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CHAPTER 1 INTRODUCTION 

1.1 Sampling 

StatisticaJ inference is concerned with drawing conclusions about a population based 

on data collected from a subset of the population. The techniques that are used to 

obtain the subset from which data are collected faJl under the general heading sampling. 

Sampling plays an integral part in modern life. Public policy is often swayed or altered 

based upon the opinions of the U. S. population. Samples are undertaken because a 

census of every element in the population is a costly and time-consuming endeavor. The 

information in the sample, a subset of the population, is then used to make decisions 

about the population. 

There are severEil classic texts on sampling; these include Kish (1965) and Cochran 

(1977). The remainder of this section is a brief review of key concepts of sampling. 

To describe simple random sampling, we consider selecting a sample of size n from a 

population of size N. Under simple r«indom sampling each subset of size n has the 

same probability of being selected. The resulting seimple is known as a simple rcindom 

sample (SRS). Simple random sampling is aiso known as random sampling without 

replacement (WOR), since once em element of the population is selected it is removed 

from further consideration. Random sampling with replacement (WR) is possible. In 

that case a single element is chosen from the population with all elements having equal 

probability of being selected. The information from that element is recorded and that 

element is returned to the list of possible elements for the next sample. This allows 
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for the possibility that «in element could appear in the sample more than once. As 

an example, consider an urn of balls of various colors where the color of the balls is 

the variable of interest. A SRS-WR is obtained by repeatedly selecting one ball out 

of the urn noting the color and returning the ball to the um. A SRS is obtained by 

obtained by selecting one ball out of the urn, noting the color and setting the ball aside 

before drawing another bedl from the urn. Sampling without replacement is a much 

more natural idea. Sampling with replacement leads to simpler formulae for computing 

variance estimates and consequently is occasionally used in more complex designs. We 

will use SRS to denote a sample obtained using a traditional simple random sample 

(without replacement). We use SRS-WR to denote a sample obtained by simple random 

sampling with replacement. 

There are many other sampling techniques besides simple random sampling that are 

used in practice for meiking inference. Examples include stratified random semipling, 

systematic sampling and cluster szimpling. This dissertation is concerned with cluster 

sampling. To obtain a cluster sample, one first divides the population into subsets, 

known as clusters. Then a simple random sample of clusters is obtained. A census of the 

elements in the chosen clusters is then CMried out. The advantage of this methodology is 

that is often saves time and money. This is especially true when the population covers a 

broad geographic region. It is then cheaper to take samples of congregated elements than 

it is to take a SRS. The following is an excimple of a cluster sample. Suppose that we axe 

interested in estimating the salaries of orchestra performers from the main orchestra's 

in each of the 50 Itirgest cities in the U. S. One method of cluster sampling would be to 

carry out a SRS-WOR of 10 of the 50 cities. The sample would then be composed of all 

the mjun orchestra performers in those 10 selected cities. The information collected from 

these individuals would then be used to make information about all orchestra performers 

in the 50 largest cities. 

In this thesis, we will focus on a particular type of cluster sampling, the multi-stage 
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cluster sample. The first-stage proceeds, as above, a SRS of clusters is selected from 

the population of clusters. Following that, at the second stage, a SRS of individuals (or 

perhaps subclusters) is selected from the population of individuals (or subclusters) in the 

cluster. In large complicated studies there c<in be several stages. Each level partitions 

the population into more manageable pieces. At the final stage, we obtain a SRS of 

the elements of interest from the most recent subclusters. As ein e.xample, suppose we 

take a cluster sample of individuals from the U.S. by treating the states as clusters and 

the counties within each state as subclusters. As the fined stage, we select a SRS of the 

individuals within the selected counties. Since there are three levels of sampling in this 

design— states, counties, and individuals — this is referred to as a three-stage cluster 

sajnple. Sarndal et al. (1992) refer to this methodology eis three-stage element sampling, 

since the finai stage involves the sampling of individuals in the population, instead of 

clusters. Again the reasons for using such a seimpling design are savings in time and 

money. All of the methods in this thesis axe developed for two-stage and three-stage 

cluster samples. 

Sampling is carried out on many different types of populations including people, 

cereal boxes, agricultural land or income tax returns. Typically, many different types of 

data are collected on the elements of a sample. These types include continuous variables, 

such as the percentages of clay in soil or daily household alcohol consumption; as well 

as discrete variables such cis a yes-no response for approval of a government initiative or 

a categorization of federal land based on its usage. The focus in this work will be on a 

particular type of categoricsd variable, the polychotomous response, sometimes known as 

the polytomous response. Here, we taJce polychotomous to mean divided into more than 

two groups or classes. A polychotomous variable has more thaji two possible responses 

and the order of those responses is irrelevant. An example of this would be the favorite 

professional soccer team of a respondent. The variable is clearly a category and there is 

no natural ordering to the possible responses. 
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1.2 Inference for Finite Populations 

Making inference about a finite population is the ultimate goal of nearly every sam­

pling exercise. Consequently a great deal of work has been done on inferential techniques 

samples from a finite population. These techniques tend to faJl into two categories. The 

first approach is known as design-based inference. This non-paxametric methodology 

uses weights (numbers eissigned to the selected elements to give certain elements more 

elements thaji others) and selection probabilities to estimate quantities of interest, such 

as population means, totals and proportions and their variances. Cochran (1977) and 

Kish (1965) aire two cleissic references describing design-based methods. The second 

category of ajialysis techniques is known as model-based inference. This methodology 

assumes a model for the population, often Ccdled a superpopulation model. The su-

perpopulation is an infinite population from which the finite population is assumed to 

have been sampled. The parameters of the model represent quantities of interest for 

the infinite population. The model parameters are estimated using the sampled data 

and the resulting estimates axe used for inference about the entire population (Thomsen 

and Tesfu (1988)). Both Bayesian and non-Bayesian analyses have been undertaken 

for model-based procedures, see Ericson (1988) and Royall and Cumberland (1978). In 

this dissertation, we will use a Bayesian model-based approach to analyze the data col­

lected from a multi-stage cluster survey. An excellent comparison of design-biised and 

model-bcised methods is given by Saxndal (1978). 

1.3 Missing Data 

Missing data is a common problem in statistical analyses of data. Sampling tech­

niques intentionally create missing data by not sampling all of the elements of the pop­

ulation. Since not all variables cire observed for each member of the population, the 

unobserved values can be thought of cis missing data. Naturedly, because these values are 
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missing by design they do not represent a serious problem. Design-based or model-based 

inferential techniques allow us to assess the uncertainty introduced by these intention­

ally missing data. What can be more problematic is that often data for members of the 

sample are not recorded. Individuals may refuse to respond to a particular question, or 

a sampled individual may decline to participate. Such "unintentional" missing data may 

mean that the observed data is no longer representative of the population from which it 

was selected. 

There are majiy possible circumstances that could lead to unrecorded data. Statisti­

cians have developed methods to hzmdle various types of unintentional missing data. In 

particular, Little and Rubin (1987) describe three categories for mechanisms that lead to 

unintentional missing data. The missing data mech<inism is missing completely at ran­

dom (MCAR) if the probability that a values is missing is independent of the observed 

as well as the unobserved responses. The missing data mechanism is called missing 

at random (MAR) if the probability that the response is missing does not depend on 

the unobserved value though it may depend on other observed covariates. Under fairly 

general conditions, MAR and MCAR mechanisms are ignorable, in the sense that valid 

inferences can be carried out using only observed responses. 

Missing data mechanisms for which the probability of a missing response depends 

on the vcilue that would have been observed are referred to cis non-ignorable. In the 

non-ignorable case, additional information, perhaps, in the form of modeling cissump-

tions, is needed to draw veilid inferences. In this thesis we show how information from 

unintentional missing observations can be incorporated into the data analyses assuming 

the missing data mechanism is ignorable. 
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1.4 Slovenian Public Opinion Survey 

The motivation for the methods developed in this thesis is the 1990 Slovenian Public 

Opinion Survey (SPO). The SPO is a three-stage cluster survey that is conducted every 

yeaj or every other year. It is a general opinion survey carried out to gauge public 

opinion on a variety of issues. In 1990 the people of Slovenia were prepaxing for a 

vote on independence from Yugoslavia. Included in the SPO, along with the usual 

demographic and attitudinal questions, that year were three questions concerning the 

upcoming plebiscite. 

1. Are you in favor of Slovenicin independence? 

2. .^re you in favor of Slovenia's secession from Yugoslavia? 

3. Will you attend the plebiscite? 

For the plebiscite on independence, the outcome would be determined not by the 

percentage of actual voters that voted for independence, but by the percentage of eligible 

voters that voted for independence. Thus not attending the plebiscite was implicitly a 

vote against independence from Yugoslavia. In this thesis we will focus on analyzing 

these three questions concerning independence. 

1.5 Thesis Outline 

In Chapter 2 we present a hierarchical model for analyzing polychotomous data from 

a two-stage cluster sample. We use a Bayesian approach to carrying out these analyses. 

The observed data in each cluster Jire modeled as coming from a multinomial model. 

Then the parameters of the multinomial model are modeled as a sample from a Dirichlet 

distribution. We develop methodologies for zinalyzing the data when the observations 

are fully observed and when some of the observations cire only partially observed (in a 
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sense that is made clear in Section 2.5). We extend that model to handle three-stage 

cluster samples in Chapter 3. In both of these chapters we use the proposed methods 

to analyze the 1990 Slovenian Public Opinion Survey. Chapter 3 also uses simulations 

to demonstrate that the hierarchical model can be used in a variety of scenarios. In 

Chapter 4 we turn our attention to making use of some of the other variables that 

were measured as pju't of the SPG to improve prediction. With complete data on the 

questions of interest, there is little reason to worry about other responses. However 

when there are unintentional missing data, the other variables can be used to improve 

inference about the missing responses. Finally, Chapter 5 provides conclusions and a 

discussion of future work. 
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CHAPTER 2 TWO-STAGE MODEL 

2.1 Introduction 

In this chapter we consider polychotomous data from a two-stage cluster sample. 

We use the Bayesian approach to aneilyze data under a hierarchical superpopulation 

model. Section 2.2 reviews the relevant literature on design-based and superpopulation 

inference for two-stage cluster samples. Section 2.3 introduces notation for two-stage 

survey data and specifies the hierarchical model. As the model includes an improper 

prior distribution for some parameters we also describe conditions required to obtain a 

proper posterior distribution. Section 2.4 reviews the Bayesian approach to inference 

and provides computational details for our approach to sampling from the posterior 

distribution. By design, sample surveys create intentionally missing data. Occasionally 

there are also unintentional missing values. Section 2.5 shows how unintentional missing 

data can be accommodated in the model. Finally, Section 2.6 applies the models of this 

chapter to the 1990 Slovenian Public Opinion Survey. 

2.2 Literature Review 

The traditional design-based approach to analyzing cluster samples is described, for 

example, by Cochran (1977) and Kish (1965). There sample proportions or sample 

means Me used to estimate population quantities and estimated standaurd errors are 

derived that account for the correlations within clusters. Specifically, the design effect 
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gives the ratio of the variance for the cluster sample of a given total size to that of a 

simple random sample (SRS) of the same size. Cochran gives results for both continuous 

and binary responses. Ghosh eind Meeden (1997) presented what could be considered a 

design-based Bayesicin approach. Their methodology is to use a non-pareimetric approach 

and a non-informative prior to making inference from a population. 

Several frequentist approaches have been outlined for analyzing polychotomous data 

from a cluster sample using a model-based approach. Brier (1980) analyzes data of 

this type using a Multinomial-Dirichlet model where survey responses in a cluster are 

assumed to have a multinomial distribution and the multinomial parameters for the clus­

ters are modeled as draws from a Dirichlet distribution. We consider a Bayesian analysis 

of the same model. Brier derives a method of moments estimator for the cluster effect 

using a log-linear model. Rao and Scott (1981) develop a methodology for estimating 

the effect of several complex sample designs, including cluster sampling, on statistics 

for testing hypotheses about a vector of proportions. Additionally they develop sev­

eral estimators for the design effect under a Dirichlet-Multinomial model. Wilson and 

Koehler, in a series of papers — Wilson (1984), Wilson (1986), Koehler and Wilson 

(1986) and Wilson (1987) — present techniques for estimating the design effect using 

a regression estimator, for compciring vectors of proportions taken from independent 

two-stage cluster samples, and for modeling multinomial data with extra variation via 

a Dirichlet-Multinomial. More recently, Morel and Nagaraj (1993) use a finite mixture 

of multinomial random variables to model polychotomous data that exhibit levels of 

variation that are higher them would be expected under the a multinomial model. Morel 

and Koehler (1995) model both underdispersion and overdispersion in categorical data ; 

they develop a "sajidwich" estimator of the variance-covariance matrix that corrects for 

extreme levels of variability. 

Hierarchical Bayesian models have been used to analyze data from cluster samples 

for some time. Scott and Smith (1969) describe a hierarchical Bayesian approach to 
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Gaussian data collected from a two-stage cluster sample. They treat the observations 

as coming from a superpopulation as we do here. Mcdec and Sedransk (1985) extend 

the methodology of Scott and Smith to multi-stage cluster sampling when the data 

is Gaussian. Nandram and Sedransk (1993b) develop a model for longitudinal surveys 

when the observed data is from a Gaussiein distribution or is transformable to a Gaussian 

distribution. Some recent work hats focused on developing models for analyzing data 

from non-Gaussian distributions. Nandram and Sedransk (1993a) develop a hierarchical 

Bayesiein model for binary data from a two-stage cluster sample. The model they used 

is a Beta-binomial model where the binary counts in a cluster a modeled as coming from 

a binomial distribution and the cluster probabilities are modeled as draws from a beta 

distribution. Stroud (1991) analyzed binary data from a survey sample using a Beta-

binomial model, while Stroud (1994) utilized a logit transformation to analyze the same 

data set. Another example of the use of a hierarchical analysis for binary data is Stasny 

(1991). In this article Stasny presented an empirical Bayes approach for analyzing binary 

data with a hierarchical model that also models non-response probabilities as well as the 

probability of interest. Nandram (1998) described a Bayesian hierarchical model for 

multinomial data from a two-stage cluster sample. His model is quite similar to the one 

considered here; we describe it more later in this chapter. Several authors have used 

Bayesian generalized linear models to analyze multinomial data. Recently, Ghosh et al. 

(1998) used a generalized linear model to analyze multinomial data for the problem of 

smcill cirea estimation in sampling. 

2.3 Probability Model 

We take the total population to be N and assume that the population is divided 

into M clusters, with Nj individuals in the j"* cluster. Suppose that we sample J of 

the M clusters, and that within the cluster we sample nj of the Nj individuals. We 
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denote the number of unsampled clusters hy J' = M — J. Our focus in this thesis is 

polychotomous responses. We let I represent the number of possible responses and let 

Yij denote the number of individuals in the j"* cluster with response t, i = 1,2,..., /. To 

pursue a model-based approach to the analysis of a two-stage cluster semiple, it seems 

natural to model the hierarchical structure implicit in the design with a hierarchical 

model. Subjects axe assumed to be randomly sampled within clusters, eind clusters are 

taken to be reindomly sampled from the population of clusters. 

We propose the following hierarchiced superpopulation model. Given the vector 0j = 

{9ij,... ,0/j)^ of probabilities summing to 1 in cluster j, the data Yj are modeled as 

multinomial reindom variables, 

Multinomial(dj, rzj) (2.1) 

wi th  

p ( Y j  I  0 j ,  n j )  =  ,  n  ( 2 - 2 )  
' i j -  •  •  •  t i j -  ,=i 

for J = l,...,y. We also assume the vectors Yi,...,Yy are independent given the 

collection of probability vectors di,.. .,9j. Usually samples are taken without replace­

ment from the population of interest. Strictly speaking this invalidates the multinomial 

model, which is appropriate for sampling with replacement. As long as nj is smedl 

compared to Nj the multinomizd is a convenient <uid good approximation. We define 

0=(0f, as the vector consisting of all the cluster level probabilities concate­

nated. This part of the model implicitly assumes that individuals within a cluster are 

exchangeable. That is, no information is recorded to distinguish individuals. If the 

sample were stratified by education level or occupation, for excmiple, this could easily 

be accommodated by modifying the above portion of the model. 

The cluster level probability vectors, j, are modeled as exchangeable draws from a 

Dirichlet distribution, 

I a ~ Dirichlet(a) (2.3) 
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with  

r (i a,) ; 
= I TTfl".-! 

The vector a = (oi,..., Q/)^ are parameters describing the population of Bj's with 

l ° ' = r ( a . r . ' . r ( a , ) . n =  '  

a 
E [ 0 , \ a ]  =  -

E oik 
fc=i 

, , 1 1 Q!(K1 — <*) 
= ikrTr-

/ 

where 1 = (1,..., 1) and k = O'k- The assumption of exchangeability here implies 
k=l 

no information is aveiilable to discern clusters. The Dirichlet distribution is the conjugate 

prior distribution for the multinomial distribution. This is convenient for computation 

later. Though it is the conjugate prior distribution, the Dirichlet is somewhat restrictive. 

