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Chapter 1: Introduction

In the field of computational fluid dynamics (CFD) accurate representations of fluid
phenomena can be simulated but require large amounts of data to represent the flow domain.
Most datasets generated from a CFD simulation can be coarse, ~10,000 nodes or cells, or
very fine with node counts on the order of 1,000,000. A typical dataset solution can also
contain multiple solutions for each node, pertaining to various properties of the flow at a
particular node. Scalar properties such as density, temperature, pressure, and velocity
magnitude are properties that are typically calculated and stored in a dataset solution.
Solutions are not limited to just scalar properties. Vector quantities, such as velocity, are also
often calculated and stored for a CFD simulation. Accessing all of this data efficiently
during runtime is a key problem for visualization in an interactive application.

Understanding simulation solutions requires a post-processing tool to convert the data
into something more meaningful. Ideally, the application would present an interactive visual
representation of the numerical data for any dataset that was simulated while maintaining the
accuracy of the calculated solution. Most CFD applications currently sacrifice interactivity
for accuracy, yielding highly detailed flow descriptions but limiting interaction for
investigating the field.

1.1 Visualization of computational fluid dynamics data

CFD post-processing generally involves two steps. First the mesh data is translated
into a format that is efficiently accessible during runtime. At runtime, the dataset is queried
to generate a visualization representing an engineering analysis technique. Analysis methods,
such as contour planes slicing through a particular scalar property field or directional vector

glyphs, are common techniques for investigating CFD data sets. Streamlines and particle



traces are also common methods for analysis of vector fields. Each of these methods gives a
visual queue of a particular flow property, such as direction or magnitude.
1.2 Pipeline for generating a graphical representation

Generating graphics for a particular analysis technique relies heavily on the
characteristics of the dataset being investigated. Efficient access to the dataset is required to
support user interactivity. However, this is also dependent on the complexity of the dataset.
Various algorithms for efficient access of large data structures have proven to be effective in
reducing query time but only to a point. In an application where user interaction is a priority,
it would be ideal to reduce or even eliminate the need to access the raw dataset during
runtime to generate the visualization.

Figure 1.1 describes a general visualization pipeline for a CFD dataset. The process
begins with the user requesting a specific visualization technique such as a contour plane.
The request contains the minimal information required to generate the appropriate visuals,
such as the location (percentage of the dataset bounding volume) and orientation (paralle] to
a Cartesian axis). This request 1s sent to a CFD visualization application. The application
then initializes a thread to process the input user information by querying the resident dataset.
The query returns information necessary for creating a graphical representation of the
visualization technique. This information is then passed on to an application programming
interface (API) to create the actual graphics that are to be displayed. The application waits
for the thread to return the graphical representation for display. This entire process is

repeated for each technique the user requests.
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The issue of dataset access becomes more apparent if the user desires to investigate a time-
varying dataset. Time-varying, or transient, datasets add another level of complexity to the
visualization process. As is apparent from Figure 1.2, the application becomes responsible
for repeating the “query-to-graphics™ thread n times, where n corresponds to the number of
transient time steps. As with the steady state case, the application waits for the thread to
complete before sending the graphics to the display. Accordingly, the application is also
responsible for setting the resident dataset at each time step. Generating graphics in time to
display concurrently in the simulation quickly becomes a daunting task for the application.
Traditionally most applications have supported transient visualization by processing the
graphics and then running an animation or “movie type” visualization of flow phenomena.

Investigative techniques such as streamlines and particle traces of transient datasets are often



unsupported in real time for transient datasets.
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1.3 Recent advancements in computer graphics and CFD visualization

Current visualization research is now heading toward analysis of the data in a more
efficient manner. The advancements in the technology of modern graphics processor units
(GPUs) combined with their availability on consumer-level personal computers have led to
texture-based methods gaining popularity. Texture-based methods are based on storing
information, such as data from a CFD simulation, in a texture format and using the textures
to display the data at runtime. Basic volume rendering, as described in (Wilson, 1994), of
three-dimensional textures can be used to visualize various types of three-dimensional data.

The computer graphics industry has long had exposure to the GPU and its advantages.
Programming at the GPU level allows the developer to have more control over special

effects, such as lighting, by allowing the developer to specify operations at a per-vertex or

per-fragment level.




Vertex programs, or vertex shaders, run on the vertex processor of a GPU and
calculate data for each vertex of a graphics primitive. This data is then passed to the fragment
processor. A fragment program is basically responsible for calculating the color for each
fragment between the vertices of a primitive. Information such as color, texture coordinates,
etc. 1s interpolated between vertices on the fragment processor. Exposure of the vertex and
fragment processors to the developer gives more control over what is seen.

Because the GPU 1s much more efficient at processing graphics than the central
processing unit (CPU), more realistic effects, such as bump mapping, and higher quality
materials are achievable in real time by moving calculations from software to the graphics
hardware. Most effects pre-calculate pertinent data for the desired effect, such as a normal
map, and store the information in a texture. The pre-calculated data 1s then accessed in a
fragment program, via the texture, on the GPU. The information is then used in the
appropriate calculations to return a color for each fragment and therefore each pixel.

As stated previously, exposure of this functionality to the general developer has led to
several algorithms that exploit the programmable functionality of the GPU. Textures,
combined with textures, real-time interactive visualizations of CFD data can be achieved.
Texture advection schemes such as three-dimensional image-based flow visualization (3D-
IBFV), (Telea, 2003) and GPU-based three-dimensional texture advection (Weiskopf, 2004)
take advantage of graphics hardware to produce interactive visualizations of large vector
datasets through dye and particle injection algorithms (Laramee, 2004).

The 1ssue of transient data handling is also resolved by using textures. Texture data
representing the field can be updated using hardware acceleration. Three-dimensional

graphics application programming interfaces (APIs), such as OpenGL, allow for fast



updating of texture data. This allows texture-based algorithms to handle data similarly for
steady-state and transient data cases.

Integration of texture-based techniques is the next logical step for advancement of a
CFD visualization application. Runtime issues of data access would be reduced by storing
solution sets in three-dimensional textures. Basing an application on textures would allow the
application to integrate and expand on current visualization research. A texture-based
application would also improve interactivity of a CFD application, by removing unnecessary
runtime dependencies for generating the visualization.

This research is organized in the following manner. Chapter Two describes the CFD
visualization application chosen for integration, Virtual Engineering Suite (VE-Suite), and its
current visualization process. Chapter Three describes the proposed framework and the
necessary components for integrating textures with VE-Suite. Possible methods for
implementing scalar and vector data analysis are discussed. Chapter Four discusses the
results of the proposed implementation and shows some visual comparisons of the current
visualizations and the proposed method with some applied texture-based algorithms.

Chapter Five summarizes the conclusions and contains a discussion of future work.



Chapter 2: Virtual engineering software: VE-Suite

Bryden (2004) describes virtual engineering as "a user-centered process that provides
access to a collaborative framework that integrates all of the models, data, and decision-
support tools needed to make an engineering decision. The goal of virtual engineering is to
develop a decision making environment that provides a first-person, immersive perspective
enabling e user to interact with the engineered system in a natural way and provides the
user with a wide range of accessible tools."

2.1 VE-Suite

lowa State University’s Complex Systems Virtual Engineering group, which is
directed by Dr. Kenneth Mark Bryden, is developing an open source tool set to incorporate
the virtual engineering process, VE-Suite. Virtual Engineering Suite (VE-Suite) is an
extensible set of software tools that, combined with vrJuggler, allows a developer to easily
create a virtual engineering application. vrJuggler, an open source virtual reality application
development framework developed by Dr. Carolina Cruz-Neira and her research group at
[owa State University, simplifies the interface and interaction with the virtual environment
for application developers.

Figure 2.1 describes the key components of VE-Suite. The toolset includes VE-
Conductor, VE-Xplorer and VE-CE. VE-Conductor is the graphical user interface (GUI) that
allows the user to control the virtual environment and interact with the data in the virtual
environment. VE-CE, the computational engine, allows integration and data passing of
e: erimental data streams, numerical models, algebraic equations, or any other form of data.
Finally, VE-Xplorer handles the visualization and manipulation of the data through three-

dimensional graphics.
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Figure 2.1 Core components of VE-Suite

2.2 CFD analysis methods in VE-Suite

Several common engineering analysis techniques are currently supported by VE-
Suite. Scalar data investigation techniques typically include color contour/cutting planes at
user-specified locations in the dataset. The colors correspond to the magnitude of the
specific flow property and are based on a linear red-to-blue lookup table. Higher magnitudes
are red while lower values are blue. Iso-surfaces with approximately the same magnitude for
a particular property, are also supported for scalar data analysis in VE-Suite.

Figure 2.2 shows an example of VE-Suite’s scalar capabilities. Figure 2.2a is a screen
shot of contour planes of temperatures in a furnace at various locations along the y and z
axes. Figure 2.2b is an iso-surface representation of the temperature of the same furnace

dataset.
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Figure 2.4 shows a generic scene graph as described above. Each node in the graph is
labeled according to its relationship to other nodes. Each node in the figure is named with a
capital letter. To show its relationship to other nodes in the tree, a lower case letter is
included. The lowercase letter represents the name of the node’s “parent.” All nodes in the
figure are represented by a circle in the graph with two exceptions. The root node is labeled
“A” and designated by a trapezoid. A node that is designated by a triangle is a “leaf” node.
Since the root node has no parent node, its label does not contain a lowercase letter. Node
“A’ has two children, nodes “B” and “C”. They are accordingly labeled “aB” and “aC.”

