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ABSTRACT

The goal of this dissertation was to develop tools for analyzing economic performance
while agents were constrained to be constructively rational. To achieve this goal, firstly,
tools for introducing forward-looking agents into agent-based frameworks were devel-
oped. These agents were shown to be a feasible alternative to the assumption of rational
expectations, albeit with some limitations, as could be expected from any computational
method. Several testing frameworks were also developed. Smaller ones were used to ex-
plore economic effects of decision procedures used by agents on macro- and micro-levels.
A more advanced framework was formulated to facilitate the analysis of the interactions
between institutional structures and macroeconomic policies. These frameworks were
shown to be scalable and useful tools for the analysis of both micro-level decisions of

agents and macroeconomic policies of central banks.



CHAPTER 1. INTRODUCTION

It is important to understand the origin and consequencies of economic crises, partic-
ularly now, when the world economy is remaining in a state of slow growth, despite all
unconventional policies that authorities in different countries have been trying to imple-
ment since the financial crisis of 2008. The complexity of the most recent crises requires
developing new tools that could help policy makers to understand possible side effects
of various policies. Such tools could be designed in the agent-based macroeconomic
paradigm.

The continuing development of computational facilities provides researches and gov-
ernment agencies with an access to vast computational resources. This development is
finally allowing for much more complicated models to be employed. It is now possible
to achieve a reasonable level of detail without incurring prohibiting computational costs.
Besides that, modern computational resources make the problem of balancing the calcu-
lation time and the complexity of the model a much easier task. It is now getting possible
to build models that not only have complicated institutional structures, but also include
fairly advanced decisions procedures.

Thanks to these development, new questions arise that are worth investigating. Some
of this question are: How should we model more sophisticated agents? What institutional
features of the real economy should be included? This works begins to answer such
questions.

The analysis starts with the introduction of a constructive rationality concept. It is

suggested that this concept should be used as a modeling tool guiding efforts to incorpo-



rate more sophisticated decision procedures into the toolset of the agent-based macroe-
conomics. In the same chapter, an agent-based small scale macroeconomic framework
is presented and forward-looking agents are introduced in this framework. These agents
are shown to be a feasible alternative to the assumption of rational expectations, albeit
with some limitations, as could be expected from any computational method.

In the next part of the dissertation, the problem of optimal belief structures is ex-
plored. The model was developed and tested that used different levels of Bayesian
networks for the modeling of the belief structures.

Finally, a middle-scale macroeconomic model was developed that served as an analyt-
ical tool for the investigation of the effects of the central bank policies. A need to better
understand interactions between institutional structures and macroeconomic policies is
highlighted based on the analysis results produced by agent-based model.

In total, the models and the corresponding computer codes designed in this disserta-
tion contribute to the understanding of the effects of constructive rationality of economic

agents and the policy of the central bank on the economy.



CHAPTER 2. MACROECONOMIES AS
CONSTRUCTIVELY RATIONAL GAMES

Real-world decision-makers are forced to be locally constructive, in the sense that
their actions are constrained by the interaction networks, limited information, and com-
putational capabilities at their disposal. This study poses the following question: Sup-
pose utility-seeking consumers and profit-seeking firms in an otherwise standard dynamic
macroeconomic model are required to be locally constructive decision-makers, unaided
by the external imposition of global coordination conditions. What combinations of lo-
cally constructive decision rules result in good macroeconomic performance relative to
a social planner benchmark model, and what are the game-theoretic properties of these
decision-rule combinations? We begin our investigation of this question by specifying
locally constructive decision rules for the consumers and firms that range from simple
fixed behaviors to sophisticated approximate dynamic programming algorithms. We
then use computational experiments to explore macroeconomic performance under al-
ternative decision-rule combinations. A key finding is that simpler rules can outperform
more sophisticated rules, but that forward-looking behavior coupled with a relatively
long memory permitting past observations to inform current decision-making is critical

for good performance.



2.1 Introduction

2.1.1 Study Overview

Decision-makers in real-world macroeconomies are necessarily limited to locally con-
structive actions, that is, to actions that can be implemented on the basis of their own
interaction networks, limited information, and computational capabilities. In contrast,
modern macroeconomic models typically impose coordination restrictions on the actions
of decision-makers that are not locally constructive. Key examples include the global
market clearing conditions and strong-form rational expectations postulates imposed in
dynamic stochastic general equilibrium (DSGE) models.

These observations raise the following question. Suppose all actions within an oth-
erwise standard DSGE model are required to be locally constructive, unaided by global
coordination restrictions imposed by the modeler. What form could these locally con-
structive actions take to ensure good outcomes, not only for the individual participants
but also for the macroeconomy as a whole?

This study addresses this question for a simplified version of the DSGE model de-
veloped by Smets and Wouters (2003) consisting of consumers and firms interacting
over time in labor and goods markets. Each consumer desires to maximize his expected
intertemporal (lifetime) utility subject to budget constraints, and each firm desires to
maximize its expected intertemporal profit subject to technology constraints. However,
in a departure from Smets and Wouters, the consumers and firms are restricted to con-
structively rational decision procedures in the following sense: the specification by these
agents of their objective functions, decision domains, and decision rules mapping de-
cision domains into decision selections must constitute locally constructive actions for
these agents.

To investigate the implications of constructive rationality for the resulting Dynamic

Macroeconomic (DM) Game, the decision domains for consumers and firms are first ex-



pressed in stationary form, as vectors of possible parameter selections. Fach decision
(parameter vector) maps into a sequence of parameterized supply and demand func-
tions for current and future periods. Systematic computational experiments are then
conducted to explore the implications of assuming that consumers and firms make suc-
cessive selections from these decision domains in accordance with decision rules ranging
from simple adaptation to sophisticated anticipatory learning. These decision rules in-
clude: (i) a reactive reinforcement learning method developed by Roth and Erev (1995)
and Erev and Roth (1998) on the basis of findings from human-subject experiments;
(i) a forward-looking learning method developed by Watkins (1989), called Q-learning;
(iii) a forward-looking rolling-horizon learning method (Alden and Smith (1992)); and
(iv) an adaptive dynamic programming (ADP) learning method based on value-function
approximation.

The key issue of interest is which decision-rule combinations come closest to achiev-
ing the benchmark optimal solution obtainable by a fully informed social planner. In
particular, do the decision rules making relatively more sophisticated use of information
tend to result in relatively higher welfare outcomes, either for the individual decision-rule
users or for the economy at large? Since previous experimental findings have shown that
minimally-informed traders using relatively unsophisticated decision rules can match or
exceed the performance of better informed traders in some market contexts (Gode and
Sunder (1993), Smith (2008)), the answer to this question is not obvious a priori. A
related issue of interest is which (if any) decision-rule combinations constitute Nash
equilibria and/or Pareto optimal solutions for the DM Game.

A key finding of this study is that good performance in the DM Game requires
decision-makers to engage both in the exploitation of their current information and in
searches for new information. Simpler rules can outperform more sophisticated deci-
sion rules, but only if the simpler rules entail forward-looking behavior coupled with a

relatively long memory permitting past observations to inform current decision-making.



This study is organized as follows. Section 2.2 explains the basic structure of the
DM Game together with its market and payment processes. Section 2.3 discusses the
decision procedures implemented by the DM Game consumers and firms. Section 2.4
introduces and solves a social planner benchmark model as a benchmark of compar-
ison for the simulation experiments. Section 2.5 describes the sensitivity design for
simulation experiments, and Section 2.6 reports key simulation findings. Some techni-
cal implementation aspects are relegated to the Appendix, and the code is available at

https://github.com/wilfeli/DMGameBasic.

2.1.2 Relationship to Previous Research

Numerous previous researchers, including Simon (1978), Dosi and Egidi (1991), Stiglitz
(2002), Smith (2008), Howitt (2008), and Kahneman (2011), have emphasized the impor-
tance and complexity of modeling real-world decision-making procedures. Practitioners
have also been interested in obtaining an improved understanding of these procedures;
see, for example, a recent report (Trichet (2010)) by the President of the European
Central Bank.

One possible approach permitting the systematic study of decision-making proce-
dures is Agent-based Computational Economics (ACE), the computational modeling of
economic processes (including whole economies) as open-ended dynamic systems of inter-
acting agents (Tesfatsion and Judd (2006), Tesfatsion (2014c)). Agents in ACE models
can range from passive system entities with no cognitive function to active information-
gathering decision-makers capable of sophisticated social and learning behaviors. The
repeated interactions of these agents give rise to global regularities characterizing the
system as a whole, which in turn affect agent interactions.

To date, however, ACE researchers have typically used decision procedures for macroe-
conomic agents that are not explicitly derived from underlying optimization problems.

For example, Dawid et al. (2011), Oeffner (2008), Dosi et al. (2010), and Mandel et al.



(2010) directly model the behavior of consumers and firms using combinations of simple
fixed and adaptive decision rules.!

In contrast, DSGE researchers typically assume that consumers and firms solve in-
tertemporal utility and profit maximization problems; see, for example, Sbordone et al.
(2010) and Tovar (2009). Yet, to avoid aggregation issues, DSGE researchers also typi-
cally assume the existence of representative consumer and firm agents with strong forms
of rational expectations. This reliance on representative agents with rational expecta-
tions has been criticized on the grounds it prevents the study of learning and coordina-
tion issues critical for understanding the operation of real-world macroeconomies (Howitt
(2012)).

A key point to stress here, however, is that agents in ACE models do not have to
be restricted to reactive stimulus-response behavior; they can be modeled as forward-
looking intertemporal optimizers.? Conversely, agents in DSGE models do not have to
be modeled as optimizers with incredible information and computational capabilities;
they can be modeled as learners reacting to experienced events.

Consequently, why not combine the best of these two approaches by examining con-
structively rational decision-making for economic agents with intertemporal goals? In
particular, what forms (if any) of constructively rational decision-making by participants
in macroeconomies result in good intertemporal outcomes, not only for the individual
participants but also for the macroeconomy as a whole? The current study focuses on
this issue.

A final note on terminology is in order. Our conception of a constructively rational
decision procedure does not necessarily entail the pursuit of goals through the solution of

optimization problems. Consequently, it differs from the concept of procedural rationality

1See Chen (2012) for a recent survey of ACE agent modeling, and see Tesfatsion (2014a) for extensive
annotated pointers to ACE macroeconomic research.

2For an extensive collection of annotated pointers to research on learning algorithms for ACE agents,
including approximate dynamic programming and other forward-looking methods for intertemporal
optimization, see Tesfatsion (2014b).



introduced by Simon (1978)[p. 9], in which decision-making agents are assumed to pursue
the most effective possible procedures for the choice of their actions, given their limited
information and cognitive powers. Similarly, it differs from the concept of constructivist
rationality introduced by Smith (2008)[p. 2], defined as “the deliberate use of reason to
analyze and prescribe actions judged to be better than alternative feasible actions that
might be chosen.”

Rather, our conception permits procedural uncertainty (Dosi and Egidi (1991), Howitt
(2008)), in the sense that decision-makers might be uncertain how to use their limited
decision-making resources in an attempt to achieve their goals. In this case they might
engage in a combined learning and decision-making process in an attempt to reduce
their uncertainty about their world even as they attempt to survive and prosper within
that world. Indeed, the operative question for a reader of this study is as follows: If
you were to be suddenly transported into the DM Game as a consumer or firm, forced
to implement your decisions in a locally constructive manner, what decision procedure

would you use in an attempt to achieve your utility or profit goal?

2.2 The Dynamic Macroeconomic Game

2.2.1 Overview

This section develops a Dynamic Macroeconomic (DM) Game, a simplified version
of the DSGE model developed by Smets and Wouters (2003) that will permit us to
investigate the effects on micro and macro outcomes when consumers and firms use
different decision procedures. A deliberate attempt has been made to ensure that the
structure of the DM Game is similar to the structure of the Smets-Wouters DSGE model.
However, the DM Game differs from this model in two critical ways: (i) absence of

globally-imposed coordination conditions; and (ii) endogenous heterogeneity.



