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ABSTRACT 

This study focused on determining and assessing anthropogenic influences on soil 

quality in two American Indian agricultural systems of the Southwest U. S. One is a runoff 

system in the Zuni area of New Mexico where runoff farming has been practiced for over two 

millennia, and the other is an ancient rock mulch system in southeast Arizona that was 

abandoned over 500 years ago. Results of the Zuni study indicate that cultivation has had 

both positive and negative effects on soil productivity. Relative to uncultivated soils, 

cultivated soils tend to have slightly elevated bulk density and pH levels, and inconsistent 

changes in N and organic C. Soil changes at the levels found are not sufficient to indicate that 

cultivation caused degradation. Potential negative impacts are offset to varying degrees by 

thickened topsoils, co-sedimentation of organic matter and silt in fields, and organic matter 

coatings on peds. 

Extensive rock mulch features (grids, terraces, and rock piles) were built to conserve 

water and nutrients in the shallow rooting zone of the Safford fields of Arizona. Compared to 

uncultivated soils, mulched soils have elevated C, N, and available P concentrations and no 

evidence of soil compaction. Existing vegetation concentrated in the rock mulch features 

today demonstrates their effectiveness in conserving moisture and nutrients. There is no 

evidence that ancient rock mulch farming in Arizona caused soil degradation, and it appears 

that agricultural practices actually improved soil quality for crop production. 

An ancillary study was undertaken to measure soil changes caused by the western 

harvester ant (Pogonomyrmex occidentalis). This research aimed to determine their effect on 
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soil productivity in the context of agricultural land use and landscape modifications. Results 

indicate that ant-affected soils have elevated levels of organic C, N, and available and total P, 

so they have a positive influence on agricultural soils. In addition to nutrient enrichment, ants 

help to aerate the soil and increase its hydraulic conductivity and water-holding capacity. Ant 

effects on surface soils extend to entire landscapes within about 2500 years, which is within 

the time frame of agricultural practices in the Zuni area. 
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CHAPTER 1 
INTRODUCTION 

This thesis focuses on how humans and ants influence soil physical and chemical soil 

properties. Soil morphology, genesis, and productivity are strongly influenced by biological 

factors, including humans, microbes, plants, and fauna. Despite the crucial role played by the 

biotic factor in pedogenesis, it is probably the least studied of the soil-forming factors. 

Anthropogenic influences on agriculture are increasingly being studied today, however, 

because of their importance in evaluations of agricultural sustainability. I conducted three 

separate studies for my dissertation research, two studies on American Indian agricultural 

systems in the Southwest United States and one on the interaction of ants, plants, and soils. 

The agricultural soil studies consist of a traditional runoff farming system in western 

New Mexico on the Zuni Indian Reservation, and an ancient agricultural complex of rock 

mulch features and terraces located near Safford, Arizona, in the southeast part of the state. 

The principal objective of the Zuni soil study is to test the hypothesis that long-term 

cultivation has altered, but not seriously degraded agricultural soils. Both the Zuni and 

Safford studies were aimed at documenting soil properties and assessing soil productivity. 

The Zuni agricultural soils are among the oldest, more or less continuously fanned soils in 

the United States, at over two millennia, and the Safford gridded fields are unrivaled in extent 

and complexity in the Southwest. Agricultural soils in arid and semiarid lands, both ancient 

and modem, are well suited to agronomic study, because pedogenesis proceeds more slowly 

than in humid regions, so we have a greater chance of detecting many anthropogenic 

influences on soil properties. 
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Overcoming low water availability is usually viewed as the major hurdle in achieving 

agricultural sustainability in deserts of the Southwest. This situation contrasts sharply with 

humid regions, where soil fertility maintenance is usually the main limiting factor. Nitrogen 

deficiency, however, is common in desert soils, and its effect in limiting agricultural 

production can be nearly as great as water availability. This is especially true for cropping 

systems dependent on maize, which commonly depletes soil nitrogen. Some soil studies in 

the Southwest indicate that ancient farming systems degraded the nutrient status of 

agricultural soils but other studies have found that soil fertility was probably not seriously 

degraded, and in some cases may have even been improved, by cultivation. 

The few soil studies of American Indian farming systems that have been conducted in 

the Southwest indicate that the consequences of prehistoric cultivation in terms of soil 

productivity are highly variable, due to many interacting environmental and cultural factors 

such as climate, topography, hydrology, soil type, native vegetation, crop type and variety, 

agricultural technology, and duration and intensity of cultivation. The two studies of 

traditional and ancient agriculture presented here contribute to a small but growing body of 

literature on this topic. This literature is reviewed in greater detail in Chapters 2 and 3. 

There are a number of similarities and differences between the two farming systems. 

In drawing these comparisons and contrasts, however, it is important to keep in mind that 

other types of farming systems were simultaneously practiced in both study areas, including 

irrigation. Indeed, an important hallmark of Native American farming systems in the 

Southwest is the use of diverse soils, landscapes, and management practices to counter the 

vagaries of drought and flooding. The most obvious difference between the two systems 
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being compared here is the greater temporal continuity in Native American farming at Zuni, 

where agriculture has been practiced for over two millennia. The Safford system is an 

ancient system that has probably been abandoned for over 500 years, and there are no modem 

analogues for the type of rock mulch agriculture that was practiced there. 

Both field systems are located in semiarid environments and both rely on capturing 

runoff water to supplement direct rainfall. The Zuni fields are situated at about 1200 m higher 

elevation than the Safford Basin, so snowmelt is an important source of moisture in the early 

growing season at Zuni. The Zuni area receives about 50% more precipitation than the 

average of about 200 mm that fall in the Safford Basin. In addition, because of the cooler 

climate of the Zuni area, precipitation is less subject to evaporation, so effective moisture for 

crop production is much higher than in the Safford Basin. Consequently, maize agriculture is 

a viable option at Zuni and not in the thinner, droughty soils of the Safford fields. 

Because of the hotter and drier climate of the Safford Basin, the farmers took 

advantage of cobbly alluvial fans to build the extensive gridded fields and other types of 

agricultural rock features (e.g., rock piles and rock alignments to create agricultural terraces). 

This type of rock mulch agriculture was not practiced at Zuni, or at least not nearly to the 

extent as at Safford. Extensive rock mulching was used to conserve water and nutrients in die 

shallow rooting zone above a petrocalcic horizon in the Safford Helds. In contrast, the Zuni 

farmers relied mainly on shallow argillic horizons to slow infiltration and hold moisture in 

the rooting zone. 

The Zuni system takes advantage of organic-rich sediments carried by runoff water to 

naturally fertilize their Helds. The agricultural Helds at Zuni keyed into small watersheds for 
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establishing their fields, but the catchment areas used by the fields are actually much larger 

than those of the Safford fields. The Safford fields were built on an elevated fan terrace that 

is deeply dissected, and thus the grid features are largely bypassed by runoff. The grid 

features themselves, however, appear to function as micro-catchments for highly drought-

tolerant crops. The actual crop(s) grown is unknown at present, but pollen and 

macrobotanical analysis of archaeological features is now underway in an attempt to 

determine what was grown. At present, it seems that agave or other higher drought-tolerant 

plants were cultivated. 

In addition to the two studies of agricultural soils, an ancillary study was undertaken 

to investigate the magnitude of soil changes caused by activities of an earth-dwelling species 

of ant, the western harvester ant {Pogonomyrmex occidentalis). This study was conceived 

after observing numerous ant mounds in Zuni fields, suggesting that ants are a particularly 

important biological factor in soil formation in this environment. The western harvester 

(Pogonomyrmex occidentalis) and other closely related harvester ants (P. barbatus, P. 

maricopa, P. Oweeyi, and P. rugosus) are widespread in grasslands, deserts, and woodlands 

of the western U. S. The ant study was conducted to distinguish their effects in different 

agricultural contexts in conjunction with the Zuni soil study. This study of the influence of 

ants on soil properties focused on comparing their effect on soils in different agricultural 

contexts (uncultivated, fallow, and cultivated Helds). Analyses made at pedon and 

microscopic scales are related to the broader landscape through observations of ant colonies 

and previous studies of the age of western harvester colonies. 
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The ant study focuses on six research questions; (1) What chemical and physical soil 

properties are influenced by harvester ants in a semiarid, uncultivated field dominated by 

sagebrush, and how do they affect soil fertility? (2) What micromorphological properties are 

associated with ant-affected soils? (3) How do colony spacing, mound and clearing 

properties, and vegetation associations vary between colonies in uncultivated, fallow, and 

cultivated fields? (4) How does the rate of soil turnover vary between colonies in 

uncultivated, fallow, and cultivated fields? (5) How long does it take for the entire landscape 

to become affected by ant activity? (6) How do soils, plants, and ant colonies influence one 

another, and what are some of the major interactions between them? 

Dissertation Organization 

This dissertation is organized into five chapters. Following the introductory chapter 

are three chapters constituting the main body of work of my dissertation. Chapters 2, 3, and 4 

are all written as manuscripts to be submitted for publication. Literature reviews are 

contained in each manuscript, so I did not include one as a chapter in this thesis. This was 

done because the studies are so different from one another, so it was not logical to integrate a 

literature review as a single chapter. 

Chapter 2 reports on the findings of our study of the Safford gridded agricultural 

fields. A previous draft of this manuscript, co-authored with my major professor. Dr. 

Jonathan A. Sandor, and Dr. Dale R. Lightfoot (Professor of Geography, Oklahoma State 

University), has already been submitted to the co-Principal Investigators. Dr. Lightfoot's 

contribution to this chapter is the sections on granulometry and soil moisture tests, and I 
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edited his sections and incorporated them into the text at the request of the co-PI's of the 

Safford project. Dr. William E. E)oolittle (Professor of Geography) and Dr. James A. Neely 

(Professor of Anthropology), both of the University of Texas at Austin. Drs. Doolittle and 

Neely are compiling and editing manuscripts from all members of the research team, which 

includes archaeologists, cultural and physical geographers, ethnobotanists, and soil scientists. 

Within the year they intend to submit this edited volume (which is yet to be titled) to 

University of Arizona Press for publication. The U of A press has already expressed an 

interest in publishing a book on the Safford project in their Anthropological Papers series. 

Chapter 3 presents the results of the NSF-fiinded Zuni soil study. This manuscript is a 

detailed scientific investigation of runoff agriculture and the long-term influences of 

cultivation. I co-authored this paper with Dr. Jonathan A. Sandor and Jay Norton. Dr. Sandor 

completed the field sampling and analysis in 1991 at one of the three paired cultivated and 

uncultivated fields (the Sanchez field), and he permitted Norton to integrate his data into his 

Master's research on the watershed of the Sanchez field. Norton contributed to this 

manuscript by allowing me to integrate soil data from his Master's research on the Sanchez 

field with the two other paired fields investigated as part of the NSF project. Mr. Norton also 

played a crucial role in the NSF project, serving as Project Coordinator. We intend to submit 

this manuscript to the Journal of Arid Environments for publication. Other manuscripts on 

our Zuni soil study are being prepared for publication, but these results are not presented in 

my dissertation. 

Chapter 4 presents the results of our study of western harvester ant interactions with 

soils and vegetation. The major focus of this study is on soil formation and productivity, and 
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the long-term impacts of ants on the landscape. I co-authored this chapter with Dr. Jonathan 

A. Sandor, and we intend to submit it to Pedobiologia for publication. 

Chapter 5 presents an overview of major conclusions of my dissertation. Sections 

with more detailed conclusions are presented at the end of Chapters 2-4 for the three 

respective studies. A brief synthetic discussion is included in Chapter 5 that is not provided 

elsewhere. 

Appendix A is a compilation of soil profile descriptions and classifications for the 

Zuni, Safford, and ant studies. Appendix B provides all of the raw soil data for the Zuni soil 

study. Appendix C presents photocopies of sketch maps prepared in the field to show soil 

sampling locations for all extensive (or unpaired) fields sampled in the Zuni soil study. These 

sketch maps also depict topographic information and other observations deemed noteworthy. 
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CHAPTER 2 
SOIL INVESTIGATIONS AT A LATE PREfflSTORIC 

AGRICULTURAL COMPLEX IN THE SAFFORD BASIN 

Manuscript submitted to editors for book to be published by the University of Arizona Press 

Jeffrey A. Homburg, Jonathan A. Sandor, and Dale R. Lightfoot) 

ABSTRACT 

Soil properties associated with gridded rock alignments, rock piles, and terraces were 

evaluated as part of an interdisciplinary study of a late prehistoric agricultural complex. 

Research was aimed at documenting soil properties and assessing agricultural productivity. 

This study area is located in southeast Arizona, on the distal end of an alluvial fan terrace 

overlooking the Gila River. Soils consist chiefly of gravelly loams and clay loams dominated 

by shallow petrocalcic or argillic horizons, both of which impede water infiltration and hold 

moisture in the rooting zone. Compared to uncultivated soils, which tend to be moderately 

alkaline (ca. pH 8.1-8.4), agricultural soils are commonly slightly alkaline (ca. 7.7-8.0). 

Reduced pHs at these levels are beneficial for crop production due to increased plant 

availability of most nutrients. C, N, and available P concentrations are notably higher in the 

soils of grid and terrace alignments, and upper terrace positions. No consistent bulk density 

trends were found, so there is no indication that ancient cultivation practices caused 

appreciable soil compaction. Soil analyses suggest that rock mulch features (grid alignments, 

terrace alignments, and rock piles) and terrace positions immediately below the alignments 

are the most productive agricultural contexts. It is noteworthy that the upper and lower 

terrace positions near the alignments are where existing vegetation, mainly creosotebush, is 
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concentrated today. It is possible that the lower soil productivity of grid interiors is caused at 

least in part by cultivation, but is seems more likely that rock clearings within grids acted to 

facilitate runo^ to grid alignments downslope. Soil nutrient levels are sufHcient to support 

maize agriculture, but thin rooting zones, high temperatures, low rainfall, and low runoff 

throughout most landscape positions of the Held suggest that drought-tolerant crops such as 

agave were cultivated. 

INTRODUCTION 

This study presents the results of a soil investigation focused on a prehistoric 

agricultural complex in the Safford Basin. The Safford Basin is located in the upper Gila 

River valley of southeast Arizona, sandwiched between the Pinaleno Mountains to the south 

and the Gila Mountains to the north. Primary agricultural land in the Safford Basin is 

concentrated on the floodplain and lower alluvial terraces of the Gila River and flanks of 

major tributaries draining the northern Pinaleno Mountains. These geomorphic settings are 

well suited for irrigation and floodwater farming. Runoff and dryland Helds containing 

gridded rock alignments, agricultural terraces, and rock piles, such as those examined by this 

investigation, were commonly built on cobbly, alluvial fan terraces overlooking the Gila 

River valley. 

The Safford Gridded Fields (SGF), an agricultural complex of agricultural rock mulch 

features and terraces, is the focus of this soil study. Though rarely as elaborate as 

those of the SGF, prehistoric rock mulch features have been identified in cobbly landscapes 

throughout the Southwest by many archaeological surveys. In a few places in the Hohokam, 
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Sinagua, and Anasazi culture areas, farmers applied gravel and cobbles across planting 

surfaces as a way to reduce soil erosion by wind and water, increase soil temperature to 

extend the growing season, increase water infiltration, and reduce evaporative loss of water 

from wind and sun. Examples of mulch agriculture in the Southwest include use of rock piles 

in southern Arizona (Fish et al. 1992, Fish et al. 1985, Masse 1979) and central Arizona 

(Homburg 1997, Homburg and Sandor 1997), ash and cinder ridges and mounds in the 

Sinagua region of northern Arizona (Berlin, et al. 1990), Hopi sand dune cultivation in 

northeast Arizona (Doolittle 1998, Forde 1931, Hack 1942). and pebble or gravel mulch 

gardens around Anasazi Pueblo sites in northern New Mexico (Lang 1981, Lightfoot 1993a, 

Lightfoot 1993b, Lightfoot 1994, Lightfoot and Eddy 1995, Maxwell and Anschuetz 1992, 

Ware and Mensel 1992). Most of these latter features were constructed across the tops of 

extensive terraces, in a landscape context almost identical to the SGF. 

The SGF is situated on the T3 fan terrace (Gelderman 1970: Fig. 6). The T3 terrace, the 

second youngest terrace in the Safford Basin, is situated about 20 m above the floodplain at a 

minimum. Brenda Hauser, geologist with the U.S. Geological Survey in Tucson, has 

completed more detailed geomorphic mapping of the study area but the results are not yet 

published. The T3 terrace is poorly dated, but the stage of soil development suggests it is 

roughly 100,000 to 200,0(X) years old at minimum. It is noteworthy that the T3 terrace along 

this reach of the Gila River has been tectonically uplifted and tilted. Several southeast-

trending faults cross the SGF, and faulting has isolated this terrace segment firom the rest of 

the T3 terrace. Consequently, the size of watershed of the SGF has been reduced, which has 

altered the hydrology to significantly reduce stream dissection compared to other fan terrace 
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segments (Hauser 1999, personal communication, January 29). Reduced stream dissection 

was probably an important consideration for the ancient farmers who selected this particular 

area for building the SGF. 

The most striking agricultural features at the SGF are clearly the grid alignments, 

which are impressive because of their elaborate layout and large size, with fields spread over 

a 2.4 by l.6-km area. Rock mulch features of the SGF cover about 822,000 m^ which is 

much more extensive than the rock mulch fields of northern New Mexico; including the 

pebble-mulched fields of the Galisteo Basin, which collectively cover 41,000 m^ and the 

gravel-mulched fields of the Chama-Ojo that cover at least 70,000 m- (Cordell 1998, 

Lightfoot 1993a, Lightfoot 1993b, Lightfoot and Eddy 1995, Maxwell and Anschuetz 1992, 

Ware and Mensel 1992). Rock mulch techniques have been documented in ancient or historic 

times in Israel, Italy, Peru, Argentina, New Zealand, Canary Islands, and China across areas 

approaching or exceeding the area covered by the rock mulch features of the SGF (Lightfoot 

1994, Lightfoot 1996). In every case of rock mulch from the Southwest and elsewhere, the 

method was used only in places with a growing season moisture deficit. 

The extent and complexity of the grid features of the SGF are unrivaled in the 

Southwest. Even world-wide, the only fields resembling the SGF that we are aware of are the 

Engaruka fields in the Rift Valley of East Africa, which were abandoned in the 1700s (Sutton 

1969, Sutton 1978, Sutton 1990). There is one major difference between the SGF and the 

Engaruka fields; however, the latter are watered by runoff irrigation fed by perennial and 

ephemeral drainages and no such drainage exists at the SGF. Compared to the Engaruka 

fields, as well as many other fields in the Southwest, the SGF are situated in such a harsh, 
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arid environment for agriculture, which makes it especially puzzling why the fanners went to 

so much effort to build such an elaborate network of agricultural features in this location. The 

SGF stand in stark contrast to the nearby highly productive, irrigated cotton fields on the Gila 

River floodplain today. 

Because of their thin, droughty soils, food from upland fields such as the SGF likely 

served an important but supplementary role in the diet of ancient farmers of the Safford 

Basin. Yet there are advantages to farming upland fields. The elevated position of the fan 

terraces on the valley margin of the Gila River valley is advantageous for avoiding or 

minimizing killing frosts caused by cold air drainage. Upland settings often have another 

important advantage for agricultural production; they usually have subsurface horizons that 

impede and conserve moisture in the rooting zone (e.g., clay-enriched zones known as argillic 

horizons, carbonate-plugged horizons known as petrocalcic horizons; the latter are commonly 

referred to as caliche), and this situation is certainly true at the SGF. Although upland soils 

enjoy certain agricultural advantages, there are also disadvantages. Namely, upland soils are 

generally thinner, contain more rock fragments, and are more drought-prone than the alluvial 

bottomlands. Because of great variability in the length of the growing season and 

unpredictable floods, combined with highly unpredictable precipitation patterns both spatially 

and temporally, ancient farmers commonly spread fields over different soils and landforms as 

a buffering strategy for ensuring adequate food supplies. Such agricultural diversity is a 

hallmark of agricultural systems in the Southwest as a way to minimize the risk of crop 

failure (Woosely 1980). Many types of prehistoric agricultural systems have been 

documented in the greater Southwest (Ciolek-Torrello and Welch 1994, Doolittle 1988, Fish 
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1995, Fish and Fish 1984, Homburg 1997, Lightfoot 1990, Rankin and Katzer 1989, Toll 

1995, Vanderpot 1992, Woodbury 1961) and elsewhere in the world (Evenari et al. 1982, 

Sutton 1990). 

Overcoming low water availability is usually viewed as the major hurdle in achieving 

agricultural sustainability in arid and semiarid lands of the Southwest, and that is clearly the 

case for the drought-prone soils of the SGF. This situation contrasts sharply with the humid 

Mesoamerican lowlands, where soil fertility maintenance is the main limiting factor (Dregne 

1963: 219, Sanders 1992:283). Still, soil fertility is an important concern in the Southwest, 

and it is an error to think that productivity is limited by water alone (Ludwig 1987). Nitrogen 

deHciencies, in fact, are so common in desert soils that its effect in limiting agricultural 

production is almost as great as water availability (Nabhan 1983, 1984, Rommey et al. 1978; 

Sandor and Gersper 1988). And cultivation, especially of highly consumptive crops such as 

maize, heightens this problem by rapidly depleting already low nitrogen levels (Doolittle 

1984: 257, Lxiomis and Connor 1992: Fig. 12.1, Stevenson 1982). 

Ancient agricultural soils of upland (or non-riverine) flelds in arid and semiarid 

regions of Arizona are well suited for agronomic research for at least four reasons: (1) soil 

formation processes (e.g., weathering, leaching, and illuviation) proceed much more slowly 

in deserts than in humid environments, so soil changes caused by ancient cultivation practices 

tend to persist and be detectable over the last millennium at a minimum; (2) most ancient 

Helds have not been cultivated since they were abandoned, so historic farming practices such 

as plowing and artificial fertilizer applications have not masked or erased soil properties 

reflecting prehistoric farming; (3) upland landforms, including alluvial fan and river terraces, 
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are often geomorphically stable, so ancient agricultural soils associated with them are readily 

accessible for study; and (4) the presence or absence of agricultural facilities (rock 

alignments, rock piles, and terraces) provide important clues for discerning and collecting 

cultivated and uncultivated soil samples. 

Some soil studies in the Southwest have found that ancient farming systems degraded 

the nutrient status of agricultural soils. For example, long-term cultivation significantly 

lowered the fertility of terraced fields in the Mimbres area (Sandor 1983), and farming 

practices at prehistoric flelds near Flagstaff. Santa Fe, and at Mesa Verde tended to lower 

phosphate and soil fertility levels severely enough to cause fields to become unproductive 

and abandoned (Arrhenius 1963). Other studies in central Arizona have been conducted in 

settings similar to the Safford Basin gridded fields, and these studies have found that soil 

fertility was probably not seriously degraded by cultivation (Homburg 1994, Homburg and 

Sandor 1997). The few soil studies conducted thus far in the Southwest indicate that the 

consequences of prehistoric cultivation in terms of soil productivity are highly variable, due 

to many interacting environmental and cultural factors such as climate, topography, 

hydrology, soil type, native vegetation, crop type and variety, agricultural technology, and 

duration and intensity of cultivation. 

In Sandor's study of the long-term effects of cultivation in the Sapillo and Mimbres 

valleys of southwestern New Mexico, Mimbres agricultural terrace soils associated with 

small rock alignments were compared to uncultivated control samples (Sandor 1983, Sandor 

et al. 1986, Sandor et al. 1990). Results indicated that the primary anthropogenic soil changes 

were degradational, and that the effects of cultivation could be detected about 800 years after 
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the Helds were abandoned. In comparison to uncultivated soils, Sandor found that cultivated 

soils were lighter in color, more compacted, and had thicker A horizons with more blocky 

and less granular structural aggregates. In addition, he found that cultivated soils had lower 

organic carbon, nitrogen, total and available phosphorus, and copper levels, and higher 

manganese and pH values. Rock alignments primarily functioned as dams to reduce the 

velocity of runoff, increase infiltration, and thicken naturally thin A horizons by impounding 

sediments (Sandor, et al. 1986). Through the use of different fertilizer treatments, a 

controlled greenhouse experiment was used to compare the growth of chapalote, a prinutive 

variety of maize, and barley in terrace and uncultivated soils (Sandor 1983, Sandor and 

Gersper 1988). Sandor found that both plants were dramatically stunted in the terrace soils, 

and that nitrogen is the most limiting nutrient for plant growth. Terraced soils were found to 

be fairly productive if fertilized with nitrogen and to some extent, phosphorus. 

The findings of Sandor's Mimbres study contrasts strongly with that of two soil 

studies in Arizona, one in the Tonto Basin (Homburg 1994) and the other in the Horseshoe 

Basin (Homburg and Sandor 1997). Both studies were conducted in low desert settings 

comparable to the Safford Basin in elevation and temperature, but the Tonto and Horseshoe 

basins receive about 50 percent more annual rainfall than the Safford Basin, which averages 

about 24 cm (or about 9.5 inches; Sellers and Hill 1974: 266,383, and 412). The Horseshoe 

Basin and Tonto Basin studies focused on measuring the effects of cultivation on soil fertility 

by comparing rock pile and rock alignment soils with adjacent uncultivated soils. 

Agricultural soils in both study areas generally had similar or elevated levels of nitrogen, 

phosphorus, and organic carbon, often at levels of statistical signiHcance, and no evidence of 



compaction was noted in the cultivated soils. The increased fertility levels of the agricultural 

soils are associated with the effects of rock mulching, but it is uncertain if these changes 

occurred during or after the time the fields were cultivated. Importantly, the lack of 

indications of decline in soil fertility in these cases may be due to the combined effects of 

many factors, including short-term use of fields, replenishment of nutrients in organic debris 

deposited naturally, use of rock mulch to reduce organic matter oxidation, cultivation of 

drought-adapted crops that have low nutrient requirements (e.g., succulents such as agave), 

and nutrient recovery resulting from natural, post-cultivation litter additions. It is possible 

that other desert plants were cultivated, such as yucca, prickly pear, or some other type of 

cactus. 

The SGF provides an important opportunity for documenting soil properties and 

evaluating cultivation effects in a part of the Southwest and in a type of field system that has 

received little archaeological attention to date. The large size of the fields, presence of three 

distinct Held systems (rock grids, rock piles, and terraces; Figures 2.1-2.2), and widespread 

cultural features and artifacts associated with agricultural use and processing activities (e.g., 

masonry field houses, roasting pits, upright stone field markers, and lithic tools such as 

tabular knives and large primary flakes) are clear indications of intensive field use, probably 

over one or two centuries at a minimum. Charred agave remains recovered from roasting pits 

exposed in the Peck Wash alluvium below Locality 1 yielded uncorrected radiocarbon dates 

of AD SOO ±50 and AD 1340 ±50, thus providing important, though indirect, clues of a 

potential cultivar and the timing of cultivation at the SGF. One or both dates may be firom 
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Figure 2.1. Rock alignment grids and grid interiors. 



Figure 2.2. Agricultural terraces and rock alignments. 
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agave that was not cultivated. It is important to note, however, that the latter date is 

consistent with the age of masonry Held houses and pottery found at the SGF, as well as the 

timing of agave cultivation documented elsewhere in southern and central Arizona, including 

the northern Tucson Basin and the Horseshoe Basin. 

This SGF soil study aims to measure the effects of cultivation on soil fertility and to 

assess the agricultural suitability of the soils on the alluvial fan terrace. We will use soil data 

to help elucidate why the SGF were built where they were and speculate about what crops 

may have been the cultivated. Soil profile descriptions and a suite of physical and chemical 

laboratory tests were used to characterize the fertility and soil morphological properties 

important for water-holding properties of the soil. 

METHODS 

Soil samples were collected during a one-week period, March 7-11, 1997. Soil sampling 

focused on a variety of agricultural features in the westernmost locus of the field, west of 

Peck Wash and immediately north of the Graham Canal at the northern edge of the Gila 

River floodplain. This area, designated Locality 1, was chosen for soil sampling because of 

its easy access and because a wide range of agricultural feature types are present, including 

grid alignments, rock piles, and terraces. Soil sampling was confined to Bureau of Land 

Management (BLM) property, which encompasses most of Locality 1. 

In all, 49 soil samples were collected for analysis, 40 from IS-cm-deep shovel pits 

(SP) placed in agricultural features and nearby uncultivated controls, and nine from two 

different soil proHIes. Soil sampling concentrated on the grid features; two gridded rock 
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alignments and adjacent grid interiors were sampled from each of four landscape positions of 

Locality 1, for a total of 16 samples. Six control samples for the grid features were collected 

(SP 27-32) from soils and landscape positions similar to the cultivated areas, including three 

control samples from both the southeastern and northern sectors of Locality 1. The grid 

features were so extensive that it was difficult to fmd controls areas that were perfectly 

matched to the cultivated soils; nevertheless, the control areas chosen appeared similar 

enough to make the comparisons valid. Three rock piles were sampled, along with control 

samples from next to each rock pile. A trench (T 1) and 6 SP's were excavated to sample the 

agricultural terraces located on the prominent east-facing escarpment in the southern part of 

Locality 1. In all, nine samples were collected from terrace contexts, including three samples 

from terrace rock alignments and three from the terrace positions located immediately above 

and below each alignment sampled. Three control samples for the terrace samples were 

collected from the escarpment east of Locality 1 and Peck Wash, an area with a comparable 

slope to that of the terraces. Deeper soil profile samples were obtained next to two historic 

prospector's pits (PP), including a grid interior in the profile of PP I in the central part of 

Locality 1 and from a trench (T 2) excavated between PP 2 and a rock pile in the northern 

part of Locality 1. Soil profiles were described, which entailed identifying soil horizons, 

recording morphological properties such as depth, color, texture, structure, and consistence, 

and classifying pedons classified using Soil Taxonomy (Soil Survey Staff 1993, Soil Survey 

Staff 1998). 