Node “B” has three children, which are leaf nodes. These are denoted by a lowercase “b”.
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Figure 2.4 Generic scene graph
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The scene graph created by VE-Xplorer consists of two main “branches,” one containing
geometry relating to the dataset and the other containing graphics for the visnalization
technique. During runtime, each of these branches is visited and manipulated based on user
input.

2.4 Visualization pipeline

The process of converting a user request into a visual representation can be broken into
several key components:

1. Command interpretation =» Determine the appropriate visualization technique based

on the user request.

2. Dataset querying =» Send the appropriate information to the dataset-managing API to

generate data for the requested visualization technique.

3. Graphical/Geometric representation =» Convert the visualization technique

information returned from the dataset managing API into a geometric representation.

4. Scene graph manipulation =» Add/remove the appropriate nodes of the current scene

graph to update the visualization with the requested visualization technique’s

geometric representation.

2.4.1 Scene graph access
After the initial scene graph is created, the underlying scene graph API traverses the
newly created scene graph and then displays the resulting three-dimensional representation.
This occurs for each “frame,” which corresponds to a single traversal of the scene graph.
During traversal, interaction with the scene graph is available through C++ functions that
occur at critical times during the traversal:

[. Pre-frame: Function called before traversal of the root node and its children.
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2. Intra-frame: Function called during traversal of the root node and its children.

3. Post-frame: Function called after traversal of the global root and its children.

VE-Explorer does the brunt of its work (scene graph management) in the pre-frame
function. During pre-frame, a command queue is processed by VE-Xplorer. This command
queue 1s simply a list of commands that are generated by user requests from VE-Conductor.
As the user selects options, VE-Conductor sends the associated command to VE-Xplorer and
it is added to the command queue for processing. Processing the command queue simply tells

VE-Xplorer how to manipulate the scene graph.

2.4.2 Command queue processing: Handlers
During the pre-frame stage of scene graph traversal, VE-Xplorer checks the
command queue for any commands that may be available. If present, the command is passed
to a set of handlers for processing. The job of the each handler is to check the current
command and, if it applies, to process the command accordingly, specific in its task.
1. Environment Handler: Environment interaction commands such as navigation.
2. Model Handler: Data model interaction commands such as setting the active dataset.
3. Visualization Handler: Visualization technique request commands.
The visualization pipeline 1s embedded in the visualization handler. Commands
relative to this handler correspond to user requests to investigate various properties of the

flow field dataset.
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2.4.3 Creating viable representations for analysis: Visualization Handler
The visualization handler 1s responsible for processing user requests to update the
visualization. As stated earlier, this process is defined by the following steps:
1. Query the active dataset to produce visualization technique data.
2. Process the visualization technique data to create a geometric representation.
3. Add the new geometry to the scene graph, removing old geometry if
necessary.

This process is a pipeline that is dependent on Visualization Toolkit (VTK). VTK is
“an open source, freely available software system for 3D computer graphics, image
processing and visualization” (VTK, 2005). VTK can produce various visualizations for
scalar and vector data. VE-Xplorer currently uses VTK to produce all of its visualization
options, such as scalar contours and iso-surfaces, vector glyphs, streamlines, and particle
traces.

The datasets used during runtime are a VTK representation of the dataset. With the
dataset loaded into memory at runtime as the user selects a visualization option, the active
VTK dataset is queried. This query is passed to VTK to generate a VTK representation of
the selected option, which is defined in a VTK structure called an “actor” or vtk Actor. This
“actor” contains all the information needed to create the queried visualization option
graphically.

Normally, the next step in this process would be to send the created “actor” through
VTK’s graphical pipeline to create the visualization. However, VTK is not designed for
visualization in a VE-Xplorer-type application. Requirements such as “rendering to multiple

channels (i.e. multi-headed displays)” (Rajlich, 2005) or constructing scene graphs are not
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directly handled by VTK’s graphical pipeline. Such things can be done using a scene graph
API such as Silicon Graphics (SGI) Performer or an open source scene graph API such as
OpenSceneGraph. These APIs handle virtual environment requirements efficiently and
vrJuggler supports both.

To overcome this shortcoming of VTK, Paul Rajlich developed
vtkActorToPF(Rajlich,), which simply takes a vtk Actor and translates it to the comparable
Performer geometry node representation. There is also an OpenSceneGraph version that
translates a vtkActor to an OpenSceneGraph geometric node representation. VE-Xplorer
uses these two utility libraries to create its graphical representations of user-queried data.

Figure 2.5 shows VE-Xplorer’s visualization pipeline for a steady state dataset.
vtkActorTo* refers to vtkActorToPF for a Performer based scene graph and vtkActorToOSG

for an OpenSceneGraph-based scene graph.
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Figure 2.5 Visualization pipeline of VE-Xplorer for a steady-state dataset

The transient pipeline has a more general description. Although it is simple to
understand, a few issues are revealed upon closer inspection. These issues are discussed
below. Figure 2.6 displays VE-Xplorer’s visualization pipeline for a transient dataset. As
shown, it is very similar to the steady-state pipeline. In fact, the steady-state pipeline 1s a
special case of the transient pipeline where n, of time step number and hence number of
datasets, is equal to one. In the figure, the graphics thread is repeated n times before the

graphics are added to the scene graph.
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Figure 2.6 Visualization pipeline of VE-Xplorer for a transient dataset

2.5 Issues with the VE-Xplorer visualization pipeline

A couple of issues become evident during investigation of transient datasets. The
first issue is related to the datasets themselves. As mentioned earlier, datasets and the
information stored in them are large. For example, for a single time step, a 1,000,000 node
dataset (100x100x100 grid) that contains a single scalar and a single vector, such as density
and velocity, would require 4 bytes per node for a density of “float precision” values and 4
bytes * 3 values per node for a velocity vector of “float precision.” That requires 16,000,000
bytes or ~ 16 megabytes of random access memory (RAM) for the dataset. This is a rare
case, as typical datasets store “double precision” solutions requiring 8 bytes for each value
rather than 4, thus doubling the required RAM to 32 megabytes.

These however are minimum requirements. For the dataset to be efficiently accessed

during runtime, the actual C++ class created to hold the dataset in memory is larger. Extra
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information such as the names for all the scalars and vectors in the dataset, connectivity lists
for the grid structure, and bounding box information is allocated for each solution dataset.

Obviously, more solutions are stored on the dataset solution, along with larger grids,
because the storing solution only requires hard drive space and they can be computed in
reasonable amounts of time. As additional solutions are added to our solution dataset, the
RAM required to efficiently access the data grows. But this is only a part of the RAM issue.
For a transient dataset, this requirement must be multiplied by at least n, corresponding to
each time step. If the dataset grid changes size with time, which 1s possible for CFD
solutions due to changing of the geometry of the solution, then the RAM requirements will
fluctuate accordingly. If the application requires more memory than is available in RAM,
performance drops significantly, thus affecting the application’s usefulness. These issues are
limiting factors for most CFD applications’ ability to investigate transient datasets
effectively.

Because VE-Xplorer’s visualization pipeline uses VTK, extra dependencies are
introduced. Both the dependency on VTK’s API to query datasets for data and the
dependency to generate the scene graph representations result in a “delayed reaction” for
datasets that are of average to large sizes. These “delayed reactions” can be interpreted as
nothing happening in the display for a few moments (time varies with dataset size) and loss
of response from VE-Conductor. If the application loses its interactive capability, its
effectiveness is also lost.

2.6 CFD datasets as textures
A possible solution for the 1ssue mentioned previously would be to store the dataset in

a format that requires little or no access during runtime to visualize. This would remove the
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dependency on external APIs to do calculations on large datasets in software, which can
become slow as the complexity of the dataset increases. The format should also be small
enough to handle transient datasets efficiently without losing accuracy. Three-dimensional

textures, provide such a format.

2.6.1 Texture formats and data types

In computer graphics, a texture is basically an array of data. Textures are generally
equivalent to two-dimensional images but can be one- or three-dimensional. A two-
dimensional texture can be applied to geometry to provide a more realistic look at the object
without rendering an unnecessary amount of graphics primitives. For instance, a brick wall
can be drawn using a single quadrilateral with a brick texture applied as opposed to a large
number of red colored rectangles for each brick in the wall.

Elements of data in a texture are called texels. These are similar to pixels in that they
have a format and a type. The format describes how many data values are stored for each
texel. For instance, a texture of the format RGBA stores four values per texel. Table 2.2
(Woo, 1999) shows valid values and the definitions for texel (usually a new term is only

italicized the first time it appears) formats.
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COLOR_INDEX a single color index

RGB red, green, blue

RGBA red, green, blue, alpha

BGR blue, green, red

BGRA blue, green, red, alpha
ALPHA a single alpha component
LUMINANCE a single luminance component
LUMINANCE ALPHA luminance, alpha

Table 2.2 Common texel formats and definitions

For each texel, a data type must also be specified. The data type specifies how much
data is stored per component. This, combined with the format, determines how much
memory the texture will use on the GPU. Valid texel data types are similar to data types in

C++. Table 2.3 (Woo, 1999) lists some common data types and their meanings.

UNSIGNED BYTE unsigned 8-bit integer

BYTE signed 8-bit integer

INT signed 32-bit integer

FLOAT single-precision floating point
UNSIGNED INT unsigned 32-bit integer

Table 2.3 Common texel types and definitions

2.6.2 Other uses for textures
As GPUs become more efficient, developers are finding more uses for textures. A
common usage is to store pre-calculated information that can later be accessed in a shader.