Regarding (i), in attempting to achieve their goals through participation in market
processes, each consumer and firm in the DM Game is restricted to constructively ra-
tional decision procedures. As will be seen below, this requirement implies that events
must proceed through historical time from cause to effect, with no non-causal looping
permitted. In particular, the standard DSGE determination of market outcomes, in
which labor and goods markets are simultaneously cleared at correct equilibrium prices
with correct matching of buyers and sellers, with no risk to the traders, must be replaced
by market processes permitting risky trades to proceed even if transactions are based on
imperfectly informed demands and supplies.

Regarding (ii), heterogeneity among the DM Game consumers and among the DM
Game firms arises endogenously over time from two sources. One source is that all of the
decision procedures tested for consumers and firms in this study are adaptive procedures
involving stochastic aspects in their implementations. A second source is the use of a
stochastic rationing rule in the market clearing processes for labor and goods.?

The next subsection provides a big-picture understanding of the basic DM Game
structure. The remaining subsections then explain in greater detail the market and
payment processes in the DM Game, as well as the structure of the intertemporal op-
timization problems for consumers and firms. A detailed description of the particular
locally-constructive decision procedures to be tested for the consumers and firms by

means of computational experiments is given in the following Section 2.3.

3As detailed in Sections 2.3.2 and 2.3.3, reservation wages and prices are used to determine demand
and supply functions in the DM Game. Agents thus suddenly enter or drop out of the labor and goods
markets as the wage and price increase from 0, which induces discontinuities and flat portions in the
aggregate demand and supply functions. In consequence, at the market clearing wage or price where
the aggregate demand and supply curves cross each other, there can be too many units offered (or
demanded) relative to demand (or supply). Random selection is used to determine which offers for units
are used to clear demand in the case of excess supply and which demands for units are used to clear
supply in the case of excess demand.
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2.2.2 Basic DM Game Structure

As depicted in Fig. 2.1, the DM Game consists of a finite collection I of utility-
seeking infinitely-lived consumers and a finite collection J of profit-seeking infinitely-lived
corporate firms that interact in market and payment processes over discrete periods ¢ > 0,

where period t = [t, + 1).

Decision making

Institutions
agents

Markets
Consumer Firm Payment System (Goods and
Labor)

Figure 2.1 Decision-making agents and institutions for the DM Game

Each consumer and firm has an initial money balance at time 0, measured in book
credit; and all subsequent payments and receipts take the form of changes in consumer
and firm money balances. The consumers derive utility from leisure and from the con-
sumption of a durable good q purchased from firms. The firms earn profits from the sale
of good q to consumers, where q is produced by means of labor services purchased from
consumers.

Both the labor market and the goods market are organized as competitive markets
in which demands and supplies are matched to determine market-clearing prices and
quantities. All firm profits are distributed back to consumers in the form of dividend
payments. The goal of each consumer is to maximize his expected intertemporal utility
subject to budget constraints, where this optimization problem is expressed in locally

constructive terms. The goal of each firm is to maximize its expected intertemporal
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profits subject to technology constraints, where this optimization problem is expressed
in locally constructive terms.

Each consumer at time 0 is structurally identical to each other consumer; that is,
each consumer has the same initial money balance, human capital endowment, and
intertemporal utility function. Also, each consumer owns an equal share of each firm,
fixed through time, and hence receives the same steam of dividend payments. Similarly,
each firm at time 0 is structurally identical to each other firm, meaning that each firm has
the same initial money balance, goods stock, dividend allocation rule, and intertemporal
profit function.

Market trades in the DM Game are risky in the following sense. In each period the
labor market occurs prior to the goods market. Firms engage in forward contracting
with consumers for labor services, and carry out goods production using these labor
services, prior to the realization of actual goods demands. Firms thus risk bankruptcy if
insufficient goods are sold to permit them to meet their wage obligations; and bankrupt
firms must exit the DM Game economy. On the other hand, consumers risk non-payment
for labor services rendered if firms become bankrupt. Since all goods demands must be
backed by actual purchasing power, this can reduce the goods demands of the consumers
in the next trading period, exacerbating firm cash-flow problems.*

A key question to be addressed is therefore as follows. Given the potential riskiness of
market trading, and the restriction to locally constructive decision rules, is it worthwhile
for the consumers and firms to use relatively sophisticated decision rules derived from
intertemporal optimizations? Or should they instead proceed cautiously with simpler

forms of decision rules based on incremental adaptations to past trading outcomes?

4For simplicity, this study assumes that consumer subsistence needs for goods are zero. Hence, the
consumers do not face a risk of death by starvation if they are unable to purchase any goods.
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2.2.3 Market and Payment Processes in the DM Game

All transactions in the DM Game are accompanied by corresponding payments, hence
the payment system is an important underlying institution. For simplicity, this payment
system is taken to be a simple clearing house that instantaneously clears each transaction.
Although consumers and firms can carry forward savings in the form of money (book-
credit), there is no banking system, hence no borrowing/lending opportunities and no
interest paid on savings.

A consumer is not permitted to spend more than his current money holdings, hence
all consumer demands for goods must be backed by actual purchasing power. A firm
is declared bankrupt, and removed from the economy, if its current money holdings are
insufficient to meet its wage-payment obligations to its workers.®

The consumers and firms use decision rules in each period ¢ in an attempt to take
actions that satisfy their intertemporal utility and profit goals. These actions consist of
both labor and goods market decisions, such as whether or not to participate in these
markets and what specific quantity and price terms to seek if they do. The consumers
and firms receive feedback from the economy as a result of their period-t actions, and
they update their decision rules on the basis of this feedback in preparation for period
t + 1. This feedback includes market-clearing wages and prices for the period-t¢ labor
and goods markets, and their own private utility or profit outcomes as a result of their

period-t market transactions.

5Any money held by a bankrupt firm is divided equally among its workers in partial fulfillment of
its wage-payment obligations. However, goods stocks of bankrupt firms are assumed to be lost to the
economy.
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Labor market

> decisions

Market decision rules

Production
decisions

Goods market

< decisions

State updating

Figure 2.2 Sequential market decisions during a typical period t.

As depicted in Fig. 2.2, the labor market occurs before the goods market in each
period t. Each consumer participating in the labor market submits a labor supply offer,
and each firm participating in the labor market submits a labor demand bid. A labor
market clearing solution is then calculated based on these offers and bids. This solution
consists of a set of forward labor contracts (supply now, get paid later) that determine
the amount of labor to be supplied now by each consumer to each firm, and the (common)
wage to be paid later by the firms to the consumers for each unit of supplied labor.

After the close of the period-t labor market, the consumers perform labor for the firms
in accordance with their forward labor contracts, which results in produced amounts of
goods. Next, each consumer participating in the period-t goods market submits a goods
demand bid, and each firm participating in the period-t goods market submits a goods
supply offer. A goods market clearing solution is then calculated based on these bids
and offers. This solution consists of a set of spot contracts that determine the amount
of good to be received now by each consumer from each firm, and the (common) goods
price to be paid now by the consumers to the firms for each unit of good received.

After the close of the period-t goods market, each firm proceeds to deliver goods
to its customers, in return for goods payments, in accordance with its period-t goods

market spot contracts. Each firm then settles its period-t wage-payment obligations
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to its workers as determined by its period-t forward labor contracts, if it has sufficient
money holdings to cover these obligations. Otherwise, the firm is bankrupt and must
exit the economy.

At the end of period t, each consumer calculates its period-t utility on the basis of
its period-t consumption of leisure and goods. Also, each (non-bankrupt) firm calculates
its period-t profit as its period-t goods-sales revenues minus its period-t wage payments.
These period-t utility and profit outcomes are used by the consumers and firms to update
their decision rules for period ¢ + 1.

A portion of any positive profits accrued by a firm during period ¢ is distributed to
the firm’s consumer-owners as dividend payments at the end of period ¢t. The wage and
dividend payments received by a consumer from the firms at the end of period ¢, together
with any other unspent monies held by the consumer at the end of period ¢, constitute
the money balances of the consumer at the start of period ¢t + 1 to be used for goods
purchases in period t + 1.

This flow of events is illustrated in Fig. 2.3. Note the use of internal times ¢:1 through

t:6 for events occurring within each period ¢t = [t, ¢ + 1).

Time

O @@ @ G @

Forward Spot Settlement
labor Production goods of
market market contracts

Money
balances

Dividend State Money
payments updating balances

Actions

Figure 2.3 Flow of events during a typical period t.

As indicated in Fig. 2.3, the money balances held by consumers and firms at the end

of period ¢ (i.e., at time ¢t 4 1) are determined by the money balances held by consumers
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and firms at the start of period ¢ together with the additions and subtractions to these

money balances arising from period-¢t market and dividend payments.

2.2.4 Consumer Constraints and Goals in the DM Game

Consumers in the DM Game are structurally identical. Each consumer 7 is endowed
with the same initial positive money balance MY (in book credit form) at the initial
time 0. Each consumer ¢ also has one unit of time in each period t > 0 that can be
divided between labor services I§,.; and leisure [1 —[¢,,]. For simplicity, it is assumed in
this study that each consumer 7 in each period ¢ devotes his one unit of time either all
to labor or all to leisure.

Ignoring uncertainties (for the moment), the budget constraints faced by each con-

sumer ¢ in each period ¢ take the following form:

Sit:3 = Mift_1 - Pt:3qic,t;3 (2.1)
MZ-‘jt = i3+ wt:4lf7t:1 + divg s (2.2)
Sit:3y Qipy = 0 (2.3)
li;1 €10,1} (2.4)

Here M, ; denotes consumer i’s money balance at the start of period ¢, p;.3 denotes the
goods price determined in the goods market at time #:3 (same for all consumers), ¢f,.3
denotes the amount of good purchased by consumer ¢ in the goods market at time ¢:3,
si .3 denotes the savings of consumer ¢ immediately subsequent to the goods market at
time ¢:3, wg.4lf,; denotes the actual wage payment received by consumer ¢ at time ¢:4
arising from its forward labor contract cleared in the labor market at time ¢:1, and divy;
denotes the dividend payment (same for all consumers) received by consumer ¢ at time
t:5. The non-negativity constraint s;;s > 0 ensures that consumer ¢’s goods purchase

G5 1.3 is backed by actual purchasing power (money holdings).
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The goal of each consumer 7 at the beginning of each period ¢t > 0 is to maximize his
expected intertemporal utility over periods r > ¢ subject to the budget constraints (2.1)
through (2.4). If the labor service and consumption levels of consumer 7 in periods r > ¢
are given by {lf,r;p qucg}:i . » then the intertemporal utility attained by consumer ¢ over
periods r > t is given by

e}

Ui,t = Z ﬁT*tu (qic,r:37 1- lz?,r:l) ) (25)

r=t
where 3 € (0,1) is a time-preference discount parameter.

In summary, as detailed above, the constraints and goals of the structurally-identical
consumers in the DM Game depend on the specific settings for (MY, u(-), 3). However,
consumers do not know in advance the decision procedures in use by firms and other
consumers, hence they do not know in advance the market-clearing values for future
goods prices and wages nor the extent to which their own future goods demands and labor
supplies will be fulfilled. How each consumer ¢ might address this uncertainty through
various alternative specifications for its own locally-constructive decision procedure will

be explained in Section 2.3.

2.2.5 Firm Constraints and Goals in the DM Game

Firms in the DM Game are structurally identical. Each firm j is endowed with the
same initial positive money balance M/ ' (in book credit form) and the same initial goods
stock ¢°*%°* at the initial time 0. Also, each firm j has the same stationary production
function ¢ = F(I) for the production of good ¢ using labor services [. Ignoring uncertain-
ties (for the moment), the constraints faced by each firm j in each period t are derived
as follows.

