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Abstract 

Many transition metals commonly encountered in inorganic materials and organometallic 

compounds possess NMR-active nuclei with very low gyromagnetic ratios (γ) such as 89Y, 103Rh, 

109Ag and 183W. A low-γ leads to poor NMR sensitivity and other experimental challenges. 

Consequently, nuclei with low-γ are often impossible to study with conventional solid-state 

NMR methods. Here, we combine fast magic angle spinning (MAS) and proton detection to 

enhance the sensitivity of solid-state NMR experiments with very low-γ nuclei by one to two 

orders of magnitude. Coherence transfer between 1H and low-γ nuclei was performed with low-

power double quantum (DQ) or zero quantum (ZQ) cross-polarization (CP) or dipolar refocused 

insensitive nuclei enhanced by polarization transfer (D-RINEPT). Comparison of the absolute 

sensitivity of CP NMR experiments performed with proton detection with 1.3 mm rotors and 

direction detection with 4 mm rotors shows that proton detection with a 1.3 mm rotor provides a 

significant boost in absolute sensitivity, while requiring approximately 1/40th of the material 

required to fill a 4 mm rotor. Fast MAS and proton detection were applied to obtain 89Y and 

103Rh solid-state NMR spectra of organometallic complexes. These results demonstrate that 

proton detection and fast MAS represents a general approach to enable and accelerate solid-state 

NMR experiments with very low-γ nuclei. 
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Introduction 

 Solid-state NMR spectroscopy is a powerful tool for the study of inorganic materials 

because it can potentially be applied to nearly all of the elements in the periodic table.1-3 

However, many elements have unfavorable properties for NMR spectroscopy such as low natural 

abundance, large quadrupole moments (for quadrupolar nuclei with spin I > ½) and low 

gyromagnetic ratios (γ and Larmor frequency below that of 15N). For example, the transition 

metals silver, tungsten, yttrium and rhodium all possess highly abundant NMR-active isotopes 

with very low-γ (Table S1).4 

Unfortunately, nuclei with a low-γ are often very difficult to observe and manipulate in 

NMR experiments because γ determines the Larmor frequency (ν0 = γB0), the radiofrequency 

(RF) field (ν1 = γB1), the equilibrium nuclear magnetization and the magnitude of the induced 

NMR signal (NMR sensitivity ∝ γ3/2).5 Furthermore, NMR experiments with low-γ nuclei are 

generally impeded by additional factors such as long longitudinal relaxation times (T1), acoustic 

ringing, poor coherence transfer efficiency, etc. The sensitivity of solid-state NMR experiments 

with low-γ nuclei has been improved by using cross polarization (CP)6 to transfer the 

polarization from high-γ nuclei such as 19F or 1H to the low-γ nucleus. For example, Merwin and 

Sebald applied CP to enhance sensitivity and obtain direct detection 109Ag, 89Y and 183W CP 

magic angle spinning (CPMAS) solid-state NMR spectra.7-9 However, CP experiments with low-

γ nuclei often require extremely long contact times in excess of 30 ms that lead to very high 

probe duty cycles.9 Subsequently, Levitt and co-workers demonstrated that the dipolar 

recoupling sequence PRESTO may be used to transfer polarization from 19F to 109Ag in 

AgSbF6.
10 The advantage of PRESTO is that dipolar recoupling is only applied on the 1H or 19F 
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channel greatly reducing the probe duty cycle. However, the sensitivity of CP or PRESTO 

experiments with low-γ nuclei are often poor because the low-γ nucleus is directly detected.  

Proton detection can dramatically improve the sensitivity of NMR experiments with low-

γ nuclei. Compared to an NMR spectrum obtained with excitation of the proton spins followed 

by CP (or PRESTO) and direct detection of the low-γ nucleus, an NMR spectrum obtained with 

initial excitation and detection of proton spins potentially provides a maximum gain in sensitivity 

(ξ) of ca. ξ ≈ (γ1H/ γX)3/2×(WX/W1H)1/2, where W is the full width at half maximum.5, 11 For 

example, for the low-γ nuclei 89Y and 103Rh proton detection can potentially provide a gain in 

sensitivity on the order of 92 to 176, respectively (considering only γ). However, efficient proton 

detection in solid-state NMR requires narrowing of the 1H NMR signals (reduction of W1H), 

which is most often achieved by using fast MAS frequencies (νrot) exceeding ca. 25 kHz.11 For 

low-γ nuclei such as 15N it was shown that a sensitivity gain from proton detection (ξ) on the 

order of 3 was obtained with νrot = 28 kHz.11-12 Fast MAS and proton detection are now routinely 

applied to indirectly detect common spin-1/2 nuclei such as 13C, 15N and 29Si and the low-γ spin 

1 quadrupolar 14N nucleus.11-19 Notably, Carnevale et al. have recently demonstrated that CP-

based pulse sequences can be used to indirectly detect 14N solid-state NMR spectra with 

efficiency comparable to heteronuclear multiple quantum coherence spectroscopy (HMQC).20 