It would not be difficult to use a mixture of Dirichlet distributions in its place. Finally 

the prior distribution of a is taken as an improper distribution. 

/ / \ 
p ( a ) a f E a f c j  A o . > o , v . ) -  ( 2 . 5 )  

This form of non-informative prior distribution is motivated by results for the normal-

normal and especially the Beta-binomial hierarchical models, see e. g. Gelman et al. 

(1995). There the non-informative hyperprior distribution is flat on the standard devi­

ation of the prior distribution. For the Dirichlet we take the hyperprior distribution to 
/ / 

be flat on the mean and flat on I i the latter quantity representing a quantity 
\k=l J 

similar in magnitude to the standard deviation. 

( \ 
Ql Q/_1 1 

I ' • • • '  /  '  n—  

E Qfc ^ "'t \/ E afc , 
\k=i k=i \ k=i / 

oc 1. (2.6) 

After taking account of the Jacobian of the transformation, we get (2.5) or the prior 

distribution for a. Hyperprior distributions, like (2.5), «ire often called "diffuse" or 
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"vague" meaning that the density places probability somewhat evenly throughout the 

parameter space. The advantage of this type of hyperprior distribution is that it allows 

the data to shape the posterior distribution and, consequently, to shape the inferences 

that are made. Since this prior distribution is clearly improper, it is necessary to find 

sufficient conditions that yield a proper posterior distribution. Theorem 1 at the end of 

this section provides such conditions. 

At this point it should be noted that the model developed in (2.2), (2.4) and (2.5) 

is quite similar to the model of Ncindram (1998). Though developed independently, 

both Nandram's approach the approach described here model the cluster-level counts 

as draws from a Multinomial distribution. The cluster-level probability vectors are then 

modeled cis draws from a Dirichlet distribution in both methods. The difference between 

the two models is in the hyperprior distribution that is placed on a, the population-

level vector or proportions. Nandram's model places a flat prior on the mean of the 
I 

Dirichlet distribution and a gamma prior distribution on k =Y1 ock- If we take the 
k=l 

gamma density or p(« \  a ,  f 3 )  =  then the Nandram model is equivalent 

to the model considered here when the shape parameters a is chosen to be 1 /2 and the 

scale parameter (3 is taJcen to be zero. 

Let Y = (Yf,...,Y5)^ represent the observed cluster counts concatenated into a 

single column vector and let © = (fli,.. represent the cluster probability vectors 

concatenated into a single column vector. Then the posterior distribution, up to a 

normcdizing constant, is 

p (©,a  1 Y)  a  p(Y |  ©)p(0  |  a)p(a)  

The posterior distribution can be factored as 

p(®,a |Y)  =  p(©|a ,Y)p(a |Y) .  (2.7) 
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The first term, p(©, ot ] Y), is obtained easily because of the choice of the conjugate 

Dirichlet prior. It is 
J 

p(© I at, Y) = JJ Dirichlet(Yj + a). (2.8) 
i=i 

It follows that 

p (a |Y)  =  p(0 ,a |Y) /p(©|a ,Y)  

r; r (> i ,+Q 

S l r ( , i . . . . , )S  " . . .  

cx 
/ )  

(2.9) 

We can also derive p(a | Y) by first calculating the marginal distribution of Y given a, 

P(Y \a) = j p(Y I 0)p(0 1 a)d® 

-  u \ i  \  A r ( V o + a , )  

+  • '  

and then multiplying by the hyperprior on a. 

p(a  1 Y)  oc  p (Y 1 a )p(a) .  (2.10) 

Each Yj in (2.10) is distributed as a Dirichlet-Multinomial with parameters a and Uj. 

The distribution in (2.10) is a product of Dirichlet-Multinomial distributions. 

The Dirichlet-Multinomial distribution plays a large role in the algorithm that we 

develop for sampling from the posterior distribution. For future reference we note here 

that we can simulate draws from the Dirichlet-Multinomisd distribution with parajn-

eters a and m in a straightforward manner. We first draw a realization 0 from a 

Dirichlet distribution with parameters a. We then simulate a vector of counts Y from 

a multinomial with parameters 0 and m. The realization Y is then a draw from the 

Dirichlet-Multinomial distribution and 0 can be discarded. 

We close this section with a theorem identifying conditions required for the posterior 

distribution (2.9) to be a proper distribution. 
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Theorem 1 For the model defined by (2.2), (2.4), (2.5), the posterior distribution is 

proper if there exists at least one cluster that has responses in at least two different cells. 

Proof: The proof is included as the final section of this chapter, Section 2.7. 

2.4 Posterior Inference 

Having shown that the posterior distribution is proper under the conditions of The­

orem 1, we consider statistical inference for the parameters in the model. From the 

Bayesian perspective, the posterior distribution p(©, a | Y) describes the uncertainty 

in the paxameters after observing the data. Recall that the conditional posterior dis­

t r i b u t i o n  o f  ©  I  a ,  Y  i s  s i m p l y  a  p r o d u c t  o f  D i r i c h l e t  d i s t r i b u t i o n s ,  6 j  |  a , Y j  ~  

Dirichlet(Yj -I-a). This means that we can obtain simulations from the posterior distri­

bution by first simulating a from p(a | Y) and then simulating 0 from p(© | a, Y). 

We use a Markov chain Monte Carlo (MCMC) procedure to obtain samples from the 

posterior distribution of a given the data. 

2.4.1 Review of MCMC 

The use of MCMC methodology has become quite common in recent years for 

Bayesian data analysis. In general terms, we simulate from a given distribution by 

identifying a Markov chain that has the desired distribution as its stationary distribu­

tion and then simulating the Markov chciin. In the Bayesicin context the distribution 

from which we wish to sample is the posterior distribution. The Markov chain is run un­

til it converges to the stationary distribution. There are a number of MCMC algorithms. 

These are reviewed for example by Gilks et al. (1996). We describe several of these in this 

section. The first we consider is the Metropolis algorithm. We describe the algorithm 

by considering the iteration. Suppose that the current state of the Markov chain is 

a('~^). The Metropolis algorithm uses a symmetric jumping distribution J(a| to 
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generate a candidate state, a*. Define the importance ratio as 

"• p(al'-i>|Y)' 
(2.11) 

Then the Metropolis Miirkov chain transition rule is 
/ 

a* with probability min(r, 1) 
a' ' = 

otherwise. 
(2.12) 

If the prospective state has higher posterior density than the present state, then the 

chain moves to the new state. If the prospective state has lower posterior density, 

then the cheiin moves to the prospective state with probability equal to the importance 

ratio. Thus the algorithm is completely specified by giving a starting point and a 

symmetric jumping distribution, J(- | •). A standard symmetric jumping distribution is 

the Gaussijui distribution J(a* | = N(a'' | V) where V is a fixed variance 

matrix. Note that we use N {h,(t^) to denote the Gaussian distribution and N { x  |  

to denote the Gaussian probability density function with argument x. Non-symmetric 

jumping distributions can also be accommodated. In that case the algorithm is known as 

the Metropolis-Hastings algorithm (Hastings (1970)), and the importance ratio becomes 

Under fairly general conditions on the Markov chziin, we are assured that the chain 

will eventually converge to the distribution from which we wish to sample, see for exam­

ple, Tierney (1996). However, zissessing when convergence has occurred is not simple. 

There is a growing literature on this topic, e. g. Cowles and Carlin (1996), or Gilks 

et al. (1996). We apply the multiple chain methodology of Gelman and Rubin (1992) to 

assess convergence. Their approach utilizes several independent sequences with stzirting 

points chosen to be overdispersed relative to the target distribution. The independent 

chains are run from these starting points for a fixed number of iterations. After some 

initial iterations — presumed to correspond to transient behavior of the Markov chain 

p(a'' 1 Y)/J(a' 1 
(2.13) p(a('-i) I Y)/J(a('-i) I a*)" 
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— are deleted, each chain is analyzed. The potential scale reduction (PSR), (Gelman 

and Rubin (1992)), measures the degree to which posterior inference would improve with 

repeated simulation. The PSR is the ratio of two estimates of the posterior variance of 

a parameter. One estimate examines variability between the independent chains. This 

will overestimate the variability until the chain has converged, as long as the starting 

points are overdispersed. The second estimate uses variability within each chain. This 

is likely to underestimate the posterior variance until the chains have sampled the entire 

posterior distribution. If the PSR is close to unity, for all parameters of interest, then 

we conclude that the samples can be treated as having come from the target density. 

The choice of a jumping distribution is important because it can affect the speed 

of convergence. Gelman et al. (1996) give guidelines for selecting V, the variance of 

a normal jumping distribution, when the target distribution is normal or nearly so. 

They find that acceptance rates, the percentage of time that the proposed candidate is 

accepted, between 25% and 50% are optimal. Consequently, they suggest the variance 

matrix, V, be chosen to achieve these rates. 

2.4.2 Gibbs sampling 

Another MCMC algorithm is the Gibbs algorithm, sometimes simply referred to 

as Gibbs sampling. It is most often used when the joint distribution is high dimen­

sional or when sampling from the full conditionals is relatively straightforward. Suppose 

that p(4' I Y) is a multivariate distribution from which we would like to obtain S2im-

ples. Also suppose that we can break into D univariate or at least lower-dimensional 

components, = (^i, •.., V*!))' We sissume the full conditioned posterior distributions 

p(V'i I • • • iipo) are aveiilable. Under mild conditions, these condi­

tional distributions uniquely define the full joint distribution, Besag (1974). For each 

iteration of the Miirkov chain we cycle through the conditional posterior distribution 

generating a realization for each element of ^ from its conditioned posterior distribution 
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using the most recently generated value for each element of . This is done as follows 

for the iteration: 

This algorithm is ecisy to implement when each of the full conditionals is a known 

distribution. However, it is often true that one or more of the full conditionals are not 

standard distributions and, thus, drawing samples from these distributions is not simple. 

In that situation, a Metropolis or a Metropolis-Hcistings algorithm can be utilized to 

draw a realization for that particular step of the Gibbs sampler. The initial development 

of the Gibbs sampler wais done by Geman ajid Geman (1984) on Gibbs distributions, 

hence its name. Gelfeind ajid Smith (1990) demonstrated its applicability to Bayesian 

computation. Roberts ajid Smith (1993) proved the convergence of the Markov chain 

generated by the Gibbs sampler under general conditions. 

2.4.3 Posterior inference in the two-stage model 

With the two-stage model for complete data, we use a Metropolis algorithm with 

a multivariate normal jumping distribution. Because the normal distribution assigns 

probability to the entire real line, we introduce a transformation of a. Define 7 as 

follows: 

1. Simulate from p{ipi | ..., 

d. Simulate rf' from p{rpd 1 • • •, rfii, ^d+i\ • • •, ") 

D. Simulate from p(0d I 

7. = iog 
I 

i  =  l , . . . , / - l  

(2.14) 
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The first / — 1 elements of 7 eire logit transformations of the corresponding elements 

mean of the Dirichlet tmd the last element 7/ is the log of the sum of the Q'S. A 

normal jumping distribution is more suitable for 7. The mean of the normal jumping 

distribution is taken to be the previous state in the Markov chain. The variance, V'\ of 

the multivciriate Normal jumping distribution is taJcen proportional to the inverse of the 

estimated negative second derivative matrix of the posterior distribution of p(a | Y) at 

the posterior mode. Formally, 

with 7 equal to the posterior mode. Then the jumping distribution is N(7''~'\cV), 

where 7^*^' is the iteration of the Maxkov chain and c is a constant value chosen to 

make the jumping distribution efficient. Once posterior simulations are obtained, we 

transform the parameters back to the original scale using the inverse transformation 

Qi  =  i  =  1 , . . . , / -1 ;  (2 .16)  

i-i 
ai = (2.17) 

1=1 

The Bayesian framework allows for inference about any function of the parameters, 

(f) = <p(©,a), that might be of interest. In other words, we can calculate summziries 

of the posterior distribution for any <p, e. g. posterior quantiles. To do this we draw a 

sample a from p(o | Y) and then draw a sample © from p(© | a, Y). From the sampled 

parameters we calculate a value of <j>. Repeating this process, we get a collection of values 

of 4> that can then be used to compute the summciries of interest. Because the (©, a) 

realizations are sampled from a MCMC algorithm the samples are not independent. If 

we want Monte Carlo st«uidard errors for a specific quantity, like E{4> \ Y), then we must 

do additional analyses like those described by (Geyer (1992)). 

In the remainder of this section we identify various quantities that might be of interest 

in the simiple survey context. With multinomizd data in a finite population context, it 
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is natural to focus on the proportion of the population with responses in some subset of 

the multinomial categories. Of course, this is not a deterministic function of the model 

parameters. We construct a stochastic realization of the finite population. Let A be a 

vector of zero's and one's that identifies which cells are of interest. Recedl that Yj is the 

vector of observed data for cluster j and nj as the total number of sample individuals 

in cluster j. Now define 

Yj = 0, if j > J and rij  = 0 ifj > J. (2.18) 

These definitions explicitly specify that there were no observed respondents in clusters 

J -fl,..., A/. Now let Y*j represents a realization of the unobserved responses in cluster 

j. There are two cases: for j = 1,..., J, there are Nj — nj unobserved responses; for 

j = J + I,M, the entire population of size Nj is not sampled and consequently all 

are unobserved. For the first case we have simulations from the posterior distribution 

of dj as a result of our posterior simulations. We draw a vector of observations YJ as 

follows, 

Yj ~ Multinomial(A/j — (2.19) 

For the second case, the unsampled clusters, we have no direct information about the 

population in the cluster. However, we do have information about the population of 

all clusters. That information is encapsulated in p(a \ Y). We use that information 

to generate a vector of probabilities, 9^, for the unseen cluster, ju from the Dirichlet 

distribution, 

0* ~ p(« I a). (2.20) 

Finally we simulate responses for the entire population of cluster 

Yj ~ Multinomial(A'j, j) (2.21) 

Combining all of the clusters zind taking a weighted average based upon the number in 
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each cluster, we get the population proportion 

M 
E (Y, + Y;) 

01 = • (2-22) 
E N j  j=i 

This quantity simplies to 

E A'- (Y, + v;) 

when all of the clusters are of equal size, N j  = N* for each j. This qujintity, (2.22), 

represents the percentage of individueils in a realization of the entire population that 

would choose the cells specified in A. The variability in would be the variability 

under the model for the population proportion. Gelman et al. (1995) show that a 

quantity analogous to (i>i exhibits the seune variability as measured by the usual design-

based estimate of the repeated sampling variance for the traditional survey estimate in 

the Gaussian c«ise. Consequently, the posterior interval for </>i should be approximately 

the same as the design-based confidence interval. 

We also define a number of model-based quantities that are related to the population 

proportion. The first is a weighted average of the cluster proportions, 

M ™ 

(2.24) 
EiV,-
i=i 

One again there are two cases: for sampled clusters we have available a sample of draws 

but for unsampled clusters we sample 6* from the prior distribution p{0 \ a). We 

generate B'j for each clustery by taking realizations p(0 | a, Y) according to (2.20). As 

we did with (2.22), we can simplify (2.24) to when the number of individueils, Nj is the 

same in each cluster. 
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Another model-based quantity is the population-weighted average of the expected 

cluster proportions. The posterior expected proportions for clustery is | Y). This 

quantity is defined below for the two cases: 

= 

— j = 1, . . . ,  J  (sampled  c lus ters )  
E Ofc+n, 
Jt=i 

— j = J (unsampled clusters) 
E Clk 

(2.26) 

k=i 

Then the population weighted average of the posterior expected proportions is 

z NiX''E[e*] 
•h = • (2.27) 

Z N j  
i=i 

Another model-based quzintity of interest is the superpopulation proportion 

<P4 = 4-^- (2-28) 
E O'k 
fc=l 

This quantity is the proportion in the underlying superpopulation that would choose the 

cells determined by A. The superpopulation model is a construct that posits an infinite 

population from which the finite population has been sampled. Thus, we interpret (2.28) 

cis the proportion of interest in the superpopulation. 

Of the quantities defined here, 4>i is the primeiry goal of sample survey inference. 

The model-based qucintities are primarily of interest for assessing the model. We expect 

less variability as we move our consideration from 0i to to 03 to (^4. Thus the relative 

sizes of the posterior intervals tire of interest. 