Let qutof’f denote firm j’s inventory of goods at the beginning of period ¢ > 0. Suppose

firm j purchases labor services l{} .1 1n the time-£:1 labor market and uses these labor

services to produce a goods amount Qf,tsz = F(l;it:l) at time ¢:2. The goods amount q;im
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that firm j sells in the time-t:3 goods market cannot exceed its goods inventory at the

beginning of period t plus its goods production at time ¢:2:

q]syttcf,f + F<ljf,t1) Z q]f,t:S (26)

Firm j’s goods inventory gsto*

7" at the start of period ¢ + 1 is then determined from the

following inventory accumulation equation:
q;ftmk = q;ft(fllg + F<ljf,t:1> - qj{t;g, (2.7)

In addition, firm j must worry about avoiding bankruptcy, since bankrupt firms
(i.e., firms unable to meet their wage obligations) must exit the DM Game economy.
Consequently, firm j only distributes dividends in period ¢ if its goods market revenues
ptzgq]{ 5 earned at time ¢:3 exceed its wage obligations wj,t:ll;i +1 incurred in the forward
labor market at time ¢:1 for settlement at time ¢:4. Moreover, firm j limits its dividend
distributions to its profits (if any). Specifically, firm j’s total dividend payments divj{ £5
at time ¢:5 are determined in accordance with the following allocation rule:

g KO- pt:3q.]f7t:3 - wt:ll}it:l if pt:BQ{,t;B - wt:ll;,t;l >0
divy .5 = (2.8)

0 otherwise
where k% € [0,1]. Given (2.8), the no-bankruptcy condition for firm j in period ¢

guaranteeing its period-t wage obligations can be fulfilled takes the form

M]{tfl + pt:Sq;c,t:S, - wt:ll{,t;l Z 0 (29)

The money balance M]f , held by a non-bankrupt firm j at the end of period t (i.e.,
at the start of period ¢+ 1) is determined by the money balance M j{ .1 held by firm j at
the start of period t adjusted to reflect firm j’s market activities and dividend payments

during period ¢, as follows:

Mj{t = M]{tfl + pt:squ,t23 - wtzll;c,tzl - di“}itﬁ (2.10)
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Finally, the following non-negativity restrictions on firm j’s labor service demand lf’ 4. ab

time ¢:1 and goods supply q}i 13 at time ¢:3 must be satisfied for physical meaningfulness:

l;,t:l: qgf,t;?) > 0 (2.11)
The goal of each firm j at the beginning of each period ¢ > 0 is to maximize its
expected intertemporal utility over periods r > t subject to the technological and feasi-

bility constraints (2.6) through (2.11). For any given sequence {wm, l;T.l,pr;g, q]frs}
o ) =t

of wage levels, labor service purchases, goods prices, and goods purchases for periods

r > t, the intertemporal profit attained by firm j over periods r > t is given by

;= Z prt [przgqjirzg — wr:llf,m] (2.12)

r=t

where p € (0,1) is a time-preference discount parameter.

In summary, as detailed above, the constraints and goals of the structurally-identical
firms in the DM Game depend on the specific settings for (Mf’lo,qs_thk,F(-),u, KA,
However, firms do not know in advance the decision procedures in use by consumers
and other firms, hence they do not know in advance the market-clearing values for
wages and goods prices nor the extent to which their own future labor supplies and
goods demands will be fulfilled. How each firm j might address this uncertainty through
various alternative specifications for its own locally-constructive decision procedure will

be explained in the following Section 2.3.

2.3 Locally-Constructive Decision Procedures

2.3.1 Overview of Decision Procedures

The locally-constructive decision procedures to be tested for consumers and firms in
the DM Game are processes for the adaptive determination of demand bids and supply
offers for the labor and goods markets in each successive period t. The specification of

these decision procedures is divided into three steps, as follows.
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First, decision domains are specified for consumers and firms that consist of possible
selections of “tuning” parameters for demand and supply functions. To permit more
meaningful comparisons among decision procedures, the decision domain for each con-
sumer at the beginning of each period ¢ is specified as a cross-product D¢ of finite sets,
the same for each consumer. Similarly, the decision domain for each firm at the begin-
ning of each period t is specified as a cross-product D7 of finite sets, the same for each
firm.

Second, state-conditioned transformation functions are specified for consumers and
firms. The state of a consumer or firm at any time ¢ consists of the time-t physical
attributes, information, and beliefs of this agent. The transformation function for each
consumer at the beginning of each period ¢ > 0 maps each of his possible decisions d°
in D¢ into a collection of labor supply and goods demand functions for periods r > t,
parameterized by d°, and conditional on the consumer’s time-t state. Similarly, the
transformation function for each firm at the beginning of each period t > 0 maps each
of its possible decisions d/ in D’ into a collection of labor demand and goods supply
functions for periods r > ¢, parameterized by d/, and conditional on this firm’s time-t
state.

Third, Reactive Learner (RL), Forward-looking Learner (FL), and Explicit Optimizer
(EO) decision rules are specified for each consumer and firm that determine how this
agent selects decisions from its decision domain in each period ¢. These three types of
decision procedures cover a range of decision-making behaviors roughly ordered from less
to more sophisticated with regard to information utilization, expectation formation, and
forward-looking behavior. A summary description of these decision-maker types is given

in Table 2.1.
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Table 2.1  Types of decision procedures for consumers and firms in the DM Game.

Agent Decision-Maker Type Decision Procedure Description

Consumer Reactive Learner (RL) Adaptively updates decisions in
response to realized utility

outcomes

Forward-Looking Learner (FL) Uses Q-learning in an attempt to
maximize expected

intertemporal utility

Explicit Optimizer (EO) Maximizes expected
intertemporal utility using

adaptively updated probabilities

Firm Reactive Learner (RL) Adaptively updates decisions in
response to realized profit

outcomes

Forward-Looking Learner (FL) Uses Q-learning in an attempt to
maximize expected

intertemporal profit

Explicit Optimizer (EO) Maximizes expected
intertemporal profit using

adaptively updated probabilities

The construction of the decision domains and the state-conditioned transformation
functions for consumers and firms is explained more carefully in Sections 2.3.2 and 2.3.3.
Sections 2.3.4 through 2.3.6 then describe the decision rules used to select decisions from
these decision domains for each of the three types of decision-makers RL, FL, and EO

listed in Table 2.1.



21

2.3.2 Decision Domain and Transformation Function for Consumers

The decision domain D¢ for each consumer 7 is given by a cross-product of finite sets

having the form

D¢ = L°®0Q®06 (2.13)
where:
e ¢ =10,1}
e the elements of Q@ = {wy,...,wg} satisfy 0 <w; < ... < wg

e the elements of © = {6;,...,0g} satisfy 0 <6, < ... <0y <1

Consumer i selects a decision d° = (I°,w,0) from D¢ at each time t > 0 by means
of its particular RL, FL, or EO decision rule. The selection of d at time ¢ is then

transformed into a sequence TR{,(d) of labor supply and goods demand functions

(i

fra(w,d,t),qf,.53(p, d,t)),>s, parameterized by d and conditional on consumer 4’s time-t

state.

Specifically, the labor supply £, (w,d,t) as a function of the time-r:1 labor market

i,r:l
wage w is determined as follows. If [ = 0, then [, (w,d,t) = 0 for all w, meaning that

2,r:1

consumer ¢ does not plan to participate in the time-r:1 labor market. On the other hand,

if [° = 1, the reservation wage of consumer ¢ for the time-r:1 labor market is given by

wira(d,t) = w- Ejywpal (2.14)

2,r:1

where E; ;[w,.;] denotes the time-r:1 labor market wage expected by consumer i, based
on his state at time ¢. If w < wf,,(d,t), then I{ ,(w,d,t) = 0, meaning that consumer i
does not plan to participate in the time-r:1 labor market at this labor market wage. On
the other hand, if w > w¢,.,(d,t), then [, ,(w,d,t) = 1, meaning that consumer i plans

3,71 3,71

to offer his 1 unit of labor service into the time-r:1 labor market at this labor market

wage.
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Also, the goods demand qf’m(p, d,t) as a function of the time-r:3 goods market price
p takes the form
p- qic,r:?)(p? d7 t) = 0- M@'frfl (215)

Thus, consumer ¢ plans in period ¢ to spend a fraction 6 of his time-r money balance
M, on consumption goods at time r:3, and he specifies his time-r:3 goods demand as
a function of the time-r:3 market price p in accordance with this plan. Note that M,
will be known to consumer ¢ at time r, prior to the opening of the goods market at time
7:3.6

The decision domain D¢ depends on the grid specifications for €2 and O; these grid
specifications are explained in Appendix A.1. The transformation function TR, depends
on the wage expectation in (2.14). The method used by consumers to form and update

their wage expectations is explained in Appendix A.2.

2.3.3 Decision Domain and Transformation Function for Firms

The decision domain D/ for each firm j is given by a cross-product of finite sets

having the form

DIl = L'eTeAxV (2.16)

where:
e the elements of LY = {If,... [} satisfy 0 <1f < ... <]}
e the elements of I' = {7, ..., yp} satisfy 0 <y < ... <y
e the elements of A = {\1,..., Ay} satisfy 0 < Ay < ... < Ay

e the elements of ¥ = {¢1,...,¥g} satisfy 0 <y < ... <9yr <1

6Recall that consumer i receives no money payments between time r (the beginning of period r) and
the settlement of labor market contracts at time r:4. Thus, consumer i’s purchases in the time-r:3 goods
market cannot exceed his money balance M7, _; at time 7.
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Firm j selects a decision d = (I/,v,\,v) from D/ at each time t > 0 by means
of its particular RL, FL, or EO decision rule. The selection of d at time ¢ is then
transformed into a sequence TR;: .(d) of labor demand and goods supply functions
(liTzl(w, d,t), qum:g(p, d,t)),>t, parameterized by d and conditional on firm j’s time-t state.

Specifically, the labor demand lj-i +1(w,d,t) as a function of the time-r:1 labor market

!

irq(w,d,t) = 0 for all w, meaning

wage w is determined as follows. If [/ = 0, then I
that firm j does not plan to participate in the time-r:1 labor market. If I/ > 0, the

reservation wage of firm j for the time-r:1 labor market is given by
w;,rzl(dv t) = 7 Ej,t[wrzl} (217)

where Ej;[w,.;] denotes the time-r:1 labor market wage expected by firm j, based on its

state at time ¢t. If w > wjjir:l(d, t), then lﬁm

(w,d,t) = 0, meaning that firm j does not
plan to participate in the time-r:1 labor market at this labor market wage. On the other
hand, if w < w{,m(d, t), then lf,m(w? d,t) = I/, meaning that firm j plans to demand [/
units of labor in the time-r:1 labor market at this labor market wage.

Also, the goods supply qf’ ~3(p,d,t) as a function of the time-r:3 goods market price

p is determined as follows. The reservation goods price of firm j for the time r:3 goods
market is given by

Pyria(dt) = A Bjalprs) (2.18)
where E;[p,.3] denotes the time-r:3 goods market price expected by firm j, based on
its state at time t. If p < pﬁr:g(d, t), then q]{T:B(p, d,t) = 0, meaning that firm j does
not plan to participate in the time-r:3 goods market at this goods market price. On the

other hand, if p > pf»’m(d, t), then

qla(pdit) = ¢ (2.19)

That is, firm 7 plans to supply a fraction ¢ of its time-r:2 goods stock into the time-r:3

goods market at the goods market price p. Note that qjﬁf’:%k will be known to firm j at

time r:2, prior to the opening of the goods market at time r:3.
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The decision domain D/ depends on the grid specifications for L', ", A, and ¥; these
grid specifications are explained in Appendix A.1. The transformation function TR;-C, .
depends on the wage expectation in (2.17) and the price expectation in (2.18). The
method used by firms to form and update their wage and price expectations is explained

in Appendix A.2.

2.3.4 RL Decision Rule for Consumers and Firms

Reinforcement learning embodies the basic common-sense principle that the propen-
sity to select relatively good decisions should be reinforced and the propensity to select
relatively poor decisions should be discouraged. Immediate rewards flowing from de-
cisions are typically used to update the propensities for choosing these decisions in an
appropriate up or down direction.

