conditions (56.0) and (57.0) are precisely
the pinned edge conditions from thin plate theory, one usy
employ the Vye solution of the thin plate problem, in case it
has been solved. This solution has salready been published by
8. Iguchi (7, p.23) for the pinned-pinned ecase. It ié

| . Pat ) z* _2x® x’ 2x>
(59) Wgo = m{(},%%)(% %.»i-g) +@<§5§_,§5

+ *7 "u)} - %zsﬁ_g (<) x[ 3 {Bn + (l-t»a')cn} + (B + Gn)]
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where By = Y ch § sh B(y-b) + ih%z} ¢ sh 8(y-b) - 6(y~b) sh Oy .

. = 8{y=b) ¢ch § sh 6y - 2 sh ¢ sh ey - 6y sh 8(y-b) ,
7 sh=§

o =2, p=060, 1=1- (1) and § =~ a(-1)".

2y
From (56.1) and (5%.1) it 1is evident that Ag (aa;g§> and

bp (2;2%%) must be evaluated at the edges before a solution

for VWgo is possible.

At x = 0,8 1 Ap [SoWoo) _ (3_ + 8% 4 %) and 8, [2Ve0) - .
ax® - D P
| 3%Woo o=V,

' | = + 8% 4+ 20\ = o,
woy im0 s o (302) = - f (14 ¢ BF) wma e (50) =0
Also g8t x = 0,4 ¢ m = O ; and at y = G,b . a%{eo = 0

T TEE

beceuse the middle surface maintains a continucus contact with
the support in the original plane.

By definition Wgo is of the second order of magnitude as
compared wlth Woo and froam equation (18.1) AgWoo = 0. There-

§eh is used for ecosh snd sh for sinh.
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fore one may assume a solution, for Wge, of the form

(60) VWgo = - -%%[(1 + %1> (x® - ax) + 2L (x° - a“x)‘]

~§§Z&1~§&[§nmw+%shw+ﬂnwch%
+Ineysh9y]

where 4, Fp, Gn, Hy and Iy, ere constants to be determined,

Boundary condition (856.1) becomes

3™igo . PhP(8-3 (1 + 80X 4 m)
Ax= L& -y ' b

This condition yilelds A = - ,8'-?‘ 5 h® . The boundary condi-

tions at y = 0,h are Wgoo=0ad{57.1) which becomes

i:gzﬂ = m;?:g - (1 + %:E + %’-‘E) . They yleld the four relatlons

(a) Fp = « i%—%%a hﬁ{i*j) 3

(b Fpch ¢ + Gy sh ¢ + Hpd ch § + Ip¢ sh ¢

o . 8 «
TOTSs7 Bo(1+1+L),
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(c) Fy + 2Ipn = - 1§%§§§7 n2(1+j) and

(A) (Fp + 2In) ch ¢ + (Gy + 2Hy) sh ¢ + Hpd ch § + Ind sh ¢

I - "I as
Toriesy BR(1+I+8L) .

The simulteneous solution of this system of eguations is

Iﬂ - Hn = » G}; - %{%E%T ha {i+j+sigh~§(i+j) ch ¢

and Fyp = “’ngi;@~ h®(4+j) . Vhen these values are substitut-

od in equation {60), the solution for Wgo results. It is
easily shown that Wgo msy be wrltten In the form

h®AW50 -

Vao 12 of the fourth order of magnltude as compared to Wyo
and frou equatlon (18.2) AgWeo = 0 . Therefore one assumes &
solution of the form

wganuﬁgi(l +.%§4,€?9 +,§%f:§i§é%h§§ E&,ch 8y + K, sh a{}

n

where A, Jp snd Ky are constants to be determined. The bound-
ary conditions at x = O,a are Wyo = 0 and (56.2) which reduces

to %& = 0 . Theseconditlions reguire thet A = 0 . The bound-



ary conditions st y = 0,b are VWgy = 0 and (57.2) which reduces

to §§§§9 =0 , These ccnﬂitians regulre that Jn = X = O .

Therefore Wgo = 0 . By inspection of eguations (13) 1t readlly
follows that (62) Wap,o=C (n & 2) .
It remains to determlne Up and Vo to complete thls case.

It has already been shown that Wpy and,ﬁggf + agg? gre of the

seme order of magnltude as the load and the load is of the

fourth order of magnitude as compared with Wgo. Therefore

oo + oo = a4 1x + oy

sin @x M T .
-]-Z Py [Fnﬁh@f*@n&kﬁﬁy*ﬂneﬁ'eﬂw

+ In 6y sh oy) .