Inference need not be limited to estimates of the population proportion. The cluster 

effect is of great interest in traditional design-bcised inference. As defined by Cochran 

(1977) the design effect or deff is the ratio of the estimated variance in the quantity 

of interest under the present scimpling design to the estimated variance if the sample 

had been collected under SRS. For the Dirichlet- Multinomial models, several authors. 
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including Altham (1976), Brier (1980) and Koehier and Wilson (1986), have shown that 

the design effect can be expressed as a function of the superpopulation pcirameter a, 

T, ctk + n 

PDE = (2.29) 
E CkJt + 1 

k=l 

where n is the average number of individuals per cluster. We will refer to this qujintity 

as the posterior design effect (PDE). Under the Bayesian approach we obtain not just 

a point estimate but the complete posterior distribution for the PDE. The PDE is of 

interest in that is allows us to assess the degree to which the clusters are homogeneous. 
/ 

If 21 otk is large, the design effect is approximately one and all clusters have the same 
k=l 

I 
proportions. If ^k is very small, then observations are homogeneous within a cluster 

fc=i 
(all responses are similar) eind heterogeneous between clusters. The deff is then approx­

imately n which indicates that the additional observations from within a cluster do not 

help with inference. 

2.5 Missing Data 

Sample surveys of finite populations implicitly involve missing data, namely the 

responses of the members of the population that were not selected. These axe a form of 

"intentional" missing data or designed missing data. In addition, it is possible to have 

unintentionzil missing data when survey respondents refuse to answer an item. These 

are often treated as a separate response, NA, for not cinswered, rather than cis missing 

data. In the example that motivated this thesis, however, the failure to answer can be 

considered a form of missing data because of the rules of the plebiscite with which the 

data are concerned, (Rubin et al. (1995)). Consequently, we extend our approach to 

accommodate unintentional missing values. 

Little and Rubin (1987) introduce a categorization of the mechanisms that produce 

missing data. The easiest to deal with are data mechanisms that axe missing com­
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pletely at random (MCAR). Under MCAR, the probability that an individual response 

is observed is completely independent of observed or missing data (i. e. unrelated to 

demographic features, answers to the specific question). A more general notion is miss­

ing at random (MAR). MAR assumes that the probability that a response to a specific 

question is observed, i. e. , is not missing, may depend on the observed data (possibly 

including other variables that were observed), but not on the response in question. This 

is crucial in that it presupposes no tendency for an individual with a specific response on 

a question fail to respond to the question. Under MCAR we can restrict our attention 

to those individuals with complete data since they are a random sample of the original 

population. Under MAR we can carry out traditional model-based analysis, conditional 

only on the observed values. The fined category described by Little and Rubin covers 

the c«ise when the actual missing data mechanism is nonignorable (NI). In that case 

the probability that a response is missing depends on the value that would have been 

observed. The only way to proceed is to build a model for the response mechanism. A 

key point is that the observed data themselves do not allow us to determine if MAR or 

NI is a more accurate description. This is because the issue is whether the probabil­

ity of being missing depends on the value that would have been observed which is, of 

course, not available. Several authors, including Gelman et al. (1995), have advocated 

proceeding under the MAR assumption and then possibly assessing the sensitivity of 

the conclusions to alternative NI models. Rubin et al. (1995) describe one methodology 

for carrying this out. 

In this section we will assume the observations axe missing at random (MAR) in the 

terminology of Little and Rubin (1987) or Rubin (1976). Again, MAR assumes that 

the probability that a response is observed depends on the parameters that generated 

the data and possibly on other Veiriables that were observed but not on the response of 

interest. 
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2.5.1 Notation 

The data that motivated this work is based upon a trivariate binary response which 

we analyze as a 2^ = 8-dimensional multinomial random vEiriable. A consequence of this 

setup is that when one or more of the questions is answered with a Don't Know, there is 

a subset of the 8 cells into which the actual response might fall. In effect a missing binary 

response corresponds to partiai information about the multinomial random variable. For 

example, for a respondent that answered Yes to the question about independence, Don't 

Know to the question about Attendance and Yes to the question about Secession, their 

response could be in one of only two possible cells (Yes, No, Yes) or (Yes, Yes, Yes). 

Similar patterns can be derived for each pcirtial pattern of incomplete responses. We 

will follow Rubin et al. (1995) in using the term "pattern of missingness" when referring 

to these patterns. 

Let 1/ be a pattern of missingness and let P be the set of all such patterns. Next, let 

A„ be the set of all possible cells in missingness pattern t/. For example, if / = 8 and ui 

has possible categories 1, 4, and 6, then Aui = {1, 4, 6}. This would correspond to an 

individual whose response is known to lie in one of the three categories but for which 

further refinement is not possible due to a lack of information. 

Let Tij be the number of individuals in the j"' cluster with pattern of missingness u. 

Also let Y-j is the unobserved number of responses that actually fall in category i from 

cluster j from among the Uj individueils with missingness pattern u. It is these Y-j that 

are the unintentioned missing data. For completeness, define Y^ = 0 if = 0 or t ^ A^. 

Let y; = {Yi), Vjj,..., Yi)) and let Y""' represent : j = 1,..., J}. Finally, let Y"^' 

encompass not only the completely observed multinomial counts Yj's but the marginal 

totals for the patterns of missingness in each cluster, n'-. 
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2.5.2 Probability model 

The basic probability model that we developed in Section 2.4 remains unchanged 

except that now we wish to incorporate information from both the fully observed and the 

partially observed data. Assuming MAR, we are interested in the posterior distribution 

of p(©,a I Y"'*). In practice it is convenient to augment the problem by incorporating 

the missing values Y"*" as unobserved random variables. The joint posterior distribution 

of all the unknown quantities is 

If we can study the above distribution by obtaining simulations of(©, a, Y"*"), then we 

merely ignore the simulated Y"*" to study the marginal posterior distribution p(©, a \ 

As in (2.7) we can proceed by factoring the posterior distribution cis the product of 

a marginal and a conditional distribution, 

One advantage of this factorization is that the conditional distribution of 0 given 

(a, Y™", Y"*") is the complete data conditional, p(© | a, Y) from Section 2.4. Recall 

that it is the product of Dirichlet distributions by conjugacy and hence it is eaisy to 

simulate from this piece of the posterior distribution. The second piece of the right 

hand side of (2.31) is more complicated. We can simulate from this distribution, once 

again using MCMC. However, the Metropolis algorithm will not suffice. Instead we use 

the Gibbs sampling algorithm described in Section 2.4.2. The following two-step Gibbs 

sampling «dgorithm allows us to draw samples from the distribution p(a, Y"*" | Y°^') 

p(©,a, Y"*" I Y"^') 

oc (2.30) 

p(©,a ,  Y"" ' '  1 Y"* ' )  =  p(© I a ,  Y^ '% Y' '^" )p(a ,  Y"" '  |  Y°^ ' ) .  (2 .31)  
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1. Simulate a from p(a | y*"", Y"'") 

2. Simulate V"" from pCY"*" | a,Y°'") 

To draw from the first of these two Gibbs steps, we simply condition on V"" and 

Y°''^ which is equivalent to conditioning on the complete data set. This can be sampled 

from using the Metropolis algorithm of the previous section. This is an example of using 

a Metropolis step within a Gibbs algorithm. There is flexibility in determining how 

many Metropolis steps to perform in each Gibbs step. We use a single step. 

To draw samples from the second step of our Gibbs algorithm turns out to be a 

simple task, but this is not immediately obvious from the form of the distribution. 

PCY""'* I A,Y°'") 

J 

- n j=i 

f  / n ' 'M ^ I"  ( ^ i  +  «*>•  +  E  

tefe)!!; ^ r,..r ' 
(2.32) 

where factors depending on a have been omitted. For a particular pattern of missingness, 

u' in cluster j, we have 

(Yl) nnvir + v^v+a, +1; . (2.33) 
\ / 

This distribution is the kernel of a Dirichlet-Multinomial distribution. This can be seen 

by looking at the density of an S-dimensional Dirichlet-Multinomial reindom variable, 

Z, with pcirameters m ajid 0i,..., 0Si 

p (Z |^ .m)=f  (2-34)  

aad noting that the kernel of this distribution (the terms involving Z) is simply 

+ (2.35) 
•  1  ̂ S j  5 — 1  
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Then (2.33) is recognized as a Dirichlet-Multinomial distribution with I categories, sam­

ple size nf and parameters VJ, + a, + • Generating realizations from a Dirichlet-

Multinomial(^, m) distribution is straightforward. As described in Section 2.3, to gen­

erate a realization of Z from above we draw a sample 0 from a Dirichlet with parameters 

(f>. Then we generate Z from a multinomial with a vector of proportions, ff, and count 

m. Thus, the second step of our two-step Gibbs iilgorithm actually consists of a distinct 

Gibbs sampling algorithm that cycles through each pattern of missingness/cluster com­

bination. The algorithm described here yields samples from the posterior distribution 

p(©,a I Y°'"). Those samples can be used to draw inference as described in Section 

2.4. We now turn our attention to applying these methodology to a data set. 

2.6 Application: The Slovenian Public Opinion Survey 

Today, Slovenia is a small nation in southeastern Europe. From 1945 to 1991, Slove­

nia was one of six republics in Yugoslavia. In December of 1990, a plebiscite was held 

regarding the possibility of independence from Yugoslavia. The adult citizens of Slove­

nia overwhelmingly voted for independence. On June 25, 1991 the Slovenian parliament 

voted to declare itself independent from Yugoslavia. What followed w«is a 10-day conflict 

between the Yugoslav army and the Slovene territorial defense forces (Silber and Little 

(1997)). On October 8, 1991, Slovenia became a wholly independent nation. 

In the month preceding the December 1990 plebiscite, the Slovenizm Public Opinion 

Survey (SPO), a regular survey on a variety of subjects, was conducted. Included in the 

1990 SPO were the following three questions concerning independence: 

1. Are you in favor of Slovenian independence? 

2. Are you in favor of Slovenia's secession from Yugoslavia? 

3. WiU you attend the plebiscite? 
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Table 2.1 Survey Totals for the SPO 

Independence 

Secession Attendance Yes No 
Don't 
Know 

Yes 1191 8 21 
Yes No 8 0 4 

Don't Know 107 3 9 

Yes 158 68 29 
No No 7 14 3 

Don't Know 18 43 31 

Yes 90 2 109 
Don't Know No 1 2 25 

Don't Know 19 8 96 

For each question a Yes (Y), No (N) or Don't Know (DK) response was recorded. 

The last question was especially important, since under the rules of the plebiscite an 

individual not attending the plebiscite would be treated as an voting NO on the question 

of independence. Table 2.6 provides the survey responses to these questions. The survey 

included many other questions on demographics, attitudes toward other nations, etc. For 

this chapter and the next, we ignore the other survey questions, though these might be 

helpful for improving model-based inference with missing data. In Chapter 4 we present a 

model-based methodology for incorporating additional covariates such as those described 

above. 

The SPO was carried out via a three-stage sampling design. The entire nation 

was divided into 1000 primary stimpling units (PSU's) of approximately equsd size. 

Within each PSU they were further broken into 16 secondary sampling units (SSU's). 

A subset consisting of 139 of the 1000 clusters, or PSU's, were sampled eind then 3 of 

16 SSU's were chosen from each sampled PSU. Finally 5 individuals were chosen from 

the approximately 100 individuals within each SSU. As in most large scale surveys, not 
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all of the selected individuals responded. Nonresponding individuals were replaced by 

substitutes. We treat these substitutes as if they were the original respondents. In 

total, there were 2074 respondents. Note that this is just under the 139 x 3 x 5 = 2085 

that were intended. Apparently, in 11 cases they could not obtain a respondent even in 

exhausting the list of substitutes. For the purposes of this chapter we treat the SPO zis 

a two-stage cluster sample and ignore the SSU's. Thus we will treat the data <is being 

comprised of respondents from 139 PSU's, with approximately 15 individuals per SSU. 

Chapter 3 describes a methodology for analyzing the full three-stage design. 

The fully observed responses, i. e., those without a single DK response, form a 

trivariate binomial random variable. For the purposes of this section and the remainder 

of the thesis, we will treat this data as a 2® = 8 dimensional multinomial distribution. 

In doing so, we follow Rubin et al. (1995) who originally analyzed this data set. Their 

main focus wzis taking account of the DK responses, treating them 2is missing data. This 

treatment is different from the common practice in the U.S. There a DK is often treated 

as a separate response but here because all individuals would ultimately vote (perhaps 

by not attending) it seems appropriate to think of the DK's as hiding the respondents 

intentions. Rubin et aJ. (1995) ignored the clustering; they treat the responses as if they 

Ccime from a SRS and then use the classical design effect, deff, to increcise the size of 

the resulting confidence (or posterior) intervals to reflect the clustering. The primary 

contribution of this reanalysis is to incorporate the effect of clustering directly into the 

model. 

2.6.1 Complete data results 

In this section we restrict attention to the 1454 individueds that answered yes or 

no to each of the questions listed in the previous subsection. In other words, we will 

eliminate from our analysis eill respondents with at least one DK response from the three 

questions. 
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Table 2.2 Summaxy of the Posterior Distribution for Model Parame­
ters 

Corresponding 
Response 

Posterior 
Mean 2.5"^ 

Percentiles 
50"' 97.5"' 

PI NNN 0.010 0.006 0.010 0.016 
P2 NNY 0.001 0.001 0.001 0.003 
P3 NYN 0.006 0.003 0.006 0.010 

P4 NYY 0.006 0.003 0.006 0.012 
P5 YNN 0.048 0.038 0.048 0.060 

P6 YNY 0.006 0.003 0.006 0.012 

P7 YYN 0.108 0.092 0.109 0.126 
P8 YYY 0.814 0.793 0.814 0.834 

I 
E OFC 898.643 34.805 124.617 5867.530 
k=l 
The order of the questions is .Attendance, Independence, Succession. 

Using the Metropolis MCMC algorithm of Section 2.4, we ran six chains of length 

4000 each. All of the parameters had PSR's, see Section 2.4.1, under 1.2, so we con­

clude that the sample are representative of the posterior distribution. In Table 2.2 

we summarize the posterior distribution of a, by giving summaries of the posterior 
/ I 

distribution of pi = Q,/ JZ Ok and of Oik- The proportions agree well with the 
k=l k=l 

data. The vector of sample proportions from the population for the eight categories 

is (0.010,0.000,0.005,0.006,0.0470,0.006,0.109,0.819)^. The responses that correspond 

to these categories are {NNN,NNY,NYN,NYY,YNN,YNY,YYN,YYYf for the 

questions regarding Attendance, Independence and Succession, respectively. The poste­

rior means eind medians in Table 2.2 differ very little from these totals. Histograms of 

the mcirginal posterior distributions of the p,'s «ire given in Figure 2.1. 

In practice, the individual parameters, p,-, i = 1,..., /, are not of most interest. Table 

2.3 gives posterior inference for some of the key quantities defined in Section 2.4. In 

terms of the notation that we defined, A = (0,...,0,1,1)^ which identifies the two 



32 

llli... 

P.3 

i 
0.010 

p-4 
0.015 

0.03 0.04 a05 a06 0.07 

P-5 

.•ill liliiB.. 
aoo5 0.010 

p-« 

.ill lill.... 
a06 0.09 0.10 0.11 0.12 0.13 0.14 

P-7 

...llllil IL... 
a78 ojo 0J2 o.a< 

P-8 

Figure 2.1 Histograms of Samples from the Posterior Distributions for the Propor­
tions in Table 2.2 
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Table 2.3 Proportions of Slovenian Voters Who Intend to Attend the 
Plebiscite and to Vote for Independence 

Posterior 
Mean 2.5"^ 

Percentiles 
50"' 97.5"' 

4>i 0.921 0.903 0.921 0.935 
<i>2 0.921 0.903 0.921 0.935 
<h 0.924 0.910 0.925 0.937 
<PA 0.922 0.907 0.923 0.936 

Design-based 0.928 0.913 0.928 0.943 

P D E  =  ̂  

E Qffc+I 
k=l 

1.089 1.002 1.075 1.264 

• •il lii 
o.ea 0.02 

.iiii 

l i i i i  

o.as 

Plii_2 

itlll 
0.92 

pHi_3 
0.02 

Figure 2.2 Histograms of Samples from the Posterior Distributions for 
the Results in Table 2.3 
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responses consisting with attending the plebiscite and voting yes. We include in this 

table, the (i>'s that we discussed in Section 2.4: 0i, the proportion of the population 

attending cind voting yes; <^, the mean of the cluster proportions; <p3, the meaji of the 

expected cluster proportions; 04, the superpopulation proportion. Table 2.3 also gives a 

95% confidence interval for the proportion of interest using the design-based approach 

to two-stage cluster sampling (Equation (10.24) in Cochrem (1977)). 

We first note that the <p's all seem to be centered about 0.922. This is slightly lower 

than the sample proportion that is the center of the design-based confidence interval, 

0.928. This may be a result of the flat prior distribution assumed on the proportions, 

since the posterior is a weighted average of the semiple proportions and the proportions 

cissigned by the prior distribution. The prior proportion in this case is 0.250 which may 

slightly lower the population proportion. It is aiso noteworthy that the distributions 

are skewed. This can be contrasted with the designed based interval which is based on 

the assumption of asymptotic normality, which yields a symmetric distribution. We can 

see the skewness of the posterior distribution for these quantities in Figure 2.2. It is 

also worth commenting on the amount of variability in each of the posterior quantities. 