An appropriate type and format are chosen based on the accuracy desired for the application.
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For a CFD application, a three-dimensional texture can be used to store the property data. A
scalar texture, for example, could be stored in a texture format of RGBA. The actual values
could be preprocessed to map between the minimum and maximum magnitude values. If the
texture data type is UNSIGNED BYTE, valid values for texture data are [0,255]; therefore
the original data must be transformed so that the minimum magnitude maps to 0 and the
maximum magnitude maps to 255. Equation 1 is an equation for such a mapping, where d, 1s
the calculated data of type UNSIGNED BYTE and d is the original scalar data value. The
variables min and max correspond to the minimum and maximum magnitude scalar value

data values.

d, =255%(d — min)/(max— min) 0))

The newly created values are then used as input to a user-defined color look-up table
to get the three values for each of the color components. The alpha component can be
constant or it can be determined by a similar look-up based on a user-defined function for
opacity. The resulting RGBA vales are stored in the texture and can be directly visualized in
a standard volume visualization algorithm (Wilson, 1994).

2.7 Volume visualization of three-dimensional textures

Visualizing volumetric data can be approached in several ways. Researchers
introduced a common approach that harnesses texture hardware on GPUs to accelerate the
visualization process to interactive speeds (Cabral, 1994). The texture-based algorithm was
shown to produce rendering speeds 100 times faster than a CPU-based algorithm. The

algorithm renders polygons whose normal vector is parallel to the view direction textured
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Chapter 3: A texture-based framework for VE-Xplorer

Developing a texture-based framework for VE-Xplorer requires the following:
1. The dataset must be converted into a suitable texture format.
2. The texture dataset must be managed efficiently during runtime.
3. The visualization of the dataset should be represented as a scene graph node.
4. Analysis techniques for the texture-based representation of the dataset should be
comparable to current techniques.
With these requirements in mind, a proposed texture-based framework is described.
The purpose of the framework 1s to complement and possibly enhance the current
framework.
3.1 Representing the CFD dataset as a texture: Preprocessor
Before discussing the proposed framework, the process of generating the texture files
representing the CFD data is described. The approach currently implemented is strictly used
as a “first pass” effort and is by no means the most efficient or most effective. It should be
noted that the implementation of the preprocessor is independent of the visualization of the

data.

3.1.1 Texture file
The first step toward developing a texture-based framework for VE-Xplorer is to
represent the CFD as a texture. The approach taken here is to convert the original dataset into
a texture file that can be loaded during initialization of VE-Xplorer. The file contains some
pertinent information for building and managing the texture at runtime:

1. Field type =» This is either “s” (scalar) or “v” (vector field).
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2. Data range =¥ This is the valid range of values for the field. If the field is a vector,

these values correspond to the range of magnitudes of the vector field.

3. Bounding box =» These values represent the bounding box of the CFD dataset.

4. Texture resolution =» These values are the x/y/z resolution values of the texture.

5. Data values =» Stored data values for the field.

If the field is a scalar property, one float precision value is written to the file per texel. A
vector field stores four float precision values per texel (x,y,z,magnitude). Vector values
(x,y,z) are normalized so that values are in the range [-1.0,1.0]. The (x,y,z) values are then
transformed to map the values between [0.0,255.0] '. These values are written to file along

with the magnitude.

3.1.2 Preprocessor algorithm

The creation of the texture file is not as straightforward as mentioned above. There
are some restrictions to the definition of a valid texture that limit how information can be
stored in a texel. First, a texture is simply an array of texels, a “brick-type” structure. Most
CFD datasets are unstructured grids and contain various cell shapes and sizes. Textures
themselves do not have a concept of shape; they are simply data. The general correlation
between a CFD dataset and a texture is similar to mapping an unstructured dataset to a
structured dataset. ldeally, a transformation could be found to map the unstructured data into
texture space, similar to grid generation techniques that transform the original grid into
computational space. This type of transformation is specific to each dataset and unless the

mapping is known beforehand, requires a new transformation for each CFD dataset.

" Depending on the format, texture data should be zero or positive. The quantizing equation used s :
dy=255%((d, + 1)*.5)
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The approach taken here is a simple (not necessarily the best) resampling of the
original field at equidistant points within the bounding volume of the dataset. This removes
the requirement calculating a transformation.

The algorithm first reads the dataset and collects the names and number of each scalar
property and vector field in the dataset. Then an octree of the dataset is constructed to
quickly to locate the cell within the dataset that is closest to the re-sampled point. After the
octree is created, a true/false structure representing the sampled data point location relative to
the valid dataset domain is constructed. Each re-sampled point that is in or on a cell boundary
within the dataset boundary is flagged as “true.” If the point is outside of the dataset domain,
the point is marked as “false.” This structure is later used to determine if data should be
resampled at the point.

Figure 3.1 describes the algorithm for creating the true/false structure. The octree is
constructed and the bounding box information is obtained from the dataset. Spacing for each
sample point is calculated based on the requested texture size and the corresponding
bounding box dimension for the dataset. The point for the lower comer of the bounding box
1s set as the starting texel.

Once the true/false structure is created, the dataset is then traversed and sampled for
each scalar and vector of the dataset, using the true/false structure to effectively neglect
interpolating values for points marked as “false” texels. Data for texels that are marked as
“false” 1s set equal to zero. If a texel is marked as “true,” the cell containing our sample
point is located. The point is then evaluated based on its location within the cell. The
weights calculated determine how much the data at each cell vertex affects the sampled

point. The data stored in the texel is the sum of the weighted data values at each vertex, as
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shown in equation (2), where 7 is the data stored for a texel, w is weight for cell vertex 7, and
d 1s the original data value for the property at vertex i.

nlerts

r= Y wiy*d(i) ()

i=0

The algorithm uses VTK for most operations described, such as creating the octree,
evaluating sample point location within cells, and calculating weights for interpolated data.

This above approach is good for datasets in which the bounding box is filled with
cells containing data. However, if the unstructured dataset has a small, concentrated volume
of cells with non-zero data relative to the total volume of the bounding box, the texture
produced will not contain enough data for effective analysis. Alternative approaches for

creating the sampled texture are left for later discussion.
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createTrueFalseStructure()

f
t

octree = createOctreeFromDataset{datset);
bbox = dataset->getBoundingBox();
delta = (bbox.Min — bbox.Max)/( textureSize -1);

//the bottom corner of the bbox/texture
double pt[3] ={0,0,0};

pt|0] = bbox[0];

pt|1] = bbox[2];

pt(2] = bbox|[4];

numberOfTexels = textureSize|0]* textureSize [1]* textureSize [2];
i=0;

i=0;

k=10;

nX = textureSize [0]-1;

nY = textureSize [1]-1;

nZ = textureSize |2]-1;

//'loop through the bounding box, sampling
for (i = 0;i<numberOfTexels;i++){

pt[2] = bbox[4] + k* delta |2];

pt[1] = bbox|2] + j* delta [1];

pt|0] = bbox|0] + (i++)* delta [0];

//check if the point is in a valid cell in the domain
if(octree ->isinCelllnDataset(pt)== true)
trueFalse[i} = true
else
trueFalse[1] = false

//increment counters to step through bbox
if(i > nX){
i=0;
it
if(j >nY){
j=0;
K ++;
iflk > nZ){
k=0;

Figure 3.1 True-false sampling algorithm
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3.2 Managing texture files at runtime: cfdTextureManager

During runtime, an interface is needed to manage the created texture data. Upon
initialization, the texture file must be read and the appropriate information extracted. During
runtime, the texture data should be easily accessible so that changing texture data in the
visualization is efficient. A so-called “texture manager” handles these issues in the following
manner:

1. The texture manager reads files representing the texture data and stores pertinent
information describing the texture and the CFD data represented by the texture file.

2. The texture manager can store information for multiple texture files.

3. The texture manager converts data read in the file into an UNSIGNED BYTE format
that 1s readily accessible for use in texture memory.

4. In the case that a texture manager contains data for more than one data field (i.e.,
transient data), the texture manager is responsible for determining the “current field”
to display.

The texture manager APl implementation is shown in Appendix A. It should be
noted that the texture manager is responsible for managing the texture data, not visualization
of the data.

3.3 Visualization of 3D textures in VE-Xplorer: cfdVolumeVisualization

A scene graph representation of volume rendering was developed using the concept
as described earlier. The volume visualization node handles all aspects of visualizing a
texture manager and is the basis for the proposed texture-based framework. The volume
visualization node creates the appropriate polygons for “slicing” the texture data. The

parameters for mapping the texture to the slices are also managed by the volume
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parameters for mapping the texture to the slices are also managed by the volume

visualization node. The volume visualization node also provides the basic interface for

interacting with the visualization, such as creating contours via clipping planes.

3.3.1 Volume visualization scene graph structure

Figure 3.2 depicts the basic scene graph structure of the volume visualization node.
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Figure 3.2 Scene graph structure of volume visualization node
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Some explanation is required for the graph depicted in Figure 3.2. The root node is
actually a switch node, which is a group node whose children can be switched off or on.
Child nodes that are “off” are skipped during traversal. Nodes that are “on” are traversed as
well as all of the root node’s child nodes. The root switch node has one child, a group node
containing the state describing the three-dimensional texture to be visualized. The texture
property node has one child, a group node that contains the information for mapping the
texture to the polygon slices appropriately. The “decorator node” is actually just a group
node that serves a special purpose. If effects such as shaders are to be added to this
visualization, the decorator node is used to bypass the predefined state held by the texture
property node. By adding the desired effect as a child of the root switch node and attaching to
the decorator node, the original visualization is kept intact but can be bypassed during
traversal. This setup allows for switching between effects by simply setting the switch to the
appropriate value. Figure 3.3 depicts a graph with a shader state added to bypass the original
state of the volume visualization node. Multiple effects can be added and toggled in a similar
fashion.