We have recently shown that high sensitivity gains can be obtained by employing proton 

detection to record wideline solid-state NMR spectra of heavy spin-1/2 nuclei and half-integer 

quadrupolar nuclei.21-22 We have also recently applied fast MAS and proton detection to observe 

109Ag sites in silver-based ionic liquids for gas chromatography; however, the gains in sensitivity 

from proton detection were not measured..23  
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Here we demonstrate that fast MAS and proton detection can routinely provide sensitivity 

enhancements of one to two orders of magnitude for solid-state NMR experiments with very 

low-γ spin-1/2 nuclei such as 89Y, 103Rh, 109Ag and 183W. Absolute sensitivity comparisons of 

solid-state NMR experiments with 4 mm and 1.3 mm rotors demonstrate that proton detection 

with small diameter rotors provides a significant net gain in absolute sensitivity. Coherence 

transfer between 1H and low-γ nuclei was performed with low-power double quantum (DQ) or 

zero quantum (ZQ) cross-polarization (CP) or dipolar refocused insensitive nuclei enhanced by 

polarization transfer (D-RINEPT). The limitations and advantages of these different methods are 

demonstrated experimentally and with numerical simulations. Proton detection and fast MAS are 

then applied to obtain 2D HETCOR solid-state NMR spectra of yttrium and rhodium 

organometallic complexes. 

 

Experimental 

 All fast MAS experiments were performed on a double resonance 1.3 mm HX probe, 

with a Bruker Avance III HD spectrometer and a 9.4 T (ν0(
1H) = 400 MHz) wide-bore NMR 

magnet. Shunt capacitors were inserted in parallel with the primary variable tuning capacitor of 

X-channel of the probe to tune to the required very low Larmor frequencies. The capacitor for 

tuning the 1.3 mm HX probe to 109Ag/183W was provided courtesy of Mr. Albert Donkoh (Bruker 

Biospin Inc., Billerica, MA). Additional capacitors were purchased from NMR Service Inc. and 

the shunt capacitor inserts for the probe were made by soldering copper strips onto the capacitors 

(Figure S1, Table S2). Experiments with large diameter rotors were performed on a 4 mm triple 

resonance HXY probe configured in double resonance mode. The probe was tuned to 183W/109Ag 

by adding capacitor inserts in parallel to the X-channel variable tuning capacitor. 
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Fast MAS solid-state NMR experiments using the 1.3 mm HX probe were performed at a 

50 kHz MAS frequency. The 1H T1 was measured with saturation recovery for all the samples 

and optimum recycle delays of 1.3 × T1 were used for all experiments shown in the main text 

except where noted otherwise. The pulse calibrations were performed directly on each sample 

using a π/2 − spin-lock pulse sequence (Figure S2) by determining the second order rotary 

resonance recoupling (R3) condition (2 × νrot)
24 and the HORROR (0.5 × νrot)

25
 conditions. The 

calibrated 100 kHz RF power was utilized for all 1H π/2 and π pulses. In the 2D HETCOR NMR 

experiments, unwanted background 1H magnetization was removed by saturation blocks 

consisting of a π/2 pulse followed by a 300 – 500 µs spin-lock pulse at the HORROR condition 

and a 10 – 25 ms dephasing delay (Figure S3).26 The saturation blocks were generally repeated 

10 to 20 times. The HORROR condition was also applied for heteronuclear decoupling during 

the t1-evolution periods in the 2D HETCOR experiments and during acquisition in the direct 

detected 1D experiments.25 Proton detected CP-HETCOR NMR spectra were acquired with the 

standard pulse sequence11 that uses forwards CP, z-storage, 1H saturation and back-CP steps 

(Figure S3A). Alternatively, D-RINEPT pulse sequences22, 27 were also used for proton 

detection, where the forwards and backwards CP steps were replaced with D-RINEPT blocks 

(Figure S3B). 

 The double-quantum and zero-quantum CP conditions (ν1(
1H) ± ν1(X) = n × νrot) were 

optimized directly on the samples of interest by observing the intensity of the 1D 1H detected CP 

signal as a function of 1H spin-lock RF fields with a fixed RF field for the X spin-lock pulse. 

Unless specifically indicated, all CP experiments were performed under n = 1 conditions, the 

precise CP conditions are listed in Table S3. All CP experiments employed ramped 1H spin-lock 

pulses with a 95%-100% amplitude ramp on the forward (1H→X) CP blocks and a 100%-95% 
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amplitude ramp on the backward (X→1H) CP blocks.28 Figure S4 shows a comparison between 

experimental and SIMPSON simulations of the 1H-109Ag CPMAS optimizations. The lengths of 

the X π/2 pulses were directly optimized on each sample using the 1H detected CP experiment 

(Figure S3A). An example of this optimization is provided in Figure S4D and the optimized 

pulse lengths and experimental conditions for all the samples are listed in Table S3. Other 

parameters used to acquire and process the spectra are listed in Table S4. In the D-RINEPT 

experiments symmetry based 2
14SR  recoupling29 was applied on the 1H channel at the optimized 

100 kHz RF fields (2 × νrot). The duration of each recoupling block (m × τr in Figure S3, where τr 

corresponds to one rotor period) was directly optimized on each sample to give maximum signal. 

