
Graph visualization using virtual environments

by

Frode Aarstad

A thesis submitted to the graduate faculty

in partial fulfillment of the requirements for the degree of

MASTER OF SCIENCE

Major: Computer Science

Program of Study Committee:
Carolina Cruz-Neira, Major Professor

Gary Leavens
Daniel Ashlo ck

Iowa State University

Ames, Iowa

2002

Copyright O Frode Aarstad, 2002. All rights reserved.

11

Graduate College
Iowa State University

This is to certify that the master's thesis of

Fro de Aarstad

has met the thesis requirements of Iowa State University

atures have been redacted for privacy

111

Table of Contents

Acknowledgements vi

Abstract vii

Chapter 1: Introduction 1
1.1 Motivation 1
1.2 Scope of Work 2

Chapter 2: Virtual Reality Background 4
2.1 Virtual Environment 4
2.2 User Interfaces 5
2.3 Input Devices 5
2.4 Navigation 6
2.5 VR Juggler 8
2.6 Tweek 11
2.7 Our System 12

Chapter 3: Graph Visualization Background 13
3.1 Graph Visualization 13
3.2 Metabolic Pathways 15
3.3 Existing Systems 16

Chapter 4: Design 19
4.1 User Interaction 19
4.2 VR Juggler Call Sequence 20
43 Design Overview 22
4.4 Graph Formats 23
4.5 Views 24

4.5.1 Fisheye View 24
4.5.2 Lens View 26
4.5.3 Layered View 27

4.6 World in Miniature 28

Chapter 5: Implementation 30
5.1 View 30

5.2.1 Draw Manager 34
5.2.2 Shared Data 35
5.2.3 Graph 36

5.3 Application 38
5.3.1 The Main Application Class 39
5.3.2 Tweek 40
53.3 Navigation 41

1V

Chapter 6: Case Study 43
6.1 The Data Set 43
6.2 Problems 44
6.3 Fisheye View 44
6.4 Layered View 45
6.5 Lens View 47
6.6 World in Miniature 48

Chapter 7: Conclusions 50

Chapter 8: Future work 51

Bibliography 52

V

List of Figures

Figure 2.1 u s e r O g l App hierarchy 10
Figure 2.2 Input devices. 12
Figure 4.1 VR Juggler call sequence 21
Figure 4.2 Top level class diagram of our system. 23
Figure 5.1 g r aphv i ew class diagram. 33
Figure 5.2 gvDrawManager class diagram. 35
Figure 5.3 graph class diagram. 3 8
Figure 5.4 graphVi zApp class diagram 40
Figure 6.1 User immersed in the data set. 44
Figure 6.2 Fisheye view. 45
Figure 6.3 Layered view. 47
Figure 6.4 Lens view. 48
Figure 6.5 World in Miniature. 49

V1

Acknowledgements

I would like to thank Dr. Carolina Cruz-Neira for her help and support during the

creation of this work and for letting me work in great environment at the Virtual Reality

Application Center.

I would also thank the VR Juggler development team for their efforts in creating a

great piece of software. In particular, I would like to thank Patrick for his help and his swift

and comprehensive responds to questions concerning VR Juggler.

Vll

Abstract

Virtual Reality (VR) is an emerging technology that has helped extend the boundaries

of scientific visualization and many other different areas. This thesis focuses on applying

virtual environments to a graph visualization problem and determining if the field of graph

visualization can benefit from introducing virtual environments to aid the visualization. We

present a list of goals for this work along with a background discussion of virtual reality and

graph visualization. Then we cover the design of the virtual environment, the implementation

details of the virtual environment and finally we perform a case study to evaluate our

application. The case study is conducted with a graph of a metabolic pathway. Based on the

implementation and the case study we can conclude that the development of this virtual

environment has been successful. Our efforts have strengthened the hypothesis that virtual

reality could provide useful insights into the field of graph visualization.

1

Chapter 1: Introduction

1.1 Motivation

Virtual Reality (VR) is a potent technology that has helped push the boundaries of

scientific visualization and many other different areas. The immersivness of virtual reality

among with intuitive user interfaces have created a more powerful computing platform

compared to traditional computer screens and WIMP1 user interfaces. Traditionally virtual

reality has been restricted to large companies and research labs, but with the decreasing cost

of powerful computer equipment and the increased popularity of open source software,

virtual reality is becoming more and more popular and accessible.

Because of the natural three-dimensionality of immersive environments, one of the

areas where they can be beneficial is visualization of graphs. Graph visualization is a sub-

field of information visualization in which there is a relation between the data elements to be

visualized. If such a relation exists then the data can be represented as the vertices of a graph,

with the edges representing the relations.

According to [Herman00], applying virtual environments in graph visualization

would be a new and interesting approach, and might provide exciting new insight in the field

of graph visualization. It would also expand the application of virtual reality into other fields

of study. Among the biggest current challenges in graph visualization is that an inherently

three-dimensional problem is visualized using traditional two-dimensional computer screens

and ultimately pen and paper. It is our belief that by implementing some of the traditional

two-dimensional graph visualization methods on graphs in a virtual environment and

designing new methods utilizing the visualization power of virtual environments we can

1 WIMP Interfaces: Windows, Icons, Mouse, Pointers (or Pull-down menus)

2

provide a prototype of an immersive graph visualization space that demonstrates the

usefulness of virtual reality in the field of graph visualization and thereby expand the

applications of virtual reality into previously unfamiliar territory.

1.2 Scope of Work

The research presented in this thesis focuses on exploring the possibilities for graph

visualization in the context of a virtual environment. It is our belief that using an extra

dimension of visualization together with the interactive immersivness of virtual

environments, we can develop a set of tools that will help application developers to deal with

large information spaces. In particular we apply these tools to the specific field of graph

visualization. We concentrate on developing tools and navigation methods for virtual

environments but we will not address the problem of graph layout that according to

[Hermman00] is an entirely different field in its own. Since there does not exist any

universally used three-dimensional layout algorithm we use known two-dimensional

algorithms for graph layouts and combine these with traditional visualization and navigation

methods for virtual environments.

To achieve the goal, the research has been conducted in the following stages.

■ Review related work on graph visualization.

■ Define requirements for application.

■ Design the virtual environment with Layered, Fisheye and Lens methods for

graph visualization.

■ Apply our methods to a set of laid-out graphs provided by our collaborators and

obtain feedback from them after using our tool.

3

■ Summarize results and findings.

■ Recommend directions for future work.

4

Chapter 2: Virtual Reality Background

This chapter gives a brief introduction to the field of Virtual Reality focusing on the

components needed for a useful Virtual Reality system. First we introduce and define the

term Virtual Environment. Then we discuss user interfaces and input devices, components

that are essential for user interaction with the virtual environment. Finally we cover software

that simplifies the development of virtual environments.

2.1 Virtual Environment

Virtual Reality (VR) is a term that many people are familiar with, but according to

[Cruz93] it is also a term that is widely misused. So in order to avoid confusion, we will use

the term virtual environment to refer to our test-bed for graph visualization. According to

[Stuart0l] the term virtual environment is a more accurate term than virtual reality; since

virtual environments do not necessary try to replicate reality. From Stuart we get the

following definition of virtual environments:

A Virtual Environment system is ahuman-computer interface that that provides
interactive immersive multisensory 3-dimensional synthetic environments, it uses
position tracking and real-time update of visual, auditory and other displays in
response to the user's motions to give the user a sense of being `in' the system, and it
could be either asingle- or a multi-user system. [Stuartol]

There exist several different types of such systems, each with a different degree of

immersivness and different degrees of interaction. Systems also range from affordable

desktop boxes to fully immersive projection systems. The system used by our work is

described in detail below.

5

2.2 User Interfaces

A user interface is an interface between the user and the computer. For any computer

system to be useful it requires a good user interface, because it is through the user interface

the user interacts with the computer. According to [Norman90], any user interface designed

for use in a computer system should mimic similar real world interfaces as much as possible.