The decorator node has a single child, which holds the clipping planes. These planes
are created and manipulated when the user requests a contour plane in the dataset. Finally,

the actual geometry that *“slices” the texture data is added as a child of the clip plane node.
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Figure 3.3 Volume visualization scene graph with a shader szare added to
by-pass the original state.

3.3.2 Visualization of the texture
As stated earlier, the texture manager is solely responsible for managing the texture data.
The volume visualization is realized by setting a texture manager as the texture data. Once
the volume visualization is created, a texture manager is set and the data is read from the

texture manager. The key to efficiently switching textures is the ability of the OpenGL API
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to allow the data in a resident texture to be switched without recreating the memory for the
texture. This is done by a call to glTexSublmage*() (Woo, 1999). The only requirement is
that the data replacing the original texture data fit within the dimensions of the original data.
For example, if the original texture data has dimensions 128,128,128, valid sizes for the data
replacing the original data can be no greater than 128 in each direction but can be as small as
2. As long as the texture data supplied for updating the visualization fits these
requirements, switching data is valid and a new texture need not be created. The
implementation API of the volume visualization node is listed in Appendix A.
3.4 Managing datasets: cfdTextureDataset
With scene graph representation in place, the volume visualization and associated texture

managers need to be organized into a structure containing all the information associated with
the equivalent CFD dataset and methods for accessing the visualization. The texture dataset
hc 1s the following:

1. A single volume visualization node.

2. A texture manager for each scalar in a dataset.

3. A texture manager for each vector in a dataset.
The texture dataset provides an interface for the following:

1. Methods for setting a specific scalar or vector on the volume visualization.

2. Methods for retrieving the volume visualization associated with the particular

dataset.

The texture dataset APl implementation is listed in Appendix A. It should be noted

that for a particular property of the flow field, scalar or vector, a single texture manager holds

all the texture data. For instance, if a solution has density and velocity magnitude as two of
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its scalar properties, two texture managers in the texture dataset contain the data for each of
the properties. With this implementation, switching properties only requires switching the
active texture manager for the volume visualization, which in effect calls
glTexSublmage3D(). This applies for steady state as well as transient datasets.
3.5 VE-Xplorer interfaces for texture-based framework
The requirements to plug the texture-based framework into VE-Xplorer were
mentioned previously and discussed in Chapter 1. They are restated here for clarity:
1. Parameter file block and a corresponding object ID

2. Visualization handler for user commands and interacting with the scene graph

3.5.1 Parameter file texture-based block description

The next available object ID, 15, is chosen to represent the texture dataset object. The
block contains at least two information parameters for creating the texture dataset: the
number of properties in the dataset and, for each property, a property texture file.

The first parameter of the property texture file is the actual number of texture files
preprocessed for the property. The second parameter is a string, which is used for searching
through properties of a dataset at runtime. The next parameters in the file are strings
containing the name and location each of the texture files for the property. Figure 3.4 lists an
example texture dataset block in a parameter file. Currently, the property texture files are
manually created after the preprocessor is run. This process will eventually be moved to the

preprocessor.
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15 /ltexture dataset ID
6 /Inumber of property texture files
JCO.txt /1 property texture file for CO
Jgas_temp.txt  // property texture file for gas_temp
JH2.txt 1/ property texture file for H2
JH20.txt /1 property texture file for H2O
JO2 txt /Il property texture file for O2
/u_mag.txt Il property texture file for u_mag

Figure 3.4 Texture dataset parameter block

3.5.2 Texture-based visualization handler

The visualization handler for texture-based datasets manages all communication from
the user that involves the texture dataset. The texture-based visualization handler is
responsible for manipulating the volume visualization via the texture dataset interface.
Currently, new commands are not added to the interface. However, the texture-based handler
intercepts the currently available commands and interprets them appropriately for the volume
visualization. For example, if the user issues a command to generate a contour plane, the
texture-based handler interprets this command as the position for adding a clipping plane,
effectively exposing the interior of the volume that correlates to the contour plane. The API

implementation of the texture-based visualization handler is listed in Appendix A.
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3.6 Application in VE-Xplorer

Thus far, application of volume visualization, and hence a texture-based framework,
have only been described. The framework is simply a basis to build upon. A simple
application would use the volume visualization as is and simply view scalar CFD data as a
volume rendering. The advantages, such as transient data handling, are enough to merit using
a texture-based framework. For example, the only geometry required for volume rendering of
the data are the “slicing” polygons. These are created once a texture manager is set for a
texture data set. To generate the standard contour plane, a clip plane is added at the desired
location. The result is instantaneous because the graphics thread, and therefore the dataset
query and the creation of new geometry, of the general visualization method is eliminated.
The process for transient is the same. The texture manager inherently handles switching the
underlying texture data based on a timing algorithm and a user-specified “delay time.” The
delay time simply sets the amount of time to wait before switching the texture data in the
texture. Because the graphics are not generated during the query, no delay in visualization
updates is evident.

Although the framework is beneficial in its current state, shaders should be used to

enhance and take full advantage of its visualization capabilities.

3.6.1 Extended applications
Fragment programs, or shaders, are programs that are run on the fragment processor
of the GPU. These programs are used to output the color of a fragment as they are processed
for each graphics object in the scene. Fragment shaders allow the developer to control how

the color of each fragment is calculated. Until very recently, fragment programs were not
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easily accessible for the average developer because no high-level language existed to support
such programs. Most previous shader work was done in an assembly-type language.
Fortunately, the demand for easy access to shaders has led to development of high-
level shader languages such as Nvidia’s Cg (C for graphics). OpenGL’s architecture review
board has even approved a shading language for its standard, OpenGL Shading Language.
These types of languages and the APIs associated with them have led to many extended

applications using shaders. A simple fragment program is listed in Figure 3.5.

struct f2app{

float4 color : COLOR;

b

//simple shader to look up texture value in a 3d texture
f2app fp_volume(floatd color : COLOR,
float3 texCoord: TEXCOORDO,
uniform sampler3D volumeData)
S
1
f2app retColor;

//look up the value in the texture
retColor.color = tex3D(volumeData,texCoord);
return retColor;

]

!

Figure 3.5 Simple fragment program that applies a texture to
the incoming fragment using a texture look-up.

The fragment program listed is written in Cg. At first glance, the program looks very
similar to a C program. The syntax is very similar with only a few exceptions (Nvidia,
2004). The struct at the top of the file is simply defined to hold the color returned to the

application from the fragment program, hence the name f2app. The program declaration



38

syntax 1s similar to a C function. The program will return an f2app struct. The parameters
passed in are:

1. float4 color:COLOR =¥ float4 is a vector type of four float variable, similar to an
array in C. The “:COLOR” following the variable is a binding semantic
(Nvidia,2004) binding the variable color to the interpolated color.

2. float3 texCoord: TEXCOORD=> float3 is a vector type of three float variable. This
time the “:“ TEXCOORDO0” is a binding semantic that binds texCoord to the
interpolated texture coordinated associated with the first texture unit’.

3. uniform sampler3D volumeData =» uniform is a type qualifier meaning that this
variable cannot be modified by the shader. sampler3D identifies the texture. There
are similar types for one- and two-dimensional textures. Textures are uniform as
they cannot be modified by the shader. volumeData is the variable actually
representing the texture data.

To begin, the program defines an f2app instance, retColor, to store the return color.
The next call, tex3D () 1s used to look up a value in the three-dimensional texture,
volumeData, at texCoord. The value returned from zex3D () is then stored in the member
color of retColor with syntax similar to C. Finally, retColor is returned.

Of course, this is a simple program. A more complicated program could be written to
enhance the visualization. For example, if the input texture represented a scalar property
from our CFD dataset, an enhancement shader could be written to brighten certain ranges of

scalar values and dull out others. This is usually done through the use of transfer functions.