Selection of particular soil analyses was based mainly on results obtained by previous 

studies in Arizona (Homburg 1994, Homburg and Sander 1997) and New Mexico (Sandor 
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1983), with tests focusing on properties that tend to reflect long-term stability. Particle-size 

and bulk density analyses were conducted to obtain data on soil texture, moisture and nutrient 

retention, and compaction. Bulk density analysis was completed for all samples but those that 

were too weakly aggregated to complete the test. Chemical analyses included determinations 

of pH, organic and inorganic carbon, nitrogen, total and available phosphorus, and calcium 

carbonate equivalent. Particle-size, bulk density, and pH analyses were completed in soil labs 

at Iowa State University, and the organic carbon, total nitrogen, and total and available 

phosphorus analyses were conducted at the University of Montana, under the supervision of 

Jay Norton. Calcium carbonate equivalent analysis was conducted by Louis Moran at Iowa 

State University. Subsamples for each laboratory test were taken from bulk samples collected 

in the field. Initial sample preparation involved air-drying and sifting samples through a 2-

mm sieve to remove gravel, roots, and other coarse undecomposed organic debris. 

Determinations of total carbon, nitrogen, and phosphorus analyses were done on ten-gram 

subsamples that were mechanically ground fine enough to pass through a No. 100 sieve. 

Particle-size distributions were determined using the sieve and pipette method (Gee 

and Bauder 1986; Method 5.4), with carbonates included. Soil samples were pretreated with a 

30 percent hydrogen peroxide reagent for organic matter digestion, hydrochloric acid to 

remove carbonates, and a sodium hexametaphosphate solution for clay dispersion. Bulk 

density analysis was measured using the clod method, using paraffin-coated peds (Blake and 

Hartge 1986: Method 13.4). Bulk density samples were analyzed in duplicate and averaged, 

and if the coefficient of variation exceeded 5%, a third sample was analyzed and averaged 

with the others. After peds were weighed in water, gravel was removed and weighed, so the 
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bulk density of the <2 mm fraction could be determined. Soil pH was measured in a 1; I 

suspension (weight basis) of soil and distilled water using a glass electrode (McLean 1982). 

Total carbon and nitrogen concentrations were determined using a Leco CHN analyzer, and 

inorganic carbon was measured by titrimetry (National Soil Survey Center 1996). Total 

phosphorus concentrations were determined using an alkaline oxidation extract (Dick and 

Tabatabai 1977), and available phosphorus was measured using the Olsen extraction method 

(Olsen and Sommers 1982: Method 24-5.5.2). 

To evaluate statistical differences between cultivated and uncultivated soils of 

different agricultural contexts, r-tests were used. Statistical analysis was performed using 

Corel Quattro Pro, Version 7.0, and it was conducted for all quantitative chemical and 

physical soil tests. 

In addition to above analyses, granulometric testing was undertaken to measure the 

extent to which the natural surface was altered in building the gravel mulch features. Relative 

(or semi-quantitative) soil moisture was recorded using a moisture meter with a scale of I to 

10. Six grids, scattered across six different gridded fields, were selected for these tests, and 

compared to adjacent non-gridded areas. Grids ranged from 5 to 9 m across. A 0.5 m by 0.5 

m pit was excavated in each of these grids to depths of 5 cm and 10 cm. The excavated 

material was sieved using graduated screen sieves to separate rocks into size fractions of (1) 

1/8 to 1/4 inch (0.32-0.64 cm); (2) 1/4 to 1/2 inch (0.32-1.27 cm); (3) 1/2 to 1 inch (1.27-

2.54 cm); (4) and 1 to 6 inches (2.54-15.24 cm) to collect data on gravel weights by size 

fraction. Heavy cobbles larger than 6 inches were excluded firom the sample because: (I) one 

or two spurious stones of this size would skew total weights; and (2) such a quantification 
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exercise would only show what was is visually obvious (that is, non-gridded areas were 

strewn with larger cobbles while adjacent grid interiors contain very few and grid borders 

many of these larger stones). These data were compared to similarly excavated material from 

adjacent non-gridded areas to determine whether grid surfaces were mulched by adding 

gravel to the surface, or winnowed to remove gravel or cobbles. 

BACKGROUND INFORMATION 

Published soil mapping data and unpublished soil testing data for the SGF are 

reviewed in this section. Background information on the chemical and physical soil tests (pH, 

organic carbon, nitrogen, C:N ratio, total and available phosphorus, calcium carbonate 

equivalent, particle-size, and bulk density) used in this study is also presented, with a brief 

discussion of the agricultural signiflcance of each measure of soil productivity. More detailed 

information on these soil tests is available elsewhere (Homburg 1994, Homburg and Sandor 

1997, Sandor 1983). 

Soil Mapping Data 

The study area is included in the Continental-Latene-Pinaleno association on the 

general soil map of Arizona (scale=l: 1,000,000); this soil association is characterized by 

"deep, gravelly, medium Hne-textured, nearly level to steep soils on dissected alluvial fan 

surfaces" (Hendricks I98S; Plate 1). A more detailed soil map (scales1:20,000) shows three 

soil map units for the SGF (Gelderman 1970: Map Sheet 7): (I) Bitter Springs-Pinaleno 

complex, 0-5% slopes, in the far western part of agricultural complex, where Locality 1 is 
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located; (2) Pinaleno-Cave complex, 0-5% slopes, throughout most of the site; and (3) 

Pinaleno cobbly loam, 2-5% slopes, in the northeastern part of the site. 

All three soil series are sparsely vegetated, calcareous, and they are in the Aridisol 

soil order. At the family level of the USDA Soil Taxonomy (Soil Survey Staff 1998), the 

Bitter Springs series is classiHed as loamy-skeletal, mixed, superactive, thermic Typic 

Calciorthids; the Cave series as loamy, mixed, superactive, thermic, shallow Typic 

Petrocalcids; and the Pinaleno series as loamy-skeletal, mixed, thermic Typic Haplargids. 

These soil series have little to no hazard of water and wind erosion, low to fair moisture 

holding capacity, medium to rapid runoff, and very slow to moderate permeability. Native 

vegetation is typically dominated by creosotebush, with some ocotillo, cholla, barrel cactus, 

annual grasses and forbs, and occasional shrubs of mesquite, wolfberry, and whitethorn and 

catclaw acacia. Rooting depth, which is estimated at about 60 to 90 cm for the Bitter Springs 

and Pinaleno series and 13 to 60 cm for the Cave series, is limited by a weakly to strongly 

cemented zone of calcium carbonate. From a modem mechanized agricultural perspective, 

these soils are not regarded as suitable for cultivation, due to their droughty nature, high 

gravel content, resuicted rooting depth, low organic matter content, and low to medium 

natural fertility. It is noteworthy, however, that many archaeological projects have 

documented widespread evidence of ancient farming activity on soils similar to those of the 

SGF throughout much of Arizona. It is a testament to the skills and perseverance of the 

ancient farmers that they managed to farm successfully in so many harsh environments. 
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Previous Soil Testing Data from the Safford Gridded Fields 

In 1984, Larry H. Humphrey and Gay Kincaide, archaeologists with the Safford 

District of the BLM, collected a few soil samples from the SGF for analysis. Three soil 

samples were collected from grid interiors at the SGF and submitted for routine soil analysis 

at the Soils, Water and Plant Tissue Testing Laboratory, Department of Soils, Water and 

Engineering, University of Arizona. Results of these soil tests are presented in Table 2.1, 

with nutrient concentrations determined in the solution phase. The Testing Laboratory 

concluded that soils from the SGF are suitable for cultivating com, beans, and squash. 

Table 2.1. Previous soil testing results obtained by the University of Arizona. 

Sample Lab pH Electrical Soluble Sodium Potassium ESP Nitrate- Soluble 
ID No. (I) Conductivity Salts (meq/L) (meq/L)(2) (3) N(ppm) Phosphorus 

(mmho/cm) (ppm) (4) (ppm) (5) 

#l -982 1027 6.95 0.75 525 0.74 0.28 -0.66 4.83 1.23 

#2 -976 1028 7.85 0.45 315 0.91 0.22 -0.23 2.80 0.59 

#3 -981 1029 7.70 1.40 980 0.16 0.04 -1.18 39.14 0.59 

1 • Paste with distilled water 
2- Water soluble potassium 
3 - Estimated exchangeable sodium percentage. (Note: We assume that the negative ESP values 

Indicate that these samples were below levels of detection. Also, the units for the electrical 
conductivity values were not provided, but we assume they are in mmho/cm) 

4 - From carbon dioxide extraction. Technicon reduction of nitrate reported as N. 
5 - Carbon dioxide extraction and orthophosphate determination (Technicon). 
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Review of Soil Tests Used in This Study 

Soil reaction, or pH, is defined as the degree of alkalinity or acidity of a soil. Soil 

reaction provides information on the availability of nutrients to plants. For noncalcareous 

soils, the optimal pH range for nutrient uptake is between 6.5 and 7.5 (Baize 1993). Nitrogen 

availability is greatest between pH 6 and 8 (Foth and Ellis 1988), and phosphorus availability 

is greatest between pH 6 and 6.5 (Tisdale, et al. 1985). A soil pH of 6.5 is considered optimal 

for cultivation of most varieties of maize. Organic carbon, a measure of organic matter, is one 

of the most useful characteristics for assessing soil fertility. Several beneficial properties are 

associated with soils having high organic matter contents, including increased water-and 

nutrient-holding capacities and improved tilth (Bear 1927; Brady 1999; Wild 1993). Soil 

organic matter is difficult to measure precisely, so it is commonly estimated by multiplying 

the organic carbon concentration by a conversion factor known as the Van Bemmelen factor, 

which is a variable that depends on the degree of humification; a conversion factor of 1.724 is 

typically used for plowed topsoils (Baize 1993, Nelson and Sommers 1982). Topsoils with 

less than 1 percent organic matter content have the lowest productivity, and soils exceeding 3 

percent organic matter produce the most consistently high crop yields (Young 1982). Runoff 

agriculture provides a mechanism for adding organic matter to soils in the absence of 

artificial fertilizer additions (Sandor 1995). For example, the Tohono O'odham counter 

naturally low organic matter contents and losses due to crop uptake by placing fields on 

alluvial fans to intercept organic debris and minerals carried by runoff (Castetter and Bell 

1942; 172). Nabhan found that nutrient-rich debris washed into Tohono O'odham floodwater 

flelds averaged 4 percent organic matter, which is significantly higher than natural soil levels 
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(Nabhan 1983, 1984). 

Nitrogen is usually the most limiting nutrient for agricultural production in Arizona soils 

(Doerge 1985). Nitrogen deficiencies are so severe in many desert soils that sustainable 

agriculture is impossible without fertilizer additions, naturally deposited organic debris, or 

nitrogen-fixing plants. Most nitrogen is associated with organic matter, which protects its 

release by microbial activity. The nitrogen cycle is extremely complex because many 

biological processes are involved and because nitrogen occurs in many forms during its cycle. 

Nitrogen absorbed by plants is usually in the form of nitrate-N (NO3-N) and ammonium-N 

(NH4-N), both of which are major constituents of inorganic nitrogen. Lower pH levels favor 

NO3-N uptake and neutral pH's favor NH4-N uptake (Tisdale, et al. 1985: 120). 

Carbon: nitrogen (C:N) ratios provide an index of the stage and rate of organic matter 

decomposition by microorganisms. As microbes convert organic carbon to gaseous carbon 

dioxide, carbon is released to the atmosphere, nitrogen is combined into new protein 

molecules, and the C;N ratio narrows through time. High C:N ratios indicate that the soil 

contains high amounts of incompletely decomposed organic matter. Maize stalks have C:N 

ratios of about 40:1 (Hausenbuiller 1972: Table3.1), and agricultural soils usually have ratios 

between 8:1 and 15:1. Undisturbed topsoils that have reached equilibrium with 

environmental conditions often have ratios between 10:1 and 12:1 (Tisdale, et al. 1985), and 

ratios are usually lower in the soils of warm and dry climates than those of humid and cool 

regions (Brady and Weil 1999). Many modem cultivated soils have narrower ratios than 

comparable uncultivated soils (Jenny 1941, Sandor, et al. 1986). 

Phosphorus is a plant macronutrient that is added to soil by natural chemical 
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weathering and biological processes. Unlike soluble macronutrients, phosphorus usually 

occurs as a highly stable compound that is not easily mobilized, so it is an especially useful 

indicator of ancient cultivation effects. Because of its strong affinity with oxygen, virtually all 

soil phosphorus is in the form of phosphate. Small quantities of soluble phosphate are 

leached from the surface, but most phosphate is quickly fixed in compounds of low solubility 

(e.g., calcium phosphates above pH 7 or aluminum phosphates below pH 6). Consequently, 

most phosphorus is unavailable to crops, even in heavily fertilized soils where phosphorus 

accumulates to high levels. 

Calcium carbonate in the soil originates from one or more sources, including the soil 

parent material, atmospheric inputs (that is, dust), and biogenic precipitates. Carbonate-

enriched soils are represented by several stages of formation (Gile et al. 1966) and they are 

widespread in the Southwest (Gile et al. 1981, Machette 1965). Calcium carbonate equivalent 

(CCE) is a measure of the acid-neutralizing capacity of a liming material, and it is expressed 

as a weight percentage of pure calcium carbonate (Tisdale et al. 1985). Calcium carbonate is 

significant agriculturally because of the strong effect it exerts on soil chemistry, especially on 

pH and the availability of P and micronutrients such as Fe, Zn, Cu, and Mn (Fuller and Ray 

1965, Yaalon 1957). The importance of calcium carbonate in buffering soil pH in the alkaline 

range is highlighted by the fact that about 10 tons of sulfuric acid per acre is required to 

neutralize every 1 percent calcium carbonate. 

Bulk density is defined as the "mass of dry soil per unit bulk volume" (Soil Science 

Society of America 1987:4). This soil property strongly influences aeration, permeability, 

moisture retention, seedling emergence, and root penetrability. Depending on soil texture. 
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bulk densities in the range of 1.55 to 1.80 g/cm^ may impede root growth (Wild 1993:117). 

Bulk densities are often highly variable, even for comparable soil horizons with similar 

textures, because of differences in size, shape, connectivity, and tortuosity of pores. Clay, 

clay loam, and silt loam topsoils commonly have bulk densities between 1.0 and 1.6 g/cm\ 

and sands and sandy loams have values typically between 1.2 and 1.8 cm^ (Brady and Weil 

1999). Bulk density and aggregate size usually increase with depth, as the weight of overlying 

soil horizons increase, and organic matter content, root biomass, and faunal burrowing 

activity decrease. Cultivation can cause either increased or decreased bulk densities 

(Hausenbuiller 1972:81). Compaction is usually more severe in mechanized agricultural 

systems, but cultivation by no-tillage systems can still cause long-term compaction if organic 

matter is depleted, especially when native grasses and weeds fail to recover after fields are 

abandoned (Sandor et al. 1990). 

Soil texture is defmed at the relative proportion of particles smaller than 2 mm, 

including the clay (<2 n), silt (2-50 p.), and sand (0.05-2 mm) fractions. Particle-size 

distribution is a significant soil property because virtually all physical and chemical processes 

depend on size of particulate matter (Murphy 1984). Twelve textural classes are defmed in 

the USDA system (Soil Survey Staff 1993). Soil texture is one of the most useful properties 

for evaluating agricultural potential because it strongly affects soil permeability, 

cohesiveness, erodibility, cation exchange capacity, and the ability to maintain nutrients and 

water in the rooting zone (Glinski and Lipiec 1990, Homburg and Sandor 1997, Je^y 

1987). Sandy soils tend to have low nutrient-and water-holding capacities, but are prone to 

wind erosion; silty soils have an intermediate nutrient-holding capacity, but are easily eroded 
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and are subject to problems associated with surface sealing; clayey soils have a high nutrient-

and water-holding capacity, but have a low permeability. Overall, loams, sandy loams, and 

silt loams are the most productive agricultural soils in terms of fertility and available water 

capacity. 

RESULTS AND DISCUSSION 

Soil Morphological Properties and Their Agricultural Implications 

All six soil profiles are described in Appendix A. Included are morphological soil 

data for: (1) the PP 1 in a grid interior and T 2 next to PP 2 and a rock pile; (2) T 1 across two 

terraces and a rock alignment; and (3) a 40-cm deep shovel pit in a grid interior. 

The proHle descriptions, combined with observations of exposures on the eastern 

edge of Locality 1 above Peck Wash, indicate that a petrocalcic horizon (a Bkm, or 

carbonate-cemented layer that is completely indurated) characterizes most of Locality 1, 

including most of the areas where agricultural features were built. The top of the petrocalcic 

horizon is about 30 cm deep in PP 1 and other areas (Figure 2.3), but it was encountered at 40 

to 45 cm depth in the agricultural terraces of Trench 1 (Figure 2.4). It is about 1 m thick at a 

minimum, and it is capped by thin laminae. These laminae form due to carbonate 

precipitation only after soil pores have been plugged, and such an advanced stage of 

carbonate accumulation (stage IV in the system of (Gile, et al. 1966) is significant for 

agricultural soils because water inHltration and root penetration is e^ectively blocked. The 

soil of the grid interior exposed in the proHle of PP 1, where the petrocalcic horizon was 

documented in the greatest detail, was classifled to the family level as Loamy, mixed. 



Figure 2.3. Thicic petrocalcic horizon exposed in Prospectors Pit 1. 
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Figure 2.4. Shallow petrocalcic horizon below agricultural terraces and rock alignments. 
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superactive, thermic Typic Petrocalcid. 

Areas with subsurface petrocalcic horizons are strongly associated with creosotebush, 

the plant that dominates the landscape. Creosotebush is better adapted and tends to dominate 

other plants in thin, drought-prone, alkaline soils, which accounts for its widespread 

distribution in the Western deserts of the U.S. (Solbrig 1977). Creosotebush can grow in soils 

as thin as 10 to 25 cm, where their rooting system is confmed above a petrocalcic horizon 

(Barbour, et al. 1977), and they are an important source of biogenic carbonate for the soil, 

thus contributing to petrocalcic development (Gallegos and Monger 1997). 

In parts of Locality I, especially the lower landscape positions of the fan terrace, an 

argillic horizon (a Bt horizon with significant alluvial clay accumulation) was encountered at 

very shallow depths of 3 to 4 cm. Well-developed argillic horizons occur in areas with less 

gravel in the soil than where the petrocalcic horizons formed. Argillic horizons were found to 

be at least 1 m thick in PP 2 (Figure 2.5), where it is coterminous with a calcareous zone (a 

Btk horizon) marked by carbonate filaments, masses, and gravel coatings. Interestingly, a 

buried argillic horizon marking a lithological discontinuity was identified in PP 2. It is 

unknown if buried petrocalcic horizons underlie any of the argillic horizons, because we only 

dug to a depth of 1 m in PP 2. The soil of PP 2 was classified to the family level as a Fine-

loamy, mixed, thermic Calcic Paleargid. In the shovel pit placed in a grid interior, the argillic 

horizon was only 7 cm thick, overlying a Bk horizon. Some evidence of clay illuviation 

(though not enough to qualify as an argillic horizon) was noted in the Btkm horizon found 

only in Trench 1, in the upper agricultural terrace position immediately below the rock 

alignment. It is noteworthy that creosotebush was concentrated in this position, evidently due 
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Figure 2.5. Argillic horizon in Prospectors Pit 2, surrounded by desert pavement 
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to lateral water seepage from the gravel-mulched soil of the terrace alignment. 

Argillic horizons are significant agriculturally because they effectively impede 

infiltration and maintain moisture in the rooting zone, and enhance available water capacity. 

Observations throughout the Southwest indicate a widespread pattern of dryland fields 

associated with subsurface argillic (Homburg 1994, Homburg 1997, Homburg and Sandor 

1997, Sandor 1995, Sandor and Homburg 1997). 

Topsoils (or A horizons) are generally thin throughout Lxicality 1, at less than 5 cm, 

but they are approximately tripled in thickness to about 15 cm in the lower agricultural 

terrace fill deposits of Trench 1. This is an important soil difference between agricultural 

terrace soils and other agricultural soils, due to the thickening of the rooting depth. This soil 

difference suggests that terraces may have served an agricultural function distinct from other 

features, perhaps with different crops. 

Gravelly and cobbly to extremely gravelly and cobbly soils are characteristic of most 

of Locality 1 and the SGF in general, both surHcially and in the subsurface. A desert 

pavement covers most of the surface of Locality 1, and most exposed rocks have coatings of 

desert varnish. Desert varnish forms mainly due to microbial activity at pHs below 9.0, and 

the varnish consists of microscopic layers of clay minerals, oxides and hydroxides of iron and 

manganese, admixed with detrital silica, calcium carbonate, and organic matter (Dom and 

Oberlander 1981). These coatings are thought to take hundreds to thousands of years to form 

(Dom and DeNiro 1984, Elvidge 1982). Thicker coatings mark the most stable landscape 

positions, because such traces would have been removed if the surface had been highly 

eroded, disturbed by human activity, or if deposition was still active. Desert pavement and 



varnish are most strongly expressed in the vicinity of PP 2. Many of the cobbles that were 

used to build agricultural features have coatings of varnish, but with irregular orientations. 

The variable orientations indicate that humans had indeed moved cobbles to construct 

agricultural rock features. Cation ratio (K"^ + Ca'^/Ti'*^ and radiocarbon dating has been used 

to determine when desert varnish formed, and thus when the rocks were first exposed (Dom, 

et al. 1986). In fact, at the start of this project it was thought that these methods might help 

date construction of the agricultural rock through analysis of varnish formed on the parts of 

rock surfaces exposed after construction. The reliability of these methods for dating purposes, 

however, was subsequently refuted, due to the discovery that varnish formation does not 

occur within a closed system. Exogenous windblown carbon from outside of the system (e.g., 

nearby Pleistocene playas) may be deposited on the rock surface and then incorporated within 

the varnish. Such a process can produce erroneous radiocarbon dates (that is, ones unrelated 

to the age of surface exposure). 

The gravelly and cobbly desert pavement armors the soil, negates raindrop impacts on 

the soil, and thereby counters erosional processes. These rocks also serve a number of 

functions pertinent to agricultural production. For example, they provided the raw material 

for building the agricultural features, and it is doubtful the features would have been built if 

they had to be hauled in from elsewhere. Lithologically, the rocks of the agricultural features 

are identical to those of the local alluvium, which clearly indicates they were obtained on-

site. Importantly, the rocks also function to increase the depth of wetting after rainfall events 

by concentrating infiltration to soil between the rocks, thus reducing evaporative loss and 

improving agricultural productivity (Alderfer and Merkle 1943, Choriki et al. 1964, 
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Fairboum 1973, Homburg and Sandor 1997, Lightfoot 1990, Mehuys et al. 1975, Saini and 

MacLean 1967). In addition, because the rocks retain heat, they warm the soil at night, 

thereby reducing the potential for frost damage to crops. Although the rocks provide several 

advantages for agricultural production, they also limit agricultural production in certain ways. 

An increased volume of rocks in the soil proportionally reduces the capacity for water and 

nutrient storage, as well as the volume available for root exploration. Despite these potential 

negative effects, overall, the rocks served essential functions that the ancient farmers took 

advantage of in this semiarid climate. 

Physical and Chemical Soil Testing Data 

Soil chemistry, bulk density, and particle-size data for the soil profiles are 

summarized in Tables 2.2 and 2.3 for the soil profiles and in Tables 2.4 and 2.5 for the 

agricultural soils and their controls. Mean soil test values for the agricultural soils are 

presented graphically as histograms in Figure 2.6. Tables 2.6 and 2.7 show all of the mean 

values and standard deviations, and Table 2.8 summarizes the r-test probability values for 

pair-wise comparisons of comparable agricultural and uncultivated contexts. 

Most uncultivated soils in Locality 1 are moderately alkaline, with pHs in the range of 

8.0 to 8.5, reflecting the calcareous nature of the soils. At these levels, the availability of 

some nutrients is limited, especially phosphorus and most micronutrients (iron, manganese, 

zinc, copper, cobalt, and boron), but nitrogen, potassium, calcium, magnesium, sulfur, and 

molybdenum are readily available (Homburg 1994: Fig. 11.9). Although micronutrient 

availability is reduced at these pH levels, it is worth noting that micronutrient deficiencies are 
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Table 2.2. Soil chemistry and bulk density data for soil profiles. 

Soil Depth pH Organic C CCE N (g/kg) Total P Avail. P Bulk 
Horizon (cm) (g/kg) (%) (mg/kg) (mg/kg) Density 

(g/cni3) 

PPI 
A 0-2 8.1 9.8 7.2 0.96 756 14.2 — 

Abk 2-12 8.7 6.2 9.8 0.76 649 11.9 1.30 
Bk 12-30 8.4 9.0 14.4 1.01 635 11.5 — 

PP2 
A 0-4 9.1 0.7 9.5 0.22 628 4.8 — 

Btkl 4-17 8.5 3.3 14.6 0.41 705 8.8 1.35 
Btk2 17-40 8.5 0.7 24.0 0.36 911 6.5 1.51 
Btk3 40-59 8.5 1.6 33.4 0.37 1428 6.8 1.39 

2Btkl 59-77 8.4 0.7 42.9 0.27 1390 8.7 1.35 
2BUc2 77-100 8.6 0.7 37.1 0.20 1043 7.0 1.69 

Note: CCE = calcium carbonate equivalent; bulk density values are missing 
for samples with weakly aggregated peds. 

Table 2.3. Particle-size data (%) for soil profiles. 

Soil Depth (cm) Very Coarse Medium Fine Very Total Coarse Fine Silt Clay 
Horizon Coarse 

Sand 
Sand Sand Sand Fine 

Sand 
Sand Silt 

PPI 
A 0-2 5 6 8 10 28 56 24 9 II 

Abk 2-12 5 5 8 II 28 57 23 11 10 
Bk 12-30 7 5 7 2 33 54 21 15 9 

PP2 
A 0-4 5 4 7 5 31 53 23 17 7 

Btkl 4-17 3 4 4 2 15 28 17 26 29 
Btk2 17-40 5 4 4 2 15 30 11 26 33 
Btk3 40-59 3 5 6 2 19 35 14 31 20 
2Btkl 59-77 0 3 4 2 13 22 13 27 38 
2Btk2 77-100 0 2 2 0 18 22 21 15 42 
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Table 2.4. Soil chemistry and bulk density data for grid features, terraces, rock piles, and 
controls. 

Sample Type pH Org. C CCE (%) N (g/kg) C:N Ratio Total P Avail. P Bulk 
and Location (g/kg) (mg/kg) (mg/kg) Density 

(g/cni3) 

Grid Alignment 
SPl 7.7 5.9 8.0 0.62 9.6 626 20.2 1.42 
SP3 7.7 6.0 4.7 0J2 11.5 666 26.1 1.39 
SP5 7.4 3.9 5.8 0.41 9.6 559 11.5 1.36 
SP7 7.7 5.6 3.8 0J4 10.2 496 10.4 1.43 
SP9 7.5 5.3 5.7 0.51 10.6 662 11.4 -

SP 11 7.9 3.9 6.2 0.35 11.3 529 8.6 1.28 
SP 13 7.9 5J 6.9 0.41 13.0 691 10.6 1.43 
SP 15 8.1 5.5 9.2 0.59 9.4 597 6.2 -

Grid Interior 
SP2 8.0 4.6 1.9 0.42 10.9 723 9.4 1.45 
SP4 8.1 5.0 4.0 0.42 11.9 965 9.8 1.47 
SP6 7.5 3.3 2.1 0.32 10.4 484 13.8 ~ 

SP8 7.8 4.8 3.5 0.41 11.8 691 9.1 1.36 
SP 10 7.5 2.3 5.9 0.27 8.3 640 5.9 -

SP 12 7.7 1.6 9.1 0.24 6.9 699 10.5 1.42 
SP 14 8.2 3.9 11.6 0.40 9.7 865 5.2 _ 
SP 16 8.2 3.3 12.0 0.35 9.3 833 5.2 1.38 

Grid Control, SE Locality 1 
SP27 8.3 1.4 9.2 0.34 4.1 587 4.9 1.50 
SP 28 8.4 2.5 11.0 0.41 6.0 715 5.2 1.48 
SP29 8.5 7.5 15.1 0.57 13.0 750 5.3 1.49 

Grid Control, West of PP 2 
SP 30 8.5 3.3 9.3 0.40 8.3 746 9.7 1.17 
SP31 8.4 4.0 10.7 0.42 9.6 787 7.2 1.12 
SP 32 8.4 4.7 12.5 0.41 11.4 613 5.2 1.30 

Below Terrace Alignment 
SP 17 8.1 3.0 11.7 0.58 5.2 657 10.2 -

Trench la 8.1 3.4 6.2 0.41 8.2 596 5.9 -

SP20 7.6 3.0 6.2 0.71 4.2 699 13.3 1.47 
Terrace Rock Alignment 

SPlg 7.8 5.1 5.5 0.45 IIJ 510 11.3 -

Trench lb 7.6 5.5 6.0 0.60 9.2 591 15.4 1.45 
SP21 7.8 4.6 5.1 1.08 4.3 710 26.5 1.29 

Above Terrace Alignment 
SP 19 8.0 5.5 4.4 0.42 12.9 584 5.3 1.40 

Trench Ic 7.7 8.6 4.1 0.45 19.1 647 9.2 1.49 
SP22 8.2 7.3 3.7 0J3 13.8 477 7.0 1.14 

Terrace Control 
SP33 8.2 11.7 5.8 0.59 19.9 432 11.6 1.32 
SP34 8.2 9.5 6.2 0.64 14.7 457 10.5 1J8 
SP 35 8.0 5.0 5.2 0.69 7.2 493 12.4 1.43 

Rock Pile 
Trench 2 9.0 2.5 6.0 0.40 6J 372 5.4 1.45 
SP23 7.7 4.1 9.1 0.42 9.6 560 8.9 1.28 
SP25 8.1 3.0 7.7 0.46 6J 432 17.5 -

Rock Pile Control 
Tienchl 9J 9J 114 0.42 22.4 672 5.9 1.41 

SP24 8J 8.9 10.2 0.42 21.3 632 3.7 — 

SP26 8.2 43 5.6 0.42 10.7 651 7.1 -

Note: CCE = calcium cartranaie equivalent; bulk density values are missing for samples widi weakly aggregated peds. 
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Table 2.5. Particle-size data (%) for grid features, terraces, rock piles, and controls. 

