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t through

period t, over successive periods t . . . . . . . . . . . . . . . . . 47

Figure 2.8 Pure EO-FH case 29: average realized single-period utility ū29
t for

period t and average realized cumulative utility ūcumul,29
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ABSTRACT

The goal of this dissertation was to develop tools for analyzing economic performance

while agents were constrained to be constructively rational. To achieve this goal, firstly,

tools for introducing forward-looking agents into agent-based frameworks were devel-

oped. These agents were shown to be a feasible alternative to the assumption of rational

expectations, albeit with some limitations, as could be expected from any computational

method. Several testing frameworks were also developed. Smaller ones were used to ex-

plore economic effects of decision procedures used by agents on macro- and micro-levels.

A more advanced framework was formulated to facilitate the analysis of the interactions

between institutional structures and macroeconomic policies. These frameworks were

shown to be scalable and useful tools for the analysis of both micro-level decisions of

agents and macroeconomic policies of central banks.
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CHAPTER 1. INTRODUCTION

It is important to understand the origin and consequencies of economic crises, partic-

ularly now, when the world economy is remaining in a state of slow growth, despite all

unconventional policies that authorities in different countries have been trying to imple-

ment since the financial crisis of 2008. The complexity of the most recent crises requires

developing new tools that could help policy makers to understand possible side effects

of various policies. Such tools could be designed in the agent-based macroeconomic

paradigm.

The continuing development of computational facilities provides researches and gov-

ernment agencies with an access to vast computational resources. This development is

finally allowing for much more complicated models to be employed. It is now possible

to achieve a reasonable level of detail without incurring prohibiting computational costs.

Besides that, modern computational resources make the problem of balancing the calcu-

lation time and the complexity of the model a much easier task. It is now getting possible

to build models that not only have complicated institutional structures, but also include

fairly advanced decisions procedures.

Thanks to these development, new questions arise that are worth investigating. Some

of this question are: How should we model more sophisticated agents? What institutional

features of the real economy should be included? This works begins to answer such

questions.

The analysis starts with the introduction of a constructive rationality concept. It is

suggested that this concept should be used as a modeling tool guiding efforts to incorpo-
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rate more sophisticated decision procedures into the toolset of the agent-based macroe-

conomics. In the same chapter, an agent-based small scale macroeconomic framework

is presented and forward-looking agents are introduced in this framework. These agents

are shown to be a feasible alternative to the assumption of rational expectations, albeit

with some limitations, as could be expected from any computational method.

In the next part of the dissertation, the problem of optimal belief structures is ex-

plored. The model was developed and tested that used different levels of Bayesian

networks for the modeling of the belief structures.

Finally, a middle-scale macroeconomic model was developed that served as an analyt-

ical tool for the investigation of the effects of the central bank policies. A need to better

understand interactions between institutional structures and macroeconomic policies is

highlighted based on the analysis results produced by agent-based model.

In total, the models and the corresponding computer codes designed in this disserta-

tion contribute to the understanding of the effects of constructive rationality of economic

agents and the policy of the central bank on the economy.
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CHAPTER 2. MACROECONOMIES AS

CONSTRUCTIVELY RATIONAL GAMES

Real-world decision-makers are forced to be locally constructive, in the sense that

their actions are constrained by the interaction networks, limited information, and com-

putational capabilities at their disposal. This study poses the following question: Sup-

pose utility-seeking consumers and profit-seeking firms in an otherwise standard dynamic

macroeconomic model are required to be locally constructive decision-makers, unaided

by the external imposition of global coordination conditions. What combinations of lo-

cally constructive decision rules result in good macroeconomic performance relative to

a social planner benchmark model, and what are the game-theoretic properties of these

decision-rule combinations? We begin our investigation of this question by specifying

locally constructive decision rules for the consumers and firms that range from simple

fixed behaviors to sophisticated approximate dynamic programming algorithms. We

then use computational experiments to explore macroeconomic performance under al-

ternative decision-rule combinations. A key finding is that simpler rules can outperform

more sophisticated rules, but that forward-looking behavior coupled with a relatively

long memory permitting past observations to inform current decision-making is critical

for good performance.
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2.1 Introduction

2.1.1 Study Overview

Decision-makers in real-world macroeconomies are necessarily limited to locally con-

structive actions, that is, to actions that can be implemented on the basis of their own

interaction networks, limited information, and computational capabilities. In contrast,

modern macroeconomic models typically impose coordination restrictions on the actions

of decision-makers that are not locally constructive. Key examples include the global

market clearing conditions and strong-form rational expectations postulates imposed in

dynamic stochastic general equilibrium (DSGE) models.

These observations raise the following question. Suppose all actions within an oth-

erwise standard DSGE model are required to be locally constructive, unaided by global

coordination restrictions imposed by the modeler. What form could these locally con-

structive actions take to ensure good outcomes, not only for the individual participants

but also for the macroeconomy as a whole?

This study addresses this question for a simplified version of the DSGE model de-

veloped by Smets and Wouters (2003) consisting of consumers and firms interacting

over time in labor and goods markets. Each consumer desires to maximize his expected

intertemporal (lifetime) utility subject to budget constraints, and each firm desires to

maximize its expected intertemporal profit subject to technology constraints. However,

in a departure from Smets and Wouters, the consumers and firms are restricted to con-

structively rational decision procedures in the following sense: the specification by these

agents of their objective functions, decision domains, and decision rules mapping de-

cision domains into decision selections must constitute locally constructive actions for

these agents.

To investigate the implications of constructive rationality for the resulting Dynamic

Macroeconomic (DM) Game, the decision domains for consumers and firms are first ex-
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pressed in stationary form, as vectors of possible parameter selections. Each decision

(parameter vector) maps into a sequence of parameterized supply and demand func-

tions for current and future periods. Systematic computational experiments are then

conducted to explore the implications of assuming that consumers and firms make suc-

cessive selections from these decision domains in accordance with decision rules ranging

from simple adaptation to sophisticated anticipatory learning. These decision rules in-

clude: (i) a reactive reinforcement learning method developed by Roth and Erev (1995)

and Erev and Roth (1998) on the basis of findings from human-subject experiments;

(ii) a forward-looking learning method developed by Watkins (1989), called Q-learning;

(iii) a forward-looking rolling-horizon learning method (Alden and Smith (1992)); and

(iv) an adaptive dynamic programming (ADP) learning method based on value-function

approximation.

The key issue of interest is which decision-rule combinations come closest to achiev-

ing the benchmark optimal solution obtainable by a fully informed social planner. In

particular, do the decision rules making relatively more sophisticated use of information

tend to result in relatively higher welfare outcomes, either for the individual decision-rule

users or for the economy at large? Since previous experimental findings have shown that

minimally-informed traders using relatively unsophisticated decision rules can match or

exceed the performance of better informed traders in some market contexts (Gode and

Sunder (1993), Smith (2008)), the answer to this question is not obvious a priori. A

related issue of interest is which (if any) decision-rule combinations constitute Nash

equilibria and/or Pareto optimal solutions for the DM Game.

A key finding of this study is that good performance in the DM Game requires

decision-makers to engage both in the exploitation of their current information and in

searches for new information. Simpler rules can outperform more sophisticated deci-

sion rules, but only if the simpler rules entail forward-looking behavior coupled with a

relatively long memory permitting past observations to inform current decision-making.
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This study is organized as follows. Section 2.2 explains the basic structure of the

DM Game together with its market and payment processes. Section 2.3 discusses the

decision procedures implemented by the DM Game consumers and firms. Section 2.4

introduces and solves a social planner benchmark model as a benchmark of compar-

ison for the simulation experiments. Section 2.5 describes the sensitivity design for

simulation experiments, and Section 2.6 reports key simulation findings. Some techni-

cal implementation aspects are relegated to the Appendix, and the code is available at

https://github.com/wilfeli/DMGameBasic.

2.1.2 Relationship to Previous Research

Numerous previous researchers, including Simon (1978), Dosi and Egidi (1991), Stiglitz

(2002), Smith (2008), Howitt (2008), and Kahneman (2011), have emphasized the impor-

tance and complexity of modeling real-world decision-making procedures. Practitioners

have also been interested in obtaining an improved understanding of these procedures;

see, for example, a recent report (Trichet (2010)) by the President of the European

Central Bank.

One possible approach permitting the systematic study of decision-making proce-

dures is Agent-based Computational Economics (ACE), the computational modeling of

economic processes (including whole economies) as open-ended dynamic systems of inter-

acting agents (Tesfatsion and Judd (2006), Tesfatsion (2014c)). Agents in ACE models

can range from passive system entities with no cognitive function to active information-

gathering decision-makers capable of sophisticated social and learning behaviors. The

repeated interactions of these agents give rise to global regularities characterizing the

system as a whole, which in turn affect agent interactions.

To date, however, ACE researchers have typically used decision procedures for macroe-

conomic agents that are not explicitly derived from underlying optimization problems.

For example, Dawid et al. (2011), Oeffner (2008), Dosi et al. (2010), and Mandel et al.
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(2010) directly model the behavior of consumers and firms using combinations of simple

fixed and adaptive decision rules.1

In contrast, DSGE researchers typically assume that consumers and firms solve in-

tertemporal utility and profit maximization problems; see, for example, Sbordone et al.

(2010) and Tovar (2009). Yet, to avoid aggregation issues, DSGE researchers also typi-

cally assume the existence of representative consumer and firm agents with strong forms

of rational expectations. This reliance on representative agents with rational expecta-

tions has been criticized on the grounds it prevents the study of learning and coordina-

tion issues critical for understanding the operation of real-world macroeconomies (Howitt

(2012)).

A key point to stress here, however, is that agents in ACE models do not have to

be restricted to reactive stimulus-response behavior; they can be modeled as forward-

looking intertemporal optimizers.2 Conversely, agents in DSGE models do not have to

be modeled as optimizers with incredible information and computational capabilities;

they can be modeled as learners reacting to experienced events.

Consequently, why not combine the best of these two approaches by examining con-

structively rational decision-making for economic agents with intertemporal goals? In

particular, what forms (if any) of constructively rational decision-making by participants

in macroeconomies result in good intertemporal outcomes, not only for the individual

participants but also for the macroeconomy as a whole? The current study focuses on

this issue.

A final note on terminology is in order. Our conception of a constructively rational

decision procedure does not necessarily entail the pursuit of goals through the solution of

optimization problems. Consequently, it differs from the concept of procedural rationality

1See Chen (2012) for a recent survey of ACE agent modeling, and see Tesfatsion (2014a) for extensive
annotated pointers to ACE macroeconomic research.

2For an extensive collection of annotated pointers to research on learning algorithms for ACE agents,
including approximate dynamic programming and other forward-looking methods for intertemporal
optimization, see Tesfatsion (2014b).
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introduced by Simon (1978)[p. 9], in which decision-making agents are assumed to pursue

the most effective possible procedures for the choice of their actions, given their limited

information and cognitive powers. Similarly, it differs from the concept of constructivist

rationality introduced by Smith (2008)[p. 2], defined as “the deliberate use of reason to

analyze and prescribe actions judged to be better than alternative feasible actions that

might be chosen.”

Rather, our conception permits procedural uncertainty (Dosi and Egidi (1991), Howitt

(2008)), in the sense that decision-makers might be uncertain how to use their limited

decision-making resources in an attempt to achieve their goals. In this case they might

engage in a combined learning and decision-making process in an attempt to reduce

their uncertainty about their world even as they attempt to survive and prosper within

that world. Indeed, the operative question for a reader of this study is as follows: If

you were to be suddenly transported into the DM Game as a consumer or firm, forced

to implement your decisions in a locally constructive manner, what decision procedure

would you use in an attempt to achieve your utility or profit goal?

2.2 The Dynamic Macroeconomic Game

2.2.1 Overview

This section develops a Dynamic Macroeconomic (DM) Game, a simplified version

of the DSGE model developed by Smets and Wouters (2003) that will permit us to

investigate the effects on micro and macro outcomes when consumers and firms use

different decision procedures. A deliberate attempt has been made to ensure that the

structure of the DM Game is similar to the structure of the Smets-Wouters DSGE model.

However, the DM Game differs from this model in two critical ways: (i) absence of

globally-imposed coordination conditions; and (ii) endogenous heterogeneity.
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Regarding (i), in attempting to achieve their goals through participation in market

processes, each consumer and firm in the DM Game is restricted to constructively ra-

tional decision procedures. As will be seen below, this requirement implies that events

must proceed through historical time from cause to effect, with no non-causal looping

permitted. In particular, the standard DSGE determination of market outcomes, in

which labor and goods markets are simultaneously cleared at correct equilibrium prices

with correct matching of buyers and sellers, with no risk to the traders, must be replaced

by market processes permitting risky trades to proceed even if transactions are based on

imperfectly informed demands and supplies.

Regarding (ii), heterogeneity among the DM Game consumers and among the DM

Game firms arises endogenously over time from two sources. One source is that all of the

decision procedures tested for consumers and firms in this study are adaptive procedures

involving stochastic aspects in their implementations. A second source is the use of a

stochastic rationing rule in the market clearing processes for labor and goods.3

The next subsection provides a big-picture understanding of the basic DM Game

structure. The remaining subsections then explain in greater detail the market and

payment processes in the DM Game, as well as the structure of the intertemporal op-

timization problems for consumers and firms. A detailed description of the particular

locally-constructive decision procedures to be tested for the consumers and firms by

means of computational experiments is given in the following Section 2.3.

3As detailed in Sections 2.3.2 and 2.3.3, reservation wages and prices are used to determine demand
and supply functions in the DM Game. Agents thus suddenly enter or drop out of the labor and goods
markets as the wage and price increase from 0, which induces discontinuities and flat portions in the
aggregate demand and supply functions. In consequence, at the market clearing wage or price where
the aggregate demand and supply curves cross each other, there can be too many units offered (or
demanded) relative to demand (or supply). Random selection is used to determine which offers for units
are used to clear demand in the case of excess supply and which demands for units are used to clear
supply in the case of excess demand.
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2.2.2 Basic DM Game Structure

As depicted in Fig. 2.1, the DM Game consists of a finite collection I of utility-

seeking infinitely-lived consumers and a finite collection J of profit-seeking infinitely-lived

corporate firms that interact in market and payment processes over discrete periods t ≥ 0,

where period t = [t, t+ 1).

Figure 2.1 Decision-making agents and institutions for the DM Game

Each consumer and firm has an initial money balance at time 0, measured in book

credit; and all subsequent payments and receipts take the form of changes in consumer

and firm money balances. The consumers derive utility from leisure and from the con-

sumption of a durable good q purchased from firms. The firms earn profits from the sale

of good q to consumers, where q is produced by means of labor services purchased from

consumers.

Both the labor market and the goods market are organized as competitive markets

in which demands and supplies are matched to determine market-clearing prices and

quantities. All firm profits are distributed back to consumers in the form of dividend

payments. The goal of each consumer is to maximize his expected intertemporal utility

subject to budget constraints, where this optimization problem is expressed in locally

constructive terms. The goal of each firm is to maximize its expected intertemporal
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profits subject to technology constraints, where this optimization problem is expressed

in locally constructive terms.

Each consumer at time 0 is structurally identical to each other consumer; that is,

each consumer has the same initial money balance, human capital endowment, and

intertemporal utility function. Also, each consumer owns an equal share of each firm,

fixed through time, and hence receives the same steam of dividend payments. Similarly,

each firm at time 0 is structurally identical to each other firm, meaning that each firm has

the same initial money balance, goods stock, dividend allocation rule, and intertemporal

profit function.

Market trades in the DM Game are risky in the following sense. In each period the

labor market occurs prior to the goods market. Firms engage in forward contracting

with consumers for labor services, and carry out goods production using these labor

services, prior to the realization of actual goods demands. Firms thus risk bankruptcy if

insufficient goods are sold to permit them to meet their wage obligations; and bankrupt

firms must exit the DM Game economy. On the other hand, consumers risk non-payment

for labor services rendered if firms become bankrupt. Since all goods demands must be

backed by actual purchasing power, this can reduce the goods demands of the consumers

in the next trading period, exacerbating firm cash-flow problems.4

A key question to be addressed is therefore as follows. Given the potential riskiness of

market trading, and the restriction to locally constructive decision rules, is it worthwhile

for the consumers and firms to use relatively sophisticated decision rules derived from

intertemporal optimizations? Or should they instead proceed cautiously with simpler

forms of decision rules based on incremental adaptations to past trading outcomes?

4For simplicity, this study assumes that consumer subsistence needs for goods are zero. Hence, the
consumers do not face a risk of death by starvation if they are unable to purchase any goods.
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2.2.3 Market and Payment Processes in the DM Game

All transactions in the DM Game are accompanied by corresponding payments, hence

the payment system is an important underlying institution. For simplicity, this payment

system is taken to be a simple clearing house that instantaneously clears each transaction.

Although consumers and firms can carry forward savings in the form of money (book-

credit), there is no banking system, hence no borrowing/lending opportunities and no

interest paid on savings.

A consumer is not permitted to spend more than his current money holdings, hence

all consumer demands for goods must be backed by actual purchasing power. A firm

is declared bankrupt, and removed from the economy, if its current money holdings are

insufficient to meet its wage-payment obligations to its workers.5

The consumers and firms use decision rules in each period t in an attempt to take

actions that satisfy their intertemporal utility and profit goals. These actions consist of

both labor and goods market decisions, such as whether or not to participate in these

markets and what specific quantity and price terms to seek if they do. The consumers

and firms receive feedback from the economy as a result of their period-t actions, and

they update their decision rules on the basis of this feedback in preparation for period

t + 1. This feedback includes market-clearing wages and prices for the period-t labor

and goods markets, and their own private utility or profit outcomes as a result of their

period-t market transactions.

5Any money held by a bankrupt firm is divided equally among its workers in partial fulfillment of
its wage-payment obligations. However, goods stocks of bankrupt firms are assumed to be lost to the
economy.
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Figure 2.2 Sequential market decisions during a typical period t.

As depicted in Fig. 2.2, the labor market occurs before the goods market in each

period t. Each consumer participating in the labor market submits a labor supply offer,

and each firm participating in the labor market submits a labor demand bid. A labor

market clearing solution is then calculated based on these offers and bids. This solution

consists of a set of forward labor contracts (supply now, get paid later) that determine

the amount of labor to be supplied now by each consumer to each firm, and the (common)

wage to be paid later by the firms to the consumers for each unit of supplied labor.

After the close of the period-t labor market, the consumers perform labor for the firms

in accordance with their forward labor contracts, which results in produced amounts of

goods. Next, each consumer participating in the period-t goods market submits a goods

demand bid, and each firm participating in the period-t goods market submits a goods

supply offer. A goods market clearing solution is then calculated based on these bids

and offers. This solution consists of a set of spot contracts that determine the amount

of good to be received now by each consumer from each firm, and the (common) goods

price to be paid now by the consumers to the firms for each unit of good received.

After the close of the period-t goods market, each firm proceeds to deliver goods

to its customers, in return for goods payments, in accordance with its period-t goods

market spot contracts. Each firm then settles its period-t wage-payment obligations
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to its workers as determined by its period-t forward labor contracts, if it has sufficient

money holdings to cover these obligations. Otherwise, the firm is bankrupt and must

exit the economy.

At the end of period t, each consumer calculates its period-t utility on the basis of

its period-t consumption of leisure and goods. Also, each (non-bankrupt) firm calculates

its period-t profit as its period-t goods-sales revenues minus its period-t wage payments.

These period-t utility and profit outcomes are used by the consumers and firms to update

their decision rules for period t+ 1.

A portion of any positive profits accrued by a firm during period t is distributed to

the firm’s consumer-owners as dividend payments at the end of period t. The wage and

dividend payments received by a consumer from the firms at the end of period t, together

with any other unspent monies held by the consumer at the end of period t, constitute

the money balances of the consumer at the start of period t + 1 to be used for goods

purchases in period t+ 1.

This flow of events is illustrated in Fig. 2.3. Note the use of internal times t:1 through

t:6 for events occurring within each period t = [t, t+ 1).

Figure 2.3 Flow of events during a typical period t.

As indicated in Fig. 2.3, the money balances held by consumers and firms at the end

of period t (i.e., at time t+ 1) are determined by the money balances held by consumers
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and firms at the start of period t together with the additions and subtractions to these

money balances arising from period-t market and dividend payments.

2.2.4 Consumer Constraints and Goals in the DM Game

Consumers in the DM Game are structurally identical. Each consumer i is endowed

with the same initial positive money balance M c,0
−1 (in book credit form) at the initial

time 0. Each consumer i also has one unit of time in each period t ≥ 0 that can be

divided between labor services lci,t:1 and leisure [1− lci,t:1]. For simplicity, it is assumed in

this study that each consumer i in each period t devotes his one unit of time either all

to labor or all to leisure.

Ignoring uncertainties (for the moment), the budget constraints faced by each con-

sumer i in each period t take the following form:

si,t:3 = M c
i,t−1 − pt:3qci,t:3 (2.1)

M c
i,t = si,t:3 + wt:4l

c
i,t:1 + divct:5 (2.2)

si,t:3, q
c
i,t:3 ≥ 0 (2.3)

lci,t:1 ∈ {0, 1} (2.4)

Here M c
i,t−1 denotes consumer i’s money balance at the start of period t, pt:3 denotes the

goods price determined in the goods market at time t:3 (same for all consumers), qci,t:3

denotes the amount of good purchased by consumer i in the goods market at time t:3,

si,t:3 denotes the savings of consumer i immediately subsequent to the goods market at

time t:3, wt:4l
c
i,t:1 denotes the actual wage payment received by consumer i at time t:4

arising from its forward labor contract cleared in the labor market at time t:1, and divct:5

denotes the dividend payment (same for all consumers) received by consumer i at time

t:5. The non-negativity constraint si,t:3 ≥ 0 ensures that consumer i’s goods purchase

qci,t:3 is backed by actual purchasing power (money holdings).
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The goal of each consumer i at the beginning of each period t ≥ 0 is to maximize his

expected intertemporal utility over periods r ≥ t subject to the budget constraints (2.1)

through (2.4). If the labor service and consumption levels of consumer i in periods r ≥ t

are given by
{
lci,r:1, q

c
i,r:3

}∞
r=t

, then the intertemporal utility attained by consumer i over

periods r ≥ t is given by

Ui,t =
∞∑
r=t

βr−tu
(
qci,r:3, 1− lci,r:1

)
, (2.5)

where β ∈ (0, 1) is a time-preference discount parameter.