* OpenGL allows the user to specify multiple textures for a single primitive to achieve special effeets. This is
referred to as multi-texturing { Woo, 1999).
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3.6.2 Enhancing volume visualizations via transfer functions in shaders

Effective volume visualizations involve the use of transfer functions. By storing
single scalar values in an ALPHA texture, transfer functions can be used to map input values
to a color and an opacity value. There is quite a bit of research based on developing effective
transfer functions, some of which is based on curvature (Hladuvka, 2000) or even the image
itself (Fang, 1998). A simple example of a one-dimensional transfer function is a ramp that
increases the input value by a gamma correction factor and linearly ramps the opacity so that
as the value goes up, the opacity increases. This ramp function can be stored in a one-
dimensional LUMINANCE ALPHA texture, where the luminance value holds the value for
the brightness and the alpha value holds the opacity. Figure 3.6 shows a simple function for
calculating the transfer function values. Note that this algorithm would be implemented in the
software to provide an interface for updating the transfer function. The shader would then

access the updated transfer texture for use.
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gammaTransferFunction(double gamma)

s
l

unsigned char luminance [256];
unsigned char alpha[256];

//gamma table
double gTable[256];

y=0;
//calculate the gamma table
for (int i=0; i < 256; i++)

{
i

y = (double)(1)/255.0;

y =pow (y, 1.0/gamma);

gTable[i] = (int) floor(255.0 * y + 0.5);
}

for (int i = 0; i <2565 i++)
s
3
luminance [1] = (unsigned char)gTable[i];
alpha[i] = (unsigned char)i;
}
b

Figure 3.6 Simple gamma correction transfer function

For the transfer function, the user adjusts the value of gamma. This affects the
brightness of the input value. The alpha values are fixed for this transfer function but could
just as easily be made adjustable by passing in another parameter to the function. To exhibit
how transfer functions combined with shaders can be useful in volume visualization, the
fragment program of Figure 3.5 is modified to include the gamma correction transfer
functions. The input texture volumeData is of the format ALPHA. It holds a single value
representing the scalar. The transfer functions are stored in one-dimensional

LUMINANCE ALPHA, UNSIGNED BYTE textures.
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struct f2app{
float4 color : COLOR;

I

//simple shader to look up texture value in a 3d texture
f2app fp_volume(float4 color : COLOR,

float3 texCoord: TEXCOORDO,

uniform sampler3D volumeData,

uniform sampler1D transferFunction)

f2app retColor = float4(0,0,0,0);
float4 lookUpValues;
float4 redFrag;

//look up the value in the texture

lookUpValues = tex3D(volumeData,texCoord);

//use the look up values as input to the transfer function
redFrag = tex 1 D(transferFunction,lookUpValues.r);
//set the brightened red value

retColor.color.ra = redFrag.ra;

retColor.color.gb = lookUpValues.gb;

return retColor;

——

Figure 3.7 Fragment program exhibiting usage of transfer
functions.

The program input parameters are modified to read the one-dimensional texture
storing the transfer function, transferFunction. Two new variables are declared within the
shader. A float4 lookUpValues holds the values in the three-dimensional texture, which 1s
our original data, and a float4 holds our calculated red fragment color redFrag. Instead of
using the values returned from the original volumeData texture as the final color, the transfer
function 1s used to create a red fragment. This is termed as dependent texture look up because
texture coordinates are not explicitly specified for the transfer function texture. Instead, the

coordinates are dependent on values read from another texture or calculated within a shader.
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The transfer function returns a value for the red component and an alpha value.
These are then stored in the return color. The notation “.” is a convenience operator defined
in the Cg nguage as a swizzle operator. The swizzle operator acts on the specified
components. For instance, for a floar4, the valid components are 0-3. These are specified as
"XYZW” or “RGBA” when used with the operator. X corresponds to the first component, y
to the second, and so on. Similarly, r corresponds to the first component, g to the second, and
so on. Since the one-dimensional texture takes a one-dimensional value as input, a float as
opposed to a float3, lookUpValues.r is used as the look up value in the transfer function
texture.

A transfer function could be defined for each color component to separately control
the appearance of the final visualization. The user could then adjust the transfer functions
during runtime to highlight specific ranges of scalar values.

Figure 3.8 shows some simple effects that can be achieved by using shaders on
scalars of a fictional dataset. Figure 3.8 (a) shows the volume rendered without shaders.
Figure 3.8(b) shows the same volume rendered using a shader that simply replicates normal
volume visualization via shaders by blending the alpha value of the texture with the alpha
value of the incoming fragment. Figure 3.8(c) shows the same volume with the shader
modified to remove blue components, corresponding to low magnitude values, from the final
display image. Finally, figure 3.8(d) is a rendering of the volume with low magnitudes
removed and high (red component) gamma corrected. The effect is that red and yellow areas

of the volume are brightened.
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l (a) Normal rendering (b) Shader alpha blending

(¢) Low magnitude removed (d) High magnitude brightened

Figure 3.8 Simple effects on a scalar data set using shaders

3.6.3 Managing states in the scene graph
When discussing scene graph managing APls, state refers to the properties, such as
color, that can be active when geometries are rendered. Properties that can also be modes
such as equations for blending, texturing, lighting, shaders, etc. are all such properties in a

state. Until a state is changed, it remains in effect. For example, if a texture is defined as an
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active state for drawing, ecach object that is rendered after the texture is activated is rendered
with that texture until it 1s deactivated.

Scene graph APIs allow a developer to efficiently manage different states in a single
graph. To apply a state to a certain node in the scene graph, the state must be set to the node.
In the volume visualization node, the node labeled ““texture property node” is actually a
group node with a state containing the texture. It is important to note that in scene graphs, if a
parent node has a state defined, its children will inherit that state unless it is specified to be
overridden or ignored. This allows the switch structure to selectively apply any added effects
to geometry by switching the geometry’s parent node structure.

3.7 Adding shaders to the volume visualization node

Referring to Figure 3.3, the volume visualization node’s structure provides a simple
interface for adding “decorators,” or effects, such as shaders. Adding a shader such as the
transfer shader described in 3.5.2 requires components to do the following:

1. Create the shader state.

!\)

Create the group node for owning the shader state.

j98)

Add the group node to the volume visualization node graph.
To accomplish these tasks, two interfaces are developed: a shader manager and a

visualization node handler.

3.7.1 Shader manager
The shader manager is an interface that creates a state containing the shader. The
manager initializes the state from the actual file and creates the necessary properties for the
shader. As an example, the transfer shader described in Figure 3.7 requires two textures from

the application, a one-dimensional texture for the transfer function and a three-dimensional
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texture holding the scalar data. The shader manager is responsible for creating these textures
and setting them on the state, which is the shader. Since the shader parameters will difter for
different shaders, the shader manager is customizable via C++ inheritance. The
implementation of the base shader manager class is listed in Appendix A. An example

implementation of a derived shader manager for the shader generating Figure 3.8 is listed.

3.7.2 Volume visualization handler

The volume visualization handler creates the group node containing the state that
describes the shader to be added to the volume visualization node. The volume visualization
handler is also responsible for adding the shader group node to the graph. This interface is
also customizable, via C++ inheritance, so the developer can create different effects as
needed. The implementation of the volume visualization handler is listed in Appendix A
along with the derived visualization handler used for generating Figure 3.8.

3.8 Vector visualization: Texture advection

So far, only scalar investigative methods have been discussed for the proposed
framework. The framework is based on visualizing a property of the flow, which directly
correlates to scalars but not to vectors. To integrate vector analysis tools in the proposed
framework, texture advection methods could be utilized. Texture advection methods
transport a collection of particles represented by a property texture, according to the vector
field. The path a particle travels due to the vector field can be described by the ordinary

differential equation:

IO _ iy @)
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The variable r (f) represents the path of a particle at an instance of time 7, and u(r, ¢)
is the vector field (Weiskopf, 2004). A first-order backward difference explicit Eulerian

scheme (Tannehill, 1997), applied to Equation (3), yields the equation for particle positions:

Kt — At = r(t) - Au(r(t),t) @

The actual positions of the particles, r, are represented in texture advection schemes by the
texture coordinates, ¢, of the property texture, 7(c). To solve for the property texture 7 at a
given time, Equation (4) is applied to the texture coordinates and the property texture to

yield:

Tt (C) = TI—AI (C - ASV, (C)) ®)

In Equation (5), 7, represents the property texture at the current time step while 7.4,
represents the property texture at the previous time step. As corresponds to the size of the

time step in texture space and v, is the vector field at an instance in time (Weiskopf, 2004).
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Figure 3.9 Texture advection

Figure 3.9 depicts the basic idea of texture advection. To calculate the value stored in
the property texture at the current time step, Equation (4) is applied to the original texture
coordinates of the current property texture yielding advected coordinates. These coordinates
represent the location of the property before the advection due to the vector field. The
advected coordinates are used to look up the property values from the previous time step. The
property values are then stored at the new location (the original texture coordinates) in the
property texture of the current time step.

Texture advection methods such as line integral convolution (LIC) (Cabral, 1993),
Lagrangian-Eulerian advection (LEA) (Jobard, 2002) and image-based flow visualization
(IBFV) (van Wijk, 2002) are restricted to two-dimensional fields. IBFV combines the
effectiveness of particle injection and dye advection-type investigative techniques at

interactive frame rates for steady and unsteady flow fields. For each time step, the vector
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GPU-Based 3D Texture Advection (Weiskopf, 2004) expands on 3D-IBFV by
implementing the advection calculations in shader programs, storing the vector field in a
three-dimensional texture, therefore eliminating the z component restriction of 3D-IBFV.
This algorithm maps Equation (5) directly to a shader program that calculates texture
coordinates for a dependent texture lookup in the property texture from the previous time
step. This is done in a single pass of a z “slice” of the property texture to achieve interactive

frame rates.
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Chapter 4: Results

In this chapter, various datasets are compared in the texture-based framework with
the current framework of VE-Xplorer. The CFD visualization application used is VE-Suite’s
VE-Xplorer. All runs were done on a Windows XP machine with a 3.0 gigahertz Intel
Pentium 4 processor with 512 megabytes of random access memory and an Nvidia 5200FX
graphics card, with 128 megabytes of memory, supporting OpenGL 1.5.

4.1 Scalar datasets

The following dataset is used to test basic visualization techniques of VE-Xplorer.
Figure 4.1 shows the dataset with no cutting planes specified. Note that the picture shown in
(a) 1s actually a cutting plane specified at x = 0. For the initial visualization of the current
framework, a cutting plane must be specified; otherwise a visual representation of the dataset
is not available. In contrast, (b), the texture-based version, shows the entire volume on initial

viewing.