By designing the interfaces this way we would reduce the overall confusion of the user. But

as [Bowman95] explains, creating user interfaces for virtual environments that are intuitive

and resemble real world interfaces could increase the complexity of the interactions instead

of reducing it.

A great deal of research has been done in constructing user interfaces for virtual

environments, some researchers have called for revolutionary interfaces, while others have

explored more traditional approaches, like using well proven two-dimensional user interface

methods [Lindeman99]. There seems to be no consensus as to which type of user interface is

more effective for use in a virtual environment, but according to [Lindeman99] and

[Norman90], using interfaces that people are already familiar with is of great help in

reducing the overall complexity of any system.

2.3 Input Devices

From our definition of virtual environment systems we know that such systems are

highly interactive. Because of the high. degree of interactions, input devices are an important

part of any virtual environment system. Input devices range from various gloves, 3D mice,

and voice recognition to simple wands. They allow the user to interact with and navigate in

6

the environment. Research has been done to establish effective and user-friendly input

devices and the main challenge is to create an input device that is intuitive to the environment

while still being powerful enough to use [Stuart0l].

In a virtual environment that is designed with user navigation and exploring in mind,

the developers might utilize other input devices than in an environment that is designed for

the user to manipulate and interact with the environment.

It is also possible to utilize more than one input device at the same time. In a virtual

environment where the emphasis is on being able to both explore the environment and

manipulate the objects in the environment it might be advantageous to use a combination of

devices. This way it is possible to combine an input device that is specialized for navigation

and one that is specialized for object manipulation. It is however desirable to minimize the

number of input devices to make the virtual environment more accessible to the user.

2.4 Navigation

Navigation in virtual environments is closely related to the traditional notion of

navigation, finding a path from point A to point B. In this thesis navigation can be thought of

as way finding in a large graph represented in the virtual environment. In all instances of

navigation we have to address the problem of getting lost and disoriented, and not knowing

how to proceed. So it is very important to design a navigation scheme that is simple and

intuitive, while not confusing the user.

Several methods have been proposed to simplify navigation, some applications might

benefit from letting the user be totally free to navigate in any direction, resembling flying.

This navigation scheme allows the user to freely explore every part of the virtual

environment, but this requires the virtual environment to define proper boundaries and

implement collision detection in order to prevent the user from getting lost and disoriented.

This navigation scheme could also be restricted to only allowing navigation in the xz-plane,

resembling walking. This might be more intuitive for the users and useful for virtual

environments that do not require movement along the y-axis.

We also might just allow the user to follow a predefined path in the virtual

environment. This is perhaps the simplest form of navigation and has been used successfully

in [Bowman98]. By this navigation method we can direct the user to the interesting areas of

the virtual environment and makes navigation easy for the users. On the other hand, this

method reduces the users' ability to interact with the environment and reduces the users'

ability to explore the environment freely.

Another method is to allow the user to change back and forth between different

navigation modes, this way we can easily adjust the navigation scheme to fit the user and

provide a more satisfying experience for the user. In our system we will use this technique

and create a general navigation class that can be sub-classed by more particular navigation

schemes.

Other schemes have been proposed to simplify navigation. In particular we

implemented Worlds in Miniature [Stokley95], which approaches the navigation problem by

creating a world in miniature of the large virtual world. We discuss the WIM as a navigation

aid as well as an aid for interpreting the data.

8

2.5 VR Juggler

VR Juggler [Juggler0l], [Bierbaum00] is an object-oriented development

environment for efficient development of time-critical, interactive immersive applications

independently of the underlying virtual reality technologies. Among the many features of the

VR Juggler platform, it abstracts the complexities of the underlying VR system and allows

the developer to use any of the many supported graphics API for developing virtual

environments. By developing applications using the VR Juggler platform, a developer can

write an application on a local VR system and run it on any other VR system without much

effort.

The VR Juggler virtual platform (JVP) is the base for the VR Juggler system. The

basic JVP system is composed of an application object, a draw manager, and the VR Juggler

kernel. The interface between the application object and the JVP consists of the kernel

interface that provides the hardware abstraction for the virtual platform, and the draw

manager that provides the abstraction for the graphics API. The JVP kernel interface

provides all application accessible functionality. The kernel is responsible for controlling all

of the components in the VR Juggler system. The kernel does not depend upon any graphics

API specific details, instead it captures all of these in the draw manager, which is an external

manager of the VR Juggler kernel. Applications use the draw manager portion of the virtual

platform interface to access any API specific details that are needed.

In VR Juggler all the user applications are objects. The VR Juggler system uses the

application object to create the VR environment in which the user interacts. The application

objects inherits from based application objects that define an interface that needs to be

implemented by the application object. Then VR Juggler kernel maintains control over the

9

environment an calls the appropriate methods defined in the application interface. When the

kernel calls the application's methods, it gives up control to the application object, allowing

the application to execute the code needed to create the virtual environment.

The first step in writing an application object is to derive from the base classes that

define the kernel and draw manager interfaces the application needs to implement. There is a

base class for the interface that the kernel expects and a base class for interfaces needed by

each of the available draw managers. For example in the u s e rOg lApp class in figure 2.1

the interface for the Kernel is vj App and the interface needed by the draw manager is

vj G1App. Since all applications must interact with the kernel, all applications are required

to implement the vj App interface. Only OpenGL application objects need to implement the

vj G lApp interface.

10

~.~. i•~ ~ t •~

lA ..

~ ~1 ~

~~'~~+~~
~-~s,~#~'~z'~r

-~ ~=:i~~F :~ ~~~ ~: I ~a~~ : ti~<~i c

Figure 2.1 u s e r O g l App hierarchy

This work uses the OpenGL [OpenGL01], which is a widely used and powerful two-

and three-dimensional, graphics API. VR Juggler allows us to create OpenGL-based

applications by deriving our application from the vj G lApp class, the derived class serves as

the draw manager in the VR Juggler system.

By inheriting from the vj G1App class we are assured that VR Juggler renders the

OpenGL application correctly. This also gives us access to data from external from input

devices through the vj InputManager class. And while the application overrides the

functions in the vj Kerne 1 class from figure 2.1 correctly the developer is assured that the

11

application runs smoothly on anything from a Windows based PC to an immersive projection

system.

2.6 Tweek

Tweek [Jugg1er01] is a module designed for VR Juggler that allows for

communication between Java clients and a VR Juggler application. The communication is

performed using the CORBA [CORBA02] standard for communication between software

written in any language on any operating system on any hardware platform. In particular,

Tweek can be divided into two parts, a Java API and a C++ API. The C++ API is used by a

potentially complex VR Juggler application to define objects that the Java API can access

and modify. This pattern is often called a subject/observer pattern and is essentially what the

Tweek module implements. This pattern defines a relationship between the Java Graphical

User Interface (observer) and the C++ application (subject).

Tweek uses Swing and Java Beans to create a generalized graphics user interface

(GUI) framework. This allows the developers to plug in components (Beans) into this

framework at runtime to extend its functionality.

This work will use Tweek run on a palm computer iPAQ [Compag02] or a tablet

computer [Intermec02] for the Java GUI and this will in turn interact with the graph

visualization application.

12

2.7 Our System

This work has been developed using VR Juggler on both Linux and IRIX platforms,

the portability and scalability of VR Juggler allows us to develop using Linux machines and

then transform the code to IRIX with only minor problems.

The Virtual Reality system used by this work consisted of an immersive surround

screen projection [Cruz95] system, using six projectors to fully immerse the user. The system

provides wireless tracking using Ascension Technologies wireless Mot.ionStar [AscensionUl]

magnetic tracker. Lser interaction with the virtual environment is achieved by using a

DemoteRF tracked wand [InterlinkUl] and a tablet computer [Intermec02].