The RL decision rule for consumers and firms in the DM Game is a reinforcement
learning method originally developed by Roth and Erev (1995) and Erev and Roth (1998)
and subsequently modified by Nicolaisen et al. (2001). This method is “reactive” in the
sense that it asks the following backward-looking question: Given past events, what
decision should I make now?

For the DM Game, the immediate reward R{(d, t) received by a consumer i as a result
of selecting a decision d in D¢ at the beginning of any period ¢ is taken to be consumer
1’s realized period-t utility. Similarly, the immediate reward Rf (d,t) received by a firm
j as a result of selecting a decision d in D/ at the beginning of any period ¢ is taken to
be firm j’s realized period-t profit.

Below we explain the RL decision rule for an arbitrary decision-maker v who selects
a decision d from a finite decision domain D in each period ¢, receiving an immediate
reward R(d,t), where v could represent either a consumer or a firm in the DM Game
economy. Let the finite cardinality of D be denoted by D, and let the elements of D be

indexed by d = 1,...,D.
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Suppose it is the beginning of the initial period 0, prior to decision selection, and
suppose decision-maker v must select a decision from its decision domain D for period
0. Suppose the wnitial propensity of v to select decision d in D at time 0 is exogenously
given by ¢(d,0) for d = 1,...,D. Let the vector of these initial propensities be denoted
by q(0) = (¢(1,0),...,4(D,0)).

Now suppose it is the beginning of any period ¢t > 0, prior to decision selection, and
suppose the current propensity of decision-maker v to select decision d in D is given
by q(d,t) for d = 1,...,D. The choice probabilities that v uses to select a decision for

period t are then constructed from these propensities as follows:

exp(q(d,t)/C)
S exp(q(k,t)/C)

In (2.20), C is a cooling parameter that affects the degree to which v makes use of

Prob(d,t) =

=1,...,D (2.20)

propensity values in determining his choice probabilities. As C' — oo, then Proby(t) —
1/D, so that in the limit v pays no attention to propensity values in forming his choice
probabilities. On the other hand, as C' — 0, the choice probabilities (2.20) become
increasingly peaked over the particular decisions d having the highest propensity values
q(d,t), thereby increasing the probability that these decisions will be chosen by v.

At the end of period ¢, the current propensity ¢(d, t) that decision-maker v associates
with each decision d in D is updated in accordance with the following rule. Let d; in
D denote the decision that v actually selected and implemented during period . Also,
let R(d;,t) denote the reward attained by v at the end of period ¢ as a result of the

implementation of d;. Then, for each decision d in D,
q(d,t+1) = [1—r]q(d,t) + Response(d,t) |, (2.21)

where

[1—e]- R(d,t) if d=d;
Response(d, t) = (2.22)

e-q(d,0)/[D—1] if d#d,
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and d # d; implies D > 2. The recency parameter r € [0, 1] appearing in (2.21) controls
the relative weighting of past versus current rewards in the updating of the propensities.
The experimentation parameter e € [0,1) appearing in (2.22) permits reinforcement to
spill over from a chosen decision to other decisions to encourage experimentation with
various decisions in the early stages of the learning process.

In summary, the RL decision rule is fully characterized once values are specified for
(D,q(0),C,e,r). Note that the RL decision rule is well-defined for any decision domain
with finite cardinality D; the exact form of the decisions constituting this decision domain
is irrelevant. Note, also, that the decision-maker does not need to know his reward
function; the RL decision rule only makes use of realized rewards, not potential rewards.
The versatility and low-information requirements of the RL decision rule, together with
its demonstrated robust performance in diverse situations, have led to its widespread use

in learning applications.

2.3.5 FL Decision Rule for Consumers and Firms

The FL decision rule for consumers and firms in the DM Game is a “greedy” variant of
the Q-learning algorithm developed by Watkins (1989) that permits decisions to be taken
in accordance with dynamic programming policy functions in approximate form. The
FL decision rule is “forward looking” in the sense that it asks the following anticipatory
question: If I make this decision now, what will happen in the future?

The key conceptual construct underlying Q-learning (and dynamic programming in
general) for a decision-maker v is the value function V,(z), defined to be the optimum
total reward that can be obtained by v, starting at time ¢ in state x. Below we provide an
intuitive derivation of e-greedy QQ-learning as a policy-function approximation method,
without consideration of technical details regarding the existence and uniqueness of op-

timal solutions.
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Suppose a decision-maker v is currently in state x at some current time ¢t. Suppose
v implements a decision d, obtains an immediate reward R;(z,d), and transits to a new
state ' = Sy(x,d). Then the best that v can do, starting from time ¢t + 1, is V41 (2').

Consequently, the best v can do, starting from time ¢, is
Vi(z) = max [Ri(z, d) + Vi (Si(z, d))] (2.23)

Finally, let 7* denote the optimal policy function giving the optimal decision d* in (2.23)
as a function d* = 7*(t, z) of the current time ¢ and state . Then (2.23) can equivalently

be written as

Vi(e) = [Bi(z, 7 (L, 2)) + Vepr (S, (¢, @) )] (2.24)

The recursive relationships (2.23) and (2.24) provide simple deterministic illustrations
of Richard Bellman’s celebrated principle of optimality.” As detailed in Powell (2011,
2014), one practical difficulty is how to compute the value function Vi(x) and/or the
optimal policy function 7*. Another practical difficulty is that the reward function
Ry(z,d) and/or the state transition function S;(z,d) might not be known; for example,
they could depend on the unknown decisions of other agents in the system.

The Q-learning method provides a way to implement decisions in approximate ac-
cordance with the optimal policy function 7*, assuming the decision horizon is infinite
and the reward, state transition, and value functions are independent of time. Below we
provide a general description of this method.

For each state x and decision d, define

Qz,d) = [R(z,d) + V(S(z,d))] (2.25)

"Stochastic versions of the principle of optimality can be obtained by assuming R; and/or S; are
influenced in each period t by the realization w; of a random event from a well-defined probability space
(Q,F,P). An expectation (with respect to wy) is then taken of the bracketed term on the right-hand
side of (2.23) prior to undertaking the maximization. More complex stochastic variants are obtained if
the probability space for w; depends on the time ¢, the time-t state, and/or the decision-maker’s time-t
decision. See Powell (2014) for details.
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If the Q-values in (2.25) can be learned, then the optimal policy function 7* is determined

as follows: For any state x,
7 (z) = argmax Q(x, d) (2.26)
d

Hence, the learning of the Q-values in (2.25) avoids the need for separate learning or
knowledge of the reward, state transition, and value functions.

In its simplest form, Q-learning uses the following iterative procedure to determine es-
timates m) for the Q-values Q(z,d) in (2.25) conditional on a user-specified learning

rate o and a user-specified discount factor ~:

L —

Step 1: Initialize Q(z,d) to a random value for each possible state x and decision d.
Step 2: Observe an actual state z’.

Step 3: Pick a decision d’ and implement it.

Step 4: Observe the next state 2" and the next reward R".

Step 5: Update the estimate Q(/x’,\d’ ) as follows:

— — —_—

Q(z',d) + [1—alQ,d)+« [RN + 7 max Q(z",d) (2.27)

Step 6: Loop back to Step 2 and repeat.

The above procedure does not specify how the decision in Step 3 is to be picked.
Let € be any number in (0,1). The e-greedy variant of Q-learning replaces the above
Step 3 with an alternative Step 3’ incorporating a specific decision selection process that
accommodates two goals: (i) Exploit current information for maximum possible current
gain; and (ii) seek new information to improve opportunities for future gains. This
decision selection process is as follows: With probability € the decision-maker v in Step

3" experiments by selecting a random decision d’. However, with probability [1 — €] the
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decision-maker v instead “greedily” chooses a decision d* that maximizes the current

—

estimator Q(2/,d) for Q(2',d).
In summary, the e-greedy Q-learning method for a decision-maker v is fully charac-

terized once values are specified for the initial Q-value estimates @Q(x,d) and the three

parameters (7, €, a).

2.3.6 EO Decision Rules for Consumers and Firms

Each EO agent (consumer or firm) at the beginning of each period ¢t > 0 attempts to
maximize an explicit expression for their expected reward (intertemporal utility or profit)
over current and future periods r > t, subject to constraints. The EO agents use an
“open-loop/closed-loop” optimization approach in the following sense: They undertake
their maximization problems in each period t conditional on updated state information,
yet in these maximizations they ignore the fact that they will re-optimize their period-t
decision selections at the beginning of each future period r > ¢. They also ignore that
rationing can occur on the margin in the market clearing processes.

Specifically, at the beginning of each period ¢ > 0 an EO consumer ¢ selects a de-
cision d in D¢ that maximizes his expected intertemporal utility over current and fu-
ture periods r > t. In this maximization, consumer ¢ makes use of the transformation
function TR, (d) detailed in Section 2.3.2 to map each possible decision d in D¢ at
time t into a collection of current and future labor supply and goods demand functions
(5 (w,d, 1), 65 5P d, 1) )i

Formally stated, an EO consumer i’s maximization problem at the beginning of each

period t > 0 takes the following form:

gé%{i Ez‘,tUt(TRf,t(d>7 W1, Pe:3) (2.28)
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subject to the budget and feasibility constraints (2.1) through (2.4) dependent on

Wi = (Wr)2, (2.29)
Pz = (Pra)iey (2.30)
divis = (divys)>, (2.31)
where
U(TRS,(d), We.1, Pe3) = iﬂr_t [ (5 .3(Pres, d, 1), 1 = Iy (Wi, d, 1))] (2.32)
=t

Similarly, an EO firm j’s maximization problem at the beginning of each period ¢t > 0

takes the following form:

max EJ’th<TRﬁt(d)7 Wi.1, pt:3) (233)

deDf

subject to the technological and feasibility constraints (2.6) through (2.11) dependent on

w1 and py.3, defined as in (2.29) and (2.30), where

Ht(TR{,t <d>7 Wi, pt:3) = Z ,uTit |:pr:3q]f,r;3 (pr:?n d7 t) - wr:lljf"r;l(wr:l; d7 t):| (234>

r=t

As explained in Appendix A.2, the expectations in the maximization problems (2.28)
and (2.33) for each period t are based on estimated probability distributions for future
labor market wages, future goods market prices, and future dividend payments (for
consumers), conditional on the states of consumer ¢ and firm j at time ¢.

As explained in Appendix A.3, approximate solutions for the maximization problems
(2.28) and (2.33) are derived using two different approaches. Briefly summarized, the
first approach, referred to as EO Adaptive Dynamic Programming (EO-ADP), derives
an approximate solution in each period t by solving a stochastic dynamic programming
recurrence relation, assuming a basis-function approximation for the value function. The
second approach, referred to as FO Finite Horizon (EO-FH), replaces the infinite plan-
ning horizon in each period ¢t with a finite planning horizon of length 7', called the
forecasting horizon, and then derives an approximate solution by means of direct search

across the decision domain.
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2.4 Social Planner Benchmark Model

The main source of uncertainty for each consumer and firm in the DM Game is behav-
toral uncertainty, meaning uncertainty concerning the decision procedures used by other
consumers and firms. The only other source of uncertainty is the use of a random ra-
tioning rule in the labor and goods markets to determine which demanders receive goods
or services in excess demand conditions and which suppliers sell goods or services in
excess supply conditions; cf. footnote 3. There are no external shocks to the DM Game
economy.

Both sources of uncertainty for the DM Game disappear if market decision-making
by consumers and firms is replaced by a social planner who maximizes the intertempo-
ral utility of a representative consumer i subject only to technological feasibility con-
straints, conditional on the restriction that the structurally-identical consumers must
all be treated alike and the structurally-identical firms must all be treated alike. The
resulting model, hereafter referred to as the Social Planner (SP) Benchmark Model, is in-
troduced here in order to have a benchmark of comparison for the DM-Game simulation
findings reported in Section 2.6.