(a) Current framework (b) Texture-based framework

Figure 4.1 Initial dataset viewing of a scalar dataset for both frameworks.
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(a) Current Framework (b) Texture-Based Framework

Figure 4.2 Rotated x contour plane visualization at x = .5*xmacx.

Figure 4.2 shows standard contour plane visualization in (a), the current framework, and
(b), the texture-based framework. The visualization is rotated approximately 45 degrees
about the z-axis from its original orientation. This comparison shows the basic difference in
the contour plane engineering analysis technique for the two frameworks. The current
framework generates an actual plane at a user-specified position, whereas the texture-based
framework cuts through the volume at the user-specified position, exposing the interior of the

volume corresponding to the contour plane, leaving the rest of the volume intact.
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Figures 4.3 and 4.4 are similar comparisons of contour plane visualizations in the
current framework and the texture-based framework. Figure 4.3 displays y contours and 4.4

displays z contours.

(a) Current Framework (b) Texture-Based Framework

Figure 4.3 y contour plane visualization at y = .5*ymax.

(a) Current Framework (b) Texture-Based Framework

Figure 4.4 z contour plane visualization at 7 = .5*gmax
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Figure 4.5 shows the same scalar dataset with multiple contour planes. The three

planes are located at 50% of the maximum value of the bounding box dimension.

(a) Current Framework (b) Texture-Based Framework

Figure 4.5 Three contour planes at 50% along each axis.

Two differences in the visualization are apparent. First, the colors of this dataset seem
to be different. The green and yellow areas in the texture dataset are a result of the
transformation of the scalar values to the RGBA values, via the linear red-blue lookup table,
resulting in a smoother transition of the colors from high to low magnitude. The blue region,
representing low magnitudes, is barely visible in the texture-based version whereas it is a
dominant feature in the current framework.

The second difference is the actual visualization itself. For the current framework,
two-dimensional planes are used to represent various contour planes. The perception of depth
of the dataset can be lost, making the visualization confusing. Intersections of multiple

contour planes can give a misrepresentation of the actual data that 1s present.
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In the texture-based framework, the visualization exposes the interior of the volume
at the specified contour locations, leaving the rest of the volume intact. The perception of
depth is not distorted, even with intersecting contour planes, as can be seen in the figures 4.2-

4.2 Transient scalar datasets

The dataset used in this comparison is a rectilinear grid of dimensions 200x120x120,
simulating a celestial formation. The textures representing the scalar properties in the dataset
are of the dimensions 128x128x128. There are currently twelve total time steps, each
containing data solutions for the four scalar properties and the two vector fields listed below:

1. Velocity magnitude =»scalar

2. Magnetic field magnitude=»scalar
3. First internal energy =»scalar

4. Density=»scalar

5. Velocity field=¥»vector

6. Magnetic field=»vector

The entire transient solution cannot be processed under the current framework. Also,
for interactive frame rates, the contour planes must be pre-computed before loading the
dataset into the application, but not all time steps for all solutions can be loaded
simultaneously for investigation. The texture-based framework loads the entire dataset and

scalar analysis methods, specifically contour planes, are achieved at interactive frame rates.
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Figure 4.6 shows various time steps of the dataset for the velocity magnitude with a 'y

contour plane.

(a)r=1 (byr=4

(c)71=8 (d) =10

Figure 4.6 Velocity magnitude of a transient dataset at various time
steps with a contour plane at y =.35*ymax
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Figure 4.7 shows the magnetic field magnitude of the same dataset with the same y contour

plane as Figure 4.6.

(a)r=1 (byr=4

(c)r=8 (dr=10

Figure 4.7 Magnetic magnitude of a transient scalar dataset at various time
steps with a y contour plane at y = .35*ymax

The property textures for the two remaining scalar properties, first internal energy and
density, did not produce visualizations. This is due to the current implementation of creating

the RGBA values for the texture. As discussed in Chapter 3, the minimum and maximum
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scalar values of each property are linearly mapped to a red-blue color lookup table. If the
values are concentrated in the low end, the algorithm returns black pixels and an opacity
value close to zero. If the values are concentrated in the high end, the algorithm returns
mostly red pixels that are opaque. Improvements for this problem could easily be overcome
by implementing some simple shaders, representing various transfer functions, and are
discussed 1n Chapter 5.
4.3 Vector data analysis
For analysis of vector fields, the three-dimensional GPU advection algorithm
presented in (Weiskopf, 2004) is implemented. Currently, this implementation is under
development. To implement this algorithm correctly requires four key components:
1. Pixel buffer rendering for the advection routine.
2. Three-dimensional texture updates via glCopyTexSublmage3D() to update
the property texture one “slice” at a time.
3. A mechanism for swapping textures of the current time step with the
previous time step in a “ping-pong” scheme.
4. Transfer functions to interpret the property texture data into the appropriate
color values for the final visualization
The proposed framework successfully implements the pixel buffer, or pbuffer,
(Wynn, 2001) and the accompanying shader for implementing the advection. The framework
also properly updates the property texture for the current time step as well as the “ping-pong”
scheme for the animation updates.
The basic algorithm for visualization begins by rendering a quad off-screen. The off-

screen rendering accesses the advection shader and draws the quad with values representing
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the results of the advection algorithm on the property texture of the previous time step.
These values are then copied to the property texture of the current time step for the
appropriate z elements of texels. This process is repeated for each “z slice” of texels for the
property texture for the current time step.

The updated property texture is then volume rendered. A transfer function shader 1s
applied to the rendering to allow the user to adjust the visualization during runtime. Finally,
“ping-pong” of the two property textures occurs to prepare for the next time step. To “ping-
pong” simply means to switch the rolls of the two textures, making the current property

texture the previous property texture for the next time step.

4.3.1 Noise injection

Because the entire celestial dataset could not be loaded in the current framework, a
fermentor data set 1s used for vector analysis comparisons. The dataset contains 12 total time
steps. The 10" time step is being visualized below. The fermentor geometry contains three
internal rotating propellers aligned along the z-axis. The two dataset property textures for the
“ping-pong” of the algorithm have a resolution of 128, as does the velocity field texture.
The noise particle injection texture has a resolution of 32° and is repeated, or tiled, to cover
the entire domain of the flow field. Scaling can be applied to the injection texture
coordinates to modify the density of the particles within the flow field.

Figure 4.8 shows the fermentor dataset, comparing (a) the current visualization
technique to (b) the texture advection algorithm (Weiskopf, 2004) integrated in the proposed
framework. The current technique displays a plane of vector glyphs at grid points in the
dataset. The glyphs are colored by magnitude and can be scaled by the magnitude. The user

1s also able to adjust the number of glyphs displayed and the size, if desired. The advection
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Although these visualizations are similar, the advection visualization combines depth
with motion to provide an intuitive general description of the field, while the glyph version
can be harder to interpret due to its two-dimensional nature.

The advection algorithm inherently causes a slowdown in overall navigation and
performance of the application compared to the vector glyphs as noted by (Weiskopf, 2004),
but applying visualization techniques such as streamlines and cutting/contour planes causes
no performance penalties. Interactive frame rates are still achieved but navigation is

noticeably slower.

4.3.2 Streamlines

As mentioned, streamlines are generated naturally in texture advection algorithms.
The current framework uses an external library to generate geometry representing
streamlines. This is done in the software and causes the application to become non-
responsive to user input while the streamlines are being calculated. Results are similar to the
advection algorithm, but it is time consuming to generate streamlines representing interesting
flow patterns. There is also an element of “trial-and-error” when generating streamlines in
the current framework because interesting flow patterns are only detected if the user selects
an appropriate seed point.

The advection algorithms, however, simply advect a “‘dye’ material as another
property, creating the visualizations of streamlines or streak line. Figure 4.9 shows the
fermentor dataset with a dye emitter placed at various locations in the flow along with noise
injection. The dye is modeled by a small, cube-shaped, three-dimensional ALPHA texture
which represents the amplitude of the dye, as in (Weiskopf, 2004). A simple transformation

is used to change the location of the dye and can be scaled by the user without a performance
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hit. This allows the user to freely explore the flow field without having to guess at seed

points to pick up interesting aspects of the field.

(a) Dye inject in upper left corner (b) Dye injected near the center

Figure 4.9 Texture advection with a red dye and particle injection in the texture-
based framework.

Figure 4.9 shows the texture advection visualization with a red dye injected at (a) [.1,
.35, .9] and (b) [.5..35,.5]. The emitter was relocated real-time without causing a delay, or
pause, in the application response. The dye clearly shows the rotation in flow field but is
partially occluded by the particle injections. A complete implementation of Weiskopf’s
algorithm allows the user to adjust the amount of particles injected from the GUI, but this
implementation is left for future work due to time constraints. However, the particles can be
completely removed from the visualization leaving only the dye injection as shown in Figure
4.10.

Figure 4.10 shows the same dye injection as Figure 4.9 (a) from various view

locations without the particle injections. The three-dimensional dye allows easy location and
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visualization of interesting flow patterns without the “trial-and-error” methods of seed point
placement in the current framework.
Figure 4.11 shows different views of advected dye when the emitter is placed at an

“interesting” position in the fermentor flow field.

Figure 4.11 Interesting flow pattern visualized by texture advection of dye in
the fermentor dataset.
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Chapter 5: Conclusions and future work

A basic framework for integrating texture-based techniques into a scene graph-based
CFD visualization application, VE-Xplorer, has been presented. The framework allows the
application to remove runtime dataset access dependencies by visualizing preprocessed three-
dimensional textures representing the dataset. The framework also generally handles any
dataset, steady state or transient, removing time-consuming scene graph management issues
from the current framework. The framework incorporates visualization of standard
engineering scalar data analysis techniques such as contour planes. Hardware shaders are
easily integrated in the framework, allowing enhancements and extensions to scalar property
visualizations.