However eguation (47) requircs thet this expression be a har-
moniec function., Therefore Hy = Ip = 0, With this back-

ground one may consider the followlng forms of aclutions

Upp = Cg + €1X + CgF + ©5%° + caxy + ¢, ¥°

ﬁ?ﬁa%_m[anehsy*ﬁnshey] and

Voo = Ko * Kax + Kex® + kexy + K, ¥7° + koy

+Zgj§a§‘% [Ca ¢h 0y + Dy sh oy] .
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In order to obtain a satisfactory solution here it is
necessary to observe carefully the method used to obtaln Wgq,
Wgo, ete. In every case a polynomial that satisfied the con-
ditions at =x = O,a was added to a sum that did not conflict
with the edge conditions at x = 0,a and that contained suf-
fucient undetermined constants to permit the conditions at
y = 0,b %o be satlsfied. Since the conditions imposed along
the edges - x = O,a are not sufficient in number to determine
a unigue polynomial, this solution must be recognized as a
satisfactory solutlion and not necessarily the unigue solutlon.
Garsbediasn (5) avoided this difficulty by assuming that Ugp
and Voo were closed linear functions of x,y. However, this as-
sumptipn does not permit a satisfactory seiution in the pinned-
clamped case as will be shown later.

Equation (54.0) is the only condition on Uyy and Voo at
x = 0,a. It gives

cxa-pkaw%% A e¢+zpk5=§8g »

Z2e5 + pke = i.%g .

Therefore choose ¢y = Kg z‘gﬁ s €4 = 2k, =.§%§ .

ﬂﬂaﬂh‘:‘g%%, ﬁagﬁgﬁﬁf”kozklzksﬂg where the

gquantity B is "Young's modulus". Eguation (85.0) at y = 0,b
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yields Dy = pAp and Cun = pBp . If the plete be fixed In
space by making Voo = 0 abt ¥y = 0 and Ugg = 0 &t x = 0, then
By = Ap = 0 , Consequently Dy = Cp = 0 and the final solu-

tions mey be written

(63) Ugo = £BX (1 +g§*$§.) and

(64) Voo = 22T (1+%+%) .

S8ince Ugo and Vgo are of the second order of megnitude as com-
pared to Ugg and Voo, they must elther be zero or counstants.
But Vgo = 0O at y = 0 and Ugo = 0 at x = 0 %o fix the plate
in space. Thereforc they aré zero everywhere, Consequently
Usn,o = Ven,o = O {(n 1) . This mesns that (63) and (64)
givﬁ the complete horizontal displacement of the middle sur-
face. Although not a unigue solution it is a rational one in
the sense that it ylelds a displacement at the middle surface
whilch 1s one-~half of what the dlsplacement would be if the
plate were resting on a complete foundation.

Yhen Uy and Vo are replaced by their values from solu-

tions {63) and (64), equation (50) yields
W w (1 3+ 8%+ B W, 18 glven by the sum of Wy, from
SAE 1SRk DRI o0

solution (59) and Wg, from solution (61). Uy and V, are ob-
tained by substituting the value of Wy in equations (48) and
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(49). With 211 six of these functions known the displacements
u, v and w for any point in the plate are easily determined
from eguations (51), (52) and (53) respectively. Once the
displacements are determined it is merely & matter of substitu-
tion in the relations Xx = 3 Qp[(l.p) Su g, (_% _5__)1 , etc.,
to obtain the stresses at any point of the plate.

If a= 8 =10 the solutions given here reduce to those
published by Garsbedien (5) for a uniform load.

C. Solution for the Case of a Plate Pinned
on the Fdpes x = 0,8 and Free on the bdpes y = O,b.

The boundary (edge) conditions to be imposed on the solu-
tions of the differential equations for thils case sre
=Ty = G = 0 along the edges x = 0,a and

Ta = Gg = Ng = gﬂ = O along the edges ¥y = 0,b.

In thls case the thlin plate solution for Wy is not avall-
able. In order to obtaln it a solution satisfying (13.0) or
(40.0) is given by

o w’.-.Pi 1 ,‘ gms r
(65) Vigo ﬁ%ﬁ[(]‘ —;—%)(ﬁ “W*é)

*a(‘ga? gza*%ﬂ,;% gin 6x .

[An ch 6y + By@y ch @y + Cy sh Oy + D0y sh Oy
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where the constants An, Bp, Cpn and Dp are to be determined by
the conditions at y = ¢,b. Thils solution slready satisfles
the conditions at x = O,a. The following Fourler expansions
which sre valid in the intervel O = x £ a will be needed.