In summary, as detailed above, the constraints and goals of the structurally-identical

consumers in the DM Game depend on the specific settings for (M c,0
−1 , u(·), β). However,

consumers do not know in advance the decision procedures in use by firms and other

consumers, hence they do not know in advance the market-clearing values for future

goods prices and wages nor the extent to which their own future goods demands and labor

supplies will be fulfilled. How each consumer i might address this uncertainty through

various alternative specifications for its own locally-constructive decision procedure will

be explained in Section 2.3.

2.2.5 Firm Constraints and Goals in the DM Game

Firms in the DM Game are structurally identical. Each firm j is endowed with the

same initial positive money balance M f,0
−1 (in book credit form) and the same initial goods

stock qstock−1 at the initial time 0. Also, each firm j has the same stationary production

function q = F (l) for the production of good q using labor services l. Ignoring uncertain-

ties (for the moment), the constraints faced by each firm j in each period t are derived

as follows.

Let qstockj,t−1 denote firm j’s inventory of goods at the beginning of period t ≥ 0. Suppose

firm j purchases labor services lfj,t:1 in the time-t:1 labor market and uses these labor

services to produce a goods amount qfj,t:2 = F (lfj,t:1) at time t:2. The goods amount qfj,t:3
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that firm j sells in the time-t:3 goods market cannot exceed its goods inventory at the

beginning of period t plus its goods production at time t:2:

qstockj,t−1 + F (lfj,t:1) ≥ qfj,t:3 (2.6)

Firm j’s goods inventory qstockj,t at the start of period t + 1 is then determined from the

following inventory accumulation equation:

qstockj,t = qstockj,t−1 + F (lfj,t:1) − qfj,t:3 (2.7)

In addition, firm j must worry about avoiding bankruptcy, since bankrupt firms

(i.e., firms unable to meet their wage obligations) must exit the DM Game economy.

Consequently, firm j only distributes dividends in period t if its goods market revenues

pt:3q
f
j,t:3 earned at time t:3 exceed its wage obligations wj,t:1l

f
j,t:1 incurred in the forward

labor market at time t:1 for settlement at time t:4. Moreover, firm j limits its dividend

distributions to its profits (if any). Specifically, firm j’s total dividend payments divfj,t:5

at time t:5 are determined in accordance with the following allocation rule:

divfj,t:5 =


κdiv ·

[
pt:3q

f
j,t:3 − wt:1l

f
j,t:1

]
if pt:3q

f
j,t:3 − wt:1l

f
j,t:1 ≥ 0

0 otherwise

(2.8)

where κdiv ∈ [0, 1]. Given (2.8), the no-bankruptcy condition for firm j in period t

guaranteeing its period-t wage obligations can be fulfilled takes the form

M f
j,t−1 + pt:3q

f
j,t:3 − wt:1l

f
j,t:1 ≥ 0 (2.9)

The money balance M f
j,t held by a non-bankrupt firm j at the end of period t (i.e.,

at the start of period t+ 1) is determined by the money balance M f
j,t−1 held by firm j at

the start of period t adjusted to reflect firm j’s market activities and dividend payments

during period t, as follows:

M f
j,t = M f

j,t−1 + pt:3q
f
j,t:3 − wt:1l

f
j,t:1 − div

f
j,t:5 (2.10)
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Finally, the following non-negativity restrictions on firm j’s labor service demand lfj,t:1 at

time t:1 and goods supply qfj,t:3 at time t:3 must be satisfied for physical meaningfulness:

lfj,t:1, q
f
j,t:3 ≥ 0 (2.11)

The goal of each firm j at the beginning of each period t ≥ 0 is to maximize its

expected intertemporal utility over periods r ≥ t subject to the technological and feasi-

bility constraints (2.6) through (2.11). For any given sequence
{
wr:1, l

f
j,r:1, pr:3, q

f
j,r:3

}∞
r=t

of wage levels, labor service purchases, goods prices, and goods purchases for periods

r ≥ t, the intertemporal profit attained by firm j over periods r ≥ t is given by

Πj,t =
∞∑
r=t

µr−t
[
pr:3q

f
j,r:3 − wr:1l

f
j,r:1

]
(2.12)

where µ ∈ (0, 1) is a time-preference discount parameter.

In summary, as detailed above, the constraints and goals of the structurally-identical

firms in the DM Game depend on the specific settings for (M f,0
−1 , q

stock
−1 , F (·), µ, κdiv).

However, firms do not know in advance the decision procedures in use by consumers

and other firms, hence they do not know in advance the market-clearing values for

wages and goods prices nor the extent to which their own future labor supplies and

goods demands will be fulfilled. How each firm j might address this uncertainty through

various alternative specifications for its own locally-constructive decision procedure will

be explained in the following Section 2.3.

2.3 Locally-Constructive Decision Procedures

2.3.1 Overview of Decision Procedures

The locally-constructive decision procedures to be tested for consumers and firms in

the DM Game are processes for the adaptive determination of demand bids and supply

offers for the labor and goods markets in each successive period t. The specification of

these decision procedures is divided into three steps, as follows.
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First, decision domains are specified for consumers and firms that consist of possible

selections of “tuning” parameters for demand and supply functions. To permit more

meaningful comparisons among decision procedures, the decision domain for each con-

sumer at the beginning of each period t is specified as a cross-product Dc of finite sets,

the same for each consumer. Similarly, the decision domain for each firm at the begin-

ning of each period t is specified as a cross-product Df of finite sets, the same for each

firm.

Second, state-conditioned transformation functions are specified for consumers and

firms. The state of a consumer or firm at any time t consists of the time-t physical

attributes, information, and beliefs of this agent. The transformation function for each

consumer at the beginning of each period t ≥ 0 maps each of his possible decisions dc

in Dc into a collection of labor supply and goods demand functions for periods r ≥ t,

parameterized by dc, and conditional on the consumer’s time-t state. Similarly, the

transformation function for each firm at the beginning of each period t ≥ 0 maps each

of its possible decisions df in Df into a collection of labor demand and goods supply

functions for periods r ≥ t, parameterized by df , and conditional on this firm’s time-t

state.

Third, Reactive Learner (RL), Forward-looking Learner (FL), and Explicit Optimizer

(EO) decision rules are specified for each consumer and firm that determine how this

agent selects decisions from its decision domain in each period t. These three types of

decision procedures cover a range of decision-making behaviors roughly ordered from less

to more sophisticated with regard to information utilization, expectation formation, and

forward-looking behavior. A summary description of these decision-maker types is given

in Table 2.1.
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Table 2.1 Types of decision procedures for consumers and firms in the DM Game.

Agent Decision-Maker Type Decision Procedure Description

Consumer Reactive Learner (RL) Adaptively updates decisions in

response to realized utility

outcomes

Forward-Looking Learner (FL) Uses Q-learning in an attempt to

maximize expected

intertemporal utility

Explicit Optimizer (EO) Maximizes expected

intertemporal utility using

adaptively updated probabilities

Firm Reactive Learner (RL) Adaptively updates decisions in

response to realized profit

outcomes

Forward-Looking Learner (FL) Uses Q-learning in an attempt to

maximize expected

intertemporal profit

Explicit Optimizer (EO) Maximizes expected

intertemporal profit using

adaptively updated probabilities

The construction of the decision domains and the state-conditioned transformation

functions for consumers and firms is explained more carefully in Sections 2.3.2 and 2.3.3.

Sections 2.3.4 through 2.3.6 then describe the decision rules used to select decisions from

these decision domains for each of the three types of decision-makers RL, FL, and EO

listed in Table 2.1.
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2.3.2 Decision Domain and Transformation Function for Consumers

The decision domain Dc for each consumer i is given by a cross-product of finite sets

having the form

Dc = Lc ⊗ Ω⊗Θ (2.13)

where:

• Lc = {0, 1}

• the elements of Ω = {ω1, . . . , ωG} satisfy 0 < ω1 < . . . < ωG

• the elements of Θ = {θ1, . . . , θH} satisfy 0 ≤ θ1 < . . . < θH ≤ 1

Consumer i selects a decision dc = (lc, ω, θ) from Dc at each time t ≥ 0 by means

of its particular RL, FL, or EO decision rule. The selection of d at time t is then

transformed into a sequence TRc
i,t(d) of labor supply and goods demand functions

(lci,r:1(w, d, t), qci,r:3(p, d, t))r≥t, parameterized by d and conditional on consumer i’s time-t

state.

Specifically, the labor supply lci,r:1(w, d, t) as a function of the time-r:1 labor market

wage w is determined as follows. If lc = 0, then lci,r:1(w, d, t) = 0 for all w, meaning that

consumer i does not plan to participate in the time-r:1 labor market. On the other hand,

if lc = 1, the reservation wage of consumer i for the time-r:1 labor market is given by

wci,r:1(d, t) = ω · Ei,t[wr:1] (2.14)

where Ei,t[wr:1] denotes the time-r:1 labor market wage expected by consumer i, based

on his state at time t. If w < wci,r:1(d, t), then lci,r:1(w, d, t) = 0, meaning that consumer i

does not plan to participate in the time-r:1 labor market at this labor market wage. On

the other hand, if w ≥ wci,r:1(d, t), then lci,r:1(w, d, t) = 1, meaning that consumer i plans

to offer his 1 unit of labor service into the time-r:1 labor market at this labor market

wage.
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Also, the goods demand qci,r:3(p, d, t) as a function of the time-r:3 goods market price

p takes the form

p · qci,r:3(p, d, t) = θ ·M c
i,r−1 (2.15)

Thus, consumer i plans in period t to spend a fraction θ of his time-r money balance

M c
i,r−1 on consumption goods at time r:3, and he specifies his time-r:3 goods demand as

a function of the time-r:3 market price p in accordance with this plan. Note that M c
i,r−1

will be known to consumer i at time r, prior to the opening of the goods market at time

r:3.6

The decision domain Dc depends on the grid specifications for Ω and Θ; these grid

specifications are explained in Appendix A.1. The transformation function TRc
i,t depends

on the wage expectation in (2.14). The method used by consumers to form and update

their wage expectations is explained in Appendix A.2.

2.3.3 Decision Domain and Transformation Function for Firms

The decision domain Df for each firm j is given by a cross-product of finite sets

having the form

Df = Lf ⊗ Γ⊗ Λ⊗Ψ (2.16)

where:

• the elements of Lf = {lf1 , . . . , l
f
L} satisfy 0 ≤ lf1 < . . . < lfL}

• the elements of Γ = {γ1, . . . , γM} satisfy 0 < γ1 < . . . < γM

• the elements of Λ = {λ1, . . . , λN} satisfy 0 < λ1 < . . . < λN

• the elements of Ψ = {ψ1, . . . , ψR} satisfy 0 ≤ ψ1 < . . . < ψR ≤ 1

6Recall that consumer i receives no money payments between time r (the beginning of period r) and
the settlement of labor market contracts at time r:4. Thus, consumer i’s purchases in the time-r:3 goods
market cannot exceed his money balance M c

i,r−1 at time r.
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Firm j selects a decision d = (lf , γ, λ, ψ) from Df at each time t ≥ 0 by means

of its particular RL, FL, or EO decision rule. The selection of d at time t is then

transformed into a sequence TRf
j,t(d) of labor demand and goods supply functions

(lfj,r:1(w, d, t), qfj,r:3(p, d, t))r≥t, parameterized by d and conditional on firm j’s time-t state.

Specifically, the labor demand lfj,r:1(w, d, t) as a function of the time-r:1 labor market

wage w is determined as follows. If lf = 0, then lfj,r:q(w, d, t) = 0 for all w, meaning

that firm j does not plan to participate in the time-r:1 labor market. If lf > 0, the

reservation wage of firm j for the time-r:1 labor market is given by

wfj,r:1(d, t) = γ · Ej,t[wr:1] (2.17)

where Ej,t[wr:1] denotes the time-r:1 labor market wage expected by firm j, based on its

state at time t. If w > wfj,r:1(d, t), then lfj,r:1(w, d, t) = 0, meaning that firm j does not

plan to participate in the time-r:1 labor market at this labor market wage. On the other

hand, if w ≤ wfj,r:1(d, t), then lfj,r:1(w, d, t) = lf , meaning that firm j plans to demand lf

units of labor in the time-r:1 labor market at this labor market wage.

Also, the goods supply qfj,r:3(p, d, t) as a function of the time-r:3 goods market price

p is determined as follows. The reservation goods price of firm j for the time r:3 goods

market is given by

pfj,r:3(d, t) = λ · Ej,t[pr:3] (2.18)

where Ej,t[pr:3] denotes the time-r:3 goods market price expected by firm j, based on

its state at time t. If p < pfj,r:3(d, t), then qfj,r:3(p, d, t) = 0, meaning that firm j does

not plan to participate in the time-r:3 goods market at this goods market price. On the

other hand, if p ≥ pfj,r:3(d, t), then

qfj,r:3(p, d, t) = ψ · qstockj,r:2 (2.19)

That is, firm j plans to supply a fraction ψ of its time-r:2 goods stock into the time-r:3

goods market at the goods market price p. Note that qstockj,r:2 will be known to firm j at

time r:2, prior to the opening of the goods market at time r:3.
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The decision domain Df depends on the grid specifications for Lf , Γ, Λ, and Ψ; these

grid specifications are explained in Appendix A.1. The transformation function TRf
j,t

depends on the wage expectation in (2.17) and the price expectation in (2.18). The

method used by firms to form and update their wage and price expectations is explained

in Appendix A.2.

2.3.4 RL Decision Rule for Consumers and Firms

Reinforcement learning embodies the basic common-sense principle that the propen-

sity to select relatively good decisions should be reinforced and the propensity to select

relatively poor decisions should be discouraged. Immediate rewards flowing from de-

cisions are typically used to update the propensities for choosing these decisions in an

appropriate up or down direction.

The RL decision rule for consumers and firms in the DM Game is a reinforcement

learning method originally developed by Roth and Erev (1995) and Erev and Roth (1998)

and subsequently modified by Nicolaisen et al. (2001). This method is “reactive” in the

sense that it asks the following backward-looking question: Given past events, what

decision should I make now?

For the DM Game, the immediate reward Rc
i (d, t) received by a consumer i as a result

of selecting a decision d in Dc at the beginning of any period t is taken to be consumer

i’s realized period-t utility. Similarly, the immediate reward Rf
j (d, t) received by a firm

j as a result of selecting a decision d in Df at the beginning of any period t is taken to

be firm j’s realized period-t profit.

Below we explain the RL decision rule for an arbitrary decision-maker v who selects

a decision d from a finite decision domain D in each period t, receiving an immediate

reward R(d, t), where v could represent either a consumer or a firm in the DM Game

economy. Let the finite cardinality of D be denoted by D, and let the elements of D be

indexed by d = 1, . . . ,D.
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Suppose it is the beginning of the initial period 0, prior to decision selection, and

suppose decision-maker v must select a decision from its decision domain D for period

0. Suppose the initial propensity of v to select decision d in D at time 0 is exogenously

given by q(d, 0) for d = 1, . . . ,D. Let the vector of these initial propensities be denoted

by q(0) = (q(1, 0), . . . , q(D, 0)).

Now suppose it is the beginning of any period t ≥ 0, prior to decision selection, and

suppose the current propensity of decision-maker v to select decision d in D is given

by q(d, t) for d = 1, . . . ,D. The choice probabilities that v uses to select a decision for

period t are then constructed from these propensities as follows:

Prob(d, t) =
exp(q(d, t)/C)∑D
k=1 exp(q(k, t)/C)

, d = 1, . . . ,D (2.20)

In (2.20), C is a cooling parameter that affects the degree to which v makes use of

propensity values in determining his choice probabilities. As C → ∞, then Probd(t) →

1/D, so that in the limit v pays no attention to propensity values in forming his choice

probabilities. On the other hand, as C → 0, the choice probabilities (2.20) become

increasingly peaked over the particular decisions d having the highest propensity values

q(d, t), thereby increasing the probability that these decisions will be chosen by v.

At the end of period t, the current propensity q(d, t) that decision-maker v associates

with each decision d in D is updated in accordance with the following rule. Let dt in

D denote the decision that v actually selected and implemented during period t. Also,

let R(dt, t) denote the reward attained by v at the end of period t as a result of the

implementation of dt. Then, for each decision d in D,

q(d, t+ 1) = [1− r]q(d, t) + Response(d, t) , (2.21)

where

Response(d, t) =


[1− e] ·R(dt, t) if d = dt

e · q(d, t)/[D − 1] if d 6= dt,

(2.22)
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and d 6= dt implies D ≥ 2. The recency parameter r ∈ [0, 1] appearing in (2.21) controls

the relative weighting of past versus current rewards in the updating of the propensities.

The experimentation parameter e ∈ [0, 1) appearing in (2.22) permits reinforcement to

spill over from a chosen decision to other decisions to encourage experimentation with

various decisions in the early stages of the learning process.

In summary, the RL decision rule is fully characterized once values are specified for

(D,q(0), C, e, r). Note that the RL decision rule is well-defined for any decision domain

with finite cardinality D; the exact form of the decisions constituting this decision domain

is irrelevant. Note, also, that the decision-maker does not need to know his reward

function; the RL decision rule only makes use of realized rewards, not potential rewards.

The versatility and low-information requirements of the RL decision rule, together with

its demonstrated robust performance in diverse situations, have led to its widespread use

in learning applications.

2.3.5 FL Decision Rule for Consumers and Firms

The FL decision rule for consumers and firms in the DM Game is a “greedy” variant of

the Q-learning algorithm developed by Watkins (1989) that permits decisions to be taken

in accordance with dynamic programming policy functions in approximate form. The

FL decision rule is “forward looking” in the sense that it asks the following anticipatory

question: If I make this decision now, what will happen in the future?

The key conceptual construct underlying Q-learning (and dynamic programming in

general) for a decision-maker v is the value function Vt(x), defined to be the optimum

total reward that can be obtained by v, starting at time t in state x. Below we provide an

intuitive derivation of ε-greedy Q-learning as a policy-function approximation method,

without consideration of technical details regarding the existence and uniqueness of op-

timal solutions.
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Suppose a decision-maker v is currently in state x at some current time t. Suppose

v implements a decision d, obtains an immediate reward Rt(x, d), and transits to a new

state x′ = St(x, d). Then the best that v can do, starting from time t + 1, is Vt+1(x′).

Consequently, the best v can do, starting from time t, is

Vt(x) = max
d

[Rt(x, d) + Vt+1(St(x, d))] (2.23)

Finally, let π∗ denote the optimal policy function giving the optimal decision d∗ in (2.23)

as a function d∗ = π∗(t, x) of the current time t and state x. Then (2.23) can equivalently

be written as

Vt(x) = [Rt(x, π
∗(t, x)) + Vt+1(St(x, π

∗(t, x)))] (2.24)

The recursive relationships (2.23) and (2.24) provide simple deterministic illustrations

of Richard Bellman’s celebrated principle of optimality.7 As detailed in Powell (2011,

2014), one practical difficulty is how to compute the value function Vt(x) and/or the

optimal policy function π∗. Another practical difficulty is that the reward function

Rt(x, d) and/or the state transition function St(x, d) might not be known; for example,

they could depend on the unknown decisions of other agents in the system.

The Q-learning method provides a way to implement decisions in approximate ac-

cordance with the optimal policy function π∗, assuming the decision horizon is infinite

and the reward, state transition, and value functions are independent of time. Below we

provide a general description of this method.

For each state x and decision d, define

Q(x, d) = [R(x, d) + V (S(x, d))] (2.25)

7Stochastic versions of the principle of optimality can be obtained by assuming Rt and/or St are
influenced in each period t by the realization ωt of a random event from a well-defined probability space
(Ω,F ,P). An expectation (with respect to ωt) is then taken of the bracketed term on the right-hand
side of (2.23) prior to undertaking the maximization. More complex stochastic variants are obtained if
the probability space for ωt depends on the time t, the time-t state, and/or the decision-maker’s time-t
decision. See Powell (2014) for details.
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If the Q-values in (2.25) can be learned, then the optimal policy function π∗ is determined

as follows: For any state x,

π∗(x) = arg max
d

Q(x, d) (2.26)

Hence, the learning of the Q-values in (2.25) avoids the need for separate learning or

knowledge of the reward, state transition, and value functions.

In its simplest form, Q-learning uses the following iterative procedure to determine es-

timates Q̂(x, d) for the Q-values Q(x, d) in (2.25) conditional on a user-specified learning

rate α and a user-specified discount factor γ:

Step 1: Initialize Q̂(x, d) to a random value for each possible state x and decision d.

Step 2: Observe an actual state x′.

Step 3: Pick a decision d′ and implement it.

Step 4: Observe the next state x
′′

and the next reward R
′′
.

Step 5: Update the estimate Q̂(x′, d′) as follows:

Q̂(x′, d′) ← [1− α]Q̂(x′, d′) + α
[
R
′′

+ γmax
d
Q̂(x′′ , d)

]
(2.27)

Step 6: Loop back to Step 2 and repeat.

The above procedure does not specify how the decision in Step 3 is to be picked.

Let ε be any number in (0, 1). The ε-greedy variant of Q-learning replaces the above

Step 3 with an alternative Step 3′ incorporating a specific decision selection process that

accommodates two goals: (i) Exploit current information for maximum possible current

gain; and (ii) seek new information to improve opportunities for future gains. This

decision selection process is as follows: With probability ε the decision-maker v in Step

3′ experiments by selecting a random decision d′. However, with probability [1 − ε] the
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decision-maker v instead “greedily” chooses a decision d∗ that maximizes the current

estimator Q̂(x′, d) for Q(x′, d).

In summary, the ε-greedy Q-learning method for a decision-maker v is fully charac-

terized once values are specified for the initial Q-value estimates Q̂(x, d) and the three

parameters (γ, ε, α).