The framework is also shown to be easily extensible to integrate various texture-
based techniques for analysis of CFD vector data. Progressive algorithms, such as those
implementing texture advection, can be easily integrated in the framework, allowing the
application to stay “up-to-date” with current data visualization techniques. Incorporating
such methods could improve the current vector field analysis capabilities of a CFD
visualization application. Animation and depth add visual queues to the visualization,
providing intuitive insight to the flow field.

Hardware accelerated advection algorithms, such as 3D-GPU texture advection
(Weiskopt, 2004), allow the user to visualize normally time-consuming techniques such as
streamlines nearly instantaneously. Also, by combining interactive exploration techniques
such as dye and noise injection, the user is able to visualize interesting flow field

characteristics on a large and small scale simultaneously.
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5.1 Future work: Preprocessor
As mentioned earlier, to create the textures used as the basis for the volume rendering
and therefore the framework, the preprocessor resamples the original dataset. Although the
framework is not dependent on the preprocessor, improvement can be made to provide better
comparisons to the current framework. The method presented here for resampling is only
effective in specific cases where the data in the dataset is spaced relatively evenly throughout
the bounding volume of the dataset, or the magnitude of the data is evenly distributed
through the range of the magnitude. The “structured” resampling method is purposely chosen
in this work as a “first-pass,” i.e., only to develop. An initial idea for improvement is to
divide the original dataset bounding volume into sub-volumes in the preprocessor to create
smaller sub-datasets in respect to the entire bounding volume. By applying the original
texture resolution to the sub-volumes, the sampling frequency for each sub-volume would be
increased, producing more accurate textures. VE-Xplorer currently supports investigation of
multiple datasets, so the sub-volumes could still be investigated as separated datasets.
5.2 Future work: Transfer functions

In the existing basic framework, any scalar data is read in and converted to RGBA
values in the texture manager. This is a limitation that removes the user’s ability to adjust the
scalar visualizations once the texture is loaded. The problem can be seen in a dataset where
the range of values is large but most of the data values are concentrated in a much smaller
range. This problem is compounded by the preprocessor sampling algorithm problem. A
simple solution to the problem would be to store the scalar data directly in an ALPHA
texture, and then apply a transfer function that returns RGBA values for each fragment based

on a user-adjustable scalar range.
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[so-surfaces currently are not implemented in the proposed framework, but a separate
shader could be written to easily handle this. The shader would read in a scalar property as an
ALPHA texture and use a transfer function that describes the “iso-value” the user desires to
extract. The value in the property texture would be used to perform a dependent texture
lookup in the transfer function. If the value lies in the “iso-value” range of the transfer
function, appropriate RGBA values would be returned; otherwise, the fragment is not
colored. Transfer function development is also needed to fully implement the advection
algorithm presented in (Weiskopf, 2004).

5.3 Future work: Interface

For the proposed framework to be effective, a GUI interface needs to be developed. VE-
Conductor currently handles user communication with VE-Xplorer, so it would need to be
extended. Most of the scalar interaction can be handled through the current interface. As
shader capabilities, mainly transfer functions, are added to the texture-based interface, the
accompanying GUIs will need to be developed. Similar interfaces will need to be developed
for the currently implemented vector analysis algorithm (Weiskopf, 2004). When fully
implemented, the user will be able to inject up to two noise materials and a dye emitter in the
flow field for analysis. The user should also be able to adjust properties of the injection
materials as discussed in the algorithm (Weiskopf, 2004).

5.4 Future work: Multiple scene graphs

The proposed framework is currently implemented in one scene graph APl. VE-Xplorer

currently fully supports visualization in two scene graph APlIs, so the framework should

support two as well.
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5.5 Limitations
The proposed framework has only one limitation: the support for three-dimensional
textures is required. Volume rendering can be accomplished by rendering stacks of two-
dimensional textures, but visualization quality is affected. The current framework does not
support volume rendering via two-dimensional textures simply because most consumer
graphics cards have supported three-dimensional textures since the release of OpenGL 1.2

(current release is 1.5).
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Appendix : Framework interface

The following C++ classes represent the interface developed for implementing the
framework proposed in this work:
1. cfdTextureManager - texture manager class
2. cfdTextureDataset = texture dataset class
3. cfdVolumeVisualizationNode = volume visualization class
4. cfdVolumeVisNodeHandler = volume visualization handler class
5. cfdShaderManager = shader manager class

6. cfdTextureBasedVisHandler = texture-based visualization handler
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cfdTextureManager

#ifndef CFD TEXTURE MANAGER H_
#define CFD TEXTURE MANAGER H
#ifdef VE_PATENTED

#ifdef WIN32

#include <windows.h>

#endif

#include <iostream>

#include <vector>

class cfdTextureManager{

public:
cfdTextureManager();
cfdTextureManager(const cfdTextureManager& tm);
virtual ~cfdTextureManager();

enum DataType{SCALAR,VECTOR};
enum PlayMode {PLAY,STOP};

//add a vector field from a file
void addFieldTextureFromFile(char* textureFile);

void setPlayMode(PlayMode mode){ mode = mode;}
/IforwardBackward == -1 backward
//forwardBackward == 1 forward

void setDirection(int forwardBackward);

//set the current frame
void SetCurrentFrame(unsigned int whichFrame);

float* getBoundingBox(){return _bbox;}
int timeToUpdate(double curTime,double delay);

//get the vector field at a given timestep
unsigned char* dataField(int timeStep) {return_dataFields.at(timeStep);}

//get the next vector field
unsigned char* getNextField(/*int plusNeg*/);

unsigned int getNextFrame();

//get the number of vector fields
int numberOfFields() {return _dataFields.size();}

//the resolution of the fields
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int* fieldResolution(){return _resolution;}

//the current frame
unsigned int GetCurrentFrame();

//the data ranges

float* dataRange(){return range;}

float* transientRange() {return _transientRange;}

DataType GetDataType(int whichField){return _types.at(whichField);}

//lequal operator
cfdTextureManager& operator=(const cfdTextureManager& tm);

protected:
int _curField;
int* resolution;
std::vector<DataType> _types;
float bbox[6];
float range[2];
float transientRange[2];
std::vector<unsigned char*> dataFields;
double prevTime;
int _direction;
PlayMode mode;

IR}
#endif
#endif / CFD _TEXTURE MANAGER H
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cfdTextureDataset

#ifndef CFD_ TEXTURE_DATA_SET H
#define CFD_ TEXTURE DATA SET H
#ifdef VE PATENTED

#ifdef OSG

class cfdVolumeVisualization;
class cfdTextureManager;
#include <vector>

#include <map>

#include <iostream>

#include <string>

class TextureDatalnfo {
public:
TextureDatalnfo();
TextureDatalnfo(const TextureDatalnfo& tdi);
~TextureDatalnfo();
void SetName(std::string name);
void SetTextureManager(cfdTextureManager* tm);

const char* GetName();
cfdTextureManager* GetTextureManager();
TextureDatalnfo& operator=(const TextureDatalnfo& tdi);
protected:
std::string _name;
cfdTextureManager* tm;
|5
class cfdTextureDataSet{
public:
cfdTextureDataSet();
virtual ~cfdTextureDataSet();

void SetActiveScalar(char* name);

void SetActiveVector(char* name);

void SetFileName(char* name);

void CreateTextureManager(char* textureDescriptionFile);

void AddScalarTextureManager( cfdTextureManager*, const char* );
void AddVectorTextureManager( cfdTextureManager®, const char* );

int FindVector(char* name);
int FindScalar(char* name);
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cfdTextureManager* GetActiveTextureManager();

cfdVolumeVisualization* GetVolumeVisNode();
protected:

unsigned int _nScalars;

unsigned int _nVectors;

char* _fileName;

cfdVolumeVisualization* volVisNode;

cfdTextureManager* activeTM;

typedef std::vector<TextureDatalnfo*> TextureDataL.ist;

std::vector<std::string> scalarNames;
std::vector<std::string> vectorNames;
I
#endif
#endif
#endif
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cfdVolumeVisualizationNode

#ifndef CFD_VOLUME VISUALIZATION H
#define CFD_VOLUME VISUALIZATION H
ttdef VE PATENTED
class cfdGroup;
#ifdef PERFORMER
#elif OPENSG
#elif OSG
namespace 0sg
{
class Node;
class Geometry;
class TexturelD;
class Texture3D;
class TexGen;
class TexEnv;
class Geode;
class ClipNode;
class TexGenNode;
class Material;
class Shape;
class Image;
class Switch;
class StateSet;
class Group;
class BoundingBox;

class Billboard;
1

]

class cfdTextureMatrixCallback;

#include <osgUtil/CullVisitor>

#include <osg/TexMat>

#include <osg/Vec3>

#include "cfdUpdateTextureCallback.h"

#include "cfdTextureManager.h"

#itdef CFD_USE_SHADERS

#include "cfdUpdateableOSGTextureld.h"