The tracked wand is used for navigation and interacting with the environment, while

the palm computer is used for displaying textual information about the user's interactions and

query information about the environment. Figure 2.2 shows the input devices utilized by this

work.

a~~-
•~rxw~yrv;,>:

M1; •: _

Figure 2.2 Input devices.

13

Chapter 3: Graph Visualization Background

This chapter introduces some important terms relating to graphs and graph

visualization. First we give an introduction to the field of graph visualization and discuss

some of the problems encountered in graph visualization and how introducing virtual

environments into the field could possibly provide useful new insight and new ideas to graph

visualization. Then we discuss metabolic pathways, which is an area that graph visualization

techniques has been applied to. Finally, we discuss some existing visualization systems.

3.1 Graph Visualization

Graph visualization deals with visualization methods for many different types of data

represented in the form of a graph. Some types of data have elements that are unstructured

and with no inherent relation, while other types of data might be structured with an inherent

relation between the elements in the dataset. In the case when there is no apparent

relationship between the data, the goal of the visualization system is to help discover possible

relations along the data using visual means. On the other hand, if the data elements are

somehow related to each other, the data can be represented by vertices in a graph, with the

edges representing the relation between the vertices.

Usually, the term "Graph Drawing" elicits an image of the classic textbook style

drawings of graphs. But there are many approaches to viewing such data including less

obvious methods such as 3D scenes, cityscapes, nested boxes and cubes, and alternative

geometries [di Battista99] . Graph visualization has many areas of application. File

hierarchies can be represented as a tree, which is a special type of a graph. The layout of the

14

World Wide Web is also a graph with each computer being a vertex and the connection

between them coded in the edge. Other applications of graphs are compiler data structures,

Parallel computer architecture, VLSI circuit semantics, scene graphs and Network

architecture. These are just a few of the applications of graphs in the field of computer

science. Other fields like biology, chemistry and math also rely heavily on graphs to store,

relate and visualize information.

The size of the graph to be viewed is a key issue in graph visualization. Large graphs

from large datasets raise several difficult problems when designing a visualization system.

According to [Herman00], only a few systems can claim to handle datasets with several

thousand elements effectively, even though most of the interesting problems and applications

are of this magnitude. The size of a graph also puts restrictions on the visualization methods

and algorithms that can be applied to the graph. There is also no guarantee that an algorithm

that works great for one hundred elements, will scale and work well for one thousand

elements. In most cases algorithms do not scale well at all. A computer screen can only

display a certain amount of data before the view becomes cluttered and occlusions occur,

making navigation and interaction with the particular vertices impossible. Consequently, a

first step in the visualization process is often to cut down the size of the graph to view. As a

result, classical layout algorithms still remain usable tools for visualization, but only when

combined with other methods.

Only recently have researchers in graph visualization turned their attention towards

developing three-dimensional layout algorithms and methods for graphs [di Battista99] and

[Herman00] . The intuition is that the addition of an extra dimension will increase the

available space to view graphs and therefore reduce clutter and ease interaction with the data.

15

According to [Herman00] the simple approach is to generalize the well-proven classical two-

dimensional approaches to three-dimensions. However the addition of the extra dimension

also adds to the complexity of the visualization. Objects in 3D can occlude one another, thus

making it hard to find good and interesting views in space. As a consequence, many three-

dimensional displays of graphs include additional visual cues, like transparency, depth

queuing, etc. They also allow the user to interactively change the view by navigating the

space. But the ability to change perspective adds another difficulty; common practices such

as the minimization of edge-crossings is less rewarding if the user can change the perspective

and see edge-crossings from another angle.

Another problem in graph visualization is that it is easy to lose spatial awareness and

get information overload when exploring a graph. The graph visualization community has

addressed these issues and several methods regarding navigation in large graphs and different

layout techniques have been implemented and discussed. The biggest problem faced is that

using two-dimension displays and input devices to interact with the three-dimensional

problem of graph visualization creates an inherent discrepancy. According to [Herman00]

three-dimensional interaction and use of virtual environments that immerse the user in the

graph may have a profound effect in field of graph visualization.

3.2 Metabolic Pathways

There has been a lot of work done to utilize graph drawing methods to visualize

metabolic pathways [Karp94]. To understand Metabolic Pathways it is necessary to explain

what happens during the metabolism. Metabolism represents the chemical processes

occurring within a living cell or organism that are necessary for the maintenance of life. In

16

metabolism some substances are broken down to provide energy for vital processes while

other substances, necessary for life, are synthesized. This process is a complex one, and

involves several different substances that interact with other to create new substances.

Metabolic pathways are the maps that describe this process and the substances involved

when a particular substance is synthesized. These maps contain vertices that represent

specific biochemicals such as proteins, RNA and small molecules, or stimuli such as light

heat or nutrients. Edges of the map capture regulatory and metabolic relationships found in

the biological systems.

3.3 Existing Systems

The area of information visualization has reached a level of maturity in which large

applications and application frameworks are being developed. However, many of these

systems are pure research tools and have a short lifespan. We will comment on a few of the

systems that are more interesting and relevant to our work. In particular, we will discuss the

works of [Risch96], [Orimo99] and [Fairchild88]. These systems all have in common that

they were designed to visualize various types ofthree-dimensional information using

different visualizing techniques.

The Semnet [Fairchild88] system was a pioneering three-dimensional graph

visualizing work. The system explored multi-dimensional scaling for laying out many

simultaneous vertices. The developers concluded however, that due to the large number of

vertices that were laid out in athree-dimensional space, visualization was very complicated

and therefore hard for the user to draw and conclusions from the data set and explore any

relations.

17

The Starlight [Risch96] system was designed for interactively visualizing exploratory

intelligence data. Starlight also tried to solve the problem of establishing relationships

between information in large datasets. This system created a linkage display system that

allows for displaying information in multiple levels of abstraction. The developers also

experimented with text and graphical-based interactions with the system. The system has a

high degree of user interaction and allows the user to freely navigate in the information

environment. This allows the user to inspect the data set from an exocentric viewpoint in

order to get the best possible view of the data set. The system also allowed the user to select

elements of the data set in order to further investigate particular data elements. The

developers concluded that using several different simultaneous visualizations together with a

high degree of user interaction would potentially be a very powerful approach for enabling

effective interactive exploration of complex information spaces. The system was developed

for a desk mounted binocular display with a conventional two-dimensional computer display,

a six-degree of freedom input device and a voice recognition system.

The ZASH [Orimo99] system was designed for browsing and displaying multi-

dimensional data stored in a database with information collected from a selection of movies.

The system used three-dimensional space to improve visibility of links between the vertices

in their data set. To aid in visualizing the data, the system incorporated fisheye views, multi

dimensional scaling and multiple planes. Although this system were developed for traditional

two-dimensional computer screen displays, the developers concluded that by using a three-

dimensional space and viewing methods like fisheye, multidimensional scaling and multiple

planes, the system was able to improve the visibility between links and enhance the

understanding of closeness of the vertices. Since the main focus of the ZASH system was to

18

support browsing and visualizing relations, the system did not provide any elaborate user

interaction other than textual input using a traditional keyboard.

The aforementioned systems are all ground breaking and interesting systems, but the

development of vR systems has come a long way since they were first developed. In out case

we are working in a more immersive and capable environment than was the case in the

Starlight, Semnet and ZASH systems. Therefore we build upon different parts of these

systems when we design our virtual environment for graph visualization. We try in particular

to mimic Starlight's ability to freely navigate the information environment and query each

individual data element, by allowing the user to freely navigate our environment and retrieve

information associated with any selected vertex or edge in the graph. This work also builds

upon ZACH's development of viewing methods like fisheye and multiple planes. By

implementing different views we are able to address the problem of information overload, a

problem that occurs in both immersive environments and graph visualization.