2.3.6 EO Decision Rules for Consumers and Firms

Each EO agent (consumer or firm) at the beginning of each period t ≥ 0 attempts to

maximize an explicit expression for their expected reward (intertemporal utility or profit)

over current and future periods r ≥ t, subject to constraints. The EO agents use an

“open-loop/closed-loop” optimization approach in the following sense: They undertake

their maximization problems in each period t conditional on updated state information,

yet in these maximizations they ignore the fact that they will re-optimize their period-t

decision selections at the beginning of each future period r > t. They also ignore that

rationing can occur on the margin in the market clearing processes.

Specifically, at the beginning of each period t ≥ 0 an EO consumer i selects a de-

cision d in Dc that maximizes his expected intertemporal utility over current and fu-

ture periods r ≥ t. In this maximization, consumer i makes use of the transformation

function TRc
i,t(d) detailed in Section 2.3.2 to map each possible decision d in Dc at

time t into a collection of current and future labor supply and goods demand functions

(lci,r:1(w, d, t), qci,r:3(p, d, t))r≥t.

Formally stated, an EO consumer i’s maximization problem at the beginning of each

period t ≥ 0 takes the following form:

max
d∈Dc

Ei,tUt(TRc
i,t(d),wt:1,pt:3) (2.28)
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subject to the budget and feasibility constraints (2.1) through (2.4) dependent on

wt:1 = (wr:1)∞r=t (2.29)

pt:3 = (pr:3)∞r=t (2.30)

divt:5 = (divr:5)∞r=t (2.31)

where

Ut(TRc
i,t(d),wt:1,pt:3) =

∞∑
r=t

βr−t
[
u
(
qci,r:3(pr:3, d, t), 1− lci,r:1(wr:1, d, t)

)]
(2.32)

Similarly, an EO firm j’s maximization problem at the beginning of each period t ≥ 0

takes the following form:

max
d∈Df

Ej,tΠt(TRf
j,t(d),wt:1,pt:3) (2.33)

subject to the technological and feasibility constraints (2.6) through (2.11) dependent on

wt:1 and pt:3, defined as in (2.29) and (2.30), where

Πt(TRf
j,t(d),wt:1,pt:3) =

∞∑
r=t

µr−t
[
pr:3q

f
j,r:3(pr:3, d, t)− wr:1lfj,r:1(wr:1, d, t)

]
(2.34)

As explained in Appendix A.2, the expectations in the maximization problems (2.28)

and (2.33) for each period t are based on estimated probability distributions for future

labor market wages, future goods market prices, and future dividend payments (for

consumers), conditional on the states of consumer i and firm j at time t.

As explained in Appendix A.3, approximate solutions for the maximization problems

(2.28) and (2.33) are derived using two different approaches. Briefly summarized, the

first approach, referred to as EO Adaptive Dynamic Programming (EO-ADP), derives

an approximate solution in each period t by solving a stochastic dynamic programming

recurrence relation, assuming a basis-function approximation for the value function. The

second approach, referred to as EO Finite Horizon (EO-FH), replaces the infinite plan-

ning horizon in each period t with a finite planning horizon of length T , called the

forecasting horizon, and then derives an approximate solution by means of direct search

across the decision domain.
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2.4 Social Planner Benchmark Model

The main source of uncertainty for each consumer and firm in the DM Game is behav-

ioral uncertainty, meaning uncertainty concerning the decision procedures used by other

consumers and firms. The only other source of uncertainty is the use of a random ra-

tioning rule in the labor and goods markets to determine which demanders receive goods

or services in excess demand conditions and which suppliers sell goods or services in

excess supply conditions; cf. footnote 3. There are no external shocks to the DM Game

economy.

Both sources of uncertainty for the DM Game disappear if market decision-making

by consumers and firms is replaced by a social planner who maximizes the intertempo-

ral utility of a representative consumer i subject only to technological feasibility con-

straints, conditional on the restriction that the structurally-identical consumers must

all be treated alike and the structurally-identical firms must all be treated alike. The

resulting model, hereafter referred to as the Social Planner (SP) Benchmark Model, is in-

troduced here in order to have a benchmark of comparison for the DM-Game simulation

findings reported in Section 2.6.

Specifically, suppose the number I of DM-Game consumers and the number J of

DM-Game firms are arbitrary positive integers, and let qstock−1 ≥ 0 denote the exogenously

given goods stock of each firm at the beginning of period 0. We consider a social planner

who solves the following social welfare optimization problem at time 0 on behalf of the

representative DM-Game consumer:8

max
∞∑
t=0

βtu(qct:3, 1− lct:1) (2.35)

with respect to {lct:1, qct:3}∞t=0, subject to the following constraints for each t ≥ 0:

J · qstockt = J · qstockt−1 + J · F (lft:1) − I · qct:3 (2.36)

8Given the exponential form of the discount factor in (2.35), the social planner would exhibit time
consistency, meaning that re-optimization in successive periods would not result in any deviation from
the optimal solution determined at time 0.
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lft:1 =
I · lct:1
J

0 ≤ qstockt , qct:3

lct:1 ∈ {0, 1}

To obtain a concrete SP Benchmark Model solution, we assume that the utility

function u(·) in (2.35) takes the form

u(q, 1− l) = δc0 · ln (b(q) + q) + δc1 · [1− l] (2.37)

where9

b(q) =


1.0 if q > 0

b ∈ (0, 1) if q = 0

(2.38)

Also, the production function F (·) in (2.36) is assumed to take the form

F (l) = δf0 l
δf1 (2.39)

We further assume that the values specified for the parameters appearing in this SP

Benchmark Model are as listed in Table 2.2. Finally, for each t ≥ −1 we let

sstockt ≡ J · qstockt

I
(2.40)

denote the per-consumer amount of goods stock carried forward from period t to period

t+ 1.

9In order to permit consumers to constructively compare consequences for failure to participate in
the goods market, the valuation they place on failure to participate needs to be finite. As will be seen
in Section 2.6, the advantage of introducing the discontinuous valuation function b(q) in (2.38) is that
a consumer’s utility takes on a negative value only if he fails to participate in the goods market, thus
providing an easily detected signal of this non-participation.
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Table 2.2 Maintained parameter values for the SP Benchmark Model and the DM Game

Parameter Value

qstock−1 0.0

β 0.95

δc0 3.0

δc1 0.5

b 0.5

δf0 1.0

δf1 1.0

Given these concrete specifications, the SP Benchmark Model (2.35) can be expressed

in the following reduced representative-consumer form:

max
∞∑
t=0

βt
[
3.0 · ln(b(qct:e) + qct:3) + 0.5 · (1− lct:1)

]
(2.41)

with respect to {lct:1, qct:3}∞t=0, subject to the following constraints for each t ≥ 0:

sstockt = sstockt−1 + lct:1 − qct:3

0 ≤ sstockt , qct:3

lct:1 ∈ {0, 1}

sstock−1 = 0 (2.42)

The solution of the reduced SP Benchmark Model (2.41) is a full-employment solution

with lct:1 = qct:3 = 1 and sstockt = 0 for all t ≥ 0. The proof, by induction, is provided in

Appendix A.4.
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Given this optimal solution, the representative consumer attains the stationary per-

period utility level

u(1, 0) = [3.0 · ln(2)] ≈ 2.08 (2.43)

and the intertemporal utility level

∞∑
t=0

βtu(1, 0) =
∞∑
t=0

βt3.0 · ln(2) = 3.0 · ln(2)
1

1− β
≈ 41.59 (2.44)

Note that the smallest single-period utility outcome that a representative consumer can

feasibly attain under the SP Benchmark Model assumptions is u(0, 0) = 3.0 · ln(0.5) ≈

−2.08.

2.5 Sensitivity Design

2.5.1 Design Overview

The main focus of this study is the degree to which consumers in the DM Game

economy are able to attain the one-period and intertemporal utility levels (2.43) and

(2.44) achieved by the representative consumer in the SP Benchmark Model when the

DM Game consumers and firms use different combinations of constructively-rational

decision rules. The tested combinations of decision rules are displayed in Table 2.3.

Table 2.3 Tested combinations of constructively-rational decision rules (case numbers)

C:RL C:FL C:EO-FH C:EO-ADP

F:RL 1−10 21 31 39

F:FL 22 11−20 32 40

F:EO-FH 33 34 23−30 41

F:EO-ADP 42 43 44 35−38

For each of the 44 cases in Table 2.3, simulations were conducted for a range of values

for a subset of parameters, hereafter referred to as the treatment factors for the case,
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while maintaining fixed values for all other parameters. For each tested combination

of values for the treatment factors, the number of runs was set at NRuns = 10, using

ten seed values for the random number generator.10 The length of each run was set to

LRun = 1000 periods. To reduce dependence on transient effects, outcomes from the first

LOmit = 50 periods in each run were omitted from all calculated performance measures.

Section 2.5.2 explains the structural parameter values maintained for all cases, as well

as the parameter values maintained for each of the three tested decision rules RL, FL,

and EO. Section 2.5.3 then explains the range of values tested for the treatment factors

for each case in Table 2.3.

2.5.2 Maintained Parameter Values

2.5.2.1 Structural parameter values maintained for all cases

As detailed in Section 2.4, the SP Benchmark Model is fully determined, given the

utility and production function specifications (2.37) and (2.39) together with the param-

eter value specifications listed in Table 2.2. These function and parameter specifications

are maintained for all cases reported in this study.

As detailed in Section 2.2.4, the constraints and goals of the I structurally-identical

consumers in the DM Game depend on the specific settings for (M c,0
−1 , u(·), β). Also, as

detailed in Section 2.2.5, the constraints and goals of the J structurally-identical firms in

the DM Game depend on the specific settings for (M f,0
−1 , q

stock
−1 , F (·), µ, κdiv). All of these

functions and parameters have fixed specifications for all cases reported in this study.

The utility and production function specifications u(·) and F (·), plus the values of β and

qstock−1 , are set at the same values as set in Section 2.4 for the SP Benchmark Model, and

the values for the remaining parameters are set at the values listed in Table 2.4.

10Specifically, these ten seed values were as follows: {2012, 2013, 2014, 1, 2, 3, 100, 101, 102, 345}.
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Table 2.4 Maintained parameter values for the constraints and goals of consumers and

firms

Parameter Value

I 10

J 3

M c,0
−1 1.00

M f,0
−1 10.00

µ 0.95

κdiv 0.50

The transformation function TRc
it for consumer i in period t postulates that consumer

i calculates at time t a reservation wage (2.14) for each current and future period r ≥

t, which in turn depends on consumer i’s expectation for the wage in periods r ≥ t.

Similarly, the transformation function TRf
j,t for firm j in period t postulates that firm

j at time t calculates a reservation wage (2.17) and a reservation goods price (2.18) for

each current and future period r ≥ t, which in turn depend on firm j’s expectations for

the wage and goods price in periods r ≥ t.

As detailed in Appendix A.2, the methods used by the consumers and firms to form

and update these wage and goods price expectations in each period t depend on these

agents’ prior beliefs regarding wages and goods prices, and also on their memory length,

i.e., the number of past periods they take into account when forming these expectations.

The prior-belief parameters are set at maintained values, given in Table A.5. However,

as will be clarified below in Section 2.5.3, two different settings are tested for the memory

length.
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2.5.2.2 Parameter values maintained for each decision procedure

The decision domain Dc in (2.13) for each consumer i depends on the grid specifica-

tions for Ω and Θ. Also, the decision domain Df in (2.16) for each firm j depends on

the grid specifications for Lf , Γ, Λ, and Ψ. As detailed in Tables A.1 through A.4 in

Appendix A.1, two different forms are considered for these grid specifications: namely,

a small form and a big form.

The RL decision rule described in Section 2.3.4 is characterized by a parameter vector

(D,q(0), C, e, r). The only treatment factor for an RL agent is the recency parameter r;

all other parameters are maintained at fixed values.

More precisely, the parameter D is the cardinality of the decision domain Dc for an

RL consumer or Df for an RL firm. This cardinality is determined by the grid-type

specification for Dc or Df , which is always set to small for an RL consumer or RL firm.

The vector q(0) of initial propensities has dimension D. This vector is set equal to a

fixed vector qc,∗ for an RL consumer and to a fixed vector qf,∗ for an RL firm, where

these fixed vectors are defined as follows. For an RL consumer, the initial propensity

assigned by qc,∗ to a decision dc = (lc, ω, θ) ∈ Dc is 1.1 if lc = 1 and 1.0 otherwise. For

an RL firm, the initial propensity assigned by qf,∗ to a decision df = (lf , γ, λ, ψ) ∈ Df

is 1.1 if lf = lfL and 1.0 otherwise. Finally, the cooling parameter C is set to 1.0 and the

experimentation parameter e is set to 0.95. These maintained values are summarized in

Table 2.5.

Table 2.5 Maintained parameter values for RL agents

Parameter Value

grid-type small

q(0) qc,∗,qf,∗

C 1.00

e 0.95
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The FL decision rule described in Section 2.3.5 is characterized by the vector Q0 of

initial Q-value estimates Q̂(x, d) as well as by the parameter vector (ε, γ, α). The state-

space for x is discretized for each FL agent in order to keep computational solution-times

manageable. The state xi,t of an FL consumer i at each time t ≥ 0 is given by his time-

t money balance M c
i,t−1, discretized into the following three bins: [0.0, 5.0),[5.0, 10.0),

[10.0,∞). The state xj,t of an FL-firm j at each time t ≥ 0 consists of its time-t money

balance M f
t−1 and its time-t goods stock qstockt , each also discretized into three bins, as

follows: for the money balance, [0.0, 50.0), [50.0, 100.0), [100.0,∞); and for the goods

stock, [0.0, 5.0),[5.0, 10.0), [10.0,∞).

The vector Q0 of initial Q-value estimates is set equal to a fixed vector Qc,∗ for an

FL consumer and to a fixed vector Qf,∗ for an FL firm, where these fixed vectors are

defined as follows. For an FL consumer, the initial Q-value estimate assigned by Qc,∗ to

a state-decision pair (x, dc), where dc = (lc, ω, θ) ∈ Dc, is 0.5 if lc = 1 and 0.0 otherwise.

For an FL firm, the initial Q-value estimate assigned by Qf,∗ to a state-decision pair

(x, df ), where df = (lf , γ, λ, ψ) ∈ Df , is 0.5 if lf = lfL and 0.0 otherwise. Finally, the

learning parameter γ in (2.27) is set to 0.95 and the greedy parameter ε is set to 0.10.

These maintained values are summarized in Table 2.6.

Table 2.6 Maintained parameter values for FL agents

Parameter Value

grid-type small

Q0 Qc,∗
0 ,Qf,∗

0

γ 0.95

ε 0.10

Implementation details for the EO-ADP and EO-FH decision rules are provided in

Appendix A.3. The maintained parameter values for these EO decision rules are also
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given in Appendix A.3 in order to enable a better understanding of their meaning and

role.

2.5.3 Tested Specifications for Case Treatment Factors

As detailed in Appendix A.1, two different settings are tested for the decision-domain

grid specifications: namely, a small setting and a big setting. Although a small grid-type

is maintained for both the RL and FL decision procedures, both small and big grid-types

are tested for EO agents.

As detailed in Appendix A.2, two different settings are tested for the memory pa-

rameter wm used by consumers and firms to adaptively update their expectations. The

first setting, wm = one, indicates that consumers and firms in each period t only make

use of realizations from the previous period t− 1 to form their expectations for periods

r ≥ t. The second setting, wm = all, indicates that consumers and firms in each period

t > 0 make use of realizations from all previous periods {0, . . . , t − 1} to form their

expectations for periods r ≥ t.

Note that all tested cases depend on the setting for wm. This dependence arises

because, as detailed in Sections 2.3.2 and 2.3.3, the transformation functions TRc
i,t and

TRc
j,t mapping consumer and firm period-t decisions into collections of demand and

supply functions for periods r ≥ t depend on the wage, price, and dividend payment

expectations of the consumers and firms, which in turn depend on wm.

For the cases listed along the diagonal in Table 2.3, the tested combinations of values

for the treatment-factor parameters are as shown in Tables 2.7 through 2.10. All cross-

products of the listed parameter values are tested.
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Table 2.7 Tested treatment-factor parameter values for RL agents in cases 1-10

Parameter Range of Values

r {0.05, 0.10, 0.5, 0.90, 0.95}

wm 1, all

Table 2.8 Tested treatment-factor parameter values for FL agents in cases 11-20

Parameter Range of values

α {0.05, 0.10, 0.50, 0.90, 0.95}

wm 1, all

Table 2.9 Tested treatment-factor parameter values for EO-FH agents in cases 23-30

Parameter Range of values

T {5, 20}

wm 1, all

grid-type small, big

Table 2.10 Tested treatment-factor parameter values for EO-ADP agents in cases 35-38

Parameter Range of values

wm 1, all

grid-type small, big

For the remaining cases in Table 2.3, the tested values for the treatment-factor pa-

rameter values are as shown in Table 2.11. Superscripts are used to indicate for which

decision rule each tested value applies.
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Table 2.11 Tested values of treatment-factor parameters for cases 21, 22, 31-34, and

39-44

Parameter Value

rRL 0.05

wmRL all

αFL 0.05

wmFL all

TEO−FH 20

wmEO−FH all

grid-typeEO−FH small

wmEO−ADP all

grid-typeEO−ADP small

2.6 Key Simulation Findings for the DM Game

2.6.1 Overview

This section summarizes key DM Game simulation findings for the 44 tested decision-

rule cases listed in Table 2.3. Recall that each case in Table 2.3 corresponds to a distinct

setting of values for the treatment-factor parameters for that case.

For the most part, we focus attention on utility outcomes for the DM Game consumers

since the DM Game firms are merely vehicles to facilitate production. Since different

cases involve different planning-horizon lengths, the main ex post performance measure

used below for each case k is average realized single-period utility ūk, bounded above

and below by two standard deviations σūk . Other ex post performance measures used to

report results include the average realized single-period utility for period t, denoted by ūkt ,

the average realized cumulative utility through period t, denoted by ūcumul,kt , the average
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realized real wage, denoted by w̄real,k, the average realized real wage for period t, denoted

by w̄real,kt , and average realized single-period profits, denoted by π̄k. The calculations for

all of these measures are given in Appendix A.5.

Overall, cases with EO-FH agents tend to achieve better performance than cases

with only RL, FL, and/or E-ADP agents. However, comparative performance depends

strongly on the settings for the treatment-factor parameters. For example, a long memory

length covering all previous periods tends to result in better performance than a short

(one-period) memory length, all else equal.

We begin this section by focusing on simulation findings obtained for the diagonal

cases in Table 2.3, for which the DM consumers and firms all use the same type of

decision rule. We then proceed to an examination of the off-diagonal cases in which

mixed combinations of decision rules are used.

2.6.2 Findings for the Pure RL Cases 1-10

Consider cases 1-10 in Table 2.3 for which all consumers and firms are RL agents.

Each of these cases corresponds to a distinct setting of the RL treatment factors (r, wm)

in Table 2.7, taking as given the maintained parameter values in Table 2.5.

As seen in Section 2.3.4, the recency parameter r ∈ [0, 1] determines the weight [1−r]

that is placed on accumulated past single-period utility realizations relative to the weight

[1 − e] placed on the most recent single-period utility realization. Since e is set at the

maintained value e = 0.95, a reduction in r implies an increase in the weight placed on

past utility outcomes relative to the weight placed on the most recent utility outcome.

A longer memory length wm =long should be beneficial for performance in a stationary

environment, but it could be harmful to performance in a non-stationary environment.

Interestingly, in the DM Game the bulk of the uncertainty faced by each agent is uncer-

tainty regarding the decision-making behavior of other agents. Consequently, the more
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that the agents settle down in their decision-making selections, the more stationary the

environment becomes.

Figure 2.4 reports performance outcomes for cases 1-10 in Table 2.3. The performance

of each case k is measured by average realized single-period utility ūk, and cases are

ordered from left to right in ascending performance order.

Figure 2.4 Pure RL cases 1-10: average realized single-period utility ūk with bounds of

± two standard deviations σūk

Given a longer memory length wm=all, it is seen that smaller r values (larger weights

on past utility outcomes) tend to result in better performance than larger r values. Given

a one-period memory length wm=one, however, a relatively low performance level results

for all r values. Moreover, even in the best-performing cases, performance is significantly

below 2.08, the stationary per-period utility level (2.43) obtained by the representative

consumer in the SP Benchmark Model
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2.6.3 Findings for the Pure FL Cases 11-20

Consider, next, cases 11-20 in Table 2.3, for which all consumers and firms are FL

agents. Each of these cases corresponds to a distinct setting of the FL treatment factors

(α,wm) in Table 2.8, taking as given the maintained parameter values in Table 2.6.

As seen in Section 2.3.5, the update weight α ∈ [0, 1] determines the weight [1 − α]

that is placed on past Q-value estimates relative to the weight α placed on current and

anticipated future utility outcomes based on the most recent utility outcome and a new

state realization. Since these two weights sum to 1.0, a reduction in α implies an increase

in the weight placed on past utility outcomes relative to current and anticipated future

utility outcomes.

Figure 2.5 reports performance outcomes for cases 11-20 in Table 2.3. The perfor-

mance of each case k is measured by average realized single-period utility ūk, and cases

are ordered from left to right in ascending performance order.

Figure 2.5 Pure FL cases 11-20: average realized single-period utility ūk with bounds

of ± two standard deviations σūk
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Given a longer memory length wm=all, it is seen that larger α values (smaller weights

on past utility outcomes) tend to result in better performance than smaller α values,

although this is not uniformly true. Given a one-period memory length wm=one, a

relatively low performance level generally obtains regardless of the setting for α, again

with exceptions. Indeed, as for the pure-RL cases, even the best-performing pure-FL

cases have a performance level that is significantly below 2.08, the stationary per-period

utility level (2.43) obtained by the representative consumer in the SP Benchmark Model

2.6.4 Findings for the Pure EO-FH Cases 23-30

Now consider cases 23-30 in Table 2.3, for which all consumers and firms are EO-FH

agents. Each of these cases corresponds to a distinct setting of the EO-FH treatment

factors T , wm, and grid-type in Table 2.9, taking as given the maintained parameter

value NDrawsFH=10 discussed in Appendix A.3.2.

A longer forecasting horizon T means that the EO-FH agent is more anticipatory.