(66) l{ax-xz) = QZWE - ...Zi % ,

n odd

(67) £(a®x-x°) = Z‘ :z}n*‘l ex - 223 sin €x

The substitutlion of equations (65}, (66) and (67) in edge con-
ditions (57.0) and (53.0) at y = 0,b yields the following
system of equations.

(a) 2Dy + Ap(l-p) = 2p(1+]) ,

(b) Du[2 ch ¢ + (1~p)p sh §] + Ba[2 sn ¢ + (1-p)d ch P]

+ Anil.--p) ch § + Cxu(lep) sh § = 2p(1+j+p1) ,
(e)‘ﬁﬁ?(x%g) - Cuf(1-p) = 2B1(2-p) ,

ta) Dnb [(2+p) sh § - (1-p)¢ ch ] - An$p(2-p) sk §
+ Bud [(14+0) eh ¢ = (1-p)9 sh §]

- cn?{l~ﬁ) ch ¢ = 2B1(2-p) .



The simulteneous solution of this system of equations 1s

ch $)(R-8)]

(2=~p){R~S) sh ¢ + pP(R-S eh Ml
M‘Rﬁ;ﬁy}

+ 21800 (0+p)9(R-5 oh §) = (2-p)(B-8)(2 sh § + 8)]
$(1~p) (B-5%)

+ 218lp08 sh ¢ + (2-p)(R-8)(1 - ch $)]
@v(ﬁz“sa)

where R = (3+p) sh ¢ and S = (1-p)§ . These values sub-
stituted in eguation (65) constitute the solution for Wge. If
a =8 =0 this solution reduces to that published by D. L.
Holl (8, p.601) for a uniform load.

Agsin 1t la evident that A 59%0) , Ag (a”%@) and
ay= ax?

Ag (g%) must be evaluated at the edges x = O,a, y = 0,b

and y = O,b »respectively before a solution for Wy, is poas-
ible. The Fourl 181 + 94X = 2 +j) 8in 6x
sible. T ourier expansion 1 2 aZ(i ) 221 X will



msc}m

be needed in evaluating these expressions.

~

| B, 8 -
At v =0 3 A 00} o BP<TBin 6x p. - (3i+ .
V= 2( 6x*§> ab Zn e [P - (3+0)]
At L s 00 2r Zsin 0x
¥ = Ag (Wa> = =5 2 _ .

[3,1311@ + Dp ch § - (1+J+§si)] .
(68) 1

i
<

At 3 =02 4 (2:33;‘?) =& 5% (e - 0]

n

. 8%Wpo P gin 6x
At y = b 2 L, (ax%:g = éﬁﬁZ”‘é’"’” *

g [Bab b ¢ + Dup sh ¢ - p1] .
At x = O,a 2 Ag(égj-.%ﬁ’) o .
3%Wigg

Also at = = (,a

As in the plined-plnned case the following bilharmonic
function which is of the proper order of magnitude i1g assuned

as a solution for Wap.

(69) VWgo = - %[ (1 + %1) (x®-ax) + %;(x"-a%x)]

;2 g
.i.zh,z.@.;i_g%ﬁﬁ [Fnchey+%sh6¥
n
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Hn@y ch 6y + In6y sh 6y] .

As before, boundary condition (56.1) ylelds A = - g%%%%gj‘hs-

Vihen equations (638) and (69) are used in boundary conditions
{(57.1) and (568.1) at the edges y = 0,b, the following system
of equations for determining the unknown constants is obtalned,

(8) Pu(lep) + 2I, = E‘%e Dp - -%53(3.+5> s

(b) Pp(lep) ch § + Gup(l-p) sh ¢ + Hy [9 sh ¢ + 8 eh @]
-&Iﬁ_[gehékéﬁ sh @] m—%Q{% sh ¢ + Dy ch §)

- 22(1+j4p1)
(c) GnS -~ Hah(l4p) = -—gg Bnf - >

(d) GoS ch § + FuS sh § + Hpd [S sh ¢ - (1+4p) ch ]
+ Top[s on ¢ = (14p) sh §] = B(BLP cn

+ Dpd sh §) -%‘31 .

The simultaneous solutlion of this system of equations is

= 3%{%@ gn + m%a[iiﬁ){s ;{‘éu—p) sh §)

+ 281{8¢ sh % = (szzu-s)(z. -ch :f:)}]




= .S . . {1+3)(14p)(1 - ch §)
G = 503 «'53';:'3 Bn "5"(‘1"‘59" 3] [ 4 R-8

+ 82{(2+0)0(R-5 ch §) + (B-5)(2 sh § + S})]
é}(ﬁe 08)

Hy = - %[(!w 1-ch §) _ pr{(R-3) sn O ___gm-.s ch m}]

mu {Ea

1 = 2of(3+1) sn 0 , B1{50 s § - (R-S)(1-ch m}]
In “33[ gt + 8 i

These wvalues substituted in equation (69) constitute a solu-
tion for Wgo. However it 1s desireble to express VWgo in terms
of Wpp if possible. It 1s easily shown that the above con-
stants may be written in the followlng form.