Specifically, suppose the number I of DM-Game consumers and the number J of
DM-Game firms are arbitrary positive integers, and let ¢*¢* > (0 denote the exogenously
given goods stock of each firm at the beginning of period 0. We consider a social planner
who solves the following social welfare optimization problem at time 0 on behalf of the

representative DM-Game consumer:®

max Z /Btu(q§:37 1- lf:l) (235)
t=0
with respect to {I5,, ¢f5}52,, subject to the following constraints for each ¢ > 0:

Joqtok = Jogtot + T F(IL) — gl (2.36)

8Given the exponential form of the discount factor in (2.35), the social planner would exhibit time
consistency, meaning that re-optimization in successive periods would not result in any deviation from
the optimal solution determined at time 0.
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To obtain a concrete SP Benchmark Model solution, we assume that the utility

function u(-) in (2.35) takes the form
u(q,1 —1) = 05-In(b(q) + q)+7-[1—1] (2.37)

where?

1.0 if ¢g>0
bg) = (2:38)
be (0,1) if ¢=0

Also, the production function F'(-) in (2.36) is assumed to take the form
F(l) = &l (2.39)

We further assume that the values specified for the parameters appearing in this SP

Benchmark Model are as listed in Table 2.2. Finally, for each t > —1 we let

J- stock
gstock = —q]t (2.40)

denote the per-consumer amount of goods stock carried forward from period ¢ to period

t+ 1.

9In order to permit consumers to constructively compare consequences for failure to participate in
the goods market, the valuation they place on failure to participate needs to be finite. As will be seen
in Section 2.6, the advantage of introducing the discontinuous valuation function b(q) in (2.38) is that
a consumer’s utility takes on a negative value only if he fails to participate in the goods market, thus
providing an easily detected signal of this non-participation.
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Table 2.2 Maintained parameter values for the SP Benchmark Model and the DM Game

Parameter Value

otk 0.0
i 0.95
56 3.0
&¢ 0.5
b 0.5
5 1.0
&7 1.0

Given these concrete specifications, the SP Benchmark Model (2.35) can be expressed
in the following reduced representative-consumer form:
max 3 [3.0 n(b(ql,) + ¢5s) + 0.5+ (1 — z;;l)] (2.41)
t=0

with respect to {I;, ¢55}52,, subject to the following constraints for each ¢ > 0:

s*tock — (2.42)

The solution of the reduced SP Benchmark Model (2.41) is a full-employment solution

with I¢, = ¢¢5 = 1 and s = 0 for all + > 0. The proof, by induction, is provided in

Appendix A 4.
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Given this optimal solution, the representative consumer attains the stationary per-
period utility level
u(1,0) = [3.0 - In(2)] ~ 2.08 (2.43)

and the intertemporal utility level

iﬁtu(l,O) = iﬁt&o-m(z) = 3.0.1n(2)ﬁ ~ 41.59 (2.44)
t=0 t=0

Note that the smallest single-period utility outcome that a representative consumer can
feasibly attain under the SP Benchmark Model assumptions is «(0,0) = 3.0 - In(0.5) ~

—2.08.

2.5 Sensitivity Design

2.5.1 Design Overview

The main focus of this study is the degree to which consumers in the DM Game
economy are able to attain the one-period and intertemporal utility levels (2.43) and
(2.44) achieved by the representative consumer in the SP Benchmark Model when the
DM Game consumers and firms use different combinations of constructively-rational

decision rules. The tested combinations of decision rules are displayed in Table 2.3.

Table 2.3 Tested combinations of constructively-rational decision rules (case numbers)

C:RL | C:FL | C:EO-FH | C:EO-ADP
F:RL 1-10 21 31 39
F:FL 22 11-20 32 40
F:EO-FH 33 34 23-30 41
F:EO-ADP | 42 43 44 35—38

For each of the 44 cases in Table 2.3, simulations were conducted for a range of values

for a subset of parameters, hereafter referred to as the treatment factors for the case,
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while maintaining fixed values for all other parameters. For each tested combination
of values for the treatment factors, the number of runs was set at NRuns = 10, using
ten seed values for the random number generator.!® The length of each run was set to
LRun = 1000 periods. To reduce dependence on transient effects, outcomes from the first
LOmit = 50 periods in each run were omitted from all calculated performance measures.

Section 2.5.2 explains the structural parameter values maintained for all cases, as well
as the parameter values maintained for each of the three tested decision rules RL, FL,
and EO. Section 2.5.3 then explains the range of values tested for the treatment factors

for each case in Table 2.3.

2.5.2 Maintained Parameter Values
2.5.2.1 Structural parameter values maintained for all cases

As detailed in Section 2.4, the SP Benchmark Model is fully determined, given the
utility and production function specifications (2.37) and (2.39) together with the param-
eter value specifications listed in Table 2.2. These function and parameter specifications
are maintained for all cases reported in this study.

As detailed in Section 2.2.4, the constraints and goals of the I structurally-identical
consumers in the DM Game depend on the specific settings for (M), u(-), 8). Also, as
detailed in Section 2.2.5, the constraints and goals of the J structurally-identical firms in
the DM Game depend on the specific settings for (Mf’lo, 0k F(-), 1, k%), All of these
functions and parameters have fixed specifications for all cases reported in this study.
The utility and production function specifications u(-) and F(-), plus the values of 4 and

stock

g%, are set at the same values as set in Section 2.4 for the SP Benchmark Model, and

the values for the remaining parameters are set at the values listed in Table 2.4.

0Specifically, these ten seed values were as follows: {2012,2013,2014,1,2,3,100, 101,102, 345}.
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Table 2.4  Maintained parameter values for the constraints and goals of consumers and

firms

Parameter Value

I 10
J 3
M 1.00
M0 10.00
14 0.95
i 0.50

The transformation function TRS, for consumer ¢ in period ¢ postulates that consumer
i calculates at time t a reservation wage (2.14) for each current and future period r >
t, which in turn depends on consumer i’s expectation for the wage in periods r > t.
Similarly, the transformation function TR; , for firm j in period ¢ postulates that firm
J at time t calculates a reservation wage (2.17) and a reservation goods price (2.18) for
each current and future period r > ¢, which in turn depend on firm j’s expectations for
the wage and goods price in periods r > t.

As detailed in Appendix A.2, the methods used by the consumers and firms to form
and update these wage and goods price expectations in each period ¢ depend on these
agents’ prior beliefs regarding wages and goods prices, and also on their memory length,
i.e., the number of past periods they take into account when forming these expectations.
The prior-belief parameters are set at maintained values, given in Table A.5. However,
as will be clarified below in Section 2.5.3, two different settings are tested for the memory

length.
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2.5.2.2 Parameter values maintained for each decision procedure

The decision domain D¢ in (2.13) for each consumer i depends on the grid specifica-
tions for  and ©. Also, the decision domain D/ in (2.16) for each firm j depends on
the grid specifications for L/, I, A, and . As detailed in Tables A.1 through A.4 in
Appendix A.1, two different forms are considered for these grid specifications: namely,
a small form and a big form.

The RL decision rule described in Section 2.3.4 is characterized by a parameter vector
(D,q(0),C,e,r). The only treatment factor for an RL agent is the recency parameter 7;
all other parameters are maintained at fixed values.

More precisely, the parameter D is the cardinality of the decision domain D¢ for an
RL consumer or D/ for an RL firm. This cardinality is determined by the grid-type
specification for D¢ or D/, which is always set to small for an RL consumer or RL firm.
The vector q(0) of initial propensities has dimension D. This vector is set equal to a
fixed vector q®* for an RL consumer and to a fixed vector q/* for an RL firm, where
these fixed vectors are defined as follows. For an RL consumer, the initial propensity
assigned by q“* to a decision d° = (I°,w,0) € D¢ is 1.1 if [° = 1 and 1.0 otherwise. For
an RL firm, the initial propensity assigned by q/* to a decision d/ = (I/,v,\,v) € D/
is 1.1 if I/ = l£ and 1.0 otherwise. Finally, the cooling parameter C' is set to 1.0 and the
experimentation parameter e is set to 0.95. These maintained values are summarized in

Table 2.5.

Table 2.5 Maintained parameter values for RL agents

Parameter  Value

grid-type small

q(0) q“*, g’
C 1.00

e 0.95
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The FL decision rule described in Section 2.3.5 is characterized by the vector Qg of
initial Q)-value estimates m) as well as by the parameter vector (¢, a). The state-
space for x is discretized for each FL agent in order to keep computational solution-times
manageable. The state x;; of an FL consumer 7 at each time ¢t > 0 is given by his time-
t money balance M{, ,, discretized into the following three bins: [0.0,5.0),[5.0,10.0),
[10.0, 00). The state x;,; of an FL-firm j at each time ¢ > 0 consists of its time-t money
balance ]\ﬁf_1 and its time-t goods stock ¢f*°* each also discretized into three bins, as
follows: for the money balance, [0.0,50.0), [50.0,100.0), [100.0,00); and for the goods
stock, [0.0,5.0),[5.0,10.0), [10.0, 00).

The vector Qg of initial -value estimates is set equal to a fixed vector Q%* for an
FL consumer and to a fixed vector Q* for an FL firm, where these fixed vectors are
defined as follows. For an FL consumer, the initial ()-value estimate assigned by Q%* to
a state-decision pair (x,d®), where d° = (I°,w,0) € D¢, is 0.5 if [° = 1 and 0.0 otherwise.
For an FL firm, the initial Q-value estimate assigned by Q/* to a state-decision pair
(z,d”), where df = (I/,v,\,¢) € D/, is 0.5 if I/ = lj-j and 0.0 otherwise. Finally, the
learning parameter vy in (2.27) is set to 0.95 and the greedy parameter € is set to 0.10.

These maintained values are summarized in Table 2.6.

Table 2.6 Maintained parameter values for FL agents

Parameter Value

grid-type small

QO gj*a g’*
~ 0.95
€ 0.10

Implementation details for the EO-ADP and EO-FH decision rules are provided in

Appendix A.3. The maintained parameter values for these EO decision rules are also
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given in Appendix A.3 in order to enable a better understanding of their meaning and

role.

2.5.3 Tested Specifications for Case Treatment Factors

As detailed in Appendix A.1, two different settings are tested for the decision-domain
grid specifications: namely, a small setting and a big setting. Although a small grid-type
is maintained for both the RL and FL decision procedures, both small and big grid-types
are tested for EO agents.

As detailed in Appendix A.2, two different settings are tested for the memory pa-
rameter wm used by consumers and firms to adaptively update their expectations. The
first setting, wm = one, indicates that consumers and firms in each period ¢ only make
use of realizations from the previous period ¢ — 1 to form their expectations for periods
r > t. The second setting, wm = all, indicates that consumers and firms in each period
t > 0 make use of realizations from all previous periods {0,...,t — 1} to form their
expectations for periods r > t.

Note that all tested cases depend on the setting for wm. This dependence arises
because, as detailed in Sections 2.3.2 and 2.3.3, the transformation functions TR{, and
TR, mapping consumer and firm period-¢ decisions into collections of demand and
supply functions for periods r > t depend on the wage, price, and dividend payment
expectations of the consumers and firms, which in turn depend on wm.

For the cases listed along the diagonal in Table 2.3, the tested combinations of values
for the treatment-factor parameters are as shown in Tables 2.7 through 2.10. All cross-

products of the listed parameter values are tested.
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Table 2.7 Tested treatment-factor parameter values for RL agents in cases 1-10

Parameter Range of Values
r {0.05,0.10,0.5,0.90,0.95}
wm 1, all

Table 2.8 Tested treatment-factor parameter values for FL agents in cases 11-20

Parameter Range of values
a {0.05,0.10,0.50,0.90,0.95}
wm 1, all

Table 2.9 Tested treatment-factor parameter values for EO-FH agents in cases 23-30

Parameter Range of values

T {5,20}
wm 1, all
grid-type small, big

Table 2.10 Tested treatment-factor parameter values for EO-ADP agents in cases 35-38

Parameter Range of values

wm 1, all

grid-type small, big

For the remaining cases in Table 2.3, the tested values for the treatment-factor pa-
rameter values are as shown in Table 2.11. Superscripts are used to indicate for which

decision rule each tested value applies.
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Table 2.11 Tested values of treatment-factor parameters for cases 21, 22, 31-34, and

39-44
Parameter Value
rik 0.05
wmBE all
af't 0.05
wmt all
TEO-FH 20
wmPO—FH all
grid-typefC—FH  small
wmEO—ADP all
grid-typefO=APP  small

2.6 Key Simulation Findings for the DM Game

2.6.1 Overview

This section summarizes key DM Game simulation findings for the 44 tested decision-
rule cases listed in Table 2.3. Recall that each case in Table 2.3 corresponds to a distinct
setting of values for the treatment-factor parameters for that case.