19

Chapter 4: Design

This chapter discusses the design decisions that were made prior to implementing the

application. First we discuss the input devices chosen for interaction with the virtual

environment, and then we cover the overall design chosen for the application. We also reveal

the structure a VR Juggler application and discuss how this influences our design. Then we

cover the decisions that were made regarding the graph and graph formats in our application.

Finally, we examine the views that were drawn from our research and deemed suitable for

inclusion in our application.

4.1 User Interaction

In a virtual environment designed for visualization of graphs, both navigation and

interaction is important. The user should be able to navigate in the virtual environment while

interacting freely with the vertices, edges and other graph information. To enable the user to

perform these actions, we use two different input devices concurrently: a wand type device

for navigation and a palm computer for further interaction with the application. In our virtual

environment information overload is a big problem. If the user is immersed in a huge graph

with many edges and many vertices it is important that there is an effective method for

interaction with the environment. It is also important that the method does not occlude the

view and provides detailed information about the graph.

By moving some of the interaction from the virtual environment to the palm

computer we allow the user to interact with the environment through a more user-friendly

and familiar windows based interface. The user is still able to interact with the vertices and

20

edges in the environment, but textual based interaction is performed through interacting with

the palm computer.

There are several advantages with using a palm computer as an additional input

device. Some of the information stored with each vertex in the graph might be of textual

nature with comprehensive narrative; this kind of information is more suited for displaying

on a palm computer. It also allows the user of the virtual environment to use the palm

computer to take notes and store information extracted from the virtual environment. In our

test case, metabolic pathways, there exist two-dimensional applications that visualize the

same data. It is our belief that using the palm computer as a bridge between our virtual

environment and any other visualization package would be a great asset. This approach has

not been implemented but looks promising.

4.2 VR Juggler Call Sequence

Since the application is built upon the VR Juggler framework, the application needs

to adhere to the VR Juggler call sequence. The call sequence depicted in figure 4.1 is typical

for a VR Juggler OpenGL application. The following section provides an overview of some

of the important functions from the VR Juggler calls sequence that the main application class

needs to override, these functions are called continuously by the kernel while the application

is running.

The pr e F r ame ()function is invoked by VR Jug gler' s kernel before each frame is

rendered. When this function is invoked the information from the input devices are the

freshest. This is because the kernel queries the input manager after the previous post frame,

invoking the upda t eAl 1 Da t a () function. It is during this function that the application

21

needs to update the navigation, perform collision detection and update animation based upon

this new information.

The draw ()function renders a frame of the virtual environment. The frame

rendered is determined by the state entered during the p r e F r ame () .

The pos tFrame is performed after a frame has been rendered. This function is

used to determine timing issues. We can calculate how long it took for a frame to be rendered

and update the timing of any animations.

•.. •.. S.•,~ • V'.•.~ti~

~r~

t'~~;1~~'~'t~~?lF~:~itx~ 1
r~

f..; p.~-~;; ;~-.:c:f~:~f ..:.7

I

~r

:`

I ~

~•

{

~•IM1`~~

 }~: ~~

Figure 4.1 VR Juggler call sequence

22

4.3 Design Overview

This section explains the design of the system in more detail. Figure 4.2 gives an

overview of the graph visualization environment's design. The design consists of two main

categories of classes, view and application.

The application category of class consists of classes that deal with the user interaction

and underlying system interaction. Form the information obtained from the input devices the

classes must handle the user navigation and communicate between the application and the

GUI via Tweek. To archive integration with the underlying system, the main application

class must inherit from VR Juggler's vj G1App class. The main application class also needs

to provide an interface for Tweek, an interface that the Tweek objects can use to access and

modify variables in the main application class. In order to facilitate navigation, the

navigation class needs to be able to access tracker and input device data from the main

application class. The navigation must then update this information according to the selected

navigation scheme and send the updated data back to then main application class.

The view category of classes consists of classes that are designed for providing the

visuals for the application. The view classes consist of a graph class that is responsible for

parsing and storing information about graphs, a shared data class that holds information that

needs to be shared between the different views and a hierarchy of classes that implements the

different views. A particular view needs to implements its own versions of the important

functions from the VR Juggler call sequence described in the previous section. The view

should also be able to access the graph and system information through the shared data class,

and from this information being able to render the graph in the virtual environment according

to the view's design.

23

This logical separation between application and view is desirable because it creates a

clear separation between the graphics and system interaction parts of the application.

View

Graph

TWEEK

Application

VR Juggler

Figure 4.2 Top level class diagram of our system.

Shared data

Navigation

4.4 Graph Formats

Currently there are no standards for a file format to store and manipulate graphs.

Therefore, due to this lack of any common standard for graph file formats, we decide to

create a structure for parsing that allows for easy addition of new parsers for different file

formats as they become available. Initially the system implemented parsers for XML

[W301], [Apache0l] and GML [Himsolt97]. This allowed us to load different graphs with

data from a variety of different fields. For this work we have obtained graphical data from

biology, data that describes a metabolic pathway. This data consists of 403 vertices and 540

24

edges, so it is a rather large dataset, but still small compared to other possible datasets, it i.s

our hope i.s that our methods will scale well.

4.5 Views

In accordance with the scope of work, one the main focuses was to create a simple

framework for adding different views of graphs to the virtual environment. Most of the

current methods and algorithms for graph drawing and graph visualization [Tamassia97],

[Herman00] have been developed for two-dimensional applications in mind. These two-

dimensional methods do not easily translate into to our three-dimensional virtual

environment. We also went to the literature on virtual environments and searched for

methods, not specifically developed for graph visualization, but that could be useful for our

purposes after some modifications. We implemented the Graphical Fisheye View [Fuarns86],

[Noik93], Magic Lens [Napari00] and a layered approach.

4.5.1 Fisheye View

The graphical fisheye [Furnas86] view of graphs is built on the notion of fisheye

lenses. Fisheye lenses are lenses that have a very wide angle, thereby showing nearby entities

in greater detail while showing remote entities in successively less detail. This intuition can

also be used in graph exploration as vertices close to the center of the user's viewpoint could

be represented in greater detail. This is particularly useful in virtual environments since we

can always calculate the user's position and direction accurately and then we can draw the

vertices in the graph with an appropriate level of detail according the calculated user's

25

position. The works of [Sheelagh95], [Farchild88] and [Sarkar92] are examples of systems

that have successfully implemented such a fisheye view of data.

Converting Furnars's implementation of the fisheye view from its native form into a

form useful for virtual environments was straightforward. Fisheye views require the a-priori

importance of a vertex and the distance from the vertex to the user's current position to be

known. Both these parameters can be varied and calculated independently in order to create

different and interesting views. In particular, we could let the a-priori importance of a vertex

be the weight of the vertex, or a combination of weight and the size of the sub-graph at the

vertex. The distance from the vertex to the user's position could be calculated using either the

Euclidian or polar distance, each yielding different views of the particular graph.

The fisheye approach to a viewing method shows promise. We have implemented

variations of the traditional fisheye view. One implementation has a uniformly evolving lens

where the vertices grow and shrink in real-time as the user's position changes in the virtual

environment while the closest vertex always is in focus and has additional information

attached to it. Another implementation is a level evolving lens, where we define a set of

levels and define the distance limits for each level and provide a distinct draw function for

each level. This approach allows us to view the vertices closest to the user with the same

level of detail while the vertices father way has successively less detail. We also allow for the

user to freeze the view at any given time. This fixes the graph and allows the user to navigate

in the virtual environment while the graph maintains the state it was in at the time the user

invoked the freeze command.

One of the benefits of our implementation of this fisheye view is that it can also be

used in other virtual environments. By displaying objects close to the user in greater detail

26

than those farther can be used to significantly increase the frame rate in many graphics heavy

applications. Our implementation could be useful in the example of a room with several

objects; the objects closest to the user are the ones he is the most interested in and these could

be drawn with greater detail while the details of the objects farther away could be blurred and

reduced.