This could be beneficial if the agent’s anticipations are an accurate reflection of future

uncertainties, but it could be harmful if not. Restricting the number of potential de-

cision selections by specifying grid-type=small rather than grid-type=big increases the

sampling density, i.e., the frequency with which each potential decision is tried. On the

other hand, grid-type=small results in a cruder approximation of the decision domain,

which could prevent the EO-FH agents from determining their truly best decisions.
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Figure 2.6 Pure EO-FH cases 23-30: average realized single-period utility ūk with

bounds of ± two standard deviations σūk

Figure 2.6 reports performance outcomes for cases 23-30 in Table 2.3. The perfor-

mance of each case k is measured by average realized single-period utility ūk, and cases

are ordered from left to right in ascending performance order.

Given a one-period memory length wm=one, performance is relatively low regardless

of the grid-type or the length T of the forecasting horizon. However, given a longer mem-

ory length wm=all, it is seen that having a small grid-type results in better performance

than a large grid-type.

Moreover, for wm=all and grid-type=small, the longer forecasting horizon T=20

yields slightly better performance than the short forecasting horizon T=5. Indeed, as

indicated by the standard deviation bounds in Fig. 2.6, for this combination of treatment

factors the average realized single-period utility level ūkt attained in some periods t comes

close to matching the stationary single-period utility level 2.08 achieved by the represen-

tative consumer in the SP Benchmark Model. This occurs despite the rather simplistic
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Monte Carlo method used by EO-FH agents to handle their uncertainty regarding future

wages, prices and dividends.

Given the relatively good performance of the EO-FH decision procedure under some

treatment-factor specifications, it is interesting to delve deeper into the underlying dy-

namics. Time-series for utility and real wage outcomes are depicted below for two illus-

trative cases: (i) a “good” case 26 with T=20, wm=all, and grid-style=small ; and (ii) a

“bad” case 29 with T = 20, wm=one, and grid-style=big.

Figure 2.7 Pure EO-FH case 26: average realized single-period utility ū26
t for period

t and average realized cumulative utility ūcumul,26
t through period t, over

successive periods t
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Figure 2.8 Pure EO-FH case 29: average realized single-period utility ū29
t for period

t and average realized cumulative utility ūcumul,29
t through period t, over

successive periods t

For the “good” case 26, depicted in Fig. 2.7, the average realized single-period utility

ū26
t eventually stabilizes at a level of about 0.5. For the “bad” case 29, depicted Fig. 2.8,

the average realized single-period utility ū29
t quickly stabilizes at a much lower level of

about -1.0.

The behavior of the real wage reflects overall macroeconomic performance. For the

“good” case 26, it is seen in Fig. 2.9 that the average realized real wage w̄real,26
t appears

to be stabilizing at a level of about 0.30. In contrast, for the “bad” case 29, it is seen in

Fig. 2.10 that the average realized real wage w̄real,29
t rapidly drops towards zero.
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Figure 2.9 Pure EO-FH case 26: average realized real wage w̄real,26
t for period t, over

successive periods t

Figure 2.10 Pure EO-FH case 29: average realized real wage w̄real,29
t for period t, over

successive periods t

2.6.5 Findings for the Pure EO-ADP Cases 35-38

Consider cases 35-38 in Table 2.3, for which all consumers and firms are EO-ADP

agents. Each of these cases corresponds to a distinct setting of the EO-ADP treatment
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factors wm and grid-type in Table 2.10, taking as given the maintained parameter values

listed in Table A.6.

Figure 2.11 reports performance outcomes for these four cases. The performance of

each case k is measured by average realized single-period utility ūk, and cases are ordered

from left to right in ascending performance order.

Figure 2.11 Pure EO-ADP cases 35-38: average realized single-period utility ūk with

bounds of ± two standard deviations σūk

EO-ADP performance is clearly better with a longer memory wm=all than with a

one-period memory wm=one. Moreover, given a longer memory, performance is slightly

better with grid-style=big in comparison with grid-style=small. Overall, however, a low

performance level is attained for all tested settings of the EO-ADP treatment factors in

comparison with the overall performance attained using the RL, FL, and EO-FH decision

procedures.
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2.6.6 Findings for Mixed Combinations of Decision Rules

From a social welfare point of view, it is only consumer utility outcomes that matter

in the DM Game. However, the players in the DM Game are utility-seeking consumers

and profit-seeking firms, where the latter act on behalf of their shareholders (who receive

their profits as dividend payments) but not consciously on behalf of consumer welfare

per se.

It is therefore of interest to construct consumer and firm payoff matrices for the DM

Game, interpreting the alternative possible decision procedures RL, FL, EO-FH, and

EO-ADP as possible pure strategy choices for these players.

Figure 2.12 Consumer payoff matrix for the DM Game reporting average realized sin-

gle-period utility ūk for the indicated cases k. A darker shade of color

indicates a higher value for ūk.
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We therefore tested the off-diagonal cases in Table 2.3 representing mixed combi-

nations of decision procedures. We then used the performance outcomes obtained for

these off-diagonal cases together with the performance outcomes obtained for the diag-

onal cases to construct DM-Game payoff matrices, one for consumers and one for firms,

under the restriction that all consumers use the same decision procedure and all firms

use the same decision procedure.

Figure 2.13 Firm payoff matrix for the DM Game reporting average realized single-pe-

riod profits π̄k for the indicated cases k. A darker shade of color indicates

a higher value for π̄k.

The consumer payoff matrix, depicted in Fig. 2.12, reports the average realized single-

period utility ūk attained by consumers for each indicated case k, with darker shades of

color corresponding to higher values of ūk. The firm payoff matrix, depicted in Fig. 2.13,



53

reports the average realized single-period profits π̄k attained by firms for each indicated

case k, with darker shades of color corresponding to higher values of π̄k.

It is important to note the following non-standard aspect of these payoff matrices.

For each pairing of consumer and firm decision procedures along the diagonals, the

treatment-factor parameters are selected in an attempt to permit each agent type to

do as well as possible in this pairing. This is reflected in the fact that, in contrast to

Table 2.3, only single cases are considered along the diagonals.

As seen from the firm payoff matrix in Fig. 2.13, EO-FH is a dominant strategy

for firms, given the particular case selections and treatment-factor specifications used

to form this payoff matrix. Interestingly, as seen from the consumer payoff matrix in

Fig. 2.12, this is not true for consumers. For example, the best response of consumers to

a firm choice of FL is to choose FL, not EO-FH. Nevertheless, it is also seen from these

two payoff matrices that (EO-FH, EO-FH) is a Pareto optimal Nash equilibrium

2.7 Conclusion

This study explores the comparative performance of constructively rational decision-

making procedures in the context of an otherwise standard macroeconomic model with in-

tertemporally optimizing consumers and firms. These decision-making procedures range

from simple reactive reinforcement learning to sophisticated adaptive dynamic program-

ming (ADP) techniques.

A key finding is that the best macroeconomic performance tends to result for cases

in which agents use the EO-FH procedure and have long memories. The EO-FH pro-

cedure determines approximate intertemporal utility and profit solutions by means of

direct search, using a finite rolling planning horizon. In particular, EO-FH with long

memory tends to dominate the tested RL procedure based on Roth-Erev reactive rein-

forcement learning, the tested FL procedure based on Q-learning, and the tested EO-
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ADP procedure based on an adaptive dynamic programming method for value function

approximation.

However, to date, only a small number of parameter values have been explored for

each of these decision-making procedures, and there is no guarantee that the best param-

eter settings for the DM Game environment have been used. Moreover, further testing is

needed to clarify the effects of memory length, forecasting horizon, and grid-point den-

sity specifications for decision domains, and the interactions among these specifications,

in alternative economic environments.

Clearly, then, much further study is needed to understand the ramifications of re-

quiring consumers and firms in macroeconomic models to be constructively rational, in

accordance with their real-world counterparts. In particular, a large gap exists between

constructive rationality, i.e., basing decisions on one’s own beliefs, information, and at-

tributes, and constructive optimality, i.e., the assurance that the combination of decision

rules in use by agents satisfy some stated optimality property, such as Pareto optimality.

Nevertheless, a primary goal of this study has already been accomplished: namely, to

provide a proof-of-concept demonstration that consumers and firms in computational

models can be implemented as forward-looking learners and intertemporal planners

whose decision-making results in sustained economic activity, despite the absence of

top-down coordination devices such as rational expectations and global market clearing

conditions.

Another important goal accomplished by this study is the development of a modu-

lar, extensible, and scalable macroeconomic framework that facilitates the comparative

analysis of different institutional structures populated by a mix of agents with diverse

decision-making procedures. In subsequent work, the range of considered structures and

procedures will be extended to permit consideration of more realistic features, such as

the inclusion of a central bank and a commercial banking system.
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CHAPTER 3. ECONOMIC SURVIVAL AS A FUNCTION

OF BEHAVIORAL RULES AND INFORMATION

PREFERENCES

Agent-based computational economics (ACE) is a diverse set of approaches and meth-

ods that could be used to study a range of problems and analyze consequences of behavior

under conditions that could not be solved analytically. One of such questions is optimal

behavior in a changing environment, when the amount of information and the learning

opportunities are severely restricted. In this Chapter, I studied a range of combinations

of learning and choice policies available to an agent, ranging from simple rules to more

sophisticated approaches based on expected utility maximization with expectations in

the form of a Bayesian network. I have found out that a three-level Bayesian network

coupled with approximate optimization techniques might perform on a par with the exact

solution and correct belief specifications.

3.1 Introduction

One of the established approaches to model uncertainty and choices under uncertainty

is to assume Von Neumann–Morgenstern utility function and to solve the resulting op-

timization problem using an expected utility of an agent. Such an approach, however,

assumes deep knowledge about the world that people occupy, or, at least, about the

main characteristics of this world. This assumption is hardly a realistic one. It would be

more reasonable to assume that people might be perceiving the world they are acting in
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as one of many possible worlds with the corresponding priors on the distribution of such

possible worlds. This approach is researched in the paradigm of ambiguity preferences.

The question of preferences under ambiguity, and the corresponding behavioral con-

sequences has recently become an active research area. Risk aversion (or uncertainty

aversion) is a standard part of an economic model, but incorporation of ambiguity aver-

sion is very limited. A recent review of models with preferences over ambiguous outcomes

is given in Epstein and Schneider (2010). They review dynamic models of ambiguity-risk

aversion and also show that the time-consistent dynamic preferences in a form of RU (re-

cursive utility) has corresponding static preferences. They also discuss a limited number

of applications for these models. The main models they review are Recursive SEU, which

corresponds to static Subjective Expected Utility (SEU), Recursive Multiple-Priors with

Maxmin Expected Utility (MEU) as a static preferences, and Recursive Smooth Ambi-

guity Model with corresponding static preferences given in Klibanoff et al. (2005). A

generalized version of RSU can be found in Hayashi and Miao (2010).

However, these utility function representations have not been tested in a laboratory

environment. Only recently have static representations been tested in Ahn et al. (2007),

where they found some evidence that the tendency to equate demands for securities

that pay off in the ambiguous states could be more easily accommodated by the α-MEU

(α-Maxmin Expected Utility) model than by the SEU model.

Besides experimental evidences that people behave differently under uncertainty and

ambiguity, it was also shown in Hsu et al. (2005) that decision making in uncertain

and ambiguous environments activate different parts of the brain. Neural activity while

taking ambiguous decisions was also investigated in Bach et al. (2009). A number of

experiments studied heterogeneity in ambiguous preferences. Borghans et al. (2009)

showed that men and women have different ambiguity preferences. Keck et al. (2010)

studied group decisions making in an ambiguous setup. As in the case of uncertainty, it

was shown that framing matters for ambiguous choices in Ho et al. (2002). Maffioletti
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et al. (2009), and Trautmann et al. (2009) showed that the preference reversals effect is

valid for an ambiguous preferences.

Testing of savings/consumption decisions under uncertainty and a general survey of

macro experiments can be found in (Duffy, 2008). Carbone and Hey (2004) showed that

subjects are generally unable to solve the dynamic optimization problem, but might react

in a correct direction to changes in the environment. Hey and Knoll (2011) conducted

experiments to define decision rules used to solve savings/consumption by subjects.

This work is trying to bind together, on the one hand, experimental results that

show that agents use simple rules to make savings/consumption choices, and, on the

other hand, a highly advanced mathematical model that tries to explain agent choices.

In this model, agents are allowed to have better specified beliefs as compared to the

simple ambiguous beliefs. They also implement different possible simplification to the

optimization problem.

3.2 Structure of the Model

3.2.1 The Main Question

The model was developed to test a range of hypotheses that deal with optimal choices

under uncertainty. When making intertemporal choices, people try to find a balance

between the best possible behavior and the uncertainty that surrounds the results of their

choices. If we knew the exact rules that govern the economy, we could, arguably, choose

the best possible actions (barring the issue of game interactions that will complicate such

choices). But what happens if we do not know much about the world we live in and have

to learn about it along the way? What will be the best belief structure we could assume,

and how should we learn about the world? Is this belief structure universal, or does it

depend on the particulars of the world? Those questions are too broad to be answered

in a single paper. Many researches tried to offer partial solutions to them. A lot of effort
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was devoted to defining and researching the implications of different utility functions

that might be useful for ambiguous situations. Another branch of research deals with

researching learning under uncertainty. The model proposed in this work combines these

issues and tries to answer the big question of the best possible behavior under incomplete

information and limited learning opportunities.

The model introduces Bayesian networks for the belief structure and approximate

optimization algorithms for making choices under uncertainty. Both of these tools help

to define beliefs for a broader range of situations and serve as a vehicle for a performance

evaluation of different approximation techniques that people are using or should be using

when trying to survive in a stochastic world. The implemented approximate optimization

algorithm is scalable and could be used in other applications, especially when full scale

optimization algorithms are infeasible.

The first part of the model deals with the belief representation. The Bayesian up-

dating of beliefs is used because it is the only instrument that is consistent from the

statistical point of view. The general belief structure is also formalized through the

Bayesian network. This generalization allows for a simultaneous specification of the dif-

ferent assumptions on agent beliefs. One-level network corresponds to simple beliefs and

Von Neumann-Morgenstern utility. Two-level network describes ambiguous preferences.

Three and more levels correspond to a higher ()relative to an ambiguous beliefs) order

of beliefs.

The second part of the model is designed to test different optimization algorithms.

As a benchmark, the complete search on a grid is used. It is highly time consuming,

not scalable, but provides exact solutions. As an alternative, an approximate dynamic

programming algorithm adopted from Powell (2011) is tested.

Other possible variables are controlled in the following way. Multiagent learning

interactions are excluded by allowing only one agent to make decisions at one moment

in time. Decision feedback loops are excluded by subjecting an agent to an exogenously
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defined stochastic process that is independent of his decisions. Information is limited

by excluding sampling and providing an agent only with a historical realization of the

stochastic process on returns.

To sum it up, there is one agent that tries to optimize the expected utility by making a

consumption/savings choice. This agent observes returns on savings that are realizations

of a stochastic process. To allow for an explicit solution to the optimization problem,

each agent lives for only 3 periods and after that is replaced by an identical agent. This

new agent may inherit some or all of the properties of the previous agent.

3.2.2 Structure of the Worlds

The underlying driving force of all agent decisions is a stochastic process that de-

fines returns on savings. For simplicity, this process is assumed to be discrete. The

set of possible returns includes two returns {r1, r2} with the corresponding distribution

[pwi,r1 , pwi,r2 ]
′
.

As there are only two possible realization of returns, pwi,r2 = 1 − pwi,r1 . Here wi

is a subscript that denotes the world. Each world is characterized by a probability

distribution over returns. An agent may find himself living in a fixed world, i.e. with a

simple fixed probability distribution over returns, or may live in an environment where

a probability distribution is itself subject to change. The later option allows for an

inclusion of a deterministic or stochastic switching processes for returns.

The agent knows the form of a probability distribution and the exact set of possible

returns, but has to learn probabilities for these returns. The only information that the

agent has are period-by-period realized returns on his savings. Since in general the

agent does not know which stochastic process is generating returns, he has to form some

believes about the possible probability of getting one of the returns. This uncertainty

is usually captured by ambiguous beliefs and an appropriate utility function. In terms

of Bayesian networks, it will correspond to a two-level Bayesian network. A one-level



60

Bayesian network will describe an agent that thinks that he knows the exact distribution

that generated the returns. A three-level Bayesian network will describe an agent that

thinks that he has no knowledge about possible probabilities at all.

To simplify the analysis and at the same time make it more illustrative, the specific

forms of belief structures are introduced. An agent with ambiguous beliefs with 50%

probability believes that he lives in the correct world, and with 50% in the world where

probabilities are reversed. This specific form allows for an easy introduction of the three-

node Bayesian network.

The one-node network will include cases where an agent believes with 100% proba-

bility that he is in the right or the wrong world. Those specifications will be used for

the testing purposes, as they represent an absolutely correct and an absolutely incorrect

prior, respectively. The composition and the structure of an agent are kept intentionally

simple to allow for the focus on beliefs and choice algorithms.

3.2.3 Population and Inheritance

To keep computations feasible, it is assumed that at each moment in time only one

agent is active (for a total of T periods) and is replaced by a new agent at the end of a

lifespan. A new agent receives an endowment at the beginning of his life, and forms his

beliefs. These beliefs could be his own, and thus independent of others, or inherited from

the old generation. The form of a belief inheritance is an another treatment factor in

the simulations. In general, an agent could also inherit wealth from an older generation,

but as there is no stimulus for an agents to care about the younger generation, nothing

will be left to pass to them. The specific forms of preferences and beliefs are described

below.
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3.3 Agent Preferences and Updating of Beliefs

3.3.1 Agent Preferences

Each agent is assumed to live for T = 3 periods, and therefore his utility at time t

can be represented in the following form:

Ut,T,T rem =
t+T rem∑
τ=t

Eτβ
τu (cτ ) , T

rem = 3, 2, 1 (3.1)

As the agent becomes older, his utility function shrinks to exclude the past period.

The period utility function u (ct) has a CES form:

u (ct) =
c1−θu
t

1− θu
, θu ∈ [0.1, 4] (3.2)

Each agent has an endowment w0 that it has to distribute over his life-time (T ).

There is a random interest rate for the savings. The distribution of returns for this

interest rate is the source of uncertainty for an agent.

At each moment t agent faces budget constraints that correspond to the remaining

periods of his life:

Mt+τ ≤Mt+τ−1 (1 + rt+τ )− ct+τ , τ = 0, · · · , T rem (3.3)

Here the money holding in the new period Mt+τ are the money holding in the previous

period plus the interest income for this money holdings with an interest rate rt + τ

minus the consumption in this period ct + τ . The initial endowment defines the amount

of money at the beginning of the agent’s life:

Mt−1 = w0 (3.4)

if agent begins his life at time t.

Only consumption and saving decisions (no borrowing) are allowed, and there is no

additional endowment after the initial period for each agent (when he is young).

There is also a non-negativity constraint on consumption ct ≥ 0.
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3.3.2 Expectations

The agent forms the expectations about possible realizations for an interest rate based

on the information he gets in each period. The only new information he can get is the

past realized interest rate, because no sampling of interest rates is allowed as described

in Section 3.2.1. Thus, at each period his information set ∆It consists of only one point,

namely the realized interest rate.

∆It = {rt} (3.5)

To improve the quality of his choices, the agent also forms prior beliefs about the

possible world structure. These beliefs are updated in a consistent way using Bayesian

updating. This assumption is a rather demanding one, as it could be computationally

consuming, to the degree when people have to use heuristics to cope with such levels of

complexity. Such heuristics have been found in the experiments, but we do not consider

them in the current study. Instead, we concentrate on the benefits and the disadvantages

of a statistically consistent update of beliefs, not heuristics.

A number of different setups for beliefs structure is studied. The simplest possible

structure arises when the agent has the information about the exact world he is living in

(and believes this information to be true). The only source of uncertainty in this case is

the interest rate. Formally , the agent believes that he knows true wi, and thus knows

p.d.f. for the returns, i.e. Pt,r,wi for each moment t. In this case, he can use the true

return distribution Pt,r,wi in his utility estimation.

Ut,T,T rem =
t+T rem∑
τ=t

EPτ,r,wiβ
τu (cτ ) , T

rem = 3, 2, 1 (3.6)

Another scenario arises if the agent realizes that the information he has about the

true world he is living in may be incorrect. In this case, he has to form beliefs over the
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possible worlds he may be in. These beliefs take the form of a Bayesian prior Pw - p.d.f.

for possible probabilities of the different worlds that the agent might be acting in.

A general form of the utility function in this case is

Ut,T,T rem = V
(
{Pt+τ,w}T

rem

τ=1 , {Pt+τ,r,wi}
T rem

τ=1 , {ct+τ}T
rem

τ=1

)
(3.7)

where V is some utility function that takes as parameters the consumption stream

{ct+τ}T
rem

τ=1 and the beliefs {Pt+τ,w}T
rem

τ=1 over the return distributions {Pt+τ,r,wi}
T rem

τ=1 .

The specific form of V assumed in this paper is the following;

Ut,T,T rem = EPw

t+T rem∑
τ=t

Eτ,Pt+τ,r,wiβ
τu (ct) , T

rem = 3, 2, 1 (3.8)

In the simple case of this model, we assume that the agent has a two point discrete

prior for worlds one and two that are characterized by the reversed probabilities. For

the case of ambiguous beliefs, we assume that at the beginning of a simulation the

agent believes that both of the world structures are of equal probability. These beliefs

correspond to a two-level Bayesian network. The diagram below illustrates his beliefs.

Figure 3.1 Structure of ambiguous beliefs
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At each period some new information is received, and the prior for the world structure

is updated, thus producing new estimates for pw1 and, respectively, for pw2 = 1 − pw1.

This updating is done using the Bayesian approach in the following way:

pt+1,w1 =
P (Wt+1 = ri|w = w1) pt,w1

P (Wt+1 = ri|w = w1) pt,w1 + P (Wt+1 = ri|w = w2) (1− pt,w1)
(3.9)

After that, the updated expectations EPw (x|It) are used in equation (3.8).