#endif

class cfdVolumeVisualization {

public:
cfdVolumeVisualization();
cfdVolumeVisualization(const cfdVolumeVisualization&);
virtual ~cfdVolumeVisualization();

enum VisMode {PLAY ,STOP};
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enum Direction{FORWARD,BACKWARD/;
enum ClipPlane {XPLANE=0,YPLANE,ZPLANE,ARBITRARY};

void SetPlayDirection(Direction dir);
void SetPlayMode(VisMode mode);
void SetSliceAlpha(float alpha = .5);
void SetVeboseFlag(bool flag);
void SetShaderDirectory(char* shadDir);
#ifdef OSG
void SetStateSet(osg::StateSet* ss);
void SetState(osg::State* state);
void Set3DTextureData(osg:: Texture3D* texture);
void SetBoundingBox(float* bbox);
void SetNumberofSlices(int nSlices = 100);
void SetTextureManager(cfdTextureManager* tm);
void SetCurrentTransientTexture(unsigned int ct);
void DisableShaders();
void CreateNode();
void AddClipPlane(ClipPlane direction,double* position);
void RemoveClipPlane(ClipPlane direction);
void UpdateClipPlanePosition(ClipPlane direction,double* newPosition);

bool isCreated() {return _isCreated;}
unsigned int GetCurrentTransientTexture();
cfdUpdateTextureCallback* GetUpdateCallback(){return utCbk;}
osg::Vec3f GetBBoxCenter() {return _center;}
float* GetTextureScale() {return _scale;}
osg::ref ptr<osg::StateSet> GetStateSet();
osg::ref ptr<osg::Texture3D> GetTextureData();
osg::ref ptr<osg::Switch> GetVolumeVisNode();
osg::ref ptr<osg::Group> GetDecoratorAttachNode();
cfdVolumeVisualization& operator=(const cfdVolumeVisualization& rhs);
#endif
protected:
VisMode mode;
Direction _traverseDirection;
bool verbose;
bool isCreated;
bool useShaders;
bool volShaderlsActive;
bool _transterShaderlsActive;
unsigned int _nSlices;
unsigned int _tUnit;
float _alpha;
void _create VisualBBox();
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void _createClipCube();

void _buildGraph();

void _createClipNode();

void _createStateSet();

void _attachTextureToStateSet(osg::StateSet* ss);
void _createTexGenNode();

void _createVolumeSlices();

void _buildAxisDependentGeometry();

void _buildSlices();

char* shaderDirectory;
ctdTextureManager* tm;
osg::Vec3 center;
float _transRatio[3];
float diagonal;
float scale[3];

#ifdef OSG

osg::ref ptr<osg::Switch> volumeVizNode;
osg::ref ptr<osg::TexGenNode> texGenParams;
osg::BoundingBox* bbox;

osg::ref ptr<osg::ClipNode> clipNode;

osg:ref ptr<osg::StateSet> _stateSet;

osg::ref ptr<osg::Billboard> billboard;

osg::ref ptr<osg::Group> noShaderGroup;
osg::ref ptr<osg::Group> decoratorAttachNode;
osg::ref ptr<osg::Texture3D> _texture;
osg::ref ptr<osg::Image> image;
osg::ref ptr<osg::State> state;
cfdUpdateTextureCallback®* utCbk;

#endif

fs

#endif//OSG

#endif// CFD_VOLUME_ VISUALIZATION H
#endif
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cfdVolumeVisNodeHandler

#ifndef CFD_VOLUME VIZ NODE HANDLER H
#define CFD_VOLUME VIZ NODE HANDLER H
#ifdeft VE PATENTED

#ifdef OSG

#include <osg/BoundingBox>

#include <osg/ref ptr>

namespace 0Sg

{

class Group;
class Switch;

class TexGenNode;
\
§

class cfdTextureManager;

class cfdVolumeVisNodeHandler {

public:
cfdVolumeVisNodeHandler();
ctdVolumeVisNodeHandler(const cfdVolumeVisNodeHandler& vvnh);
virtual ~cfdVolumeVisNodeHandler();

void SetSwitchNode(osg::Switch* vvn);

void SetAttachNode(osg::Group* attachNode);
void SetCenter(osg::Vec3f center);

void SetTextureScale(float* scale,bool 1sinverted = true);
void SetTextureManager(ctdTextureManager® tm);
void SetBoundingBox(float* bbox);

void SetBoundingBoxName(char*name);

void SetDecoratorName(char* name);

bool IsThisActive();

virtual void Init();

void TurnOnBBox();

void TurnOffBBox();

void EnableDecorator();

cfdVolumeVisNodeHandler& operator=(const cfdVolumeVisNodeHandler& vvnh);
protected:

void _createVisualBBox();

//set up the stateset for the decorator

virtual void _setUpDecorator()=0;

virtual void _applyTextureMatrix()=0;

virtual void updateTexGenUnit(unsigned int unit=0);

void _createTexGenNode();

unsigned int _whichChildlsThis;
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unsigned int _whichTexture;
bool autoTexGen;
cfdTextureManager* tm;
osg::ref ptr<osg::Switch> bboxSwitch;
osg::ref ptr<osg::Group> _visualBoundingBox;
osg::ref ptr<osg::Switch> vvN;
osg::ref ptr<osg::Group> decoratorGroup;
osg::ref ptr<osg::Group> byPassNode;
osg::ref ptr<osg::TexGenNode> texGenParams;
osg::BoundingBox bbox;
osg::Vec3f center;
float _scale[3];
b
#endif //_OSG
#endif// CFD_ VOLUME VIZ NODE HANDLER H
#endif
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cfdOSGShaderManager

#ifndef CFD_OSG_SHADER MANAGER H
#define CFD_OSG_SHADER MANAGER H
#ifdef VE_ PATENTED

#ifdef OSG

#include <osg/StateSet>

#ifdef CFD_USE SHADERS

class ¢fdOSGShaderManager {

public:
cfdOSGShaderManager();
cfdOSGShaderManager(const cfdOSGShaderManager& sm);
virtual ~cfdOSGShaderManager();

virtual void Init() = 0;

void SetShaderDirectory(char* dir);

osg::StateSet* GetShaderStateSet();

void SetBounds(float* bounds);

unsigned int GetAutoGenTextureUnit() {return _tUnit;}

virtual cfdOSGShaderManager& operator=(const cfdOSGShaderManager& sm);
protected:
virtual void _setupCGShaderProgram(osg:: StateSet* ss,
char* progName,
char* funcName);
osg::ref ptr<osg::StateSet> _ss;
char* shaderDirectory;
unsigned int _tUnit;
float* bounds;

LK)

#endif /CFD_USE SHADERS

#endif //_OSG

#endif

#endif// CFD_OSG _SHADER MANAGER H



78

cfdTextureBasedVizHandler

#ifndef CFD_TEXTURE BASED MODEL HANDLER H
#define CFD_TEXTURE BASED MODEL HANDLER H
#ifdef VE_PATENTED

#include <vpr/Util/Singleton.h>

class cfdDCS;

class cfdGroup;

class cfdCursor;

class cfdNavigate;

class cfdCommandArray;

class cfdSwitch;

class cfdTextureManager;
#include <vector>

#ifdef PERFORMER

#elif OPENSG

#elif OSG

namespace osgUtil { class SceneView; }
class cfdPBufferManager;

class cfdVolumeVisualization;
class cfdTextureDataSet;

class cfdVolumeVisNodeHandler;

#ifdef CFD_USE SHADERS
class cfdVectorVolumeVisHandler;

class cfdScalarVolumeVisHandler;
#endif

class cfdTextureBasedVizHandler: public vpr::Singleton< cfdTextureBasedVizHandler >

f
1

public:
void PreFrameUpdate( void );
void CleanUp( void );
void SetParameterFile(char* paramFile);
void SetCommandArray(cfdCommandArray* cmdArray);
void SetWorldDCS(cfdDCS* dcs);
void SetParentNode(cfdGroup* parent);
void SetNavigate(cfdNavigate* navigate);
void SetCursor(cfdCursor* cursor);
void SetActiveTextureDataSet(cfdTextureDataSet* tdset);
void ViewTextureBasedVis(bool trueFalse);

#ifdef CFD_USE SHADERS
void SetPBuffer(cfdPBufferManager* pbm);
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void PingPongTextures();
#endif

cfdPBufferManager* GetPBuffer();

//bool InitVolumeVizNodes( void );
cfdVolumeVisualization® GetVolumeVizNode(int index);
cfdVolumeVisualization* GetActiveVolumeVizNode( void );

protected:
void updateScalarVisHandler();
void updateVectorVisHandler();

char* paramFile;
cfdCommandArray* cmdArray;
cftdDCS* worldDCS;
cfdNavigate* nav;

cfdCursor* _cursor;
cfdTextureDataSet* activeTDSet;
cfdTextureManager* activeTM;

//std::vector<cfdVolumeVisualization*> volumeVisNodes;
cfdVolumeVisualization* _activeVolumeVizNode;
cfdGroup* parent;

cfdPBufferManager* pbm;

osgUtil::SceneView* sceneView;
cfdVolumeVisNodeHandler* activeVisNodeHdlr;

#ifdef CFD_USE_SHADERS
cfdVectorVolumeVisHandler* vvvh;
cfdScalarVolumeVisHandler* svvh;

#endif

//cfdSwitch* _visOptionSwitch;
float* currentBBox;
bool cleared;
bool textureBaseSelected;
private:
// Required so that vpr::Singleton can instantiate this class.
friend class vpr::Singleton< cfdTextureBasedVizHandler >;
cfdTextureBasedVizHandler( void );
~cfdTextureBasedVizHandler( void ){ ; }// Never gets called, don't implement
b
#endif //OSG
#endif /
#endif// CFD_TEXTURE BASED VIZ HANDLER H
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