For the most part, we focus attention on utility outcomes for the DM Game consumers
since the DM Game firms are merely vehicles to facilitate production. Since different
cases involve different planning-horizon lengths, the main ex post performance measure
used below for each case k is average realized single-period utility w*, bounded above
and below by two standard deviations o;x. Other ex post performance measures used to
report results include the average realized single-period utility for period t, denoted by uF,

the average realized cumulative utility through period t, denoted by aS*™*  the average
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realized real wage, denoted by w™*  the average realized real wage for period t, denoted
by w:eal’k, and average realized single-period profits, denoted by 7%. The calculations for
all of these measures are given in Appendix A.5.

Overall, cases with EO-FH agents tend to achieve better performance than cases
with only RL, FL, and/or E-ADP agents. However, comparative performance depends
strongly on the settings for the treatment-factor parameters. For example, a long memory
length covering all previous periods tends to result in better performance than a short
(one-period) memory length, all else equal.

We begin this section by focusing on simulation findings obtained for the diagonal
cases in Table 2.3, for which the DM consumers and firms all use the same type of
decision rule. We then proceed to an examination of the off-diagonal cases in which

mixed combinations of decision rules are used.

2.6.2 Findings for the Pure RL Cases 1-10

Consider cases 1-10 in Table 2.3 for which all consumers and firms are RL agents.
Each of these cases corresponds to a distinct setting of the RL treatment factors (r, wm)
in Table 2.7, taking as given the maintained parameter values in Table 2.5.

As seen in Section 2.3.4, the recency parameter r € [0, 1] determines the weight [1—7]
that is placed on accumulated past single-period utility realizations relative to the weight
[1 — e] placed on the most recent single-period utility realization. Since e is set at the
maintained value e = 0.95, a reduction in r implies an increase in the weight placed on
past utility outcomes relative to the weight placed on the most recent utility outcome.
A longer memory length wm =long should be beneficial for performance in a stationary
environment, but it could be harmful to performance in a non-stationary environment.
Interestingly, in the DM Game the bulk of the uncertainty faced by each agent is uncer-

tainty regarding the decision-making behavior of other agents. Consequently, the more
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that the agents settle down in their decision-making selections, the more stationary the

environment becomes.
Figure 2.4 reports performance outcomes for cases 1-10 in Table 2.3. The performance
of each case k is measured by average realized single-period utility @*, and cases are

ordered from left to right in ascending performance order.
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Figure 2.4 Pure RL cases 1-10: average realized single-period utility @* with bounds of

+ two standard deviations o«

Given a longer memory length wm=all, it is seen that smaller r values (larger weights
on past utility outcomes) tend to result in better performance than larger r values. Given
a one-period memory length wm=one, however, a relatively low performance level results
for all r values. Moreover, even in the best-performing cases, performance is significantly
below 2.08, the stationary per-period utility level (2.43) obtained by the representative

consumer in the SP Benchmark Model
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2.6.3 Findings for the Pure FL Cases 11-20

Consider, next, cases 11-20 in Table 2.3, for which all consumers and firms are FL
agents. Each of these cases corresponds to a distinct setting of the FL treatment factors
(v, wm) in Table 2.8, taking as given the maintained parameter values in Table 2.6.

As seen in Section 2.3.5, the update weight o € [0, 1] determines the weight [1 — o
that is placed on past Q-value estimates relative to the weight o placed on current and
anticipated future utility outcomes based on the most recent utility outcome and a new
state realization. Since these two weights sum to 1.0, a reduction in « implies an increase
in the weight placed on past utility outcomes relative to current and anticipated future
utility outcomes.

Figure 2.5 reports performance outcomes for cases 11-20 in Table 2.3. The perfor-
mance of each case k is measured by average realized single-period utility #*, and cases

are ordered from left to right in ascending performance order.
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Figure 2.5 Pure FL cases 11-20: average realized single-period utility #* with bounds

of + two standard deviations o
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Given a longer memory length wm=all, it is seen that larger « values (smaller weights
on past utility outcomes) tend to result in better performance than smaller o values,
although this is not uniformly true. Given a one-period memory length wm=one, a
relatively low performance level generally obtains regardless of the setting for «, again
with exceptions. Indeed, as for the pure-RL cases, even the best-performing pure-FL
cases have a performance level that is significantly below 2.08, the stationary per-period

utility level (2.43) obtained by the representative consumer in the SP Benchmark Model

2.6.4 Findings for the Pure EO-FH Cases 23-30

Now consider cases 23-30 in Table 2.3, for which all consumers and firms are EO-FH
agents. Each of these cases corresponds to a distinct setting of the EO-FH treatment
factors T', wm, and grid-type in Table 2.9, taking as given the maintained parameter
value NDrawsFH=10 discussed in Appendix A.3.2.

A longer forecasting horizon 7" means that the EO-FH agent is more anticipatory.
This could be beneficial if the agent’s anticipations are an accurate reflection of future
uncertainties, but it could be harmful if not. Restricting the number of potential de-
cision selections by specifying grid-type=small rather than grid-type=big increases the
sampling density, i.e., the frequency with which each potential decision is tried. On the
other hand, grid-type=small results in a cruder approximation of the decision domain,

which could prevent the EO-FH agents from determining their truly best decisions.
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Figure 2.6 Pure EO-FH cases 23-30: average realized single-period utility «* with

bounds of + two standard deviations oy«

Figure 2.6 reports performance outcomes for cases 23-30 in Table 2.3. The perfor-
mance of each case k is measured by average realized single-period utility @*, and cases
are ordered from left to right in ascending performance order.

Given a one-period memory length wm=one, performance is relatively low regardless
of the grid-type or the length T of the forecasting horizon. However, given a longer mem-
ory length wm=uall, it is seen that having a small grid-type results in better performance
than a large grid-type.

Moreover, for wm=all and grid-type=small, the longer forecasting horizon T'=20
yields slightly better performance than the short forecasting horizon T=5. Indeed, as
indicated by the standard deviation bounds in Fig. 2.6, for this combination of treatment
factors the average realized single-period utility level a¥ attained in some periods ¢ comes
close to matching the stationary single-period utility level 2.08 achieved by the represen-

tative consumer in the SP Benchmark Model. This occurs despite the rather simplistic
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Monte Carlo method used by EO-FH agents to handle their uncertainty regarding future
wages, prices and dividends.

Given the relatively good performance of the EO-FH decision procedure under some
treatment-factor specifications, it is interesting to delve deeper into the underlying dy-
namics. Time-series for utility and real wage outcomes are depicted below for two illus-
trative cases: (i) a “good” case 26 with T=20, wm=all, and grid-style=small; and (ii) a

“bad” case 29 with T' = 20, wm=one, and grid-style=big.
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Figure 2.7 Pure EO-FH case 26: average realized single-period utility 2% for period

¢t and average realized cumulative utility @™ through period t, over

successive periods ¢
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Figure 2.8 Pure EO-FH case 29: average realized single-period utility u2° for period
—cumul,29

t and average realized cumulative utility through period ¢, over

successive periods t

For the “good” case 26, depicted in Fig. 2.7, the average realized single-period utility
u2% eventually stabilizes at a level of about 0.5. For the “bad” case 29, depicted Fig. 2.8,
the average realized single-period utility u?° quickly stabilizes at a much lower level of
about -1.0.

The behavior of the real wage reflects overall macroeconomic performance. For the
“good” case 26, it is seen in Fig. 2.9 that the average realized real wage w;eal’% appears
to be stabilizing at a level of about 0.30. In contrast, for the “bad” case 29, it is seen in

Fig. 2.10 that the average realized real wage w,“*** rapidly drops towards zero.
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Figure 2.9 Pure EO-FH case 26: average realized real wage w;“"*® for period ¢, over

successive periods ¢

Figure 2.10 Pure EO-FH case 29: average realized real wage w,“*** for period ¢, over

successive periods t

2.6.5 Findings for the Pure EO-ADP Cases 35-38

Consider cases 35-38 in Table 2.3, for which all consumers and firms are EO-ADP

agents. Each of these cases corresponds to a distinct setting of the EO-ADP treatment
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factors wm and grid-type in Table 2.10, taking as given the maintained parameter values
listed in Table A.6.

Figure 2.11 reports performance outcomes for these four cases. The performance of
each case k is measured by average realized single-period utility @*, and cases are ordered

from left to right in ascending performance order.
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Figure 2.11 Pure EO-ADP cases 35-38: average realized single-period utility @* with

bounds of + two standard deviations oy«

EO-ADP performance is clearly better with a longer memory wm=all than with a
one-period memory wm=one. Moreover, given a longer memory, performance is slightly
better with grid-style=big in comparison with grid-style=small. Overall, however, a low
performance level is attained for all tested settings of the EO-ADP treatment factors in
comparison with the overall performance attained using the RL, FL, and EO-FH decision

procedures.



51

2.6.6 Findings for Mixed Combinations of Decision Rules

From a social welfare point of view, it is only consumer utility outcomes that matter
in the DM Game. However, the players in the DM Game are utility-seeking consumers
and profit-seeking firms, where the latter act on behalf of their shareholders (who receive
their profits as dividend payments) but not consciously on behalf of consumer welfare
per se.

It is therefore of interest to construct consumer and firm payoff matrices for the DM
Game, interpreting the alternative possible decision procedures RL, FL, EO-FH, and

EO-ADP as possible pure strategy choices for these players.

C:RL C:FL C:EO-FH C:EQ-ADP

F:RL

FFL

F:EO-FH

F:EO-ADP 4?2 43 44 36 1

Figure 2.12 Consumer payoff matrix for the DM Game reporting average realized sin-
gle-period utility @* for the indicated cases k. A darker shade of color

indicates a higher value for u*.
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We therefore tested the off-diagonal cases in Table 2.3 representing mixed combi-
nations of decision procedures. We then used the performance outcomes obtained for
these off-diagonal cases together with the performance outcomes obtained for the diag-
onal cases to construct DM-Game payoff matrices, one for consumers and one for firms,
under the restriction that all consumers use the same decision procedure and all firms

use the same decision procedure.

CRL C:FL C:EO-FH C:E0-ADP
FRLE 10 21 31 39 .
FFLE 22 16 32 40 1

F:EO-FH

F:EQ-ADP 4?2 43 44 36 1

Figure 2.13 Firm payoff matrix for the DM Game reporting average realized single-pe-
riod profits 7% for the indicated cases k. A darker shade of color indicates

a higher value for 7.

The consumer payoff matrix, depicted in Fig. 2.12, reports the average realized single-
period utility #* attained by consumers for each indicated case k, with darker shades of

color corresponding to higher values of 4*. The firm payoff matrix, depicted in Fig. 2.13,
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reports the average realized single-period profits #* attained by firms for each indicated
case k, with darker shades of color corresponding to higher values of 7*.

It is important to note the following non-standard aspect of these payoff matrices.
For each pairing of consumer and firm decision procedures along the diagonals, the
treatment-factor parameters are selected in an attempt to permit each agent type to
do as well as possible in this pairing. This is reflected in the fact that, in contrast to
Table 2.3, only single cases are considered along the diagonals.