Focusing on the finite population quantities of interest, we note that 02 and have less 

variability than 03 which we should expect. Recidl that 0i is the posterior realization 

of the proportion of the vote for the entire population, 02 is the mean of the cluster 

proportions, and 03 is value of the mean of the cluster proportions. One surprising result 

is that 01 and 02 have the same amount of variability. One likely explanation is that since 

Nj is 1600 for each cluster, the simulated cluster counts, Yy, closely match the expected 

counts dj in each cluster. Finally, the posterior distribution of 04, the superpopulation 

proportion, is more variable than the posterior distribution for the finite population 

quantities. We also note that the posterior interval for 0i has approximately the same 

width cis quantity is was designed to mimic the design-bcised confidence intervjd, 0.032 

versus 0.030. This show that the Bayesiaxi analysis of the hierarchical model reproduces 



35 

the traditional result for the complete data case. 

The last row of Table 2.3 is the posterior design effect (PDE). It is worth noting that 

the range of possible values for the PDE is 1 to the average cluster sample size, n. First 

we note that the posterior interval for 0i has approximately the same width as quantity 

is Weis designed to mimic the design-based confidence interval, 0.032 versus 0.030. This 

discrepajicy may in part be due to the skewness of the posterior distribution of . The 

design-based 95% confidence interval from a two-stage cluster sample has a width that 

is the 1.154 times that of the equivalent confidence interval assuming an SRS. Thus the 

posterior 95% credible set is about 1.154 times as large as the 95% confidence interval 

aneilyzing the same data as if it came from an SRS. 

2.6.2 Missing data results 

In this section we present the results obtained by analyzing the SPO data incor­

porating the responses of those who had at least one DK response. The patterns of 

missingness that were discussed in Section 2.5 are listed in Table 2.4. For example, the 

first pattern of missingness describes those individucils that answered Y to the question 

about Independence, Y to the question about Attendance and DK to the question about 

Secession or (Y,Y,DK). For these individuals their true, unobserved response is either 

(Y,Y,Y) or (Y,Y,N). In all there are 12 patterns with one question missing and each of 

these has two elements in the corresponding set There are 6 patterns with two ques­

tions missing, each with four elements in Au. There are also respondents that answered 

DK to each question. There cire 8 different elements in Au but, these respondents pro­

vide no information to improve our estimate of the model parameters and consequently 

axe omitted. 

Our approach to the partially observed responses requires that the missing data 

mechanism is MAR. In this context we can provide fiirther intuition about the assump­

tion by considering a pool of individuals identical on all observed variables. Then MAR 
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Table 2.4 Patterns of Missingness 

Independence 
Questions 
Attendence Secession A, 

Y Y DK {7, 8} 
Y N DK {5, 6} 
Y DK Y {6, 8} 
Y DK N {5, 7} 
Y DK DK {5, 6, 7, 8} 
N Y DK {3, 4} 
N N DK {1 ,2}  
N DK N {1 ,3}  
N DK Y {2, 4} 
N DK DK {1,2 ,  3 ,  4}  

DK Y Y {4, 8} 
DK Y N {3, 7} 
DK Y DK {3, 4, 7, 8} 
DK N Y {2, 6} 
DK N N {1 ,5}  
DK N DK {1, 2, 5, 6} 
DK DK Y {2, 4, 6, 8} 
DK DK N {1, 3, 5, 7} 
DK DK DK {1, 2, 3, 4, 5, 6, 7, 8} 
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Figure 2.3 Histogram of Samples from the Posterior 
Distributions for the Posterior Design Effect 

Table 2.5 Summaries of the Posterior Distribution for Model Param­
eters 

Corresponding 
Responses 

Posterior 
Mean 2.5"' 

Percentiles 
50"" 97.5"^ 

Pi NNN 0.023 0.015 0.023 0.035 

P2 NNY 0.002 0.000 0.002 0.007 
P3 NYN 0.009 0.004 0.009 0.016 

Pi NYY 0.011 0.006 0.011 0.018 
P5 YNN 0.069 0.054 0.069 0.084 
P6 YNY 0.010 0.006 0.010 0.016 

P7 YYN 0.121 0.104 0.121 0.139 

P8 YYY 0.754 0.731 0.755 0.776 

E Ok 224.063 32.048 72.415 809.238 
fe=t 
The order of the questions is Attendance, Independence, Succession. 
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Table 2.6 Proportions of Slovenian Voters Who Intend to Attend the 
Plebiscite and to Vote for Independence Incorporating Data 
from Partially Observed Response 

Posterior 
Mean 2.5"* 

Percentiles 
50"* 97.5"' 

4>i 0.876 0.857 0.876 0.892 
(j>2 0.876 0.857 0.876 0.892 
03 0.880 0.864 0.881 0.895 
<^4 0.875 0.857 0.876 0.892 

Rubin, Stern 
and Vehovar 0.863 0.883 0.900 

Actual 0.885 

implies that for individuals in this pool the probability of a DK response to a question is 

the same for those who would have zinswered Yes auid for those that would have zinswered 

No. A priori one might expect that individuals planning to answer No, an unpopular 

response, are more likely to answer DK. The MAR eissumption requires that any such 

tendency is completely explained by observed variables, (Rubin et al. (1995)). We 

carried out the axialyses of Section 2.4 with 6 independent Gibbs sampling sequences of 

length 5000. Based on the PSR, the last 4000 draws from each of the 6 chains appear to 

be sufficiently well mixed together that we can treat them as draws from the posterior 

distribution, p(0,a | Y"'*). Table 2.5 contziins posterior distribution summaries for the 
/ . 

parameters, p,- = a,/ a*:- Figure 2.4 contains histograms for the proportions. 
ik=l 

We cam compare the results of Table 2.5, with those from using only the completely 

observed data. The most striking observation to be made is that the first seven pro­

portions all increase while the eighth proportion is the only one to decrease. This is 

interesting because the first seven proportions have at least one No response, while the 

eighth proportion corresponds is all Yes responses. This suggests that those who tin-
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swered with at least one DK were probably hiding a No response. The MAR assumption 

allows for conditioning on covciriates, here the questions that were answered by the re­

spondent. Hence the covtiriates for the cases with missing responses provide additional 

information beyond that contained in the completely observed responses. Note that 

these results imply that MCAR is not a valid assumption for this data set. Under 

MCAR we would have expected that the results from the complete case would be the 

same as those for the missing data case. The results of Table 2.5 clearly contradict this. 

The first proportion, pi, corresponding to the proportion of the population giving ail No 

responses drastically from the complete analysis to the missing analysis. Although the 

proportion is small in both cases, less than 2%, it is worth noting that the percentage 

doubles when we incorporated the missing observations. 

The quantities described in Section 2.4 are simmiarized in Table 2.6 and Figure 2.5. 
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The posterior intervals for the missing data analysis are slightly larger thain the posterior 

intervals for the same proportions for the completely observed data analysis. There Eire 

two forces acting here. The inclusion of additional data (50% more Ccises though they 

are not fully observed) responses yields more information about these quantities which 

implies smaller intervEds. However, the difference in the distribution of the responses 

cimong complete and incomplete cases adds variability to the estimates. 

Finally, while it is nice to note that all of the posterior quantities engulf the actual 

plebiscite total, it is not entirely relevant. The goal of the SPO was to gauge public 

opinion in Slovenia about a month before the plebiscite, not to predict the actual vote. 

It is certainly natural to expect that the plebiscite and the survey would be similar but 

had any major events occurred during the time interval between the survey and the 

plebiscite in between there results could be very different. 

2.7 Proof of Theorem 1 

Theorem 1 For the model (2.2), (2.4) and (2.5), the posterior distribution is proper 

if there exists at least one cluster that has responses in at least two different cells. 

A more convenient parameterization for the proof is 

/ 

K = Qfc (2.36) 
k=l 

7i = -7^ Vi = l,...,/-1 (2.37) 
E Qffc 

k=l 

1-1 

with 7/ defined as 1 — 7f This parameterization focuses on the first / — 1 elements of 
i=l 

the mean of the Dirichlet distribution, the 7,'s, eind the simi of the Dirichlet pcirzuneters, 

K. The posterior distribution of (7, K) given Y is obtained by applying a change of 

variables to (2.9) and incorporating the Jacobian, The transformed posterior 
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distribution (up to a normalizing constant) is 

r(K) /rr(y;jH-7.K) 
r(/c + nj),y r(7,K) 

(2.38) 

We need to show that the posterior is integrable. To do this we examine the limiting 

behavior of the posterior distribution to determine if it is integrable for the following 

scenarios. 

I. K is fixed and one or more of the elements of 7,- go to 0. 

II. 7 is fixed ajid « goes to 0. 

III. 7 is fixed and k goes to 00. 

Before we begin note that 

and we eissume that nj > 1 for each cluster j. 

Consider limit I. 

Let Z C {1,2,...,/} denote the indices of the proportions tending to 0, with 

1 :^1 Z |< I — I. We assume that 7, 0 for all i € Z. In addition we assume 

that the remaining proportions mciintain constant ratio's ^ for all j, fc ^ Z. Then the 

unnormalized posterior is. 

£r(£) = r(l + £) —> 1 as £ -> 0. (2.39) 

(y.,>o) 

(Vy>0) 

hY.j>o) n n 
J li=iiez 

r(VVi + 7.K) 
r(7.«) 

hYij>0) 

J 

< n 

^(y.,>o) (2.40) 
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where the equality follows because = 1 if Y'ij = 0. and the inequality holds 

because r(i) < r(x + 1) for any x € (l,oo). 

Now let S = and use the fact that r(2 + px) < r(2 + x) if 0 < p < 1 and 

X 6 (0, oo). Then (2.40) 

-3/2 JT T 

r(v;j + i + «) 
r(i) n n  

Lj=i iiz 
'{y.,>o) 

n jj r(Vo + i + K)(7./c)^^^^ 

.i=i fez 7,«r(7,K) 

(2.41) 

Using (2.39), this is then asymptotically equivalent to 

K -3/2 TT T 
n, r ( «  +  n i )  

TT TT ^i + ^ ) r 11 11 FTn HY.J>0) n n r ( v ; i  +  i  +  K ) ( 7 . « ) ' ' ^ - = ^ ' "  
j=i iez 

.-3/2 JT r'(K) 

n n  
i=l HZ 

r (Vi j +1 + K) 
r(<5) (v;,>o) n n r ( v ; i  +  i  +  « ) ( K ) ' ' ^ - ^ > ' "  

j=l i€Z 

(2.42) 

Thus we have a finite bound for the unnormaiized posterior. Since 7,- ranges over a finite 

space, the posterior is integrable and, hence, proper. 

Consider limit II. 

Assume that 7,'s are fixed and let k tend to 0. 

The unnormcilized posterior is 

M l r ( «  +  n , ) i i  r ( 7 . - K )  J  

_ ,.-3/2 JT / r(«:)K ^ {yij + fil^) (Tt":) r 1 
" SlfoTT^n Ak.,>O,| 

(2.43) 

(2.44) 
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which, using (2.39) is asymptotically equivalent to the following 

Then under the condition of limit II, the posterior is integrable if 

J I 
- 3 / 2 + ( 2 . 4 5 )  

j=i i=i 

which occurs if there exists a cluster that has at least one response in at least two 

different cells. 

Consider limit III. 

Assume now that 7,'s are fixed and let k tend to 00. The unnormalized posterior is 

again. 

^.-3/2 (2.6) 

n  { ( n , - 1 W , 6 ' ^ "  -  '  +  

n  { I l ( V i i  -  1  +  7 . « ) . . .  ( 7 . « ) |  ( 2 . 4 8 )  
j=i I <=i J 

< K-3/2 

= (2.49, 

I 
This last product results from the following equeility yij = "j- Then as « tend to 00, 

t=i 
(2.49) becomes 

(2.50) 
i=it=i 

Then the posterior is integrable in the limit as K goes to 00 since is integrable. 

To summarize for the given hyperprior distribution, the posterior distribution is 

proper as long cis there exist at least one cluster with responses in more than one cell. 
I  

We can also note that a flat prior distribution on 51 Qfc? which corresponds to p(7, K)  <X 
k=l 

^(^-1) would feiil to produce a integrable posterior under limit III. 
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CHAPTER 3 THREE-STAGE MODEL 

This chapter we will presents a model for analyzing polychotomous data from a three-

stage cluster sample. In three-stage cluster sample the population is divided into primary 

sampling units (PSU's) and each PSU is divided into secondary sampling units (SSU's), 

with each SSU consisting of a subset of the original population. A three-stage cluster 

sample is obtained by selecting a simple random sample (SRS) of primary seimpling 

units or clusters, a simple random sample of SSU's or subclusters within each chosen 

clusters, and a SRS or elements from each of the chosen subclusters. The organization 

of this chapter parallels that of the previous chapter. Section 3.1 introduces notation 

for three-stage cluster sampling eind specifies a hierarchical superpopulation model for 

analyzing data collected in this manner. Section 3.2 describes our approach for making 

posterior inferences based on the model. Once again MCMC algorithms are used to 

generate a sample from the posterior distribution. The incorporation of missing data 

into the analysis is described in Section 3.3. In Section 3.4 we construct ajid analyze 

simulated data sets. These assist in the interpretation of the parameters of the three-

stage model, as well tis demonstrate the feasibility of using the model. Finally, Section 

3.5 presents results for the case of the Slovenicin Public Opinion Survey. 

3.1 The Model 

Suppose the population of interest is divided into M clusters or primary sampling 

units (PSU's) eind the PSU is further divided into Nj subclusters or secondary sam­
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pling units (SSU's), j = 1,. FinaJly we suppose that Njk elements of the pop>-

ulation are in the SSU of the PSU, j = 1,...,^/, k = A simple 

random sample of J primary sampling units (PSU's) is selected; J' = M — J clusters 

are not selected. Then a SRS of the size A'j is selected from the Nj SSU's in the j"' 

PSU, j = with K'j = Nj — Kj subclusters remaining. Finally, a SRS of rijk 

individuals are selected from the fc"" SSU of the j"* PSU. Often the number of SSU's 

chosen are the same for each selected PSU, i.e., Nj = N for all j. Likewise, the number 

of individuals chosen within each selected SSU is often constant, rijk = n for all j,k. 

Each individual's response is one of / possible responses patterns. 

We propose the following hierarchical superpopulation model for analyzing poly-

chotomous data from a three-stage cluster sample. Let Yijk represent the number 

of individuals in the A:"' subcluster of the j"' cluster with response i and let Yjk = 

(V'ljjt,..., Yijk)^. The data Yjk are modeled as multinomial given djk and rijk, 

^ j k  I O j k - ,  T i j k  ~ Multinomial(njfe, O j k ) .  (3.1) 

where O j k  = • •., O i j k )  is the vector of response probabilities for an individual in the 

fc"* SSU of the PSU. As in Chapter 2, the multinomicil model is not totally correct 

but can be a useful approximation if rijk is small relative to Njk. 

The subcluster probability vectors, 6jky are modeled eis exchangeable draws from a 

Dirichlet distribution. As in Chapter 2, this distribution is a natural choice because it is 

the conjugate prior distribution for the multinomial distribution. We parameterize the 

Dirichlet distribution for the probability vector in cluster (PSU) j in terms of a vector 

or proportions, fj = (7xj,72j, • • • ,7/i) , with Hi - 1 and a prior sample size of r/y, 
t=l 

^jk I I j  ~ Dirichlet(7/j7_,). (3.2) 

Thus the SSU proportions, Bjk, have mean , 7j, which represents the average vector of 

proportions for the SSU's in PSU j. The similarity of the collection is 
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measured by the quantity rjj which determines the variability of the Dirichlet distribu­

tion. A large value of rjj means little variance among the vectors of proportions within 

a PSU. A small veilues of TJJ implies that there is considerable variability among SSU's 

within a PSU. 

The PSU proportion means, 7i,..., 7j, are modeled as exchangeable draws from a 

Dirichlet distribution 

I K, a ~ Dirichlet(/ca), j — 1,.... J, (3.3) 

with mean a. The parameter K governs the VEiriability of the cluster level proportions. 

The 77j's are treated as exchangeable draws from a gamma distribution. The gamma 

distribution is used because rjj must be positive and because the gamma is a flexible 

family of distributions. The particular parameterization of the gamma distribution that 

we use here is one that was formulated by Morris (1982), Morris (1983). 

Pte I »,!./=) =(^) (3.4) 

With this parameterization, E [ r j j ]  = 6 and V[T}j] = b^/a. Using this setup, we model the 

r j / s  a s  

T)j I m,/i ~ Gamma(m,/i/m), J = 1,..., J, (3.5) 

where the mean of each rjj is equzJ to /x and the variance of each rjj is As at the 

previous level of the model, large K implies that all of the 7j's will be similar, whereas 

small K implies great vziriability £imong the PSU means. 

