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ABSTRACT

Study of diffusion or propagation of information over a network of connected entities play

a vital role in understanding and analyzing the impact of such diffusion, in particular, in the

context of epidemiology, and social and market sciences. Typical concerns addressed by these

studies are to control the diffusion such that influence is maximally (in case of opinion propaga-

tion) or minimally (in case of infectious disease) felt across the network. Controlling diffusion

requires deployment of resources and often availability of resources are socio-economically con-

strained. In this context, we propose an agent-based framework for resource allocation, where

agents operate in a cooperative environment and each agent is responsible for identifying and

validating control strategies in a network under its control. The framework considers the pres-

ence of a central controller that is responsible for negotiating with the agents and allocate

resources among the agents. Such assumptions replicates real-world scenarios, particularly in

controlling infection spread, where the resources are distributed by a central agency (federal

govt.) and the deployment of resources are managed by a local agency (state govt.).

If there exists an allocation that meets the requirements of all the agents, our framework

is guaranteed to find one such allocation. While such allocation can be obtained in a blind

search methods (such as checking the minimum number of resources required by each agent or

by checking allocations between each pairs), we show that considering the responses from each

agent and considering allocation among all the agents results in a negotiation based technique

that converges to a solution faster than the brute force methods. We evaluated our framework

using data publicly available from Stanford Network Analysis Project to simulate different

types of networks for each agents.
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CHAPTER 1. INTRODUCTION

The study of propagation of information in a network of connected entities is an important

area of research in multiple application domains ranging from epidemiology, social and market

sciences to intrusion detection in computer science. The entities in the network can describe

groups of hosts, populations, individuals or computer systems, while the corresponding infor-

mation can be infectious diseases, opinions, fire or computer worms. The network itself describe

how one entity can influence or can be influenced by others. It is important to understand and

analyze the propagation of information to either contain the spread of information within de-

sired level (e.g., in epidemiology) or maximize its impact (e.g., in marketing strategies). Most

of the existing work is focused on the mathematical modeling of the behavior of the entities

in the network and on analyzing the rate at which the external influences (e.g., immunizing

the nodes, seeding with information) should be deployed to realize the desired results in the

presence of information propagation.

Network is typically viewed as graph containing nodes and edges. Nodes represent entities

in the network and edges represent some relationship between the nodes (Proximity, Friendship,

Heredity, etc.). The basic step in understanding the impact of a spread of diseases, opinions,

influences or computer viruses in a network involves understanding the behavior of population

constituting the network. That is, one needs to analyze how the network expands and contracts

if and when individuals or population groups join or leave the network. Such a study of networks

led to development of random networks (Erdos and Renyi (1960)), small-world networks (Watts

and Strogatz (1998); Barabasi and Albert (1999)), scale-free networks and their variants. The

behavior of the networks is described in terms of the states, states being ’S’ - the susceptible

state of the entity, ’E’ - exposed state of the entity, ’I’- the Infected state of entity and ’R’ - the

state of entity those recovered due to immunization or entity removed from the network due
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to death which is referred as SEIR model (Anderson and May (1979)). Other Variants being

SI, SIR, SIS (Hsu and Hsieh (2005)). Another important aspect necessary for understanding

how much of the network will be impacted due to information spread is the analysis of nature

of spread. There are several models such as Independent Cascade model, Linear Threshold

model etc., that capture information diffusion in the network (Shakarian et al. (2015)). In

opinion propagation, the nature of spread can be analyzed by saying that an individual will

be influenced by the opinion if majority of his/her friends hold the same opinion (Lerman

and Ghosh (2010)) while in computer worm propagation, a host is affected by a worm if the

worm moves from another host deemed to be ”known” by the former host Gebhart (2004).

We will use the terms infection and information interchangeably. We will also use spread and

propagation interchangeably.

In epidemiology, the network of entities corresponds to population groups and their spa-

tial/proximity relationships. Epidemiologists study the spread of the infectious diseases over

such a network and classify them as outbreak, epidemic or pandemic based on severity and

rate of the spread in the network (Eubank et al. (2004)). Existing research is focused on how

the disease would spread in the given network and devise effective strategies to contain the

spread (Do and Lee (2016)). We want to focus on the problem of resource allocation given

a real-world epidemic scenario. Lets consider an example; there was an outbreak of Ebola in

few West African countries Guinea, Sierra Leone, Liberia etc. Ebola being a deadly disease

which can be out of control if no measures taken, epidemiologists wanted to study the disease

to eradicate it. But the primary question here is, How do we distribute the vaccines among

multiple countries or among multiple cities in the same country when government or private

agencies have limited vaccines? To understand the emphasis on distribution of resources among

multiple regions, consider a scenario where region A have same number of infections as in re-

gion B but A might handle the spread of infection better than B (because of better medical

facilities or due to less density of population). So we focus on the problem of resource allocation

where decision of distributing vaccines is handled by a central controller (government or central

health organization) while agents (different cities or countries) get to choose where to place the

vaccines using their own strategies.
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With technological revolution in present days, information diffuses at very high rate which

comes with its own pros and cons. In social/market sciences, the network captures the exchange

of ideas and information among peers/leaders/followers. In Influence maximization problem

(also referred as opinion propagation), sufficient set of nodes are identified that have maximal

influence on spread of information. The objective is to maximize the spread by seeding in-

formation at the most influential node set, widely used in marketing strategies (Shafiq et al.

(2013)). The contrast of maximization being Influence minimization problem, the spread of

undesirable information or misinformation like rumors etc., is contained/suppressed by iden-

tifying the minimal set of links to be blocked. Especially during some major events such as

elections, it is very critical to stop the spread of rumors as it might change the public opinion

based on misinformation. This type of problem boils down to distribution of available resources

to contain the spread of rumor at different regions.

While these are the examples of people/social networks, a technology networks such as

Internet is a network of computer devices and the network and security experts analyze how

the integrity of multiple networks are impacted by the propagation of worms. It may happen

that when multiple networks are attacked, one of the many networks attacked is connected to

military servers which cannot handle compromise of highly classified information while other

network attacked is connected to internal servers which might handle the attack (consequences

might be minimal) in a better way. The scenario becomes complex when there are less resources

than required to combat the attack. It is important to analyze how the resources e.g. anti-virus

can be distributed strategically when having some knowledge about networks attacked.

There are other types of real world problems like Power Grid, Fire Fighter etc., that can

be modeled in a way similar to above mentioned scenarios. In Firefighter problem, various

regions can be modeled as multiple networks where entities can represent a building and edges

can represent the physical proximity (Finbow and Macgillivray (2007)). Protecting one of

the region might prevent cascading fire to connected regions. When allocating resources, the

objective must be to distribute fire fighters in a way that controls the spread of fire in all

such regions while spread of fire is minimized in totality. Few scenarios that we face in our

day to day activity can be modeled as a resource allocation problem to find a solution. For
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example, let’s consider the problem of congestion in major cities like San Francisco in California

and we might want to prevent the overflow of traffic at certain regions. It is often the case

that patrols available to control such traffic, are limited in number. To find an allocation of

patrols to different regions, the problem can be formulated as follows; every region can act as

an agent where nodes represent the intersections of roads, edges represent the roads connecting

the intersections and actual traffic flow is the information diffusing. Placing a patrol at a node

prevents the node and its immediate neighbors from congestion. We need to find a strategy

to distribute available patrols such that number of regions with congestion is minimal while

leaving the decision of choosing where to place the patrols to the agents.

Given a network or multiple networks with possible infections, every region with infec-

tion can be considered to be controlled by an agent. If subgraphs or regions are connected (i.e.

subgraphs from same network), we assume that agents are responsible for their respective neigh-

borhood without considering the connectedness between the regions. Precisely, we consider the

problem of resource allocation (resources can be vaccines, antivirus, generators, patrols) among

multiple cooperative agents by a mediator negotiating until an optimal agreement is reached.