Then Wgo may be written



. ) % 3P,
+ __4Pn* Zaﬁ;n ex[
n
281 - - S - {2 33
+W§;’;§T{ 2(1~-ch §) ch 8y - (2 8h ¢ + 3) 8L 6y

+ {(l=p) sh § 8y ch 6y + (lep)(l -ch )6y sh ey}l

In form (¥70) it is obvious that with o = B = 0 this solution
reduces to that given by Gerabedian (5) for the uniform load.
The following harmonlc function of the fourth corder of

magnitude as compared with Woo 18 assumed for VWeg.

i = };’.& + BX
(71) Vao = £ (1 + & +%YZ)
Bh* in Ox ~ - eh
+WZ§..§.._.. [_Jnchﬁy+xnsh6yl .
The boundary conditions (56.2) and Vgg = 0 at x = O,a are

satisfled when A = 0. At y = 0,b bouwndary conditions (57.2)
and (58.2) become

2%V, o 3%V, ( 540 ) PR

Ze%m Q:f:[ﬁn eh 8y +Iy sh ey] *
h



Elther one of these eguations yields g system of equations

from which Jyq and K, are readily determined. The results sre

dn = “3%§%5T In , Kp = - g%%%ET Ha

With these values the solution (71) for Wy may be written

Y W - O RV - h*
(75) Viao = - Bl nita, ("’”‘"“‘aaﬁ‘)‘ - elgmimt

1B sin ©ex 5h“%;sh 3(?:%)

OP(R+8)

This solutlon reduces te that glven by Garabedian (5) when
e =@ = 0. By a conglderation of orders of megnitude or by
inspection of equations (18} 1t is evident that Wap,o = O
(n>2).

Since the bDoundary conditions which impose restrictions

on Uy and Vg in this case are ldentical with those for the
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pinned-pinned case, the Uy and Vo for thils case are given by
equations (63) and (64). ILikewise eguation (50) gives the

P 42 - . : " e E-" ’
same value for Wy ; namely, Vi = = 55 (1 *.%? +‘%?) . W, is ob-

talned by adding Woo[solution (65)] , Wao{solution (69)]and
Vigo[solution (72)] . Vith W, evalusted, Us and V, are deber-
mined from equations (48) and (49). The dlsplacements u, v
and w for any point in the plate are obtained by substitubing
the values of Vg, Uy, Vg, Wy, Uy and V3 in equations (51), (562)
and (53). As mentioned previously, the stresses are readily

obteined from the diasplacements.

D, _Solution for the case of @& Plate
Elaned on the Edgt: an¢
Clamped on the kdpes y = 0,

The boundary conditions to be Imposed on the solutions of
the differential equations faé this case are Wo = Ty = Gy = O
along the edges x = 0,8 and Wgo = ggé-m Up = Vo = C along the
edges y = 0,b.

Here ageain the thin nlabte soclution for Voo is not avall-

able; therefore gssume a solution of AgWoo = -‘% (14»%? + %?)

in the form

74) W, = - 28 y) (=2 . 2%, x
(74) Voo = 24}:}-[ (3‘ +%§‘) (avi it sl ‘a)
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+ o (x5 ox® |, 7x _ PN sin 6x
(-] - By
[An sh 6y + By ch Oy + CnBy sh 6y + Daby ch O3] .

 This sclubtion sabtlsfies the conditions st x = 0,a. The condl«
tions at y = 0,b will serve to svaluate the undetermined con-

stents Ay, Bp, Cn and Dy. The following Fourdier expension will
be needsd.

& ag . ain Ox
(vs)%{(}; ?,_...f.x) gzi%....