The hierarchical structure that is inherent in the data collection methodology is ex­

ploited by this model. The individual observations yield information about the SSU 

level probability vectors. These, in turn, contain information about the PSU level pro­

portions. Fincdly, the PSU level proportions provide information about the Dirichlet 

distribution that describes the population of PSU's. 
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It remains to place prior distributions on the parameters We assume 

that a has a Dirichlet prior distribution with parameters equal to 1. This is a uniform 

distribution over the simplex of I-dimension<il probability vectors. We model the meaji 

of the ;/j's, the parameter /x, as em Inverse-gamma(ci, c^) random variable. We chose the 

inverse-gamma prior distribution since it is the conjugate prior distribution for /z, (Morris 

(1983)). We model the paxcimeter m using a gamma distribution with parzmieters C3 

and C4. A traditional gamma parameterization is used as the prior distribution for m 

because m must be positive. For the remaining parameter K we also use a traditional 

gamma distribution as the prior distribution with paraxneters cs and ce. The constants ci 

through Ce are constants chosen to mcike the prior distributions flat or diffuse, e. g. ci = 

0.005, C2 = 3, C3 = 0.1, C4 = 0.01, C5 = 0.1, Ce = 0.01. The reason for doing this is to 

allow the data to shape the posterior. When a prior distribution is specified with large 

variance, data is given precedence over the prior distribution, since the prior is quite 

"diffuse." 

We now provide additional discussion about some features of the model. Note that 

it is only possible to construct a hierarchical model using the Dirichlet parameterization 

that includes a probability vector and ein "effective" sample size. A hierarchy using this 

parameterization was first suggested for a two-stage cluster sample by Nsindram (1998). 

It would be difficult to create a hierarchy using the standard Dirichlet parameterization. 

Another interesting feature of the model is the assumption of prior independence of r/ 

and K. We make this assumption because it allows for small or great variability among 

the PSU probability vectors for SSU's within a PSU, and small or great variability among 

the PSU probability vectors. 

For example, consider a national sample of the United States population with states 

serving cis PSU's and counties within a state £is the SSU's. For some responding variables 

we might find little variability timong coimties within a state, but a Icirge amount of 

variability across states. This would imply large T/'S and smaU K. On the other hamd, 
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it is useful to also allow for the possibility of little variability among states and great 

variability among counties (small TJ^S and large k). 

The complete model is given below, 

Yjk\6jk,njk ~ Multinomial(njfc,®jit) 

~ Dirichlet(77j7_,fc) 

7j|a,« ~ Dirichlet(K:Q) 

rij\m,fi ~ Gamma(m,^) (3.6) 

a ~ Dirichlet(l, 1,..., 1) 

fi ~ Inverse-gamma( Ci, cj) 

m ~ G<imma(c3,c4) 

K ~ Gamma(c5,c6) 

3.2 Posterior Inference 

3.2.1 The posterior distribution 

For the three-stage cluster sample all of the prior distributions are proper dis­

tributions which guarantees that the posterior distribution is a proper distribution. 

Before constructing the posterior distribution we introduce some convenient notation 

for referring to subsets of the parameters and the data. Let Y = (Yf|,...,Yf;^-j, 

..., Yj^,.. .,YJKJ)^ denote a single vector that is the concatenation of all of the SSU 

response vectors, © = (tffi,.. ^ similcir vector for the SSU 

probability vectors, F = (7^,.. • ,7j)^ a concatenation of the PSU probability vectors, 

and 17 = (t/i,...The posterior distribution is easily derived (up to a normalizing 

constant) from a product of the sampling distribution of the data, Y, eind the prior 
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distributions on the parameters, 

p(0,r ,a,f7,K,/i,m I Y) oc p(Y |  0,r,a,f|,K,^,m) x p(©,r ,a,T7.K,/i,m). (3.7) 

Implicit in these equations is the the number of individuals sampled in each subclus-

ter, rijk- Taking account of the hierarchical structure we can write, the joint posterior 

distribution (again, up to a normalizing constcint) as 

3.2.2 A MCMC algorithm 

To sample from the posterior distribution, it is convenient to factor the posterior 

distribution, 

p(©,r ,i;,a,K,^,m 1 Y) = p(© | r ,f/,a,«:,/i,m)p(r ,i/,a,K,^,m | Y) (3.9) 

= P(® I r ,ij,Y)p(r,i7 , a ,K , /z , |  Y) 

p(©,r ,a,i/,«:,/i,m | Y) 

oc p(Y I ©)p(© I I7,r)p(f7 I m,^)p(r I K,a)p(a)p(K)p(m)p(/z) 

(3.8) 
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p(eir,,,Y) = nn(y, "'V,J 
j=l k=l V'lj*:' •  •  •  '  ' I j k J  

(3.10) 

The first quantity on the right-hand side of (3.9) is ejisily identified as a product of 

Dirichlet distributions. 

J K, 
I  1  P i n - ] , ,  

Since drawing realizations from Dirichlet distributions can be done quite easily, we focus 

on the second term on the right-hand side of (3.9). 

The second distribution in (3.9), p(r, I Y), Cein be found by first inte­

grating out 0 to obtain the meirginal distribution 

jp(Y I 0)p(© I r,ri,a,K,fi,m)d® = p(Y | r,f/,a,K,^,m) (3.11) 

and then multiplying (3.11) by the prior distribution p(r, t/, a, k,/z, m). The resulting 

distribution (up to a normalizing constant) is 

p(r, 17, a, K,/i,m I Y) 

J Aj 

-  n n  j=l k=l 
J 

rijk r j r j j )  ^ r { Y u t  +  7 i i m )  
r* [ r j j  +  T l j k )  ,_J r (7ijT/j ) 

X  n  
J=1 

7ii' 

r { a i K )  

M V J M/mr(m) 

/ 1 

V/iCi/ Cir(C2) 

(3.12) 

(3.13) 

Because (3.13) is a high-dimensional non-standard multivariate distribution, it is 

easiest to sample from this distribution using MCMC methodology. Specifically we 

scimple from the posterior distribution using Gibbs sampling (see Section 2.4.1). To 

describe the Gibbs sampling algorithm, we introduce /3 = (R^,»7^,a^, K, /X, m)^ as 

notation for the entire parameter vector and denote its dimension by D. It turns out 
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that none of the full conditional distributions, p(/0<i | /?i,... is of 

standard form. As a consequence we will take each element of /3, to be a scalar 

and use a one-dimensionad Metropolis algorithm to draw a univariate sample from the 

full conditional posterior distribution. We choose a univariate Gaussian distribution 

for the Metropolis jumping distribution. Since the Gaussian distribution places mass 

on the entire rezil number line, we transform the parameters as follows before carrying 

out the algorithm. For the proportions a and F, we use a logit transformation. For 

the remaining elements, 17, K,/i,m we use a log transformation. More explicitly we let 

0=/(/3) then / is defined zis follows /3. 

= logit{ Q i ) ,  i  =  l , .  

/(«) = log{K) 

filij) = logit{-tij), 1 = 1,, J 

/(%) II II »—
» 

• J 

= iogifi) 

f { m )  = log[m). 

For the remainder of this section, we use to be the vector representing the transformed 

elements of /3. 

Consider the Metropolis step for 4>d. For the meein of the Gaussian jumping distri­

bution at the iteration we use For the variance, we use a quantity that is 

proportioned to an estimate of the mcirginjil posterior variance of <f>d. To estimate the 

marginal posterior variance, we begin with an initial estimate of the variance, We 

carry out a pilot run of the MCMC zdgorithm <ind calculate the percentage of times, 

Pdi that we accept a proposed ceindidate, (f>d, based upon the Metropolis transition rule. 

If pd is significantly lower thzin 0.25 (the optimcd rate recommended by Gelman et al. 

(1996)) then we decrease our estimate of ffd. If Pd is significantly higher than 0.25, then 
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we increase (7j. Then we run another pilot run. Ultimately, we find an estimate of aj 

such that the Metropolis acceptance rate is approximately 0.25. Then, the Metropolis 

jumping distribution that we use to generate a candidate for is 

03 ~ Normal(0i'"^',(Trf). (3.14) 

Our Gibbs sampling algorithm is a series of univariate Metropolis steps with a jumping 

distribution of this form. 

3.2.3 Quantities of interest 

Although we may be interested in any of the model parameters, we proceed as in 

Chapter 2 to define a series of quantities related to the finite population proportion of 

interest. Let A be an I-dimensional column vector of zero's and one's which determines 

the proportion of interest from among the I categories. For notational convenience, 

define 

Yjk = 0 i f j > J  or j < J', f: > h'j (3.15) 

and 

rijk = 0 if J > J or j < J-, k > I\ j  

These definitions take the observed vector of counts to be 0 eind the sum of those counts 

to be 0 for the unsampled PSU's and for the unsampled SSU's within sampled PSU's 

define the observed vector of counts to be 0 and the sum of those counts to be 0. We 

assume in this section that we have draws from the full posterior distribution 

p(e,/3|Y) (3.16) 

where 0 and /3 tire defined in Section 3.2.2. 
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The first and primary quantity of interest is the percentage of people in the entire 

population who would choose a particular set of categories of interest as defined by A, 

J+J' N, 

E . i=i fc=i 

where Yjk is the observed vector of counts in PSU j emd SSU A:, and YJjt is a realization of 

the unobserved counts in PSU j and SSU k. Recall that 's intended to accommodate 

two circumstances: the case in which SSU k of PSU j is not sampled at all. and the case 

in which SSU koi PSU j is selected. We generate each according to the multinomial 

distribution in each case, 

y;^ -
Multinomial(A'jfc — n j k , 0 j k )  j  <  J ,  k  <  K j  

(3.18) 
Multinomial(A'jfc,dJjt) otherwise. 

For the sampled subclusters, we have seen rijk observations already, and we simulate 

the unobserved responses of the remaining Njk — njk individujds. For those sampled 

SSU's we have posterior draws of 6jk from (3.16). The parameter vectors for the 

unsampled subclusters must be generated from the prior Dirichlet distribution. Once 

again, there are two cases: if the SSU in question is from a PSU that was sampled then 

we have some information about rij and 7^ ; if the unsampled SSU is from an unsampled 

PSU the we sample from a Dirichlet distribution with parameters 77*7* that must 

themselves be generated from their posterior distributions. We generate posterior draws 

for 0^1^ as follows 

0*jk ~ 

Dirichlet(T/j7j) j < J, k > Kj 
(3.19) 

Dirichlet(T7*7*) j > J 

with 

rj' ~ gamma(m,/x/m) 

7' ~ Dirichlet(/ca) 

(3.20) 
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We also describe quantities related to the finite population proportion that are of 

some interest in understanding the model. The quantities ^2, ^4 are defined by 

analogy with the two-stage sample quantities of Chapter 2. The population weighted 

average of the probability assigned to the proportions of interest in each SSU is, 

J+J' Nj 

6 = 

*/T«/ "J T / \ 

J=1 fc=l \ -I / 

J+J' Nj 
E ZNjk 
j = l  k = l  

(3.21) 

where we let = djk for the sampled SSU's. Another quantity is obtained by replacing 

each SSU probability vector with its expectation. The expectation for the probability 

vector in an SSU depends on whether the SSU was sampled, unsampled but part of a 

sampled PSU or unsampled and in an unsampled PSU. Formally, 

6 = 

J+J' N, T r , 

j = l  k = l  
J+J' 1^3 
E Z N j k  
j = l  k = l  

(3.22) 

where 

Eie-k] = (3.23) 

( Y j f c  +  V j f j )  /  { n j k  +  T j j )  l i j  <  J ,  k <  A J 

7j j < J, k > Kj 

7* if j > J 

Again 7* is generated as in (3.20). 

The final quantity of interest is that probability assigned to the proportion of interest 

by the probability vector at the highest level of the hiereirchy. 

^4 = X^a. (3.24) 

We compute these quantities later in reviewing the results obtained by analyzing the 

SPO data imder the three-stage model. 
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3.3 Missing Data 

In this section we extend our approach to accommodate unintentioncil missing data. 

The Slovenian Public Opinion Survey data consist of three Yes/No responses that are 

modeled as an eight cell multinomial response. One or more missing Yes/No responses 

corresponds to a partially observed response in the multinomial setting. As in Section 

2.5 we assume that the unobserved part of the responses are missing at random (MAR). 

That is, we assume that the probability of a Yes/No response is unavailable doesn't 

depend upon the value that would have been observed. See Section 2.5 for a discussion 

of MAR, as well as alternatives to it. 

Let 1/ be a pattern of missingness. A pattern of missingness identifies the value of the 

observed responses to the Yes/No questions eind an indication of which questions were 

not answered (the Don't Know's). Next, let A^, be the set of possible multinomial cells 

for observations with missingness pattern u. For example, if I = 8 and ui hais possible 

responses 1, 3, 5, 7, then A^, = {1, 3, 5, 7}. Let be the number of individuals 

in the A:''' subcluster of the j"' cluster with pattern of missingness u. Then is the 

(unobserved) number of responses from the individuals with missingness pattern v 

from subcluster k of cluster j that (actually) fall in category i. Define Y^^. = 0 if = 

0 or z ^ A„ and let = (^1%) ^2%' • • •' ̂ ijk)- ^ set of all patterns 

of missingness. Then we let Y*"" = {Y^^^ ' J  = = I , . . . ,  N j , u  6 P )  denote 

<ill of the missing data. Following the notation used in Section 2.5, we let Y"*" represent 

the marginal missing data totals, as well £is the observed counts for each subcluster. 

Under the MAR zissimaption for the missing data mechanism, we obtain the joint 

distribution 

p(0,r,»7,a,K,/.,m,Y-'\Y°'') 

= p(Y''^Y-"|©)p(0 1^,l/)p(^la,«) 

X p(a)p(/c)p(»/ 1 /i, m)p(/i)p(m) 
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where individual distributions are given in Section 3.1. Having observed Y"'". we obtain 

the posterior distribution, 

«  n n  n f e  [ n 4  ^  
j=i fc=i Li/eP \ ill/ ) «=i 

nn{ n . )npf^}  

J  (  I  YOTK-L  1  
(3.25) 

^ n(^) 
,  M r -

\ f i C i J  C i r ( C 2 )  

m — 1  _  

f i / m r { m )  

1  N e " ' ' ' ' " '  

with (ci, C2,. •., Cfi) constants. 

As in the previous section, let /3=(r^,f;^,a^, K,^, m)^ represent all of the parame­

ters other than 0. Then we can factor (3.25) as 

p(0,/3, V"" I Y"'') = p(0 I Y'''")p(/3, Y""" | Y°^^). (3.26) 

Simulation from the first term is straightforward because we have complete data zind 

conjugate priors. We focus on the second term and describe an MCMC approach to 

simulating from the marginal posterior distribution of ^ and Y^". 

The MCMC algorithm that we use for drawing samples from the posterior distribu­

tion, p(/3, Y*"" I Y) can be thought of as a Gibbs sampling algorithm comprising two 

steps: 

1. Simulate/3 from p(/3 | Y^", Y"^'); 

2. Simulate Y"*" from pCY"*" | /3, Y°'') = p(Y^" 1 7,1?, Y°^'). 
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In practice each of the steps itself requires one or more steps of a MCMC aJgorithm be 

carried out. To generate a sajnple for the first step we use a single step of the complete 

data MCMC algorithm of Section 3.2 because we are conditioning on the complete data 

Y = (Y"''', Y""'). This mezins that within step 1 we carry out one-step of the random 

walk Metropolis algorithm for each component of /3. The conditional distribution in the 

second step, that of Y"*" given /3 and Y°'*, actually depends only on 7, »/ and Y"'". The 

posterior of Y'"" given Y°''*, 7 and rj is obtained, up to a constant of proportionality, 

by examining the relevant terms of (3.8) 

p(Y"" I 7,>7,V'-) 

r(,,) J 

= nn 
j=l k=l IsftD) 

/ r' I Vijfc + + n yijk 
x T l - ^  ^ 

I I  n  11  n  (y") }  n  ̂  |  (3.2?)  
j=i jt=i L Ue/" \ jk/ ) i-i \ i/gp / ) 

The final expression for the posterior distribution of Y*"", (3.27), is a product kernels 

of Dirichlet-Multinomial distributions for each pattern of missingness/subcluster/cluster 

combination. For example, consider missingness pattern u' for cluster j, and subcluster 

k. Generation of the vector is equivalent to allocating the tijl observations to the 

c e l l s  i n  •  R e c a l l  Y i j k  =  0  f o r  a n y  i  n o t  i n  A u »  b y  d e f i n i t i o n .  T h e n  p ( Y j ^  |  Y ° ' " ' ,  7 ^ - ,  r j j )  

is 

(3) n r I lis + + tin + E I (3-28) 
\ ^ j k /  V  " C P  I  

\ / 

which is the kernel of Dirichlet-Multinomial distribution with parameters rijl and Yijk + 

l i j V j  + H We sample from this distribution by generating a probability vector of 
"CP 
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dimension | | from a Dirichlet distribution with peurauneters Y'ijk + jijTjj + 
"GP 

for i € Au'. Then we sample from a multinomial distribution with sample size rij)^ using 

the probability vector generated from the Dirichlet distribution. We can draw samples 

from the posterior given in (3.27) by cycling through all the patterns of missingness for 

each subcluster of each cluster. We then have a realization of fully observed responses 

for each cluster and each subcluster, which allows us to return to the first step of our 

basic algorithm. 