4.5.2 Lens View

The lens metaphor is built on the intuition of a lens that the user might hold in front of

an object in the virtual environment. Normally when holding a lens in front of an object

would magnify the object assuming we have a magnifying lens. But since we have control

over the rendering process, instead of magnifying the object we can draw the object

differently when viewed through the lens. According to [Napari00], the lens metaphor has

been applied successfully on both two-dimensional and three-dimensional environments

before. In [Bier93], the authors observe that lenses can serve many roles in enhancing the

user's interaction and understanding of software applications. Lenses can show local details

in the context of larger scale information and limit clutter to a small region in the

environment. In our application we envision the lens as a tool to further investigate the

information associated with an object in the virtual environment, in particular additional

information about a vertex or an edge in the graph.

One use of the lens is to increase the level of details of the objects covered by the

view through the lens. For example, the edges could be displayed with its weight, name or

any other information associated with the edge. The vertices could be displayed with name,

number of incident vertices, weight, description, etc. In particular the lens allows us to reduce

27

the information displayed about the graph in the environment, the user is able to select a

region of the graph by putting the lens in front of it and then this region will be displayed

through the lens with more details and information.

Our system implements the lens view using OpenGL's built in clipping planes.

Clipping planes allow us to draw two versions of the scene, one version of the regular scene

and one version of the scene as seen through the lens.

As with the fisheye view, the magic lens view works well and could prove useful for

other types of virtual environments. One example is a transparent lens; with such a lens the

user could be able to see through objects in the scene that are within boundaries of the lens.

4.5.3 Layered View

We also implemented a layered view based loosely upon the work done in the

Starlight [Risch96] and Zach [Orimo99] systems. The two aforementioned systems relate

elements from the data set by projecting links between elements onto different planes, where

each plane represents a specific parameter from the elements in the data set.

This work will use this approach to reduce the amount of information displayed in the

virtual environment, and hence reduce user confusion and improve understanding of the data.

This approach uses a weight function to identify vertices that are more `important' than the

others. The weighting function for a vertex might be calculated from the number of edges

incident to that vertex, weight of that vertex etc. This enables the user to navigate a smaller

subset of the original data and observe the more `important' vertices. The user is then able to

select a vertex and explore the incident vertices. By selecting one of the incident vertices the

user has the option of adding this vertex to the current view of vertices.

28

The application also facilitates real-time adjustment to the weight function, so that the

user can experiment with the weight function in order to get a manageable sized subset of the

original data.

We have implemented two different layered approaches, cone-layer and normal layer.

In the normal layer approach we display the vertices incident to the current vertex selected by

the user in the xy-plane, the vertices are projected in the xy-plane relative to the position it

has to the selected vertex. VR Juggler uses aright-handed coordinate system, so when we

refer to coordinates; positive x axis points right, positive y points up and negative z points

forward in the virtual environment. This way the user can get a feel of the structure and

relationships between the selected vertex and its incident edges.

In the cone layered approach we project the vertices incident to the selected vertex

spread out like in a cone under the selected vertex. In this approach we loose the structure

and relative position of the incident vertices to the selected vertex, but we get a spatial

condensed representation of the vertices incident to the selected vertex. This approach is

more useful for a vertex with several incident vertices and can display these incident vertices

in a useful and convenient manner for the user.

4.6 World in Miniature

The World in Miniature (WIM) [Stoak1ey95] is a navigation metaphor that has been

used with success as a tool for navigation in large virtual environments. The WIM is a scaled

down or an appropriately rendered miniature version of the original environment. While the

user is navigating in the original environment the user sees his position in the original

environment through the relative position in the WIM. This helps the user to understand

29

where in the environment he is located and can help him better understand the overall

structure of the data. The WIM can be regarded as a map of the virtual environment, thus

aiding the user in navigation and way-finding. The WIM can be implemented in several

ways; one can use it as a simple map, one can allow the user to manipulate things in the WIM

and let these changes occur in the real environment, or one can render a different view of the

virtual environment in the WIM. In our case, we will strictly implement the WIM as a

navigation and overview tool, and not allow any manipulation of the environment in the

WIM.

The traditional variation of the WIM is used for representing atop-down view of the

virtual environment with the user's position displayed with an icon in the WIM. WIM's were

developed for applications where the user is mainly allowed to move in the xz-plane with not

much movement among the y-axis. In our case the user should be able to move freely among

all of the x, y and z axis and a pure top-down view of the environment would not easily

reflect the users movement among the y-axis. In order to remedy this we implemented a

three-dimensional WIM. The three-dimensional WIM is a scaled down model of the current

virtual environment. This allows us to display the user's position in the WIM accurately in

three-dimensional space.

30

Chapter 5: Implementation

We now present the implementation of our graph visualization environment based on

the background and design discussed in the three previous chapters. The discussion is based

upon the top level class diagram of our system shown in figure 4.2. We present a more

detailed description of the two major components of the application, the view component and

the application component.

5.1 View

The view classes are the part of the application that handles the implementation of the

different views described in the previous chapter. The application provides an abstract class

graphView for all the subsequent view classes to inherit from. This class includes all the

functions each subclass class is expected to implement. A view essentially specifies a

particular method to display the information stored in the graph in the virtual environment.

Therefore it is necessary for each sub class Of graphView to implement each own version

of the methods expected by the OpenGL Draw Manager (figure 4.1). So by adding

p r e D r aw () , draw () and p o s t D r aw () as pure virtual functions in the graphView

class the subsequent subclasses are forced to implement their own versions of these

important functions.

Each particular subclass is also allowed to implement their own distinct drawWlM ()

function. By doing this, each different view can provide a unique way to display the graph in

the WIM, a way that is useful for that particular view method. This is useful since, for

example, a layered view might only have a subset of the whole graph displayed in the virtual

31

environment at a particular time and therefore it might also be useful to only display this

subset of the graph in the WIM also.

Figure 5.1 gives an overview of the views that this work has implemented and the

relationships between these views. There are three main groups of views implemented,

gvF i sheye, gvLayered and gvLens.

The gvF i sheye views are bases upon the fisheye view metaphor discussed earlier.

In this view the weight associated with each vertex is added to the Euclidian distance from

each vertex to the user, the resulting weight is used by the application to classify the vertex.

The Euclidian distance from the vertex to the user is calculated by calling the distance ()

function from the o g 1 PQ POb j e c t class with the PQP matrix for the wand stored in the

gvSharedDa to class. Then gvF i sheye class classifies the vertices in layers according to

this calculated weight, where each layer has its own level of detail applied for each vertex

classified into that layer. The gvF i sheye smo o th class scales each vertex according to the

vertex's weight so that the closest vertices are bigger and display more detail while the

vertices further away are show smaller with successively less detail.

The gvLayered views are based on the layered approached discussed earlier. The

application uses the we i gh t C a 1 c ()function to determine which vertices are to be

included in the current layer of the view. The current layer holds the vertices that are being

displayed in the virtual environment at any time. The class uses the map container from the

standard template library (STL) to create a map of the vertices. In particular, the class map

the pair <string vertex name, vertex *>, a string with the name of the vertex and a pointer, to

the vertex. The reason for using the map structure is to facilitate fast and easy look up of

32

vertices based upon the vertex name. The class maintains two such mappings, one for the

current layer and one for the other vertices not in the current layer.

When the user selects one vertex in the virtual environment, the vertex selection is

determined when the distance from the wand to the vertex is within a threshold from the

value returned form og 1 pQ POb j e c is distance ()function. Then the class determines

which layer the selected vertex is contained in, if the selected vertex is in the current layer the

incident vertices to the selected vertex are then displayed. The gvLayered class draws the

incident vertices to the selected vertex in the xz-plane, the incident vertices are drawn in their

respective positions only rotated to appear in the xz-plane. The user is then able to select any

one of the incident vertices in the xz-plane, and by selecting one of them the user adds the

selected vertex to the current layer. The vertex most recently promoted to the current layer

has its vertex and incident edge colors changed from the normal vertex and edge colors. This

additional visual cue helps aiding the user by emphasizing the last action, thus distinguish the

vertex selected in the last action from the other vertices.