(76) -g%ﬁ (.g.:.sw - %..:,; + &) = 223 85.!1 ex

Vhen equations (74), (75) and (76) are substituted in the edge

conditions there results
By = -2(1+))
Bpch § + Dup ch ¢ + Ay sh ¢ + Cud sb

= «2{(1+3+B1) ,

(77) |
Dad + Andp = -2p1 ,

Bnd sh § + Dn(¢ sh ¢ + ch §) + Anp ch ¢

+ Cnd(d ch ¢ + sh §) = -2p1 .
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The simultanecus solution of system (77) 1s

Ap = =2(1+§)(1-ch §) 20i¢(1-ch §)
$ +sh P $® - su® §

By = -2(1+)) ,

= 2{i+1) sh i zgig.ﬂ sh ¢ + (1-ch §)($ + sh.ﬁ)]
Cn ~%~$£§Ef¢~§ + P92 = an® 9)

Dy = 2(1+1)(1 ~ch §) , 2pi(sh® ¢> - §% eh §)
’ + sh ¢ (9% ~ an® §)

Mwese values substituted in equation (74) comstitute the solu-
= O this solution reduces to that

=2

tlon for VWgg. If =0
glven by Holl (8, p.606) for a umiform load.
ince Wgg is of the sscond order of megnitude as compared

wlith Vigo and since AgWpo = 0, & solution of the following

form 1is assumed.
(75) Voo = - Al (1 + B) (=-ax) + & (x-aox |

- 2P in_© ' €
2k &W X [Fn ch 6y + Gy eh 6y
n

+ Hp @y ch 8y + I, Oy sh Oy) .

Az In both previous cases, edge condition (56.1) yields
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& ”‘“‘i@%f%ﬁj“h?~ The constants Pp, Gn, Hy and I are to be

determined by the conditions Weg = ‘af;" = 0 at the edges

v = 0,b. The resulting system of equations is

(a) Fn = ~(1+]) 380 n® ,

(b) Fpch § + Gy sh § + Hpd ch § + Ind sh ¢
= - Tor1epy P(AHIRL)

{e) Gne + Hxx@ = - 8 hzf?’i »

(A) Fud sh § + Gud ch ¢ + Hupleh § + § sh $)

+ InPlsh § + § e ¢) = -_i_%_rl"::g% h2pl .

If each right member of the system of equations (77) is multie
lied by B9 hs, the resulting system of equations will
plied by SOT%T g =y uat

be identical with thils system. Therefore the solutions of
this system are gg'§ug h® times the solutions of (77).
Hence

F' Bed h=t F =1 8"5 B
= = gotiop) PP ®a = Folicey Ma
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n = goticey B0 Tn = 5o7iopy 2 0n

By use of these values solution (78) may be written as

For reasons preoviously stated, Wgeo is assumed to be

(80) Weo = £2 (1 * & 4 %Z)

+ g%‘:zﬂi%@x [In ch 6y + K sh Oy] .

Weo = 0O at x = O,a 3 therefore A = 0 .
VWapo = Oab y = 0,b 3 therefore Jy = Ky = C ,

Henece solution (80) becomes Wao = C. From the concept of or-
ders of magnitude 1t readily follows that Weu,o = 0 (n ¥ 2) .
There remainsg the task of finding Up and Vo for thls case.
The boundary conditions are T = 0 slong 2 = 0,8 and Up = Vg = O
along ¥ = O,b., Garabedian (5) assumed, for the case of a uni-~
form load, that U, and Vy were linear functlons of x,y and for
this case he obtained the solution Uy = V@ = O, However this
solution has Ty = 0 at x = O,a. In order to avoid thls dif-



Piculty 1t is necessery to use the houndary conditions at the
edges y = 0,b before choosing a definite polynomial part of the
solution from the condltions at x = O,a. As before, assume

solutions of the form

Upo = Co *+ CaX + Cp¥ + CaX® + CeXy + c5y°

+Z¢°ﬁ ©x [4n ch @y + By sh Oy] ,

Voo = ko + KaX + kKgy + kaX® + Kexy + kK, y°

*Zs-in 0x [Gn ch 8y + Dy sh 6:{]

-
= ad

The conditlons Ugg = Voo = 0 at y = 0,b give

0 = co + €1x + cgx® »r»'Z— c°§§x An
8

O
i

(co * egb + ¢, 0%) + (ca + cgb)x + cax®

Zcﬂﬂ ex [An ch 4) + By sh 4}]



0= (ko + keb + kgb®) + (ky + keb)x + kax®

+58in 0x o, ¢h ¢ + Dy sh O .
e | 1
By use of the Fourier expanslons

G X + ﬂgxa = O u + Ga m%-——- [%sa(wl )n“‘c]_i] and

Ko + kyx + kex® azi«’ 2ln O [1i510° - 0%(-1)%(kya + kp8®)-2ksi)

the following results are obtained.

; : 2
¢o = -(c2 § +cs &) , ez + bes = - Ba

Ay = 2[eal - 2mes(-~1)2]

_ 2lest - Zac g-;;ng %1 -ch ) + Zegbl
2aca(=1)7, cabl

Cn .‘i‘...k.a... + 26(=1)%(kya + kea®) - 2ko16 ,

4k=1 (1~ ch §)
Do “"% sh @c .