Agents complete preferences/ requirements are not known to other agents and mediator. Based

on the little information agents provide about their preferences, mediator distributes the re-

sources among multiple agents. Leveraging this type of framework, only subspace of the entire

solution space is visited. But the worst case would be to visit the entire solution space (Saha

and Sen (2007)). Similar framework is being utilized in multiple domains such as, manufac-

turing and scheduling, network bandwidth allocation, space applications, crisis management

etc., where multiple agents negotiate to reach to an agreement on resource allocation (Briola

and Mascardi (2011)). There has been lot of investigation on multi-agent resource allocation

problem and as a result many protocols have been established based on number of factors such

as; the kind of resources (shareable, non-shareable, consumable, indivisible) being allocated,

the type of allocation procedure, the reason behind the resource allocation (international crisis

- social welfare, airline traffic management - avoid collisions, network bandwidth allocation -

avoid congestion). We incorporate the ideology of mediator negotiating for resource allocation

among multiple non-competing agents using our own mechanism for negotiation and simulating
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agents. Given a set of networks(act as agents) which needs resources to control information

diffusion, we want to address whether globally available resources can be distributed such that

every agent is successful in controlling information diffusion.

1.1 Challenges & Objectives

Difficulty in controlling the information diffusion is that control mechanisms are not avail-

able a prior. Existing work primarily focuses on the developing of control strategies for a given

set of resources. The problem of resource allocation is challenging owing to the complexities

and the size of the network. Exploring all possible strategies to distribute resources across

multiple networks can be impractical in real time because of the run time overhead. This

brings in a new challenge of resource allocation. Given a collection of regions controlled by

agents, who are responsible for deciding whether or not a given set of vaccines/control measure

is sufficient to address epidemics of disease/information in their respective network and if the

agents cooperate, our objective is to find whether a central controller can effectively distribute

vaccines to every such region.

1.2 Proposed framework

We propose a framework for utilizing the limited resources to control information diffusion

in different networks. Given a collection of regions controlled by cooperative agents, who are

responsible for deciding whether or not a given set of vaccines/control measure is sufficient to

address epidemics of disease/information in their respective network, mediator is assigned the

responsibility of distributing the available resources among agents and negotiating by itera-

tively considering the responses from the agents if required.

Method : We use an iterative resource allocation method controlled by a central controller

(mediator) to distribute resources among multiple agents overseeing their neighborhoods Kyaw

et al. (2013a). Agent provides little information based on the properties of their respective

neighborhood. This way, controller has some information about the agents engaging in negoti-

ating process. We allow only limited information exchange between the controller and agents
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Figure 1.1: Example of multiple agents (Krebs (2010))

to maintain distributed nature of the control mechanism. Few given neighborhoods might be

dense while others might be sparse. So blindly dividing the available resources equally might

not be a good strategy in every case. In our methodology, controller leverage the information

provided by each agent and based on the protocol, allocates resources. Once the resources are

allocated to all the agents, every agent checks if the objective can be met. If any of the agents

is not satisfied, then mediator tries to negotiate with the agents (here agents are cooperative

rather than competitive) until a solution is found or it can be concluded that there exists no

solution such that all the agents can be satisfied with available resources. For example, con-

sider the Figure 1.1, there are multiple networks controlled by agents which needs resources to

control the information diffusion. The goal of the central controller is to distribute the available

resources such that every agent can successfully meet its requirement to control information

spread.
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1.3 Contribution

To summarize, following are the contributions of this work:

1. An agent-based negotiation strategy for effective allocation of vaccines to

agents

The strategy is guaranteed to obtain a solution where each agent is satisfied with the

allocation, if one exists. The strategy is iterative where in each iteration, new approxi-

mations of the solution are computed by taking into consideration responses from agents

in the previous iterations. The strategy is particularly efficient in situations when the

existence of the solution is altered by addition/removal of a small percentage of vaccines.

2. A framework for evaluating and validating the negotiation strategy

The framework can be used with different types of agent responses and can be used to

compare against different iterative strategies for negotiations.

3. Applicability

The strategy is empirically evaluated by conducting experiments on different networks

publilcly available in Stanford Network Analysis Project (Leskovec and Krevl (2014)).

Experimental results reveal the feasibility and applicability of our framework to different

real world networks.

1.4 Organization

The rest of the thesis is organized as follows. In Section 2, we talk about existing traditional

approaches to control the information diffusion and existing applications of multi-agent con-

troller based framework in different fields. In Section 3, we discuss our framework that helps

us devise a strategy such that all the agents successfully control the information diffusion. We

present the outline of the negotiation process using an illustrative example, and the agent’s

simulation algorithm . In Section 4, we present our experimental results performed on real

world networks and comparison of our results to traditional approach (brute-force). In Section

5, we summarize our contributions, and discuss the possible extensions to this work.
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CHAPTER 2. REVIEW OF LITERATURE

Different aspects of the modeling and the analysis of information propagation over differ-

ent types of networks have been studied. One line of research focuses on understanding the

topological structure of the real world network. Another line of work focuses on understanding

the nature of information propagation over the network. This is achieved by considering a

network that closely represents a real-world distribution of entities and by running extensive

simulations to mimic the spread of certain information (infectious diseases, opinions, rumors,

computer worm, fire, traffic, attackers, etc.). Researchers further consider the problem of al-

tering the spread, either to contain the spread or to maximize the impact of the spread; the

objective is to find the rate at which the nodes in the network should be externally influenced

(e.g., vaccinating nodes, deploying anti-virus, assigning patrol cars, firefighters, inserting or

re-enforcing opinions). While the existing work focused on altering the spread either to max-

imize or minimize the impact of spread, we focus on the problem of allocating resources to

multiple agents representing their respective neighborhoods. The basic assumption is that in-

formation is propagating in multiple localities where each locality is overlooked by an agent

where multiple agents cooperate with each other (negotiate) to share resources and are typically

controlled by a central controller with an objective to mitigate information diffusion. Agents

can deploy different control strategies to mitigate the propagation. In this context, we discuss

the contribution of existing work in controlling propagation and different network topologies

and diffusion models (Section 2.1). Then we present an overview of the work that adapted

multi-agent negotiation framework in various fields (Section 2.2).
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2.1 Controlling Information Propagation

A network is a graph containing set of nodes and edges. Nodes represent entities in the

network while edges represent the relationship (the reason behind the connection) between the

nodes. Before deciding on the network topology and diffusion model, several questions such

as; what will form the connections in the network? how much contact between the entities will

lead to an infection spread in the network? are addressed by extensive research and simulations

on real world models (Keeling and Eames (2005)).

To give a small overview about network topology: in random networks, every connection

is formed at random. Each individual has fixed number of neighbors to which infection can

propagate. In Lattice networks, entities are placed on a grid (generally in two dimensions)

and edges are established between adjacent entities. This type of networks are mostly used in

modeling the forest-fire networks. Lattice networks have high clustering and long path lengths

while random networks lack clustering and have short path lengths. Small world networks

are mixture of lattice and random networks, can be viewed as random connections added to

a lattice network. Every node can be reached from most other nodes in the network. This

type of networks are widely used in modeling epidemic networks. Scale-free networks are built

by adding new entities and its connections preferably to entities which have large number

of connections which imitates the social networks in real world. This type of networks are

usually seen in World Wide Web networks, power grid networks, network of actor collaborations

etc. Number of connections in this type of network takes power law distribution. Scale free

networks depict heterogeneity while random networks, lattice networks, small world networks

are homogeneous (Keeling and Eames (2005)).

There are a wide range of work employing techniques such as link removal (Marcelino and

Kaiser (2009) , Tong et al. (2012)), merging infected nodes (Zhang and Prakash (2014)), block-

ing nodes (Briesemeister et al. (2003)), ranking based on eigen value (Tong et al. (2012)),

choosing random nodes to vaccinate (Cohen et al. (2003)) etc., to control information prop-

agation. Challenging factor is the size of the given real-world networks, they are often very

large and finding an optimal solution will be a NP-Hard Problem in all such cases. Few studies
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were specific to networks such as scale-free networks while few are based on arbitrary networks.

Dybiec et al. (2004) affirm that it is not possible to control the spread in scale free networks by

preventive measures unless there are sufficiently many vaccines to treat large population. They

also believe that it’s not always possible to have complete information about how the disease

spreads, sometimes the disease spreads from individual who is infected but undetected. In case

of computer virus outbreak, reducing the connectivity between different internal networks can

always be considered as an approach to prevent the epidemic but Briesemeister et al. (2003)

believe that, it cannot be counted as a defense mechanism; there might be a case that attack

has been realized long after it actually took place. Analysis on the network topology and the

process of information diffusion plays an important role while devising a control strategy. For

instance, Sapphire worms can exist only in Microsoft operating systems, hence eliminating

devices with any other operating system will make the network smaller to handle.