The gvLayeredCone view class takes a little different approach to displaying the

incident vertices. While the previous gvLayered class drew the incident vertices in their

relative positions only rotated into the xz-plane, this class displays the incident vertices in a

circle in the xz-planed directly below the selected vertex.

The gvLens class implements the Magic Lens approach discussed earlier. This work

implements this method by using OpenGL's clipping planes. OpenGL supports the use of at

least six clipping planes, although some implementations might supply more, this work

utilizes five clipping planes. The five clipping planes are the left, right up, down and front

clipping planes. Currently no far clipping plane is specified, this implies that the lens in

33

theory has an unlimited visual range. The clipping plane's positions are calculated from the

position of the wand and the lens that is drawn in front of the wand. To archive the lens effect

the draw ()function in the gvLens class, first draws one version of the scene with the

clipping planes enables then disables the clipping planes and draws another version of the

scene without the clipping planes.

This work implements two variations of the lens. The gvLens F fixed class specify

the clipping planes by planes that extend from the boundaries of the lens towards infinity,

like a square shaped tunnel. The gvLensAng 1 e class also uses clipping planes but extend

towards infinity from the boundaries of the lens at an angle, extending the clipping volume

towards infinity in a square shaped cone.

pre~r~ ~

~o~tDr~)
tira~r I11~I~~

~~Fi~t~~~~e
~igkitCalc~~

~?Fi~~t~~~~ ~'n~~aa#h

~w~L~-~}T,~i-~d
~v~i tCal~~~
d~aB ~tt~mF]~rre~~

-L:t~=~i-e~~it'~ai~e

L~i~~
clra~rLens~}

Figure 5.1 g r aphV i ew class diagram.

~-L~».~s:~~l~e

34

5.2.1 Draw Manager

The gvDrawManager class in figure 5.2 is a utility class that manages and stores

the available views and graphs. This class acts as an intermediary between the system and

visual parts of our application or between the graphVi zApp and graphView classes. The

graphVizApp class maintains an instance of this class and calls its preDraw () ,draw ()

and pos tDraw () functions when appropriate, while the gvDrawManager class in turn

calls the graphView class's corresponding functions. This class also provides the

graphVi zApp class methods for changing the views and graphs.

This class maintains a vector of all the available graphs and all the available views. It

also maintains a vector of all the WIMs associated with each available graph. When the user

changes the current graph through the GUI the draw manager creates views for this graph

and notifies the shared data that the graph has changed and sends the shared data a pointer to

this newly selected graph.

35

~-~11>u~dl~i~ xr~

~r•~~E
1

1

~! 3~lill~lrl~~1'
~~tGr~p~~

1

1 1

binc111~atri~ ~~~
birY~Butt~r~s~~
up ~at~ QFh~1~t~}
~ ~t~urr~n~GraAh(~

~Dt•:~~l~i;~t;~~er
preDr~ ~

postDr~w~~
s ~t~urr~nt i }
s et~urr~nt~~ap~vC}

1 1 1

1

fir->~lt~

1

inriDr~w~ phi~w*~

1
r.

~~ . ~ 1~

Figure 5.2 gvDrawManager class diagram.

pr~Dra)

p a stDr~w~~

5.2.2 Shared Data

The class vj SharedData is a utility class to the vj GraphView class and

gvDrawManager class. It stores some current information about the system, information

that has to be accessible to all the different view classes. This class is responsible for storing

information about the head position, wand position and it also holds the current navigation

matrix and the state of the buttons on the wand. The class uses this information to maintain

PQP models of the head and wand, which are calculated using the current navigation matrix

along with the respective matrices. The shared data also stores information about the vertices

and edges in the graph, information like the closest vertex, selected vertex, marked vertices

36

etc. By having a class like this separated from the views, the user is allowed to change views

while the shared data maintains information about the user's position, actions and

preferences. This class also maintains a pointer to the graph currently being shown in the

virtual environment, this pointer allows the views to access and display the correct graph.

The pointer to the current graph is maintained and set by the gvDrawManager class

through the setCurrentGraph ()function.

5.2.3 Graph

The graph class contains the data structures needed for parsing and representing

graphs. The class graphParser is the abstract class the specific parsers must inherit from.

This application has currently implemented two parsers GML P a r s e r and xML P a r s e r.

The graphs are parsed and then stored in the graph class depicted in figure 5.3. This

class maintains a list of the edges and vertices present in the current graph. The application

does not need a more elaborate data structure for storing the graph since traversing the entire

vertex and edge list is only necessary every time the graph is drawn in the virtual

environment. The only functionality that could be a target for optimization is the graph

class's f indVe r t ex ()function. This function traverses list of vertices in the graph class in

order to find a specified vertex. By changing the way vertices are stored from a list to another

data structure like sorted list, the complexity of this function could be reduced. The same is

true for the f indEdge ()function. But since neither of these functions are likely to be

called a significantly number of times the simpler data structure for storing the vertices and

edges were selected.

37

The class vertex stores information associated with each vertex in the graph. This

class is a subclass of the og1PQPObj ect class. This inheritance creates a PQP object for

each vertex. The Proximity query package (PQP) [PQPOl] is a library for different types of

proximity queries performed on geometric objects. This work utilizes the library's ability to

calculate the distance between two geometric objects, to efficiently calculate the distance

between the user and each vertex. According to [Lin98] PQP is the most efficient package.

This allows us to determine the distance from the user and conclude if the vertex is selected

or not. In the case of fisheye views the layout of the graph can be determined by querying

each vertex for the distance from the user.

The class edge stores the information about the edges in the graph. As the case with

the vertex class edge is also a subclass of og1PQPObj ect, this allows us to query the

edges about their distance to the user. The class edge also maintains a pointer to each of the

two vertices associated with that edge.

38

~r~~p~~
findVerte~()
findEdge(}

~~

1

~;~1F'QPUI~~e~ t
is S elected(}
distance()

Figure 5.3 graph class diagram.

for collision
~ detection

5.3 Application

The application family of classes deals with the interaction and system parts of the

system. This section will discuss the main parts of the application category of classes

displayed in figure 4.2. First we will discuss the main class in this class category; the

g r aphV i z App class. Then we will describe the v j Nav i g a t o r class and then we will

explain how Tweek is incorporated into the graphVi zApp class to facilitate

communication with the Java GUI.

39

5.3.1 The Main Application Class

The graphVizApp class is inherited from the VR Juggler G1App class, see figure

5.4. This inheritance is vital and ensures that the graphvi zApp interacts correctly with the

VR Juggler kernel. Among the responsibilities of this class it to query the VR Juggler kernel

for up to date information from the input devices, in this case information about the wand's

position and button state and the users head position. After collecting this information the

class passes the information, stored in matrices for the positions and state variables for the

buttons, to the other classes that needs this information. This passing of information is done

in the preFrame () function, because this is right before the kernel has gathered this

information from the input manager (figure 4.1).

The g r aphV i z C l a s s also uses the v j An ima f o r class, this class implements

animation from one point to another point in the virtual environment. When the user selects a

vertex from the vertex list in the GUI the graphvi zApp creates an instance of the

vj Animator class. This animator class now replaces the navigation class and updates the

navigation matrix. So when we start an animation we suspend the user input, this way when

an animation is taking place the user cannot interact with the environment.

40

~~ I~r-~~wl~-~~r~~~~i~

~~I~~ie~~u ~:~~~i~ut~:~:~x~r~
up crate()
anirr~one(?