Sample Very Coarse Medium Fine Sand Very Fine Total Coarse Fine Silt Clay 
Type and Coarse Sand Sand Sand Sand Silt 
Location Sand 

Grid Alignment 

SP 1 4 4 6 16 14 44 19 14 23 
SP3 4 5 8 18 18 S3 20 10 17 
SP5 3 4 4 11 18 41 25 IS 19 
SP7 5 3 3 2 25 38 27 16 19 
SP9 7 6 7 n 18 49 26 11 13 
SP 11 4 5 5 14 19 47 26 13 14 
SP 13 5 5 6 II 19 47 22 IS 16 
SP 15 7 6 5 10 12 41 20 17 22 

Grid Interior 

SP2 2 3 5 14 17 41 23 13 23 
SP4 3 3 5 12 20 43 23 IS 19 
SP6 5 4 5 12 18 43 25 13 19 
SP8 3 4 6 14 18 45 22 18 16 
SP 10 7 6 9 17 18 58 22 11 10 
SP 12 6 5 6 15 21 53 25 10 11 
SP 14 9 6 7 14 18 54 21 13 11 
SP 16 3 3 6 10 20 42 24 19 14 

Grid Control. SE Locality I 

SP27 3 5 7 11 25 48 21 IS 16 
SP 28 3 4 7 13 19 46 17 19 18 
SP29 4 3 6 18 14 44 17 21 18 

Grid Control, W of PP 2 

SP 30 S 5 6 15 21 51 32 6 11 
SP31 5 5 6 16 21 54 24 14 8 
SP 32 5 5 5 14 22 51 25 14 10 

Below Terrace Alignment 

SP 17 9 7 7 4 25 SI 26 13 10 
Trench la 12 7 6 8 20 53 28 10 8 

SP20 S 6 7 9 24 SI 29 12 8 
Terrace Rocic Alignment 

SP 18 8 8 8 11 17 53 24 12 11 
Trench lb 5 5 5 7 20 42 33 14 II 

SP2I 5 6 6 0 28 45 32 14 9 
Above Terrace Alignment 

SP 19 5 6 6 4 27 48 29 14 9 
Trench Ic 4 4 4 0 28 40 36 IS 9 

SP22 5 5 6 0 29 45 32 13 10 
Terrace Control 

SP 33 S 5 5 2 25 43 27 12 17 
SP 34 S 6 6 2 26 46 26 II 18 
SP35 5 5 6 12 16 44 29 12 15 

Rock Pile 

Trench 2 4 4 6 16 12 42 18 21 19 
SP23 3 6 II 27 II 58 16 14 12 
SP25 5 6 8 8 33 59 21 10 9 

xk Pile Control 

Trench 2 2 4 4 0 18 28 14 31 27 
SP24 4 4 6 0 36 49 16 19 16 
SP26 3 5 6 17 21 53 25 12 9 
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Figure 2.6. Histograms of soil data (means) by sample context. Sample contexts: GA - grid 
alignment (n=8); 01 - grid interior (n=:8); GC - grid control (n=6); TA - terrace 
alignment (n=3); BA - below terrace alignment (n=3); AA - above terrace 
alignment (n=3); TC - terrace control (n=3); RP - rock pile (n=3); RPC - rock pile 
control (n=3). 
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Table 2.6. Means (X) and standard deviations (a') for soil chemistry and bulk density tests. 

Sample Context pH Organic C CCE (%) N (g/kg) C:N Ratio Total P Available P Bulk 
(g/kg) (mg/kg) (mg/kg) Density 

(g/cm3) 
X & X & X & X & X o' X a" X ( f  X o" 

Grid Alignment 7.7 0.0 5.2 0.8 6.3 1.7 0.49 O.IO 15.8 1.2 603 70 13.1 6.6 U9 0.06 

Grid Interior 7.9 0.3 3.6 1.2 6.3 4.1 0.35 0.07 22.5 1.7 738 149 8.6 3.0 1.42 0.04 

Grid Control 8.4 0.1 4.0 XI 11.7 2.2 0.42 0.08 20.0 3.3 700 81 6.3 1.9 1.34 0.17 

Below Alignment 7.9 0.3 3.1 0.2 g.O 3.2 0.57 0.15 13.9 2.1 650 52 9.8 3.7 1.47 0.00 

Terrace Align. 7.7 0.1 5.1 0.5 5.5 0.5 0.71 0.33 10.9 2.6 604 100 17.7 7.9 1.37 0.12 

Above Alignment 8.0 0.3 7.1 1.6 4.1 0.4 0.47 0.05 16.9 3.4 569 86 7.2 2.0 1.34 0.18 

Terrace Control 8.1 0.1 8.7 3.4 5.7 0.5 0.64 0.05 12.7 6.4 461 30 11.5 0.9 1.38 0.05 

Rock Pile 8.0 0.7 3.2 0.8 7.6 1.6 0.43 0.03 18.6 1.9 455 96 10.6 6.2 1.37 0.12 

Rock Pile Control 8.3 0.6 7.6 2.7 9.4 3.5 0.42 0.00 19.8 6.5 652 20 5.6 1.7 1.41 0.00 

Table 2.7. Means (X) and standard deviations (a') for particle-size analysis. 

Sample Context VCS CS MS FS VPS Total Coarse Fine Silt Clay 
Sand Silt 

X C X o ' X o ' X o ' X o ' X o '  X  <f X o '  X  C  

Grid Alignment 5 1.5 5 1.1 6 1.6 12 4.7 18 3.8 45 5.1 23 3.4 14 25 18 3.6 

Grid Interior 5 2.5 4 1.4 6 1.4 14 2.1 19 1.4 47 6.5 23 1.7 14 3.3 15 4.7 

Grid Control 4 1.1 4 0.9 6 0.6 15 2J 20 3.7 49 3.7 23 5.8 15 5.4 13 4.2 

Below Alignment 6 3.8 6 0.4 6 0.4 6 2.7 22 2.7 46 1.2 30 1.5 13 15 10 0.8 

Terr. Alignment 8 1.6 6 1.7 7 1.4 7 5.5 23 5.7 52 55 28 4.9 12 1.3 9 1.0 

Above Aligmnent 5 0.9 5 0.8 5 1.1 1 2.0 28 0.7 44 4.0 32 3.3 14 I.O 9 0.6 

Terrace Control 5 0.2 5 0.6 6 0.6 5 5.9 22 5.4 44 IJ 27 1.6 12 0.8 17 1.7 

Rock Pile 4 0.6 5 0.9 8 16 17 95 19 12.4 53 9.4 19 2.8 15 5.2 13 4.9 

Rock Pile Cont. 3 1.0 4 1.0 6 1.1 6 9.9 25 9.4 43 13.6 18 5.8 21 65 17 8.9 
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Table 2.8. r-Test probabilities of pair-wise comparisons of cultivated and uncultivated soils. 

Sample 
Comparison 

pH Org.C CCE N Tot.P Av.P Bulk 
Density 

Sand Silt Clay 

Gridded Features 

GA vs. GI 0.36 0.01" 0.99 0.00*« 0.04* 0.10 0.34 0.41 0.99 0.25 

GA vs. GC O.OO** 0.09 0.00*« 0.10 0.03* 0.03* 0.58 0.13 0.78 0.05* 

GI vs. GC 0.00*» 0.50 0.02« 0.11 0.59 0.12 0.39 0.61 0.74 0.41 

Rock Piles 

RP vs. RC 0.55 0.05 0.46 0.64 0.03* 0.25 0.45 0.37 0.23 0.53 

Terrace Features 

BA vs. TA 0.36 0.00»* 0.25 0.53 0.51 0.19 - 0.18 0.38 0.08 

BA vs. AA 0.93 0.01* 0.10 0.34 0.23 0.35 - 0.04* 0.05* 0.34 

BA vs. TC 0.37 0.05« 0.28 0.47 O.OO** 0.47 - 0.00** 0.82 0.00** 

TA vs. AA 0.28 O.IO O.OI* 0.27 0.23 0.09 0.87 0.62 0.50 0.20 

TA vs. TC 0.01* 0.14 0.64 0.74 0.08 0.25 0.87 0.54 0.36 0.70 

AA vs. TC 0.39 0.50 0.00»» 0.02* 0.11 0.03* 0.77 0.99 0.06 0.00** 

* - significant at a = 0.05; - significant at a = 0.01 

Note; no t-tests were performed for some bulk density comparisons due to missing data. 

GA = grid rock alignment; GI = grid interior; GC = grid control; 
RP = rock pile; RC = rock pile control 
BA = below terrace alignment; TA = terr. rock alignment; AA = above terr. alignment; TC = terr. control 

rare in soils throughout the Southwest (Doerge 1985). In T 2 in the northern part of Locality 

I, next to PP 2, we found the surHcial uncultivated soils to be very strongly alkaline, with 

pHs of 9.1 to 9.3. Soils with a pH above 8.S nearly always have exchangeable sodium 

percentages of IS or more (Fireman and Wadleigh 1951), and at these levels, serious 

problems can be caused by reductions in water uptake by plants and dispersal of soil 

aggregates. Although reduced agricultural productivity would result from pH levels above 

8.5, such soils appear to be very limited extent in Locality 1, so they probably did not pose 

serious problems to the ancient farmers. However, we did find some highly calcareous and 

possibly very alkaline soils in some clast-free grids in the large gridded field area just east of 
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Peck Wash and Locality 1. 

An important fmding is that pH levels are consistently reduced in all cultivated soils 

compared to their controls, to levels that improve overall nutrient availability. We found the 

largest pH reductions in the grid alignment and interior soils, with decreases averaging 0.7 

and 0.5 units for these features, respectively (see Table 2.6), and these di^erences are 

statistically significant (see Table 2.8). The lower pH of these soils is consistent with their 

lower calcium carbonate equivalent. For the terrace features, the greatest pH reductions were 

found within and immediately below the alignments, which suggests these are favorable 

planting locations. The rock pile soils have reduced pHs, but not at significant levels. The 

lack of statistical significance in this apparent trend may be a function of small sample size. 

Mean organic carbon levels in uncultivated soils vary between the sets of control 

samples, with the terrace and rock pile controls averaging 8.7 and 7.6 g/kg (or about 1.5% 

and 1.3% organic matter, respectively, based on the Van Bemmelen factor), which is nearly 

double that of grid controls. There is no statistical difference between either the grid interiors 

or alignments and their controls, but organic carbon content is signiflcantly higher in the 

alignments than the interiors. This finding suggests that organic carbon is conserved by the 

grid alignments, and that the alignments are favorable planting locations. In comparing the 

terrace features, the terrace alignments and terrace positions immediately below the 

alignments, where creosotebush is concentrated, have signiHcantly less organic carbon than 

their controls, possibly due to cultivation effects. Moreover, the rock pile soils have reduced 

organic carbon levels, but the difference is not statistically significant. 

Overall, organic matter levels estimated by the Van Bemmelen factor are low at the 



45 

SGF, usually less than 1 percent in the cultivated soils. The naturally low organic matter 

content is due to aridity, low biomass production, and high temperatures that promote rapid 

oxidation and decomposition of organic debris. It is noteworthy that the Hopi successfully 

farm soils with organic matter contents similar to those of the SGF, through their 

management practices and possibly through the use of varieties of maize with relatively low 

nutrient requirements (Sandor 1983: 253-254). In semiarid regions of Arizona, natural 

organic matter levels are usually between I and 1.5 percent, which is consistent with the 

uncultivated terrace and rock pile controls of the SGF. Organic matter levels in cultivated 

soils at the SGF vary widely, from about 0.3 to 2.1 percent, with most falling between about 

0.5 and 0.9 percent; these levels, though not ideal, are sufficient for growing many crops. 

No statistical differences were noted in nitrogen levels between agricultural soils and 

their controls, with one exception; the terrace position above alignments had significantly 

reduced nitrogen levels compared to the controls. The only other statistical difference is the 

elevated nitrogen levels in the grid alignments compared to the controls. Soils associated with 

agricultural rock features have similar or slightly elevated nitrogen levels compared to 

uncultivated soils, which suggests that rocks act to conserve nitrogen stores. Alternatively, 

the elevated nitrogen levels may be result of post-cultivation vegetation associations with the 

rock features. Nitrogen and organic carbon trends parallel one another for the grid 

alignments, interiors, and controls. These trends were not found for the other agricultural 

contexts, possibly because of differences in organic matter decomposition or production, or 

simply a function of small sample size. 

There is little difference in the mean carbon: nitrogen ratios between the gridded 
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alignments and interiors and their controls, but the controls have higher ratios than the soils 

of rock pile and those within and below the terrace alignments. C:N ratios of cultivated soils 

are mainly in the range of 6:1 to 11; I, which indicates that most organic debris is highly 

decomposed, a form in which much of the organic matter is available to plants. C;N ratios 

between 8:1 and 10:1 are typical for desert soils in the Southwest, due to rapid organic matter 

decomposition rates (Fuller 1975:25). 

Many agricultural contexts, including grid alignments and the terrace positions above 

alignments, have significantly lower total phosphorus levels than their controls. In addition, 

the grid alignments have significantly reduced total phosphorus levels compared to the 

interiors. Because total phosphorus levels are slow to change in the soil, reductions in these 

agricultural contexts likely could reflect cultivation effects. More important to agricultural 

production, however, is the amount of plant-available phosphorus, and soils of all agricultural 

rock features have elevated levels compared to their controls. These differences are 

statistically significant for the grid and terrace alignments. Phosphorus requirements for crops 

are not well understood for many Arizona soils, but available phosphorus levels less than 2 

mg/kg (or 2 ppm) are usually considered low, and values above 5 mg/kg are considered 

sufficient (Doerge 1985). Consequently, all of the cultivated SGF soils are sufficient in 

available phosphorus. 

No statistical differences were noted in bulk density values, so there is no indication 

that cultivation caused significant long-term compaction. Even so, it is possible that soils 

were compacted during cultivation but have since recovered. There is now considerable 

overiap in the bulk density values of cultivated and uncultivated soils. The bulk densities are 



mainly between about 1.3 and 1.45 g/cm\ and none of the samples exceed levels of 1.SS 

g/cm\ the level at which root growth can be restricted. The extensive petrocalcic horizons of 

the SGF, however, strongly limit root growth. 

Surface soil textures consist mainly of loams and sandy loams, which are good 

textural classes for holding high amounts of plant-available moisture. The high sand content 

(generally between 40 and 60 percent of the <2 mm fraction) promotes good aeration and 

rapid water infiltration into the rooting zone. The clay fraction has an especially profound 

effect on soil moisture retention and uptake of water and nutrients by plant roots; clay levels 

near the surface of the SGF are mainly between 10 and 23 percent, which is a range that is 

productive agriculturally. Vertical textural variability on the alluvial fan terrace of the SGF, 

caused by both soil horizonation (that is, soil formation) and sedimentary stratification, 

promotes both moisture retention and lateral water flow in the rooting zone. Subsurface 

gravel/cobble content is high, usually between 20 and 70 percent. As noted in the previous 

section on soil morphology, coarse rock fragments lower the water- and nutrient-holding 

capacity of the soil, but they effectively increase the depth of wetting in the soil after a runoff 

event and serve an important mulching function. 

Overall, few statistical differences were noted between the sand, silt, and clay 

contents of cultivated and uncultivated soils. Clay content was found to be significantly 

higher in the grid alignments than the controls, and terrace positions above and below the 

alignments have significantly less clay than the controls. Significantly more sand and less silt 

were found below terrace alignments compared to above the alignments. Sand content is 

consistently higher in the rock pile soils than the controls, possibly due to the rocks trapping 
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windblown sand; this difference, however, is not statistically signiHcant, probably due to the 

small sample size. If aeolian sand has indeed been entrapped, this process may or may not be 

a post-cultivation effect on the rock piles. 

Granulometric Tests 

If grid surfaces were mulched with lithic materials, there would be noticeably more 

gravel within the grids, especially more of the size fractions dumped onto the grid surfaces 

during the mulching process. We found that grid interiors contain an average 24 percent less 

gravel (by weight) than adjacent areas outside of the grids, and an average 70 percent less of 

the larger cobbles (I to 6 inches) within the upper 5 cm of the 0.5 m by 0.5 m test pits (Table 

2.9). Few larger cobbles (>6 inches) were pulled from test pits in grid interiors, yet many 

such cobbles were found used as border stones. Furthermore, for every size fraction there is a 

greater quantity in the upper 5 cm than in the 5 to 10 cm level, except for the 1 to 6 inch 

fraction, where there is 64% less of this size material (yet 5% more of this fraction in the 

upper 5 cm outside of the grids; Table 2.10). This Hnding demonstrates intentional cultural 

modiHcation of the surface layer of soil in grid interiors, where there is less gravel as a whole 

than outside for grids, and particularly fewer cobbles larger than 1 inch due to removal during 

construction of grid borders. Rather than being mulched, the surfaces of grid interiors were 

apparently winnowed in an effort to thin out coarser gravel and move the cobbles to grid 

borders. This agrees with the construction hypothesis Hrst offered by Hough (1907) and 

Russell (1908), and subsequently assumed by others that inspected these grids. The grid 
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Table 2.9. Percent change (+ or -) in weight of lithic material within grids compared to that 
outside of grids. 

Size Fraction Depth Mean 

(inches) 0-5 cm 5-10 cm 

1.0-6.0 -70 -12 -42 

0.5-1.0 -22 -22 -22 

0.25-0.5 -0.8 -26 -13 

0.125-0.25 +8 -17 -4 

Total -29 -18 -24 

Table 2.10. Percent change (+ or -) in weight of lithic material in 0-5 cm level compared to 
S 10 cm level within and outside of grids. 

Size Within Grid Outside Grid 
Fraction 
(inches) 

1.0-6.0 -64 +5 
0.5-1.0 +27 +27 
0.25-0.5 +29 +4 

0.125-0.25 +25 +3 
Total -3 +10 

interiors of the SGF were not mulched, meaning that a more or less uniform layer of gravel or 

cobbles was not prepared across the planting surface, unless the principal planting surface 

was to be the grid borders. In the process of clearing the gravel and cobbles from fields, the 

linearly piled clasts were placed to form grid borders, and they contributed to the retention of 

moisture across the entire surface of gridded fields. 

Soil Moisture: The Cobble-Mulch Effect 

Control of evaporation is one of the most important goals of soil management aimed 

at improving the supply of water to crops (Heinonen 198S). The amount of moisture in the 
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soil at the time of spring planting significantly affects the survival and success of crops, 

especially in semiarid and arid soils. In areas like the exposed and windy terraces on which 

the SGF were built, the gravelly surfaces and heavy cobble borders promote retention of even 

greater amounts of soil moisture compared to bare soils (Benoit and Kirkham 1963, Homburg 

and Sandor 1997, Lightfoot and Eddy 1994). The size of the grids may have even been 

limited by reduced soil moisture away from cobble borders in large fields; if grids are made 

too big, their centers will be noticeably drier because of greater evaporative effects away from 

the borders. 

Relative soil moisture tests supplied data for comparing six individual grids from 

different gridded fields (the same ones sampled for granulometric analysis) with adjacent 

non-gridded areas to determine if grids aided crop growth by retaining moisture. Precipitation 

data provided by Russell S. Vose of the Office of Climatology, Arizona State University, 

indicates that precipitation in the months preceding our fieldwork in mid-March were typical 

for the study area. A total of 55 mm (2.17 inches) of rain was recorded in the two and half 

months before moisture data were collected, including 34 mm in January, 14 mm in 

February, and 7 mm in March. About 18 mm of rain fell about two weeks before fieldwork, 

so soil moisture in the upper 5 cm had some time to dry through losses to drainage, 

evaporation, and plant uptake. 

Soil moisture data were collected from the center and rock border area of each sample 

grid. An average two-fold increase in moisture was recorded inside the grids compared to 

adjacent areas outside the grids (2.6-fold increase in the upper 5 cm and 1.8-fold increase in 

the 0-10 cm level (Table 2.11). Several additional grids were randomly sampled in the upper 
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Table 2.11. Relative measures of moisture content within and outside of grids (expressed as 
mean readings on a scale of 1 to 10). 

Depth (cm) Within Grid Outside Grid Magnitude of 
Increase Within 
Versus Outside 

Grid 

0-5 2.8 1.1 2.6 X 
5-10 3.8 2.2 1.8 X 

AIl(O-lO) 3.3 1.6 2.0 X 

5 cm at the center, just inside the upslope and downslope borders, and at random points 

inside each grid. These measures of soil moisture were then compared to readings collected 

from surfaces outside of the gridded fields. There was no significant difference in moisture 

levels from point-to-point within grids but, just as in the more controlled tests, moisture 

readings inside of grids were double those of outside of grids. These data validate earlier, but 

untested, assumptions that the SGF served as water retention/water control features (Gilman 

and Sherman 1975, Stewart 1939, Stewart 1940). 

Several agricultural terraces and associated rock alignments were also sampled at 

random in the upper 5 cm. Moisture readings immediately upslope of the cobble dams were 

similar to those taken inside of grids, and readings on adjacent unterraced slopes registered 

about half that of terraces upslope of rock alignments. These data show that agricultural 

terraces built on steeper slopes offered similar moisture retention beneHts to that of grid 

features built on more gently sloping terrain. Rock mulch associated with both the terraced 

and gridded field areas would function to lower crop stress and increase agricultural yields. 
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Some Speculation about Likely Cultivars 

An especially puzzling and elusive aspect of this project is determining what crops 

were, or might have been, cultivated. Soil data alone cannot answer this question. The most 

direct evidence may be supplied by microfossil (pollen and phytolith) data. Nevertheless, soil 

properties do provide some important clues about potential crops, especially when evaluated 

in the context of soil and native plant associations relative to prehistoric agricultural features. 

We fmd it difficult to imagine that the ancient farmers of SGF built these fields 

primarily for maize cultivation, even if highly drought-adapted varieties were grown. This 

assessment is based on the relatively high water and nutrient requirements of maize. From a 

geomorphic standpoint (namely, the small catchment size), it appears that runoff water was of 

secondary importance to the farmers compared to the mulching effect provided by the 

agricultural rock alignments and piles. Instead, it seems more likely that annual desert 

succulents, especially agave or possibly even cacti or yucca, were cultivated, possibly 

entailing a dual- or multiple-cropping system. 

Colonies of Agave murpheyi, a domesticated species of agave, have been identifled in 

many valleys (e.g., Tonto Basin, and the lower Verde, Agua Fria, and New river valleys) of 

central Arizona (Hodgson et al. 1989, Homburg 1997). These colonies are the most direct 

evidence of late prehistoric agave cultivation in the state. Abundant, though less direct 

evidence, of agave cultivation has been found in southern Arizona, in the form of charred 

agave remains from roasting pits next to rock pile Heids and the presence of stone tools 

thought to reflect agave processing activities (Fish 1993, Fish et al. 1992, Fish et al. 1985). A. 

murpheyi colonies are usually found growing in cobbly soils on gentle, southwest-facing 
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slopes of alluvial fans and river terraces. A. murpheyi only reproduces vegetatively from 

clonal offshoots and bulbils, rather than from seed, so it requires human aid to colonize new 

areas. Because diese colonies are invariably found with traces of agricultural activity (e.g., 

rock piles and alignments, terraces, tabular knives, and steep-edged scraping tools), often 

associated with Classic Period Hohokam or Salado sites, they are considered living remnants 

of ancient farming activity (Hodgson et al. 1989). Tabular knives, often referred to as agave 

knives, and large primary flakes that may have served as cutting implements are common at 

the SGF. 

No such colonies have been found in the Safford Basin. Because the Safford Basin 

receives signiHcantly less precipitation than the Transition Zone of Central Arizona where 

these colonies are widespread, it is distinctly possible that such colonies once existed in the 

Safford Basin but failed to survive to the present without human aid. Alternatively, they may 

have been completely harvested by later occupants. From the standpoint of the soils and 

climate, agave is a likely candidate for cultivation in the SGF, because it thrives in cobbly, 

calcareous, droughty soils, even in soils with a low nutrient status and ones in hilly terrain 

that support little other vegetation. 

SUMMARY AND CONCLUSIONS 

Soil properties associated with gridded rock alignments, rock piles, and terraces were 

evaluated in Locality 1 of the SGF. This soil investigation was aimed at documenting soil 

properties, assessing agricultural productivity, and speculating about which crops may have 

been cultivated. Soils consist chiefly of gravelly loams and clay loams dominated by shallow 
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petrocalcic or argillic horizons, both of which strongly impede or block water inflltration and 

hold moisture in the rooting zone within or above these zones. Compared to uncultivated 

soils, agricultural soils at the SGF generally have reduced pH levels, which would have been 

beneficial for crop production due to increased plant availability for many essential nutrients. 

Nitrogen and available phosphorus content is consistently higher in the gridded and terrace 

alignments soils, and upper terrace positions immediately below terrace alignments. If these 

elevated nutrient levels are not the result of changes since Held abandonment, then cultivation 

is associated with improved soil fertility. Compared to uncultivated controls, cultivated soils 

tend to have similar or slightly reduced organic carbon levels. Importantly, the grid alignment 

soils have significantly elevated organic carbon, nitrogen, and available phosphorus levels 

compared to the grid interiors. The precise cause of these chemical soil differences is 

uncertain; they may reflect either direct cultivation effects or post-cultivation vegetation 

associations with agricultural features. Bulk density tests do not indicate that ancient 

cultivation practices caused soil compaction. In short, there is no indication that ancient 

farming activity seriously degraded the soil. Overall, soil nutrient levels are sufficient to have 

supported maize agriculture, but the thin soils, high temperatures, low rainfall, and low 

runoff throughout most landscape positions of the field suggest that crops such as agave or 

other drought-tolerant plants were likely the focus of agricultural production. 

Our soil investigation of the SGF is far from exhaustive, given that it was mainly 

limited to a relatively small sample in Locality I. Future soil studies should expand the scope 

of soil sampling to include other parts of the field, especially the large gridded fields and 

terraces east of Peck Wash. Another potentially productive avenue of research would be to 
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compile detailed soil mapping data on the distribution and depth of petrocalcic and argillic 

horizons, and then evaluate the relationship between these three-dimensional soil bodies and 

spatial patterning of di^erent types of agricultural features. 

REFERENCES 

Alderfer, R. B. and F. G. Merkle 
1943 The Comparative Effects of Surface Application Versus Incorporation of 

Various Mulching Materials on Structure, Permeability, Runoff, and Other Soil 
Properties. Soil Science Society of America Proceedings 8: 79-86. 

Arrhenius, O. 
1963 Investigation of Soil from Old Indian Sites. Ethnos 28: 122-136. 

Baize, D. 
1993 Soil Science Analysis: A Guide to Current Use. John Wiley & Sons. Chichester. 

Barbour, M. G., G. Cunningham, W. C. Oechel, and S. A. Bamberg 
1977 Growth and Development, Form and Function. In Creosote Bush: Biology and 

Chemistry of Larrea in New World Deserts, edited by T. J. Mabry, J. H. 
Hunziker and D. R. Difeo, pp. 48-91. Dowden, Hutchinson, & Ross, Inc., 
Stroudsburg, Pennsylvania 

Benoit, G. R. and D. Kirkham 
1963 The Effect of Soil Surface Conditions on Evaporation of Soil Water. Soil 

Science Society of America Proceedings 27; 495-498. 

Berlin, G. L., D. E. Salas, and P. R. Geib 
1990 A Prehistoric Sinagua Agricultural Site in the Ashfall Zone of Sunset Crater, 

Arizona. Journal of Field Archaeology 17: 1-16. 

Blake, G. R. and K. H. Hartge 
1986 Bulk Density. In Methods of Soil Analysis. Physical and Mineralogical Methods 

(2"^ edition), edited by A. IQute, pp. 363-375. Agronomy Monography No. 9, 
Part 2. American Society of Agronomy and Soil Science Society of America, 
Madison. 



56 

Brady, N. C. and R. R. Weil 
1999 The Nature and Properties of Soils. Prentice Hall, Upper Saddle River, New 

Jersey. 

Castetter, E. F. and W. H. Bell 
1942 Pima and Papago Indian Agriculture. University of New Mexico Press, 

Albuquerque. 

Choriki, R. T., J. C. Hide, S. L. Krall, and B. L. Brownet 
1964 Rock and Gravel Mulch Aid in Moisture Storage. Crops and Soil 16(9): 24. 

Ciolek-Torrello, R. and J. R. Welch (editors) 
1994 Changing Land-use Practices in the Tonto Basin. Statistical Research Technical 

Series No. 28, Tucson. 

Cordell, L. S. 
1998 Archaeology of the Southwest. New York, Academic Press. 

Dick, W. A. and M. A. Tabatabai 
1977 An Alkaline Oxidation Method for E)etermination of Total Phosphorus in Soils. 

Soil Science Society of America Journal 41(3)- 511-514. 

Doerge, T. A. 
1985 A Summary of Soil Test Information for Arizona's Surface Agricultural Soils: 

1965-1984. Tucson, Department of Soil and Water Science, University of 
Arizona. 

Doolittle, W. E. 
1984 Cabeza de Vaca's Land of Maize: An Assessment of Its Agriculture. Journal of 

Historical Geography 10: 246-262. 

1988 Pre-Hispanic Occupance in the Valley of Sonora, Mexico: Archaeological 
Confirmation of Early Spanish Reports. The University of Arizona Press, 
Tucson. 

1998 Innovation and Diffusion of Sand- and Gravel-Mulch Agriculture in the 
American Southwest: A Product of the Eruption of Sunset Crater. Quatemaire 
9(1): 61-69. 

Dom, R. L, D. B. Bamforth, T. A. Cahill, J. C. Dohrenwend, B. D. Turrin, D. J. Donahue, A. 
J. T. Jull, A. Long, M. E. Macko, E. B. Weil, D. H. Whitney, and T. H. Zabel 
1986 Cation-ratio and Accelerator Radiocarbon Dating of Rock Varnish on Mojave 

Artifacts and Landforms. Science: 1472-1474. 



57 

Dora, R. I. and M. J. DeNiro 
1984 Stable Carbon Isotope Ratios of Rock Varnish Organic Matter; A New 

Paleoenvironmental Indicator. Science 227(1472:1474). 

Dora, R. I. and T. M. Oberlander 
1981 Microbial Origin of Desert Varnish. Science 213:1245-1247. 