Proton T1ρ and T2’ during 2
14SR  recoupling were measured using the pulse sequences shown in 

Figure S2 and fit in MATLAB to the equation S(τ) = A×exp(–τ /T) where τ was the duration of 

the spin-lock pulses or recoupling pulse sequence, T is the T1ρ or T2’ time constants (Table S5) 

and A is the fit signal intensity at τ = 0. The proton detected 1H-103Rh D-RINEPT J-resolved 

experiment was performed using the pulse sequence shown in Figure S3B. The simultaneous 

application of π pulses on the 1H and 103Rh channels in the J-resolved block causes signal 

dephasing due to evolution of 103Rh-1H scalar couplings. The experiment was performed in an 

interleaved manner where for each τJ value, a control experiment was also performed with the 

application of only the 103Rh π-pulse (Figure S5).30-31 A normalized J-dephasing curve free from 

transverse relaxation was then constructed by dividing each J-dephased data point by the 

corresponding control data point. The normalized J-dephasing curve was fit to a simple cosine 

function, S(τJ) = cos (π × J × τJ), to determine 1
J(103Rh,1H). Fitting was performed using the 

curve fitting tool in MATLAB 8.6.0 (R2015b).  
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 Solid-state NMR experiments using 4 mm rotors were performed at a MAS rate of 8 kHz. 

The 1H pulses were calibrated by recording a nutation curves and determining the 2π-pulse. The 

RF on the X-channel was initially determined by acquiring 109Ag spin echo NMR spectra using a 

solution of 9 M AgNO3 in D2O. After optimization of CP conditions a more accurate pulse 

calibration was performed directly using a CP – π/2flip-back – π/2read pulse sequence (Table S6). 

1H→183W and 1H→109Ag CPMAS experiments used 183W/109Ag spin-lock pulses with ca. 12 

kHz RF field (ca. 80 – 95 W of input power) on the 183W/109Ag channel and the matching 1H 

spin-lock pulse RF field was optimized for maximum signal (Table S6). Optimum CPMAS 

signal was obtained with 1H spin-lock RF fields of 20 kHz and 27 kHz for 183W and 109Ag NMR 

experiments, respectively (Table S7) with a 95%-100% amplitude ramp. These CP conditions 

correspond to zero-quantum CP conditions (ν1,X + n*νrot = ν1,1H) with n = 1 for 183W and n = 2 

for 109Ag. The n = 2 CP condition likely gave more signal for 109Ag CPMAS experiments on 

silver methanesulfonate because the 1H T1ρ increases with higher 1H spin-lock RF fields. High 

quality direct detected CP spectra for sensitivity comparisons were obtained using a CP spin 

echo pulse sequence with a total spin echo 4 rotor cycles in duration to eliminate acoustic 

ringing. All other acquisition and processing parameters were the same as the corresponding fast 

MAS direct detected experiments (Table S4). 

1H NMR chemical shifts were referenced to neat tetramethylsilane using adamantane 

(δiso(
1H) = 1.82 ppm) as a secondary chemical shift standard. 89Y, 103Rh, 109Ag and 183W 

chemical shifts were indirectly referenced using the previously published relative NMR 

frequencies.4 The average of four signal-to-noise ratio (SNR) measurements were considered for 

calculating the sensitivities of all NMR spectra. All NMR spectra were processed in Bruker 

Topspin 3.5 pl7. 
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 DFT calculations were performed on compound 1 with plane-wave pseudopotentials and 

periodic boundary conditions using CASTEP.32 The heavy-atom positions were fixed from the 

X-ray crystal structure and the hydrogen atom positions were optimized prior to performing 

NMR parameter calculations. All calculations used the Perdew-Burke-Ernzerhof (PBE) 

generalized gradient approximation (PBE-GGA) functional33 with the Tkatchenko-Scheffler (TS) 

dispersion (DFT-D) correction scheme34 and ultra-soft pseudopotentials generated on-the-fly.35 

P1 symmetry was imposed on the unit cell prior to performing NMR calculations. Magnetic 

shielding, electric field gradient and J-coupling tensors were calculated using the GIPAW 

method36 implemented in CASTEP under the Zero-Order Relativistic Approximation (ZORA).37-

38 Optimizations were converged to a kinetic energy cut-off of 630 eV for the plane-wave basis 

set. The integrals were calculated over a Brillouin zone with a minimum k-point spacing of 0.07 

Å-1. SIMPSON v4.1.139-41 was used to perform all numerical simulations.  