The last tested specification is a three-level Bayesian network as shown below:

Figure 3.2 Three-node Bayesian network of beliefs

This form of the belief specification adds another level of uncertainty, in this case

on the Pw prior. Instead of assuming that it is 50/50 distribution, he believes that pw1

itself is uniformly distributed over the interval [0, 1]. Here pw1 = θ is the probability

that the first world structure is true, and Fθ ∼ uniform[0, 1] is the distribution for
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this probability. For the simulation purposes, it is later discretized into {αn}Nn=1, where

P (θ = αn) = 1
N

. N = 10 is hold fixed for all simulations.

When some new information arrives, the distribution parameters are updated as

following

P (α|r = rk) =
P (α, r = rk)

P (r = rk)

=

∑
θ,r=rk

P (α)P (θ|α)P (r = rtk|θ)∑
θ P (r = rk|θ)

∑
α P (θ|α)P (α)

(3.10)

This hierarchical Bayesian prior describes the situation when the agent faces not only

uncertainty and ambiguity, but also a true unknown situation and is aware of that. The

expected utility for this case is modified to include expectations over all levels of priors.

Given his preferences and beliefs, the agent tries to maximize the expected util-

ity over his remaining lifetime, and spreads the initial endowment or, later in life, the

money holdings in the best possible way. We tested different optimization algorithms

in combinations with different beliefs structures to assess which ones perform better in

terms of the average utility. Two algorithms used in the simulations were the complete

search and the optimization using Approximate Dynamic Programming.

3.4 Algorithms for Optimization

3.4.1 Approximate Dynamic Programming Algorithm

Approximate Dynamic Programming Algorithm (called ADP from now on) was adopted

from Powell (2011). Before describing the specific realization of an algorithm, we describe

the model in more general terms. Let Xt be the state at time t. In our case it is

Xt = (Mt,Ft, Ht) (3.11)

where Mt is the amount of money on hand, Ft are beliefs about the structure of the world

(for the case of ambiguous beliefs, it is pw1, and for the case of the three-level Bayesian
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prior it is {αn}Nn=1) and Ht is a hidden state. Ht is used for storing the information about

the specific realization of a “world structure” random variable from the two/three-level

Bayesian network and is required for accurate Monte-Carlo simulations.

This state formulation is itself a simplification. A more general state specification

would include all past realizations of the interest rate as a part of history, so the state

would be Xt = (Mt,Ft, Ht, It). Here it is assumed that all the information It is encom-

passed in beliefs Ft .

Denote by dt the decisions of the agent at time t. In this model, it is the share of the

income that the agent decides to consume. Given the choice dt, the consumption ct of

the agent equals

ct = dtMt (3.12)

In this model, dt was discretized in the interval [0, 1] with the number of discretization

points CS N discret equal to 10.

Wt+1 (ω) is the realization of random variables. In our model, ω ∈ {r1, r2} is a

realization of random returns.

The rule for updating the state can in general be expressed in the following way:

Xt+1 = TR (Xt, dt,Wt+1 (ω)) (3.13)

Given the state Xt, the decisions dt and the realization of random variables Wt+1 (ω),

the new state Xt+1 is decided using TR mapping. In the current model, TR includes

rules for updating belief and resources. In the case of ambiguous beliefs, equation (3.9)

is used. In the case of the three-level priors, equation (3.10) is used.

Resources include the money on hand, which are updated according to (3.3) and

(3.12).
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Besides the state and rules for updating the state, another general part of the model

is a period contribution. In this model, it is the period utility:

C (Xt, dt) = u (ct) = u (dtMt) (3.14)

The decision takes the form of the share of money to be spent. This form is a

simplified linearization of a more general decision rule, which should be of the form

dt (Xt) = Dπ (Xt), where the decision depends on the full state, which includes the

beliefs.

Approximate Dynamic Programming Algorithm is trying to estimate the value func-

tion that is defined in the following way:

Vt (Xt) = arg max
dt∈Dt

(C (Xt, dt) + β Et (Vt+1 (TR (Xt, dt)))) (3.15)

In this model, the basis functions approximation for value function is used. The

decision is chosen such that

dt = arg max
dt∈Dt

(
C (Xt, dt) + γ E

(∑
f

θπtfφf (TR (Xt, dt))

))
(3.16)

where Dt is the set of possible decisions.

In this linearization, θπtf are specific to some set of policies π, the coefficients in a

linearization of the value function. In our model, the agent lives over T periods and

makes decisions every period, therefore, T value functions are needed. This means that

the linearization parameters need to be indexed by time. φf , f = 1, ..fN , are basis

functions, with fN being total number of them. The simplest case uses linear basis

functions. This simplification was implemented in this study, with N = 1, and θπ,0

given in the Table B.1.

With these simplifications, the value function approximation is given by

Vt (Xt) = θ0,V + θ′VXt (3.17)
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Because of the simple structure of the state given in equation (3.11), it was possible

to further simplify the linearization with

θ′V = [θt, 0, 0] (3.18)

and

θ0,V = 0 (3.19)

Given these simplifications, only the current amount of money on hand is taken into

account, but not the beliefs about the possible world structures and, of course, the hidden

state.

For the sub-step of the search for an optimal policy, given the value function estima-

tion, the coarse-grained complete search is used. Other algorithms could not provide the

necessary accuracy of the estimation.

The exact implementation of the algorithm is described in Appendix B.2.

3.5 Testing Schemes and Results

3.5.1 Testing Schemes

The main dimensions for testing are the behavioral rules, represented by optimization

algorithms, and the belief structure. All other simulation parameters were chosen to

better illustrate the performance of the different behavioral rules and were kept fixed

during simulations.

The simulation environment is mostly defined by the returns structure. The following

returns structure (where pri is the probability of getting the return equal to ri) was tested.
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Table 3.1 Tested probability-returns combinations

Description
Code

r1 pr1 r2 pr2

P-R2
w1 3.0 p -0.3 1-p

w2 3.0 1-p -0.3 p

This combination of returns was chosen because it is an efficient representation of the

high risk environment. Probabilities pri were tested in the range of {0.1, 0.2, ..., 0.9}

As for the belief structures, the following specifications were tested. In the case of

ambiguity preferences, it was the 50/50 split for the prior and the completely correct

specification. The corresponding probabilities pwi are given below.

Table 3.2 Tested specifications for the ambiguity beliefs

Code name pw1 pw2

A1 0.5 0.5

A2(correct prior) 1 0

In the case of the three-level Bayesian network, the uniform third level prior was

tested.

The preference parameters were fixed at the following level:

Table 3.3 Tested parameters for the preferences

Parameter Value

θu 3.0

These parameter values represent a strong form of risk aversion for the CES period

utility function.

The other used parameters were the inheritance of beliefs and value function estima-

tions, the time preferences, the initial endowment, the lifespan of an agent, and some
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technical parameters for the ADP and complete grid search algorithm. The number

of simulation runs J and the corresponding random generator seeds were fixed. The

specification of these parameters is given in Appendix B in Table B.1.

The following combinations of the belief structure and the optimization algorithm

were tested:

Table 3.4 Tested combinations of beliefs and decision algorithms

Name Description

A,CS ambiguous beliefs, complete search

A,ADP ambiguous beliefs, ADP solution algorithm

UK,CS three-level prior, complete search

UK,ADP three-level prior, ADP solution algorithm

3.5.2 Results

Below are presented the heatmaps that comparatively describe the performance of the

different strategies when p, the probability of getting r1, is changing. The performance

is measured by the average realized utility ū over the length of a simulation LRun. The

initial learning period with the length of LOmit = 30 is excluded.

The average realized utility of an agent is calculated in the following way:

ū =

[
NSeeds∑
j=1

LRun∑
t=LOmit

ut

]
/ [NSeeds · (LRun − 29)] (3.20)

Below are given the comparative results in the form of the heatmap for all the tested

parameter combinations:
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Figure 3.3 Heatmap for the belief-algorithm simulation results, all tested cases

(darker is better)

The results for the cases where agents implement the same complete grid search

algorithm for the decision making, but differ in their belief structures, are presented

below:

Figure 3.4 Heatmap for belief-algorithm simulation results, cases with the complete

search algorithm

(darker is better)
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The results for the cases where agents implement the same approximate algorithm

for decision makin,g but differ in their belief structures, are presented below:

Figure 3.5 Heatmap for the belief-algorithm simulation results, cases with the approx-

imate search algorithm

(darker is better)

One can see from the heatmaps that having a more advanced type of preferences

(acknowledging the unknown) helps to improve the overall performance in some, but not

all, cases.

Surprisingly, it pays out to be less smart in most cases, if the approximate algorithm

is used. On the other hand, the performance is split when the precise algorithm is used.

A more advanced belief structure is beneficial for an agent when the environment itself

is beneficial. On the contrary, it pays out to be more conservative, if the environment is

not so beneficial to an agent.

The approximate algorithm performs worse than the complete search, as could be

expected, but the performance differences decrease as the environment becomes less

extreme. It needs to be mentioned that the approximate algorithm used here was imple-

mented in a straightforward form. Nevertheless, it still delivered a comparable perfor-

mance for some combinations of the initial parameters.
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As a future direction of the research, it would be interesting to see if the share of

income that is set aside for savings stabilizes in such simulations. If it is, then it may

indicate that fixed rules might have evolved as a suitable strategy for making choices in

an unstable environment.

3.6 Conclusions

In this chapter, it has been shown that more accurate beliefs are not always beneficial

to the agent, and sometimes being overly optimistic proves to be more beneficial when

the environment is conductive to such biases. Given that each environment favors a

specific combination of beliefs and a specific optimization algorithm, it can be expected

that over time the strategies best fitted for the corresponding environment survive. This

could explain why in reality we observe seemingly fixed behavioral rules. These rules

might be the surviving ones in a changing environment. It is also informative to see that

an approximate algorithm, even in its crudest form, can perform reasonably well in a

moderately risky environment.

There are few potential improvements that could be made over the tested algorithms

and the general specification of the problem. It may be interesting to try to develop a

more generalized approach that would allow introduction of more than two alternative

world specifications in the case of the agent with a tree-level Bayesian belief structure.

Another possible way of developing this simple model would be to introduce advanced

linearization schemes for the value function approximation. The performance of this

algorithm heavily depends on the choice of linearization functions and other parameters.

Overall, this simple model proved to be a useful tool for the analysis of a sophisticated

belief structures and their effects on the agent’s performance in a world initially unknown

to him.
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CHAPTER 4. IS QUANTITATIVE EASING ENOUGH?

In this chapter, we develop an agent-based model that includes the banking sector

and use this model to analyze effects of non-conventional monetary policy used by central

banks. This model includes main sectors typical of a developed economy and has separate

central bank, government and banks agents. This extension of the model in comparison

to the models discussed in chapters 1 and 2 allows us to analyze the effects of the central

bank intervention on short- and long-term liquidity markets in detail. We have found

out that the institutional structure and regulations, as well as expectation formation

rules, dominate over whatever policies the central bank implements. From the practical

viewpoint, given the current goal of returning economies to their potential long-term

growth rates, it is clear that complex institutional reforms need to be implemented.

Relying on a very limited toolset of central banks is not enough to achieve this goal.

4.1 Introduction

In the wake of 2008 financial crisis, central banks around the world implemented

different policies to try and get economies back to long-term growth rates. One of

these policies was an expansion of balance sheets and targeting interest rates other than

short-term ones. These efforts took different forms. For example, the Federal Reserve

implemented “credit easing” by buying mortgage-backed securities and “operation twist”

that changed the term structure of balance sheets. Other banks, such as the European

Central Bank, expanded balance sheets by using long-term repo operations with the
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collateral being mostly bank loans. The Bank of Japan has been buying government

securities for a long time until now. The Bank of England bought government bonds

from the non-banking sector.

For the purposes of this paper, we define quantitative easing policies (QE) as buy-

ing the government bonds with the goal of influencing interest rates and the economic

activity. It is only one of the possible choices of the definition, and the rationale behind

it was the need to have an empirical point of reference. With this definition, the U.S.

economy could be used as an example economy for the model, as this definition of QE

corresponds to what the Federal Reserve is currently implementing.

A general overview of different QE and conventional policies can be found in Joyce

et al. (2012). These policies are an increasing part of more general efforts to formulate

a macroprudential set of policies, an overview of which can be found in Galati and

Moessner (2013).

As for the formal studies of such policies, only the DSGE models have been used

to analyze them so far. For example, Curdia and Woodford (2011) extends the stan-

dard New Keynesian model to include the central bank and its balance sheet to analyze

the effects of unconventional versus interest rate policies. Gertler and Karadi (2013)

continues this work and introduces a generalized approach to modeling unconventional

policies. Other models were introduced in Bernanke and Reinhart (2004), Curdia and

Woodford (2010), Gertler and Karadi (2011), Christiano (2010). Another approach is to

extend a big-scale DSGE model to include the financial sector and use it to make policy

estimates, as in De Resende et al. (2013). All these models suffer from the deficiencies

intrinsic to the DSGE approach. They could not properly represent heterogeneous iter-

ations between agents subject to network effects, do not model explicitly institutional

structures of an economy, and also do not take into account limited information available

to agents, especially when considering that QE policies are new and not well understood

by participating agents. Also, the banking sector is not properly described in DSGE
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models, as the money and credit creation process is not modeled explicitly, as well as

the corresponding macroprudential and banking regulations.

On the other hand, the current ABM model have not been used to analyze details of

the banking sector and their interactions so far. There is some research into modeling

banking and financial sector with ABM models, such as Ashraf et al. (2011), or Dosi

et al. (2013), but none of these models were designed to include forward-looking agents

that try to optimize their goals subject to constraints.

Our model presented in this chapter was developed to address these issues, both

the lack of forward-looking behavior in ABM models and insufficient institutional and

informational modeling in the DSGE models. The structure of the model was designed

to mimic the U.S. economy and the FED policies, but at the same time was significantly

simplified to keep the complexity at a manageable level. The description of the model is

given below.

4.2 General Description of a Model

4.2.1 Introduction to the Model

This model was designed to serve as a tool to study out-of-equilibrium short and

medium term effects of a range of policies (quantity and others) pursued by central

banks. The main focus is on careful outlining and depiction of institutional conditions

for the banking sector operations and decisions.

Let us start by describing the main agents and decisions in the model, and move on

to highlighting interesting trade-offs faced by the agents and the modeler.

In this model, banks take the main stage, while other agents in the model are de-

signed to better highlight banks’ decisions. As a source of institutional definitions, the

U.S. economy was chosen. The computational efficiency considerations required some

simplifications on the part of the decision procedures for some of the agents. In addition
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to that, certain institutions were simplified or eliminated from the model. The resulting

set of agents and institutions is presented below.

4.2.2 Introduction to Agents in the Model

Figure 4.1 Agents and markets in the model

In this economy there are humans, consumption good producing firms, capital goods

producing firms, banks, the central bank and the government. Details on particular

choices and life cycles of these agents are presented further in the text.

Markets in this model were limited to the labor, capital, consumption good, credit,

deposit, interbank and government bonds markets. There is only one market for the

government bonds. This limitation required imposing additional assumptions on the

form of the QE policies.

There are standing facilities, provided by the central bank and available to all banks.

Supporting institutions include the payment and legal systems.

All these agents interact in a particular way on the markets. The sequence of inter-

actions is presented below.
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4.2.3 Main Events

The events that take place in the economy and their time ordering are presented

below.

Figure 4.2 Sequence of events in the model

At the beginning of period t, taxes to the government by banks, firms and humans

are paid. Next, labor, credit, deposit and government bonds contracts are cleared, and

the necessary payments are made. After that, the dividends by firms and banks are paid

in equal shares to all the humans in the economy. Checks for bankruptcy as described

in Section 4.3.5.11 are performed next. After that, the agents receive the information
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about the previous results of market clearing in period t − 1, and they update their

expectations. After updating the expectations, new decisions are made. After the labor

market functions and contracts are signed, production takes place and all other markets

function in a sequence. First, the capital goods market; then, the consumption goods

market, the credit, deposit, government bonds markets and the interbank market. After

that, the standing facilities of the central bank are used, if required. Finally, accounting

of the period and final calculation of the period profits and utilities are done.

The labor and government bonds markets function with the periodicity specified by

the parameters f Hk = 5 and f Bg = 6. Taxes and dividends are paid with the

frequencies f taxes = 3 and f div = 5.

4.3 Agents and Markets

4.3.1 Banks

In a typical economy of a developed country, there are multiple types of financial

intermediaries and a wide rage of financial instruments. The scope of this model was

constrained to a subset of these agents and instruments. The criterion for inclusion and

aggregation was to preserve accurate functioning of the money markets and all of the

related markets as much as possible.

Banks are the sole financial intermediaries in this model. Correspondingly, only few

of many types of different financial instruments are chosen to be representative tools for

facilitating financial intermediation in this simplified model. All derivative instruments

are out of the scope of the model, as well as the active portfolio management.

Banks are the core agents that act on all the markets in the economy: the credit,

deposit, interbank markets, the labor and goods markets, the market for the central bank

funds, and the bonds market.
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The typical sequence of events is described below. Banks pay all the due money

to the other agents in the economy. After that, their solvency may be checked. The

information is collected, and the expectation formation rules are updated according to

the new information. Banks make their choices, and after that all the markets function

in the same order as described in Section 4.2.3.

4.3.1.1 Bank constraints and goals

When banks make their choices for the coming period, the goal of bank v at time t

is to maximize the expected profit in the form:

max
d∈Db

Ev,t

∞∑
r=t

µr−t [Πt (Xr, d,Wr)] (4.1)

subject to no-bankruptcy conditions

Mcb,t:Account ≥ 0 (4.2)

and the resource accumulation constraints given in equations (4.5) and (4.4).

Here Xt = (xr)
t
r=0 is the generalized state of the bank at time t, with xt being

the bank’s state of assets and liabilities at time t. Wt = (wr)
t
r=0 is the history of all

the realizations of the random variable for the bank, which includes clearing prices on

the goods pc,t:C and the capital market pk,t:K , wages wt:L, interests ic,t:Cr on the credit

market and id,t:Dp on the deposit market, the interest on the interbank market ibb,t:Bb,

the price on the government bonds market pbg,t:Bg and the amount of payments pst that

goes through the bank over the course of period t.
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The period profit can be represented in the following way:

Πt = ic,t (ct:Cr, ic,t, ct−1) (4.3)

−id,t
(
dt:Dp, id,t,dpt−1

)
+ibb,t (bbt:Bb, ibb,t)

−icb,t (cbt:Cb, icb,t)

+ibg,t (bgt:Bg, ibg,t)

−wt (lt,wt:L,hkt−1)

−dept
(
kt,pK,t:K ,kt

)
In equation (4.4), ic,t is the current period income from credit operations. This

includes the interest income that is acquired in the current period from extended credits

ct and is generally equal to ct ·ic,t, and includes the interest payments from loans extended

in the previous periods that are still outstanding. Here ct−1 includes the information

about all the loans extended in periods r, where 0 ≤ r < t.

id,t is the current period expenses on the accepted deposits. This includes the interest

expenses that are acquired in the current period from the accepted deposits dt, and

which are generally equal to dt · id,t, and also includes the interest payments on the

deposits accepted in the previous periods that are still outstanding. Here dt−1 includes

information about all the deposits accepted in periods r, where 0 ≤ r < t.

ibb,t is the current period interest payments on the interbank loans. This includes the

interest payments that are acquired in the current period from the interbank activity bbt,

and which are generally equal to bbt · ibb,t. Also let bbt−1 include the information about

all the loans extended or accepted in periods r, where 0 ≤ r < t.

ibcb,t is the current period interest payments on the central bank loans. This includes

the interest payments that are acquired in the current period from using the standing

facilities cbt, and which are generally equal to cbt · icb,t. Also let cbt−1 include the

information about all the loans extended or accepted in periods r, where 0 ≤ r < t.
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ibg,t is the current period income from the government bond holdings. This includes

the interest expenses that are due in the current period from the bonds on hand bgt,

and is generally equal to bgt · ibg,t. Also let bgt−1 include the information about the

government bonds market operations in periods r, where 0 ≤ r < t.

wt is the current period expenses on labor. They are defined by the currently em-

ployed amount of labor lt and the promised wages wt:L. Here hkt−1 includes the infor-

mation about all the labor contracts signed in previous periods r, with 0 ≤ r < t , that

are still active.

dept is the current period expenses on capital. They are defined by the current

depreciation of capital, which is a function of the current capital stock kt and the cost

of acquiring capital pk,t:K . Here kt−1 includes the information about all the capital

purchases in previous periods r, with 0 ≤ r < t.

There are two major parts in the period profit. The first part is the income(or loss)

from banking operations such as providing credit, accepting deposits or trading on bonds

market. The second part sums the costs associated with being able to act on the markets.

The specific formulations for the profit calculations are given in the code.

The production function Fv (lt, kt), where lt is employed labor and kt is capital, gen-

erally equal to Kt:0, requires banks to have at least Lbmin = b F F min [0] of labor

and Kb
min = b F F min [1] of capital to be able to act on the credit markets. The

parameters b F F min [0] and b F F min [1] are given in Appendix C in Table C.1. At

the same time, the payment system actions and the deposit market interactions could

be carried out without satisfying minimum production requirements.

The capital accumulation equation, given the stock of capital at the beginning of the

period Kt:0 and purchases of capital goods qK,t:K , is defined as follows:

Kt+1:0 = (1 − δdep) (Kt:0 + qK,t:K) (4.4)

Bank v at the beginning of period t also has money balances at the central bank

Mcb,t:0. These money balances change during period t under the influence of the payment
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orders submitted by the other agents to the bank. Depending on whether the payee and

receiver of the payment have accounts at the same bank or at different banks, or either

of them is central bank or the government, the payments are processed differently. After

netting all the payments the resulting pst and the use of the central bank standing

facilities cbt:Cb define the end-of-period money balances Mv,cb,t:Accounting = Mv,cb,t+1:0.

Mv,cb,t+1:0 = Mv,cb,t:0 + psv,t + cbv,t:Cb (4.5)

Banks also keep track of all the signed contracts, such as labor hkt, credit ct etc., all

of which are defined and described above.