1

1

1 1

apiInit(}
contextInit(}
preDraw(}
bufferPreDraw(}
draw(}
postDraw()

~71~~~~~~~x~r

1..* 1

Figure 5.4 graphvi zApp class diagram

incSpeed{)
decSpeed(}
stopSpeed{}
updateNav(}

5.3.2 Tweek

As explained earlier Tweek is built upon CORBA, which allows us to communicate

between our virtual environment and our Java GUI. In order for the communicating to work,

we have created an interface to our application and an interface to the Java GUI using the

Interface Definition Language (IDL). The IDL generates stubs that are included in the

application at compile time, hence provides the GUI to access and manipulate different

41

variables in our virtual environment. The IDL interface provide the Java GUI access to the

graphvi zApp class for accessing information about the state of the navigation and other

application level information. Through the graphvi zApp class the Java GUI has indirect

access to the gvDrawManager and gvSharedData classes, these classes provide

information about the state of the current graph and the current view. Information flows both

from the application to the GUI and from the GUI to the application, thereby allowing the

user to change the state of the application as well as observing the current state of the

application through the GUI.

5.3.3 Navigation

The navigation in the virtual environment is handled by the vj Naviga t i on class.

This class main functionality is to manipulate the current navigation matrix to reflect the

wand's orientation and the state of the wand's buttons. For each call to graphvi zApp's

preFrame ()function the navigation class is responsible for updating the navigation

matrix based upon information stored in the wand matrix and the previous navigation matrix.

This information is retrieved from the updateAllData () Call to the vj InputManager

(figure 4.1). The abstract class vj Navi ga t i on provides the virtual class upda t eNav ()

that each sub class needs to implement in order to create their distinct flavor of navigation.

This work has implemented a navigation scheme with no constraints, thus allowing the user

to freely explore the environment. This method simply moves the user in the direction that

the wand is pointing at a speed that is determined by pressing certain buttons on the wand.

The vj Naviga t i on class also provides the two functions ge t Speed () and ge t Po s ()

42

these functions provide the GUI with information about the state of the current navigation

that can be displayed in the GUI.

43

Chapter 6: Case Study

This section presents the case study that was conducted in order to evaluate our

application. First we discuss the data set used for this case study and present the problems

faced with while trying to visualize this data set. Then we discuss the different views and

methods covered in the previous chapters and the experiences with applying these views and

methods to the data set.

6.1 The Data Set

The data set used in the case study is taken from the field of biological chemistry, it

represent a metabolic pathway occurring during the metabolism of a plant. A metabolic

pathway closely resembles a graph, where vertices depict the different substances while the

edges represent the relationships between these substances. Because of this similarity, work

has been done to utilize graph drawing methods to visualize metabolic pathways [Karp94].

This work goes a step further and utilizes virtual environments for visualizing graphs. And in

our case study, metabolic pathways stored as graphs.

In particular, the metabolic pathway data used in this work is taken from the

Arabidopsis plant. It shows part of the metabolism for Acetyl CoA, a metabolite that is a

critical part of the energy formation process in organisms. Figure 6.1 shows us the data set as

displayed in our immersive virtual environment.

44

Figure 6.1 User immersed in the data set.

6.2 Problems

The data set in our case study is quite large; it has 403 vertices and 540 edges. Even

though the data set is not enormous, the problems of information overload and spatial

awareness must be addressed. Another problem with a data set of this size is the ability to

interact easily with individual elements of the data set. When the data sets become bigger, the

amount of information needed to be displayed also increases, this could cause the

information space to become cluttered and interaction with individual elements form the data

set becomes harder. Therefore a successful and useful virtual environment needs to address

these issues and provide efficient methods for dealing with these problems.

6.3 Fisheye View

The implementation of the fisheye view works well in our virtual environment. This

view method addresses the problem of information overload by only displaying the closest

45

vertices with a great level of detail. From figure 6.2 we observe that the closest vertices are

displayed with their edges visible, the closest vertex is being displayed in another color and

with its substance identification displayed. The vertices are that are further away are

displayed in successively smaller sizes without any edges visible.

The fisheye view also addresses the problem with cluttering and interacting with

individual elements of the data set. Since only the closest vertices are drawn with much

detail, the user's view will not be cluttered by edges from vertices far away that might pass

through the view. The user is also able to quickly determine which vertices are closest and

query them for further information.

Figure 6.2 Fisheye view.

6.4 Layered View

The layered view is also a helpful view method. By initially only displaying the

vertices with a calculated weight bigger than a specified threshold, we are able to reduce the

46

overall information displayed at one time. From figure 6.3 we have a case where the user has

selected a vertex and the incident vertices are displayed in a cone shape directly below the

selected vertex. This view addresses the problem of information overload by initially only

displaying a subset of the actual graph. Since the user is able to interactively increase the

number of vertices shown by selecting them, the user has the ability to work with a subset of

the graph that is manageable. However since this view only shows a subset of the original

graph the user can loose the overall structure of the graph. In the case study, initially only the

vertices that represent substances that have many interactions (edges) are shown in this view.

This gives us a good idea of the shape of the pathway, but it does not give us quantitative

information about the specific substances. The user has to find a particular substance and

query it by selecting it to determine all the substances that have interactions with the selected

substance.

The layered view also addresses the problem of cluttering and interaction with the

individual elements in the data set. Since the user is able to determine the size of the initial

subset of the graph to be displayed, the user has the freedom to create a manageable and

clutter-free environment to facilitate ease of exploration.

-17

Figure 6.3 Layered view.

6.5 Lens View

The lens view is not as helpful as the layered and fisheye views. Because the lens is

connected to the wand, it complicates interaction with the graph. However it is a useful tool

for allowing the user to examine the overall structure of the data set. Figure 6.4 shows us the

angled lens, the vertices and edges that fall within the area covered by the lens is displayed

with more detail than the vertices and edges that are without the area.

The lens is useful when used together with the other views. By exploring the data set

using the lens, the user is able to be positioned at a particular spot in the environment and

examine the data set in any direction by using the wand. The user can then observe an

interesting region and then switch to another view to explore that region in greater detail with

the enhanced interaction options the other views provide.

48

Figure 6.4 Lens view.

6.6 World in Miniature

The WIM is a useful addition to the other views in order to enhance the user spatial

awareness. By consulting the WIM, the user is able to orientate in the virtual environment.

Even though our data set is not very large, having the WIM display the user's position is very

useful. By having the WIM attached to the wands position and rotation, it allows the user to

rotate and reposition the wand in order to get the best possible view of the WIM. From the

figure 6.5 we see the WIM displayed within the normal view of the graph, the WIM is also

rotated and translated in order to get a better overview of the user's position. The user's

position in the virtual environment is represented by the white crosshair drawn in the WIM.

49

Figure 6.5 World in Miniature.

50

Chapter 7: Conclusions

In designing and implementation the virtual environment for visualization of graphs,

we have developed a helpful environment for users to view and explore different graphs. The

case study also strengthens the hypothesis that virtual environments can provide useful

insights into the field of graph visualization.

By immersing the user in the actual graph, virtual environments have a clear

advantage over traditional computer systems, since this represent a more intuitive interaction

method than traditional computer systems. This immersion enables the user to get a better

feel of the overall structure of the graph, hence understand the underlying data better.

The use of two different input devices increased the usefulness of our application. By

displaying textual information about the vertices, edges and the graph on the tablet computer

we reduced the information needed to be displayed in the actual virtual environment.

The views and methods implemented and used in the virtual environment are good

tools for aiding visualization. The layered and fisheye views successfully addressed the

problem of information overload and cluttered view space by reducing the amount of

information displayed at once. The lens view was not as useful as the two other viewing

methods, because of its interaction shortcomings. However the lens view is a useful addition,

used together with the other views.

The Worlds in Miniature method helped address the issue of spatial awareness and

used in conjunction with the views it gives the user the ability to always know the position in

the graph. The WIM also displays the overall structure of the graph, which helps the user

navigate the graph and improves the spatial awareness.