+ 2o (as +koa®) (-1 (1eh § ) kg (1o ch §)+lea (<1 Mabet Gkgbib)
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Boundary condlition (54.0) at x = 0,a gives

s ¢y + 2pkg = IpB and

Ccy + pkg = T

2cn * pky = . Therefore choose

2

Qg“kgm% » Qﬁ“gg{s”% ’

Bos = ke = 208, 65 = ko = ky =.kz = O . Then

The solutlions may now be written as

(81) Upo = 5[ = - & (5+a) - fBY 4+ g2° + Bmy

*Z&..ﬁ;g%ﬁa {{i«ij) ch By +‘,fiﬁl(§};§h b)+p1 shay}].
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(82) Voo as%%[y %ﬁ?-&ﬁ%ﬁ-i%@& {Zﬁ% $ sh GY}]’

Vhen a = $ = 0 these values reduce to

(83) Ugp = %% (x—.%) + %Zl ngﬁx ch 8y 82_1.@8,1'; élwch $) sh ey
h

i

(84) Voo

P N sp 8in 6x sh &
§§ v /‘Q%ZE:iQ 8= sh
n

Since Ugyo and Vpo are quadratic functlions, Ugo and Vgo are
elther constants or zero. They are zero at the edpes y = 0,b;
therefore they are zero everywhere, It readlily follows that
Uzn,o = Ven,0=0(n 1.

Woo from (74) plus Weo from (79) gives the value of Wo
for this case. Up and Vo are given by results (8l) and (82).
After these results are obtained Wy is given by relation (50),
Uy by (48) and Vy by (49). Vhen these values ars substituted
in equations (51), (562) and (53), the displacements u, v and w
of any poeint in the plate, are obtained. Vhen the displace-
ments are known, the stresses can easlly be found.

In order to show that the statlcs of these problems are
satisfied, write the resuitant vertical shear,

h h

x«xwfxzdzmuf(gga-%%)m ,
5

~h
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as @& system of equations by equating terms of like orders of
magnitude. Similarly write Ky as a system of equations. The
equation of lowest order of megnitude 1s the corresponding
thin plate vertical shear in each case. Vhen thls component
of the vertlcal shear is integrested around any closed curve on
the suwrface of the plate, 1t equals the load on the area bound-
ed by this curve. The components of the resuitant vertical
shear of the next and higher orders of magnitude vanish when
integrated around any closed curve on the plate. Therefore the
vertical shear integrated around any closed curve on the plate
equals the load on the area bounded by that curve for all

three problems solved in this chapter.

Likewige 1t is interesting to note that the vertical stress

by = n.g (1 &,%§'$ %?) (1 + %%-* gg;) reduces to ons half the

load at 2z = 0, This 1s true for all three problems as the ver-
tical stress does not depend upon the menner in which the plate

is supported.
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IV, ADDITIONAL RESUIES

A, t}aneral Theory for Horizontal Surface Tractions
| on the Upper and Lower Feces of the Piate

When the problem is restricted to horizontal loads
Py=Pg =0, Let Ly +Lg= L, Ly «Lg=1 , Jy +Jg=J
and Jy -~ Jp = J where L, 1, J and J are functions of x,y.

It is possible to prove that L and J are of the same order of
magnitude as Ugy and Vpy. Likewlsge 1 and ] are of the same
order of magnitude as AgUgo and AgzVgo. Eguations (10), (11)
and (12) mey now be solved for Wy, Uy and V; in essentlally
the seme mapner as before. Likewlse Uy, Vo and W, may be ob-

tained from equatlons (13), {14) and (15). The results are

(85) A4l = = %Zh%*xbzn@? [‘( Z2=p )an“%n] ’
n-=o

00 1 (844 29 =450t 5]

n:o

{(87) haWly = z%Zhan“'&Aggx& [(1*9 an + pgn ] »

\ 8l . aV N - - -
(80) 8 (352 + F) = - LS pen2y,0q [0, + (1op)En)
flzo

where do =0, By =1, E;a%, Co =0, Bg =1,
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by - % (1'*'1)b -] - - i(l‘p)-éﬁmlﬂi - "
ﬁn Z( 3&) (§“gf}l (éi"é)‘. (n 2,0,4,.0‘),

B = ) (142) [(142)Bpay-1 ~ (1#1)(1p)dpmy-i)
Bu aZ( iy Lid m’"(mm)! E

(n = 1,2,3,¢..),

(n = 1’2'3""),

- :E;( 1t (i*z)an~m-%§§x§%+1)en-;u (n=1,2,3,...),

_ L 4 37 o = 3l 43
Q”%*’g}mq -&"’#s

—

Sibert (12, p.345) has proved that 8&n, Dn, Cn and dy are

bounded sequences of constants.