As seen from the firm payoff matrix in Fig. 2.13, EO-FH is a dominant strategy
for firms, given the particular case selections and treatment-factor specifications used
to form this payoff matrix. Interestingly, as seen from the consumer payoff matrix in
Fig. 2.12, this is not true for consumers. For example, the best response of consumers to
a firm choice of FL is to choose FL, not EO-FH. Nevertheless, it is also seen from these

two payoff matrices that (EO-FH, EO-FH) is a Pareto optimal Nash equilibrium

2.7 Conclusion

This study explores the comparative performance of constructively rational decision-
making procedures in the context of an otherwise standard macroeconomic model with in-
tertemporally optimizing consumers and firms. These decision-making procedures range
from simple reactive reinforcement learning to sophisticated adaptive dynamic program-
ming (ADP) techniques.

A key finding is that the best macroeconomic performance tends to result for cases
in which agents use the EO-FH procedure and have long memories. The EO-FH pro-
cedure determines approximate intertemporal utility and profit solutions by means of
direct search, using a finite rolling planning horizon. In particular, EO-FH with long
memory tends to dominate the tested RL procedure based on Roth-Erev reactive rein-

forcement learning, the tested FL procedure based on Q-learning, and the tested EO-
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ADP procedure based on an adaptive dynamic programming method for value function
approximation.

However, to date, only a small number of parameter values have been explored for
each of these decision-making procedures, and there is no guarantee that the best param-
eter settings for the DM Game environment have been used. Moreover, further testing is
needed to clarify the effects of memory length, forecasting horizon, and grid-point den-
sity specifications for decision domains, and the interactions among these specifications,
in alternative economic environments.

Clearly, then, much further study is needed to understand the ramifications of re-
quiring consumers and firms in macroeconomic models to be constructively rational, in
accordance with their real-world counterparts. In particular, a large gap exists between
constructive rationality, i.e., basing decisions on one’s own beliefs, information, and at-
tributes, and constructive optimality, i.e., the assurance that the combination of decision
rules in use by agents satisfy some stated optimality property, such as Pareto optimality.

Nevertheless, a primary goal of this study has already been accomplished: namely, to
provide a proof-of-concept demonstration that consumers and firms in computational
models can be implemented as forward-looking learners and intertemporal planners
whose decision-making results in sustained economic activity, despite the absence of
top-down coordination devices such as rational expectations and global market clearing
conditions.

Another important goal accomplished by this study is the development of a modu-
lar, extensible, and scalable macroeconomic framework that facilitates the comparative
analysis of different institutional structures populated by a mix of agents with diverse
decision-making procedures. In subsequent work, the range of considered structures and
procedures will be extended to permit consideration of more realistic features, such as

the inclusion of a central bank and a commercial banking system.
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CHAPTER 3. ECONOMIC SURVIVAL AS A FUNCTION
OF BEHAVIORAL RULES AND INFORMATION
PREFERENCES

Agent-based computational economics (ACE) is a diverse set of approaches and meth-
ods that could be used to study a range of problems and analyze consequences of behavior
under conditions that could not be solved analytically. One of such questions is optimal
behavior in a changing environment, when the amount of information and the learning
opportunities are severely restricted. In this Chapter, I studied a range of combinations
of learning and choice policies available to an agent, ranging from simple rules to more
sophisticated approaches based on expected utility maximization with expectations in
the form of a Bayesian network. I have found out that a three-level Bayesian network
coupled with approximate optimization techniques might perform on a par with the exact

solution and correct belief specifications.

3.1 Introduction

One of the established approaches to model uncertainty and choices under uncertainty
is to assume Von Neumann—Morgenstern utility function and to solve the resulting op-
timization problem using an expected utility of an agent. Such an approach, however,
assumes deep knowledge about the world that people occupy, or, at least, about the
main characteristics of this world. This assumption is hardly a realistic one. It would be

more reasonable to assume that people might be perceiving the world they are acting in
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as one of many possible worlds with the corresponding priors on the distribution of such
possible worlds. This approach is researched in the paradigm of ambiguity preferences.

The question of preferences under ambiguity, and the corresponding behavioral con-
sequences has recently become an active research area. Risk aversion (or uncertainty
aversion) is a standard part of an economic model, but incorporation of ambiguity aver-
sion is very limited. A recent review of models with preferences over ambiguous outcomes
is given in Epstein and Schneider (2010). They review dynamic models of ambiguity-risk
aversion and also show that the time-consistent dynamic preferences in a form of RU (re-
cursive utility) has corresponding static preferences. They also discuss a limited number
of applications for these models. The main models they review are Recursive SEU, which
corresponds to static Subjective Expected Utility (SEU), Recursive Multiple-Priors with
Maxmin Expected Utility (MEU) as a static preferences, and Recursive Smooth Ambi-
guity Model with corresponding static preferences given in Klibanoff et al. (2005). A
generalized version of RSU can be found in Hayashi and Miao (2010).

However, these utility function representations have not been tested in a laboratory
environment. Only recently have static representations been tested in Ahn et al. (2007),
where they found some evidence that the tendency to equate demands for securities
that pay off in the ambiguous states could be more easily accommodated by the a-MEU
(a-Maxmin Expected Utility) model than by the SEU model.

Besides experimental evidences that people behave differently under uncertainty and
ambiguity, it was also shown in Hsu et al. (2005) that decision making in uncertain
and ambiguous environments activate different parts of the brain. Neural activity while
taking ambiguous decisions was also investigated in Bach et al. (2009). A number of
experiments studied heterogeneity in ambiguous preferences. Borghans et al. (2009)
showed that men and women have different ambiguity preferences. Keck et al. (2010)
studied group decisions making in an ambiguous setup. As in the case of uncertainty, it

was shown that framing matters for ambiguous choices in Ho et al. (2002). Maffioletti
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et al. (2009), and Trautmann et al. (2009) showed that the preference reversals effect is
valid for an ambiguous preferences.

Testing of savings/consumption decisions under uncertainty and a general survey of
macro experiments can be found in (Duffy, 2008). Carbone and Hey (2004) showed that
subjects are generally unable to solve the dynamic optimization problem, but might react
in a correct direction to changes in the environment. Hey and Knoll (2011) conducted
experiments to define decision rules used to solve savings/consumption by subjects.

This work is trying to bind together, on the one hand, experimental results that
show that agents use simple rules to make savings/consumption choices, and, on the
other hand, a highly advanced mathematical model that tries to explain agent choices.
In this model, agents are allowed to have better specified beliefs as compared to the
simple ambiguous beliefs. They also implement different possible simplification to the

optimization problem.

3.2 Structure of the Model

3.2.1 The Main Question

The model was developed to test a range of hypotheses that deal with optimal choices
under uncertainty. When making intertemporal choices, people try to find a balance
between the best possible behavior and the uncertainty that surrounds the results of their
choices. If we knew the exact rules that govern the economy, we could, arguably, choose
the best possible actions (barring the issue of game interactions that will complicate such
choices). But what happens if we do not know much about the world we live in and have
to learn about it along the way? What will be the best belief structure we could assume,
and how should we learn about the world? Is this belief structure universal, or does it
depend on the particulars of the world? Those questions are too broad to be answered

in a single paper. Many researches tried to offer partial solutions to them. A lot of effort
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was devoted to defining and researching the implications of different utility functions
that might be useful for ambiguous situations. Another branch of research deals with
researching learning under uncertainty. The model proposed in this work combines these
issues and tries to answer the big question of the best possible behavior under incomplete
information and limited learning opportunities.

The model introduces Bayesian networks for the belief structure and approximate
optimization algorithms for making choices under uncertainty. Both of these tools help
to define beliefs for a broader range of situations and serve as a vehicle for a performance
evaluation of different approximation techniques that people are using or should be using
when trying to survive in a stochastic world. The implemented approximate optimization
algorithm is scalable and could be used in other applications, especially when full scale
optimization algorithms are infeasible.

The first part of the model deals with the belief representation. The Bayesian up-
dating of beliefs is used because it is the only instrument that is consistent from the
statistical point of view. The general belief structure is also formalized through the
Bayesian network. This generalization allows for a simultaneous specification of the dif-
ferent assumptions on agent beliefs. One-level network corresponds to simple beliefs and
Von Neumann-Morgenstern utility. T'wo-level network describes ambiguous preferences.
Three and more levels correspond to a higher ()relative to an ambiguous beliefs) order
of beliefs.

The second part of the model is designed to test different optimization algorithms.
As a benchmark, the complete search on a grid is used. It is highly time consuming,
not scalable, but provides exact solutions. As an alternative, an approximate dynamic
programming algorithm adopted from Powell (2011) is tested.

Other possible variables are controlled in the following way. Multiagent learning
interactions are excluded by allowing only one agent to make decisions at one moment

in time. Decision feedback loops are excluded by subjecting an agent to an exogenously
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defined stochastic process that is independent of his decisions. Information is limited
by excluding sampling and providing an agent only with a historical realization of the
stochastic process on returns.

To sum it up, there is one agent that tries to optimize the expected utility by making a
consumption /savings choice. This agent observes returns on savings that are realizations
of a stochastic process. To allow for an explicit solution to the optimization problem,
each agent lives for only 3 periods and after that is replaced by an identical agent. This

new agent may inherit some or all of the properties of the previous agent.

3.2.2 Structure of the Worlds

The underlying driving force of all agent decisions is a stochastic process that de-
fines returns on savings. For simplicity, this process is assumed to be discrete. The

set of possible returns includes two returns {7y, 75} with the corresponding distribution

/

[Puwi,rys Puiyrs) -

As there are only two possible realization of returns, py,,, = 1 — py, . Here w;
is a subscript that denotes the world. Each world is characterized by a probability
distribution over returns. An agent may find himself living in a fixed world, i.e. with a
simple fixed probability distribution over returns, or may live in an environment where
a probability distribution is itself subject to change. The later option allows for an
inclusion of a deterministic or stochastic switching processes for returns.

The agent knows the form of a probability distribution and the exact set of possible
returns, but has to learn probabilities for these returns. The only information that the
agent has are period-by-period realized returns on his savings. Since in general the
agent does not know which stochastic process is generating returns, he has to form some
believes about the possible probability of getting one of the returns. This uncertainty
is usually captured by ambiguous beliefs and an appropriate utility function. In terms

of Bayesian networks, it will correspond to a two-level Bayesian network. A one-level
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Bayesian network will describe an agent that thinks that he knows the exact distribution
that generated the returns. A three-level Bayesian network will describe an agent that
thinks that he has no knowledge about possible probabilities at all.

To simplify the analysis and at the same time make it more illustrative, the specific
forms of belief structures are introduced. An agent with ambiguous beliefs with 50%
probability believes that he lives in the correct world, and with 50% in the world where
probabilities are reversed. This specific form allows for an easy introduction of the three-
node Bayesian network.

The one-node network will include cases where an agent believes with 100% proba-
bility that he is in the right or the wrong world. Those specifications will be used for
the testing purposes, as they represent an absolutely correct and an absolutely incorrect
prior, respectively. The composition and the structure of an agent are kept intentionally

simple to allow for the focus on beliefs and choice algorithms.

3.2.3 Population and Inheritance

To keep computations feasible, it is assumed that at each moment in time only one
agent is active (for a total of T' periods) and is replaced by a new agent at the end of a
lifespan. A new agent receives an endowment at the beginning of his life, and forms his
beliefs. These beliefs could be his own, and thus independent of others, or inherited from
the old generation. The form of a belief inheritance is an another treatment factor in
the simulations. In general, an agent could also inherit wealth from an older generation,
but as there is no stimulus for an agents to care about the younger generation, nothing
will be left to pass to them. The specific forms of preferences and beliefs are described

below.
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3.3 Agent Preferences and Updating of Beliefs

3.3.1 Agent Preferences

Each agent is assumed to live for T' = 3 periods, and therefore his utility at time ¢

can be represented in the following form:

t+Trem

Usrgren =y Ef7u(c,), T" = 3,2,1 (3.1)

T=t
As the agent becomes older, his utility function shrinks to exclude the past period.