Summarizing we use a MCMC procedure to get samples from the joint posterior 

distribution of and V"" given the fully observed Y®'". Once realizations from that 

distribution have been drawn, realizations from the posterior distribution of 0 can be 

obtained. Simulation based inference proceeds cis in the complete data case. 

3.4 Simulations 

In order to better understand the nature of the three-stage hierarchical model, we 

created five simulated data sets. We simulated multinomial data with four possible 

responses. Each simulated data set contained four PSU's and three SSU's within each 

PSU. This small size facilitated looking at posterior distributions later on. The number 

of observations within each SSU weis fixed at 40. For each of five simulated data sets we 

used the same vector of superpopulation proportions, ot= (0.15,0.25,0.20,0.40)^. We 

varied 17 aad K to create different scenzurios for within and between PSU variation. In 

each scenario, we generated a single sample following the hierarchiccil model described 

in Section 3.1. 

Each simulated data set is analyzed using the MCMC approach of Section 3.2.2. For 

purposes of ancdysis we fixed ci = 0.005, ca = 3, C3 = 0.1, C4 = 0.01, cs = 0.1, Cfe = 0.01 

in the prior distributions for m, fi, k. This gives a prior distribution for m with mean 

10 and variance 1000, for fi with mezin 10 aind variance 1000 and for k with mean 10 
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and variance 1000. In fact the distribution used to generate the values of K and T}  which 

generate the simulated data were not tilways consistent with this prior distribution. 

We return to this point later. The results given for each simulated data set are based 

on the last 3000 iterations of four MCMC chains of total length 4000 iterations each: 

convergence was determined based using the PSR discussed in Section 2.4. 

We analyze five different simulated data sets. The first four simulations represent a 

form of factorial design on the parameters K and i/. We considered high and low vcdues 

of K and Tj in each possible combination. High levels of k (or rjj) indicate that the cluster 

(or  subclus ter )  propor t ions  a re  s imi lar  to  each  o ther .  Likewise ,  low leve ls  of  K  (or  r j j )  

indicate that there is considerable variability among the proportion vectors for different 

clusters (or subclusters). The final simulation considers the extreme case in which all 

SSU's are identical. That case, corresponding to infinitely large K and »/, is equivalent 

to sampling data from a single multinomial distribution — the clustering contains no 

information. 

Table 3.1 Data for Simulation 1 

PSU SSU Yiji. 

Counts 
^'3jk 

1 1 0 9 7 24 
1 2 0 4 7 29 
1 3 0 18 0 22 
2 1 20 0 4 16 
2 2 25 6 9 0 
2 3 9 12 9 10 
3 1 3 9 2 26 
3 2 7 11 5 17 
3 3 3 9 2 26 
4 1 0 15 16 9 
4 2 1 11 16 12 
4 3 1 12 13 14 
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Table 3.2 Results for Simulation 1 

Posterior 

Parameter 
Simulated 

Value Data 
Posterior 

Mean 
Percentiles 

2.5"* 50"' 97.5"' 

0.150 0.144 0.115 0.037 0.108 0.243 
Q2 0.250 0.242 0.271 0.129 0.269 0.417 
013 0.200 0.188 0.208 0.096 0.212 0.351 
K 8.785 7.452 2.624 7.417 22.442 
111 0.025 0.000 0.006 0.001 0.009 0.080 
7l2 0.075 0.258 0.254 0.136 0.256 0.423 
713 0.142 0.117 0.125 0.046 0.127 0.292 
Vi 9.995 12.052 1.762 11.343 90.133 
721 0.340 0.450 0.351 0.121 0.368 0.584 
722 0.206 0.150 0.160 0.052 0.167 0.334 
723 0.253 0.183 0.215 0.089 0.220 0.388 
m 11.440 5.656 1.589 5.695 9.890 
731 0.098 0.108 0.103 0.050 0.105 0.181 
732 0.289 0.242 0.245 0.165 0.246 0.340 
733 0.143 0.075 0.086 0.038 0.088 0.165 
m 10.061 89.185 16.873 77.857 995.196 
741 0.046 0.017 0.023 0.009 0.024 0.079 
742 0.323 0.317 0.306 0.190 0.310 0.414 
743 0.377 0.375 0.356 0.240 0.360 0.476 

10.505 87.716 13.948 82.666 715.771 
10.000 69.007 25.808 61.5.37 377.862 

m 100.000 1.499 0.135 0.629 3.700 

Simulation 1 

The first simulated data set is show in in Table 3.1. For this data set we chose both K and 

Tj to be small; the elements of K and rj are rcindom draws from a gajnma distribution 

with mean 10 and variance 1 (equivalent to choosing fi = 10 and m = 100). Note 

that the PSU proportions appeau- quite variable <is expected with a small k. The first 

PSU has large entries for the fourth column and no observations in the first column. 

Whereas the second PSU has a reasonably high frequency in the first column. Table 3.2 



62 

presents the results of the posterior analysis of the first simulated data set. The first 

column is  the simulated value that  was used to create the data set .  Natural ly,  r j  and K 

are all close to 10. The second column labeled "Data" is gives the sample proportions 

for each PSU (which correspond to the parameters 7) and for the entire population 

(which corresponds to the parameter a). For the most part the posterior distribution 

summarizes the data well for this simulation. In particular the simulated proportions, 

with the exceptions of 712 , are all inside the central 95% posterior interval. This is the 

interval formed by the 2.5^'' and QT.S"* percentiles. The posterior credible sets for 7^2,773, 

and r/4 do not contain the simulated values for these parameters. Finally the model does 

a poor job of modeling the hyperparameters and m. 

We first comment on 712. The data that we observed is quite surprising for the first 

PSU. For a Beta-binomial distribution with n = 120, a = 0.74 and 0 = 0.92, using a 

Gaussian approximation, we find that we should expect about 95% of all realized pro­

portions to fall between 0.000 and 0.125 or counts between 0 and 15. The proportion 

that was observed fzills quite far outside this interval, 0.258 or 31 observations. Con­

sequently, it is not surprising that the 95% posterior credible set did not contain the 

simulated value. Turning to the elements of 17, we first note that the data in PSU's 3 

and 4 cire quite similar across SSU's. Thus the data are consistent with larger values for 

Tjz and 774. The posterior intervals are wide reflecting the fact that inference for each •qj 

is based only on three SSU's. It is likely that having large estimated values for 773 and 

774 force the posterior inference for /i to concentrate on larger values and the resulting 

variability in the distribution of 7/j's leads to small values of tti. A key point appears to 

be that given the small number of PSU's aind SSU's the "vague" prior distribution may 

be leading to some of the poor performance observed here. This will be addressed in 

future work. 

The results also demonstrate the typical behavior for parameter estimates under the 

hieraxchical model. Posterior means for the 7's are a compromise between the data from 
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the specific PSU, (listed under Data) and the total population (information contained in 

a). Thus the posterior mean for 721 is a compromise between the sample proportion for 

that PSU (0.450) and the overall proportion in category 1 (0.144). Because the model 

suggests considerable variability among PSU's the compromise is weighted toward the 

data from PSU 2. 

Table 3.3 Data for Simulation 2 

Counts 
PSU ssu Viifc Y2Jk V3,fc ^  4 j k  

1 1 7 5 7 21 
1 2 0 12 2 26 
1 3 2 7 9 22 
2 1 3 12 10 15 
2 2 8 12 9 11 
2 3 2 6 12 20 
3 1 5 9 9 17 
3 2 6 11 6 17 
3 3 3 14 12 11 
4 1 6 11 6 17 
4 2 8 6 8 IS 
4 3 6 12 17 5 

Simulation 2 

The data for the second simulation, found in Table 3.3, is quite different from the first. 

In the first, we simulated small values for the superpopulation peu-ameters K and the 

Tjj's. Here we simulate larger values for these parameters, all are approximately equal 

to 100. The data are much more consistent when we consider the SSU's within a single 

PSU or when we compare PSU's. The posterior analysis reflects this change. The 95% 

posterior intervals contain the simulated values for zdl of the model parameters except 

731 and m. For 731, the posterior distribution matches the simulated data quite closely 

but the data are far from the true parameters. This is not unexpected with so maoiy 
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Table 3.4 Results for Simulation 2 

Posterior 
Simulated Posterior Percentiles 

Parameter Vzilue Data Mean 2.5"* 50"* 97.5"* 

Q\ 0.150 0.117 0.118 0.073 0.118 0.181 
Q2 0.250 0.243 0.250 0.185 0.249 0.326 
otz 0.200 0.223 0.223 0.160 0.224 0.294 
K 104.685 74.183 17.319 74.704 313.856 
7ii 0.128 0.075 0.088 0.041 0.091 0.151 
In 0.205 0.200 0.230 0.154 0.232 0.313 
7l3 0.179 0.150 0.187 0.117 0.188 0.272 

100.107 51.459 14.076 54.707 139.923 

721 0.124 0.108 0.110 0.062 0.112 0.177 
722 0.270 0.250 0.248 0.172 0.249 0.329 
723 0.220 0.258 0.240 0.175 0.239 0.325 

m 99.774 65.168 23.274 65.453 179.586 
731 0.059 0.117 0.116 0.069 0.117 0.179 

732 0.247 0.283 0.266 0.193 0.267 0.354 
733 0.260 0.225 0.223 0.151 0.225 0.300 

96.608 69.607 26.000 68.213 214.595 
741 0.169 0.167 0.141 0.087 0.142 0.219 
742 0.252 0.242 0.247 0.177 0.247 0.342 
743 0.247 0.258 0.238 0.166 0.238 0.324 

96.631 54.405 15.488 56.721 154.882 
100.000 64.886 28.920 65.009 144.178 

m 1000.000 14.859 0.806 15.183 225.576 

pareimeters. For the posterior distribution of m, recall that 

Var[Tij \ fi,m]= Im. (3.29) 

Consequently, the value of m models the eimount of variability in the r/j's. Since the 

posterior distributions for the T/j's reflect much more variability than we would expect, 

it is, perhaps, not sxirprising that the posterior distribution of m does not contain the 

simulated value 1000. Once again the small number of PSU's is likely responsible. 

Simulation 3 
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Table 3.5 Data for Simulation 3 

Counts 
PSU SSU Y2jk Yzjk VAjk 

1 1 3 12 4 21 
1 2 0 8 3 29 
1 3 3 22 5 10 
2 1 7 9 11 13 
2 2 7 8 11 14 
2 3 17 6 3 14 
3 1 0 5 11 24 
3 2 1 13 0 26 
3 3 0 6 3 31 
4 1 3 14 11 12 
4 2 4 13 8 15 
4 3 8 6 8 18 

For the third simulation we chose value for K to be small, (a sample from a distribution 

with mean 10) and the jy^'s to be large (sampled from a distribution with mean 100). 

The data are given in Table 3.5. The data exhibit great variability across PSU's but 

little variability among SSU's within a single PSU. The results of this analysis can be 

found in Table 3.6. The posterior 95% intervals for zdl but one of the parameters include 

the simulated values. The only parameter that was not included in the 95% credible set 

was 7/3. These results highlight the benefit of having independent prior distributions on 

K and the T/J'S. In this caise there is a clear difference between the small value of k and 

the larger values of the r/'s. A common joint distribution for k and the rj^s might not 

allow for this possibility. Once again posterior inference for m is poor as the posterior 

interval is wide, though for this data set it does contain the true value, which tend to 

be smaller and those for the r;'s which are generally Izirger. 

Simulation 4 

For the fourth simulation we reversed the scenario of simxilation 3. We chose a large 
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Table 3.6 Results for Simulation 3 

Paxaxneter 
Simulated 

Value Data 
Posterior 

Mean 2.5''' 

Posterior 
Percentiles 

SO''" 97.5"' 

0.150 0.110 0.112 0.053 0.112 0.203 
"2 0.250 0.254 0.256 0.161 0.257 0.376 
otz 0.200 0.162 0.173 0.096 0.176 0.272 
K 8.600 23.473 6.738 22.667 103.207 
711 0.059 0.050 0.068 0.025 0.070 0.151 
712 0.316 0.350 0.316 0.214 0.318 0.430 
713 0.061 0.100 0.130 0.068 0.131 0.227 
Vi 41.158 27.009 5.986 29.340 94.543 
721 0.208 0.258 0.206 0.119 0.210 0.312 
722 0.232 0.192 0.213 0.132 0.214 0.319 
723 0.178 0.208 0.195 0.120 0.197 0.292 
m 98.564 43.962 15.390 40.954 193.569 
731 0.011 0.008 0.036 0.006 0.039 0.137 
732 0.203 0.200 0.229 0.128 0.228 0.378 
733 0.108 0.117 0.121 0.051 0.124 0.228 
V3 116.549 18.609 2.268 23.899 67.538 
741 0.157 0.125 0.122 0.063 0.123 0.207 
742 0.321 0.275 0.264 0.182 0.265 0.367 
743 0.207 0.225 0.210 0.129 0.213 0.306 

116.758 49.379 17.223 43.278 292.841 
100.000 45.887 22.631 43.336 116.693 

m 100.000 4.812 0.254 3.672 150.847 

value for K and smedl values for the elements of jj. This allows for great variability 

among SSU's within a PSU, but somehow little variation among PSU totals. Table 3.7 

contains the data for this simulation. The results of the posterior analysis can be found 

in Table 3.8. In this instance, 95% posterior intervals contain the true simulated values 

for all of the proportions a and F , as well as for f| and k. However, the model does 

not do well in estimating the simulated values for n and m. This is especially surprising 

for n , since ^ is the expected value of the T/'S. Here it is not close to the average of 
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Table 3.7 Data for Simulation 4 

PSU SSU 
Counts 

Y2jk Yzjk Y^jk 

1 1 17 0 7 16 
1 2 3 2 20 15 
1 3 1 6 22 11 
2 1 3 13 19 5 
2 2 2 9 2 27 
2 3 3 23 11 3 
3 1 3 17 7 13 
3 2 0 11 6 23 
3 3 10 4 3 23 
4 1 12 3 1 24 
4 2 1 6 5 28 
4 3 11 18 3 8 

the posterior meaxi of the ?7's. Once again the best current explanation is that the prior 

distribution is not completely dominated by the smEill number of PSU's providing data. 

Simulation 5 

For the final simulation we chose to simulate and analyze data in which all 12 SSU's 

have exactly the Scune underlying probability vector. This corresponds to infinite values 

of K and Ti which yield Dirichlet distributions with no variability. We analyzed the data 

as if it were generated in the same manner as the other simulations, via a three-stage 

cluster Stimple with 4 PSU's and 3 SSU's within each PSU. The data for this simulation 

is found in Table 3.9. The results of the posterior analysis axe fovmd in Table 3.10. 

We first note that the true values for proportions are contained in the 95% posterior 

intervals for a and the 7j 's. The posterior means for K and the r?'s is larger than we 

observed in any of the other simulations. The large posterior values for « cind for the 77's 

clearly suggest that there is great consistency within clusters. If we increase the sample 
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Table 3.8 Results for Simulation 4 

Parameter 
Simulated 

Value Data 
Posterior 

Mean 2.5"' 

Posterior 
Percentiles 

50"' 97.5"' 

"1 0.150 0.110 0.148 0.078 0.150 0.248 
02 0.250 0.233 0.232 0.123 0.236 0.342 
0:3 0.200 0.220 0.207 0.117 0.209 0.333 
K 105.615 42.309 9.799 40.624 212.801 
711 0.131 0.175 0.146 0.069 0.148 0.265 
712 0.205 0.067 0.165 0.060 0.174 0.316 
713 0.248 0.408 0.270 0.142 0.271 0.444 

m 10.718 6.596 1.757 6.445 25.148 
721 0.097 0.067 0.132 0.055 0.136 0.247 
722 0.273 0.375 0.285 0.123 0.292 0.448 
723 0.257 0.267 0.218 0.114 0.219 0.368 

9.309 6.914 2.708 6.817 18.258 
731 0.089 0.108 0.116 0.047 0.120 0.222 
732 0.265 0.267 0.241 0.112 0.248 0.364 
733 0.239 0.133 0.179 0.094 0.179 0.311 

10.850 14.546 3.815 14.472 58.304 
741 0.210 0.200 0.160 0.072 0.164 0.290 
742 0.250 0.225 0.226 0.115 0.230 0.363 
743 0.171 0.075 0.161 0.073 0.163 0.295 
^74 10.378 7.490 2.269 7.662 20.682 

10.000 39.021 16.417 38.085 103.908 
m 100.000 0.723 0.145 0.732 3.463 

size within each SSU, then we would expect the posterior means for these quantities to 

increcise even further. 