(Zhang and Prakash (2014)) considered the problem of selecting k best nodes to immu-

nize/quarantine in social/computer network when an infection is spreading. The goal is to

find the best way to distribute available vaccines when disease is spreading. They assume that

when nodes are immunized by vaccines, they are removed from the network itself. This type

of questions can be similar to questions in other domains. For instance, in field of rumor prop-

agation, one case ask which accounts in twitter must be disabled to discard a spam message?

in field of computer networks, which computers or servers in the network should first be given

the antivirus (in what order)? The problem is defined formally as Given a graph G(V,E) where

V represents the nodes and E represents the edges between the nodes, initial infected node set

I0, SIR model with propagation probability on each edge{i, j}p(i,j) ∈ P and curing probability δ,

and budget k (integer), find a set S of |k| nodes from V to vaccinate to minimize expected total

number of infected nodes during the spread of disease.

Authors basic assumption is that given budget is not sufficient to vaccinate entire immediate

neighborhood of infected nodes in I0. They proved that the problem defined above is a NP-hard

problem. Generally graphs have submodular structure which leads to near to optimal solution

but function used here is not submodular making it harder to approximate. The idea behind

the proposed solution is that all the infected nodes are merged into a single super infected node.
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(a) Original Graph (b) Dominator Tree

Figure 2.1: Example of dominator tree for a given graph

Because, in disease or virus or meme spread, what is important is, how are the non-infected

(healthy) nodes are connected to infected nodes rather than how infected nodes are connected

to each other. The merging is done as follows: if a node z has infected neighbors, u with edge

weight (probability) pu and v with edge weight pv, then new edge probability would be a logical

OR of all individual probabilities i.e. 1-(1-pu)(1-pv). If the resultant graph G′ obtained after

merging is a tree, then optimal solution can be obtained by calculating the benefit (essentially

expected number of nodes to be saved after particular node is removed is referred to as benefit

of that particular node) of every neighbor node of I′ and selecting top k nodes with highest

benefit. If the resultant graph is not a tree, a dominator tree is obtained from the new graph G′.

A node y dominates node x if every path from I0 to x has y. Node y is immediate dominator of

node x if every dominator of x (excluding y) dominates node y. Dominator tree is constructed

by adding edges between nodes x and y if y is a dominator, using I0 as root. Figure 2.1 is an

example of dominator tree where if p = 1, then optimal solution is to vaccinate 4. We can see

that finding optimal solution in dominator tree is quicker when compared to original graph.

While the authors Zhang and Prakash (2014) claim that this approach, is scalable to large

networks (modeled as IC model and SIR model), can be applied to field of epidemics, social sci-

ences (contain rumor spread), computer networks, and is 10 times better than other algorithms,

Tong et al. (2012) makes a point expressing that deleting set of nodes to contain information

diffusion might not be appropriate in all the cases. For instance, in social network, legitimate

Facebook or Twitter accounts cannot be deleted to stop the rumor. Instead edge between

nodes can be removed, meaning people can be unfriended if need arises. Now the problem boils
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down to finding the best k set of edges to be removed such that rumor propagation can be

stopped. Kimura et al. (2008) also followed the theory of edge removal to address the problem

of minimizing the undesirable (computer worm, rumor) information propagation. They also

made a point about node vs edge removal techniques stating that Blocking links between nodes

that have high out degree is not always effective like in case with removal of nodes.

Briesemeister et al. (2003) developed a framework to study the defensibility of computer

network against malicious code/worms propagating by itself. This work has analyzed different

aspects such as; the strategies that worms and viruses employ to spread infection in network

(e.g., CodeRed propagated by identifying targets using random scanning), critical functionality

of network etc., to devise a defense strategy. To simulate the control against attack, node level

blocking of message exchanges between alerted applications was employed. Their insight after

the study was that few scale free networks are inherently defensive. (Cohen et al. (2003)) deals

with similar kind of objective but the immunization strategy is based on chosing small portion

of random entities to be vaccinated. Tong et al. (2012) used eigenvalue to decide on which k

edges must be removed. The smaller the eigenvalue, the better set of k edges to be removed to

contain the spread of rumor or virus propagation in computer networks.

Kimura et al. (2008) modeled the network as an Independent cascade model, hence the

diffusion happens according to edge probabilities. In most of existing works, networks are

modeled as Independent cascade model. To give a quick idea about independent cascade

model (IC model): The diffusion in IC model takes place in discrete time steps. Every state

of the node can either be active or inactive and every edge is given a probability between 0

and 1. Every active node gets one chance to activate the neighbor node and succeeds with

probability p associated between the active node and the neighbor node. If a node at time t+1

have multiple active neighbors at time t, then every node is given a chance in arbitrary order.

This process terminates when there is no new node activated.

Kimura et al. (2008) formulated the problem formally as minimization problem: Given an

integer k, find a subset D′ such that |D′|=k and c(G(D′)) ≤ c(G(D)) for any D ⊂ E with D=|k|.

G(D) is the graph obtained by removing the set of edges in D, c(G) is called contamination

degree (average of influence degrees of all nodes in G).
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c(G) = 1
|V |

∑
v∈V σ(v,G)

where σ(v,G) is expected number of activated nodes towards the end on IC model of G, also

called influence degree of node v. Now finding the set of k edges to minimize c(G(D)) will

lead to combinatorial explosion, hence approximation is used. The authors used an estimation

method which is similar to bond percolation method to find the k best set of edges to be

removed in the graph G.

Dybiec et al. (2004) conducted experiments on different topologies like small-world networks,

scale-free networks, one-dimensional lattice etc., while Briesemeister et al. (2003) observed

experiments on scale free networks and considered the network to be a SI model. Cohen et al.

(2003) also demonstrated that strategy works well with scale-free networks such as movie-actors

network, computer networks (email, World Wide Web, Internet) which have broad distribution

of connections over the network.

Marcelino and Kaiser (2009) is a case study emphasizing on edge removal approach is better

than blocking the nodes approach. Experiment was conducted on airline networks and results

were as follows: selected airline cancellation is better than shutting down airport in totality,

former took 81% longer to spread where there was 50% reduction in the latter case. Chen

et al. (2010) expressed that while there are many strategies involving modeling the optimization

problem as a game, few real world aspects are being missed such as node autonomy: on one hand

finding socially optimal strategies is challenging, on other hand socially optimal strategy may

not reflect individual entities decision of whether to get vaccinated/quarantined. Hence authors

believe that such factors must be given weight and proposed an polynomial approximation

algorithm of O(log n) which minimizes the total estimated cost (cost is associated with both

entity being vaccinated and entity being infected).

There has been large epidemics in last decade, to name a few, rhizomania, citrus canker

etc. Traditionally success of the control strategy is measure in terms of number of individuals

affected by the disease or by number of individuals saved regardless of the cost. This would

be prefect if the vaccination is cheap. But often in real-world scenarios, we should be able to

control the spread of epidemic at moderate cost using limited available resources. Dybiec et al.

(2004) aims to stop the spread of disease on networks at moderate cost using limited resources
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Figure 2.2: Example of Dybiec et al. (2004) Strategy

and local control strategies. By local strategies they mean that neighborhood centered around

infectious node is considered while applying local methods to stop the disease spread. The

basic assumption is that only limited knowledge of network is known which is only about the

local links. For instance, consider the Figure 2.2, which represents a two-dimensional regular

lattice networks where the infected node is in contact with four first order neighbors (immediate

neighbors is referred as first order neighbors, neighbors of first order is referred as second order

neighbors and so forth), eight second order neighbors and one shortcut edge. The disease

spreads locally within first order neighbors and shortcuts, therefore individuals located within

a fixed order z can be treated by control actions. But here the control strategy is efficient only

when there is small neighborhood. Sometimes the disease spreads at faster rate and considering

only the local neighborhood to control the spread might not work. Also this type of strategy is

topology dependent. Another drawback is that efficiency of controlling the spread is dependent

on choice of the radius (z).

Habiba et al. (2010) consider the problem of hindering the spread of rumors, misinformation,

virus etc., in social or epidemic networks. This work focuses on dynamic nature of the network.

For instance, questions like who has the information at current moment and which individuals

are likely to get information in the next moment should be addressed. The strategy to eliminate

the spread is based on number of graph properties (allocating weight to evolution of network

at every time step). Few of such properties are listed below.