Dregne, H. E. 
1963 Soils of the Arid West. In Aridity and Man: The Challenge of the Arid Lands in 

the United States, by C. Hodge and P. C. Duisberg, pp. 215-238. American 
Association for the Advancement of Science, Washington. 

Elvidge, C. D. 
1982 A Reexamination of the Rate of Desert Varaish Formation Reported South of 

Barstow, Califoraia. Earth Surface Processes and Landforms 7: 345-348. 

Evenari, M., L. Shanan, and N. H. Tadmor 
1982 The Negev: The Challenge of a Desert. Harvard University Press, Cambridge. 

Fairboum, M. D. 
1973 Effect of Gravl Mulch on Crop Yields. Agronomy Journal 65: 925-928. 

Fireman, M. and C. H. Wadleigh 
1951 A Statistical Study of the Relation Between pH and the Exchangeable-sodium 

Percentage of Western Soils. Soil Science 71: 273-285. 

Fish, S. K. 
1993 Agriculture and Society in Arid Lands. Department of Arid Lands Resource 

Sciences, The University of Arizona, Tucson. 

1995 Mixed Agricultural Technologies in Southern Arizona and Their Implications. 
Soil, Water, Biology, and Belief in Prehistoric and Traditional Southwestern 
Agriculture. H. W. Toll. New Mexico Archaeological Council, Albuquerque. 

Fish, S. K. and P. R. Fish (editors) 
1984 Prehistoric Agricultural Strategies in the Southwest. Arizona State University, 

Tempe. 

Fish, S. K., P. R. Fish, and J. Madsen (editors) 
1992 The Marana Community in the Hohokam World. Anthropological Papers of the 

University of Arizona No, 56. The University of Arizona Press, Tucson. 



58 

FuUer, W. H. 
1975 Soils of the Desert Southwest. The University of Arizona Press, Tucson. 

Fuller, W. H. and H. E. Ray 
1965 Basic Concepts of Nitrogen, Phosphorus, and Potassium in Calcareous Soils. 

The University of Arizona, Tucson. 

GaUegos, R. A. and H. C. Monger 
1997 Phytogenic Carbonate, Desert Shrubs, and Stable Carbon Isotopes. 1998 Annual 

Meeting Abstracts. Baltimore, Soil Science Society of America, Baltimore. 

Gee, G. W., and J. W. Bauder 
1986 Particle-size Analysis. In Methods of Soil Analysis. Part 1: Physical and 

Mineralogical Methods. Edited by A. Klute, pp. 383-411. Agronomy 
Monography No. 9. American Society of Agronomy and Soil Science Society of 
America, Madison. 

Gelderman, P. W. 
1970 Soil Survey of the Safford Area, Arizona. U. S. E)epartment of Agriculture, Soil 

Conservation Service, Washington. 

Gile, L. H., J. W. Hawley, and R. B. Grossman 
1981 Soils and Geomorphology in the Basin and Range Area of Southern New 

Mexico: Guidebook to the Desert Project. New Mexico Bureau of Mines and 
Mineral Resources, Socorro. 

Gile, L. H., F. F. Peterson, and R. B. Grossman 
1966 Morphological and Genetic Sequences of Carbonate Accumulation in Desert 

Soii^s. Soil Science 101(347-360). 

Gllman, P. L. and P. Sherman 
1975 An Archaeological Survey of the Graham-Curtis Project: Phase II. The 

University of Arizona Press Tucson. 

Glinski, J. and J. Lipiec 
1990 Soil Physical Conditions and Plant Roots. Boca Ratan, Florida, CRC Press. 

Hack, J. T. 
1942 The Changing Physical Environment of the Hopi Indians ofArizona. Papers of 

the Peabody Museum of American Archaeology and Ethnography No. 35, 
Cambridge, Peabody Museum. 

Hausenbuiller, R. L. 



59 

Glinski, J. and J. Lipiec 
1990 Soil Physical Conditions and Plant Roots. Boca Ratan, Florida, CRC Press. 

Hack, J. T. 
1942 The Changing Physical Environment of the Hopi Indians of Arizona. Papers of 

the Peabody Museum of American Archaeology and Ethnography No. 35, 
Cambridge, Peabody Museum. 

Hausenbuiller, R. L. 
1972 Soil Science: Principles and Practices. Wm. C. Brown Company Publishers, 

Dubuque, Iowa. 

Heinonen, R. 
1985 Soil Management and Crop Water Supply. University of Agricultural Sciences. 

Uppsala, Sweden. 

Hendricks, D. M. 
1985 Arizona Soils. College of Agriculture, The University of Arizona, Tucson 

Hodgson, W., G. Nabhan, and L. Ecker 
1989 Prehistoric Fields in Central Arizona: Conserving Rediscovered Agave 

Cultivars. Agave 3(3): 9-11. 

Homburg, J. A. 
1994 Soil Fertility in the Tonto Basin. In Changing Land-use Practices in the Tonto 

Basin, Vol. 3: Field Study, edited by R. Ciolek-Torrello and J. R. Welch: pp. 
253-295, Statistical Research Technical Series 28, Tucson. 

1997 Prehistoric Dryland Agricultural Fields of the Lower Verde. In Vanishing River-
Landscapes and Lives of the Lower Verde Valley: The Lower Verde 
Archaeological Project, Vol. 2: Agricultural, Subsistence, and Environmental 
Studies, edited by J. A. Homburg and R. Ciolek-Torrello, pp. 103-106, SRI 
Press, Tucson. 

Homburg, J. A. and J. A. Sandor 
1997 An Agronomic Study of Two Classic Period Agricultural Fields in the 

Horseshoe Basin. In Vanishing River: Landscapes and Lives of the Lower Verde 
Valley. The Lower Verde Archaeological Project. Vol. 2: Agricultural, 
Subsistence, and Environmental Studies, edited by J. A. Homburg and R. 
Ciolek-Torrello pp. 127-148, SRI Press, Tucson. 



60 

Hough, W. 
1907 Antiquities of the Upper Gila and Salt River Valleys in Arizona and New 

Mexico. Smithsonian Institution, Washington, 

Jeffrey, D. W. 
1987 Soil-Plant Relationships: An Ecological Approach. Timber Press, Portland. 

Jenny, H. 
1941 Factors of Soil Formation. New York, McGraw-Hill. 

Lang, R. W. 
1981 A Prehistoric Pueblo Garden Plot on the Rio Ojo Caliente, Rio Arriba County, 

New Mexico: Ojo Caliente Site 7, Features 1-2. Santa Fe, School of American 
Research. 

Lightfoot, D. R. 
1990 The Prehistoric Pebble-mulched Fields of the Galisteo Anasazi: Agricultural 

Innovation and Adaptation to Environment. PhD. Dissertation, Department of 
Geography, University of Colorado, Boulder. 

1993a The Landscape Context of Anasazi Pebble-Mulched Fields in the Galisteo 
Basin, Northern New Mexico. Geoarchaeology 8(5): 349-370. 

1993b The Cultural Ecology of Puebloan Pebble-Mulch Gardens. Human Ecology 
21(2): 115-143. 

1994 Morphology and Ecology of Lithic-Mulch Agriculture. The Geographical 
Review S4i2): 172-185. 

1996 The Nature, History, and Distribution of Lithic Mulch Agriculture: An Ancient 
Technique of Dryland Agriculture. The Agricultural History Review 44(2): 206-
222. 

Lightfoot, D. R. and F. W. Eddy 
1994 The Agricultural Utility of Lithic-Mulch Gardens: Past and Present. Geojoumal 

34(4): 425-437. 

1995 The Construction and Configuration of Anasazi Pebble-Mulch Gardens in the 
Northern Rio Grande. American Antiquity 60(3): 459-470. 

Loomis, R. S. and D. J. Connor 
1992 Crop Ecology: Productivity and Management in Agricultural Systems. 

Cambridge University Press, Cambridge. 



61 

Ludwig, J. A. 
1987 Primary Productivity in Arid Lands: Myths and Realities. Journal of Arid 

Environments 13: 1-7. 

Machette, M. N. 
1965 Calcic Soils of the Southwestern United States. In Soils and Quaternary 

Geology of The Southwestern United States, edited by D. L. Weide, pp. 1-22. 
The Geological Society of America, American Society of Agronomy, and Soil 
Science Society of America, Boulder and Madison. 

Masse, W. B. 
1979 An Intensive Survey of Prehistoric Dry Farming Systems Near Tumamoc Hill in 

Tucson, Arizona. The Kiva 45: 141-186. 

Maxwell, T. D. and K. F. Anschuetz 
1992 The Southwestern Ethnographic Record and Prehistoric Agricultural Diversity. 

In Gardens of Prehistory: The Archaeology of Settlement Agriculture in 
Greater Mesoamerica, edited by T. W. Killion, pp. 35-68. The University of 
Alabama Press, Tuscaloosa. 

McLean, E. O. 
1982 Soil pH and Lime Requirements. In Methods of Soil Analysis. Chemical and 

Microbiological Properties, edited by A. L. Page, R. H. Miller, and D. R. 
Keeney, pp. 199-222. Agronomy Monograph No. 9, Part 2. American Society of 
Agronomy and Soil Science Society of America, Madison. 

Mehuys, G. R., L. H. Stolzy, J. Letey, and L. V. Weeks 
1975 Effect of Stones on the Hydraulic Conductivity of Relatively Dry Desert Soils. 

Soil Science Society of America Proceedings 39; 37-42. 

Murphy, C. H. 
1984 Handbook of Particle Sampling and Analysis Methods Chemie 

International, Dearfield Beach, Florida. 

Nabhan, G. P. 
1983 Papago Fields: Arid Lands Ethnobotany and Agricultural Ecology. Department 

of Arid Lands Resource Sciences. PhD. Dissertation, Department of Arid Lands 
Resource Sciences, The University of Arizona, Tucson. 

1984 Soil Fertility Renewal and Water Harvesting in Sonoran Desert Agriculture: 
The Papago Example. Arid Lands Newsletter 20:21-28. 



62 

National Soil Survey Center 
1996 Soil Survey Laboratory Methods Manual. Lincoln, Nebraska, U. S. Department 

of Agriculture, Natural Resources Conservation Service. 

Nelson, D. W. and L. E. Sommers 
1982 Total Carbon, Organic Carbon, and Organic Matter. In Methods of Soil 

Analysis. Chemical and Microbiological Methods, edited by A. L. Page, R. H. 
Miller and D. R. Keeney, pp. 539-579. Agronomy Monograph No. 9, Part 2, 
American Society of Agronomy and Soil Science Society of America, Madison. 

Olsen, S. R. and L. E. Sommers 
1982 Phosphorus. Methods of Soil Analysis. Chemical and Microbiological Methods. 

A. L. Page, R. H. Miller and D. R. Keeney, pp. 403-430. Agronomy Monograph 
No. 9, Part 2, American Society of Agronomy and Soil Science Society of 
America, Madison. 

Rankin, A. G. and K. L. Katzer 
1989 Agricultural Systems in the ACS Waddel Project Area. In Settlement, 

Subsistence, and Specialization in the Northern Periphery: The Waddell 
Project, edited by M. Green. Phoenix, pp. 981-1020. Archaeological Consulting 
Services, Ltd., Phoenix. 

Rommey, E. M., A. Wallace, and R. B. Hunter 
1978 Plant Response to Nitrogen Fertilization in the Northern Mohave Desert and Its 

Relation to Water Manipulation. In Nitrogen in Desert Ecosystems, edited by N. 
E. West and Skujins, pp. 232-242Stroudsburg, Pennsylvania. 

Russell, F. 
1908 The Pima Indians. 26th Annual Report of the Bureau of American Ethnology to 

the Secretary of the Smithsonian Institution, Washington. 

Saini, G. R. and A. A. MacLean 
1967 The Effect of Stones on Potato Yield, Soil Temperature, and Moisture. 

American Potato Journal 44: 209-213. 

Sanders, W. T. 
1992 Comments by William T. Sanders. In "Summary and Critique" by B.L. Turner II 

and W. T. Sanders. Gardens of Prehistory: The Archaeology of Settlement 
Agriculture in Greater Mesoamerica. T. W. Killion. Tuscaloosa, The University 
of Alabama Press: 263-284. 



63 

Sandor, J. A. 
1983 Soils at Prehistoric Agricultural Terracing Sites in New Mexico. Department of 

Soil Science. PhD. Dissertation, Department of Soil Science, University of 
California, Berkeley. 

1995 Searching for Clues about Southwest Prehistoric Agriculture. In Soil, Water, 
Biology, and Belief in Prehistoric and Traditional Southwestern Agriculture, 
edited by H. W. Toll, pp. 119-137. New Mexico Archaeological Council, 
Albuquerque 

Sandor, J. A. and P. L. Gersper 
1988 Evaluation of Soil Fertility in Some Prehistoric Agricultural Terraces in New 

Mexico. Agronomy Journal 80: 846-850. 

Sandor, J. A., P. L. Gersper, and J. W. Hawley 
1986 Soils and Prehistoric Agricultural Terracing Sites in New Mexico: I. Site 

Placement, Soil Morphology, and Classification: n. Organic Matter and Bulk 
Density Changes. Soils at Prehistoric Agricultural Terracing Sites in New 
Mexico: m. Phosphorus, Selected Micronutrients, and pH. Soil Science Society 
of America Journal 50: 173-180. 

1990 Prehistoric Agricultural Terraces and Soils in the Mimbres Area, New Mexico. 
World Archaeology 22:70-86. 

Sandor, J. A. and J. A. Homburg 
1997 Soils and Prehistoric Agricultural Sites on Piedmont Slopes Near Paquime, 

Chihuahua, Mexico. Draft report for National Geographic project, submitted to 
Paul Minnis, Department of Anthropology, University of Oklahoma, Norman. 

Sellers, W. D. and R. H. Hill 
1974 Arizona Climate: 1931-1972. The University of Arizona Press, Tucson. 

Soil Science Society of America 
1987 Glossary of Soil Science Terms. Soil Science Society of America, Madison. 

Soil Survey Staff 
1993 Soil Survey Manual. U. S. Department of Agriculture, United States 

Government Printing Office, Washington. 

1998 Keys to Soil Taxonomy. U. S. Department of Agriculture, Natural Resources 
Conservation Service, Washington. 



64 

1999 Soil Taxonomy, A Basic System of Soil Classification for Making and 
Interpreting Soil Surveys. U. S. Department of Agriculture, United States 
Government Printing Office. Washington. 

Solbrig, O. T. 
1977 The Adaptive Strategies of Larrea. In Creosote Bush: Biology and Chemistry of 

Larrea in New World Deserts, edited by T. J. Mabry, J. H. Hunziker and D. R. 
Difeo, pp. 1-9. Dowden, Hutchinson, & Ross, Stroudsburg, Pennsylvania. 

Stevenson, F. J. 
1982 Nitrogen in Agricultural Soils^ American Society of Agronomy, Madison. 

Stewart, G. R. 
1939 Conservation Practices in Primitive Agriculture of the Southwest. Soil 

Conservations: 112-115, 131. 

Stewart, G. R. 
1940 Conservation in Pueblo Agriculture: I. Primitive Practices. The Scientific 

Monthly 51:201-220. 

Sutton, J. E. G. 
1969 "Ancient Civilizations" and Modem Agricultural Systems in the Southern 

Highlands of Tanzania. Azania 4: 1-13. 

1978 Engaruka and Its Waters. Azania 4: 37-70. 

1990 A Thousand Years of East Africa. British Institute in Eastern Africa, Nairobi. 

Tisdale, S., W. L. Nelson, and J. D. Beaton 
1985 Soil Fertility and Fertilizers. Macmillan Publishing Company, New York. 

Toll, H. W. (editor) 
1995 Soil, Water, Biology, and Belief in Prehistoric and Traditional Southwestern 

Agriculture. Special Publication No. 2. New Mexico Archaeological Council, 
Albuquerque. 

Vanderpot, R. 
1992 Rockpile Areas and Other Specialized Activity Sites on the Gila River Terrace: 

An Appraisal ofHohokam Auxiliary Agricultural Strategies Near Florence, 
Arizona. Statistical Research Technical Series 32, Tucson. 



65 

Ware, J. A. and M. Mensel 
1992 The Ojo Caliente Project: Archaeological Test Excavations and A Data 

Recovery Plan for Cultural Resources Along U. S. 285, Rio Arriba County, New 
Mexico. Museum of New Mexico, Santa Fe. 

Wild, A. 
1993 Soils and Environment: An Introduction. Cambridge University Press, 

Cambridge. 

Woodbury, R. B. 
1961 Prehistoric Agriculture at Point of Pines, Arizona. Society for American 

Archaeology, Salt Lake City. 

Woosely, A. I. 
1980 Agricultural Diversity in the Prehistoric Southwest. The Kiva 45: 317-335. 

Yaalon, D. H. 
1957 Problems of Soil Testing on Calcareous Soils. Plant and Soil 8: 275-288. 

Young, H. M., Jr. 
1982 No-Tillage Farming. No-Till Farmer, Brookfield, Wisconsin. 

ACKNOWLEDGEMENTS 

National Geographic Society is acknowledged for funding this study. We give a 

special thanks to the principal investigators. Dr. William Doolittle (Professor of Geography) 

and Dr. James Neely (Professor of Anthropology) of the University of Texas at Austin, for 

coordinating the project and assisting with the Heldwork. Mr. Gay Kincaide, archaeologist at 

the Safford District of the Bureau of Reclamation, was instrumental in supporting the project 

and providing permission to conduct Heldwork on BLM property. We also appreciate the 

help of Mr. Jay Norton for supervising C, N, and P analyses at the University of Montana, 

Mr. Louis Moran at Iowa State University for supplying calcium carbonate equivalent data, 

Ms. Brenda Houser of the U. S. Geological Survey for furnishing geomorphic mapping data. 



66 

and Mr. Russell S. Vose of the Office of Climatology, Arizona State University for providing 

climatic data. We thank Drs. Michael Thompson, Nancy Coinman, Lee Burras, and Ricardo 

Salvador for reviewing a previous draft of this paper, and Dr. Karen Adams for supplying the 

photograph of the gridded alignments. 



67 

CHAPTERS 
ANTHROPOGENIC INFLUENCES 
ON ZUNI AGRICULTURAL SOILS 

A paper to be submitted to Journal of Arid Environments 

Jeffrey A. Homburg, Jonathan A. Sandor, and Jay B. Norton 

ABSTRACT 

The Zuni and other Native American groups of the semiarid Southwest U. S. have 

successfully cultivated maize and other crops for over two millennia without using formal 

irrigation or artificial fertilizers. Zuni fields are among the oldest, more or less continuously, 

cultivated areas in the United States. Traditional Zuni agriculture is based on a runoff farming 

system, whereby storm water flow and organic-rich sediment is captured from watersheds 

and directed onto agricultural fields. Long-term agricultural soils of semiarid regions of the 

Southwest, including those of Zuni fields, are well suited for agronomic research because soil 

formation (e.g., weathering, leaching, and illuviation) proceeds much more slowly in deserts 

than in humid environments, so soil changes caused by cultivation practices tend to persist 

and be detectable for long periods. We conducted a study to compare soil properties 

associated with cultivated, abandoned, and uncultivated fields. This research was aimed at 

documenting and evaluating the long-term effects of cultivation on soil properties of Zuni 

agricultural runoff soils. 

Field and lab results indicate that tillage in recent decades has altered some soil 

properties but there is no clear indication that agricultural soils are degraded. Paired 
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cultivated soils are 7.6% higher in bulk density on average and they have greater massive 

structure and reduced granularity. By contrast, unpaired cultivated soils are only 3.5% higher 

in bulk density, which is not enough to indicate degradation, especially given the Mable to 

very friable consistence of topsoils. Higher pH levels in the paired and unpaired cultivated 

soils were found, caused by greater deposition of calcareous sediment from the upper 

watersheds. No consistent differences in organic C, N, and available and total P were 

identified in the statistical analysis of paired fields, which further suggests there is no 

indication that cultivated soiis are degraded. No statistically significant differences were 

identified in soils from a much larger data set of unpaired cultivated, abandoned, and 

uncultivated treatments, but significant differences in pH and bulk density were found among 

the three study areas in the eastern part of the Zuni Reservation. Because of the much greater 

sample size of unpaired fields, the lack of significant identifiable changes caused by 

cultivation strongly indicates that Zuni agricultural runoff soils are not degraded. This 

assessment supports the perception of Zuni farmers that long-term cultivation has not caused 

a decline in agricultural productivity. 

"Take the best of the old Indian ways ~ always keep them. They have been proven for thousands of years. Do 
not let them die." (Sitting Bull (1834-1890) Hunkpapa Lakota, South Dakota). 

INTRODUCTION 

Most assessments of cultivation effects on soil productivity rely on observations 

obtained over brief periods, often less than Hve years and rarely exceeding 100 years (Fenton 

et al. 1999). Because of such limited time perspective on anthropogenic soil changes, it is 



69 

peculiar that so few agronomists and soil scientists have studied the oldest American farming 

systems, those of American Indians. To help fill this data gap, we conducted a soil study of 

an American Indian agricultural system in a semiarid region of west-central New Mexico 

(Figure 3,1). Zuni fields are among the oldest identifiable agricultural fields in the United 

States, so this project provided a unique opportunity to document and evaluate soil properties 

associated with long-term agriculture practices. Agriculture has been practiced in the Zuni 

homeland for over two millennia, so there is little question that their traditional cropping 

system is one that is highly sustainable. It is unclear, however, how plowing (which was not 

practiced by ancient farmers) over the last century has affected soil properties, and that is the 

focus of this study. Agronomists and soil scientists with expertise in soil biology, physics, 

and morphology from various academic and private institutions collaborated with land 

managers and farmers from the Zuni Conservation Project to conduct this scientific 

investigation, sponsored by the National Science Foundation (NSF). 

Overcoming low water availability is usually viewed as the major hurdle to achieving 

agricultural sustainability in the semiarid Southwest, which contrasts sharply with humid 

regions where soil fertility maintenance is the main limiting factor (Dregne 1963:219, 

Sanders 1992: 283). Soil fertility is also an important concern for farming systems in the 

Southwest, and productivity is not limited by water alone (Ludwig 1987). Nitrogen deficiency 

is so common in desert soils that its effect in limiting agricultural production is almost as 

great as water availability (Rommey et al. 1978; Nabhan 1983; Nabhan 1984; Sandor and 

Gersper 1988). Cultivation of crops with high nutrient requirements, such as maize, heightens 
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Figure 3.1. Location of Zuni Reservation. 
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this problem by depleting already low nitrogen stores (Stevenson 1982; Doolittle 1984; 

Loomis and Connor 1992: Fig. 12.1). 

Research objectives of our Zuni agricultural soil study are as follows: (1) characterize 

the chemical and physical properties of soils for runoff agriculture; (2) identify and assess 

soil and geomorphic factors important to the functioning of Zuni runoff fields; (3) evaluate if 

long-term cultivation has altered the quality of Zuni agricultural soils. To measure the effects 

of cultivation on soil quality, chemical and physical properties of soils from modem Zuni 

fields were analyzed at two spatial scales: (I) sampling at three paired (intensive) cultivated 

and uncultivated fields; and (2) sampling at 29 unpaired (extensive) cultivated, abandoned, 

and uncultivated Helds. These soil-sampling areas are depicted in Figure 3.2. 

We attempted to hold non-anthropogenic soil-forming factors reasonably constant 

(especially climate, topography, and geology) by focusing our soil-sampling effort on similar 

elevations, landscape positions, and geologic contexts. Soil samples were collected from 

alluvial fans and a few footslopes, mainly at elevations of about 2070 m and in watersheds 

smaller than about ISO hectares. We concentrated our sampling effort on soil map units of the 

Hosta series, a widespread soil where many runoff fields are located in the eastern part of the 

reservation where our study was conducted. 

Two intensive fields were selected near historic fanning villages, one near Lower 

Nutria and the other near Pescado. Archival records indicate that both areas were used 

extensively for agriculture from about the turn of the last century to about World War II. 

Agricultural fields along Pescado Wash and the alluvial fans flanking it are depicted in a mid-
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Figure 3.2. Location of paired (intensive) and unpaired (extensive) fields. 
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1930s aerial photograph (Figure 3.3), when farming activity was widespread across Zuni 

fanning districts. The third field is in an area identified by some local farmers as Bear 

Canyon. We refer to the intensive fields in the Nutria, Pescado, and Bear Canyon study areas 

as the Laate, Sanchez, and Weekoty flelds, respectively. These fields are named for the 

farmers who most recently cultivated them. The 29 extensive fields are roughly evenly 

divided between the Nutria, Pescado, and Bear Canyon study areas, and between cultivated, 

abandoned, and uncultivated land. Cultivated fields are defined as those that were either 

currently farmed or recently left fallow within the last decade, and have been plowed 

mechanically since about World War n. Abandoned fields include fields that were tilled 

mainly by horse-drawn plows through the early 1940s, but have since been left fallow. 

Uncultivated fields are ones lacking archival evidence of farming activity. It is important to 

note that most of the fields sampled, even those defined for the purpose of this study as 

uncultivated, were in fact farmed prehistorically. Archaeological features and artifacts were 

commonly encountered during the course of fieldwork, often within 100 m of our soil 

sampling areas, and these cultural remains are a clear indication of ancient farming. Because 

of variability in the timing and intensity of ancient farming in the fields we sampled, this 

activity has a potential confounding effect in our analysis of soil changes over the last 

century. The presence of these ancient fields, however, supports our contention that the 

uncultivated fields we selected for analysis are good reference samples for comparison; that 

is, they lack evidence of farming over the last century but they are in similar landscape 

positions suitable for agriculture because they actually have been cultivated. To obtain 

information on ancient fanning, we recorded archaeological sites, which involved making 
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Figure 3.3. Photograph of 1930s agricultural fields (from the Soil Conservation Service). 
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surface observations of ceramic and lithic artifacts. Archaeological features included stone 

rubble from field houses and farmsteads, stone granaries sealed with a mud mortar, and stone 

alignments built to slow runoff water and reduce erosion. Decorated pottery indicates that 

runoff farming was especially widespread from about A.D. 1050 to 1150 (Pueblo n period). 

It is likely that traces of prehistoric farming activity are also buried in the alluvium of our soil 

sampling loci. 

Some research was conducted on Zuni agricultural soils prior to the start of this NSF 

project. Roman Pawluk (1995) conducted interviews of Zuni farmers in 1991 to document 

their knowledge and concepts of agricultural soils and organic-rich sediment. Interestingly, 

Pawluk learned of a Zuni term, tanayan sowe (which means "tree soil"). This concept clearly 

shows that Zuni farmers recognize the crucial role played by organic-rich sediments in 

nutrient renewal of agricultural soils. Later, during the course of fieldwork on our NSF 

project, we started thinking of this material as "walking compost," consisting of patchy 

concentrations of organic debris that decomposes as it is carried toward agricultural Helds 

below by runoff from episodic storm events. 

Soils, hydrology, and vegetation associations of the Sanchez field and watershed were 

investigated by Jay Norton (Norton 1996, Norton et al. 1998) as part of his Master's research 

at Iowa State University. Norton's thesis incorporated field soil data collected by Jonathan A. 

Sandor in 1991 in this same field. Watersheds were a logical scale of analysis for Norton's 

study of agricultural landscapes and soils (see Lowrance 1992). Fields on alluvial fans and 

the watersheds that feed them form a natural agroecological pair, and this same analytical 
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approach was continued in the present NSF project. Norton's soil testing data are included 

within the larger data set presented here in this paper. Norton's study demonstrated the 

importance of small watersheds in supplying water and nutrients to Zuni fields (Figures 3.4 

and 3.5), which is consistent with the Hndings of previous studies of runoff farming in the 

semiarid Southwest (Bryan 1929, Hack 1942, McGee 1895, Nabhan 1984, Nabhan 1979, 

Nabhan 1983, Nabhan 1986a, Nabhan 1986b); Stewart 1939; Stewart 1940) and other deserts 

around the world (Boers and Ben-Asher 1982, Bruins 1986, Bruins 1990, Bruins et al. 1987, 

Cohen et al. 1995, Evenari et al. 1982, Kowsar 1991, Lavee et al. 1997, Niemeijer 1998, Parr 

1943). Norton is continuing his work on Zuni runoff farming at the School of Forestry at the 

University of Montana, with his doctoral research focused on N mineralization in Zuni fields. 

He is also studying the hydrology of the Weekoty watershed and spearheading efforts to 

revitalize Zuni runoff farming. 

BACKGROUND DISCUSSION 

Background on the Zuni and Runoff Farming 

The Zuni, who now number over 9000, are one of the Western Puebloan tribes of the 

Southwest. They have a close affinity with the Hopi, another of the western Puebloan tribes, 

who live further west in Arizona. The traditional homeland of the Zuni extends over a broad 

region in west-central New Mexico and east-central Arizona, extending far outside of the 

reservation where they now live (Ferguson and Hart 1985). Zuni and other American Indian 

groups of the semiarid Southwest have a long tradition of runoff^ farming, and it is signiHcant 

that even today their system does not rely on artificial fertilizers. Instead, their fields are 



Figure 3.4. Floodwater draining into a field during a runoff event. 



Figure 3.5. Organic-rich sediment delivered to alluvial fan by runoff. 



fertilized with organic-rich sediments carried in runoff water. This organic-rich debris drains 

from upper watersheds and is deposited throughout alluvial fan surfaces, especially on 

footslopes. 

Runoff farming is an agricultural system that involves capturing storm water flow and 

sediment from watersheds and directing it onto agricultural Helds (see Figures 3.4 and 3.5). 

This type of agricultural system is a case whereby farmers take advantage of natural erosion 

in the watershed. Earthen berms, rock alignments, wooden dams, and shallow ditches are 

commonly built to control erosion and divert runoff across fields for crop use. Over 100 years 

ago, Frank Gushing, an early anthropologist, was the Hrst to document how effective Zuni 

techniques were at spreading runoff water and organic-rich sediment throughout an 

agricultural field (Gushing 1979; reprint of selected writings first published in 1884). Zuni 

runoff fields are placed on alluvial fans and foot slopes in valley margin and canyon settings. 