Also, at each period bank v calculates its capital Capitalv,t. Each bank has a fixed

stock value Stockv. It also pays dividends divv,t:Div and taxes taxv,t:Tax. Given these

payments, the capital is calculated as following:

Capitalv,t = Stockv +
t∑

r=0

Πr (·) −
t∑

r=0

divv,r:Div −
t∑

r=0

taxv,r:Tax (4.6)

Every period the bank also calculates the value of Assetst in the following way:

Assetst:r = Mcb,t + bgt:r · pBg,t−1:Bg + cc,t (ct:r, ct−1) + kt:r · pK,t−1:K (4.7)

where bgt:r · pBg,t−1:Bg is current valuation of the bond holdings, cc,t (ct:r, ct−1) is the

amount of outstanding credits, kt:r · pK,t−1:K is the valuation of the current capital stock,

Mcb,t are money balances held at the central bank.

All the relevant variables, such as credits, amounts of goods, etc., are subject to

non-negativity constraints.

4.3.1.2 Decision domain and transformation functions for banks

To achieve the goal of maximizing the expected profit, the bank makes choice d from

the decision domain Db described below.

Db = ΘCr ⊗ ΩCr ⊗ ΩDp ⊗ΘBg ⊗ ΩBb (4.8)
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where:

• the elements of ΘCr = {θCr1 , . . . , θCrCr} satisfy 0 ≤ θCr1 < . . . < θCrCr

• the elements of ΩCr = {ωCr1 , . . . , ωCrCr} satisfy 0 < ωCr1 < . . . < ωCrCr

• the elements of ΩDp = {ωDp1 , . . . , ωDpDp} satisfy 0 < ωDp1 < . . . < ωDpDp

• the elements of ΘBg = {θBg1 , . . . , θBgBg} satisfy 0 ≤ θBg1 < . . . < θBgBg

• the elements of ΩBb = {ωBb1 , . . . , ωBbBb} satisfy 0 < ωDp1 < . . . < ωDpDp

The labor market decision is defined by the production function. The bid submitted

to the labor market is formed in the following way. The bid price wbidL,t:L is

wbidL,t:L = 2 · wet−1 (4.9)

and the bid quantity qbidL,t:L is

qbidL,t:L = b F F min [0] (4.10)

The capital market decision is defined by the production function. If the current

amount of capital Kt:0 is lower than the amount required by the production function

b F F min [1] given in an Appendix C in Table C.1, then the bid is submitted to the

capital market. The bid is formed as in Section 2.15 with the target amount of money

to spend equal to M bid,K , defined as

pb F F min [1] − Kt:0q · peK,t−1 + 0.5 · σ2,e,K
t−1 (4.11)

The credit market decision includes the choice of the interest rate gap to the central

bank rate ωCr and the amount of credits to be extended (as a share of assets θCr). The

bank forms its ask in the following way. The interest rate is:

iaskCr,t:Cr = icb,t−1:Cb + ωCr (4.12)
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where icb,t−1:Cb is the central bank interest rate on standing facilities. The maximum

credit available to agents is caskt:Cr = θCr · Assetst:Cr−1. Given the submitted interest

rates by all the banks and the counterparties (borrowers), the equilibrium rate is defined

and the market clearing is attempted. During this attempt, each creditor needs to check

the actual amount of the extended credit given target debt/assets ratio for agents. In

the case of firms, it is the ratio of credit/assets, in the case of humans it is the ratio

payments/past average income. Details of this check are described in Section 4.3.5.4.

The length of a credit contract c length Cr is fixed in simulations for all agents and

time periods.

The deposit market decision includes a gap to the central bank rate on the deposit

market. The bank submits the following bid price:

ibidDp,t:Dp = icb,t−1:Cb + ωDp (4.13)

and the bid quantity

dbidDp,t:Dp = 0.1 · Assetst:Dp−1 (4.14)

After all the bids and asks are submitted to the deposit market clearing house, the

equilibrium rate is calculated, and deposits are made. The length of a deposit contract

c length dp is fixed, and there is no option to break the contract.

Another market to consider is the market for government bonds. In the current

version of the model, there is only one type of bonds that are traded by banks and

the central bank. There are primary and secondary markets for government bonds. All

banks are allowed to participate on both markets. For the government bonds market,

the choices are the share of the assets to have as government bonds θBg. Given this

choice, the bank decides if it wants to buy or sell government bonds. It buys bonds if

the current amount of bonds bgt:0 is lower than the desired amount

θBg · Assetst:0
pBg,t−1:Bg

(4.15)
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The bid includes the bid price pbidBg,t:Bg−1 defined in the following way:

pbidBg,t:Bg = peBg,t−1 (4.16)

and the quantity to buy qbidBg,t:Bg−1:

qbidBg,t:Bg = bgt:0 −
θBg · Assetst:0
pBg,t−1:Bg

(4.17)

If the difference between bgt:0 and (4.15) is positive, then the bank submits an ask to

the market with the ask price paskBg,t:Bg:

paskBg,t:Bg = peBg,t−1 (4.18)

and the quantity to sell qbidBg,t:Bg−1:

qaskBg,t:Bg =
θBg · Assetst:0
pBg,t−1:Bg

− bgt:0 (4.19)

Finally, for the interbank market the decisions include the gap to the announced

central bank rate, and it is assumed that all the available money at the accounts at the

central bank are offered on the interbank market. If the accounts are negative, then banks

first try to borrow the necessary sums on the interbank market. So if Mcb,t:Bb−1 ≥ 0, the

bank submits an ask to the interbank market, with the price iaskBb,t:Bb:

iaskBb,t:Bb = icb,t−1:Cb + ωBb (4.20)

and the quantity bbaskBb,t:Bb:

bbaskBb,t:Bb = Mcb,t:Bb−1 (4.21)

If Mcb,t:Bb−1 ≤ 0, the bank submits a bid to the interbank market, with the price

ibidBb,t:Bb:

ibidBb,t:Bb = icb,t−1:Cb + ωBb (4.22)

and the quantity bbbidBb,t:Bb:

bbbidBb,t:Bb = Mcb,t:Bb−1 (4.23)
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The share of the dividends to pay is assumed to be fixed for all the banks at the level

of 0.5 of the net profit.

After all the markets are cleared, the banks update their expectations. Each bank

forms the expectations for the central bank interest rate iecb,t−1, the credit ieCr,t−1, the

deposit market ieDp,t−1, the interbank market ieBb,t−1; the prices for the labor market

peL,t−1, the capital market peK,t−1, the governments bonds market peBg,t−1. The rule for

updating the expectations follows the scheme developed in the previous chapter, with

details given in Appendix A.2.

The decision choice d from the domain Db is made using the ADP algorithm with

simplification used in previous Chapter 2 and described in Appendix A.3.

4.3.2 Humans

A household in the current model consists of one person who lives infinitely. From

now on, the term human will be used to denote a household.

4.3.2.1 Human constraints and goals

The utility function assumes the usual form of the expected utility:

U ({consi, ki, li}∞i=t) = Et

(
∞∑
i=t

βiu (consi, ki, li)

)
(4.24)

with the period utility given by:

U(const, kt, lt) = θ0log (1 + const) (4.25)

+θ1log (1 + kt)

+θ2 (1− lt)

where ct is the consumption good, kt are the services provided from the capital good,

and lt are the labor services supplied by the agent.
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In each period, humans are subject to a sequence of budget constraints in the spirit of

the previous work. These constraints are given below in equations (4.26), (4.27), (4.28),

(4.30), (4.30), (4.31).

The capital services are defined by the stock of capital goods owned by the human:

kt = Kt:0 (4.26)

The purchases of goods qC,t:C and capital qK,t:K have to be financed by the available

money balances, no credit purchases are allowed:

qC,t:C · pC,t:C ≤Mt:C−1 (4.27)

and

qK,t:K · pK,t:K ≤Mt:K−1 (4.28)

The money balances follow the update rule given below:

Mt+1:0 = Mt:0 + wt:Clear (4.29)

− iCr,t:Clear − cCr,t:Clear

+ iDp,t:Clear − dDp,t:Clear

+ trt:Tr − taxt:Tax +
∑
v∈V

divt:Div

− qC,t:C · pC,t:C − qK,t:K · pK,t:K

+ ct:Cr − dt:Dp

During the clearing stage at the beginning of each period, the human receives the

promised wages wt:Clear; the promised interest and body payments on the deposit con-

tracts iDp,t:Clear, dDp,t:Clear; the transfers from the government trt:Tr; the dividends from

the other agents
∑

v∈A divt:Div, where A is the set of all the agents in the economy. He

also pays the promised interest and body payments on the credits iCr,t:Clear, cCr,t:Clear

and the taxes taxt:Tax. When the consumption and capital goods market function, the

agent purchases qC,t:C of consumption goods and qK,t:K of capital goods and makes the
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corresponding payments qC,t:C · pC,t:C and qK,t:K · pK,t:K . When the credit and deposit

markets function, the agent borrows the amount of money ct:Cr and makes the deposits

in the amount of dt:Dp.

Given the stock of capital Kt:0 and the new purchases of capital goods qK,t:K , the

capital accumulation equation is:

Kt+1:0 = (1 − δdep) (Kt:0 + qK,t:K) (4.30)

The human consumes all the consumption goods that are available at the end of the

period, so

const = qC,t:C (4.31)

All the relevant variables, such as the consumption, the amount of goods, etc., are

subject to the non-negativity constraints.

4.3.2.2 Decision domain and transformation functions for humans

For each human, the decision domain Dh is defined as follows.

Dh = ΘL ⊗ ΩL ⊗ΘK ⊗ΘC ⊗ΘCr ⊗ΘDp (4.32)

where:

• the elements of ΘL = {θC1 , . . . , θCC} satisfy 0 ≤ θC1 < . . . < θCC ≤ 1

• the elements of ΩL = {ωL1 , . . . , ωLL} satisfy 0 < ωL1 < . . . < ωLL

• the elements of ΘK = {θK1 , . . . , θKK} satisfy 0 ≤ θK1 < . . . < θKK ≤ 1

• the elements of ΘC = {θC1 , . . . , θCC} satisfy 0 ≤ θC1 < . . . < θCC ≤ 1

• the elements of ΘCr = {θCr1 , . . . , θCrCr} satisfy 0 ≤ θCr1 < . . . < θCrCr

• the elements of ΘDp = {θDp1 , . . . , θDpDp} satisfy 0 ≤ θDp1 < . . . < θDpDp ≤ 1
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θL is the share of the human capital endowment to offer on the labor market. The

wage offer for the labor market equals ωLwet−1, where wet−1 is the expected clearing labor

wage. θK is the share of the money balances Mt:K−1 to spend on the capital. θC is the

share of the money balances Mt:C−1 to spend on the consumption goods. θCr is the share

of the assets Assetst:Cr−1 to borrow, with ibidCr,t:Cr = ieCr,t−1 + 2σ2,e,Cr
t−1 being the bid

price. θDp is the share of the money balances Mt:Dp−1 to deposit, with iaskDp,t:Dp = ieDp,t−1

being the ask price for the deposit market.

The bids and asks for the markets are formed in the same way as described in Chapter

2 in Sections 2.3.2, 2.3.3.

After the capital market has been cleared, the new purchases qK,t:K will be incorpo-

rated into the capital stock in the next period according to equation (4.30).

The human forms the expectations for the credit ieCr,t−1, the deposit market ieDp,t−1,

the prices for labor market peL,t−1, the capital market peK,t−1, the goods market peC,t−1. The

rule for updating the expectations follows the scheme previously developed in Chapter

2, with details given in Appendix A.2.

4.3.3 Firms

There are two types of firms. Those of the first type produce consumption goods, and

those of the second type produce capital goods. A typical setup for this part of economy

is to have producers of intermediate goods that are subject to monopolistic competition,

and after that the final goods producers that combine intermediate goods to produce

consumption (or final) goods for sale to consumers. In this setup, the choice was made

to have separate capital and consumption goods producers. Capital is essential in this

economy to facilitate intermediation of the financial resources. The consumption goods

are goods that are not storable by humans and that enter their utility functions.
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4.3.3.1 Firm constraints and goals

Firms try to maximize their expected profits

max
d∈Db

Ev,t

∞∑
r=t

µr−t [Πt (Xr, d,Wr)] (4.33)

subject to no-bankruptcy conditions

Mt:Bankruptcy ≥ 0 (4.34)

The resource accumulation constraints are given by equations (4.36),(4.36),(4.38).

The money balances Mt follow the update rule given below:

Mt+1:0 = Mt:0 − wt:Clear (4.35)

− iCr,t:Clear − cCr,t:Clear

+ iDp,t:Clear − dDp,t:Clear

− taxt:Tax − divt:Div

+ qG,t:G · pG,t:G

− qK,t:K · pK,t:K

+ ct:Cr − dt:Dp

During the clearing stage at the beginning of each period, the firm pays the promised

wages wt:Clear; the interest and body payments on credits iCr,t:Clear, cCr,t:Clear; the div-

idends divt:Div; the taxes taxt:Tax. On the other hand, the firm receives the promised

interest and body payments on deposit contracts iDp,t:Clear, dDp,t:Clear. When consump-

tion and capital goods markets function, the firm sells qC,t:C of consumption goods if

it produces consumption goods, or qK,t:K of capital goods, if it produces capital goods.

The firm receives the corresponding payments qC,t:C · pC,t:C or qK,t:K · pK,t:K , payment is

qG,t:G ·pG,t:G with G ∈ {C,K}. Besides that, the firm buys the investment in the amount

of qK,t:K and pays qK,t:K · pK,t:K . When the credit and deposit markets function, the

agent borrows money ct:Cr and makes deposits dt:Dp.
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Given the stock of capital Kt:0 and the new purchases of capital goods qK,t:K , the

capital accumulation equation is:

Kt+1:0 = (1 − δdep) (Kt:0 + qK,t:K) (4.36)

The production function for the firm producing goods of the type G is:

qG,t:Production = FG (lt, kt) = AGlα
G

t kβ
G

t (4.37)

parameters AG, αG, βG are given in the Appendix C in the Table C.1.

Given production qG,t:Production, the stock of goods available for sale is updated in the

following way:

qstockG,t:Production+1 = qstockG,t:Production−1 + qG,t:Production (4.38)

The period profit is defined as follows:

Πt = ic,t (ct:Cr, ic,t, ct−1) (4.39)

− id,t
(
dt:Dp, id,t,dpt−1

)
+ pqd,t (pG,t:G, qG,t:G)

− costt
[
wt (lt,wt:L,hkt−1) , dept

(
kt,pK,t:K ,kt

)
, costt−1

]
In equation (4.39), ic,t is the current period expenses on the credit. They include the

interest payments that are acquired in the current period from the extended loans ct, and

are generally equal to ct · ic,t, and include the interest payments from the loans extended

in the previous periods that are still outstanding. Here ct−1 includes the information

about all the loans extended in periods r, where 0 ≤ r < t.

id,t is the current period income from the deposits. This includes the interest income

that is acquired in the current period from made deposits dt, and which is generally

equal to dt · id,t, and includes the interest payments on the deposits accepted in the

previous periods that are still outstanding. Here dt−1 includes the information about all

the deposits accepted in periods r, where 0 ≤ r < t.
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pqd,t is the current period income from the sale of goods. It is defined by the current

sale of produced goods qG,t:G and is equal to pG,t:G · qG,t:G.

costt are the costs of production. They are calculated as an average cost of sold

goods. The average cost is calculated in the following way. At every period, the current

period expenses on labor wt and the current depreciation of capital dept (defined below)

are added to the total cost of goods currently held in stock. The new average cost is

equal to the total costs divided by the total amount of goods, both held in inventory and

produced in the current period. Here costt−1 is the previous period average cost and

inventories.

wt are the current period expenses on labor. They are defined by the currently

employed amount of labor lt and the promised wages wt:L. Here hkt−1 includes the

information about all the labor contracts signed in previous periods r, with 0 ≤ r < t,

that are still active.

dept is the current period expenses on capital. They are defined by the current

depreciation of capital, which is a function of the current capital stock kt and the cost

of acquiring capital pk,t:K . Here kt−1 includes the information about all the capital

purchases in previous periods r, with 0 ≤ r < t.

All the relevant variables, such as the consumption, the amount of goods, etc., are

subject to non-negativity constraints.

4.3.3.2 Decision domain and transformation functions for firms

The firm’s choice domain is defined as follows:

Df = ΩL ⊗ΘL ⊗ΘK ⊗ ΩG ⊗ΘCr ⊗ΘDp (4.40)

where:

• the elements of ΘL = {θL1 , . . . , θLL} satisfy 0 ≤ θL1 < . . . < θLL ≤ 1
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• the elements of ΩL = {ωL1 , . . . , ωLL} satisfy 0 < ωL1 < . . . < ωLL

• the elements of ΘK = {θK1 , . . . , θKK} satisfy 0 ≤ θK1 < . . . < θKK ≤ 1

• the elements of ΩG = {ωG1 , . . . , ωGG} satisfy 0 < ωG1 < . . . < ωGG

• the elements of ΘCr = {θCr1 , . . . , θCrCr} satisfy 0 ≤ θCr1 < . . . < θCrCr

• the elements of ΘDp = {θDp1 , . . . , θDpDp} satisfy 0 ≤ θDp1 < . . . < θDpDp ≤ 1

where θL is the share of the capital stock Kt:L−1 to be hired as labor. The wage to offer

equals to ωLwet−1, where wet−1 is the expected clearing labor wage. θK is the target share

of the assets to have as capital.

The desired quantity to buy from the capital market equals

qKt:K = θKAssetst:K−1/p
e
t−1 −Kt:K−1 (4.41)

The actual bid is formed in the following way: for each price pK , the quantity to buy

equals to qbidt:K = [min (Mt:K−1/pK , qK,t:K)].

The share of the stock of goods to sell is θG = 1 and the price to sell that is formed is

paskG,t:G = ωGpeG,t:G, where G stands for both the capital and consumption goods markets,

depending on the firm’s specialization.

For the borrowing decisions, θCr is the share of the assets to borrow. The bid for

the credit market would have θCrAssetst:Cr−1 as a target value, and the bid price would

be ibidCr,t:Cr = ieCr,t−1 + 2σ2,e,Cr
t−1 . For the lending decisions, θDpAssetst:Dp−1 is the ask

quantity, with iaskDp,t:Dp = ieDp,t−1 being the ask price for the deposit market.

The share of the dividends to pay θdiv is assumed to be fixed for all the agents

at the level of 0.25 of the net profit. The assets for firm v at time t are the sum

of the money balances Mt and the valuations for the consumption and capital goods

(
∑

i∈{K,C} qi,tpi,t−1:i).

Assetsv,t:r = Mv,t:r +
∑

i∈{K,C}

qi,t:rpi,t−1:i (4.42)
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The bids and asks for the markets are formed in the same way as described in Chapter

2 in Sections 2.3.2, 2.3.3.

The firm forms expectations for the credit ieCr,t−1, the deposit market ieDp,t−1, the prices

for the labor market peL,t−1, the capital market peK,t−1, the goods market peC,t−1. The rule

for updating the expectations follows the scheme previously developed in Chapter 2, with

details given in Appendix A.2.

4.3.4 Other Agents that Follow Fixed Rules

The government in this model takes actions according to fixed rules.

Every few periods f bg = 6, the government issues bonds at the fixed quantity

θBg = 100 and the fixed price ωBg · fvbg = 0.9 · 10.0 , with fvbg = 10.0 being the face

value of the bonds. The announced interest rate is also fixed at the value of ibg = 0.04.

The length of a contract is fixed at c length bg = 6.

Every period it also decides on the amount of transfers to the humans. The transfers

are proportional, with the proportionality rate equal to θTr = 0.5, to the money balances

Mg,t held at the central bank, adjusted for the expected payments on the outstanding

bonds bgt.

The money balances are increased when a profit from the central bank is transferred

or when taxes are paid. They are decreased when obligations on bonds are paid and

transfers are made.

Mg,t = Mg,t−1 +
∑
v∈A

divv,t:Div +
∑
v∈A

taxv,t:Tax −
∑
v∈A

trv,t:Tr − ibg,t (ibg,bgt) (4.43)

The central bank also follows a set of fixed rules. The central bank sets the fixed

interest rate ωCb = 0.1 on the standing facilities. The amount of credit that each bank

v could receive from the central bank could not be more than 5% of the total Capitalv,t.

The central bank also implements purchases on the market for the government bonds

in the fixed amounts qCbBg:primary, q
Cb
Bg:secondary. The amount of purchases is one of the
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treatment factors in the model. If no QE policy is implemented, then the central bank

do not participate on the market for the government bonds and qCbBg:primary = 0.0,

qCbBg:secondary = 0.0. If QE1 is implemented, then qCbBg:primary = 20.0 for the primary

market, and qCbBg:secondary = 0.0 for the secondary market. In the case of QE1, the

central bank participates only on the primary government bonds market. If QE2 is

implemented, then qCbBg:primary = 20.0 for the primary market, and qCbBg:secondary = 20.0

for the secondary market. In the case of QE2, the central bank participates on both the

primary and secondary markets. The bid price for the market of the government bonds

pbidBg is set to infinity.

The central bank receives the period profit Πt from operations on the government

bonds markets ibg,t (bgt:Bg, ibg,t), and from the use of standing facilities icb,t (cbt:Cb, icb,t),

both of them in the form of interest payments on the contracts.

Πt = icb,t (cbt:Cb, icb,t) + ibg,t (bgt:Bg, ibg,t) (4.44)

All the profits from operations are transferred back to the government.

4.3.5 Institutional Structure

All the markets in the simulations are modeled as competitive markets, with each

agent submitting a bid and an ask, and the market solving for the equilibrium price

and quantity. After that, the bids and asks are fulfilled with the equilibrium price. The

general description of these markets is given in Section 2.2.3. Specific details for each

market are shown below.

4.3.5.1 Market for human capital

The market for contracts for human capital has humans, firms and banks as active

agents. Each of them makes decision regarding their bids and asks at the time of decision

making and submits them to be cleared by the market. Market open for trade after

current contracts has expired which happens every c length Hk periods.
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Figure 4.3 Description of the labor market functioning

Each market bid(ask) starts as a decision of an agent. Typically such decisions are

made in terms of the number of the human capital units that the agent is willing to

supply or buy from the market. Each agent presents bids and asks in the form of a

simple spline demand/supply curve with one node. For bids, this point represents the

maximum price agent is willing to pay, and for asks the minimum price that the agent

is willing to accept.