1. Degree of a node: number of neighbors of a node

2. Density: percentage of edges in the network
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3. Dynamic Density: average density of network at each time step

4. Diameter: maximum length of the all the shortest paths

5. Temporal path: is a sequence of nodes v1,v2 . . . vn where (vi,vi+1) ∈ Et for some t. Also

for any i, j such that i+1 < j, and vi ∈ Vt and vj ∈ Vx then t < x. The length of the

temporal path is equal to number of time steps

6. Betweeness: of a node is equal to sum of fractions of all the shortest path between this

node and every other node in the network. This property depicts the position of particular

node in the network

7. Dynamic Betweeness: of a node is fraction of all shortest temporal paths passing through

this node. This property depicts the idea of capturing which individual has the informa-

tion at current moment and which individual will receive it next

8. clustering coefficient: of an individual is the fraction of neighbors who are neighbors

among themselves

9. Dynamic clustering coefficient: captures which entities are interacting among themselves

in previous step.

While these are some measures listed, authors used 17 such measures to rank different nodes and

selected top ranked nodes to vaccinate until the spread reduced to less than 10%. Experiments

were explored on networks such as email communication of Enron cooperation, co-citations

among scientists, co-location of individuals in a population, population of Grevy’s Zebras etc.

2.2 Multi-Agent Resource Allocation

Negotiation is appropriate whenever we encounter a situation with conflict among multiple

parties over any resource. Negotiation can be different types; competitive bargaining is where

multiple parties tend to be self-interested and the process is viewed as a competition (its win or

lose), positional bargaining is where parties tend to fix on a position and negotiate to reach an

agreement essentially by compromising. Integrative bargaining is where agents try to cooperate
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and reach a win-win agreement such that all the parties are satisfied (Kyaw et al. (2013b)).

multi-agent negotiation with shareable resources based framework is adopted in various fields

ranging from international crisis management, grid computing, manufacturing and scheduling,

network bandwidth allocation to space applications. Basic setting of the framework is as follows:

There are multiple agents willing to cooperate either to mutually benefit each other or for cause

of social welfare. Multiple agents are allocated resources based on negotiation protocol (can be

in one or multiple steps) to reach a mutually optimal agreement. Agents can be competitive or

cooperative and might have complete information or partial information about other agents.

Resources can be consumable or non-consumable.

Chevaleyre et al. (2006) analyzed various aspects relating to multi-agent resource alloca-

tion environment to determine a protocol to adapt, such as, what is the purpose of resource

allocation (social welfare, collision avoidance etc.)? What type of procedure is used to decide

on allocation of resources? What type of resources are being distributed among agents (con-

sumable or non-consumable, shared or cannot be shared, indivisible or divisible). Typically,

the allocation procedure can be interpreted as centralized or distributed. In both the cases a

single system is responsible for deciding on allocation of resources. The process of multi-agent

negotiation can be viewed as an auctioneer trying to finalize the bids from different contractors.

Authors defined the term multi-agent in distributed environment as computational burden of

finding an allocation is a responsibility shared among multiple agents. If the goal(final out-

come) is driven according to assessment of individual preferences, the allocation is computed

depending on preferences of several agents (rather than individual preference). The objectives

of such framework is either to find a feasible or optimal allocation of resources or both. For

instance, goal can be either to find a feasible allocation of tasks to production units such that

tasks are completed within the deadline or to find an optimal solution such that utility of every

agent is as high as possible, or to find an optimal solution from set of feasible solutions (less

distance, less conflicts) to avoid aircraft collisions.

The type of environment in multi-agent resource allocation framework can be divided into

two categories. In one environment, agents do not have any or has some knowledge about

other agents participating in the negotiation whereas in the second type of environment, agents
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have complete knowledge about other agents participating in the negotiation. It is easier to

negotiate in the latter case as agents have complete knowledge, coming up with mutually

beneficial agreements is undemanding. In Competitive (also referred as self-interested agents)

environment, typically agents have complete knowledge about other agents, therefore studies

focus on game theoretical modeling of the environment. In our framework, we assume the

agents to be cooperative, hence we focus on protocols to allocate indivisible resources among

multiple agents where agents do not complete knowledge about each other. There are few basic

protocols such as:

1. Strict Alteration: In this protocol, every agent participating gets to pick one resource

in every turn and agents is allowed to choose alternatively (Brams and Taylor (2000)).

2. Balanced alteration: In this protocol, the basic assumption is that the agents who gets

to choose first have advantage over the other agent. So the second agent gets to choose

in both second and third turns and so on. For instance, agent1 gets turns 1,4,5,8 . . .

and agent2 gets turns 2,3,6,7 . . . to pick a resource. This protocol is devised to improve

fairness (Brams and Taylor (2000)+.

3. Contract-Net protocol: In this protocol, one of the agents takes the role of manager

and other agents act as contractors. For every task, manager advertises about the task

and let agents bid for the task. Agents evaluate the task, to see if the task can be fulfilled

with resources (time, hardware etc.,) and makes an offer accordingly. Depending on the

bids, manager selects the most appropriate bid and assigns the task to agent who won.

Manager monitors and reassigns the task if progress is not satisfactory (Davis and Smith

(1988)).

4. Exchange auctions: This protocol is extension of Contract-Net protocol. In this pro-

tocol, the initial resource allocation is assumed to be given. Then agents come up with

resources they are ready to exchange and other agents bid resources for exchange. The

goal of this protocol is to reach a better allocation of resources (Saha and Sen (2007)).



18

In most of the works of multi-agent systems, average welfare of agents representing the

society is taken as welfare of egalitarian society. Endriss et al. (2011) considers the multi-

agent system as society of software agents with an objective to increase overall social welfare of

such society. Initial assumption is that agents holds set of indivisible resources from total set

of resources to which utility is assigned by each agent. This study emphasizes on egalitarian

social welfare which brings the intuition of fairness (welfare is associated with welfare of weakest

member of the society). Whereas the protocol in Kyaw et al. (2013b) is based on utilities

(preferences) of individual agents. As Chevaleyre et al. (2006) discussed about the one of the

factors that plays a vital role in deciding negotiation protocol is to analyze the purpose of

resource allocation. Based on the requirements, protocols can be further classified. Approach

proposed by Kyaw et al. (2013b) was simulated on well-known international conflict called

Camp David that happened between Egypt and Israel and lasted for 13 days. United States

acted as a mediator and initiated the negotiation process. Final agreement was reached after

6 rounds of negotiation on four different issues.

Saha and Sen (2007) proposed a three phase protocol to identify efficient allocation of

resources. A bilateral environment is accustomed, meaning two agents would negotiate over

resources (can also be extended to multilateral environment). To execute the first phase,

they borrowed ’strict alteration’ protocol fromBrams and Taylor (2000) and the outcome of

the first phase would be the initial allocation of resources to agents. If no mutually optimal

allocation can be reached (if no improvement mutually), then initial allocation would be the

final allocation. Second phase involves generating a negotiation tree by agents participating.

In this case, there are two agents, therefore the tree constructed is a binary tree. Maximum

depth of the tree will be equivalent to number of resources in the negotiation process. Root

node is denoted by zero, agent1 can create right child node and agent2 can create left child

node. If no node can be created, then the process is terminated and initial allocation will be

the final allocation. At any level, if one of the agents has utility less than its initial allocation

utility, then further branches are not explored and the node is blacked out. Left child at level l

will represent that resource l will be allocated to agent1 and similarly right child will indicate

that resource will be allocated to agent2. When the tree is constructed, paths from root to
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Figure 2.3: Scenario of agent’s utility values for different allocation from Endriss et al. (2011)

each child node represent the allocation of a set of resources which would be the input to third

phase. In third phase, an arbitrary agent, say agent1, will pick an allocation from the set

obtained from second phase. Other agent removes all allocations such that utility of agent2 is

less than that of utility of allocation proposed by agent1. Now agent2 proposes an allocation

from the set and process is repeated until there is only one allocation in the set which would be

the final allocation or no changes can be made to the set further. If there are many allocations

after third phase, then one of the allocation is chosen randomly.

Authors conclude that the final outcome will be optimal allocation (there will be no outcome

such that one of the agent’s utility is greater than the one in final outcome). Few cons of this

approach is that it takes longer time when resources are more than 100. Authors say that a

solution is generated quickly when there are around 20 resources which is the case in most

real-world scenarios.

This approach proposed by (Endriss et al. (2011)) is scalable to distributed environment.

Allocation A is nothing but distribution of resources to set of agents. The utilitarian social

welfare is defined as the sum of all utilities of agents in the process.