Page 9 of 27

ACS Paragon Plus Environment

The Journal of Physical Chemistry

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



10 

 

Results and Discussion 

 

 

Figure 1. 
183W solid-state NMR spectra of ammonium tetrathiotungstate ((NH4)2WS4). 2D 

1H{183W} HETCOR NMR spectra obtained with (A) DQ-CP, (B) ZQ-CP and (C) D-RINEPT for 
coherence transfers. (D) Comparison of 183W solid-state NMR spectra obtained with direct 
detection of 183W using DQ-CP, ZQ-CP and D-RINEPT methods and the positive projections 
from the corresponding 2D HETCOR NMR spectra. The absolute sensitivity (S) and the gain in 
sensitivity from proton detection (ξ) are indicated next to the NMR spectra. The total experiment 
times are indicated for the 2D HETCOR and the 1D direct detected 183W NMR spectra. 

First, 183W NMR is used to demonstrate the potential of proton detection and fast MAS 

(νrot = 50 kHz in all cases) to accelerate solid-state NMR experiments with low-γ nuclei. 183W 

has a natural isotopic abundance (NA) of 14.3% and ν0(
183W) = 16.7 MHz at a magnetic field of 

9.4 T (ν0(
1H) = 400 MHz). Ammonium tetrathiotungstate ((NH4)2WS4) was chosen as a setup 

compound for 183W solid-state NMR because its chemical shift and CP characteristics have been 

previously reported.8 The total experiment times, number of scans, signal-to-noise ratio (SNR) 

and sensitivity (S = SNR x t–1/2, where t is the total experiment time) for all direct detection and 

proton detection experiments are compared in Table 1. The recycle delays in both proton 
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detected and direct detected experiments are determined by the proton T1 (T1 = 14.4 s for 

(NH4)2WS4). In all experiments the recycle delay was set to 11.3 T×  to maximize sensitivity (the 

recycle delay was 18.7 s for (NH4)2WS4, Table 1).  

Prior to discussing the NMR results, we briefly describe the CP conditions accessible 

with fast MAS. Under MAS, the RF fields used for CP obey the modified Hartmann-Hahn match 

conditions.42-46 With fast MAS it is possible to use low-power double-quantum (DQ-CP) and 

zero-quantum (ZQ-CP) conditions.46-49 For DQ-CP, ν1(
1H) + ν1(X) = n × νrot, while for ZQ-CP, 

ν1(
1H) – ν1(X) = n × νrot (with n = 1 for both conditions). For all of the 183W CP NMR 

experiments, ν1(
183W) ≈ 15 kHz and νrot = 50 kHz, therefore, ν1(

1H) ≈ 65 kHz for ZQ-CP and 

ν1(
1H) ≈ 35 kHz for DQ-CP. Numerical simulations using SIMPSON39-41 on a test 1H-109Ag two-

spin system confirm that both conditions operate at similar efficiencies in the absence of 

relaxation (Figure S4). With the 1.3 mm double resonance probe used here, the 1H CP spin-lock 

pulse power required input powers of only 0.4 W (35 kHz) and 1.3 W (65 kHz) for DQ-CP and 

ZQ-CP, respectively. Only 8.0 W of input power was required to obtain a ν1(
183W) of 15 kHz. 

Therefore, both DQ-CP and ZQ-CP conditions can be accessed with low input powers and low 

probe duty. The low probe duty enables long CP contact times in excess of 20 ms that are 

required for efficient CP, without risking damage to the probe or pre-amplifiers. The CP 

conditions used for all the experiments are provided in the SI (Table S3).  

The choice of whether to use DQ-CP or ZQ-CP is dictated by the 1H longitudinal 

relaxation times in the rotating frame (T1ρ). A 1H spin-lock experiment can be used to measure 

the proton T1ρ at the 1H spin-lock RF fields required for the two CP conditions (Figure S2). 

Whichever 1H spin-lock RF field gives the longest T1ρ will generally give the best CP efficiency. 

The 1H T1ρ of ((NH4)2WS4) was 200 ms and 275 ms at spin-lock RF fields of 35 kHz and 64 
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kHz, respectively (Table S3) and accordingly the ZQ-CP condition was slightly more efficient 

than DQ-CP. The CP contact time was directly optimized on all of the samples. For (NH4)2WS4 

the CP signal continuously increased as the CP contact time for each step was increased up to 30 

ms (Figure S6). However, the CP contact time of the forwards and backwards steps were limited 

to 30 ms (60 ms total contact time) to avoid damaging the probe or pre-amplifiers.  