These landforms are productive settings for agriculture because: (I) runoff water and 

nutrients are naturally concentrated on these landforms; (2) the growing season is extended 

because cold air drainage effects are reduced compared to valley bottoms; and (3) potential 

salinization effects are reduced compared to irrigated fields on valley floors. 

Digging sticks, the traditional farming implement, were replaced by horse-drawn 

plows around the tum-of-the-century and later by tractor-drawn plows in the 1940s and 

19S0s. Today, agricultural fields are mainly watered by irrigation, but runoff farming is still 

in practice. The amount of land devoted to agricultural production has declined over the last 

few decades, but farming continues to play an integral role in Zuni society. The Zuni 

Conservation Project is now spearheading a program to revitalize agriculture on the 
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reservation. Our research on Zuni agriculture is in support of this program. 

Macrobotanical remains of maize cultivation have been radiocarbon-dated at about 

2300 years old (date obtained by Steve Hall, geomorphologist in the Department of 

Geography, University of Texas at Austin) on the Zuni Reservation, thus demonstrating the 

antiquity of agriculture in the region. This Hnding indicates that Zuni Helds are among the 

oldest, more or less continuously, cultivated lands in the United States. Evidence of early 

agriculture was recently found during an archaeological project (Damp and Kendrick 2000) 

in Y Unit Draw, which is on the west side of the Bear Canyon study unit along State 

Highway 602. Runoff irrigation canals and rock water control features dating to over 2000 

B.P. (Basketmaker n period) were exposed in trenches and traced by remote sensing 

techniques, including archaeomagnetism and electrical resistivity. 

Previous Soil Studies of American Indian Farming Systems 

There have been few soil studies of American Indian farming systems, and most of 

those now available are based on very small sample sizes or are focused on ancient, 

abandoned systems lacking continuity to the present. Soil analysis of existing or recently 

abandoned American Indian farming systems was completed for Tohono O'otham (formerly 

known as the Papago) Helds in southern Arizona, where runoff systems similar to those of 

Zuni were used. This work, completed as part of Gary Nabhans's dissertation, consisted of 

analysis of single soil samples from about 30 fields (Nabhan 1983). 

Ancient agricultural soils of semiarid regions of the Southwest, including those of 

Zuni runoff flelds, are well suited for agronomic research because soil-formation processes 
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(e.g., weathering, leaching, and illuviation) proceed much more slowly in deserts than in 

humid environments, so soil changes caused by cultivation practices tend to persist and be 

detectable over the long-term. A few soil studies in the Southwest have found that ancient 

farming systems degraded the nutrient status of agricultural soils. For example, long-term 

cultivation significantly lowered the fertility of terraced fields in the Mimbres area (Sandor 

1983, Sandor et al. 1986; Sandor et al. 1990), and farming practices at prehistoric Helds near 

Flagstaff, Santa Fe, and at Mesa Verde tended to lower phosphate and other nutrients 

severely enough to cause fields to become unproductive and then abandoned (Arrhenius 

1963). Other studies in central Arizona have found that soil fertility was probably not 

degraded by cultivation, and in fact, soil productivity was often enhanced (Homburg 1994, 

Homburg and Sandor 1997). 

American Indian agricultural systems in the Southwest sharply contrast with those of 

the better-studied, modem agricultural systems of the American Midwest, where long-term 

soil degradation is virtually ubiquitous. Widespread assumptions of the consequences of 

agriculture, such as those derived from the Midwest (especially accelerated erosion, soil 

compaction, and nutrient depletion) are both untested and unwarranted in assessing American 

Indian agricultural systems of the Southwest, where Helds are commonly placed to take 

advantage of natural erosional processes to offset nutrient losses to crop uptake. The few soil 

studies conducted thus far in the Southwest indicate that the consequences of traditional 

cultivation practices are highly variable in terms of soil productivity, due to many interacting 

environmental and cultural factors (e.g., climate, topography, hydrology, soil type, native 

vegetation, crop type and variety, agricultural technology, and duration and intensity of 
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cultivation). 

In Sandor's study of the long-term effects of cultivation in the Sapillo and Mimbres 

valleys of southwestern New Mexico, Mimbres agricultural terrace soils associated with 

small rock alignments were compared to uncultivated control samples (Sandor 1983, Sandor 

et al. 1986, Sandor et al. 1990). Field observations and lab data indicated that the primary 

anthropogenic soil changes were degradational, and that the effects of cultivation could still 

be detected about 800 years after the fields were abandoned. Sandor found that cultivated 

soils were lighter in color, more compacted, and had thicker A horizons with more blocky 

and less granular structural aggregates in comparison to uncultivated soils. He found that 

cultivated soils had lower organic carbon, nitrogen, total and available phosphorus, and 

copper levels, and higher manganese and pH values. Rock alignments primarily functioned as 

dams to reduce the velocity of runoff, increase infiltration, and thicken naturally thin A 

horizons by impounding sediments (Sandor et al. 1986). A controlled greenhouse experiment 

showed that chapalote, a primitive variety of maize, grown in terrace soils was stunted in the 

terrace soils due to nitrogen deHciency. 

The findings of Sandor's Mimbres study contrasts strongly with that of two soil 

studies in Arizona, one in the Tonto Basin (Homburg 1994) and the other in the Horseshoe 

Basin (Homburg and Sandor 1997). Both studies were conducted in low desert settings of the 

Transition Zone northeast of Phoenix. The Horseshoe and Tonto basin studies focused on 

measuring the effects of cultivation on soil fertility by comparing rock mulched and terraced 

soils with uncultivated soils. This study found no evidence of soil compaction in cultivated 

soils, and nutrient levels were generally higher in agricultural contexts. Mulched soils 
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generally had higher water infiltration rates and water retention levels than uncultivated 

controls. 

There is no universally accepted method for assessing potential degradational effects 

of all agricultural soils. It is necessary to consider environmental and cultural factors such as 

climate, topography, hydrology, soil type, native vegetation, crop type and variety, 

agricultural technology, and duration and intensity of cultivation. 

Rationale for Tests Used in this Soil Study 

Major goals of our study are to document soil properties and assess anthropogenic 

effects of Zuni agriculture on soils in runoff Helds. We aimed to determine the effects of 

long-term runoff agriculture on soil morphology, organic matter, and nutrients in the context 

of soil quality and sustainable land use (Arshad and Coen 1992, Papendick and Parr 1992). A 

common outcome of long-term agriculture is soil degradation, whereby changes in soil 

properties cause lower agricultural productivity. Many studies of modem and ancient 

agricultural soils have reported degradation in physical and chemical soil properties resulting 

from accelerated erosion, soil aggregate disruption by plowing or similar disturbance, use of 

heavy machinery, net nutrient removal by cropping, and salt accumulation (Lai and Stewart 

1990). Common forms of degradation caused by agricultural land use include reduced 

nitrogen and phosphorus levels, depressed microbial activity and diversity, compaction, 

accelerated erosion, decreased A horizon thickness, and salinization. 

Most quantitative documentation of agricultural soil degradation is in the context of 

modem conventional cultivation. Given major differences between modem agricultural 
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systems and traditional runoff agriculture studied in environment, management practices, and 

time scale, unexpected or different forms of soil change may be encountered. Another 

important consideration regarding degradation concerns distinguishing short-term 

fluctuations in productivity versus more long-term soil degradative alterations. For example, 

decline in available nitrogen after several years of continuous cropping may be rectified by 

several years of fallow, but accelerated erosion may result in permanent degradation in terms 

of the human time scale. 

Paired site sampling provides the basis for inferring soil changes resulting from 

agriculture. DifHculties in paired site studies and their statistical validity are recognized 

(Hurlbert 1984), but this widely used method can yield valuable information. Paired site 

comparisons are the only means now available for evaluating changes in ancient agricultural 

soils (Sandor and Eash 1991). Consequently, we used both paired (intensive) and unpaired 

(extensive) sampling methods to strengthen statistical comparisons of agricultural and 

uncultivated soils. 

Each soil property measured is important for crop productivity, and soil changes were 

interpreted in this study by common criteria for assessing soil degradation. Soil properties 

being characterized are derived from the minimum data set and other properties commonly 

recognized as key indicators of soil quality (Arshad and Coen 1992, Larson and Pierce 1991, 

Larson and Pierce 1994). These include texture, organic matter, pH, nutrient status (N and P), 

bulk density, rooting depth, and soil hydrologic properties such as water-holding capacity and 

hydraulic conductivity. Given the paucity of previous research on Zuni agricultural soils, this 
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minimum data set encompasses a range of basic soil characterization useful for evaluating 

soil quality. 

Despite the large body of literature generated over the last decade that supports 

making soil quality assessments, we recognize that soil quality, how it is measured, and 

exactly what should constitute a minimum data set are not without ambiguity. There is no 

agreement on a single deflnition of soil quality, and even the validity of the soil quality 

concept has come under serious attack (Sojka and Upchurch 1999). As noted by Mausbach 

and Seybold (1998: 33), soil quality defmitions range from simply the capacity of a soil to 

function (Pierce and Larson 1993) to more inclusive ones, including "the capacity of a 

specific kind of soil to function, within natural or managed ecosystem boundaries, to sustain 

plant and animal productivity, maintain or enhance water and air quality, and support human 

health and habitation" (Karien et al. 1996). We agree with Kimble's (1998:44) assertion that 

'There is no such thing as a minimum data set or a magic pill (data set) that we can or should 

collect to solve all problems." Despite criticisms of the soil quality concept, we still consider 

the soil properties examined by this study to be valid measures for evaluating soil 

degradation, even though the precise thresholds for pinpointing what constitutes soil 

degradation are debatable. This is especially true when trying to estimate thresholds for 

different agricultural systems, given the high degree of natural and cultural variability. It is 

necessary to consider the many environmental and cultural factors such as climate, 

topography, hydrology, soil type, native vegetation, crop type and variety, agricultural 

technology, and duration and intensity of cultivation. For the purpose of this study, criteria 

for evaluating possible degradation of agricultural soils relative to uncultivated soils are 
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summarized in Table 3.1. Soil property changes listed under the heading, "criteria to 

recognize degradation", are widely used in soil quality assessments. SpeciHc quantitative 

changes detected in soil properties will be interpreted in the context of the study area 

environment, because degradation thresholds vary with environmental sensitivity. For 

example, changes in available water capacity would probably impact crop productivity more 

significantly in the semiarid environment of the Zuni area than in humid regions where water 

is not a major limiting factor for plant growth. 

Study Area 

The study area is located in the southeastern Colorado Plateau, just west of the 

continental divide. Principal drainages in the eastern part of the reservation include Rio 

Nutria and Pescado, which join to form the Zuni River (see Figure 3.1), a tributary of the 

Little Colorado River. In the early 19(X)s several reservoirs were built along these drainages 

to obtain water for irrigation. These have since partially to completely filled with sediment, 

and thus destroyed vast areas of bottomland that were previously farmed. 

The soil parent material consists chiefly of Quaternary alluvium weathered from 

Cretaceous sedimentary rocks, including sandstone, siltstone, mudstone, and shale. The 

predominant geologic units are the Gallup Sandstone and Crevasse Canyon formations 

(Anderson, et al. 1989, Orr 1987). Alluvial fans are within or flanking canyons cut into rocky 

mesas. Soil textures of these fans vary over short distances due to natural vertical and 

horizontal stratification processes and differences in geologic strata in the watersheds. In 

unpublished soil maps produced by Steve Parks of the National Resources Conservation 
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Table 3.1. Agricultural soil properties analyzed by this study. 

Soil Property Criteria for Recognizing Degradation: Typical Causes and Consequences 

A horizon thickness Decreased thickness caused by water or wind erosion. Reduces important 
organic matter-enriched surface layer that can be exploited by plants for water, 
nutrients, and oxygen. Shallower depth to possible root-limiting subsurface 
layers such as strongly developed argillic horizons. 

Soil sbucture Macromorphology: lowered grade of granular or subangular blocky structure, 
U'end toward massive state, especially in surface horizons. Conunonly results 
from compaction and organic matter decline. Micromorphological thin 
sections used compare structure and pore characteristics of cultivated and 
uncultivated A horizons. 

Bulk density Compaction (increase in bulk density above that of natural condition) 
associated widi soil structure degradation. Compaction and structure 
degradation commonly retard seed germination and root growth, reduce root 
access to water, oxygen, and nutrients, reduce diffusion of gases, and decrease 
water infiltration and available water capacity. 

Organic carbon Decrease in organic C is common under conventional cultivation. Results 
from accelerated microbial oxidation of organic matter in disrupted, exposed 
soil aggregates, and other effects of agriculture. Numerous benefits of organic 
matter for soil physical, chemical, and biological properties important to plant 
growth are well documented. 

Niurogen Decrease in total N accompanies declining organic matter in agricultural soils, 
though C:N ratio tends to decrease. Nitrate and ammonium are plant available 
forms of N, which is commonly a key limiting factor for plant growth in all 
regions, including arid regions. 

Phosphorus P (both total and available) is another macronutrient that has been shown to 
decrease under plow-based agriculture in some cases. P is a key ecological and 
soil indicator because of its low mobility, low availability to plants, and long-
term stability of its forms in soils. 

pH Very high soil pH can indicate salt accumulation (which is measured by 
electrical conductivity). Sodic soil conditions (recognized by high 
exchangeable sodium) can be prevalent in agricultural soils of arid and 
semiarid regions. Detrimental effects on many plants, including crop species, 
occur both through direct chemical effects and through soil structural 
deterioration. 
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Service, Hosta soils are depicted on many alluvial fan settings in the study area. The tentative 

description of the Hosta series (National Cooperative Soil Survey website, revised in March, 

1998) characterizes it as "very deep, well drained soils formed in fan alluvium and eolian 

deposits derived from sandstone and shale." Soils of the Hosta series are associated with 1 to 

8 percent slopes, elevations of 6600 to 7500 feet (2012-2286 m), about 14 inches (356 mm) 

of annual precipitation, and the mean annual temperature is about 50 degrees F. The Hosta 

series is classified at the family level of Soil Taxonomy as Fine, mixed, superactive, mesic 

Aridic Haplustalfs. We concentrated our soil sampling on areas mapped as the Hosta series, 

but we often described pedons in the Held that do not meet the criteria of the Hosta series. 

Mixed mineralogy is reported for the Hosta and other soil series in our project area, 

based on soil series descriptions provided by the National Cooperative Soil Survey website. 

Supporting this assessment are limited data from x-ray diffraction (XRD) and differential 

thermal analysis (DTA) that we compiled. XRD and DTA analyses for Bt and C horizons and 

rock (mudstone) samples from the Laate watershed in the Lower Nutria area. We found that 

signiHcant amounts of smectite and kaolinite are present in soils of the Upper Nutria area. 

Investigations by the New Mexico Bureau of Mines found that smectite and kaolinite are 

inherited from Cretaceous sedimentary rocks that surround the alluvial valleys (Orin 

Anderson 1996, NMBM geologist, personal communication). Minor volcanism during 

deposition of Cretaceous sediments formed beds of bentonite (the rock form of smectite) and 

kaolinite. Ash deposited in strongly acid environments of coal marshes was rapidly 

desilicifled to form kaolinite, and ash deposited in drier environments formed bentonite. The 
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fraction of smectite in soils resulting from neoformation is unknown. Regardless of the 

precise origin of clay minerals in the Zuni soils, mixed mineralogy is suggested. 

The climate of our study area in the eastern part of the Zuni Reservation is temperate 

and semiarid, with annual precipitation averaging about 300 mm, which is about SO mm less 

than is common for the Hosta series. The Zuni area has a summer-dominant rainfall pattern, 

and a frost-free season that typically extends from late May or early June to late October. 

During our second field season we even recorded a light freeze at the beginning of July. 

Snowmelt is an important source of soil moisture for crops after planting, and summer 

monsoons commonly supply moisture in the middle to late part of the growing season. 

Farming success often depends on receiving at least two or three storms to water the fields, 

and the timing of these events is critical for agricultural production. In many or even most 

years, farming of non-irrigated land in the Zuni area would not even be possible without 

supplemental water provided by runoff (Kintigh 1985). Rain during the growing season often 

consists of localized, torrential downpours in the afternoon and evening. Spatial and temporal 

variability in rainfall is extremely high in the Zuni area, so farmers commonly spread their 

fields across different soils and landforms as a coping mechanism. This technique was widely 

used in the Southwest to minimize the risk of crop failure. 

Big sagebrash (Artemesia tridentata) and various grasses are common in uncultivated 

Helds, and a variety of weedy grasses and forbs grow in abandoned fields. Uncultivated and 

fallow fields are mainly used as rangeland for cattle and sheep grazing. Rocky slopes and 

mesa tops overlooking alluvial fans and footslopes are commonly covered with juniper and 

pinyon {Pinus edulis) woodlands. Ponderosa pine (P. ponderosa) and Gambel's oak (Quercus 
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gambelii) are common on cool, moist north slopes in the Pescado and Bear Canyon study 

areas. Nitrogen-fixing plants such as mountain mahogany {Cercocarpus montanus), deer 

vetch (Lotus wrightii), scurfpea {Psoralea tenuflora), and cryptogamic crusts are widespread 

in many upper watersheds, and these may play an important role in supplying nutrients to 

agricultural fields below. 

FIELD AND LAB METHODS 

Jon Sandor conducted the initial soil sampling at the Sanchez Held in 1991, and Jay 

Norton and Jon Sandor completed work on this field during the summers of 1993 and 1994. 

Most fieldwork was completed between 1996 and 1998, as part of the NSF project. Fields 

were selected for soil sampling based on archival research. This work entailed: (I) inspecting 

General Land Office maps from the early 1900s that differentiate between cultivated, fallow, 

and uncultivated land; (2) examining aerial photographs from the 1930s to 1980s to 

differentiate fields that were consistently cultivated versus others; (3) reviewing archival data 

compiled by Martha Graham (1990) on individual fields; and (4) obtaining recommendations 

from farmers knowledgeable of the land-use history of different fields. In searching for paired 

fields we sought alluvial settings where we could clearly identify and distinguish between 

adjacent cultivated and uncultivated parcels for comparison. We sought cultivated fields that 

have been consistently used for agricultural production over the last century, fields that have 

been abandoned for several decades, and uncultivated fields of similar settings but lacking 

evidence of farming activity over the last century. It was more difficult to find suitable fields 

for the fields in the extensive sampling program, and in some cases, we worked on all or 
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nearly all candidates that met our sampling criteria (that is, runoff Helds with similar 

landforms, watersheds, elevations, and soil mapping units, and with well documented land-

use histories). In some cases we had to reclassify fields before making statistical 

comparisons, based on new information on historic land use that was obtained after fieldwork 

was completed. 

Three intensive cultivated and uncultivated field pairs were included in the sampling 

design, including the Sanchez field sampled prior to the start of this NSF project. Twenty-

nine unpaired (extensive) fields were selected for soil analysis, divided between nine 

cultivated, ten abandoned, and ten uncultivated fields. At each paired and unpaired Held, ten 

soil samples were collected from the upper 15 cm, which approximated the depth of the plow 

zone. An additional set of 10 samples was collected from the middle part of the Weekoty 

field. Sampling points were laid out in a five-by-two pattern in all fields, with a lO-m interval 

between sampling points. Soil samples were also collected by horizon from a soil pit placed 

in the middle of surface sampling points of each Held. Observations on vegetation, percent 

surface cover, and organic debris (e.g., plant and fecal matter) were noted for soil-sampling 

points, because of potential effects they could have on soil-test results. Four auger holes were 

placed at the comer soil-sampling points. Auger holes provided data on horizonation, textural 

trends with depth, and lateral variability in soils. 

A 1 by 2 m or 1 by 1 m soil pit was excavated at all fields to a depth of about 0.75 to 

1.5 m, and the soil proflle was described, sampled, and photographed. General photographs 

of alluvial fans, Helds, soil sampling locations, and other noteworthy observations were 

taken. Sketch maps were drawn to depict soil-sampling points in relation to topography and 
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noteworthy features (e.g., rock outcrops, roads, archaeological sites, etc.). Morphological 

properties (e.g., depth, color, texture, structure, consistence, etc.) were described and soil 

horizons were designated in accordance with procedures of the soil survey manual (Soil 

Survey Staff 1993). Pedons were classified using the most recent taxonomic references (Soil 

Survey Staff 1998, Soil Survey Staff 1999). The bottom of each pit was augered to obtain 

information on soils and sediments below the bottom of our soil pits. 

To document A horizon thickening caused by runoff sediment management, depth to 

illuvial clay was documented throughout the alluvial fans of two intensive fields, the Sanchez 

and Weekoty fields. The alluvial fan at and above the Sanchez field was augered or shovel-

probed at 40-m intervals along a 1-km-long transect running the length of the fan, and at 

perpendicular transects spaced every 80 m. For the alluvial fan of the Weekoty field, 

sampling was conducted using shovel probes in a grid pattern with a 40-m interval between 

the grid points. There were 56 sampling points in the Sanchez field and 48 in the Weekoty 

field. 

Maps of the illuvial clay distributions were produced with a mapping program 

(Surfer, version 6.0) using a kriging algorithm to project spatial trends within and adjacent to 

our sampling points. Kriging, as originally defined, is a geostatistical method that has come 

to be equated with "spatial optimal linear prediction" (Cressie 1990). We used Surfer's 

default linear variogram, which produces a reasonable depiction of the spatial distribution if 

the nugget effect is not used (Golden Software, Inc. 1999). Surfer's default setting does not 

use a nugget effect, and there is strong support for this approach. Cressie (1991) questions 

including Matheron's (1962) nugget effect in a mathematical model, because it assumes that 
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microscale variation (or small nuggets) is discontinuous. Cressie notes that the validity of this 

assumption is unproven. 

Twelve samples were collected for soil micromorphological analysis. 

Micromorphology samples were collected from pedestals of the upper 10 cm, including two 

cultivated and two uncultivated samples from each of the three intensive fields. Samples were 

collected in the same area where bulk 0-15 cm samples had been collected for soil analyses. 

The micromorphology samples were carefully wrapped, cushioned, and transported in an 

attempt to maintain their structural integriiy. They were then shipped to Spectrum 

Petrographies, Inc. in Winston, Oregon for processing. Processing tasks included 

impregnating samples with epoxy, cutting 30-micrometer thin sections with a rock saw, and 

then polishing and mounting the thin sections on slides. Thin sections were examined at 

various scales using a Nikon petrographic microscope. Analysis focused on quantifying 

structural aggregate and pore types by point-counting along every fifth transect at 20x, at a 

step interval of 300 micrometers. Slides were also scanned at scales ranging from lOx to 

lOOx to document selected pedo- and biological features (e.g., clay and organic matter 

coatings, iron oxides, fecal matter, plant residues), and search for differences between 

cultivated and uncultivated soils, using terms recommended in the International Soil Science 

Society (1985) "Handbook for Soil Thin Section Description. Structural aggregate and pore 

types were quantified by point-counting along every fifth transect at 20x, at a step interval of 

3(X) micrometers. Photographs were taken of noteworthy features in plane- and cross-

polarized light. 

Chemical analyses included determinations of pH, organic carbon, nitrogen, and total 
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and available phosphorus. Particle-size, bulk density, and pH analyses were completed at 

Iowa State University. Organic carbon, total nitrogen, and total and available phosphorus 

analyses were conducted at the University of Montana under the supervision of Jay Norton. 

Subsamples for each laboratory test were taken from bulk samples collected in the Held. 

Initial sample preparation involved air-drying and sifting samples through a 2-mm sieve to 

remove gravel, roots, and other coarse undecomposed organic debris. Organic carbon, 

nitrogen, and total phosphorus analyses were done on 10-g subsamples mechanically ground 

to pass through a No. 100 «ieve. 

Particle-size distributions were determined using the sieve and pipette method (Gee 

and Bauder 1986: Method S.4), with samples pretreated with a 30 percent hydrogen peroxide 

reagent for organic matter digestion and a sodium hexametaphosphate solution for clay 

dispersion. Bulk density analysis was measured using the clod method, with paraffin-coated 

peds (Blake and Hartge 1986; Method 13.4). Bulk density samples were analyzed in duplicate 

and averaged; for samples with a coefflcient of variation exceeding 5%, a third sample was 

analyzed and averaged with the other two. After weighing peds in water, paraffm coatings 

were removed, and the gravel was removed and weighed, thereby enabling bulk density 

determinations of the <2 mm fraction alone. Soil pH was measured electrometrically in the 

lab using a 1:1 suspension (weight basis) of soil and distilled water using a glass electrode 

(McLean 1982). In addition, pH was estimated by colorimetry in the field and these results 

are included in the pedon descriptions (Appendix A). Total carbon and nitrogen 

concentrations were determined using a Leco CHN analyzer. Total carbon content was 

assumed to be identical or very similar to organic carbon levels because of the near to total 
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absence of carbonates in the samples. Inorganic carbon was determined for some samples, 

especially those that effervesced when treated with dilute hydrochloric acid. Total 

phosphorus concentrations were determined using an alkaline oxidation extract (Dick and 

Tabatabai 1977), and available phosphorus was measured using the Olsen extraction method 

(Olsen 1982: Method 24-5.5.20; extract of 0.5 M NaHCOs at pH 8). 

We used one-way analysis of variance (ANOVA) to test for statistically significant 

differences between the physical and chemical soil test values of cultivated and uncultivated 

soil samples for each pair of intensive fields. Paired /-tests were used to test for overall 

differences between cultivated and uncultivated field. One-way ANOVA was used to test for 

differences between extensive fields, using a randomized block design with treatments 

consisting of the types of soil management (cultivated, abandoned, and uncultivated) and 

blocks consisting of the three study areas (Bear Canyon, Nutria, and Pescado). In contrast to 

the intensive study, where the experimental unit of analysis was the individual soil samples, 

the unit of analysis for the extensive study was the mean of ten samples from each field. 

Exploratory data analysis was also used to search for patterning in the extensive soil data. 

Scatter plots of all soil tests were examined to visually search for potential linear or random 

relationships between variables and to search for potential outliers that could significantly 

skew the ANOVA tests. We used correlation matrices to quantify the relationship between 

soil test variables. Levels of significance were defined at the 0.05 and 0.01 levels for all 

statistical tests but the paired t-tests. The latter were evaluated at a level of 0.2 because of the 

small sample size, based on consultation with and recommendations by a statistician, Phil 

Dixon. 
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ANOVA and paired Mests for the intensive Helds, and correlation analyses for both 

intensive and extensive data sets were completed using Quattro-Pro, Version 7.0. Soil data 

for extensive fields were analyzed using the General Linear Model of SAS. Multivariate 

analysis of variance (MANOVA) was conducted using SAS to test for overall differences due 

to treatment effects for the extensive data set. MANOVA tests were calculated using four 

types of F statistics, including Wilks' lambda, Pillai's trace, Hotelling-Lawley trace, and 

Roy's greatest root. In addition to blocking on the three study areas, posteriori blocking of 

other potential sources of variability was done for the extensive fields. Posteriori blocks 

consisted of landforms, landscape positions (within versus outside of canyons), and 

groupings of the amount of clay and sand. Posteriori tests were made using SAS's 

calculations of Type m sum of squares, which are the partial (also referred to as uniquely 

attributable or fully adjusted) sum of squares. 

RESULTS AND DISCUSSION 

Soil Classification and Morphology 

Soils in the three intensive fields of our study were classiHed in three different soil 

orders (Table 3.2; see Appendix A for pedon descriptions). The pedons documented in the 

Laate field in the Nutria study area are Entisols with a high clay content and a possible buried 

argillic horizon. Recent sedimentation accounts for the lack of surface pedogenic 

development in the Laate field. The pedons of the Sanchez Held in the Pescado study area are 

Alfisols marked by minimally developed argillic horizons; and pedons described in the 

Weekoty Held in the Bear Canyon study area are Mollisols. Epipedons of Mollisols of the 
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Table 3.2. Taxonomic soil classification and landform of intensive and extensive fields. 

Relds Soil Order Soil Family Landform 

Intensive Fields 

Laate. Cult Entisol Fine-loamy, mixed, mesic Aridic Ustifluvent Distal fan/alluvial plain 

Laate, Uncult Entisol Rne-loamy, mixed, mesic Aridic Ustifluvent Distal fan/alluvial plain 

Sanchez, Cult AHisol Fine-loamy, mixed, mesic Aridic HapiustaH MMdiefan 

Sanchez, Uncult Atfisol Rne, mixed, mesic Aridic Haplustall Mkjdie fan 

Weel(oty, Cult Mdlisol Rne-loamy, mixed, mesic, Aridic Argiustoll Middle (an 

Weekoty, Uncult MoHisol Fine-loamy, mixed, mesic, Aridic Argiustoll Middle tan 

Extensive Fields 

Cultivated 

NCI Alfisol Rne-loamy, mixed, mesic Aridic HaplustaKs Colluvial (ootslope 

NC2 Alfisol Rne-loamy, mixed, mesic Aridic Haplustalfs Lower fan 

NC3 Mollisol Rne-loamy, mixed, mesic Aridic Argiustolls Colluvial footslope 

PCI Entisol Nonacid, mixed, mesic Aridic Ustifiuvents Middle fan 

PC2 Alfisol Rne-loamy, mixed, mesic Aridic Haplustalfs Lower fan 

PC3 Alfisol Rne-loamy, mixed, mesic Aridic Haplustalfs Colluvial footskipe 

BC1 Inceptisol Coarse-loamy, mixed, mesic Aridic Haplustepts Upper fan 

BC4 Inceptisol Rne-loamy, mixed, mesic, Aridic Haplustepts Middle fan 

BCS Inceptisol Coarse-loamy, mixed, mesic Aridic Haplustepts Lower fan 

Abandoned 

NA1 Alfisol Rne, mixed, mesic, Aridic Haplustalfs MUdle fan 

NA2 Alfisol Rne, mixed, mesic, Aridic Haplustalfs Colluvial footskipe 

NA3 Inceptisol Rne-loamy, mixed, mesic Ruventic Haplustepts Mkjdie fan 

PAt Alfisol Rne-loamy, mixed, mesic. Aridic Haplustalfs Mkldlefan 

PA2 Inceptisol Coarse-loamy, mixed, mesic Fluventic Haplustepts Lower fan 

PA3 Inceptisol Rne-loamy, mixed, mesic Aridic Haplustepts Lower fan 

8A1 Inceptisol FU\e, mixed, mesic, Fluventic Haplustepts Middle fan 

BA2 Alfisol Rne-loamy, mixed, mesic Aridk: Haplustalfs Mkidlefan 

BA3 Alfisol Rne-loamy, mixed, mesic, Aridk: Haplustalfs Mkldlefan 

BA4 Alfisol Fine-lcamy, mixed, mesic, Aridic Haplustalfs MkMefan 

Uncultivated 

NU1 Affisd Rne, mixed, mesic, Aridic Haplustalfs Lower fan 

NU2 Alfisol Rne-kwmy, mixed, mesic Aridic Haplustalfs MkMefan 

NU3 Entisol Coarse-kwmy, mixed, cak:araous, mask: Aridic Ustifiuvents MkMeten 

PU1 Alfisol Rne, mixed, mesic, Aridte Paleustalfs MkMefan 

PU2 Alfisol Rne-kMnny, mixed, mesic Aridic Haplustalfs MMdtofan 

PU3 Alfisol Fine, mixed, mesic. Aridk Paleustalfs Mkjdie fan 

BUI Inceptisol Rne-kMmy, mixed, mesic Ruventic Haplustepts MMdtofan 

BU2 Alfisol Coarse-loamy, mixed, mesic Aridte Haplustalfs Mkjdtofan 

BU3 Alfisot Coarse-kMtny, mixed, mesic Arkfc Haplustalfs Mkjdtefan 

BU4 Alfisol Fine, mixed, mesic, AiMte Haohjstalb MUdtotan 

B - Bear Canyon, N • Nutria, P • Pescado, C - cuNivated, A - abandoned. U - uncultivated 
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Weekoty field only marginally met the mollic color requirement, and we found that 

Alfisols dominate most of the alluvial fan outside of our soil sampling area. In contrast to the 

mid-fan position of the Sanchez and Weekoty fields, the Laate field is situated on a distal 

fan/alluvial plain. The Sanchez and Weekoty soils are more representative of the type of soils 

found in most of the extensive Helds examined by our study. 