To summarize these simulations we note that the posterior distribution for each 

simulation modeled well the superpopulation from which it was generated. In particular 

the posterior stmimaries of the proportions were accurate reflections of the data sets they 

were meant to describe. That is, the model performed well in balamcing the hyperprior 

distribution for the population zind the PSU level data when making inference for an 
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Table 3.9 Data for Simulation 5 

PSU SSU y'ijk Y2Jk 
Counts 

Yzjk Y,jk 

1 1 7 13 6 14 
1 2 7 9 10 14 
1 3 2 13 9 16 
2 1 5 14 6 15 
2 2 4 13 7 16 
2 3 5 7 12 16 
3 1 8 11 7 14 
3 2 9 7 7 17 
3 3 8 9 6 17 
4 1 5 13 6 16 
4 2 6 8 11 15 
4 3 4 12 9 15 

observed PSU. 

One major drawback to these simulations is the small number of PSU's four. That 

small number of PSU's provides little information about the hyperparameters of the 

model. Consequently the posterior intervals for these quantities often did not include 

the simulated value. Additional simulations with more PSU's is one way to address this. 

An alternative is to consider a more informative prior on m when the number of PSU's 

is small. 

3.5 Application: The Slovenian Public Opinion Survey 

In this section, we apply the methodology of this chapter to the 1990 Slovenian 

Public Opinion (SPO) survey that was described in Section 2.6. Recall that the SPO is 

a three-stage cluster sample. Of the 1000 clusters, or primary sampling units (PSU), 139 

were sampled and then 3 of 16 secondary sampling units (SSU) were chosen within each 

PSU. Finally 5 individuals were chosen from the approximately 100 individuals within 
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Table 3.10 Results for Simulation 5 

Parameter 
Simulated 

Value Data 
Posterior 

Mean 2.5^'' 

Posterior 
Percentiles 

50"^ 97.5''' 

Cki 0.150 0.145 0.149 0.107 0.149 0.197 
02 0.250 0.268 0.267 0.212 0.268 0.329 
03 0.200 0.200 0.198 0.148 0.199 0.258 
K 128.722 33.525 131.940 419.757 
111 0.133 0.140 0.093 0.141 0.199 

712 0.292 0.274 0.207 0.275 0.348 
713 0.208 0.203 0.147 0.203 0.276 

m 171.537 54.764 167.773 660.918 
721 0.117 0.134 0.088 0.135 0.189 
722 0.283 0.274 0.214 0.274 0.344 
723 0.208 0.199 0.142 0.200 0.267 

m 167.753 52.651 164.125 650.558 
731 0.208 0.171 0.120 0.172 0.234 
732 0.225 0.248 0.185 0.250 0.315 
733 0.167 0.183 0.129 0.185 0.249 
m 179.377 57.831 173.183 793.118 
741 0.125 0.140 0.093 0.140 0.201 
742 0.275 0.267 0.206 0.267 0.338 
743 0.217 0.205 0.144 0.205 0.270 

74 174.213 54.409 166.285 692.557 
174.615 65.821 169.783 568.676 

m 14.429 0.781 17.353 172.238 

each SSU, Like most large scaJe surveys, not all of the selected individuals responded. 

However, 2074 of 2085 or over 99% did; this number does include some substitutes. More 

details on the SPO can be found in Section 2.6 of this dissertation. In the three-stage 

analysis, only 138 of the 139 sample PSU's were considered because the SSU's for one of 

the PSU's were not correctly labeled. Since represents a small proportion of the data, 

deleting that PSU should have little effect on the overall results. 

We report resxilts for the population level quantities ^i, ^2i ^3, and ^4 (defined in 
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Section 3.2.3) as we did in Section 2.6. Here we also consider the cluster-level parameters 

of the model as quantities of interest. For simplicity, we focus on a subset of the 138 

PSU's. The data for the subset of clusters that we consider cire listed in Table 3.11. 

Table 3.12 contains brief explanations for why these particular clusters were chosen. 

3.5.1 Complete data results 

We rem 4 MCMC chains of length 2000 using the cdgorithm of Section 3.2.2. We then 

used the methodology of Gelman and Rubin to assess whether the last half of these chains 

could be taJcen as draws from the posterior distribution of p(/3 | Y), where /3 contains all 

of the parameters except 0. To complete the Monte Carlo draws from the posterior dis­

tribution, we next sampled from p(© | Y, /3). For these realizations, we used each /3 draw 

to generate a complete set of 6jkS. Summaries of the posterior distributions for the pop­

ulation proportions a are contained in Table 3.13 along with results for the parameters 

K, and m. As we might expect they are quite similar to the results in Section 2.6. Focus­

ing on the posterior mean we notice only slight differences in the proportions for the two-

stage and three-stage models. The variability of the posterior distribution as measured 

by the widths of the 95% posterior intervals is also quite similar, though there seems to be 

slightly more variability in the three-stage model. The survey proportions for the eight 

categories are (0.010,0.000,0.005,0.006,0.047,0.006,0.109,0.819)^, which correspond to 

the following responses {NNN,NNY,NYN,NYY,YNN,YNY,YYN,YYYf to the 

questions concerning Attendance, Independence and Succession, respectively. 

The posterior mean for each element of a is within a half percent of the survey 

toteil. This discrepancy is likely due choosing a non-informative prior distribution for the 

proportions. The posterior distribution for « is concentrated on large values suggesting 

that the overall proportions for the PSU's cire similar. The posterior distribution of 

fi which measures the expected vzJues of the rj/s is also concentrated on large values. 

This means that SSU's within a single PSU tend to be relatively homogeneous. But the 
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Table 3.11 SSU Totals for Several PSU's 

Results for SPO questions concerning 
Attendance, Independence, Secession 

PSU SSU NNN NNY NYN NYY YNN YNY YYN YYY 

1 1 0 0 0 0 0 0 1 3 
1 2 0 0 0 0 0 0 1 3 
1 3 0 0 1 0 0 0 1 3 

3 1 0 0 0 0 0 0 0 4 
3 2 0 0 0 0 0 0 0 4 
3 3 0 0 0 0 0 0 0 2 

5 1 0 0 0 0 1 0 0 2 
5 2 0 0 0 0 1 0 1 2 
5 3 0 0 0 0 0 0 1 2 

8 1 0 0 0 0 0 0 1 2 
8 2 0 0 0 0 0 1 0 2 
8 3 0 0 0 0 0 0 0 4 

9 1 0 0 0 0 0 0 1 2 
9 2 0 0 0 0 0 0 0 3 
9 3 0 0 0 0 0 0 0 4 

28 1 0 0 0 0 0 0 0 5 
28 2 0 0 0 0 0 0 0 6 
28 3 0 0 0 0 0 0 0 4 

40 1 0 0 0 0 1 0 2 1 
40 2 1 0 0 1 0 0 0 2 
40 3 0 0 1 0 0 1 0 2 

Note: the last two columns represent the number of individuals who said that they 
would attend and vote yes. 
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Table 3.12 Reasons for Choosing Selected PSU's 

PSU Reasoning 

1 Two of the three subclusters are identical 

3 Only YYY responses 

5 Two responses that would count as No's in the plebiscite 

8 PSU totals similar to overall population totals 

9 All responses either YYN or YYY 

28 All YYY responses(and no nonrespondents) 

40 At least one response in each category except NNY 

small value of m indicates that there is a leirge amount of variability in the t/j's with 

some exhibiting considerable heterogeneity. For several of these parameters the PSR was 

larger than 1.2. A large value of PSR for a single parameter indicates that the MCMC 

algorithm may not have converged to the "target" posterior distribution. Consequently, 

we treat the results presented here as tentative. 

We now focus on the cluster level parameters. We report only the posterior means 

for these parameters though full posterior distributions are available. Table 3.14 displays 

the posterior means for fj £ind rjj for the seven PSU's identified earlier. The first row of 

Table 3.14 gives the posterior means for the population proportion a. The last entry of 

the first row is the posterior mean for K. The remaining rows correspond to several PSU's 

identified in Tables 3.11 emd 3.12. The key point about the results in Table 3.14 is that 

each row of the table is a weighted averages of population proportions (a) cind the data 

for that particular PSU. For example the sample proportions for the data in PSU 1, see 

Table 3.11, were larger in the 3'"'' and 7^^ responses thain for the population cis a whole. 

Specifically, one of the thirteen responses (0.077) gave the response NYN compared to 
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Table 3.13 Summaries of the Posterior Distributions for Model Pa­
rameters 

Posterior 
Mean 2.5"' 

Percentiles 
50"* 97.5"" 

"1 0.012 0.008 0.012 0.017 
0^2 0.001 0.000 0.001 0.002 

0.007 0.004 0.007 0.013 
O.OOS 0.005 0.008 0.012 
0.050 0.037 0.052 0.061 

^6 0.007 0.005 0.007 0.011 
Ot7 0.113 0.097 0.113 0.129 
018 0.802 0.790 0.810 0.832 

181.235 125.647 180.939 236.344 

156.990 67.704 143.416 431.160 

'^m 0.546 0.376 0.544 0.816 
indicates a PSR > 1.2. 

less than 0.01 in the entire sample. As a consequence the posterior mean for 713, the 

posterior proportion of respondents choosing NYN, is higher in those categories than the 

population level proportions, Q3. The actual posterior mean is heavily weighted toward 

the population parameter because the PSU 1 estimate is based on only 13 observations. 

Across the seven PSU's we find that the posterior inference at the PSU level is a 

balance between the population as a whole aad the data in each PSU, with the balance 

heavily weighted towtirds the population. There are two contributing factors. First the 

small sample size within each PSU means there is considerable uncertainty about the 

proportions in the PSU if we rely only on data from that PSU. Instead the hierarchical 

model eiUows the inference to "borrow strength" from data in other PSU's. Second, 

as noted earlier it appears that K is large and that PSU's are quite similar. This edso 

supports the notion of each PSU borrowing strength from the others. 
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Table 3.14 Posterior Means of Probability Vectors for Selected Clusters 

Posterior Proportions by Category 
7ij 72i 73i 74j 75i 76j 77; 78j 

PSU NNN NNY NYN NYY YNN YNY YYN YYY nj 

a  0.011 0.001 0.006 0.007 0.047 0.006 0.108 0.814 181.235 
1 0.007 0.000 0.008 0.004 0.042 0.004 0.115 0.820 =130.408 
3 0.008 0.000 0.003 0.004 0.042 0.002 0.096 0.838 =52.615 
5 0.008 0.000 0.003 0.004 0.052 0.004 0.111 0.818 =170.379 
8 0.008 0.000 0.003 0.004 0.047 0.004 0.106 0.828 =98.228 
9 0.008 0.000 0.003 0.004 0.042 0.004 0.106 0.833 =45.126 

28 0.008 =0.000 0.003 0.004 0.041 0.004 0.100 0.840 =133.929 
40 0.013 =0.000 0.008 0.009 0.047 0.008 0.109 0.805 =90.577 

indicates a PSR >1.2 

Finally as the last analysis of this section we consider some of the finite population 

quantities of interest for the SPO. These quantities are defined axid described in Section 

3.2.3. Table 3.15 gives summaries for the posterior distributions of these quantities. The 

95% posterior intervais for the qutintities ^1,^2, ^3 and ^3 are almost identical, as are their 

posterior meajis. These intervals cire all slightly smaller thein the design-based confidence 

interval for the population proportion. The design-based 95% confidence interval has a 

center closer to that for the population as a whole, 0.927. We attribute this difference 

to the "non-informative" prior distribution placed on the population proportion, a. 

The Dirichlet (1,...,1) prior distribution hcis a prior mean of 0.250 on the response 

categories of interest, so some modest shrinkage occurs. This prior is also likely part of 

the explanation for the smaller veiriability of the f's relative to the design-based inference. 

3.5.2 Missing data results 

Here we present the results for the three-stage model which incorporates the p<irtially 

observed responses. As with the auicdysis that included only the fully observed responses, 

we ran three MCMC chains for 2000 iterations and assessed the convergence of these 
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Table 3.15 Proportions of Slovenian Voters Who Intend to Attend 
the Plebiscite and to Vote for Independence: Three-stage 
Results 

Parameter 
Posterior 

Mean 2.5"' 
Percentiles 

50"* 97.5"^ 

fi 0.917 0.902 0.918 0.931 
0.918 0.904 0.918 0.931 
0.919 0.905 0.919 0.932 
0.921 0.908 0.921 0.933 

Design-based 0.927 0.900 0.927 0.954 

chains using the methodology of Gelman and Rub'n. The difference is that each MCMC 

step includes a draw from the posterior distribution of Y"*", the partially observed 

responses. Once samples from \ are obtained, we generate samples 

from the posterior distribution of the remjiining parameter © using the distribution 

p(© I Using these sampled values from the posterior, we can make 

inference about the quantities of interest defined in Section 3.2 of this chapter. 

Table 3.16 contains the results for the parameter a which represents the mean of 

the PSU level probability vectors, and the associated hyperparameters k, fx, emd m. 

As in the two-stage model there are differences between the anzilysis of the completely 

observed data and the analysis that also incorporates the partially observed data. The 

most noticeable of these is the difference in the population level proportions, a. As 

with the two-stage model there is an upward shift of the posterior intervals for the first 

seven proportions which include No as one of their responses. The distribution for the 

S"' probability which corresponds to Yes responses for all three questions decreases. It 

should also be noted that for the analysis incorporating the missing data there is a slight 

increase in the posterior mean (and quantiles of) K and a slight decrezise in the posterior 

mean of /z, and a slight increase in the posterior mean for m. As for the ch<inges in 
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Table 3.16 Summaries of Posterior Distribution for Model Parameters 

Posterior 
Mezm 2.5"' 

Percentiles 
50"' 97.5"* 

Qi 0.027 0.022 0.027 0.033 
0.005 0.004 0.005 0.008 
0.008 0.005 0.009 0.011 
0.010 0.007 0.010 0.014 
0.068 0.051 0.075 0.084 
0.008 0.005 0.009 0.014 

Q7 0.128 0.117 0.127 0.142 
Qs 0.744 0.717 0.744 0.775 

214.090 137.550 214.556 403.328 

50.543 27.150 48.769 117.626 

m'̂  1.626 0.674 1.603 3.649 
indicates a PSR >1.2 

the distributions of k, /J. and m, we can infer that the cluster-level probability vectors 

are more similar (larger «), while the subcluster-level probability vectors are less similar 

(smaller for the missing data analysis thaa in the complete data analysis. 

The cluster-level parameter posterior means are given in Table 3.17. A s  we saw with 

the complete data case, the cluster-level proportions are weighted averages of the data 

in that cluster and the population proportions. In this case since K is larger relative 

to the 77's, the estimated cluster-level proportions are weighted quite heavily toward 

the population proportions. The variability that is incorporated through the partially 

observed data heavily affects the values for each r}j\ the posterior mean of rjj is lower 

for each of the seven PSU's when the incomplete cases cire incorporated. Recall that 

a small r/ implies more variability among the subcluster proportions within a cluster. 

One possible explanation is that each partially observed response can add additional 

variability to the subcluster estimates. 
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Table 3.17 Results for Selected Clusters 

Posterior Means for Probability Vectors for Selected Clusters 

7ij 72j 73J 74j 75j 76j 77j 78j 

PSU NNN NNY NYN NYY YNN YNY YYN YYY V j  

a 0.027 0.005 0.008 0.010 0.068 0.008 0.128 0.744 214.090 
1 0.024 0.004 0.010 0.010 0.062 0.007 0.132 0.751 47.562 
3 0.024 0.003 0.006 0.007 0.062 0.006 0.121 0.771 24.707 
5 0.024 0.004 0.006 0.008 =0.075 0.007 0.130 0.746 40.665 
8 0.024 0.003 0.006 0.007 0.067 0.006 0.124 0.763 35.373 
9 0.023 0.003 0.005 0.007 0.063 <=0.008 0.125 0.766 35.006 

28 0.024 0.003 0.007 0.006 0.070 '0.006 0.129 0.755 25.752 
40 0.026 0.003 "^0.011 0.013 0.069 '0.010 0.127 0.741 43.856 

indicates a PSR >1.2 

Turning to the quantities, ^3 and ^4, we observe that the posterior distribution 

for each is nearly identical. This was also the case for the analysis of the fully observed 

data. The 95% posterior intervals for these quantities exhibit more variability than 

the equivalent quantities for the complete data. The addition of the partially observed 

responses shifts the center of the finite population proportions lower. As mentioned 

above this is likely due to the DK's representing more No than Yes responses. Finally, we 

note that all of finite population 95% posterior credible sets contain the actueil plebiscite 

vote. As we noted in Chapter 2, this is a positive outcome, but not a direct confirmation 

of the validity of the model. It is not possible to easily construct a design-based estimate 

that accounts for the missing data so no comparison is made. 