8 hours of signal averaging (1536 scans) were required to obtain the direct detection 

1H→183W DQ-CP and ZQ-CP NMR spectra of (NH4)2WS4 which gave a SNR of only 3.4 and 

4.0, corresponding to a S of 0.2 min–1/2 for both experiments (Figure 1D). The isotropic chemical 

shift of the 183W resonance is 3648 ppm, in agreement with the previously reported value.8  On 

the other hand, the 1D proton detected DQ-CP and ZQ-CP 1H{183W} NMR spectra gave a SNR 

of 97 and 92 after only 10 minutes of signal averaging (32 scans), corresponding to a S of 31 

min-1/2 and 29 min-1/2 (Table 1, Figure S7). Comparison of the sensitivities of the 1D proton 

detected and 183W detected DQ-CP NMR spectra shows that the gain in sensitivity due to proton 

detection (ξ) is ca. 155 (31 min-1/2/0.2 min–1/2). The experimentally observed ξ of 155 is greater 

than the expected gain for 183W and 1H considering only the γ of each nucleus (ξ ≈ (γ1H/ γ183W)3/2 

= 118). Note that the 1H and 183W linewidths (W) are comparable, therefore, the 1H channel of 

the probe is likely more efficient than the 183W channel of the probe, which typically further 

favors proton detection.11 In order to obtain a proton detected 183W solid-state NMR spectrum, 

full 2D 1H{183W} DQ-CP and ZQ-CP heteronuclear correlation (HETCOR) NMR spectra were 

obtained (Figure 1A and 1B). The 2D CP HETCOR spectra required a total experiment time of 

only 2.7 hours each. The 183W NMR spectrum obtained from the positive projections of the 

indirect dimension of the ZQ-CP HETCOR spectrum had a SNR of 414 which correspond to S of 

33 min–1/2 and ξ  = 165. This large gain in sensitivity corresponds to a factor 27225 (ξ2) 
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reduction in total experiment time as compared to the corresponding direct detected 1H→183W 

CPMAS spectra. This result demonstrates the value of the proton detected solid-state NMR 

experiments for very low-γ nuclei.  

 

Table 1. Comparison of sensitivities of proton detected and direct detected 183W experiments  

Method NS Recycle 
Delay 

(s) 

Experiment 
Time (min) 

1H Sensitivity  X Sensitivity 
SNR SNR•t-1/2 

(min-1) 
SNR SNR•t-1/2 

(min-1/2) 
Direct Detection 183W NMR Spectra  

1D DQ-CP 1536 18.7 478.7 - - 3.4 0.2 
1D ZQ-CP 1536 18.7 478.7 - - 4.0 0.2 

1D D-RINEPT 2048 18.7 638.3 - - 3.4 0.1 
Proton Detected 183W NMR Spectra  

1D DQ-CP 32 18.7 10.0 97 31 - - 
1D ZQ-CP 32 18.7 10.0 92 29 - - 

1D D-RINEPT 64 18.7 20.0 53 12 - - 
2D DQ-CP 2×256 18.7 159.6 337 27 414 33 
2D ZQ-CP 2×256 18.7 159.6 341 27 409 32 

2D D-RINEPT 2×256 18.7 159.6 134 11 166 13 
1H Spin Echo 4 18.1 1.2 4289 3915 - - 

 

The D-RINEPT pulse sequence22, 27 (Figure S3) was also utilized to record a 1D 

1H→183W direct detected and 1H{183W} 2D HETCOR NMR spectra as shown in Figure 1D and 

1C. The D-RINEPT pulse sequence places a very low power demand on the probe and pre-

amplifiers because the 183W channel only requires rotor-synchronized π/2 and π pulses, while 

low-power symmetry based 2
14SR  recoupling29 is applied to the 1H channel with an RF field of 

two times the MAS frequency (ν1(
1H) = 2 × νrot) (Figure S3). The sensitivity of the direct 

detected 1H→183W D-RINEPT experiment was 0.1 min-1/2 which is about half the sensitivity of 

the direct detected CP experiments (Figure 1, Table 1), suggesting that the efficiency of the D-

RINEPT experiment is about half that of CP. A full 2D HETCOR spectrum was obtained with 

D-RINEPT in 2.7 hours (Figure 1C, Table 1), yielding a 183W sensitivity of 13 min-1/2 on the 
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positive projection of the indirect 183W dimension. This corresponds to ξ of 130, which is 

slightly lower than the ξ of ca. 160 obtained with CP. This reduction in ξ is likely due to low 

intrinsic efficiency of the D-RINEPT polarization transfer process which is limited by the short 

T2’ of the 1H spins under 2
14SR dipolar recoupling (Table S5). In comparison, the 1H 

T1ρ relaxation times that dictate the efficiency of CP are typically at least an order of magnitude 

longer (Figure S2, Table S5). However, D-RINEPT provides a larger excitation bandwidth than 

CP because the finite π/2 and π pulses have a much greater bandwidth than the spin-lock pulses. 

With the typical RF fields we have used (Table S3), the CP excitation bandwidth is about 8 kHz 

while the D-RINEPT provides a larger excitation bandwidth of 24 kHz (Figure S8).  Many low-

γ transition metal nuclei display large chemical shift ranges of several thousand ppm. Therefore, 

1D proton detected D-RINEPT could be useful to quickly scan across the chemical shift range 

and locate the signal of the low-γ nucleus, followed by a CP-based experiment to obtain a higher 

quality 2D NMR spectrum. We note an alternative CP condition would be to use ν1(X) = 35 kHz 

and match this to ν1(
1H) = 85 kHz. Simulations suggest that this alternative condition offers 

improved CP excitation bandwidth of ca. 16 kHz (Figure S8). 