Subgroup designations for soils in the extensive Helds are compared to those 

intensive fields in Table 3.3, The 29 extensive fields include 18 Alfisols (62%), eight 

Inceptisols (28%), two Entisols, and one Mollisol (see Table 3.2). It is noteworthy that most 

Inceptisols (63%) have Bt horizons. Clay films were found on ped faces, but they lack 

sufficient illuvial clay accumulations to qualify as Alfisols (see soil data in Appendix B). For 

the purposes of agricultural production, Inceptisols (Aridic Haplustepts) are very similar in 

soil development and texture to many of the Alfisols (Aridic Haplustalfs). The presence of Bt 

horizons, with or without sufficient clay to classify as argillic horizons, is probably a critical 

factor in successful runoff farming at Zuni and elsewhere throughout much of the Southwest. 

Argillic horizons hold moisture in the rooting zone for considerable periods after rainfall 

events and snovmielt. We found that plant available moisture of argillic horizons in the 

Sanchez and Weekoty fields averages 57% higher than that of overlying topsoils on a relative 

basis, and 7% higher on an absolute basis. Further support for the effectiveness of argillic 

horizons for holding moisture was provided by field observations while excavating our soil 

pits; we commonly found much higher moisture levels in the shallow Bt horizons than 

overiying horizons, weeks to months after any significant precipitation. It is noteworthy that 

we often observed Zuni farmers digging shovel pits to check moisture levels in the upper soil 
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Table 3.3. Summary of soil subgroup of intensive and extensive fields. 

Soil Subgroup Intensive Relds Extensive Relds Total 

Cultivated Uncultivated Cultivated Abandoned Uncultivated 

Total 

Aridic Haplustalfs Sanchez Sanctiez NC1-2. PC2.3 BA2-4. NA1 -2. PA1 BU2-4, NU1 -2. PU2 18 

Aridic Paleustalfs PUI, PU3 2 

Aridic Haplustepts BC1.804-5 PA3 4 

Ruventic Haplustepts BA1. NA3. PA2 BUI 4 

Aridic Argiustolis Weekcty Weekoty NC3 3 

Aridic Ustifluvents Laate l.aate PCI NU3 4 

Total 3 3 9 10 10 35 

B - Bear Canyon, N -- Nutria, P - Pescack), C • cultivated, A - abandoned, U -uncultivated 

horizons as a quick way to determine when to plant their crops to ensure germination and 

seedling emergence. 

Soils in over half the fields have soils that are in fine-loamy families, and the rest are 

about evenly divided between fme and coarse-loamy families. Soil textures are dominated by 

sandy loams and loams, followed in abundance by clay loams, silty clay loams, sandy clay 

loams, and rarely, clays and silty clays. The loamy soils so prevalent in the eastern part of the 

Zuni Reservation are generally well suited for cropping because of their ability to hold 

moisture and nutrients that are readily accessible to plant roots. No obvious differences in soil 

color were noted between cultivated, abandoned, and uncultivated soils. This fmding 

suggests there is little difference in organic matter content. 

Soil micromorphology supports the assessments of soil structure made at a hand-

specimen scale in the field. Figure 3.6a depicts the better granular development of the 

uncultivated Sanchez soil compared to its cultivated counterpart, where disruption caused by 
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Organic matter coatings 

Figure 3.6. Photomicrographs of soils from the Sanchez field: (a) granular structure of 
uncultivated soil; (b) massive structure of cultivated soil; (c); organic matter 
coatings on grains and peds (All samples from 0-10 cm depth; scale: fi^e length 
= 7 mm for all photos). 
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plowing has resulted in more massive structure (Figure 3.6b). The differences between 

Figures 3.6a and 3.6b are dramatic for illustrative purposes. Granules actually do exist in the 

cultivated soils, but with less frequency. The trend toward more massive microstructure in 

cultivated soils, however, was repeated in comparisons of all fields (Figure 3.7). Each stacked 

bar in Figure 3.7 represents a mean of two samples analyzed by point-counting. Soil 

micromorphology helps quantify an important trend in anthropogenic influences on soil 

structure. Based on these data, we would expect that aeration and hydraulic conductivity 

would be reduced in the cultivated soils. Because a step interval of 300 micrometers was used 

in the point-counting procedure, microstructure and pores smaller than this size are not 

effectively characterized by this analysis. 

One important fmding of the profile descriptions is that A horizons tend to be thicker 

and Bt horizons deeper in the cultivated soils (Figure 3.8). This is the opposite of the pattern 

in most agricultural systems today, especially heavily mechanized systems that are often 

subject to accelerated wind and sheet wash erosion relative to natural (or uncultivated) 

settings. Previous studies of ancient American Indian agricultural fields in the Southwest 

indicate that bulk density of cultivated may be increased (Sandor 1983, Sandor et al. 1986) or 

not (Homburg 1994, Homburg and Sandor 1997). Topsoil thickening in the Zuni cultivated 

Helds is explained by two factors. One is simply that plowing has disturbed the soil by 

ripping up and incorporating the upper B At horizon into the overlying A horizon, thus 

producing a thickened Ap horizon. But this process is insufHcient for entirely explaining all 

A horizon thickening, because the thickness conunonly exceeds the approximate IS-cm depth 

of plowing. So sedimentation must play an important role in the thickening process as well. 
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Figure 3.8. A horizon thickness and depth to Bt horizon in intensive and extensive fields. 
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Supporting this interpretation is our Hnding of laminated zones within the plow zone, 

which clearly shows that sedimentation is contemporaneous with the timing of fanning in 

these fields (Figure 3.9). Interestingly, similar laminated zones were also observed in buried 

agricultural contexts that are about 20(X) years old (Damp and Kendrick 2000), thus showing 

long-term continuity in this important nutrient renewal process. Nutrient-rich organic debris 

is commonly carried from the upper watershed by runoff water and incorporated in laminated 

alluvium. Undoubtedly, we would have found even more laminated strata within plow zones 

of fields today if plowing did not mix the soil on a regular basis. Evidence of laminated 

sediments is only preserved when the fields are left unplowed after a depositional event. 

Observations of rainfall and sedimentation events during the course of our Heldwork suggest 

that sedimentation is not a significant process on a yearly basis in runoff fields. Instead, storm 

events sufficient for generating mnoff with enough energy to transport organic-rich sediment 

from the watershed are more infrequent, perhaps in the range of decadal intervals. 

Spatial distributions in the depth to illuvial clay are shown in Figure 3.10. The terrain 

slopes northward in the Sanchez field and to the east in the Weekoty field. Both fields are 

situated within or in close proximity to places on alluvial fans where the depth to BAt and Bt 

horizons is greater. The implications of this finding for agriculture use, however, are unclear. 

Both the Weekoty and Sanchez fields are located in middle fan settings, but illuvial clay is 

much deeper in the upper Sanchez field (the southern part of the field where our intensive 

soil-sampling transects were placed). There is actually lower clay content in the buried Bt of 

the cultivated soil relative to the overlying A, Bw, and Bk horizons, so the upper part of this 
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Figure 3.9. Ap/C horizon of abandoned Held. (Note laminations within plow zone, which 
indicate sedimentation after plowing.) 
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Figure 3.10. Depth to illuvial clay in Weekoty and Sanchez fields. 
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soil actually has a higher water-holding capacity than below. The higher clay content of the 

upper Sanchez soil is due to sedimentation on the fan, not soil formation. The greater depth 

to illuvial clay in the upper Sanchez field may be the result of increased sedimentation caused 

by human manipulation of runoff for agricultural use. Alternatively, the deep illuvial zones 

may be the result of natural sedimentation that pre-dates agricultural activity. Radiocarbon 

dates or diagnostic artifacts (especially decorated pottery) are needed before we can assess the 

time represented by deposition above the Bt horizon. 

The Weekoty field straddles the edge of an area with the deepest illuvial clay. Illuvial 

clay accumulation zones in this field are both: (I) shallow enough for the upper rooting zone 

to take full advantage of greater water-holding capacity in and just above the argillic horizon; 

and (2) deep enough to provide a thicker rooting zone above it than in other parts of the fan. 

Further work is needed to explain the relationship between illuvial clay distributions and 

Zuni runoff fields, but the Weekoty field appears more typical of other runoff fields given the 

relative shallowness of BAt and Bt horizons of most extensive fields in our study. Buried Bt 

horizons were often found in extensive fields, but they usually underlie zones with lower clay 

contents. The overlying A horizons above respective buried Bt horizons are commonly absent 

due to sheet erosion. 

Physical and Chemical Soil Properties 

A total of 595 bulk soil samples were collected and analyzed for the Zuni agricultural 

soil study. This constitutes the largest data set analyzed from an American Didian agricultural 

system to date, fo all, 360 samples were collected firom the 0-15 cm sampling points (70 from 
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the intensive and 290 from extensive Helds) and 235 samples were collected ftom soil 

profiles and augers (55 from intensive and 180 from the extensive fields). Data for the 

individual samples and means for intensive fields are shown in Table 3.4, and means for the 

extensive fields are presented in Table 3.5. Means are shown graphically for the chemical and 

physical tests in Figures 3.11-3.14. 

Overall differences between intensive cultivated and uncultivated fields are shown by 

r-tests in Table 3.6. Increased pH was found in many comparisons of uncultivated and 

agricultural contexts, due to incorporation of debris high in bases from the watershed. We 

found patchy concentrations of carbonate in soils under juniper canopies of upper watersheds, 

where much of the tree soil that naturally fertilizes agricultural Helds below is derived. By 

contrast to runoff systems, reduced pH levels are nearly ubiquitous in agricultural systems, 

especially those dependent on artificial NH4-N fertilizers that produce (T* during nitrification 

(Tisdale et al. 1993. Increased pH is highly to very highly significant for the Weekoty and 

Sanchez fields (Table 3.7). The lack of statistical differences in pH for the Laate field is 

likely a function of buffering effects of the higher pH levels in these soils. The Laate soils are 

calcareous, with pHs in the slightly alkaline range (ca. pH 7.7), which is not high enough to 

cause serious deficiencies in nutrient availability for maize or cause dispersion of soil 

aggregates. No statistical differences in pH were noted for the extensive fields, but the same 

general trends were found (Table 3.8). Cultivated fields average pH 7.0, which is higher than 

the pH 6.9 and 6.7 of the abandoned and uncultivated fields, respectively. 

Trends in organic C, one of the most useful measures of soil fertility and the effects of 

cultivation (Fenton et al. 1999), varied between treatments. No statistical difference was 
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Table 3.4. Soil data for intensive Helds. 

Reld pH Org C N C:N Av P Total P Bulk Den. Sand Silt Clay 
(g/kg) (mg/kg) (g/cm3) 

Laate, Cult. 
C-1 7.7 9.5 0.71 13.4 12.3 420 1.55 43 32 26 
C-2 7.7 12.3 0.85 14.5 11.5 466 1.53 36 39 25 
C-3 7.8 10.9 0.76 14.4 10.7 465 1.54 37 39 24 
C-4 7.8 10.4 0.76 13.6 11.5 455 1.48 37 37 25 
C-5 7.7 11.4 0.76 15.0 11.7 427 1.54 34 40 25 
C-6 7.7 9.8 0.76 12.8 11.7 456 1.59 41 36 23 
C-7 7.7 8.1 0.67 12.1 10.5 401 1.54 49 29 22 
C-8 7.8 9.3 0.69 13.4 10.2 396 1.55 46 31 23 
C-9 7.8 10.2 0.74 13.8 8.5 405 1.46 42 35 23 
C-10 7.8 8.0 0.65 12.3 10.1 381 1.58 51 29 20 

Mean 7.8 10.0 0.74 13.5 10.9 427 1.54 42 35 24 
Laate, Uncult 

U-1 7.8 7.9 0.63 12.6 8.8 430 1.46 50 27 23 
U-2 7.2 17.5 1.26 13.9 20.2 524 1.40 36 38 26 
U-3 7.6 6.6 0.60 11.1 10.7 393 1.46 54 27 19 
U-4 7.8 13.0 0.82 15.9 11.0 441 1.45 49 26 25 
U-5 7.8 18.3 1.10 16.6 9.3 470 1.34 30 43 27 
U-6 7.7 9.3 0.72 12.9 11.5 460 1.46 45 28 27 
U-7 7.7 7.5 0.63 11.8 9.5 415 1.43 40 34 25 
U-8 7.7 13.3 0.92 14.5 13.6 479 1.50 45 32 23 
U-9 7.9 15.3 0.88 17.4 9.9 460 1.28 31 41 28 
U-10 7.6 16.7 1.07 15.6 13.5 505 1.40 24 48 29 

Mean 7.7 12.5 0.86 14.2 11.8 458 1.42 40 35 25 
Weekcty, Cult. 

C-1 6.6 11.3 0.94 12.0 7.8 254 1.52 70 18 12 
C-2 7.0 9.5 0.82 11.6 11.1 273 1.57 64 24 12 
C-3 7.0 8.6 0.75 11.5 5.5 253 1.51 65 21 14 
C-4 6.8 7.5 0.66 11.3 6.4 248 1.48 68 19 13 
C-5 6.6 10.4 0.93 11.2 1.9 261 1.62 67 20 14 
C-6 6.4 9.7 0.78 12.4 7.6 271 1.53 66 19 15 
C-7 7.5 7.0 0.59 11.9 5.1 237 1.42 66 23 11 
C-8 7.0 6.9 0.62 11.2 5.7 232 1.52 68 17 15 
C-9 6.9 7.4 0.64 11.5 5.1 250 1.55 66 18 16 
C-10 6.7 6.3 0.55 11.4 3.5 217 1.52 66 18 16 

Mean 6  ̂ 8.5 0.73 11.6 6.0 250 1.52 66 20 14 
Weekcty, Uncult. 

U-1 6.3 13.5 1.02 13.3 5.6 276 1.40 52 34 15 
U-2 6.4 13.6 1.03 13.2 9.0 319 1.49 50 36 14 
U-3 6.8 14.0 1.05 13.3 6.8 290 1.52 52 29 19 
U-4 6.0 13.4 1.08 12.4 6.1 263 1.40 63 24 13 
u-5 6.2 9.8 0.81 12.1 4.6 238 1.54 68 20 12 
U-6 6.3 14.8 1.12 13.2 7.0 284 1.52 54 33 12 
U-7 6.3 32.7 2.23 14.6 13.8 411 1.39 31 45 24 
U-8 6.9 16.7 1.35 12.4 16.2 375 1.44 52 30 18 
U-9 6.4 11.3 0.91 12.3 4.4 276 1.42 60 25 16 
U-10 6.4 8.5 0.74 11.5 5.7 272 1.36 67 19 14 

Mean 6.4 14.8 1.13 12.8 7.9 300 1.45 55 30 16 
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Table 3.4. (continued). 

Wekooty, Cult, (mid-field) 
C2-1 6.9 7.2 0.59 12.3 - - 1.49 67 19 
C2-2 6.9 12.6 1.02 12.4 - — 1.48 67 20 
C2-3 7.0 15.0 1.24 12.1 - -- 1.57 67 22 
C2-4 7.4 10.9 0.82 13.4 - 1.49 67 21 
C2-5 7.5 9.9 0.79 12.5 - - 1.47 70 20 
C2-6 7.0 6.7 0.59 11.4 - 1.53 66 23 
C2-7 7.4 8.3 0.64 12.9 - - 1.62 70 20 
C2-8 7.4 7.9 0.65 12.1 - - 1.53 63 23 
C2-9 7.5 11.7 0.85 13.8 -- ~ 1.53 62 24 
C2-10 6.8 5.7 0.47 12.3 — — 1.56 73 16 

Mean 7.2 9.6 0.77 12.5 — — 1.53 67 21 
anchez, Cult. 

C-1 6.9 23.2 1.61 14.4 10.2 267 1.61 24 46 
C-2 6.8 24.7 1.68 14.6 12.6 340 1.55 23 47 
C-3 7.4 24.5 1.05 11.5 7.2 243 1.60 24 42 
C-4 7.5 10.1 0.91 11.1 5.8 321 1.74 31 38 
C-5 7.4 9.5 0.80 11.9 6.3 306 1.63 42 31 
C-6 7.1 13.5 0.83 16.2 6.9 297 1.63 38 36 
C-7 6.9 22.4 1.54 14.5 12.1 370 1.59 36 38 
C-8 6.9 18.8 1.42 13.3 9.5 207 1.58 29 42 
C-9 7.1 10.6 0.96 11.1 6.2 248 1.66 29 40 

C-10 7.1 9.1 0.80 11.4 5.6 356 1.75 38 35 
Mean 7.1 16.6 1.16 13.0 8.2 296 1.63 31 40 

anchez, Uncult. 
U-1 7.0 13.6 0.95 14.3 8.0 212 1.43 55 28 
U-2 7.0 6.2 0.45 13.7 5.7 237 1.56 69 21 
U-3 6.8 17.2 1.03 16.7 6.5 218 1.46 44 40 
U-4 6.4 26.8 1.92 14.0 11.3 243 1.26 33 48 
U-5 6.9 8.1 0.67 12.1 5.6 174 1.55 50 31 
U-6 6.9 7.9 0.57 13.9 9.6 247 1.63 76 15 
U-7 7.0 13.7 0.91 15.0 7.9 192 1.52 56 28 
U-8 6.7 12.9 0.96 13.4 8.3 201 1.42 53 29 
U-9 6.9 11.3 0.95 11.9 5.8 153 1.57 56 23 
U-10 6.9 8.9 0.76 11.7 6.9 173 1.47 58 26 

Mean 6.9 12.7 0.92 13.7 7.6 205 1.49 55 29 

Note: P data for mid-fieid of Weel<oty are lacking. 
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Table 3.5. Mean values of soil data for extensive fields. 

Reld PH OrgC N C:N AvP TotP Bulk Den. Sand Silt Clay 

(g/kg) 3
 1
 

(g/cm3) (%) 

Cultivated 

NCI 7.2 7.1 0.67 10.4 13.4 279 1.48 69 17 14 

NC2 7.4 17.9 1.03 17.3 8.3 309 1.50 37 38 25 

NC3 7.7 6.8 0.64 10.6 6.0 303 1.40 65 20 15 

PCI 6.3 13.0 0.92 14.2 12.6 203 1.56 62 23 15 

PC2 6.7 11.8 0.93 12.5 11.0 308 1.55 57 29 14 

PC3 7.0 10.5 0.87 12.3 13.9 295 1.52 64 23 14 

BC1 7.1 10.7 0.84 12.5 6.5 174 1.38 56 25 19 

BC4 7.2 14.4 0.90 16.1 9.1 400 1.48 33 36 31 

BC5 6.6 13.6 1.04 13.0 8.3 377 1.41 61 26 13 

Abandoned 

NA1 7.3 16.8 1.26 13.4 15.9 337 1.47 21 49 30 

NA2 7.2 7.4 0.69 10.5 9.2 306 1.46 45 30 25 

NA3 6.8 13.1 1.14 11.1 18.3 304 1.52 48 31 21 

PA1 6.7 17.6 1.37 12.9 15.7 384 1.56 27 42 31 

PA2 6.9 9.4 0.72 13.0 8.0 297 1.46 46 36 18 

PA3 6.4 19.4 1.48 13.1 13.5 339 1.51 34 41 25 

BA1 6.4 12.9 0.95 13.6 7.1 230 1.41 52 31 18 

BA2 7.0 12.6 0.97 13.0 11.1 244 1.35 65 20 15 

BA3 7.2 9.5 0.85 11.2 9.8 284 1.36 45 36 19 

BA4 6.5 16.5 1.19 13.8 5.7 233 1.45 63 26 11 

Uncultivated 

NU1 6.9 13.4 0.96 14.0 11.8 390 1.51 26 44 30 

NU2 7.1 18.3 1.30 14.1 16.5 425 1.42 43 34 23 

NU3 7.2 9.4 0.67 13.7 12.4 302 1.42 56 22 22 

PU1 7.0 9.9 0.91 10.9 6.4 239 1.53 28 35 38 

PU2 6.8 7.0 0.63 11.1 5.6 192 1.48 52 32 16 

PU3 6.7 14.7 1.08 13.7 11.3 229 1.30 61 24 16 

BUI 6.5 17.3 1.28 13.5 12.8 399 1.36 47 34 18 

BU2 5.9 10.7 0.77 13.7 12.8 449 1.45 66 23 11 

BU3 6.8 20.6 1.33 15.1 20.5 356 1.37 47 32 21 

BU4 6.3 9.8 0.93 10.2 9.3 234 1.48 59 27 14 
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Figure 3.11. Comparison of pH, C, N, and C:N ratios in intensive and extensive 
fields. 
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Table 3.6. r-tests for intensive fields. 

Soil Property Reld Mean for Each Field Mean for All Relds %Oiff. of P-value Significance 

Cult Uncult Cult Uncult Cult. Raids 

pH Laate 7.75 7.68 7.24 6.98 - 0.14 

Weekoty 6.85 6.40 

Sanchez 7.11 6.85 

Organic C (g/kg) L t̂e 9.99 12.54 11.28 13.34 -18.3 0.52 

Weekoty 8.46 14.83 

Sanchez 15.38 12.66 

N (g'Vg) Laate 0.74 0.86 0.87 0.97 -11.1 0.10 

Weekoty 0.73 1.13 

Sanchez 1.16 0.92 

C:N Ratio Laate 13.53 14.23 12.71 13.58 -6.8 0.04 

Weekoty 11.60 12.83 

Sanchez 13.00 13.67 

Available P (mg/kg) Laate 10.87 11.81 8.35 9.11 -9.1 0.41 

Weekoty 5.97 7.92 

Sanchez 8.20 7.60 

Total P (mg/kg) Laate 427.21 457.71 324.31 321.06 1.0 0.95 

Weekoty 249.73 300.48 

Sanchez 296.00 205.00 

Bulk Der\sity (g/cm3) Laate 1.54 1.42 1.56 1.45 7.6 0.03 

Weekoty 1.52 1.45 

Sanchez 1.63 1.49 

Sand (%) Laate 41.52 40.21 46.47 49.99 

C
O

 

0.77 

Weekoty 66.49 54.77 

Sanchez 31.40 55.00 

Silt (%) Laate 34.81 34.54 31.37 31.02 -1.1 0.96 

Weekoty 19.81 29.62 

Sanchez 39.50 28.90 

Clay (%) Laate 23.63 25.23 22.14 18.98 16.6 0.59 

Weekoty 13.69 15.61 

Sanchez 29.10 16.10 

* - significant at 0.2; note: % difference of pH not shown due to log scale of values 
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Table 3.7. ANOVA for intensive Helds. 

Reld Cultivated Uncultivated % Oiff. Of P P-value Significance 

Mean St Dev. Mean St. Dev. Cult Relds 
Last* 
pH 7.75 0.05 7.68 0.19 1.22 0.284 
Organic C (g/kg) 10.00 1.36 12.54 4.42 -25.4 3.03 0.099 

N (g/kg) 0.74 0.06 0.86 0.23 -17.4 3.01 0.100 
C:N Ratio 13.53 0.95 14.23 2.13 -5.2 0.91 0.354 
Available P (mg/kg) 10.87 1.11 11.81 3.37 -8.7 0.70 0.413 
Total P (mg/vg) 427.21 31.52 457.71 39.94 -7.1 3.59 0.074 
Bulk Density (g/cm3) 1.54 0.04 1.42 0.07 8.3 23.56 0.000 ••• 

Sand (%) 41.52 5.54 40.21 9.87 3.3 0.13 0.719 
Silt (%) 34.81 4.20 34.54 7.64 0.8 0.01 0.920 
Clay (%) 23.63 1.73 25.23 2.84 -6.8 2.32 0.145 
WMkoty, Field Edge 
pH 6.85 0.31 6.40 0.27 12.27 0.003 • • 

Organic C (g/kg) 8.46 1.69 14.83 6.72 -75.3 8.45 0.009 • • 

N (g/kg) 0.73 0.14 1.13 0.42 -55.8 8.41 0.010 e* 

C:N Ratio 11.60 0.39 12.83 0.87 -10.6 16.68 0.001 
Available P (mg/kg) 5.43 2.98 7.20 4.48 -32.6 1.19 0.2B9 
Total P (mg/kg) 249.73 17.19 300.48 53.63 -20.3 8.12 0.011 e 

Bulk Density (g/cm3) 1.52 0.05 1.45 0.06 5.2 8.36 0.010 •• 

Sand (%) 66.49 1.77 54.77 10.81 21.4 11.45 0.003 ee 

Silt (%) 19.81 2.17 29.62 7.93 -49.5 14.26 0.001 •• 

Clay (%) 13.69 1.68 15.61 3.86 -14.0 2.08 0.166 
Weekoty, Middle Field 
pH 7.18 0.28 6.40 0.27 40.38 0.000 tee 

Organic C (g/kg) 9.59 2.95 14.83 6.72 -54.6 5.10 0.037 • 

N (g/kg) 0.77 0.23 1.13 0.42 -48.0 5.89 0.026 • 

C:N Ratio 12.52 0.69 12.83 0.87 -2.5 0.78 0.389 
Bulk Density (g/cm3) 1.53 0.04 1.45 0.06 5.5 9.86 0.006 •• 

Sand {%) 67.23 3.20 54.77 10.81 22.7 12.22 0.003 •• 

Silt (%) 20.85 2.27 29.62 7.93 -42.1 11.32 0.003 
Clay (%) 11.91 1.74 15.61 3.86 -31.1 7.65 0.013 • 

Sanchez 
pH 7.11 0.25 6.85 0.18 7.12 0.002 •• 

Organic 0 (g/kg) 15.38 6.19 12.66 6.00 21.5 1.00 0.331 
N (g/kg) 1.16 0.36 0.92 0.40 26.5 2.03 0.171 
N03-N (mg/kg) 9.59 4.79 4.95 6.89 93.7 3.06 0.097 
NH4-N (mg/kg) 15.14 3.08 10.30 2.04 47.0 17.17 0.001 
C;N Ratio 13.00 1.84 13.67 1.53 -5.2 0.79 0.387 
Available P (mg/kg) 8.24 2.51 7.56 1.85 9.0 2.24 0.514 
Total P (mg/kg) 295.50 50.61 205.00 32.19 44.1 21.10 0.000 ••• 

Bulk Density (g/cm3) 1.63 0.07 1.49 0.10 9.9 14.19 0.001 •* 

Sand (%) 31.50 6.77 55.00 11.94 -74.6 29.58 0.000 ••• 

Silt (%) 39.50 4.95 28.90 9.39 36.7 9.98 0.005 •• 

Clav (%) 29.10 2.60 16.10 3.84 80.7 78.48 0.000 ••• 

* • Significant at 0.05; ** - significant at 0.01; *** - significant at 0.001 
Note: % difference of pH not shown due to log scale of values 
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Table 3.8 ANOVA tests for extensive Helds. 

Retd Cultivated Abandoned Uncultivated Treatment 

Mean SL Dev. Mean St Dev. Mean St. Dev. P-value Siqnif. 

pH 7.00 0.9 6.90 0.4 6.70 1.0 0.17 

Organic C (g/kg) 12.20 4.9 13.20 5.5 13.10 6.6 0.65 

N (g/kg) 0.90 0.3 1.05 0.4 0.99 0.4 0.24 

C;N Ratio 13.30 2.3 12.40 1.3 13.00 2.5 0.71 

Availat)le P (mg/kg) 9.50 4.8 11.90 5.3 13.70 5.2 0.46 

Total P (mg/kg) 294.00 72.0 296.00 50.0 322.00 94.0 0.64 

Bulk Density (g/cmS) 1.48 0.1 1.46 0.1 1.43 22.0 0.32 

Sand (%) 56.70 1.9 42.60 16.0 48.60 16.0 0.13 

Silt (%) 26.50 26.5 35.00 10.3 30.70 9.4 0.08 

Clav (%) 16.90 8.3 22.40 6.9 20.80 8.9 0.30 

found in organic C by the paired r-test for the paired fields as whole, even though cultivated 

fields average less 18% organic C (relative difference, as with percentages given in Tables 

3.6 and 3.7) than uncultivated ones. Although a mean 18% difference was found, there is 

high variability between fields, and one of the intensive cultivated fields, Sanchez, actually 

had an increase of 22% in organic C, while the Latte field, Weekoty field edge, and Weekoty 

middle field, had decreases of 25%, 75%, and 55%, resectively. The only statistically 

significant differences were found in the Weekoty field. The increase is probably explained 

by its higher clay content (29% vs. 16%) and lower sand content (31% vs. 55%). No such 

textural differences exist in the other two intensive fields. It is worth noting that because of 

increased bulk density levels (as discussed below), the total amount of C in the 0-15 cm level 

is not reduced as much if adjustments are made for bulk density differences (that is, on a 

weight/volume rather than weight/weight basis for comparing concentrations). 
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No significant differences in organic C were found among treatments in the extensive 

fields. Cultivated soils averaged 12.2 g/kg, which is slightly higher than the 13.2 g/kg, and 

13.1 g/kg of the abandoned and uncultivated fields, respectively. The lack of consistent 

differences is manifested by a great deal of overlap in organic C levels of the extensive 

treatments. 