The period utility function u (¢;) has a CES form:
1-0,

u(cy) = 1t——eu’9“ € [0.1,4] (3.2)

Each agent has an endowment w, that it has to distribute over his life-time (7).
There is a random interest rate for the savings. The distribution of returns for this
interest rate is the source of uncertainty for an agent.

At each moment ¢ agent faces budget constraints that correspond to the remaining

periods of his life:
Mipr < Myyra (Lt 7Tyr) = g, 7= 0,00, T7 (3.3)

Here the money holding in the new period M;,, are the money holding in the previous
period plus the interest income for this money holdings with an interest rate r, ;. ,
minus the consumption in this period ¢; ; . The initial endowment defines the amount

of money at the beginning of the agent’s life:
Mt,1 = Wo (34)

if agent begins his life at time ¢.
Only consumption and saving decisions (no borrowing) are allowed, and there is no
additional endowment after the initial period for each agent (when he is young).

There is also a non-negativity constraint on consumption ¢; > 0.
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3.3.2 Expectations

The agent forms the expectations about possible realizations for an interest rate based
on the information he gets in each period. The only new information he can get is the
past realized interest rate, because no sampling of interest rates is allowed as described
in Section 3.2.1. Thus, at each period his information set Al; consists of only one point,

namely the realized interest rate.

AL = {r} (3.5)

To improve the quality of his choices, the agent also forms prior beliefs about the
possible world structure. These beliefs are updated in a consistent way using Bayesian
updating. This assumption is a rather demanding one, as it could be computationally
consuming, to the degree when people have to use heuristics to cope with such levels of
complexity. Such heuristics have been found in the experiments, but we do not consider
them in the current study. Instead, we concentrate on the benefits and the disadvantages
of a statistically consistent update of beliefs, not heuristics.

A number of different setups for beliefs structure is studied. The simplest possible
structure arises when the agent has the information about the exact world he is living in
(and believes this information to be true). The only source of uncertainty in this case is
the interest rate. Formally , the agent believes that he knows true w;, and thus knows
p.d.f. for the returns, i.e. P, ,, for each moment ¢. In this case, he can use the true
return distribution P, ,, in his utility estimation.

tJrTTEm

Uyrarem = > Ep.,, Bulc,), T =3,2,1 (3.6)

T=t

Another scenario arises if the agent realizes that the information he has about the

true world he is living in may be incorrect. In this case, he has to form beliefs over the
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possible worlds he may be in. These beliefs take the form of a Bayesian prior P, - p.d.f.
for possible probabilities of the different worlds that the agent might be acting in.

A general form of the utility function in this case is

Ut7T,T“m =V <{Pt+ﬂw}z:1m ’ {Pt-&-T,r,wi}Z::L ) {Ct+7}f;617n> (3'7)

where V' is some utility function that takes as parameters the consumption stream
{CHT}Z:lm and the beliefs {BMM}Z::L over the return distributions {Pt+T7T7wi}TTem

T=1 "~

The specific form of V' assumed in this paper is the following;

t+T’l‘6m
Ut7T7T7‘em — Epw Z E7'7Pt+7',7",wi /BTU (Ct) 5 T’I‘Em = 3, 2, 1 (38)

T=t

In the simple case of this model, we assume that the agent has a two point discrete
prior for worlds one and two that are characterized by the reversed probabilities. For
the case of ambiguous beliefs, we assume that at the beginning of a simulation the
agent believes that both of the world structures are of equal probability. These beliefs

correspond to a two-level Bayesian network. The diagram below illustrates his beliefs.

P =05 P05

P | P=1-p P,=1-p P

Figure 3.1 Structure of ambiguous beliefs
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At each period some new information is received, and the prior for the world structure
is updated, thus producing new estimates for p,; and, respectively, for p,s = 1 — pu1.

This updating is done using the Bayesian approach in the following way:

P (Wt+1 = 7“z'|w = wl)pt,wl
P (Wt+1 = Ti|w = wl)pt,wl + P(VVt+1 = Tz‘|w = wz) (1 _pt,’wl)

(3.9)

Pt+1,uw =

After that, the updated expectations Ep, (z|l;) are used in equation (3.8).

The last tested specification is a three-level Bayesian network as shown below:

pW;'

Figure 3.2 Three-node Bayesian network of beliefs

This form of the belief specification adds another level of uncertainty, in this case
on the P, prior. Instead of assuming that it is 50/50 distribution, he believes that p,,
itself is uniformly distributed over the interval [0,1]. Here p,; = € is the probability

that the first world structure is true, and Fy ~ wniform|0,1] is the distribution for
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N

n1, Where

this probability. For the simulation purposes, it is later discretized into {a,}
P(#=a,) =+. N = 10 is hold fixed for all simulations.
When some new information arrives, the distribution parameters are updated as

following

Ployr=r)
P(r=rmg)
~ 2oper, P (@) P(0a) P (r =rulf)
>, Pr=mn]0) Y, P (0la) P(a)

This hierarchical Bayesian prior describes the situation when the agent faces not only

Plalr=mr,) =

(3.10)

uncertainty and ambiguity, but also a true unknown situation and is aware of that. The
expected utility for this case is modified to include expectations over all levels of priors.

Given his preferences and beliefs, the agent tries to maximize the expected util-
ity over his remaining lifetime, and spreads the initial endowment or, later in life, the
money holdings in the best possible way. We tested different optimization algorithms
in combinations with different beliefs structures to assess which ones perform better in
terms of the average utility. Two algorithms used in the simulations were the complete

search and the optimization using Approximate Dynamic Programming.

3.4 Algorithms for Optimization

3.4.1 Approximate Dynamic Programming Algorithm

Approximate Dynamic Programming Algorithm (called ADP from now on) was adopted
from Powell (2011). Before describing the specific realization of an algorithm, we describe

the model in more general terms. Let X; be the state at time ¢. In our case it is
Xt = (Mt7‘Ft7 Ht) (311>

where M, is the amount of money on hand, F; are beliefs about the structure of the world

(for the case of ambiguous beliefs, it is p,1, and for the case of the three-level Bayesian
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prior it is {ay, }2_,) and H, is a hidden state. Hj is used for storing the information about

13

the specific realization of a “world structure” random variable from the two/three-level
Bayesian network and is required for accurate Monte-Carlo simulations.

This state formulation is itself a simplification. A more general state specification
would include all past realizations of the interest rate as a part of history, so the state
would be X; = (M, F;, Hy, I;). Here it is assumed that all the information I; is encom-
passed in beliefs F; .

Denote by d; the decisions of the agent at time ¢. In this model, it is the share of the

income that the agent decides to consume. Given the choice d;, the consumption ¢; of

the agent equals

Ct — dtMt (312)

In this model, d; was discretized in the interval [0, 1] with the number of discretization
points C'S_N _discret equal to 10.

Wis1 (w) is the realization of random variables. In our model, w € {r,7r2} is a
realization of random returns.

The rule for updating the state can in general be expressed in the following way:

Xt+1 =TR (Xt, dt, Wt+1 (CL))) (313)

Given the state X, the decisions d; and the realization of random variables W, (w),
the new state X;,; is decided using T'R mapping. In the current model, T'R includes
rules for updating belief and resources. In the case of ambiguous beliefs, equation (3.9)
is used. In the case of the three-level priors, equation (3.10) is used.

Resources include the money on hand, which are updated according to (3.3) and

(3.12).
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Besides the state and rules for updating the state, another general part of the model

is a period contribution. In this model, it is the period utility:

C(Xy,dy) = u(cy) = u(diMy) (3.14)

The decision takes the form of the share of money to be spent. This form is a
simplified linearization of a more general decision rule, which should be of the form
d; (X;) = D™ (X;), where the decision depends on the full state, which includes the
beliefs.

Approximate Dynamic Programming Algorithm is trying to estimate the value func-

tion that is defined in the following way:

Vi (Xy) = argmax (C' (Xy, dy) + BE¢ (Vg1 (TR (X4, dy)))) (3.15)

di€Dy

In this model, the basis functions approximation for value function is used. The
decision is chosen such that

d; = arg max (C’ (Xi,dy) +7E (Z 0ir05 (TR (X, dt))>> (3.16)

d¢€Dy f

where D, is the set of possible decisions.

In this linearization, 67, are specific to some set of policies 7, the coefficients in a
linearization of the value function. In our model, the agent lives over T periods and
makes decisions every period, therefore, T" value functions are needed. This means that
the linearization parameters need to be indexed by time. ¢¢, f = 1,..fy, are basis
functions, with fy being total number of them. The simplest case uses linear basis
functions. This simplification was implemented in this study, with N = 1, and §™°
given in the Table B.1.

With these simplifications, the value function approximation is given by

Vi (Xy) = 6oy + 0y X, (3.17)
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Because of the simple structure of the state given in equation (3.11), it was possible

to further simplify the linearization with

(= [6,,0,0] (3.18)

and

fo,y =0 (3.19)

Given these simplifications, only the current amount of money on hand is taken into
account, but not the beliefs about the possible world structures and, of course, the hidden
state.

For the sub-step of the search for an optimal policy, given the value function estima-
tion, the coarse-grained complete search is used. Other algorithms could not provide the
necessary accuracy of the estimation.

The exact implementation of the algorithm is described in Appendix B.2.

3.5 Testing Schemes and Results

3.5.1 Testing Schemes

The main dimensions for testing are the behavioral rules, represented by optimization
algorithms, and the belief structure. All other simulation parameters were chosen to
better illustrate the performance of the different behavioral rules and were kept fixed
during simulations.

The simulation environment is mostly defined by the returns structure. The following

returns structure (where p,, is the probability of getting the return equal to r;) was tested.
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Table 3.1 Tested probability-returns combinations

Description
Code . P T2 Pr

wp, 3.0 p -03 1-p

P-R2
wy, 3.0 1-p -03 p

This combination of returns was chosen because it is an efficient representation of the
high risk environment. Probabilities p,. were tested in the range of {0.1,0.2,...,0.9}

As for the belief structures, the following specifications were tested. In the case of
ambiguity preferences, it was the 50/50 split for the prior and the completely correct

specification. The corresponding probabilities p,, are given below.

Table 3.2 Tested specifications for the ambiguity beliefs

Code name  p,, pu,

Al 0.5 0.5

A2(correct prior) 1 0

In the case of the three-level Bayesian network, the uniform third level prior was
tested.

The preference parameters were fixed at the following level:

Table 3.3 Tested parameters for the preferences

Parameter Value

0., 3.0

These parameter values represent a strong form of risk aversion for the CES period
utility function.
The other used parameters were the inheritance of beliefs and value function estima-

tions, the time preferences, the initial endowment, the lifespan of an agent, and some
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technical parameters for the ADP and complete grid search algorithm. The number
of simulation runs J and the corresponding random generator seeds were fixed. The
specification of these parameters is given in Appendix B in Table B.1.

The following combinations of the belief structure and the optimization algorithm

were tested:

Table 3.4 Tested combinations of beliefs and decision algorithms

Name Description

A,CS ambiguous beliefs, complete search

A ADP  ambiguous beliefs, ADP solution algorithm

UK,CS three-level prior, complete search

UK,ADP  three-level prior, ADP solution algorithm

3.5.2 Results

Below are presented the heatmaps that comparatively describe the performance of the
different strategies when p, the probability of getting ry, is changing. The performance
is measured by the average realized utility u over the length of a simulation L Run. The
initial learning period with the length of LOmit = 30 is excluded.

The average realized utility of an agent is calculated in the following way:

NSeeds LRun
u =

Z Z ut] /[NSeeds - (LRun — 29)] (3.20)

j=1 t=LOmit
Below are given the comparative results in the form of the heatmap for all the tested

parameter combinations:
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A, CS UK, Cs A, ADP UK, ADP A, CS, true

p=0.1

p=0.2

p=0.3

p=0.4

p=0.5

p=0.6

p=0.7

p=0.8

p=0.9

Figure 3.3 Heatmap for the belief-algorithm simulation results, all tested cases

(darker is better)

The results for the cases where agents implement the same complete grid search
algor