A contract includes the length c length Hk, wage payments per period, the issuer

and the holder. Contracts are automatically terminated when they end.

4.3.5.2 Market for goods

For the goods market, the main agents are humans and firms. Humans need con-

sumption goods as a part of their utility. They also need some leisure and services

provided by capital goods. Besides that, firms and banks need capital that is provided

by capital producing firms.
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Figure 4.4 Description of the consumption goods market functioning

Figure 4.5 Description of the capital goods market functioning

Bids are submitted in the form of a potential demand curve, the range of prices

is restricted to the interval
[
θmin,pG ∗ peG,t−1:G, θmax,pG

]
. Where peG,t−1: is expected by an

agent price for the market G. This was done to aid stabilization of numerical calculations.

Asks are submitted in the form of supply curves with one switching point. Ones market

clears and clearing price is calculated, the delivery of goods is instantaneous.
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4.3.5.3 Interbank market

The interbank market is a short-term market for funds at accounts at the central

bank for this economy. In this market, each bank submits the amount to sell/buy and

cut-off interest rates.

Figure 4.6 Description of the interbank market functioning

The bids and asks are described in 4.3.1. After clearing, the interest rate is decided

by the market, the appropriate contracts are signed, and after that the transfer of money

takes place.

The duration of a contract is c length Bb = 1, so contracts expire when the next

period starts. Contracts include the length c length Bb, the interest per period and the

body payments, the issuer and the holder. Contracts are automatically terminated when

they end.

4.3.5.4 Credit market

On the credit market, the main participants are humans, firms as buyers and banks

as sellers of credit contracts. Bids and asks are described in 4.3.1, 4.3.3, 4.3.2.



100

Figure 4.7 Description of the credit market functioning

On the top of calculating the settlement price, there is also a requirement on the

amount of the individual credits that could be extended. Every bank has a limit on

how much money could be loaned to each individual agent, as well as a restriction on

the total outstanding credit. Individual restrictions are defined by the potential of an

agent (earning for humans and assets for firms). This potential is corrected for current

payments on outstanding loans in the following way.

For humans:

couthmax = θch ∗min
(
coutbid, income− couth,bodyt − couth,it

)
(4.45)

where income is the average past income of the human, which includes the interest, the

labor and financial income in the form of dividends. couth,bodyt are the current credit

payments on outstanding loans, couth,it are the current interest payments on outstanding

loans. θch is the parameter of the bank decision process and is defined in Appendix C in

Table C.8.

For firms:

coutfmax = θcoutf ∗min
(
cbid, Assetst − coutf,bodyt − coutf,it

)
(4.46)
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where Assetst are assets of the firm. coutf,bodyt are the current credit payments on

outstanding loans, coutf,it are the current interest payments on outstanding loans. θcf is

a parameter of bank decision process that is defined in Appendix C in Table C.8.

In the current version, there is no check for the history of default.

Once the market clears, the contracts are signed. Contracts include the length

c length Cr, the interest per period and the body payments, the issuer and the holder.

Contracts are automatically terminated when they end.

4.3.5.5 Deposit market

On the deposit market, the main participants are humans, firms as sellers and banks

as buyers of deposit contracts. Details on bids and asks are described in Sections 4.3.1,

4.3.3, 4.3.2.

Figure 4.8 Description of the deposits market functioning

Humans and firms decide upon the share of assets to have invested as deposits, while

banks have imposed restrictions on the amount of deposit they could accept.

Once the market clears, the contracts are signed. Contracts include the length

c length Dp, the interest per period and body payments, the issuer and the holder.

Contracts are automatically terminated when they end. The length of a deposit con-

tract is c length Dp and is given in Appendix C in Table C.9.
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4.3.5.6 Government bonds market

The government issues bonds on the primary market. A new issue is offered after

the previous bond issue has expired. An ask comes from the government and has q,

pmin, i, where qaskBg , paskBg , iaskBg are taken from the preset parameters and are described in

Section 4.3.4. Bids come from the central bank, which prioritizes the initial purchases

over the secondary market and sets pbidBg, q
bid
Bg equal to the preset parameters which are

described in Section 4.3.4, and banks which do not distinguish between the primary and

secondary markets and submit bid prices and quantities as defined in Section 4.3.1. For

the secondary market, bids and asks are submitted by banks based on the desired share

of the government bonds in assets as described in Section 4.3.1 and by the central bank

based on the desired quantity of the government bonds in the portfolio as described in

Section 4.3.4.

Figure 4.9 Description of the government bonds market functioning
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Once the market clears, the bonds are transferred. Bond contracts include the length

c length Bg, the interest per period and body payments, the issuer and the holder. Con-

tracts are automatically terminated when they end. The length of a contract c length Bg

is given in Appendix C in Table C.9.

4.3.5.7 Central bank standing facilities

Figure 4.10 Description of the central bank standing facility

Details on the functioning of this market are described in Section 4.3.4. Standing

facilities are available to banks and provide them with back up money resources in the

case when their money balances become negative during their daily interactions.

4.3.5.8 Accounting

In general, the accounting is modeled to be as close as possible to the International

Accounting Standards (IAS).

For firms, the average method for cost calculations is used. Adjustments for zero

sales or production in the period are included. Depreciation is accounted as a cost

for the period when it happened. Another part of the cost are wage payments for

active contracts, which are accounted in the period when the labor services are provided.
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Income is generated by selling produced goods and from investing spare money balances

in the deposit instruments (realized). The profit is the difference between the income

and the costs in agreement with the usual definition.

For banks, the income is comprised of the interest on the extended credit, the interest

from bond holding, the interest from interbank loans. The interest income is accounted

in the realized form to allow for bankruptcy accounting. Expenses are formed by the

interests paid on deposits, on interbank loans, on standing facilities, the depreciation and

the labor expenses. The profit is the difference between the income and the expenses.

The current income/loss from holding government bonds is added to the profit.

For the central bank, the income is the interest paid on standing facilities and on the

holdings of the government bonds. The profit is distributed back to the government.

For the government, accounting consists of tracking transfers to humans and taxes

paid by all agents.

4.3.5.9 Taxes and dividends

In the current model, banks and firms pay the profit tax that equals a certain share of

the profit, and humans pay the income tax, which is a certain share of the labor income

they receive.

These shares are fixed at the levels of tax f = 0.1 for firms, tax b = 0.1 for banks,

tax h = 0.05 for humans and tax cb = 1.0 for the central bank.

The government uses tax payments to pay out bonds and distribute transfers to

humans.

Dividends are paid as a certain share of the net profit (excluding tax payments)

acquired by banks and firms. Taxes are paid with the periodicity f taxes, as described

in section 4.2.3. Dividends are paid with periodicity f div as described in section 4.2.3.
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4.3.5.10 Payment system

The payment system is one of the invisible, but important, parts of the model. All

payment orders go through banks that have accounts of the agents (with the exception

of the government, which has an account with the central bank). If a payment order

involves payments for accounts at the same bank, they are cleared in the bank; otherwise,

the payment order goes to the central bank for clearing. The corresponding amounts

are subtracted/added to bank accounts involved in the transaction. Each participating

agent gets information about the payment. If the payment involves government, then it

is processed as if the counterparty was a bank with an account at the central bank.

A general depiction of the payment system is given below.

Figure 4.11 Description of the payment system

4.3.5.11 Bankruptcy

When a firm or a bank has no money to pay the current payment order, a bankruptcy

is initiated. An agent is marked as a bankrupt, and all future payments on his contracts

are stopped. The agent is restored to the active state after a fixed number of periods.

Therefore, a bankruptcy is handled as shown below.
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Figure 4.12 Description of the bankruptcy procedure

If the bankruptcy condition, defined for firms by equation (4.34) and for banks by

equation (4.2), is met, then the bankruptcy procedure is implemented.

It is worth noting that in this model agents as assumed to be bankrupt if they satisfy

the requirements for the cash flow insolvency without any court of law legal orders.

Balance sheet insolvency does not trigger bankruptcy procedures in this version.

Bankruptcies are implemented in two different ways. These implementations repre-

sent one of the treatment factors in the model. The first way to implement bankruptcy

BankruptcyNoRestock is to remove agents for 4 periods from the economy. During

this time, no contract payments are made and due contracts are allowed to expire. The

second way called BankruptcyRestock removes agents from the economy for the same

amount of periods, but after that restores their money balances and capital for banks,

capital goods stock for firms (if it became negative) to the level of the priors defined in

Appendix C in Table C.10.

4.4 Algorithms Used in the Model

The expectation formation rules are similar to those used for the EO-ADP agents in

Chapter 2. Each agent tracks a subset of all the market prices and updates the expected

mean and variance for them. For each price, each agent has prior expectations, receives



107

the same information from the market as everybody else about the realized clearing price

and recalculates the average and variance accordingly.

Each price wt,i from the set of all prices wt = [wt,1, wt,2, · · · , wt,n−1, wt,n]′ is assumed

to be formed independently and to follow a normal distribution. So wt ∼ N (µ,Σt),

with

Σt =



σ2
t,1 0 · · · 0 0

0 σ2
t,2 0

. . . 0

... 0 · · · 0
...

0
. . . 0 σ2

t,n−1 0

0 0 · · · 0 σ2
t,n


(4.47)

Thus,wt = [zt,1, zt,2, · · · , zt,n−1, zt,n]′ with each zt,i being independent, and zt,i ∼ N (µi, σ
2
i ).

These expected distributions are updated according to the process described in Appendix

A.2. Also, as mentioned before, each agent v uses the EO-ADP solution method to chose

the optimal decision d from the decision domain Dv. This algorithm is described in Ap-

pendix A.3.

4.5 Design of the Sensitivity Analysis and Dynamics of the

Model

4.5.1 Design of the Sensitivity Analysis

The initial parameter values for the expectations and the stock of goods, as well as

the parameters of the production function, are described in Appendix C. The model was

run in three modes corresponding to the types of the policies implemented by the central

bank. The difference between the tested policies is the amount of the intervention by the

central bank on the primary and the secondary markets for the government bonds. The

details of this treatment are described in Section 4.3.4 and are also summarized below.
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In the case of no QE (noQE) policies, the relevant central bank decision parameters

were set as follows:

Table 4.1 Parameter values for the case of noQE policy

Parameter Value

qCbBg:primary 0.0

qCbBg:secondary 0.0

In the case of the QE1 policies, the relevant central bank decision parameters were

set as follows:

Table 4.2 Parameter values for the case of QE1 policy

Parameter Value

qCbBg:primary 20.0

qCbBg:secondary 0.0

In the case of the QE2 policies, the relevant central bank decision parameters were

set as follows:

Table 4.3 Parameter values for the case of QE2 policy

Parameter Value

qCbBg:primary 20.0

qCbBg:secondary 20.0

These policies noQE, QE1, QE2 were tested for two possible institutional frame-

works BankruptcyNoRestock and BankruptcyRestock described in Section 4.3.5.11.

The results of simulations are presented below.
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4.5.2 Dynamics of the Model

4.5.2.1 Results for the case of the simplified bankruptcy arrangements

In the case of the simplified treatment of bankruptcy BankruptcyNoRestock, the

following results for the main macroeconomic indicators were produced.

Each indicator x given below, unless specified otherwise, is calculated by averaging

over the simulation runs NRuns in the following way:

x̄t =

∑NRuns
r=1 xt,r
NRuns

(4.48)

The level of the credits, which is equal to the sum of all outstanding loans at time t

in the economy, is presented below.

Figure 4.13 Simulation results for the credit levels, the case of simplified bankruptcy

In this case, the agents in the economy take on excessive risks at the beginning, and

subsequently go bankrupt. Bad expectations are formed and solidified, leading to an

eventual decrease in the employment, production and credit activity. This situation can

be described as a wrong risk assessment on the part of agents, since the economy is too

complicated for them to form correct expectations.
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The employment in period t is defined as a total number of active labor contracts.

The employment level is deteriorating during the simulations.

Figure 4.14 Simulation results for the employment levels, the case of simplified

bankruptcy

The level of deposits is defined by the total amount of outstanding deposits in the

economy in period t. The dynamics of this parameter are presented below:

Figure 4.15 Simulation results for the deposit levels, the case of simplified bankruptcy

While QE makes a difference in terms of the government bonds levels and deposits, it

does not influence the long-term economic results, as can be seen from the dynamics of the
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utility, profit and the consumption goods production levels. Even if in this specification

the central bank directly buys government bonds from the government, which in principle

has enough money to stimulate the economy, this instrument still cannot directly change

already formed expectations, and therefore it has limited usefulness.

The results for production of capital goods at period t are given below:

Figure 4.16 Simulation results for the capital good production levels, the case of sim-

plified bankruptcy

The results for the production of consumption goods at period t are as follows:

Figure 4.17 Simulation results for the consumption good production levels, the case of

simplified bankruptcy
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According to the results of the simulations, humans are not better off in the long

term. It can be seen in the figure below, where the results for the average period utility

calculated as in equation (A.21) are presented:

Figure 4.18 Simulation results for the average realized utility levels, the case of simpli-

fied bankruptcy

4.5.2.2 Results for the case of the bankruptcy with recapitalization ar-

rangements

The following results for the main macroeconomic indicators refer to the case where

bankruptcy framework is described by the BankruptcyRestock parameter. The levels of

the credits, which are equal to the sum of all outstanding loans at time t in the economy,

are presented below:
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Figure 4.19 Simulation results for the credit levels, the case of bankruptcy with recap-

italization

The agents in the economy take on excessive risks at the beginning, and eventually

go bankrupt. In this economy QE policy exacerbate and support excessive risk taking

which together with generous bankruptcy procedures leads to repeated boom-bust cycles

in the economy.

The employment in period t is defined as a total number of active labor contracts.

The employment levels are deteriorating in the simulations:

Figure 4.20 Simulation results for the employment levels, the case of bankruptcy with

recapitalization



114

The level of deposits, defined by the total amount of outstanding deposits in the

economy in period t, are presented below:

Figure 4.21 Simulation results for the deposit levels, the case of bankruptcy with re-

capitalization

Figure 4.22 Simulation results for the capital good production levels, the case of

bankruptcy with recapitalization
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Figure 4.23 Simulation results for the consumption good production levels, the case of

bankruptcy with recapitalization

By the end of the simulations, humans are once again not better off in the long term.

The results are presented for the average realized utility calculated in the same way as

in equation A.21

Figure 4.24 Simulation results for the average realized utility levels, the case of

bankruptcy with recapitalization

The presented results differ from the case described in Section 4.5.2.1. Hence, re-

gardless of the implemented policy, the outcome for the consumers and other agents
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depends on the initial structure of the economy, the forecasting rules and the institu-

tional structure. It might be argued that to achieve major economic changes, the central

bank instruments are insufficient, and complex policy decisions are required.

4.6 Conclusion

This chapter describes the results obtained from simulations with a relatively ad-

vanced model that includes not only traditional agents such as firms, consumers and

the government, but also less frequently incorporated banks. This model was designed

with the goal of creating a realistic simulation of the money and financial flows that

would allow researchers to study network effects and effects of institutional regulations

and incomplete information on the macroeconomic dynamics. This model is still being

developed, but even now it is clear that the institutional regulations and restrictions play

a significant role in the dynamics of the economy and in the choice of optimal policies.

The main conclusion that can be drawn from the simulations is that macroprudential

policies should be evaluated in a model with heterogeneous agents and realistic institu-

tional structures. A simplified model without any room for changes in the institutional

structures and with perfectly shared information between all agents, such as the cur-

rently dominating DSGE models, is not able to capture significant effects of mistaken

expectations, incomplete information on part of agents and effects arising from allowing

too-big-to-fail institutions to exist.

In the short term, the central bank policies can influence the macroeconomic dynam-

ics, but in the long term the existing institutional structure becomes the driving force

behind the economic development. This result is consistent with the conclusions drawn

from the previous chapters, where model structures were important diving forces behind

particular outcomes.
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CHAPTER 5. CONCLUSION

As a whole, the resented body of work explores the question of optimal behavioral

choices made by agents and their effects on the micro- and the macro-level economic

dynamics.

In the first chapter, the notion of constructive rationality is explained and applied

to the analysis of behavioral choices made by agents. The decision process that satisfies

the requirements of constructive rationality is introduced, and simulations are run that

sample different specifications for the introduced decision rules. Various approximate

algorithms that solve the posed optimization problem were explained and adapted to

the problem on hand. These algorithms were tested further in the next chapter.

In the second chapter, another aspect of constructive rationality was explored. A

number of possible expectation specifications for the economic dynamic was analyzed.

It was concluded that the best choice of expectation formation rules heavily depends on

particular characteristics of the environment (in the case of the simple model explored

in that chapter, it was the degree of riskiness of the environment).

Finally, the last chapter presents a more advanced macroeconomic model. This model

is designed to be a tool for the exploration of possible central bank policies. Consistently

with the results of previous chapters, the effectiveness of the central bank policies is

severely limited by the particular institutional framework characteristic of the economy.

There are many possible directions for future improvements. One would be to keep

working on improving the modeling expectation formation and updating to make it closer

to actual methods used by real agents. Another one would be to keep expanding the
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institutional framework until it becomes close enough to the real world, and then the

resulting model will be able to provide insights into unintended interactions between

different policies implemented simultaneously in the real world.
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APPENDIX A. ADDITIONAL MATERIAL FOR

CHAPTER 2

A.1 Tested Grid Specifications for Decision Domains

Table A.1 Small-grid discretization of the consumer decision domain Dc

Decision Set of

Component Possible Values

lc Lc = {0, 1}

ω Ω = {0.8, 1.0, 1.2}

θ Θ = {0.0, 0.5, 1.0}

Table A.2 Small-grid discretization of the firm decision domain Df .

Decision Set of

Component Possible Values

lf Lf = {0, 2.5, 5.0, 7.5, 10}

γ Γ = {0.8, 1.0, 1.2}

λ Λ = {0.0, 0.5, 1.0}

ψ Ψ = {0.8, 1.0, 1.2}



120

Table A.3 Big-grid discretization of the consumer decision domain Dc

Decision Set of

Component Possible Values

lc Lc = {0, 1}

ω Ω = {0.10, 0.55, 1.00, 1.45, 1.90}

θ Θ = {0.0, 0.5, 1.0}

Table A.4 Big-grid discretization of the firm decision domain Df

Decision Set of

Component Possible Values

lf Lf = {0, 2.5, 5.0, 7.5, 10}

γ Γ = {0.10, 0.55, 1.00, 1.45, 1.90}

λ Λ = {0.0, 0.5, 1.0}

ψ Ψ = {0.10, 0.55, 1.00, 1.45, 1.90}

A.2 Wage, Price, and Dividend Expectation Updating

Consumers and firms in the DM Game are assumed to follow the same methods

in forming and updating their expectations regarding the distribution of future labor

market wages, goods market prices, and dividend payments (for consumers). These

methods are characterized by prior-belief parameters and a memory parameter. The

prior-belief parameters are maintained parameters set at fixed values throughout all

simulations reported in this study. The memory parameter is a treatment factor set to

reflect either a fixed one-period memory or an expanding memory that takes into account

all previous observations at each time t.
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Let v denote any consumer or firm in the DM Game. At each time t ≥ 0, agent v

forms normal probability distributions for the labor market wage w, the goods market

price p, and the dividend payment div in current and future periods. These normal

probability distributions are characterized by state-conditioned estimates for their means

and variances, as follows:

w ∼ N
(
w̄v,t−1, σ

2 L
v,t−1

)
(A.1)

p ∼ N
(
p̄v,t−1, σ

2 G
v,t−1

)
(A.2)

div ∼ N
(
d̄v,t−1, σ

2 D
v,t−1

)
(A.3)

After the determination of a market-clearing wage wt:1, a market-clearing goods price

pt:3, and a dividend payment divt:5 for period t, agent v updates the means and variances

for these distributions in order to obtain updated estimates for these distributions for

use in period t+ 1.

The method used to obtain updated mean and variance estimates for the wage dis-

tribution (A.1) is characterized by the following three parameters: a prior wage wv,0; a

prior weight nLv,0, and a memory parameter wm. If wm = all, then agent v calculates

these estimates as follows:

w̄v,t =

∑t
r = 0wr:1 + nLv,0 · wv,0

t + 1 + nLv,0
(A.4)

σ2,L
v,t =

∑t
r = 0 (wr:1 − w̄v,t)

2 + nLv,o · (wv,0 − w̄v,t)
2

t + 1 + nLv,0
(A.5)

In other words, the mean of the distribution for the expected wage is determined by

averaging all wages observed to date, together with the prior wage, while the dispersion

of the expected wage is determined by averaging the squares of the deviations of the

observed wages and the prior wage from the currently estimated mean wage.
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If wm = one, then agent v sets the expected wage equal to the most recently observed

wage:

w̄v,t = wt:1 (A.6)

Also, agent v sets the expected variance equal to 1% of this estimated expected wage:

σ2,L
v,t = 0.01 · w̄v,t (A.7)

Similar equations are used to obtain updated estimates p̄v,t, σ
2,G
v,t , divv,t, and σ2,D

v,t for the

means and variances for the goods price distribution (A.2) and the dividend distribution

(A.3) for wm = all and wm = one, with pr:3 or divr:5 replacing wr:1, pv,0 or divv,0 replacing

wv,0, and nGv,0 or nDv,0 replacing nLv,0.

The estimated means w̄v,t and p̄v,t for the wage and the goods price are used to de-

termine the reservation wage and reservation price for agent v’s transformation function

mapping described in Sections 2.3.2 and 2.3.3. Specifically, Ev,t[wr:1] = w̄v,t−1 and

Ev,t[pr:3] = p̄v,t−1 for all r ≥ t. Thus equations (2.14), (2.17), and (2.18) take the form

wci,r:1(d, t) = ω · w̄i,t−1 (A.8)

wfj,r:1(d, t) = γ · w̄j,t−1 (A.9)

pfj,r:3(d, t) = λ · p̄j,t−1 (A.10)

As clarified below in Section A.3, the EO-FH and EO-ADP agents make use of the full

probability distributions (A.1) through (A.3) in their decision processes. The updating

of these distributions requires specifications for prior variance values as well as prior

mean values.