Trends in N are similar to those of organic C data, which is not surprising given that 

both generally accompany a decline in organic matter. The paired r-tests indicate that 

cultivated soils average 11% less organic C than uncultivated references. The presence or 

lack of statistical differences in N mirror those of organic C in the ANOVA tests for all 

intensive fields, and no statistical differences were found between fields in the extensive 

treatment. Nitrate- and ammonium-N determinations were obtained for the Sanchez field, 

using data obtained from Norton's thesis research (Norton 1996). These results showed 

increases of over 90% and nearly 50%, respectively, in the cultivated field, which is an 

interesting finding. Because these plant-available forms of N may vary in concentration over 

short time intervals, it is uncertain if this is a trend that would be repeated with further work. 

Plant available N varies from season to season, year to year, and with unique management 

histories of different Helds. 

The paired r-test showed that intensive cultivated soils as a whole have significantly 

lower C:N ratios, with a mean difference of about S%. The only statistically significant 

differences in individual intensive Held comparisons, however, were found in the Weekoty 

field. Decreased C:N ratios indicate greater organic matter decomposition, a trend that is 

commonly found in cultivated soils. Many modem cultivated soils have narrower ratios than 
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comparable uncultivated soils (Jenny 1941; Sandoret al. 1986). No statistical di^erences in 

C;N ratio were found between the treatments of extensive Helds, and, in fact, the cultivated 

soils had higher ratios than the other two treatments. 

No definitive trends were found in available and total P data from both the intensive 

and extensive fields. Soils of intensive cultivated fields averaged 9% less available P and 1% 

more total P, but neither of these values were statistically significant. There were no 

consistent changes in total and available P for the three intensive Helds. Total P is 

significantly higher in the cultivated Sanchez field, but again, this increase is probably chiefly 

a function of the higher clay content. Similar to organic C and N, available and total P are 

slightly reduced in the cultivated soils of the Laate and Weekoty Helds. Available P is lower 

in the extensive cultivated soils, but, again, not levels of deficiency and not at a level that is 

statistically significant. Phosphorus requirements for crops are not well understood for many 

soils of the Southwest, but available phosphorus levels below 2 mg/kg (or 2 ppm) are usually 

considered low, and values above 5 mg/kg are considered sufficient (Doerge 1985). Because 

all Zuni samples exceed S mg/kg, often by a factor of two, there is no indication that 

available P is low in the Zuni runoff soils. 

Of all soil data compiled by this study, bulk density in the cultivated intensive fields 

showed the strongest anthropogenic influence. On average, bulk density is 7.8% higher in the 

intensive cultivated soils (1.56 vs. 1.45 g/cm^) as whole. For each intensive field, the 

increased bulk density levels are 8.3%, 5.2%, 5.5%, and 9.9%, for the Laate, edge and middle 

of Weekoty, and Sanchez fields. The greatest change is for the cultivated Sanchez Held, 

which has a mean bulk density of 1.64 g/cm^, with individual samples ranging from 1.55 to 
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1.74 g/cm^. Bulk densities in the range of 1,55 to 1.80 g/cm^ may impede root growth, 

depending on soil texture (Wild 1993:117). In the sandy loams and loams so widespread in 

the Zuni soils, we would not expect a mean 8.5% increase to be clearly indicative of 

degradation, and there may actually be a benefit if soil moisture is increased. In lab and Held 

studies of compacted clays, maize growth and productivity highly correlated to compaction 

levels in the bulk density range of 0.94 to 1.30 g/cm^ (Phillips and Kirkham 1962a, 1962b). If 

compaction continues in the Zuni soils, maize root penetration and seedling emergence could 

be impeded at levels that would limit agricultural productivity. Such an outcome at Zuni 

seems unlikely for the textures and consistence of most Zuni agricultural soils. Because the 

predominantly sandy loam and loam topsoils are generally friable to very friable, there is no 

indication that compaction limits seedling emergence. Compaction problems are more likely 

when plowing wet soils (Soane 1980), which is not a concern when soils are plowed in the 

semiarid Zuni area. Furthermore, Zuni farmers do not recognize soil compaction as a 

degradational effect on agricultural productivity. Unlike agricultural systems in wetter 

climates, compaction at the levels found in the Zuni soils may actually be beneficial for 

agricultural production because of greater moisture retention. Additional data on agricultural 

yields and pore continuity and size distributions are needed to test the possible that 

compaction is beneficial. 

There were no statistical differences in bulk density between treatments of the 

extensive fields (see Figure 3.8). Bulk density differences averaged only 3.5% in the 

cultivated versus uncultivated fields (1.48 vs. 1.43 g/cm^), so compaction does not appear to 

be a widespread effect in the eastern part of the Zuni Reservation at this broader scale of 
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analysis. There is simply a high degree of overlap between treatments at the much broader, 

extensive scale of analysis. The only extensive fields that may have compaction problems are 

in the Pescado study area (see Figure 3.13). 

Paired r-tests for the intensive fields identified no statistically significant differences 

between percentages of sand, silt, and clay. Absolute percentage changes in cultivated 

intensive fields as a whole were 3.5% less sand, 4% more clay, and no change in silt content. 

Size separates were very similar for the Laate field. Cultivated Weekoty soils have, on 

average, 13% more sand, 9% less silt, and 4% less clay. By contrast, the cultivated Sanchez 

field has about 24% less sand, 11% more silt, and 13% more clay. These textural differences 

actually reflect a combination of natural horizontal variability overprinted by recent natural 

and culturally modified sedimentation processes in the cultivated fields. Because of this 

confounding factor, it is often impossible to adequately hold the non-anthropogenic factors 

sufficiently constant for evaluating cultivation effects. Soil texture, because of its strong 

effect on nutrient concentrations and nutrient-holding properties, is a crucial variable in 

identifying and interpreting changes in the nutrient status of cultivated soils. 

The extensive fields, because of the much larger sample size, may be a much better 

way to assess anthropogenic influences on soil separates, but this assumes that we have a 

representative, or at least a near representative, sample of fields. No statistical differences 

were identified by the ANOVA tests of treatment effects. An examination of soil texture in 

the extensive fields is not easily interpretable, however, because the percentages of sand, silt, 

and clay of the uncultivated fields are intermediate between the cultivated and abandoned 

fields, so there are no consistent trends along gradients of farming intensity (based on 
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mechanical plowing being the most intensive, uncultivated treatments the least, and 

abandoned Helds intermediate). 

MANOVA tests indicate that there are no overall treatment differences for the 

extensive fields. The following probability values were obtained for the different F statistics: 

Wilk's lambda (P>F = 0.23), Pillai's Trace (P>F = 0.22), Hotelling-Lawley Trace (P>0.24), 

and Roy's Greatest Root (P>F= 0,07), The latter measure is nearly significant at the 0,05 

level. 

Posteriori tests of other potential sources of variability between treatments were 

conducted for the extensive fields. Posteriori blocks consisted of landform (alluvial fans 

versus colluvial footslopes), landscape positions (within versus outside of canyon), and 

groupings of fields with high versus low amounts of clay and sand. No statistical differences 

were found by the posteriori tests (at the 0,05 level of significance) for both treatment effects 

and study area by treatment interactions. The greatest treatment difference was found for pH 

(P>F = 0,09), The lack of statistical differences for some variables, especially pH, may be a 

function of small sample sizes for the posteriori blocks. To ensure a sufficient sample size for 

testing the effects of factors that may explain the treatment effects, future studies should 

consider blocking on landform, soil texture, or other potentially important factors in their 

initial stratified sampling design. 

Correlation analyses were undertaken to assess the relationships between soil test 

variables (Tables 3.9 and 3.10). This analysis focused on comparisons between the chemical 

and physical tests to search for connections between these variables. Not surprisingly, there 



123 

Table 3.9. Correlation between chemical and physical properties for intensive fields. 

Comparison Laate Weekoty Sanchez 

Cult Uncult Cult Uncult Cult Uncult 
OC vs. Sand -0.95" -0.79" 0.19 0.91" -0.50 -0.84" 
OC vs. Silt 0.94" 0.77" 0.13 0.84" 0.72" 0.88" 
OC vs. Clay 0.74" 0.67* -0.37 0.84" -0.07 0.46 
OC vs. Bulk Density -0.34 -0.59* 0.51 -0.22 -0.74" -0.86" 
N vs. Sand -0.87" -0.72* 0.20 -0.89" -0.62* -0.85" 
N vs. Silt 0.88" 0.71* 0.13 0.81" 0.79" 0.85" 
N vs. Clay 0.65* 0.58* -0.37 0.84" 0.10 0.56* 
N vs. Bulk Density -0.29 -0.43 0.59* -0.24 -0.71 ** -0.88" 
Av.P vs. Sand -0.41 -0.22 -0.15 -0.68* •0.43 -0.25 
Av.P vs. Silt 0.31 0.23 0.42 0.60* 0.64* 0.34 
Av.F vs. Clay 0.56* 0.15 -0.39 0.67* -0.10 -0.07 
Av.P vs. Bulk Density 0.40 0.09 -0.07 -0.14 -0.78" -0.57 
P vs. Sand -0.81" -0.68* -0.26 -0.86** 0.43 0.10 
P vs. Silt 0.81" 0.63* 0.40 0.77" -0.31 0.14 
P vs. Clay 0.62* 0.66* 0.25 0.84" -0.53 -0.65* 
P vs. Bulk Density -0.09 -0.27 0.47 -0.25 0.27 -0.23 
* Significant at a = 0.05; ** Highly significant at a = 0.01 

Table 3.10. Correlation between chemical and physical soil properties for extensive fields. 

Comparison Cultivated Abandoned Uncultivated 
OC vs. Sand -0.78 -0.38 -0.16 
OC vs. Silt 0.88 0.42 0.26 
OC vs. Clay 0.58 0.31 0.05 
OC vs. Bulk Density 0.30 0.50 -0.61 
N vs. Sand -0.51 -0.45 -0.22 
N vs. Silt 0.69 0.46 0.32 
N vs. Clay 0.25 0.40 0.11 
N vs. Bulk Density 0.29 0.58 • -0.52 
Av.P vs. Sand 0.34 -0.60 • 0.08 
Av.P vs. Silt -0.32 0.53 -0.01 
Av.P vs. Clay •0.32 0.68 • -0.13 
AvP vs. Bulk Density 0.77 0.60 -0.54 
P vs. Sand -0.41 -0.89 •• -0.12 
P vs. Silt 0.43 0.79 •• •0.08 
P vs. Clay 0.34 0.91 0.21 
P vs. Bulk Density -0.01 0.75 •0.05 

* SignlTicant at a = 0.05; ** Highly significant at a = 0.01 
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are many statistically significant positive and negative correlations. Several of these 

connections have already been reviewed in the discussion above, without quantifying them. 

Here, we focus on two correlations (organic C vs. bulk density and organic C vs. silt) that 

have been examined by previous studies. Scatter plots for both the means and individual 

samples of the 29 extensive fields are depicted in Figures 3.14 and 3.15. Many studies have 

shown that organic C and bulk density are inversely related. That is, as organic C declines, 

bulk density increases (e.g., (Sandor, et al. 1986). Statistically significant inverse correlations 

were only found in the cultivated and uncultivated soils of the Weekoty Held, and the 

uncultivated extensive soils. These data show that bulk density and organic C are not related 

in a way that is predictable in fields influenced by historic agriculture. Surprisingly, the 

correlations between bulk density and organic C are positive for cultivated and abandoned 

soils, though not at statistically significant levels, and we might not have expected this 

relationship. The lack of statistically significant differences is likely affected by variable 

degrees of sedimentation for the different alluvial fans sampled. 

Correlations between organic C and silt are correlated at statistically significant levels in 

many cultivation contexts, even more so than for organic C and clay which is a common 

attribute of most agricultural systems. This finding supports the interpretation of co-

sedimentation of organic matter and silt in the depositional systems of Zuni runoff fields. 

This important trend was first identified in Norton's thesis research of the Sanchez Held 

(Norton 1996), and the much larger data base presented here further demonstrates this 

important process in nutrient renewal of Zuni runoff fields. 
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Organic C vs. Bulk Density 
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Figure 3.14. Scatter plots of organic C versus bulk density for extensive fields (top shows 
field means and bottom shows the values for all individual samples). 
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Organic C vs. Silt 
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Figure 3. IS. Scatter plots of organic C versus silt for extensive Helds (top shows Held means 
and bottom shows the values for all individual samples). 
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CONCLUSIONS 

We did not find evidence that Zuni agricultural soils are degraded. Our data indicate 

that cultivation has had both positive and negative effects on agricultural soils. Beneflcial 

effects include thickened A horizons and organic matter coatings on grains and granular peds 

in many cultivated Helds. Paired cultivated soils have higher bulk densities and pH levels, 

and either reduced or enriched levels of N and organic C. Although these differences are 

often statistically significant, they are not great enough to indicate degradation of agricultural 

runoff soils. 

Soil texture has such a strong effect on nutrient-holding properties that it is an 

especially important variable in interpreting soil nutrient status. Textural differences between 

cultivated and uncultivated contexts actually reflect a combination of natural horizontal and 

vertical variability on alluvial fans that has been overprinted by natural and cultural 

sedimentation processes in cultivated fields. This situation highlights a potential major 

problem with the paired-field approach, and that is why we also included an extensive 

component in the study. 

In attempting to evaluate anthropogenic effects on soil texture and other variables, it 

Is often difficult to impossible to adequately hold the non-anthropogenic factors constant, or 

at least approximately so, when there is so much natural variability over short distances. 

Consequently, the risk of psuedoreplication in a sampling design is always present in this 

type of field study. Psuedoreplication can result from collecting soil samples that differ 

because of factors other than anthropogenic treatments alone. Paired Held comparisons 

assume that the uncultivated samples are valid controls, but this assumption very often may 
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not be met. Indeed, the biggest challenge in this type of research is finding valid uncultivated 

samples to serve as controls for gauging anthropogenic influences. For studies limited to 

small sample sizes (those with less than about 1(X) samples), the paired-site method is 

probably still the best approach, but larger studies should incorporate both paired and 

unpaired sampling methods. 

Statistical analysis of extensive fields failed to identify significant treatment 

(cultivated, abandoned, and uncultivated) effects, which strongly supports the hypothesis that 

soil alterations are not at levels indicative of degradation. A few slight trends were found 

among treatments (e.g., a 3.5% increase in bulk density of cultivated soils), but differences 

among study areas were of greater magnitude. The only significant statistical differences in 

the extensive data set were found between study units, and these differences were only in pH 

and bulk density. Even so, the magnitude of these differences (due mainly to variability in 

soil parent material) is low. 

In conclusion, there is no clear indication that agricultural runoff soils are degraded. 

Cultivated soils in paired fields often appear to be more degraded, but many of the 

differences are explained by natural variability in texture rather than anthropogenic 

influences. The lack of statistical differences and the low magnitude of soil changes in 

unpaired fields strongly supports our interpretation that agricultural soils are not degraded by 

cultivation. 
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CHAPTER 4 
INFLUENCES AND INTERACTIONS AMONG SOILS, 
PLANTS, AND ANTS IN A SEMIARID LANDSCAPE 

A Paper to be submitted to Pedobiologia 

Jeffrey A. Homburg and Jonathan A. Sandor 

ABSTRACT 

The western harvester {Pogonomyrmex occidentalis) and other closely related 

harvester ants {P. barbatus, P. maricopa, P. Oweeyi, and P. rugosus) are widespread in 

grasslands, deserts, and woodlands of the western U. S. Field research was undertaken to 

study interactions between western harvesters, soils, and vegetation patterns in west-central 

New Mexico. This study emphasizes the influence of western harvesters on physical and 

chemical soil properties, pedogenesis, and soil productivity. Ant colony and vegetation 

associations were documented in contiguous uncultivated, fallow, and cultivated Held plots 

on an alluvial fan on the Colorado Plateau. Analyses made at pedon and microscopic scales 

are related to the broader landscape through observations of 73 ant colonies and previous 

studies of the age of western harvester colonies. 

Results indicate that ant-affected soils have elevated levels of organic C, N, and 

available and total P. The southeast quadrant of ant mounds, the zone where entryways are 

concentrated, have particularly high nutrient levels for plants. Soil micromorphological 

studies show that the walls of ant chambers and channels are coated with organic matter. 

Spatial analysis indicates that ant colonies are more widely spaced in uncultivated Helds 
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dominated by sagebrush than in fallow and cultivated maize fields where their primary food 

source, grass seeds from weedy vegetation, is concentrated. The soil turnover rate was 

estimated at 590 m~/ha/y in the cultivated field, due to the ant's energetic response to nest 

disturbance caused by plowing. This rate is nearly 17 times that of the uncultivated field. 

Using projections based on biological studies of western harvester colony life span and fleld 

data on the amount of land modified by active colonies, we project that the entire landscape 

would be modified by ant activity in 2500 years for the uncultivated field, 300 years for the 

fallow field, and 50 years for the cultivated field. All three clearing intervals are within the 

time frame of agricultural practices in the Zuni area. Western harvesters may have a negative 

effect on soil productivity for agriculture in the short term, but over time, their overall effect 

is positive. Harvesters improve soil productivity by enriching the soil with nutrients, aerating 

it with their burrowing activity, and increasing the hydraulic conductivity and water-holding 

capacity. 

INTRODUCTION 

Mark Twain observed that, "As a thinker and planner the ant is the equal of 

(anyone)." (Quotation displayed at Museum of Natural History, Smithsonian Institution). 

Their social behavior, industrious nature, diverse subsistence patterns, and complex codes of 

communication are topics that have generated considerable scientific interest. This study 

focuses on how one widespread ant species, the western harvester ant (Pogonomyrmex 

occidentalism influences and interacts with different soils and vegetation. Western harvesters 

and other earth-dwelling ants have played a significant role in pedogenesis throughout much 
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of the world (Thorp 1949; Lyford 1963; Salem, Zarif et al. 1968; Czervinski et al. 1971; 

Jakubczyk et al. 1972; Wali and Kannowski 1975; Wiken et al. 1976; Mandel and Sorenson 

1982; Culver and Beattie 1983; Levan and Stone 1983; Lockaby and Adams 1985; Carlson 

and Whitford 1991; Green et al. 1998). Their principal role involves pedoturbation (or 

mixing) by translocating soil to the surface during mound construction (Mandel and Sorenson 

1982). As ants build chambers and channels and incorporate organic matter into their nest, 

they have a profound effect in increasing soil fertility, porosity, water-holding capacity, and 

thermal and hydraulic conductivity (Petal 1978; Wheeler and Wheeler 1986; Green et al. 

1998). 

In a study of western harvesters in semiarid grasslands of south-central Colorado, 

Mandel and Sorenson (1982) found that western harvesters concentrate carbonate-rich gravel 

and sand on the surface but move little clay to the surface, unlike ants in humid climates. Fine 

gravel placed on the mound surface serves as a mulch to retain soil moisture and moderate 

temperature changes in the mound. Because of low precipitation in their study area, Mandel 

and Sorenson (1982) argued that the effect of western harvesters on soil properties persist 

long after colonies are abandoned. As new colonies are established through time, the effect of 

ant-affected, or formicarious, pedons can extend to entire landscapes (Green et al. 1998). 

Despite the strong influence of ants on soil development, research on this topic has been 

sporadic (Green et al. 1998), certainly much less than the attention devoted to termites 

(Adamson 1943; Hesse 1955; Maldague 1959; Lee and Wood 1971; Lobry de Brun and 

Conacher 1990; Robinson 1958; Watson 1962; Stoops 1964; Williams 1968; Pomeroy 1976; 

Wood and Sands 1978). 
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The present study focuses on five research questions: (1) What chemical and physical 

soil properties are influenced by harvester ants in a semiarid, uncultivated Held dominated by 

sagebrush, and how do they affect soil fertility? (2) What micromorphological properties are 

associated with ant-affected soils? (3) How do colony spacing, mound and clearing 

properties, and vegetation associations vary between colonies in uncultivated, fallow, and 

cultivated fields? (4) How does the rate of soil tumover vary between colonies in 

uncultivated, fallow, and cultivated fields? (5) How long could it take for the entire landscape 

to become affected by ant activity? (6) How do soils, plants, and ant colonies influence one 

another, and what are some of the major interactions between them? This investigation 

differs from previous soil studies of western harvesters in a number of ways. For one, it 

focuses on comparisons of ant activity in different and long-term cultivation contexts and 

relates their effect from the pedon scale to the broader landscape. Secondly, it is the first to 

examine harvester nests using soil micromorphology; and finally, it is the first to use a 

quadrant sampling scheme to test for spatial differences within the ant mound. 

Study Area 

This study was undertaken on the Colorado Plateau as part of an agroecological study 

of Zuni farming practices. The Zuni are one of western Puebloan tribes, and their traditional 

homeland extends over a large part of eastern Arizona and western New Mexico (Ferguson 

and Hart 1985). The project area is in small alluvial fan in the Rio Pescado watershed of the 

eastern part of Zuni Lidian Reservation, at an elevation of about 2000 m. The climate is 

semiarid, with annual precipitation averaging about 300 mm, a summer-dominant rainfall 
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pattern, and a frost-free season that typically extends from late May or early June to late 

October. Fieldwork was conducted on an alluvial fan that lies in a canyon valley cut into 

Cretaceous sedimentary rocks consisting chiefly of sandstone, siltstone, mudstone, and shale. 

The alluvial fan containing the uncultivated (or pasture), fallow, and cultivated Helds 

examined by this study is depicted in Figure 4.1 in a 1988 aerial photograph. 

Soils on the fan are formed in stratified Quaternary alluvium, with textures dominated 

by sandy loams and loams at the surface that overlie highly variable sequences of loams, clay 

loams, sandy clay loams, and sandy loams. The vertical and lateral textural variability is due 

to natural stratification associated with depositional events of varying magnitude. Despite this 

natural variability, clay enrichment with depth is indicated throughout the fan by the presence 

of shallow argillic horizon development. Clay illuviation has had a signiHcant effect on 

vegetation distributions across the landscape because of how it promotes runoff, impedes 

infiltration, and conserves plant available moisture in the rooting zone. Sagebrush commonly 

grows taller and thicker in soils with illuvial B horizons, especially where runoff water flows 

and is concentrated. 

Because of different land management practices for the study area parcels, vegetation 

varies widely between the three adjacent field plots that we sampled. Big sagebrush 

{Artemesia tridentata) and various grasses are dominant in the uncultivated field. A variety of 

weedy grasses and forbs grow in the fallow Held, and maize and bind weed are the dominant 

plants growing in the cultivated field. The cultivated field is the site of a maize productivity 

study being conducted as part of this NSF-fiinded project. Vegetation diversity is described in 

more detail in the discussion of plant and ant colony associations. The uncultivated fleld has 
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Figure 4.1. Aerial photograph of field plots. Fields are in the upper center, adjacent to the 
road. Note abundant small white dots, which are clearings around ant mounds. 
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been used as range land for cattle and sheep grazing for many decades, and the fallow land 

was last cultivated about 10 years ago. The rocky slopes and mesa tops around the alluvial 

fan are covered by a thick growth of juniper, pinyon and ponderosa pine (Pinus edulis and 

ponderosa), and Gambel's oak {Quercus gambelii), especially on the cool and moist north-

facing slopes. 

Background Discussion 

Western harvester ants (also called the Occident harvester or bearded ant) are mainly 

graniverous, but they are also scavenge and hunt other insects for food. Pogonomyrmex is 

known for seed-harvesting behavior but they are not the only harvester ants; other noteworthy 

myrmacine harvesters include Veromessor and Aphaenogaster in the American deserts, 

Messor and Monorium in the eastern hemisphere, and Pheidole from both the New and Old 

World (Dumpert 1981; Sudd and Franks 1987). Throughout the rest of this paper we use the 

term harvester in reference to the subgenus, Pogonomyrmex, and western harvester in 

reference to the species, P. occidentalis. Pogonomyrmex is the most distinctive of the 

American harvesters (Wheeler 1910). 

In assessing why Pogonomyrmex store seeds, one study found that this strategy serves 

mainly to help withstand episodes of heavy predatory pressure, rather than to provide a ready 

food source for their brood, cope with unpredictable environments, or survive the winter 

(MacKay and MacKay 1984). Western harvesters prefer to build their nests in semiarid 

grasslands with sandy loam, clay loam, or loam soil textures, on gently sloping, south-facing 

terrain, but they have even been found on rocky, vertical clitfs (Gregg 1963; Moody 1982; 
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Taber 1998). Their colonies are concentrated between about 1400 and 2100 m in elevation, 

but colonies have been documented at elevations under 400 m and over 2700 m (Gregg 1963; 

Taber 1998; Wheeler 1963; Young 1964). 

Western harvesters have dark red to dark reddish brown bodies that range from about 

5 to 7 mm in length (Byars 1930; Wheeler and Wheeler 1986). Depending on the age of the 

colony, the population of workers in a colony ranges from about 4(X) to 9000 (Lavigne 1969). 

About 80 to 90% of the workers are confmed to the nest, where they tend to the queen and 

her brood, build new chambers and tunnels, and husk seeds and dispose of the chaff. Only 

older workers, the most expendable of the colony, venture out of the nest to collect food, 

where they are vulnerable to predation by lizards, birds, spiders, and ant lions. Some 

predators are heavily dependent on harvesters for food. For example, harvesters account for 

up to 90% of the regale homed lizard's (Phrynosomoa solare) (Arizona-Sonoran Desert 

Museum 1998) diet and the Texas homed lizard (P. comutum) feeds almost exclusively on 

harvesters (Whitford and Bryant 1979), and the ant's venom has little effect on both species. 

Harvester ants also play an important role in human societies. Human consumption of 

large quantities of Pogonomyrmex venom has been documented in southem and central 

Califomia, where American Indian groups use them ritually and therapeutically. Harvester 

ants are ingested to induce catatonic states and hallucinogenic visions, and to serve as 

curative and preventative medicine (Blackburn 1976; Groark 1996). Western harvester ants 

figure prominently in Zuni culture (Bunzel 1932; Tedlock 1979; Stevenson 1904) and other 

Puebloan tribes such as the Acoma (Taber 1988). Zuni pueblo is called Halona, which means 

Middle Ant Hill, and one Zuni religious society is known as the halo k'e (Red Ant People). 
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A IS-year study of colony dynamics in western Nebraska found that mean life 

expectancy for a colony of western harvesters was 43.5 years, which corresponds to the age 

of the queen (Keeler 1993). Unlike many other ant species, no multi-queen colonies of 

western harvesters have been observed (Cole and Wiemasz 2(X)0). New colonies have higher 

death rates than established ones, but those that survive their first year have a life expectancy 

over a decade (Keeler 1993). Research on other harvester species indicates that colonies are 

more short-lived than those of the western harvesters, generally about 15 to 20 years (Porter 

andJorgensen 1988; Gordon 1991), 

Mounds serve as both incubators for their brood and defensible positions, and they 

also provide protection during floods. Mature mounds of westem harvesters are conoidal in 

shape, and they average about 1 m in diameter and 35 cm in height (Scott 1951; Figure 4.2). 

The largest mound documented to date is about 1 m in height and 5 m in width (Schmidt et 

al. 1986). Most entry ways are south- to east-facing to take advantage of solar warming in the 

morning (Wheeler 1910). They build the largest and most complex mounds of all harvesters, 

with nests up to 6 m deep (Gilbert 1960; Taber 1998). As is typical of other ants in dry 

climates, their nests are much deeper than those of ants in moist climates (Sudd and Franks 

1987). 

Mound size generally corresponds to age of the colony, except in cases when westem 

harvesters move into abandoned nests (Keeler 1993). Mounds are interstratiHed and covered 

with mulch of fine gravel, granules, plant material, and other debris (e.g., charcoal, volcanic 

ash, gold dust, fossils, and cultural materials such as nails and fragments of glass) (Mandel 

and Sorenson 1982; Taber 1998). Westem harvesters substitute gravel using other materials 
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Figure 4.2. Typical ant mound and vegetation clearing of the western harvester ant. 
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(e.g., gypsum, lignite, petrified wood, empty snail shells, plant debris, granules of soil, etc.) 

when none is available (McCook 1882; Wheeler and Wheeler 1963). Prospectors and 

archaeologists use ant mound coverings to obtain clues as to what is buried below surface. 

Mulching material on the mound is bonded with oral secretions that act as "waterproofing" to 

promote water runoff from the mound (Taber 1998). When damaged by storms or animals, 

workers will repair the mound before seeking food (Taylor 1978). Other earth-moving 

activities besides mound construction include boring holes to the surface to dry the nest after 

heavy rains and plugging entryways with soil at sunset, the onset of winter, and during 

droughts, storms, and the threat of predators (McCook 1882; Taber 1998). 