Swu(A) =
∑

i∈A ui(A)

Egalitarian utility function is defined as follows:

Swe(A) = min{ ui | i ∈ A}

Allocations here are considered to be an ordered vector referred to as maxmin-ordering and

allocation A′ is preferred over A if Swe(A) < Swe(A
′). To create an ordering, concept of

leximin-ordering is used. Let’s consider an example in Figure 2.3. There are two resources to

be distributed among three agents. Definitely there are allocations better than not allocating

any of the resources to any of the agents. Allocating both the resources to agent2 has utility
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value 17. But the objective is to increase egalitarian social welfare, therefore this allocation

would be ruled out. For instance, (0,0,17) < (0,2,5) where, in the latter allocation agent1 gets

r1 and agent2 gets r2. (0,2,5) will not be the optimal allocation because assigning r2 to agent1

and r1 to agent2 will generate an ordered vector (0,3,4) which is better in terms of swe value

and is the final allocation.

In Kyaw et al. (2013b), the negotiation process is monitored by a mediator agreed upon by

all the players. Mediator holds only partial information about all the players. Players present

their preferences in form of CP-nets (directed graph annotated with qualitative conditional

preference statements) to the mediator. Mediator then generates induced preference graphs

(ordering of different allocation in form of a directed graph) for every player. Players have

their own UCP-nets (utility values for CP-net). Mediator proposes a jointly optimal allocation

depending on every player’s UCP-net, players accept or reject it based on the values in their

UCP-nets. Once the players provide their maximum preferred string, mediator tries to search

for acceptable string for every player based on induced preference graphs. The negotiation

process continues until a certain level in induced preference graphs is reached, which is when

mediator declare that there is no possible jointly optimal solution.

We have seen above the examples of multi-agent resource allocation framework utilization

in International Crisis Management and Egalitarian Social Welfare. Now we shall describe the

framework’s application in field of industrial engineering and collision avoidance. One of the

domain where multi-agent negotiation is widely used is collision avoidance. One such example

is unmanned aircraft routing protocols. To avoid collisions and find alternate routes, to know

how much distance must be maintained, aircrafts need some kind of third party protocol which

negotiates with every other aircraft in the system to reach an outcome. Šǐslák et al. (2008)

proposed an algorithm to handle airplane collisions (whenever there is a conflict). In this

algorithm, assumption is that every agent (aircraft) can interact with those agents which are

in certain range. In the case of conflict, all alternative routes are listed. If at all agents fail to

find alternative routes, few parameters will be changed such as altitude, moving to left/right,

speed, until an alternative route is found.
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When current conflict is resolved, a check with other aircrafts is made to see if there are

any other conflicts in the system. If yes then protocol is repeated for the first conflict in the

list (first to occur w.r.t. time) of conflicts.

A similar problem was considered by Agogino and Tumer (2008), they adapted multi-agent

negotiation system to solve the conflicts in airplane routing. In this work, they assume that

entire airspace is divided into regions and further into sectors. Agents in this context are the

ground location of the divided regions where agents own their respective sectors (responsible for

the planes going through that sector). Every airplane has a flight plan which is essentially the

a sequence of ground locations. Agent can change the flight plan in case of conflicts either by

increasing the parameter holding the minimum distance maintained between different planes

or by increasing the time on the ground (airports) or by changing the plane’s path. Every

agent in the conflict propose a set of solutions for the list of conflicts, best one is chosen using

a learning algorithm.

Another application is in the domain of industrial applications where robots operate to

complete assigned tasks avoiding collisions. Every agent is assumed to hold certain reserved

area (can be negotiated) which is assigned using a protocol. Whenever a conflict occurs i.e.

two agent’s (robots) path to reach the destination collides, they communicate with each other

and decide on who should change their paths based on the priorities. Change in path might

involve changing the allocated reserved area or one of the agents might stop until other agent

passes the reserved area. To avoid the possibility of indefinite delay, alternatives are detailed

in Purwin et al. (2008).

To summarize about multi-agent resource allocation; Agents can be either cooperative or

competitive. We have focused on existing work that have considered cooperative agents nego-

tiating over resources. Agents can be in any form depending on the type of the problem. In

Agogino and Tumer (2008), we can consider different airplanes as agents and resource being the

flight plan which is a shareable and non-consumable resource. Agents negotiate over the flight

plan if there exists a conflict. Mediator is the ground area where the conflict occurs and carries

out and controls the negotiation. Similarly in Purwin et al. (2008), agents are nothing but set

of robots and resources being the reserved area which is also shareable and non-consumable
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and also divisible. In this work, there is no external mediator, instead agents communicate

with each other to negotiate. Work of Endriss et al. (2011) considers agents with utility values.

The set of rules deciding which allocation is better can be seen as the negotiation protocol

executed by the mediator. Agents do not know other agent’s utility values i.e. agents do not

know about other agents in the system.

In our work, we have accustomed similar framework where, objective is to control informa-

tion diffusion in multiple regions, resources are the vaccines (can be any of antivrus, firefighter

etc.,) that is to be distributed among multiple agents, overseeing their respective neighborhoods.

A mediator controls the negotiation process and allocates resources based on information pro-

vided by agents (can be considered as utility values). Agents do not have any information

about other agents. We present our work in detail in the next chapter.
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CHAPTER 3. A FRAMEWORK FOR RESOURCE ALLOCATION

BASED ON NEGOTIATION

In this chapter, we describe our framework to distribute resources among multiple co-

operative agents to control information diffusion. We utilize the concept of multiple agents

negotiating over share-able resources to align with our objective to control information diffu-

sion. We focus on the iterative negotiation protocol, executed by a central controller (referred

to as mediator) to allocate resources. we assume that the network of entities modeled as a

directed graph is given along with the nature of the spread through the entities. We also as-

sume that agents are cooperative rather than competitive. Mediator has access to only partial

information about agents. We aim to allocate resources using our framework leveraging the

partial information provided by agents such that all the agents are satisfied. By end of the

negotiation phase, if any one or more agents are not satisfied with given resources, we use the

output of negotiation protocol as starting point for brute force method to find a strategy to

allocate resources. We start by explaining high level architecture of our framework.

Figure 3.1 illustrates a block diagram of our framework. The input to our framework is

multiple agents which essentially are graphs Graph 1, Graph 2, . . . Graph n that has infec-

tion spreading and requires resources to mitigate information diffusion. Mediator consists of

Competition module and Resource Allocation module. Once the resources are allocated to

agents by the resource allocation module, agents simulate, and accordingly provide results and

input to mediator if necessary. In this thesis, we have considered that agents simulate with

an objective to control the spread within a threshold value equal to one forth of the size of

its neighborhood i.e. with the given vaccines, number of infected nodes should not reach the

given threshold value. Instead of mediator trying to distribute the given resources and find

whether every agent can be satisfied, just providing the minimum number of resources needed
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Figure 3.1: High Level Architecture

by every agent to the mediator will lead us to the optimal number of resources required but for

every agent, to find the minimum number of resources requires many simulations and causes

run-time overhead.

1. Competition Module: In this phase, agents provide partial information about their

neighborhood, based on which, competition is held for various categories. Mediator keeps

track of wins, losses and draws of every single agent. Typically, these wins, losses and

draws depict the critical nature of the agents.

2. Resource Allocation Module: In this phase, allocation of resources is determined by

the mediator based on result of competitions and the negotiation protocol.

3. Agent Simulation Module: Once resources are allocated in the previous phase, agents

simulate to check whether the allocation will suffice their respective needs. For instance, if

one of the agents Ai has 100 nodes in the neighborhood, and is allocated with x vaccines,

agent place the given vaccines using a randomized algorithm with an objective to control

the diffusion with a threshold equal to half of size of its neighborhood that is 50.
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Figure 3.2: Flow of the proposed framework. Here W1, W2, . . . Wn holds the number of

competitions every agent won, and A1, A2, . . . An, are the agents with resources allocated and

R1, R2, . . . Rn represents the results returned by respective agents

High Level Flow of the Proposed Framework:

• Agents provide information to the mediator based on which mediator will initially allocates

resources

• Agents run their simulations with given resources and provide the result to mediator

• Mediator executes the negotiation protocol to reassign the resources among agents and step

2 is repeated.

If every agent is successful (we make use of terminology success or failure to convey whether

agent is satisfied or not satisfied respectively) then that particular distribution of resources is

our desired output. Else agents provide information based on their most recent simulations to

the mediator and the negotiation protocol is repeated by mediator using the new information

provided (Figure 3.2 ). In few cases, this entire process might repeat forever until interrupted.