51

Chapter 8: Future work

During the course of this work there were additional functionalities and other

approaches that were discussed and considered. Ultimately many were dropped and deemed

inappropriate within the scope of this work. This section lists and discusses some of the more

interesting features that were discussed.

Sound could provide us with a useful additional cue. By adding auditory cues to our

application we could possibly enhance the user's experience. According to [Stuart0l] sound

is a valuable cue and when used right could remove some of the dependency on visual cues.

Thereby reduce the load on the visual senses, creating a more complete experience for the

user. During the development of this work VR Juggler did not have any clear cut sound

capabilities, which explains the omission of sound from our application.

It could also be useful to add functionality to facilitate the creation of a guided tour

through any graph. By specifying a particular path through the graph, specify the vertices to

visit and provide narrative associated with each vertex. It would allow teachers to tailor make

a learning experience for students. In our case study on metabolic pathways, biology students

could by guided down the metabolic map starting with the initial substances then follow the

reactions as they occur until the final substance is synthesized.

It would also be useful to test our visualization methods on other data sets, not just

metabolic pathways. Other data sets might have different properties and require different

approaches to visualization.

52

Bibliography

[Apache0l]

[Ascension0l]

[Bier93]

[Bierbaum00]

[Bowman95]

[Bowman98]

[Compag02]

[co~ao2~
[Cruz93]

[Cruz95]

[di Battista94]

Xerces C++ Parser. http://xml. apache. org/xerces-c. Verified June
2001.

MotionStar Wireless. http://www. ascension-
tech.com/products/mswireless. Verified December 2001.

E. A. Bier, M. C. Stone, K. Pier, W. Buxton and T. D. DeRose.
"Toolglass and Magic Lenses: The See-Through Interface".
Proceedings of Siggraph '93. Computer Graphics Annual Conference
Series, ACM, pp 73-80. 1993.

A. Bierbaum. "VR Juggler: A Virtual Platform for Virtual Reality
Application Development." MS Thesis, Iowa State University. 2000.

D. A. Bowman, L. F. Hodges. "User Interface Constraints for
Immersive Virtual Environment Applications". Graphics,
Visualization, and Usability Center Technical Report GIT-GVU-95-
26, 1995.

D. A. Bowman. L. F Hodges and J. Bolter. "The Virtual Venue: User-
Computer Interaction in Information-Rich Virtual Environments".
Graphics, Visualization, and Usability Center Technical Report GIT-
GVU-96-22. 1998.

Compaq iPAQ.
http:Uathome.Compaq.com/showroom/static/iPaq/3835.asp. Verified
August 2002.

CORBA. http://www.corba.org. Verified May 2002.

C. Cruz-Neira. "Virtual Reality Overview". Siggraph 1993 Course
Notes. 1993.

C. Cruz-Neira. "Projection-based Virtual Reality: The CAVE and its
Applications to Computational Science". Ph.D. Dissertation.
University Of Illinois at Chicago. 1995.

G. di Batti.sta, P. Eades, R. Tamassia, and I.G. Tollis, "Algorithms for
drawing graphs: an annotated bibliography". Computational
Geometry: Theory and Applications. pp 235-282. 1994.

53

[di Battista99] G. di Battista, P. Eades, R. Tamassia, and I.G. Tollis. Graph Drawing:
Algorithms for the Visualization of Graphs. Prentice Hall. 1999.

[Fairchild88] K. M. Fairchild, S. E. Poltrock and G. W. Furnas. "SemNet: Three-
dimensional graphic representations of large knowledge bases".
Guidon, R. ed. Cognitive Science and its Applications for Human-
Computer Interaction, Lawrence Erlbaum Associates, pp 201-233.
1988.

[Furnas86]

[Herman00]

[Himsolt97]

[Interlink0l]

[Intermec02]

[Juggler02]

[Jungnicke199]

(~.~~r~~~~.1

[Lin98]

[Lindeman99]

G. W. Furnas. "Generalized Fisheye Views". ACM CHI' 86, pp 16-23.
1986.

I.Herman, G.Melancon and M.S.Marshall. "Graph Visualization and
Navigation in Information Visualization: a Survey". IEEE
Transactions on Visualization and Computer Graphics. 2000.

M. Himsolt. GML: A portable Graph File Format.
http://www.infosun.fmi.uni-passau. de/Graphlet/GML/gml-tr.html.
Verified May 2002.

ACM SIGCHI Curricula for Human-Computer Interaction.
http://www.interlinkelec.com. Verified December 2001.

Intermec Pen Computer, Mode16642.
http://epsfiles.intermec.com/eps_files/eps_man/6642tr.pdf. Verified
May 2002.

VR Juggler —Open Source Virtual Reality Tools.
http://www.vrjuggler. org. Verified December 2001.

D. Jungnickel, Graphs, Networks and Algorithms, Springer Verlag,
1999.

~-~. ~:~.~-p, S, ~-~~:~~ey. S~A~~t~~n~.~Led ~lY~~~%ing ~j~~ .~~~et~:~,~~~.ic ~;~tx~~~~~.ys'+.
P~~;3~;e~°dins ~sf 3rd Infer: ~~~io~~.l ~`~~~fe~~e~~ce ;3n Bi~;i~~ff~rn~atics ~~~~~~
~~e~~j~~e ~~esearc.~. :994.

M. Lin, S. Gottschalk. "Collision Detection between Geometric
Models: A Survey". Proceedings of IMA Conference on Mathematics
of Surfaces 1998.

Lindeman, R., Sibert, J., Hahn, J., "Towards Usable VR: An Empirical
Study of User Interfaces for Immersive Virtual Environments,"
Proceedings of the SIGCHI '99, pp. 64-71. 1999.

54

[Napari00]

[Noik93]

[Norman90]

[OpenGL01]

[Orimo99]

[PQPO 1

[Risch96]

[Sarkar92]

[Sheelagh95]

[Stoak1ey95]

[Stuart0l]

[Tamassia97]

H.Napari, T. Takala. "Magic Lights and 3D Magic Lenses- Projective
Interaction Tools for Virtual Environments". Immersive Projection
Technology 2000.

E. G. Noik. "Layout-independent Fisheye Views of Nested Graphs".
Proceedings of the 1993 IEEE Symposium on Visual Languages, pp
336-341. 1993.

D. Norman. The Design of Everyday Things. Doubleday. New York.
New York. 1990.

OpenGL. http://www.sgi.com/software/opengU. Verified December
2001.

E. Orimo, H. Koike. "ZASH. A Browsing System for Multi-
Dimensional Data". IEEE Symposium on Visual Languages. 1999.

PQP — A Proximity Query Package.
http:Uwww.cs.unc.edu/~geom/SSV. Verified June 2001.

J. Risch, R. May, J. Thomas and S. Dowson. "Interactive Information
Visualization for Exploratory Intelligence Data Analysis". VRAIS'96

M. Sarkar, M.H. Brown. "Graphical Fisheye Views of Graphs". ACM
CHI'92, pp 83-91. 1992

M. Sheelagh, T. Carpendale, D.J. Cowperthwait and F.D. Fracchia.
"Distortion Viewing Techniques for 3-Dimensional Data". IEEE
Symposium on Information Visualization, pp. 46--53. 1995.

R. Stoakley, M. Conway and R. Pausch. "Virtual reality on a WIM:
interactive worlds in miniature". ACM CHI'95. 1995.

R. Stuart. The Design of Virtual Environments. Barricade Books. New
Jersey. 2001.

R. Tamassia. "Graph Drawing". Handbook of Discrete and
Computational Geometry. Edited by J. E. Goldman and J. O'Rourke.
CRC Press, pp. 815-832. 1997.

[W301] Extensible Markup Language (XML). http://www.w3.org/XML/.
Verified June 2001.