109Ag (NA = 48.2%) and 89Y (NA = 100%) solid-state NMR experiments were performed 

on silver methanesulfonate (Ag(SO3CH3)) and yttrium nitrate hexahydrate (Y(NO)3•6H2O), 

respectively, to demonstrate the general applicability of proton detection and fast MAS for very 

low-γ nuclei. Both of these compounds are used as CP setup standards for these nuclei.7, 9, 50 

These results are summarized in Figure 2, Figure S9-S10 and Table S8. We have very recently 

applied proton detection and fast MAS to obtain 109Ag solid-state NMR spectra of several silver-

based ionic liquids used as stationary phases in gas chromatography.23  
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Figure 2. Comparison of proton detected and direct detected (A) 109Ag solid-state NMR spectra 
of silver methanesulfonate (AgSO3CH3) and (B) 89Y solid-state NMR spectra of yttrium nitrate 
hexahydrate (Y(NO3)3•6H2O). The CP condition/pulse sequence used for acquisition, sensitivity 
(S), total experiment time and gain in sensitivity from proton detection (ξ) are indicated. The 
proton detected NMR spectra were obtained from the positive projections of the corresponding 
2D HETCOR spectrum. 

 

 A ξ of ca. 19 to 22 was obtained for proton detected 109Ag solid-state NMR experiments 

on Ag(SO3CH3) (Figure 2A). Proton detected D-RINEPT performed significantly worse than the 

CP experiments, likely due to a short 1H T2’ during 2
14SR  recoupling (see Table S5). For 89Y 

solid-state NMR experiments on Y(NO)3•6H2O proton detection with CP provided a ξ of 5 to 7. 

The relatively small ξ values for Y(NO)3•6H2O likely occur because this sample had a short 1H 

T1ρ (7 ms and 13 ms for DQ-CP and ZQ-CP 1H RF fields, respectively). The short 1H T1ρ likely 

occurs due to the dynamics of the coordinated water molecules and/or the very large 1H 

homonuclear dipolar couplings for water. For yttrium, the ZQ-CP condition was preferred 

because the 1H T1ρ was slightly longer at the higher power 1H spin-lock RF field used for ZQ-

CP. ZQ-CP and DQ-CP required optimal contact times of 16 ms and 10 ms, respectively, which 

Page 15 of 27

ACS Paragon Plus Environment

The Journal of Physical Chemistry

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



16 

 

are much shorter than was required for the other samples and reflect the short 1H T1ρ (Figure S5). 

The 1H T2’ during 2
14SR  recoupling was also under 1 ms, which causes a rapid loss of 

magnetization during the D-RINEPT transfer. Consequently, it was not possible to obtain proton 

or direct detected 1H-89Y D-RINEPT NMR spectra in a reasonable experiment time. The 89Y 

NMR experiments highlight that 1H T1ρ and T2’ during 2
14SR  recoupling are likely to determine 

the efficiency of proton detection. However, the 1H T1ρ at different spin-lock RF fields and T2’ 

during 2
14SR  recoupling can usually be rapidly measured before attempting any CP or D-

RINEPT experiments and the spectroscopist can decide which CP condition or pulse sequence 

will likely work the best.  

 

Figure 3. Comparison of the absolute sensitivity of proton detection with small diameter rotors 
and direct detection with large diameter rotors for (left) 183W NMR experiments on NH4WS4 and 
(right) 109Ag NMR experiments on Ag(SO3CH3). Direct detected CPMAS NMR spectra obtained 
with (A, B) a 4 mm rotor and νrot = 8 kHz or (C, D) a 1.3 mm rotor and νrot = 50 kHz. (E, F) 
Proton detected spectra obtained from the positive projections of 2D HETCOR NMR spectra. 
The gain in absolute sensitivity (ξA) is indicated. Experiment times, SNR and sensitivities are 
summarized in Tables S7 and S8. 
 

Page 16 of 27

ACS Paragon Plus Environment

The Journal of Physical Chemistry

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



17 

 

Absolute Sensitivity Comparison of Large and Small Diameter Rotors. The results 

described above demonstrate that proton detection provides a substantial gain in sensitivity 

compared to direct detection within the 1.3 mm rotor. However, direct detection CPMAS 

experiments would most likely be performed with larger diameter rotors because they can 

potentially provide better absolute sensitivity by virtue of a larger sample volume. Nishiyama has 

presented an extensive theoretical and experimental investigation of absolute NMR sensitivity  

for different rotor diameters and shown that absolute sensitivity is approximately proportional to 

d
3/2, where d is the rotor diameter.18 For example, comparing a 1.3 mm and 4 mm rotor, the 1.3 

mm rotor should provide ca. 5-fold lower sensitivity because of reduced sample volume.18 

However, proton detection can compensate for this sensitivity reduction, and provide a net gain 

in sensitivity.   