We shall provide steps to determine oscillation and thus prevent it.

3.1 Mediator

In the framework, agents provide information that characterize the properties of their re-

spective neighborhoods using these below three factors.
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1. Degree of Danger (DD): This factor depicts the danger degree in case the infection

spreads above the threshold. For instance, in computer worm propagation problem, let

one of the agents represent the network connected to confidential servers while the other

agent represents the network connected to public servers. In this case, DD helps depict

the critical nature of agents where DD will be higher for former network and relatively

less for the latter.

2. Degree of Influence (DI): This factor provides the maximum influence an entity has

in the entire neighborhood. For example, in fire fighter’s problem, if one of the agent

have DI as 1000 and another agent have DI as 10. We might want to give preference to

that entity which have 1000 nodes if there are insufficient fire fighters to distribute.

3. Number of Critical Nodes (CN): This gives us the number of critical nodes in the

agent neighborhood. There can be various definitions of the term critical node. We have

considered that the median of all the DI of agents and measured the number of critical

nodes by comparing it to the median. This factor helps the mediator know little about

the structure of the agents in the negotiation process.

Note that, in our framework, agents do not have access to information about other agents. Me-

diator have access to whatever little information an agent provides. For example, in computer

worm propagation problem, one of the agent is the network connected to confidential servers.

But agent might want to keep this information in private, instead informs mediator that it is

critical to protect its neighborhood through Degree of Danger factor. When agent calculates

the number of critical nodes, mediator provides the agents with value of median as mediator

has information about degree of influence of every agent. In this way agents only know that

there is some kind of bound set for measuring critical nodes but do not know individual agent’s

degree of influence information.

3.1.1 Competitions

For each of aspect provided by the agent, a competition will be held between every pair of

agents by the mediator. Mediator keeps track of number of wins and draws for every agent. To
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Table 3.1: Agent Information at Round 1

Agents DD DI CN

A1 200 90 2

A2 400 100 5

A3 350 150 5

A4 120 60 0

A5 300 90 3

better understand our methodology, let’s consider an example. Suppose there are five agents

A1, A2, A3, A4, A5 and Table 3.1 holds the initial DD, DI and CN information of respective

agents.

CN is calculated as follows; Median of 60, 90, 90, 100, 150 is 90, Hence CN is the number

of nodes whose degree (number of connections) is greater than 90. For every individual aspect,

number of competitions held is 5C2 = 10 which basically is the number of unique pairs possible

for five agents i.e. competition will be held between (A1, A2) (A1, A3) (A1, A4) (A1, A5) (A2,

A3) (A2, A4) (A2, A5) (A3, A4) (A3, A5) (A4, A5). There are three factors in total, therefore

total number of competitions is 30. A2 has greater DD than A1, A3, A4, and A5, greater DI

than A1, A3, and A5, greater CN than A1, A4, and A5. Therefore, number of wins for A2 is

10. Similarly, number of wins for every agent is calculated:

A1: 3 A2: 10 A3: 10 A4: 0 A5: 5

Observe that competition (A1, A5) is a draw for aspect DI and (A2, A3) is a draw for aspect

CN.

Number of draws = 2

3.1.2 Resource Allocation by Negotiation

We now describe our negotiation protocol for allocating resources. To start with the initial

allocation, few vaccines will be distributed equally (say x) and remaining vaccines (say y) will

be distributed according to the results of competition.
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Result vector of agents, that stores the agent’s results is maintained by mediator and is

initiated to [failure failure failure failure failure].

Number of vaccines to distribute equally = total vaccines × factor

Initially factor is set to 1
2 . Let the total number of vaccines be 300. In this example, half of

total vaccines, which is equal to 150, will be distributed equally among all the agents and the

remaining 150 vaccines will be allocated according to the results of the competition.

Round 1:

Step1: According to the results of the competition, an agent Ai will get:

Ai = number of wins of Ai

total competitions × y vaccines

Hence allocation is as follows after step 1:

A1 will be allocated 3
30 × 150 = 15 vaccines

A2 will be allocated 10
30 × 150 = 50 vaccines

A3 will be allocated 10
30 × 150 = 50 vaccines

A4 will be allocated 0
30 × 150 = 0 vaccines

A5 will be allocated 5
30 × 150 = 25 vaccines

Step2: There are 2 draws out of 30 competitions, this portion of vaccines will be added to

number of vaccines to be equally distributed.

Number of vaccines to be equally distributed = x + number of draws
total competitions × y vaccines

Number of vaccines to be equally distributed= 150 + 2
30 × 150 = 150 + 10 = 160

There are five agents, as a result every agent will be allocated with 160
5 = 32 vaccines along

with the allocation in previous step. Resource allocation after round 1 is given in Table 3.2.

Now, agents will simulate with given resources and provides the results which can be one of

success or failure, to the mediator. Previous Result vector can change in one of the following

possibilities:

1. Count of success in the result vector can increase

2. Count of success in the result vector can decrease

3. Count of success in the result vector can remain the same
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Table 3.2: Resource Allocation after Round 1

Agents Step 1 Step 2 Allocation

A1 15 32 47

A2 50 32 82

A3 50 32 82

A4 0 32 32

A5 25 32 57

Depending on one of the three outcomes, mediator will negotiate according to negotiation

algorithm:

1. If count of success decreases or remains the same then factor = factor
2

2. for agent’s who returned success, consider their wins as draws in the next round

Round 2:

In our example, let’s say the result vector after round 1 is [success failure success success

failure] i.e. with the allocation in first round, A2 and A5 were not satisfied (failed to control

infection spread) and A1, A3, A4 were satisfied. Count of success in result vector have increased

and therefore, wins of agents A1, A3, A4 will be considered as draws in the next round of

competitions. Agents will again send their DI and CN (Table 3.3), calculated based on the

nodes visited during the simulation phase, to the mediator. DD of agents will remain the same

throughout the process. For example, let’s say agent A3 has vaccinated nodes n6, n9, n46, n68,

in round 1. A3 will set DI value as the highest number of connections a node has, in the set

{n6, n9, n46, n68} holds. Number of wins for agents is:

A1: 6 A2: 11 A3: 3 A4: 1 A5: 8

Step1: Allocation according to competition results

A2 will be allocated 11
30 × 150 = 55 vaccines

A5 will be allocated 8
30 × 150 = 40 vaccines

Number of draws = 1 + A1 wins + A3 wins + A4 wins

Number of draws = 1 + 6 + 3 + 1 = 11
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Table 3.3: Agent Information at Round 2

Agents DD DI CN

A1 200 90 2

A2 400 100 5

A3 350 50 0

A4 120 60 0

A5 300 80 8

Table 3.4: Resource Allocation after Round 2

Agents Step 1 Step 2 Allocation

A1 0 41 41

A2 55 41 96

A3 0 41 41

A4 0 41 41

A5 40 41 81

Step2: Number of vaccines to equally distribute = 150 + 11
30 × 150 = 150 + 55 = 205

Resource allocation after round 2 is given in Table 3.4.

Round 3:

Let’s say the result vector after round 2 is [failure failure success success success]. Count of

success in result vector is the same, therefore, factor is reduced by 1/2 and wins of agents A3,

A4, A5 will be considered as draws in the next round of competitions. Agents will provide their

DI and CN once again (Table 3.5).

Number of vaccines to equally distribute = total vaccines × factor

Number of vaccines to equally distribute, x = 300
4 = 75

Remaining vaccines y = 300 − 75 = 225

Number of wins for agents is:

A1: 5 A2: 9 A3: 11 A4: 0 A5: 3

Step1: Allocation according to competition results

A1 will be allocated 5/30 * 225 = 37 vaccines
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Table 3.5: Agent Information at Round 3

Agents DD DI CN

A1 200 90 2

A2 400 100 2

A3 350 150 3

A4 120 60 0

A5 300 80 0

Table 3.6: Resource Allocation after Round 3

Agents Step 1 Step 2 Allocation

A1 37 39 76

A2 67 39 106

A3 0 39 39

A4 0 39 39

A5 0 39 39

A2 will be allocated 9/30 * 225 = 67 vaccines

Number of draws = 2 + A3 wins + A4 wins + A5 wins

Number of draws = 2 + 11 + 0 + 3 = 16

Step2: Number of vaccines to equally distribute = 75 + 16
30 × 225 = 195

Resource allocation after round 3 is given in Table 3.6.