To conclude this section we note that the model appears to fit the data from the 

SPO quite well. Additioncdly the results indicate, bcised on the large values for K and 

the r/j's, that the cluster <ind subcluster probability vectors axe fairly homogeneous with 

little intracluster correlation. This is not surprising given some additioned information 

concerning the methodology for the SPO. In the SPO the frame is the voting registry 

for the population. PSU's were selected systematically. Then within a PSU the SSU's 
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Table 3.18 Proportions of Slovenian Voters Who Intend to Attend 
the Plebiscite and to Vote for Independence Incorporat­
ing Data from Partiiilly Observed Response: Three-stage 
Results 

Parameter 
Posterior 

Mean 2.5"' 
Percentiles 

50"^ 97.5"* 

0.869 0.853 0.868 0.892 

6 0.870 0.854 0.869 0.893 

6 0.870 0.854 0.870 0.893 
0.872 0.855 0.871 0.895 

Actual Vote 0.885 

are deterministically sampled from the beginning, middle and end of the selected PSU. 

Finally, the respondents are sampled systematically from the individuals in the selected 

SSU's, (Vehovar (1998)). 
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CHAPTER 4 TWO-STAGE MODEL WITH ADDITIONAL 

COVARIATES 

The 1990 Slovenian Public Opinion Survey (SPO) that was analyzed in the preceding 

chapters actually includes many more survey items than the three that were analyzed 

in Chapters 2 and 3. Under the assumption that the unobserved responses are missing 

at random (MAR), vcdues of observed variables are used to infer the likely answer of 

nonrespondents. It is natural to wonder if covariates other than responses to the three 

related questions would help draw more accurate inferences. The hierzurchical approach 

of Chapters 2 and 3 could be extended to accommodate additional categorical covariates 

by enlarging the number of multinomicd cells. However, with only five observations per 

subcluster the resulting data would be sparse in the multinomial. Here we consider an 

alternative model for analyzing multivariate binary responses from multi-stage cluster 

samples using latent vaxiables. The model that is outlined in this chapter is aji extension 

of that described by Chib aad Greenberg (1998). In Section 4.1 we introduce the model. 

Section 4.2 outlines an approach to simulating samples from the posterior distribution. 

4.1 Probability Model 

The model that we propose is extension of one that was developed by Chib 

and Greenberg (1998), hereafter abbreviated eis CG. CG proposed a multivariate probit 

model for analyzing multivariate binary responses and their relationship to covariates. 

For each of the responses, a Gaussian latent variable is hypothesized. These latent 
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variables can be thought of as measuring the strength of each respondent's opinion 

regarding that particular question. We assume that if the latent variable is positive, 

then the binary response is 1; if the latent variable is negative, the binary response is 

0. The covariates are linked to the binomial responses through these latent vziriables. 

Specifically, the latent variables Me cissumed to depend on the covariates through a 

Gaussian linear regression. Under the CG model, the regression coefficients are the 

same for each individual in the population. That is, the same relationship between the 

covariates and the latent variables exists for every member of the population. Given 

the covariates, CG treat the individuals as independent from each other, while allowing 

for the possibility that the binary responses are correlated. We extend this formulation 

to accommodate multi-stage cluster sampling. To do this we allow for the possibility 

that there will be different relationships between the covaxiates and the latent variables 

within each cluster. We specify a model that takes the the vector of slopes for the 

Gaussiem linear regression in each cluster as a random draw from a population of cluster 

level slopes. Additionzilly, we extend the CG model to incorporate missing data. In this 

we describe only the model for a two-stage cluster sample. The extension to multi-stage 

cluster sampling is straightforward. 

We repeat the two-stage cluster sample notation of Chapter 2. Here specifically we 

assume that the population is divided into M clusters, and we sample J clusters from 

among the M. The number of unsampled clusters is J'. A sample of size rij is selected 

from the population of Nj individucils in the cluster. Each respondent is asked a 

series of I questions with binary responses. Note that this is a change from Chapter 2 

where I represented the number of multinomieil cells. Let Yijk be the binary response for 

the f"' variable of the fc"' respondent in the cluster, where i = 1,...,/, j = 1,..., J 

and k = 1,..., nj. Now let Yjk = {Yijki ••••, yijk)^ be the vector of responses for the 

individual in the j"* cluster. Note that here if we construct a multinomial distribution for 

the binary responses then it will have 2' cells. The methods of Chapters 2 and 3 allow for 
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an arbitrary number of multinomicd cells. Additionally we assume that for each member 

of the population there is a p, —dimensional vector of covariates. X,jjt relevant to the f"' 

binary response for the A:"' respondent in the j"" cluster. There are two main uses for 

covariates. First, from a modeling perspective, we may be interested in the relationship 

between the covariates, X,jfc, and the response, Yijk, for each question i. The second 

potential use of covariates, which is more relevant for our example, is that they may 

provide additionzil insight for dealing with missing values. Recall that under the missing 

at random (MAR) eissumption, the probability of a variable's being missing can depend 

on values of other variables, but not on the value of the variable of interest. By adding 

covariates into the model we make the assumption of MAR more plausible. By further 

conditioning the unobserved responses on covariate information, we may improve our 

prediction of these responses. See Section 2.5 for a more detailed discussion of MAR. 

Throughout this chapter we assume that the covariates are completely observed. 

The probit model is most eeisily motivated by introducing latent variables. Moreover, 

the latent variable formulation provides advantages in computation cis well. We introduce 

Wjfc, a vector of latent variables associated with Yjk. The elements of Wj^ can be thought 

of as measures of the intensity of feeling for the A:"' individual in the cluster toward 

the questions. The binary responses are completely determined by the Wijk's. If Wijk > 0 

then Yijk = 1? whereas if Wijk < 0 then Yijk = 0. We model the lo.jfc's as Gaussian random 

variables and allow their mean to depend on the covariates. Let p =  ̂  pi  represent the 
1=1 

total number of covariates for all questions. This can include some duplicates if the same 

covariates are relevant for more than one response. We define X.jk as a p x / matrix of 

covariates with the i"' column equal to 

(4.1) 

where Ofc is a Ar-dimensional vector of zero's. Thus each element of Xj/t contains the 
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covajiates relevant to a single response. The Gaussiaii aissumptions for Wjk imply 

(4.2) 

where = i0ij,... ,/5/;) and Vj is a correlation matrix. Then the discrete distribution 

for Yjk is just the relevant probability computed from the multivariate distribution for 

Wjjt. 

P(Yii=yijl/Jj,Vi)= I ... I o,l,t\Xl0^.Vj)dt (4.3) 
M l j k  f f t j i c  

where 

where Hijk = (4.4) 
(0,oo) if yijk = l 

(-oo,0] if yijk = 0. 

.'^gain following CG, we let Hjk = Hijk x H2jk x ... x Hijk-

The reason that Vj is a correlation matrix rather than a covariance matrix is that 

the multivariate normal probability (4.3) is unchcinged if Vj and f3j are replaced by 

CVjC^ and C/3j for ajiy diagonai matrix C. Thus the coefficients /3j and a variance 

matrix cannot be uniquely identified. The resolution favored by CG is to take Vj zis a 

correlation matrix. 

We now take the basic CG model and incorporate hierarchical structure to account 

for the cluster Seimpling. For the twc^stage cluster sample, we model the relationship 

between the covariates, Xjfc, and the latent variable, Wj^, as the same for each individual 

within a cluster. This relationship is described by the vector of regression coefficients 

/3j. We then model the p-dimensional vector of regression coefficients for the cluster, 

/3j, as coming from a population of cluster-level regression coefficients, 

/3j-iVp(b,n). (4.5) 

To complete the Bayesian treatment of this model we specify prior distributions for 

Vj, b and fl. For convenience we par£imeterize Vj in terms of the upper triangular 

off-diagonal elements, (TJ = (o"(j)i2,..., <T(j)i/,... ,o'(j)/_i,/). The dimension of trj is q 
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= Note that this completely characterizes Vj, since Vj is a correlation matrix. 

The prior distribution for b, and trj are as follows, 

p(b) oc 1 (4.6) 

il ~ Inverse-Wisharti(Ip) 

p{tr j )I{ tr j  €  C)  

where C is a convex set in the hypercube [—1,1]' that yields a proper correlation matrix. 

Ip is the p—dimensional identity matrix and J is a degrees of freedom parameter. The 

prior on b is an improper distribution that is flat on the entire real line for each of 

the p elements. The Inverse-Wishcirt distribution is chosen as the prior distribution for 

n because it is the conjugate prior distribution for the variance matrix of a Gaussian 

distribution. As a consequence the conditioned posterior distribution of Q that arises in 

the Gibbs sampling algorithm of the next section will be Inverse-Wishart. Finally the 

choice of a uniform prior on each of the <Tj's is made to allow the greatest flexibility 

in the correlations between the latent variables within a cluster, i. e. to let the data 

dictate the correlations. This is a proper distribution since we are placing a uniform 

distribution on a finite space, C. Note that the improper prior distribution on b is not 

a problem; it is easy to show that the joint posterior distribution of all parameters is 

proper. 

4.2 Posterior Inference for Complete Data 

Section 4.1 describes a multivariate probit model for analyzing multivariate binary 

responses from a two-stage cluster sample. It should be noted that the logit is another 

popular trajisformation for binary data, see for example McCullagh and Nelder (1983) 

or Agresti (1990). Here, however, the Gaussieui latent variables that generate the probit 

model maJce it convenient to identify full conditional distributions for use in a Gibbs 
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sampling algorithm to sample from the posterior distribution of the model parameters. 

Gibbs sampling draws samples from the posterior distribution by cycling through a 

sequence of the full conditional distributions. A more detailed review of Gibbs sampling 

can be found in Section 2.4.1. We include the latent variables as unknown parameters 

in the posterior distribution. 

The full posterior distribution is 

p(/3,(T,b,n,w| Y,X) 

oc p(y3,<r,b,n,w,Y I X) 

= P(Y I w)p(w I /3,X,<r)p(/3 | b,n)p(b)p(n)p(<r) 

where f3 = (/Jp .. • and tr = {tri,... ,trj) are matrices of the the respective cluster-

level quantities, and X, w, and Y are introduced as notation for all of the covariates, 

latent variables and responses, respectively. Then, 

p(;3,<T,b,n ,w I Y,X) 

= ri n(2'')-'" I Vj 
j=l k=l ^ - •' 

X  n w ^ i n r ' ^ e x p f -V- b ^n-n/ J . - b ) }  ( 4 . 7 )  
J=l "• - •' 

X I % F\ N SIP 1 (^(4^0-1)) X N A<R,6C) 

x N N N ( W >o))'"*(A.„.<o))"'''" (4.8) 
j=l fc=l i=l 

From (4.7) we can derive the full posterior conditional distributions. They are as 

follows 

W j j t  \ Y j k ,  X j > ,  1 3 j ,  V j  ~  G a u s s i a n ( X y f c / 3 j  , V j ) I { Y j k e  H j k )  

/ 3 j  I  v f j k ,  X j f c ,  b ,  V j ,  n  ~  G a u s s i a n ( ^ ,  D )  
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fl I /3, b, i/ ~ 

where D 

Gaussian 11/J (O/J) 

T 

and 

p(o-j I w,X,/3^) tx Ij 1 Vj 

xeip{-l/2 - Xj.;8/V-' (w„ -

We then draw samples from the posterior distribution following the Gibbs Seimpling 

algorithm outlined in Section 2.4. 

Several aspects of this Gibbs sampling algorithm require elaboration. First, the 

posterior distribution of Vj is not a well-known form. So we cannot sample directly from 

the distribution p{(rj | bj, Wjjt,Xjfc). As a consequence we use a Metropolis algorithm 

for this step. We generate cajididates for (TJ via 

where I, is the ^-dimensional identity matrix. As before c is chosen to achieve tin 

efficient jumping rate; this approach to sampling non-standaxd distributions is described 

in Section 2.4. 

A second noteworthy aspect of the Gibbs sampling eilgorithm is that the conditional 

distribution of Wjk is a tnmcated multivariate Gaussian distribution. The region to 

which Wjfc is restricted, Hjk, is determined by the values of Yj^. To generate observations 

for this distribution we modify an algorithm of Geweke (1991) for generating realizations 

from univariate truncated Gaussian densities. Specifically, we generate a rezilization 

(4.9) 
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for each Wjk conditional on the remaining elements of Wjk- Thus, we can generate a 

truncated Gaussian variate for each of the q elements of Wjk. In this way we get a 

realization of Wjk that is restricted to Hjk. These restrictions also play a role in missing 

data. 

4.3 Posterior Inference with Mbsing Data 

The Gibbs sampling cilgorithm of Section 4.2 considers the czise where Yjk is com­

pletely observed for each individual. It is possible that one or more of elements of 

is missing but we continue to assume that X.jk is always observed completely. .•Vs in the 

preceding chapters we assume a MAR mechanism for the missing data. Under the MAR 

assumption, the probability that a response Yijk is missing may depend on observed 

variables (such as Xjfe or observed elements of Yjk) but not on the value (one or zero) 

that would have been observed. It is straiightforward to incorporate missing responses 

into the Gibbs sampling algorithm of Section 2.4. Unlike Chapters 2 and 3, we need 

not formally include a step for the missing binary responses because they are completely 

determined by the corresponding latent variables. Note that all of the latent variables 

ijUijk are "missing." For the latent variable corresponding to observed responses, we use 

a univariate truncated Gaussian distribution to simulate from their conditional posterior 

distribution with the relevant intervals equzil to Hijk where 

All that is required to incorporate the missing responses is to modify the definition of 

(4.10) 

(0,oo) if yijk = l 

Hijk = * (-oo,0) if yijk = 0 

(—00,00)  if j/,yifeis unobserved. 

(4.11) 
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So Wijk is generated from Jin ordinary untruncated Gaussizin distribution if yijk is un­

observed. Thus we simulate a complete set of latent variables aud proceed with the 

remaining Gibbs sampling steps as in Section 4.2 

4.4 Final Comments 

The multivariate binary model allows us to easily introduce covariates and perhaps 

thereby improve inference when there are unobserved responses. As future goal is to 

apply the models of this Chapter to the SPO survey data. 
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CHAPTER 5 CONCLUSIONS AND FUTURE WORK 

The goal of this work was to develop hierarchicai models for analyzing polytomous 

data from multi-stage cluster samples. In Chapter 2 we created such a model for poly­

tomous data collected from a two-stage cluster sample. This model takes observed 

responses within a PSU to follow a multinomial distribution and then models the PSU-

level probability vectors as draws from a Dirichlet population. At the top level of the 

hierarchy a hyperprior distribution placed on the Dirichlet parameters. The hyperprior 

distribution that was suggested is an improper distribution. We derived conditions un­

der which this improper hyperprior yields a proper posterior distribution. Additionally, 

we showed how to incorporate unintentional missing data cissuming that the data are 

missing at random. This two-stage model was then applied to data from the 1990 Slove­

nian Public Opinion survey (SPO). The polychotomous response that arose there wa^ 

the result of transforming three binary questions into a 2^ = 8—dimensional multinomial 

response. 

The two-stage model was extended to a three-stage model in Chapter 3. The three-

stage model is appropriate for data collected via a three-stage cluster sample. As in 

the two-stage model, we showed how to incorporate missing data into our analyses. A 

notable feature of both models is that they can be used to simulate data for the unseen 

members of the population. That is, we can find the distribution of the intentionally 

missing (unsampled) observations, given the observations that we have seen 

(sampled) , For both the two-stage and the three-stage models the primary 

quantity of interest is the finite population proportion that includes both Y"""'' eind 
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Y«»»«amp two-stage model we analyzed the SPO data using the three-stage 

model. As with any model-based approach the question of how well the model fits the 

data is an importeint one. Though we have not formally addressed it here, other than 

to note that the model estimates match the observed plebiscite outcomes, we recognize 

the importance of model assessment and hope to return to it at a later date. 

The SPO contained additional information besides the three questions that we fo­

cused on in Chapters 2 and 3. Chapter 4 treats the responses of interest as a trivaxiate 

binary vector eind includes other SPO items cis covariates. We expcinded the multivariate 

probit model of Chib amd Greenberg (1998), which relates binary response variables to 

covariates, to allow for data collected via a multi-stage cluster sample and for data that 

was unintentionally missing. We built a hierarchical model to accomplish this and de­

scribe an MCMC zdgorithm for simulation from the posterior distribution. This method 

has not yet been implemented for the SPO. This is left as future work. 

The basic methodology that is presented here can be extended to other types of 

non-normal data. Specifically, count data would be easily amenable to this approach. 

The basis for an analysis of that kind might be a Poisson-gamma model. The approach 

for other types of non-normal data is not as obvious but should be workable under the 

framework outlined in this thesis. 
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