 Figure 3 compares the sensitivities of direct detected CPMAS NMR spectra of NH4WS4 

and Ag(SO3CH3) obtained with 4 mm diameter rotors (ca. 100 µL sample volume) with the 

direct detected and proton detected spectra acquired using 1.3 mm diameter rotors (ca. 2.5 µL 

sample volume). The spectra shown in Figure 3 were acquired with experimental conditions that 

yielded maximum sensitivities for the different rotors (Tables S6 and S7). Comparing the direct 

detected CPMAS spectra shows that higher sensitivities of 4 min-1/2 and 41 min-1/2 are obtained 

with the 4 mm rotors compared to the lower sensitivities of 0.2 min-1/2 and 6 min-1/2 obtained 

with the 1.3 mm rotors for NH4WS4 and Ag(SO3CH3), respectively. Because of the greater 

amount of material in the 4 mm rotor the direct detection CPMAS experiments with 4 mm rotors 

provide 7 to 20 times better sensitivity compared to the corresponding experiments with 1.3 mm 

rotors.  However, with proton detected experiments sensitivities of 33 min-1/2 and 116 min-1/2 

were obtained for 183W and 109Ag using 1.3 mm rotors. Comparison of proton detected 1.3 mm 

Page 17 of 27

ACS Paragon Plus Environment

The Journal of Physical Chemistry

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



18 

 

rotor sensitivity and direct detected 4 mm rotor sensitivity shows that proton detection with a 

small rotor provides significant gains in absolute sensitivity (ξA) of factors 8 and 3 for 183W and 

109Ag NMR spectra, respectively. In summary, proton detection with 1.3 mm rotors provides 

superior absolute sensitivity for these very low-γ nuclei and requires only 1/40th of the sample as 

compared to the 4 mm rotor. Addtionally, CP experiments with the 1.3 mm diameter rotor 

require much lower powers (ca. 8 to 12 W low-γ -spin-lock pulse power) as compared to the 4 

mm rotor (ca. 80 – 100 W low-γ spin-lock pulse power). Therefore, with the 1.3 mm rotor, very 

long CP contact times can be used without risking damage to the probe/spectrometer. 

 

 

Figure 4. 
1H and 103Rh solid-state NMR spectra of an organometallic rhodium complex (1). 

Proton detected (A) 2D 1H{103Rh} DQ-CP spectrum and (B) 2D 1H{103Rh} D-RINEPT 
spectrum. (C) Structure of the organometallic rhodium complex. (D) Plot showing the results of 
a J-resolved experiment on 1. The fit of the J-resolved curve yields 1J(103Rh,1H) = 19 Hz. (Figure 
S5). The hydride directly attached to rhodium appears at -13.5 ppm in the 1D 1H spin echo and 
has a low relative signal intensity (marked by asterisk). 

 

Solid-State NMR of Organometallic Compounds. Proton detection was applied to obtain 

the 103Rh solid-state NMR spectrum of a previously reported rhodium complex51 formed in an 

PhSiH3 oxidative addition reaction (denoted as compound 1, Figure 4) which is a precursor to a 
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catalyst for partial deoxygenation of esters.52 Although 103Rh is 100% naturally abundant it has a 

very low Larmor frequency of only 12.8 MHz at 9.4 T (Table S1). To the best of our knowledge, 

there has been only one previous report of 103Rh solid-state NMR spectra,53 most likely because 

of the challenges associated with the low-γ of 103Rh.  

Figure 4 shows the 1H spin echo NMR spectrum and proton detected 103Rh solid-state 

NMR spectra of 1 that were obtained with 2D DQ-CP and D-RINEPT. The 1H spin echo 

spectrum shows a low intensity signal at –13.5 ppm which is assigned to the hydride and much 

more intense NMR signals from methyl groups and aromatic protons. The 103Rh NMR spectrum 

obtained with proton detected D-RINEPT gave a 103Rh positive projection spectrum that had a 

SNR of ca. 56 after 3.6 hours of total acquisition. This corresponds to a 103Rh sensitivity of 3.8 

min-1/2. The hydride appearing at ca. –13.5 ppm facilitates the polarization transfer between 1H 

and 103Rh due to a relatively strong heteronuclear dipolar coupling of ca. 930 Hz for a 1.6 Å 1H-

103Rh distance. The lower sensitivity of the DQ-CP spectrum in comparison to the D-RINEPT 

spectrum is likely due to the short 1H T1ρ (Table S5) and because 1H spin diffusion during the 

spin-lock pulse distributes 1H signal intensity across the spectrum. The 1H spin diffusion is 

evidenced by the appearance of a cross-peak in the DQ-CP spectrum between the distant methyl 

groups and the rhodium signal. With D-RINEPT the coherence transfer is more selective because 

homonuclear 1H dipolar couplings are suppressed and only a cross-peak between rhodium and 

the hydride 1H is observed.  