This process is terminated when one of the following condition is met

1. when all the agents are satisfied, in other words count of success in result vector is equal

to number of agents, which is our desired solution.

2. when count of success in the result vector is same as previous step and if same set of

agents returned success and the number of vaccines to be distributed equally is the same

as previous step, then its likely to oscillate, hence terminate. For example, in the above

problem considered, if the result of allocation is [success failure success success failure],

wins of A1, A3, A4 will be considered as draws and if the number of vaccines to distribute

equally is 205, then its likely to oscillate.
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If the negotiation phase terminates because of the second condition, then a brute force method

is accompanied. We execute a binary search between every pair of agents which returned

success and failure. The idea behind using pair-wise binary search is that few agents which

returned success might hold vaccines more than required to control the spread, hence such

extra vaccines can be used in other neighborhoods. As we have considered the environment to

be cooperative, these agents lend to agents which needs more vaccines to meet the objective.

If the outcome of this method is negative, then we output that there exists no solution i.e.

there is no resource allocation such that all the agents can be satisfied. Otherwise the outcome

of this method will be our final allocation. We evaluated our framework against brute force

method and results are presented in the next chapter.

3.2 Agent Simulation

To validate our framework, we have accompanied randomization based approach to simulate

agents which we shall detail in this section. We have considered the network to be a SIR

model. Initially the state of all entities is susceptible except for those given initial infected

nodes. When vaccines are allocated to agents, every agent tries to place the vaccines in its

neighborhood such that spread of infection controlled. To model the fact that not all vaccines

allocated are available at the moment, we assume that along with assignment of vaccines, value

of per-step-vaccine parameter is also given which essentially tells us the number of vaccines that

can be used at every time step out of total assigned vaccines. The value of per-step-vaccine

should be atleast 1. Once vaccinated, an entity cannot be infected again. Here we consider the

time to be discrete. Hence, at every time step, infection spreads to all the immediate neighbors

except for the nodes which are vaccinated from those nodes which are infected in previous time

step.

Each agent simulates using the Algorithm 1 which is continued until all the vaccines are

used or until all the nodes are either vaccinated or infected. If the agent succeeds in controlling

the information diffusion before number of infected nodes reaches the threshold value, then

agent keeps track of this vaccination strategy (which nodes are vaccinated and which nodes are

infected in particular simulation) and returns success. Otherwise i.e. if the threshold is reached,
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Algorithm 1 Algorithm for Agent Simulation

1: procedure Agent Simulation

2: count← 0

3: for i 1 to numberofvaccines do

4: for each node v in the neighborhood do

5: generate a random number between 1 and 10000

6: if random number > 5000 then

7: vaccinate node v

8: count + +

9: end if

10: if count == perStepVaccine then

11: count← 0

12: end if

13: end for

14: end for

15: end procedure

agent returns failure. Agents remembers the history particularly about the allocation to which it

returned success. Once vaccines are allocated, agents check whether current allocated vaccines

is equal or greater than the one seen previously, if yes then agents retrieves the vaccination

strategy from the history as current vaccination strategy and returns success.

In this way, a solution, such that every agent is satisfied with allocated vaccines is arrived,

if one exists or the framework outputs that there exists no satisfiable solution. A comparison

between proposed method and brute force method to distribute vaccines is presented in the

next chapter. In brute force method, available vaccines are distributed equally at initial step

and a pair-wise binary search is performed between satisfied and not satisfied agents until a

solution is found.
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CHAPTER 4. EXPERIMENTAL EVALUATION

4.1 Experimental setup

In our framework, each region is represented by a network of entities. For the purpose of

experimental evaluation, we have developed a simple simulation based technique and assumed

one infection/region to replicate how an agent will evaluate the effectiveness of allotted vac-

cines. We have conducted experiments widely on web-graph of Google where nodes represent

webpages and edges represent the hyperlink borrowed from Leskovec and Krevl (2014). Input

to our framework is the network, number of infections which typically is the number of agents,

size of the agents that decides how big agent’s neighborhood should be generated, number of

vaccines in total, number of vaccines per time step and number of simulations for agents to

run. Figure 4.1 outlines how we have generated multiple agents from given input network. We

consider that there is no intersection of nodes in the neighborhood of the agents. Size of N

agents is given as input. It is assumed that the objective is to control the infection spread

within the threshold where threshold is defined as one fourth of the size of the agents i.e. the

number of infected nodes should not reach the threshold given the number of time steps. To

evaluate the performance of our framework, we have conducted experiments using two different

methods and compared the time taken to find a resource allocation. The first method is the

Negotiation-based resource allocation and the second method is brute-force method. In brute-

force method, given vaccines are equally distributed among all the agents in the first round.

Then a pair wise binary search is accompanied between the agents satisfied and unsatisfied.
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Figure 4.1: Generating agents

4.2 Evaluation

To evaluate our framework for resource allocation, we compare the results obtained from

proposed method with results obtained from brute force method. Table 4.1 depicts the size of

agent’s neighborhood for different experiments which need vaccines to control infection spread.

Table 4.2 and Table 4.3 holds the information of experiments conducted which has the number

of agents, number of vaccines that is distributed among agents, solution (yes indicates that

there exists a satisfiable solution and no indicates there exists no satisfiable solution), number

of rounds in negotiation-based method (negotiation phase referred as neg and brute-force phase

referred as bin after neg) and brute-force method referred as bin, time taken to find a solution

(satisfiable or unsatisfiable) by negotiation-based method and brute-force method, and the

difference in time between both the methods(positive value indicates negotiation-based method

performed better and vice-versa).

4.2.1 Negotiation-based method will always find a satisfiable solution if one exists

Figure 4.2 and Figure 4.3 presents the distribution of different number vaccines among

same set of agents. In both the cases, the infection spread was successfully controlled. By

satisfiable solution we mean that, distribution of vaccines such that every agent is successful in
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Table 4.1: Size of Agents

EX-
PID

Size

exp1 377 37862 3 1 2848 12393 6418 2 16422 32544 356636 310972 410414 449878 591562
exp2 239 6409 28112 5 16036 2962 12 15596 30773 4 98031 501633 403062 2 1 3 1
exp3-
exp8

25562 1 1368 34874 998 7044 14431 26473 81371 235299 13279 508849 481899 1 583778 1 1 592945 4 1
600157 599967 1 600423 600447

exp9-
exp22

8453 11460 3 40457 2 8834 111418 34016 97065 46101 40711 1 1 571187 6 570292 598721 1 597036 600115
600276 600407 600217 600420 600478

exp23-
35

25562 1368 34874 998 7044 14431 26473 30687 102028 4127 428578 375936 538568 454523 4 587262 580846
596435 598918 599990 600156 600248 600413 600374 600445 600461

exp36-
42

10717 13478 2780 782 9770 28023 3 15 68000 23797 19507 438681 310993 550951 568398 591178 537787
574622 599114 599556 599320 1 600295 600240 600429 600476

exp43-
45

23165 2126 18795 1051 6125 18752 48145 27630 40592 259768 327327 501192 1 525179 588495 593931
592945 596360 599764 1 600262 1 599969 2 600422 600455 600469 600467 600481 1

exp46 15876 1 2266 32264 1 7612 20445 14 39677 52438 127581 22 356945 569244 1 574113 589211 22 2 2 1 600343
599821 600367 1 600453 600474 600459 600487 600483 600487 1 600493 1 600494