B. Plene and Generslized Plane Stress

Vhen Z, venishes everywhere and Xz, Yz vanish at z = &n,
& state of generalized plane stress exists (10, p.471). Thus
the top and bottom surfaces of the plate are free from stress

and eguations (40) to (53) inclusive reduce to
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' 3y, av,

(89)

[ Wo _ _n® (3Wb
hEew i e \s)

(ge) ‘Vama%gu%ﬁba<%),

S

= — T ” 1 & a{}Q a\?o zg
{91) v=V, + Viz - [ﬁgvo + s 5 (ﬁi’ + 55| BT
* g 4 (5.;“ ar -

W= Vg + Wz +§%§.§§T BeVo

Sti11l1l further reductions msay be made by a consideration of or-

oY av
ders of magnitude. Wyy; and ag;c + a;g are of the same order

of magnitude as the load which in this case is zero. Since
these guantitlies must therefore be gzero or constants, they will

be assumed zerc. The stresses mey now be written as
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‘ E(z°- h?) o
(92.1) Xy = 2(1-p) Aa (‘g"‘x s
2.2) ¥y = 2lE2=b?) , (o
(92.2) ¥z = 2(1-p®) & -&—' s
. . Ez , 8% | Ez E_(hPg~8=p ga

v = . Bz o, w .92 [Es E_(n®g - B2R z3)AgW
(92.4) ¥y = T%Aa%*m,mwe*l_pg@lﬁ € \aWo | »

>p" (h”z - _2%3 z3 &gwo] .

When Xz, Y, and Zp vanish throughout the plate there 1s
a state of plane stress (10, p.467). Therefore

2?’0) = 0 and equations (92.3), (92.4) and (92.5)

(935.3) Xy = = ‘Ei%p' 55y respectively.

These results agree with those glven by Love (10, p.473,
470) and also those given by R. V. Southwell (13, p.209, 201).
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V. DISCUSSION

Garabedian and Sibert have developed snd adequetely pre-
sented the power series method of approach to plate problems
for circular plates. Garabedian has also published some re-
sults for uniformily loaded rectangular plates, However, he
has never presented his method. The author has adapted the
method of Bibert, which he belleves is an lmprovement over
that of Garabedian, te rectangular plates. One must recognize,
however, that rectangular plate problems are lnherently more
difficult than cirecular plate problems. In most circular plate
problems the dlsplacements snd stresses are assumed Iindepend-
ent of the polar coordinate 6. This means that the differen-
tlal equations defining the displacements are ordinary differ-
entlal equations. In rectangular plate problems they are par-
tial differential equations. In order to obtain his differen-
tial equations, Sibert had to solve systems composed of two
differential equations involving one independent and two depend-
ent variables. In this problem it was necessary to solve
systems composed of three differential equations which involve
three dependent and two independent variables. Again Sibert's
ordinary differential equations were solved by the well lknown
proceas of finding e particular solution and a complementary
solution by direct integration. The partial differential egua-

tions of thils problem are more complicated. Thus the suthor



belleves thet this is a worthwhile contribution to the liter-
ature of plate theory.

The problem 1s solved for any loasd (vertical or horizon-
tal applied on the top and bottom faces) which can be repre-
sented as a polynomlal in x,y continuous over the entire plate.
Unfortunately this method is not adapted to discontinuous
loads such as & uniform load over a portion of the plate. The
Qifficulty is inherent in the method because of the concept of
equating like orders of magnitude. 7To make thls clear, con-
slder the problem of & uniform load over a strip of the plate

parallel to the x-axis. It has been proved that 2;2? and

6??“ are of the same order of magnitude as the load; there-
fore they are constants in this case. Then from eguations (54)
and (55) it is evident that the T's are constants. Since the
T's are zero at the edges, they are zero everywhere. This
means that Upe and Voo are zero where the load is zero and con-
gtsnt where the load 1s constant. Consequently the plate is
discontinuous where the load is discontinuous. In other words
the method fells for discontlnuous loads. Agaln this dlscon-
tinuous load cannot be represented by a Fourlier series sas the
sories becomes divergent when substituted in the differentlal
equations defining the displeacements.