The 103Rh NMR spectrum of 1 shows two distinct peaks with 103Rh isotropic chemical 

shifts of –8300 ppm and –8375 ppm.  Initially, we hypothesized that the peak splitting was due 

to scalar and residual dipolar coupling to 14N. However, SIMPSON simulations suggest that the 

residual dipolar couplings to 14N only results in peak broadening on the order of 2 ppm (Figure 
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S11). Therefore, we believe that the two distinct 103Rh isotropic chemical shifts observed are due 

to different solid forms (polymorphs or solvates). A proton detected 1H-103Rh J-resolved 

experiment was performed using the pulse sequence shown in Figure S3B. This measurement 

yielded a rhodium-hydrogen one-bond scalar coupling (1
J(103Rh,1H)) of 19 Hz (Figure S5). The 

1
J(1H-103Rh) measured in the solid-state is comparable to the previously reported coupling of 

21.3 Hz measured with solution 1H NMR.51 Scalar coupling constants predicted with plane-wave 

DFT implemented in CASTEP32 are shown in Table S9.  

 

Figure 5. 
1H and 89Y solid-state NMR spectra of compound 2. (A) Molecular structure of 

compound 2. (B) 1D 1H spin echo spectrum and proton detected 1D 1H{89Y} DQ-CP spectrum. 

Proton detected 2D 1H{89Y} DQ-CP spectra with (C) 9 ms forward and backward CP contact 

times and (D) 9 ms forward and 1 ms backward CP contact times. (E) Comparison of direct 

detected 1D 1H→89Y DQ-CP spectrum with positive projections of 89Y from the 2D spectra. 

Sensitivities (S) are indicated for the 89Y spectra shown in (E). The total experiment times are 

indicated for the direct detected 1H→89Y DQ-CP spectrum and the proton detected 2D 1H{89Y} 

DQ-CP spectra. All 1H-89Y experiments were performed with a 280 K temperature setting on the 

variable temperature unit.  
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Proton detection was also applied to obtain the 89Y solid-state NMR spectrum of 

Y{N(SiHMe2)tBu}3 (denoted as compound 2). 2 has been used for solution-phase grafting of 

yttrium sites onto silica for heterogeneous hydroamination reactions, and 2 also has potential 

applications in chemical vapor deposition.54-55 Notably, high-quality 2D proton detected 1H{89Y} 

NMR spectra of 2 were obtained in less than 2 hours (Figure 5). Comparing the sensitivities, a 

direct detected 1D DQ-CP spectrum had a S of 4 min-1/2 whereas the positive projection from the 

proton detected 2D HETCOR spectrum had a S of 52 min-1/2 corresponding to a ξ of 13 (Figures 

5C and 5E). As the 1H T1 was short for this compound (ca. 0.86 s), the proton detected 2D 

experiments were acquired with a longer recycle delay of 1.5 s to reduce the probe duty. Note 

that using a shorter recycle delay would have yielded a higher gain in sensitivity due to proton 

detection. A second 2D spectrum was obtained with a short 89Y→1H backward CP contact time 

to minimize 1H spin diffusion during the spin-lock pulse and to enhance the intensity of 

correlations to more strongly dipolar coupled 1H nuclei (Figure 5D). Although a reasonable 2D 

spectrum was obtainable with a short back CP contact time, the sensitivity of the 89Y positive 

projections dropped from 52 min-1/2 to 8 min-1/2 when the contact time of the back CP step was 

decreased from 9 ms to 1 ms (Figure 5E). The intense correlations between the Si-H and yttrium 

peaks are consistent with a relatively short internuclear distance of ca. 2.5 Å that results from 

secondary bonding interactions between these hydrogen atoms and yttrium.55 

 

Conclusions 

In summary, fast MAS and proton detection were used to accelerate 89Y, 109Ag, 183W and 

103Rh solid-state NMR spectra experiments. In the samples studied here, the gain in sensitivity 
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provided by proton detection (ξ) was found to be on the order of 5 – 165 which correspond to 

time-savings of a factor 25 – 27225. The absolute sensitivity of proton detected NMR spectra 

acquired with 1.3 mm rotors was found to be superior to those obtained with direct detection and 

4 mm rotors. For 183W and 109Ag NMR spectra, proton detection with a 1.3 mm rotor was found 

to provide factors 8 and 3 times better sensitivity than direct detection with a 4.0 mm rotor that 

holds ca. 40 times more sample. Furthermore, the high resolution in the 1H dimension of 2D 

HETCOR NMR spectra is easily obtained without the use of homonuclear decoupling sequences. 

The enormous sensitivity gains and time-savings provided by proton detection should permit the 

routine characterization of materials containing these elements by solid-state NMR spectroscopy, 

even in heterogeneous catalysts or inorganic materials where the elements may be very dilute. 

Dynamic nuclear polarization (DNP) is an alternative approach to enhance the sensitivity of 

direct detection solid-state NMR experiments with very low-γ nuclei.55-58 With the development 

of fast MAS DNP probes59-60 we anticipate that proton detection and fast MAS could be 

combined with DNP to obtain further improvements in the sensitivity of solid-state NMR 

experiments with very low-γ nuclei.  
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Additional supplementary tables, figures, and NMR experiment details can be found in the 

supporting information. 
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