Table 4.2: Experimental Results
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exp1 15 1500 yes 8 4 28 204 643 7.3
exp2 17 700 yes 8 76 113 1748 2323 9.5
exp3 20 800 yes 10 46 73 1843 2093 4
exp4 25 500 no 8 52 80 970 1186 3.6
exp5 25 650 no 7 87 107 1461 1416 -0.78
exp6 25 900 no 8 108 130 2333 2340 0.12
exp7 25 850 yes 7 67 122 1597 1882 4.7
exp8 25 950 yes 5 53 106 834 2063 8.3
exp9 26 400 yes 5 97 106 1090 1202 1.86
exp10 26 450 yes 5 95 119 1199 1085 -1.9
exp11 26 500 no 7 98 116 1253 945 -5.12
exp12 26 575 no 4 101 122 1301 1336 0.5
exp13 26 600 no 6 107 110 870 1157 4.7
exp14 26 625 no 4 99 130 859 1396 8.9
exp15 26 650 no 7 112 140 1302 1517 3.5
exp16 26 675 no 4 103 143 1075 1573 8.3
exp17 26 700 no 5 110 125 1027 1409 6.4
exp18 26 725 no 4 105 126 960 1380 7
exp19 26 750 yes 7 101 126 981 1696 11.9
exp20 26 800 yes 5 119 113 2194 2879 11.4
exp21 26 850 no 6 117 150 1623 1792 2.8
exp22 26 900 yes 8 100 124 2640 2680 0.6
exp23 26 1025 no 8 84 111 1930 2006 1.2
exp24 26 1050 no 9 97 110 2578 2349 -3.8
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Table 4.3: Experimental Results
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exp25 26 1075 no 11 90 107 2015 2050 0.58
exp26 26 1100 no 11 82 112 2143 2616 7.8
exp27 26 1125 no 8 82 131 2535 3380 14
exp28 26 1150 no 10 79 118 2030 2574 9
exp29 26 1300 no 9 82 127 2467 3603 18.9
exp30 26 1600 no 9 98 130 2452 2779 5.4
exp31 26 2000 no 9 96 143 2272 3067 13.2
exp32 26 2500 no 10 110 146 2037 3377 22.3
exp33 26 2850 no 11 109 154 2812 3779 16.1
exp34 26 3100 no 11 117 152 2283 3630 22
exp35 26 3800 yes 12 36 63 618 730 1.8
exp36 26 375 no 8 57 103 1689 2269 9.6
exp37 26 425 no 8 61 105 1900 2624 12
exp38 26 475 no 10 95 115 2046 2901 14.2
exp39 26 725 yes 7 66 90 1975 2260 4.7
exp40 26 775 yes 8 83 99 1942 2174 3.8
exp41 26 900 yes 11 60 69 1615 1751 2.2
exp42 26 950 yes 6 65 81 1683 1838 2.5
exp43 30 1100 no 6 120 154 3944 4443 8.3
exp44 30 1200 no 6 132 173 3895 4513 10.2
exp45 30 1350 no 12 101 113 3802 3864 1
exp46 35 1100 yes 5 110 176 5673 6518 14
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Figure 4.2: exp8: Distribution Of Vaccines. All agents are satisfied.

controlling the infection spread is found and unsatisfiable solution is when there is atleast one

agent not successful in controlling infection spread with the allocation. The blue bar represents

the distribution of vaccines after the negotiation round. If a satisfiable solution is not found,

then brute-force method is used where agents holding extra vaccines than required to control

diffusion lends to agents which unsatisfied with assignment. The orange bar represents the

distribution of vaccines after negotiation round and brute-force(second round in negotiation-

based method) method. The gray bar indicates the distribution of vaccines from brute-force

method. Figure 4.4 depicts the distribution of vaccines on different set of agents where Infection

spread is controlled. We have observed that a solution such that every agent can control the

infection spread is found, if there exists one.

4.2.2 Negotiation-based method will always satisfy as many agents as the brute-

force method will satisfy

Figure 4.5 and Figure 4.6 and Figure 4.7 shows the distribution of vaccines when there is

no satisfiable solution is found. In both Figure 4.5 and Figure 4.6, Negotiation based method
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Figure 4.3: exp7: Distribution Of Vaccines. All agents are satisfied.

Figure 4.4: exp19: Distribution Of Vaccines. All agents are satisfied.
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Figure 4.5: exp6: Distribution Of Vaccines. Agent 17 not satisfied and agents 10,17 not satisfied

in Negotiation-based and Brute-force methods respectively.

satisfies atleast as many agents as brute-force method. But in Figure 4.7, we observe that brute-

force method has larger number of agents satisfied. This observation is due to discrepancy in

the responses from agents between experiments.

4.2.3 Negotiation-based method will converge to a solution (satisfiable or unsat-

isfiable) faster than brute-force method

Figure 4.8, Figure 4.9, Figure 4.10 depicts the difference of time taken by Negotiation-based

method and Brute-force method over three different set of agents. Let’s consider Figure 4.8,

where experiment was conducted with 26 agents with different number of vaccines. In this

experiment there exists a satisfiable solution with 750 vaccines. We observed that Negotiation-

based method converges to a solution faster. When the difference is positive, it means that

Negotiation-based method performed better than brute-force method and vice versa. There

are discrepancies due to difference in the responses from agents between experiments. We have

observed that Negotiation-based method will converge to a solution faster when the number

of vaccines is near to the optimal vaccines (optimal solution is the number of vaccines not too
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Figure 4.6: exp5: Distribution Of Vaccines. Agents 5,10,12 not satisfied and agents 9,10,12,17

not satisfied in Negotiation-based and Brute-force methods respectively.

Figure 4.7: exp28: Distribution Of Vaccines. Agents 8,10,11,16,17,18,21 not satisfied and

agents 10,17,18,20 not satisfied in Negotiation-based and Brute-force methods respectively.
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;

Figure 4.8: exp9-exp22: Time-difference between Negotiation-strategy and Brute-force strategy

Figure 4.9: exp23-exp35: Time-difference between Negotiation-strategy and Brute-force strat-

egy

less or not too more than required to satisfy all the participating agents).
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Figure 4.10: exp36-exp42: Time-difference between Negotiation-strategy and Brute-force strat-

egy
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CHAPTER 5. CONCLUSION

5.1 Summary

Controlling information diffusion is an important area of research in multiple domains rang-

ing from epidemiology, opinion propagation, firefighters to intrusion detection in networks. Due

to the nature of the real-world problems, there can be multiple regions with requirement of

resources to control information diffusion and resources available to prevent such diffusion are

often limited. Hence we cannot establish control mechanisms a prior and it is important to de-

vise a strategy that distributes the resources by observing the behavior of multiple networks. In

this thesis, we tried to address the question; Given the resources available and multiple agents

overseeing their respective neighborhoods, can a central controller distribute the resources by

sequence of interactions with agents, such that every agent can be satisfied. We adapted a

multi-agent negotiation based resource allocation framework with an objective to carefully al-

locate the available resources and control the information propagation in every neighborhood.

We proposed an iterative negotiation protocol controlled by a central controller to allocate and

reallocate the resources to multiple agents based on the partial information provided by the

agents. Our framework is modular; it can be evaluated with different control strategies by

agents depending on the requirements. Also we can control how much and what information

an agent is willing to provide to the mediator. We have applied our technique to publicly

available networks in SNAP project (Leskovec and Krevl (2014) to evaluate our framework and

the results prove that our methodology is feasible in real-time. We have given few experimental

observations which essentially tells us when the framework works best in comparison to brute

force method.
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5.2 Future Work

1. Negotiating the threshold

There are different aspects that can be negotiated besides negotiating vaccines among

agents. In the proposed framework, agents are cooperative and willing to lend excess

resources held by agents to those agents in need. Therefore, mediator negotiates with the

agents and reassigns the resources to agents. As a possible direction to future work, we

would like to investigate on the question; If the resources cannot be allocated in a way

that can satisfy the needs of all the agents, can agents negotiate over the threshold value

and reach to an approximation of satisfiability? If yes, how can we negotiate; keeping the

threshold constant, negotiate with resources, and if there exists no solution, negotiate

with the threshold and repeat the process. To explain the idea of negotiating threshold,

here is an instance; In field of epidemiology, let’s consider the two agents to be regions

A and B. In case of insufficient resources, region A might handle high threshold values

because of the large number of available medical facilities. Relatively, people in region A

have better access to medical facilities. With an objective to control the spread in every

region, the threshold value for agent representing A can be increased and assigned fewer

vaccines (resources).

2. Vaccines per time step

We consider that only a fraction of total vaccines are available at one time step. Every

agent, once allocated with vaccines, uses fraction of assigned vaccines at every time step

and simulates to check if information propagation can be controlled. We would like to

consider analyzing an open problem; Not imposing any restriction on number of vaccines

that can used by an agent per time step, instead leaving the choice of deciding on usage

of given vaccines on the agent, can we devise a better strategy to allocate resources?

3. Non-cooperating agents

In proposed method, we considered the agents to be cooperative but we would like to

explore the strategy when there are set of non-cooperative agents. Let’s assume there are

k groups of n agents where agents within a group cooperate with each other but agents
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do not cooperate with other agents in outside groups. The question would be on how

to distribute the resources based on the information given by different groups. There

will be negotiation based on information provided by agents but the truthfulness of the

information cannot be validated as set of agents are non-cooperative. Also we can consider

priorities among agents or group of agents where some agents might be responsible for

high-risk regions than others so that groups with higher priority will have to be protected

at any cost.
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