In the special soclutions for particular loads the results
are very satlsfactory in most respects. It is well to point

out the two unsatisfactory features of these results. In the



cage of two edges pinned and two edges free the author failed
to find a way to express Wy entirely in terms of Wpe. In re-
gard to the solutions for Uy and Vy more Information 1s needed
with respect to the precise edge conditions at a pinned edge.
It has been mentlioned that Love glves 5=0 as one of the condi-~
tions at & pinned edge. However, this condition Imposes a re-
striction on the wvelues of the arbitrary conatants a and 8.
Such a restriction obvlously cannot be consistent with physi-
cal reality. Although the solutions given for Uy and Vo seen
falrly satisfactory, they are not presented as the unigue solu-

tlons.



Vi. SUMMARY

1. By the use of recurrence relations the displacements,
which satisfy the equllibrium equations, are expressed In
terms of Ug, Vo, Ui, Vi, Vo and W,.

2. The pertial differentlisl equations defining these six
functlona are obtalned for any normal load which can be repre-
sented as a polynomlal In x,y continuouas over the entire plate.

3. These equations are solved for the particular losd
p(1 + ax 4 %E) subject to three different sets of edge condi-
tions: pinned-pimed, pinned-frees, nlmed-clamped.

4. The results show that the princiyallp&rt of the verticsal
displaceﬁant of the middle surfece is Wég; the corresponding
thin plate solution. With the one exception noted in the pre-
vious chapter, the displacement of the middle surface 1s given
as the thin plate solution plus a correction which is a func-
tion of the thin plete solution. Since the results depend up-
on Wgp, two thin plate solutions, not hitherto recorded, are
glven.

5. The partial differentisl eguations for the case of a shear-
ing load are also glven.

6. It i1s shown that this method gives the problems of plane

and generalized plane stress very sasily.



VII. LIST OF LITERATURE CITED

1. Birkhoff, G. D. Circular plstes of variable thickness.
Phil. Hag. Series 6, 435:953-062. 1922.

2, Clebsch, Alfred. Theorie de 1l'elasticité des corps solldes,
tredinite par MM, B. de Saint-Vensnt et Flamant. 1884.
Orliginal not seen.

38. Galerkin, B. G. Contribution a la solution generale du
prablema de la theorle de 1l'elasticlite dans le cas de
trois dimensions. Compt. rend. Assd. scl, Paris, 190:
1047-1048. 1930.

3h Galerkin, B. G, Sur 1'égquilibre elastique d'une plaque
rectangulaire épalsse. Compt. rend. Acad., sci., Paris,
193:568-671. 1931.

. Galerkin, B. G, Sur 1tequilibre d'une plague circulaire
epaiss& et dtune plaque en forme de sectewr clirculeire.
Compt. rend. Acad. scl. Paris, 194(part 2):1440-1443.
1932.

4. Gerabedian, C. A. Circular plates of constent or variable

5. Garabedian, C. A. Plagues rectangulsires épalsses. Compt.
rend. Aecad. scl, Paris, 173:610-622. 1924.

6a. Garabedlian, C. ﬁ. Solution du n»ohléme - la plaque rec-
tangulaire epaisse encastréa ou poaée, portant une
charge uniformement revartie on concentree en son
ggggr@ Compt. rend. Acad. sci. Paris, 180:257-259.

6b. Garabedian, €. A. Solution du prablemg de la plaque rec-
tangulaire épalsse ayant deux cdtés opposes appuyes et
deux cOftés libres, et portant une charge uniformement
repartle ou congentree en son centre. Compt. rend.
Acad. sei. Paris, 181:319-321. 1925.

6¢. Garabedian, C. A, Sur les plagues épalsses circulaires et
rectangulaires chargdes au centre. Compt. rend. Acad.
scil. Paris, 186:1518-1520. 1928.

7. Garabedian, C. 4. Plaque rectangulsalre épaisae chargée un-
ifanm&menﬁ énnt les daux bords oypasea ou moins sont
1932.



- T4 .

8. Holl, D. L. The deflection of an isotropic rectangular
plate under the action of continuous and concentrated
loads when supported at two opposite edges. Iowa
State Coll. Jl. Sei., 92:597-607. 1935.

9, Iguchl, S. Eine ldsung f{ir die Berechnung der blegsamen
rechteckigen Platten. Julius Springer, Berlin. 1933.

10, Iove, A, B, H. A trestise on the mathemstical theory of
elasticity. 4th ed. Universlty Press, Cambridge.
1927.

11, Michell, J. H. On the direct determination of stress in
an elastic solid, with application to the theory of
plates. Proc. Lond. Math. Soec., 31:100-124. 1899.

12, Sibert, H. VW, Hoderately thiek circular plates with plane
faces. Trans. Aim, Math. Soc., 33:329-3609. 1931.

15. Southwell, E. V. On the notion of generslized plane stress.