A complete listing of the maintained values for all of the prior-belief parameters is

given in Table A.5.
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Table A.5 Maintained values for prior-belief parameters

Parameter Value

wv,0 1.00

pv,0 1.00

divv,0 0.00

nLv,0 10.00

nGv,0 10.00

nDv,0 0.00

σ2 L
v,0 0.50

σ2 G
v,0 0.50

σ2 D
v,0 0.01

A.3 Implementation of EO Decision Rules

Various computational approximation methods could be used to implement the EO-

FH and EO-ADP decision procedures. The methods used in this study are outlined

below. Detailed explanations of these methods can be found in Powell (2011).

A.3.1 Implementation of the EO-ADP Decision Rule

By assumption, consumers in the DM Game are structurally identical. In particular,

they have the same form of budget and feasibility constraints (2.1) through (2.4), the

same intertemporal utility objective function (2.5), and the same single-period utility

function u(·) given by (2.37).

The state xi,t of any consumer i at any time t ≥ 0 is given by:

xi,t =
[
t,M c

i,t−1, w̄i,t−1, σ
2 L
i,t−1, p̄i,t−1, σ

2 G
i,t−1, d̄ivi,t−1, σ

2 div
i,t−1

]
(A.11)
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The dimension of the state (A.11) is fixed at eight, independently of i and t. Our

normality assumptions imposed on the wage, price, and dividend payment distributions

(A.1) through (A.3) implies that each of these distributions is fully characterized in each

period t by its estimated mean and variance appearing in (A.11).

The value function for consumer i at time t in state xi,t takes the form:

V c (xi,t) = max
d∈Dc

Ei,t

∞∑
r=t

βr−t
[
u
(
qci,r:3(pr:3, d, t), 1− lci,r:1(wr:1, d, t)

)]
(A.12)

subject to: the budget and feasibility constraints (2.1) through (2.4) that depend on wt:1,

pt:3, and divt:5; and (ii) the TRc
i,t function that maps each potential period-t decision

d ∈ Dc into a sequence of labor supply and goods demand functions for periods r ≥ t.

The expectation in (A.12) is taken with respect to the wage, price, and dividend payment

probability distributions (A.1) through (A.3), conditional on xi,t.

The state transition function Sc mapping each possible state xi,t, decision d ∈ Dc, and

realization (wt:1, pt:3, divt:5) for the wage, price, and dividend payment in period t into

an updated state xi,t+1 for period t+ 1 is time invariant and the same for all consumers

i. Also, the left-side summation in (A.12) is time separable. Consequently, the value

function V c(xi,t) can equivalently be expressed in recursive form, as follows:

V c (xi,t) = maxd∈Dc Ei,t
[
u
(
qci,t:3(pt:3, d, t), 1− lci,t:1(wt:1, d, t)

)
+ βV c (Sc (xi,t, d, wt:1, pt:3, divt:5))] (A.13)

We assume that each EO-ADP consumer i at each time t derives an estimate for the

value function (A.12) that solves the recursive relationship (A.13) by means of a type

of adaptive dynamic programming (ADP) algorithm surveyed in (Powell, 2011, p. 407).

The latter algorithm, designed for infinite-horizon dynamic programming problems, is an

approximate policy iteration method implemented by means of least-squares temporal

differencing.

During this value function estimation at time t, the mean and variance estimates

w̄i,t−1, σ2 L
i,t−1, p̄i,t−1, σ2 G

i,t−1, d̄i,t−1, and σ2 div
i,t−1 in consumer i’s state xi,t are held fixed. No
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new information is obtained by consumer i during his value function estimation, so he

does not update his state information during this estimation.

A critical step in the EO-ADP algorithm at each time t is the selection of basis

functions for approximating the general form of the value function prior to conducting

the value function estimation. We assume each EO-ADP consumer i at each time t uses

a single linear basis function, as follows:

V c(xi,t) =
∑
k

θπkφk (xi,t) = θπ ·M c
i,t−1 (A.14)

where M c
i,t−1 denotes the time-t money balance of consumer i. The value function esti-

mation problem at time t thus reduces to the estimation of the scalar parameter θπ over

some specified domain, which in this study was taken to be the interval [0.01, 1000].

It is assumed that EO-ADP firms use a similar EO-ADP decision procedure to esti-

mate their time-t value functions. The state xi,t of an EO-ADP firm j at time t is given

by

xj,t =
(
t,M f

i,t−1, w̄j,t−1, σ
2 L
j,t−1, p̄j,t−1, σ

2 G
j,t−1

)
(A.15)

and its value function is given by

V f
t (xj,t) = max

d∈Df
Ej,t

∞∑
r=t

µr−t
[
pr:3q

f
j,r:3(pr:3, d, t)− wr:1lfj,r:1(wr:1, d, t)

]
(A.16)

The right-side maximization in (A.16) is constrained by the technological and fea-

sibility constraints (2.6) through (2.11), conditional on xj,t, and implicitly depends on

the TRf
j,t function that maps each potential period-t decision d ∈ Df into a sequence of

labor demand and goods supply functions for periods r ≥ t. The expectation in (A.16)

is taken with respect to the wage and price probability distributions (A.1) and (A.2),

conditional on xj,t.

For reasons analogous to arguments given above for EO-ADP consumers, the value

function (A.16) can be expressed in the following recursive form:

V f (xj,t) = maxd∈Df Ej,t

[
pt:3q

f
j,t:3(pt:3, d, t)− wt:1lfj,t:1(wt:1, d, t)

+ βV f
(
Sf (xj,t, d, wt:1, pt:3)

)]
(A.17)
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where the form Sf of the state transition function does not depend on j or t. Firm j

at time t is assumed to use a simple linear basis function to estimate the value function

V f (xj,t) that solves (A.17), as follows:

V f (xj,t) =
∑
z

θπzφz (xj,t) = θπ ·M f
j,t−1 (A.18)

where M f
j,t−1 denotes the money balance of firm j at time t.

The following parameters need to be specified in order to implement the EO-ADP

algorithm for EO-ADP consumers and EO-ADP firms: the number of runs for the inside

and outside estimation loops; the number of random number draws in an internal max-

imization algorithm ; the number of basis functions; the initial parameter value B0 for

recursive least squares estimation; and the initial parameter value θπ,0 for the coefficient

in the basis-function representation of the value function. These parameters are main-

tained at the fixed values listed in Table A.6 for all EO-ADP agents. The tested values

for the two EO-ADP treatment factors, wm and grid-type, are given in Table 2.10.

Table A.6 Maintained parameter values for EO-ADP agents

Parameter Value

EstRunIn 5

EstRunOut 5

BasisNum 1

NDrawsADP 5

B0 0.005 · I

θπ,0 1.0

A.3.2 Implementation of the EO-FH decision rule

The EO-FH algorithm is a brute-force method for the direct estimation of an optimal

solution in each period t over a finite rolling forecasting-horizon T . It is performed by
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EO-FH consumers and firms by undertaking a complete search of their finite decision

domains, with a corresponding evaluation of expected outcomes over the next T periods,

in order to determine a decision achieving the maximum possible expected intertemporal

utility or profit outcome over these next T periods. Thus, in contrast to the EO-ADP

algorithm, the EO-FH algorithm does not involve estimation over an infinite horizon, and

it does not involve the use of value functions. Consequently, it is conceptually simpler

and faster to implement than the EO-ADP algorithm.

Specifically, each EO-FH consumer i at each time t in some state xi,t uses direct

search to solve an optimization problem identical in form to (A.12) except that the

infinite horizon is replace by a finite horizon t+T . Similarly, each EO-FH firm j at each

time t in some state xj,t uses direct search to solve an optimization problem identical in

form to (A.16) except that the infinite horizon is replace by a finite horizon t+ T .

The EO-FH consumers and firms at each time t use Monte Carlo simulation to calcu-

late the expectations in their finite-horizon maximization problems, by taking NDrawsFH

draws from each of their estimated probability distributions (A.1), (A.2), and (A.3). The

value of the parameter NDrawsFH is maintained at 10 for all EO-FH agents. The tested

values for the three EO-FH treatment factors T , wm, and grid-type are given in Table 2.9.

A.4 Social Planner Benchmark Model Solution

This section provides a proof by induction that the Social Planner (SP) Benchmark

Model in reduced representative-consumer form (2.41) has the following solution: lct:1 =

qct:3 = 1 and sstockt = 0 for all periods t ≥ 0.

By assumption, sstock−1 = 0. Given this assumption, the social planner’s optimal choices

for labor, consumption, and goods stock for period 0 are given by lc0:1 = qc0:3 = 1 and

sstock0 = 0. To establish this, first note that leisure lec0:1 = [1−lc0:1] has a constant marginal

utility equal to 0.5 whereas goods consumption qc0:3 over the range (0, 1] has a marginal
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utility that is bounded below by 1.5. Consequently, the social planner will set lec0:1 =

0 (hence lc0:1 = 1). Given the production function assumptions for the SP Benchmark

Model, the maximum amount of good that can be produced in period 0 is thus 1 unit.

Now suppose the social planner contemplates setting aside a portion sstock0 ∈ [0, 1] of

this period-0 production as goods stock for period 1. Given sstock0 , the maximum utility

achievable in period 0 by the representative consumer is 3.0 ln(2 − sstock0 ) if sstock0 < 1

and 3.0 ln(0.5) if sstock0 = 1. Also, given sstock0 , the maximum utility achievable by the

representative consumer in period 1 is then attained by setting lcr:1 = 1, allocating all

of the resulting period-1 production of 1 unit of good towards time-1:3 consumption,

and allocating all of the goods stock sstock0 towards time-1:3 consumption,. From the

standpoint of period 0, the resulting maximum utility achievable by the representative

consumer in period 1 is thus given by β[3.0 ln(2 + sstock0 )]. However, since β is less than

1, the sum of these two maximum achievable utility levels,

3.0 ln(2− sstock0 ) + β ·
[
3.0 ln(2 + sstock0 )

]
, (A.19)

is a strictly decreasing function of sstock0 over sstock0 ∈ [0, 1) (with a discontinuous further

jump down at sstock0 = 1). Consequently, the maximum achievable intertemporal utility

for the representative consumer over periods 0 and 1, considered together, is obtained

by setting sstock0 = 0. Similar arguments can be used to argue that no future use of a

positive sstock0 can result in a (discounted) utility gain for the representative consumer

that outweighs his resulting loss of period-0 utility. Consequently, the social planner

should set sstock0 = 0.

Now consider any arbitrary period t ≥ 0 for which the goods stock sstockt−1 is zero.

Then the same argument used above can be applied to period t to show that the social

planner’s optimal choices for period t are to set lct:1 = qct:3 = 1 and sstockt = 0. It follows by

induction that the optimal solution to the SP Benchmark Model (2.41) is lct:1 = qct:3 = 1

and sstockt = 0 for all periods t ≥ 0.
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A.5 Performance Measures for Case Comparisons

Let k denote any of the tested cases in Table 2.3. This section describes the various

performance measures used to evaluate the performance of the DM-Game economy under

case k.

The primary indicator used to measure ex post performance is ūk, the average realized

single-period utility attained by the DM-Game consumers. Using notation introduced

in Section 2.5.1, and recalling that the initial period is numbered 0, ūk is calculated as

follows:

ūk =

∑I
i=1

∑LRun
τ=LOmit

∑NRuns
r=1 uki,τ,r

I · (LRun− LOmit+ 1) ·NRuns
(A.20)

where uki,τ,r is the utility attained by consumer i in period τ of run r.

Some use is also made of additional performance measures. For each period τ ∈

{LOmit, . . . ,LRun}, the average realized single-period utility for period τ is calculated

as follows:

ūkτ =

∑I
i=1

∑NRuns
r=1 uki,τ,r

I ·NRuns
(A.21)

The average value of ūkτ across the time periods τ ∈ {LOmit, . . . ,LRun} is then given

by (A.20), and the standard deviation of ūkτ across these same time periods is given by

σūk =

( ∑LRun
τ=LOmit

(
ūkτ − ūk

)2

LRun− LOmit+ 1

)1/2

(A.22)

The average realized cumulative utility through period t is calculated as follows for

periods t ≥ LOmit:

ūcumul,kt =

∑t
τ=LOmit ū

k
τ

t− LOmit + 1
(A.23)

Suppose that a market-clearing wage wkt:1,r and a market-clearing goods price pkt:3,r

are both well-defined1 for some period t for all runs r ∈ R∗, where the subset R∗ has

1Since the demands and supplies of the DM-Game consumers and firms depend on reservation wages
and prices, there can exist periods for which all of these agents decide not to participate in the labor
market and/or the goods market.
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cardinality NRuns∗. Then the average realized real wage for period t is calculated as

follows:

w̄real,kt =

∑NRuns∗

r=1

[
wkt:1,r

pkt:3,r

]
NRuns∗

(A.24)

The average realized real wage w̄real,k is then calculated as the average of w̄real,kt over all

periods t for which w̄real,kt is well defined.

Finally, in analogy to (A.20), the average realized single-period profits attained by

the DM-Game firms is calculated as follows:

π̄k =

∑J
j=1

∑LRun
τ=LOmit

∑NRuns
r=1 πkj,τ,r

J · (LRun− LOmit+ 1) ·NRuns
(A.25)

where πkj,τ,r denotes the profit attained by firm j in period τ of run r.
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APPENDIX B. ADDITIONAL MATERIAL FOR

CHAPTER 3

B.1 Initial Parameters for Chapter 3 Simulations

The initial parameters for Chapter 3 are given in Table B.1.

Table B.1 Other simulation parameters for Chapter 3

Parameter Value

β 0.95
wealth 1.0

lifespan T 3
inheritance full
ADP N 10
ADP M 10
CS N 100

CS N discret 10
LRun 99 or 999 for 1 level prior
B0 0.0005 · I
θπ,0 [100, 100, 100]
seed [2012, 2013, 2014]
NSeed 3

B.2 Approximate Dynamic Programming Algorithm

B.2.1 Core ADP algorithm

At each step, new estimates for the value function are obtained. After that, coeffi-

cients for the value function linearization are updated using the least squares algorithm
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2 presented below. This process repeats for a fixed number of steps. The main body of

the algorithm 1 is given below.

Algorithm 1 ADP algorithm for estimation of value functions.

Step 0 Initialization
Step 0a Fix the basis functions φf (s)
Step 0b. Initialize θπ,0tf

Step 0c. Set n = 1
Step 1. Sample an initial starting state Xn

0 :
Step 2. Initialize θn,0(if n > 1, use θn,0 = θn−1), which is used to estimate the value of
policy π produced by θπ,n. θn,0 is used to approximate the values of the following policy
π determined by θπ,n

Step 3. Do for m = 1, 2, . . . ,M :
Step 4. Choose a sample path ωm.
Step 5. Do (Steps 5a, 5b)
Step 5a. Compute d (using grid search, see below)

dt = arg max
dt∈Dn,mt

(
C (Xn,m

t , dt) + γ E

(∑
f

θπ,n−1
tf φf (TR (Xn,m

t , dt))

))
Step 5b. Compute

Xn,m
t+1 = TR (Xn,m

t , d,Wt+1 (ωm))

Step 6. Initialize

vn,mT+1 = 0

Step 6. For t=T,T-1,...,0

vn,mt = C (Xn,m
t , dn,mt ) + γ E

(
vn,mt+1

)
Step 7. Update θn,m−1 using recursive least squares to obtain θn,m, go to Step 3
Step 8. Set n = n+ 1. If n < N , go to step 1.
Step 9. Return the regression coefficients θN .

To actually solve step 5.a of the ADP algorithm, a grid search is used, with the same

assumptions as in the complete grid search approach described below.

B.2.2 Complete Grid Search

The complete grid search discretizes possible choices xt over the interval of [0, 1].

After that, the complete search over all possible choices for one period in case of ADP
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Algorithm 2 Recursive least squares for ADP algorithm.

Step 0. If n = 1, initialize B0 = εI. Else use Bn−1.
Step 1. Calculate error

εn = V̄s
(
θn−1

)
− vn

Step 2. Calculate adjustment coefficient γn.

γn = 1 + (φn)
′
Bn−1φn

Step 3. Calculate Bn.

Bn = Bn−1 − 1

γn

(
Bn−1φn (φn)

′
Bn−1

)
Step 4. Calculate Hn.

Hn =
1

γn
Bn−1

Step 5. Calculate new regression coefficient estimates θn and store Bn.

θn = θn−1 −Hnφnεn

or T periods of the total life span length for the benchmark algorithm are run. The best

choice combination is chosen.
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APPENDIX C. ADDITIONAL MATERIAL FOR

CHAPTER 4

Initial Parameters for Chapter 4 Simulations

The initial parameters for Chapter 4 are given below.

Table C.1 Main parameter values

Parameter Description Value

nH number of humans 100

nFGC number of consumption good firms 2

nFGK number of capital goods firms 2

nB number of banks 2

nCB number of central banks 1

nG number of governments 1

β discounting factor 0.95

fgc F F theta production function parameters for FGC (1, 0.7, 0.3)

fgk F F theta production function parameters for FGK (0.3, 0.3, 0.7)

b F F min production function parameters for banks (1.0, 1.0)

h goal t theta utility function parameters for humans (1.0, 3.0, 0.5)

wm memory length all

bankruptcy length length of a bankruptcy 4
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Table C.2 Parameter values for simulations

Parameter Description Value

N number of periods in a simulation 50

NRuns number of seeds per simulation 3

seeds seeds for simulation [2014, 104, 255]

ADP M M value for ADP algorithm 5

ADP N N value for ADP algorithm 5

CS N N value for complete search algorithm 5

Table C.3 Discretization of the human decision domain Dh

Decision Set of

Component Possible Values

θL ΘL = {1}

ωL ΩL = {0.5, 1.0, 1.5}

θK ΘK = {0.0, 0.3}

θC ΘC = {0.3}

θCr ΘCr = {1.0, 1.5}

θDp ΘCr = {0.3}
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Table C.4 Discretization of the firm decision domain Df

Decision Set of

Component Possible Values

θL ΘL = {1.0}

ωL ΩL = {0.5, 1.0, 1.5}

θK ΘK = {1.0}

θG ΘG = {1.0}

ωG ΩC = {1.0}

θCr ΘCr = {0.0, 0.5, 1.0}

θDp ΘCr = {0.1}

Table C.5 Discretization of the bank decision domain Db

Decision Set of

Component Possible Values

θCr ΘCr = {10.0}

θCr θCr = {0.05, 0.1, 0.15, 0.2}

θDp θDp = {0.05, 0.1, 0.15, 0.2}

θBg ΘBg = {0.1}

θBb ΘBb = {0.05, 0.1, 0.15, 0.2}
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Table C.6 Parameter values for expectation updating beg.

Parameter Description Value

MasCHK mu market for labor, initial mean 1.0

MasCHK n0 market for labor, initial number of

observations

10

MasCHK sigma2 market for labor, initial variance 1.0

MasGK mu market for capital, initial mean 10.0

MasGK n0 market for capital, initial number of

observations

10

MasGK sigma2 market for capital, initial variance 1.0

MasGC mu market for goods, initial mean 1.0

MasGC n0 market for goods, initial number of

observations

10

MasGC sigma2 market for goods, initial variance 1.0

MasCBC mu market for credit, initial mean 0.1

MasCBC n0 market for credit, initial number of

observations

10

MasCBC sigma2 market for credit, initial variance 0.05

MasCBD mu market for deposits, initial mean 0.07

MasCBD n0 market for deposits, initial number of

observations

10

MasCBD sigma2 market for deposits, initial variance 0.05

MasCBD mu market for deposits, initial mean 0.07

MasCBD n0 market for deposits, initial number of

observations

10

MasCBD sigma2 market for deposits, initial variance 0.05
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Table C.7 Parameter values for expectation updating cont.

Parameter Description Value

MasCBB mu interbank market, initial mean 0.05

MasCBB n0 interbank market, initial number of

observations

10

MasCBB sigma2 interbank market, initial variance 0.05

MasBG mu market for bonds, initial mean 10.0

MasBG n0 market for bonds, initial number of

observations

10

MasBG sigma2 market for bonds, initial variance 0.0

MasCCBC mu standing facilities of central bank, initial

mean

0.1

MasCCBC n0 standing facilities of central bank, initial

number of observations

10

MasCCBC sigma2 standing facilities of central bank, initial

variance

0.0

ai mu average income for human, initial mean 1.0

ai n0 average income for human, initial number of

observations

10

ai sigma2 average income for human, initial variance 0.0

FI I mu financial income for human, initial mean 0.0

FI I n0 financial income for human, initial number

of observations

10

FI I sigma2 financial income for human, initial variance 0.0
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Table C.8 Parameter values for decisions

Parameter Description Value

θb
ch

bank choice of the share of income to be

used in lending

1.0

θb
cf

bank choice of the share of assets to be used

in lending

1.0

share out estimated share of payments that go

through other banks

0.5

share ass estimated share of deposits to receive from

other banks

0.5

θf,div share of the firm net profit to pay as

dividends

0.5

θb,div share of the bank net profit to pay as

dividends

0.5

θcb,div share of the central bank net profit to pay

as dividends

1.0

ωCb interest rate on standing facilities of the

central bank

0.01
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Table C.9 Parameter values for markets

Parameter Description Value

c length Hk the length of a labor contract 5

c length Cr the length of a credit contract 5

c length Dp the length of a deposit contract 5

c length Bg the length of a bond 6

c length Bb the length of an interbank loan contract 1

θmin,pG minimum coefficient for the price for the

goods market bids formation

1

θmax,pG maximum coefficient for the price for the

goods market bids formation

1

Table C.10 Parameter values for initial stocks

Parameter Description Value

Mg,−1 initial money balances for government 5

Mcb,−1 initial money balances for central bank 0

Mf,−1 initial money balances for firms 100.0

Mb,−1 initial money balances for banks 100.0

Mh,−1 initial money balances for humans 1.0

Kb,−1 initial capital for banks 10.0

Kf,−1 initial capital for firms 10.0

Kh,−1 initial capital for humans 0.0

pstock,b,−1 price of a stock for initial tier 1 capital for

banks

1.0

qstock,b,−1 quantity of a stock for initial tier 1 capital

for banks

nH
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