Harvesters expend substantial energy excavating and transporting soil material. They 

can carry a load 6 to 10 times their own weight (McCook 1882). The amount of soil moved 

by harvesters and other mound-building ants of the western U.S. is substantial, second only to 

that of humans (Scott 19S1). Ants move more soil than earthworms, and in the process 

circulate vast quantities of nutrients vital to the health of land ecosystems (Hdlldobler and 

Wilson 1994). Under shinnery oak (Quercus harvardif) and mesquite (Prosopis glandulosa) 

vegetation in southern New Mexico, western harvester ants moved about 80 g/m" of sandy 

loam soil to the surface in a single growing season (Whitford et al. 1986), which is about 100 

times the rate noted in a mesic pasture in Colorado (Rogers 1972; Rogers 1974). Harvester 

ants are well adapted to excavate and transport dry sand, granules, gravel, and seeds. They 

have a psammophore (also called ammochaetae or beard) attached to their mandibles, and it 

is well developed in comparison to the closely related subgenus, Ephebomyrmex (Wheeler 

1902; Cole 1968). The psammophore permits harvesters to carry a load four times heavier 
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than that possible by the mandibles alone (Spangler and Rettenmeyer 1966). Mandibles and 

front feet are used to loosen the soil, and sandy soil is then packed with oral secretions in the 

psammophore to form a pellet as large or larger than their head (Wheeler and Wheeler 1963; 

Taber 1998). To our knowledge, the chemical content of their oral secretions has not been 

analyzed. Harvesters can also loosen dry soil by stridulation, a vibratory technique analogous 

to jackhammering (Stoops 1964). Stridulation is also used as a means of communication 

between ants. Based on alternating patterns of intensity, three different signals have been 

distinguished (Spangler 1967; Spangler 1973). Development of a beard and the ability to 

stidulate are clear indications of how soils have influenced harvester ant's anatomy and 

behavior. 

Western harvesters build a system of multi-storied chambers and channels and they 

stabilize the walls by plastering them with oral secretions (Taber, 1998). Up to 150 chambers 

have been documented in a single nest, and different chambers serve as nurseries, granaries, 

and refuse disposal loci (McCook 1882; Taber 1998). Workers sort the brood into at least 

three groups (eggs and newly hatched larvae, growing larvae, and pupating larvae and pupae) 

that are moved between chambers to obtain optimal temperature and humidity conditions for 

incubation (Sudd and Franks 1987). Seeds are stored in the driest parts of the nest, and seeds 

that germinate are discarded from the nest. Refuse chambers that are filled are sealed from 

the rest of the nest (Hutchins 1967; Taber 1998). Some harvesters clear refuse from chambers 

in the spring and place it next to clearings around the mound (Gentry and Stiritz 1972). As 

they extend the size of their nest, infilled chambers and channels are favored excavation loci 

because of the ease of digging. The lowest chambers are used as overwintering facilities. 
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Western harvesters clear the vegetation bit by bit from several meters around their 

mound and place it outside of the denuded disk (see Figure 4.2). Techniques used for 

removing vegetation involve grasping plant debris with their mandibles, twisting it, and 

repeatedly pinching it until it is detached (Wu 1990). Debris is usually reduced to pieces that 

can be transported by one to three workers. Many explanations have been offered as the 

function of the clearing (Taber 1998), including: (1) protection of the mound from grass fires 

(Cole 1932); (2) making sunlight more effective in the morning (Wheeler and Wheeler 1986); 

(3) providing a target for males during their nuptial flight; (4) preventing roots from 

penetrating into their channels and chambers (Wu 1990); (5) removing competition with 

plants for moisture (Wight and Nichols 1966); (6) providing a surface for drying seeds and 

their brood; (7) dehumidifying and warming the underlying soil of the nest; (8) removing 

hiding places that could be used by predators; and (9) providing a surface for efficient travel 

by foragers. To this list, I add another possible function, one that involves water-harvesting. I 

noted a number of water puddles in the lowest part of the clearing, where a deflated desert 

crust forms a few centimeters below the surrounding terrain, so it is plausible that the 

clearing serves an important role in collecting water for use by the ants. It seems that the 

clearing serves a variety of purposes, and the mix and utility of functions probably varies 

seasonally and between different habitats. 

Unlike many other ant species, there is no evidence that western harvesters secrete 

substances to recruit other ants to food sources (Cole 1968; Taber 1998). Instead of following 

scent trails, harvesters seek food by sight and use landmarks to navigate in their foraging area 

(Hutchins 1967). They do rely on chemical scents to recognize their nest mates, and 
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chemicals incorporated in their nest permit them to distinguish their own nest from soil that 

is otherwise identical (Dumpert 1981). Florida harvesters secrete substances in their mandible 

gland that attract their nest mates at low concentrations and trigger aggression at higher 

quantities (Wilson 19S8), so it is possible that western harvesters use a similar means of 

communication. Harvesters even communicate at death by releasing chemicals that signal 

workers to dispose of their bodies. 

Ants form a variety of interactions with plants, not all of which are mutually 

beneHcial (Huxley and Cutler 1991; Jolivet 1996). Because of their vegetation-clearing and 

seed-collecting behavior, many ranchers and farmers view harvesters as pests (Young and 

Howell 1964; Hutchins 1967; Wheeler and Wheeler 1986). The amount of denuded arable 

land is small, however, usually less than 2%, so they may cause only a minor decrease in 

agricultural yields. The long-term effect of western harvesters on rangeland may be more 

substantial, as they tend to reduce cover and species richness and diversity adjacent to the 

denuded clearing, and results of this influence linger long after colony are abandoned 

(Carlson and Whitford 1991). Even so, studies have found that western harvester queens 

prefer to establish nests on the bare ground of overgrazed rangeland, so it is unlikely they are 

a significant factor in rangeland degradation (Sharp and Barr 1960; Nagel and Rettenmeyer 

1973). Furthermore, harvesters generally collect no more than about S% of the grass seeds 

available, which is much less than that harvested by birds, mice, and other animals. 



152 

MATERIALS AND METHODS 

Fieldwork was conducted in July of 1996 and 1998. Field observations were made for 

all active and abandoned ant colonies in three adjacent field plots, including a 0.87-ha 

uncultivated field, a 0.81-ha fallow field, and a 0.20-ha cultivated field. Observations made at 

each colony included measurements of the size of ant mounds and clearings, the number and 

location of nest entryways, and the spacing between adjacent mounds. Mound volumes were 

estimated by assuming a conical shape, using the formula: V = 7cr^h/3; where V = mound 

volume, = pi (or ca. 3.14), r = round radius, and h = mound height. The mounds are 

actually somewhat irregular cones (or conoidal), so the assumption of a cone for estimating 

the volume is a reasonable approximation. Colony spacing was determined by measuring the 

distance from the top of each mound to its nearest neighboring mound. 

One very recently abandoned ant nest was selected for detailed soil analysis, for 

comparison with nearby uncultivated and fallow soils. Its recent abandonment was indicated 

by the conoidal shape and absence of vegetation on the mound, which contrasted with the 

dome-shape and small sagebrush associated with older, more eroded mounds. A 1 m by 2 m 

pit was excavated across the mound and surrounding clearing to document the nest 

architecture and soil profile. The soil proHle was described, sampled, photographed, and 

drawn. Soil proHIe descriptions involved identifying soil horizons and recording 

morphological properties (e.g., depth, color, texture, structure, consistence, etc.) in 

accordance with procedures of the soil survey manual (Soil Survey Staff 1993). Pedons were 

classiHed using the most recent taxononuc keys (Soil Survey Staff 1998,1999). Soil textures 

in the pedon descriptions (Appendix A) are Held estimates, and this property was later 
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measured in the lab. 

In all, 47 bulk soil samples were collected and analyzed, including ten samples from 

the mound HIl and submound proHle, eight from the profile in the clearing around the mound, 

nine samples from a profile of the nearby fallow field, eight from a profile in the uncultivated 

field, five from different mound sectors (NE, NW, SW, and SE quadrants, and middle), and 

seven miscellaneous samples. The latter includes samples from a nursery area immediately 

below the mound, gravelly sediments from the mound surface and eroded from the mound, 

and granules from smal' active and abandoned ant mounds and areas neighboring each. These 

small (approximately 5-cm diameter) mounds are from another ant species, Dorymyrmex 

pyramicus, observed on many of the western harvester mounds and clearings, as others have 

reported (Wheeler 1910; Hutchins 1967; Wheeler and Wheeler 1973). 

Seven soil samples were collected for micromorphological analysis under a 

petrographic microscope. These were collected from the mound, clearing around the mound, 

A horizon under the mound, and from open and filled ant chambers. To maintain the natural 

arrangement of peds and pores, the micromorphology samples were carefully pedastalled, 

removed, packaged, and transported to the lab. Samples were air-dried, impregnated with 

epoxy, and thin sections of about 30 micrometers in thickness were cut and mounted on 

slides by Spectrum Petrographies. Analysis focused on scanning slides to search for soil 

features and other attributes associated with ant activity. 

Soil analyses focused on soil properties that are useful long-term measures of soil 

fertility. Particle-size and bulk density analyses were conducted to obtain data on soil texture 

and compaction. Chemical analyses included determinations of pH, organic carbon, nitrogen. 
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and total and available phosphorus. Particle-size, bulk density, and pH analyses were 

completed in soil labs at Iowa State University, and organic carbon, total nitrogen, and total 

and available phosphorus analyses were conducted at the University of Montana. Initial 

sample preparation involved air-drying and sifting samples through a 2-mm sieve to remove 

gravel, roots, and other coarse undecomposed organic debris. Determinations of organic 

carbon, nitrogen, and total phosphorus analyses were done on ten-gram samples that were 

mechanically ground fine enough to pass through a No. 100 sieve. 

Particle-size distributions were determined using the sieve and pipette method (Gee 

and Bauder 1986: Method 5.4), with samples pretreated with a 30 percent hydrogen peroxide 

reagent for organic matter digestion and a sodium hexametaphosphate solution for clay 

dispersion. Bulk density analysis was measured using the clod method, using paraffm-coated 

peds (Blake and Hartge 1986: Method 13.4). Bulk density samples were analyzed in duplicate 

and averaged, and if the coefficient of variation exceeded S%, a third sample was analyzed 

and average with the others. After peds were weighed in water, gravel was removed and 

weighed, so the bulk density of the <2 mm fraction could be determined. Soil pH was 

measured electrometrically in the lab using a 1:1 suspension (weight basis) of soil and 

distilled water using a glass electrode (McLean 1982). Soil pH was also estimated by 

colorimetry in the field and these results are included in the pedon descriptions (Appendix 

A). Total carbon and nitrogen concentrations were determined using a Leco CHN analyzer, 

and inorganic carbon was measured by titrimetry (National Soil Survey Center 1996). Total 

carbon was assumed to represent the organic carbon level due to lack or near absence of 

carbonates in all samples. Total phosphorus concentrations were determined using an alkaline 
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oxidation extract (Dick and Tabatabai 1977), and available phosphorus was measured using 

the Olsen extraction method (Olsen 1982: Method 24-5.5.2). 

RESULTS AND DISCUSSION 

Soil Morphology and Ant Nest Relationships 

Soil profile descriptions from the formicarious pedons and fallow and uncultivated 

soils are presented in Appendix A, and the color, texture, and structure of the main soil 

horizons are summarized in Table 4.1. Both formicarious pedons are classified as Fine-

loamy, mixed, mesic Aridic Haplustalfs at the family level, and the fallow and uncultivated 

pedons are both classified as Fine-loamy, mixed, mesic, Aridic Argiustolls in the other two 

pedons. Morphological differences in the control section are not great between the two 

families. The Aridic Argiustolls only have a slightly darker color, enough to meet the 

minimal requirement for a mollic epipedon. 

Pedons in both families have shallow argillic horizons. It is noteworthy that buried 

argillic horizons were also found in the profile of all pedons examined. The shallow and 

multi-storied argillic horizons strongly influence pedogenic development, and ant nests were 

probably built in a way to take advantage of their physical effect in impeding infiltration and 

enhancing water retention, even though argillic development is not strong in the Held studied. 

Ant chambers are concentrated in the upper 40 cm, which is coincident with the greatest 

argillic horizon development. The most important morphological differences between 

formicarious and fallow or cultivated soils are ones that are rather obvious, but they are worth 

reviewing nevertheless. Formicarious pedons are riddled with network of horizontal, 
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Table 4.1. Color, texture, and structure of principal soil horizons. 

Pedons Horizon (1) Dry Color Dominant Texture Structure (2) 

Mound/submound mound fill brown gravelly sandy kjam moderate platy and weak to moderate 
granular 

A brown fine sandy loam weak to moderate granular and 
moderate sbk 

Bt brown loam to sandy clay loam moderate to strong sbk 

Btk brown to pale brown sandy loam to loamy 
sand 

weak to moderate sbk 

BCtk brown sandy loam weak to moderate sbk 

Clearing A pale brown fine sandy loam moderate platy and weak to moderate 
granular 

Bt brown loam to sandy clay loam moderate to strong sbk 

Btk brown sandy loam weak to moderate sbk 

BQk brown sandy loam weak to moderate sbk 

Fallow Ap brown sandy loam weak platy and granular, and weak to 
moderate sbk 

Bt brown clay loam weak to moderate sbk 

Bt or BCt yellowish brown sarKly loam to sandy clay weak sbk 
loam 

2Btk yellowish brown clay loam moderate sbk 

Uncultivated A brown loam weak platy and weak to moderate 
granular 

Bt brown loam to sandy clay loam moderate prismatic and weak sbk 

BCt brown to yellowish 
brown 

loamy sand to loam massive 

1 • does not include all transitional horizons and data for sut>horizons are combined as one horizon. 

2 - sbk s subangular blocky; all plates are thin, granules are fine, and subangular blocks are medium or coarse 
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chambers connected by near- vertical tunnels (Figures 4.3-4,4). Chambers are commonly 15 

cm wide and 2 cm tall, and the channels are about 1 cm wide. Such large, interconnected 

pores are significant pedogenically. Unlike planar pores between peds that may swell shut 

when wet, ant chambers and channels tend to remain open, and they persist for some time 

after nest abandonment so they continue to serve as air and water conduits. Decomposed 

organic matter coats the walls of chambers and channels, as shown in Figure 4.5a. These 

coatings commonly have successive layers of organic matter deposition. Similar organic-rich 

colloidal inHllings were identified in thin sections of nest walls of Lasius neoniger (Wang et 

ai. 1995). 

Textural sequences with depth vary considerably between pedons, due largely to 

depositional variability in different parts of the alluvial fan. Sandy loams, sandy clay loams, 

and clay loams are dominant in all pedons, and coarser textured topsoils overlie zones of 

clay-enrichment in the argillic horizon. The gravelly nature of the mound fill, especially in 

the upper fill deposit, is a distinctive attribute of soil redistribution by ants. Fine gravel 

content is typically two to five times higher in the mound fill than that of the submound soil. 

The gravelly mound surface and fill is effective at maintaining dry conditions in the mound 

by slowing capillary rise of soil moisture and helping to shed runoff. When we first exposed 

the mound in cross section, a zone of wetting was apparent, and it was thicker in an apron 

around the mound. Many chambers were found along a diagonal line immediately below this 

moist soil. In addition to gravel, small quantities of seed chaff and insect remains were 

encountered in the mound fill (see Figure 4.5b). 

Soil color is relatively homogeneous in both the mound HII and submound soils, so 
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Figure 4.3. Ant mound in profile. 



Figure 4.4. Ant chambers in cross section. 
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Figure 4.5. Photomicrographs of: (a) ant chamber wall coated with organic matter, frame 
length = 7 mm; (b) chaff from brome seed incorporated in ant mound, frame 
length = 3.5 mm; (c) platy structure of surface of clearing around mound, frame 
length - 3.5 mm; and (d) chamber of undetermined species containing fecal 
material, adjacent to ant chamber, frame length = 1.75 mm. 
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this property does not help in estimating the relative contribution of different soil horizons to 

the concentrations vary incrementally and cumulatively with depth. Contrasting soil colors 

have been used for such an objective in studies of western harvesters in Colorado (Mandel 

and Sorenson 1982) and common eastern mound-building ants {Formica exsectoides) in 

Wisconsin (Salem, 1968). In this study the cross-sectional area indicated that about 90% of 

the mound fill is derived from the upper 40 cm. 

The topsoil of the clearing is pale brown (dry), which is lighter than the A horizons of 

other pedons (see pedon descriptions in Appendix A). This change in a soil property is due 

mainly to its lower organic matter content. Platy structure is more strongly developed at the 

surface of the clearing than elsewhere, probably caused by more frequent wetting and drying 

cycles (see Figure 4.5c). This difference shows that desert crusts are better developed in 

clearings. Such crusting indicates that water infiltration is slowed In the clearing, and this 

interpretation is consistent with observations that puddles remain in the lowest part of 

clearings after runoff events. 

Ant Influences on Physical and Chemical Soil Properties 

Soil chemistry, bulk density, and particle-size data for the profiles, mound, 

and odier samples are presented in Tables 4.2 and 4.3. Table 4.4 shows soil data comparing 

different mound sectors with pedons from the clearing, and uncultivated and fallow field, 

adjusted to account for bulk density differences. Values in Table 4.4 represent a weighted 

mean adjusted for soil horizon thicknesses in the upper 1 m, the zone encompassing most of 

the ant nest. 
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Table 4.2. Soil data for pedons. 

Sample Depth 

(cm) 

pH Org C N 

(g/ka) 

C:N Av. P Total P 

(mg/kg) 

BD 

(a/cm3) 

vcs cs ms fs vfs S Csi Fsi Si C 

Ant Nest 

Mound Mound 20-18 6.0 12.5 1.04 12.0 29.9 373 1.40 11 3 9 20 18 eo 17 13 30 10 

Mound fill 18-10 6.7 13.8 1.00 13.7 34.9 329 1.43 8 2 10 22 18 59 16 13 29 12 

Mound fill 10-0 6.1 12.6 0.96 13.2 21.5 316 1.30 10 3 9 19 18 59 16 13 29 12 

A 0-10 7.0 6.9 0.56 12.4 8.3 256 1.45 2 2 11 26 19 59 14 13 27 14 

Bt1 10-20 7.2 8.0 0.64 12.5 2.0 193 1.58 0 1 6 22 24 52 16 11 27 21 

8t2 20-35 7.5 9.5 0.67 14.1 1.7 173 1.46 1 2 8 16 17 44 16 17 33 23 

Btk1 35-57 7.8 8.9 0.65 13.7 2.3 197 1.57 0 2 8 20 17 46 15 14 30 25 

Btk2 57-72 6.0 8.5 0.44 19.5 3.2 177 1.50 1 4 15 25 16 61 10 10 20 18 
BCtfc 72-106 8.2 7.1 0.37 19.4 3.9 135 1.41 1 2 10 32 22 66 9 9 18 16 g

 
ID
 CM 

106-124 8.3 5.9 0.36 16.6 3.2 162 1.38 3 7 18 19 18 65 12 9 20 15 
Clearing 

A1 0-3 6.1 6.1 0.44 14.0 17.2 258 1.49 10 2 10 24 21 66 19 8 28 6 
A2 3-11 6.1 7.0 0.50 13.8 23.8 278 1.60 3 2 11 23 18 57 16 12 

C
O

 CM 

15 
ABt 11-18 6.7 7.3 0.63 11.6 13.8 228 1.47 0 2 10 23 20 54 16 11 27 19 
BAt 18-25 7.0 8.9 0.66 13.4 2.9 250 1.57 1 1 6 15 16 38 20 17 37 25 
Bt1 25-59 7.3 7.2 0.53 13.7 3.0 189 1.52 1 2 9 20 19 51 16 11 27 22 
Bt2 59-68 8.0 5.9 0.30 19.3 3.1 220 1.43 1 7 20 26 13 67 7 10 17 17 
Btk 68-96 8.2 6.0 0.36 16.4 3.5 146 1.43 1 3 14 29 19 67 9 9 18 15 

BCtk 96-124 8.3 3.4 0.20 17.0 3.9 126 1.38 3 4 18 33 19 76 7 6 13 11 
Fallow Reld 

Ap 0-17 6.8 8.7 0.76 11.5 8.7 237 1.45 1 3 12 35 16 67 9 10 19 12 
ABt 17-28 6.6 6.1 0.61 10.0 6.1 216 1.55 1 2 11 36 17 67 19 14 34 12 

Bt 28-40 6.7 6.7 0.63 10.7 6.7 263 1.50 2 3 10 32 14 61 13 9 22 17 
Bt 40-68 6.8 5.8 0.54 10.7 5.8 223 1.46 1 2 9 34 15 60 15 11 26 16 

Bt or BCt 68-81 7.0 3.8 0.37 10.3 3.8 194 1.46 2 3 12 37 16 69 12 9 22 12 
BtorBCt 81-105 7.6 6.5 0.48 13.4 6.5 206 1.40 1 1 5 31 20 57 11 15 26 18 

2Btk1 105-141 7.8 8.7 0.59 14.9 8.7 247 1.54 0 1 6 17 9 34 9 23 33 33 U
 CD C

O
 w

 
o

 
CM 

141-150 7.8 6.0 0.40 15.0 6.0 191 1.46 1 3 14 35 15 68 10 9 19 13 
Auger 270-300 7.8 6.9 0.34 20.1 6.9 204 1 1 6 25 25 57 12 13 25 18 

ncult. Reld 

A 0-9 6.4 22.7 1.63 14.0 22.7 412 1.48 0 3 11 21 12 46 14 23 37 16 
BAt 9-27 6.6 11.2 0.73 15.3 11.2 268 1.50 1 2 11 25 14 52 16 16 33 16 
Btl 27-59 6.7 8.0 0.59 13.4 8.0 255 1.58 1 2 8 25 13 48 11 18 28 21 
Bt2 59-82 6.7 5.9 0.49 11.9 5.9 227 1.63 0 1 4 25 19 50 13 14 26 24 

BCt1 82-101 6.7 5.9 0.47 12.7 5.9 215 1.52 1 3 14 27 11 55 5 14 19 23 
BCt2 101-132 7.0 5.8 0.44 13.1 5.8 224 1.46 1 1 7 27 19 55 12 12 24 21 
BCt3 132-150 7.7 4.7 0.33 14.4 4.7 195 1.49 0 2 10 38 17 67 8 10 18 15 

Auger 275-300 6.6 7.3 0.43 17.1 3.5 226 0 0 2 9 14 25 17 25 42 33 

Note No bulk density determinations were made for augered samples. 
vcs - very coarse sand; cs • coarse sand; ms - medium sand; fs - fine sand; vfs - very fine sand; S - sand 

CSi • coarse silt; FSI • fine silt; SI • silt; C - clay. 
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Table 4.3. Soil data for mound sector and miscellaneous samples. 

Sample Depth pH OrgC N C:N Av.P Tot.P BD vcs cs ms fs vfs S CSi FSI Si C 

(cm) (fl/kg) (mg/kg) i [g/cm3) 

Mound Sectors 

NE 1/4 20-0 6.1 11.1 0.57 19.6 34.0 368 1.37 12 3 9 20 17 60 15 11 27 13 

NW 1/4 20-0 6.5 12.6 0.62 20.4 18.0 320 1.36 11 3 10 21 18 62 16 12 28 11 

SW 1/4 20-0 6.5 8.9 0.71 12.6 31.7 357 1.42 9 3 9 20 17 58 17 12 29 14 

SE 1/4 20-0 6.0 9.9 1.08 9.2 114.8 768 1.65 9 2 8 19 18 57 17 12 29 14 

Center 20-0 5.9 10.7 0.87 12.3 48.0 372 1.60 9 2 8 20 19 57 17 13 30 13 

Misc. Samples 
Mound center, 0-10 6.5 8.2 0.65 12.7 22.7 259 1.35 2 2 10 26 19 59 16 11 27 14 

nursery area 

Gravelly sediment 0-1 
eroded from mound 

7.8 0.70 11.1 14.5 394 30 5 13 22 13 82 7 5 11 7 

Gravelly sediment 0-1 
from mound surface 

8.3 0.65 12.8 21.3 424 18 3 7 16 16 60 19 13 32 8 

Soil adjacent to small 0-1 
ant mounds 

6.5 7.9 0.62 12.6 19.2 261 1.54 0 2 9 22 21 54 25 13 39 8 

Soil adjacent to small 1 -5 
ant mounds 

6.5 7.4 0.57 13.0 14.9 316 1.56 1 2 11 24 19 57 17 16 33 10 

Granules from small 0-1 
abandoned mounds 

6.5 8.8 0.73 12.1 16.3 232 1 2 13 25 19 60 15 11 25 15 

Granules from small 0-1 
active mounds 

6.9 8.7 0.72 12.1 13.5 243 1 2 12 25 19 59 15 11 26 15 

Note: Missing pH and built density data is for some gravelly sadiment/granuies. 
vcs • very coarse sand; cs - coarse sand; ms - medium sand; fs - fine sand; vfs • very fine sand; S - sand 

CSi - coarse silt; FSi • fine silt; Si - silt; C - clay. 

Table 4.4. Comparison of pH, nutrient concentrations, and physical soil properties for mound 
and off-mound areas. 

Sample pH C N AvP P C:N Bulk Den. Sand Silt Clay 
(kg/m3) (kg/m3) (kg/m3) (kQ/m3) Ratio (a/cm3) (%) (%) (%) 

Ant Mound, NE 1/4 6.1 15.2 0.78 0.047 0.50 19.6 1.37 60.0 26.7 13.4 
NW 1/4 6.5 17.1 0.84 0.024 0.44 20.5 1.36 61.5 27.5 11.0 
SW 1/4 6.5 12.6 1.00 0.045 0.51 12.6 1.42 57.5 28.8 13.7 
SE1/4 6.0 16.3 1.78 0.189 1.27 9.2 1.65 56.8 28.8 14.4 
Center 5.9 17.1 1.39 0.077 0.60 12.3 1.60 57.4 29.6 13.0 

Clearing Around 
Mound 7.5 10.0 0.69 0.009 0.29 14.4 1.49 57.9 23.8 18.3 

Uncultivated Reld 6.7 13.9 1.03 0.014 0.40 13.6 1.56 50.8 28.2 21.0 

Fallow Reld 6.9 9.2 0.82 0.009 0.33 11.2 1.46 61.5 24.1 14.5 

Note: Values Ibr deaitng, uncuKiwated and falkjw field repiesent a weighted mean by soil horizon to 1 m. 
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Differences between mound and off-mound soils are shown graphically in Figure 

4.6, and stacked bar graphs in Figure 4.7 show how soil nutrient concentrations vary 

incrementally and cumulatively with depth. Soil data from previous soil studies of western 

harvester and Formica nests are summarized relative to reference samples in Table 4.5. 

Mound fill is slightly to moderately acid (pH S.9-6.5), which is lower than the neutral 

reference soils from the uncultivated (pH 6.7) and fallow fields (pH 6.9) (see Table 4.3 and 

Figure 4.6). The A horizon of the clearing is also acidic, at pH 6.1, but the clearing pedon as 

generally slightly alkaline (pH 7.5), due to greater leaching from the surface and 

accumulation of carbonates below 68 cm depth. Most nutrients are readily available to plant 

roots in ant-affected soils at these pH values, and in fact, pH 6.5 is considered optimal for 

maize production. Optimal pH levels are between pH 6 and 8 for nitrogen availability (Foth 

and Ellis 1988) and between pH 6 and 6.5 for phosphorus uptake (Tisdale et al. 1985). 

Changes in soil pH in ant nests have been documented, and these changes are presumably due 

to changes in the amount of organic matter and exchangeable cations. Compared to soils 

away from ant nests, soil pH in ant-affected soils tends to increase in acid soils (Salem et al. 

1968), decrease in alkaline soils (Mandel and Sorenson 1982), and only slightly decrease or 

increase in neutral soils (Petal 1978). Ants may be able to regulate soil pH in the nest, but the 

particular mechanism is unknown (Petal 1978). 

Organic carbon concentrations (standardized on weight/volume basis) vary from 12.6 

to 17.1 kg/m^ in the mound fill, and these levels are significantly elevated above off-mound 

soils (see table 4.4 and Figure 4.6). As previously shown in Figure 4.5a, organic matter is 

strongly associated with nest chambers and tunnels. Fecal matter from smaller soil fauna 
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Figure 4.6. Histograms of soil data for mound and off^-mound areas. 
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Table 4.5. Summary of studies that have compared ant mound and reference soils. 

Sr. Author pH Org. C N Av. P Bulk Oen. Sand Silt Clay 

Ant Species, (g/kg) (g/kg) (mg/kg) (g/cm3) (jy J%) (%) 

ProjectArea, MSRM S RMSRM S R MS R MSRMSRMSR 

This study S.2 7.3 6.6 10.6 S.4 12.7 0.8 0.6 0.9 49.3 3.S 12.7 1.4 1.5 1.5 59 SO 49 28 30 32 13 20 18 

P. ocddentalis 
New Mexico 

Sage, grass 

Mandel(1982) 8.1 8.4 8.3 1.6 0.8 0.6 77 46 44 IS 32 33 8 22 24 

p. occtdenHalis 
Colorado 

Grass, sage 

Carlson (1991) 6.4 6.2 ll.o 7.0 19.3 1.5 1.2 1J2 82 74 16 23 1 3 

P. oeddemlls s.4 6.8 13.9 20.3 25.4 5.2 O.S 0.8 84 83 U 15 1 1 

New Mexico 

PJ. ponderosa 

Wiken (1976) 20.0 9.4 7.3 36 44 42 35 34 36 30 22 22 

Formica fusca 
SW Canada 

Rr, grass 

Culver (1983) S.5 5.4 25.0 32.5 11.7 8.4 

F. canadensis 
Colorado 

Grass 

Salem (1968) 7.2 5.9 S.3 15.7 8.5 7.4 0.8 1.2 1.3 3 3 3 50 61 54 47 36 43 

F. exsectoides 
Wisconsin 

Oak, Grass 

Baxter(1967) 6.0 5.3 5.2 24.4 15.7 16.5 82 22.2 19.4 0.6 1.1 1.3 29 29 28 

F. cinerea 
Wisconsin 

Grass 

Note: Soil data (or Carlson (1991) separate lor pinyonHuniper (upper) and ponderosa pine (lower) 

M = mound soil S s submound soil, R - reference soil. 

living ant nests also contributes to organic matter additions (see Figure Sd). The total amount 

of organic carbon in the upper 1.5 m of the mound and submound soil is comparable to soils 

in the uncultivated Held and higher than those of the clearing and fallow Held (see Figure 

4.7). Because semiarid soils are naturally low in organic matter content, due to aridity, low 

biomass production and rapid oxidation, any process than can increase it can be an important 

long-term beneHt to plants. 
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Compared to off-mound samples, nitrogen levels are elevated in the southeast 

quadrant and center of the mound, where entryways and chambers are concentrated. 

Elsewhere in the mound nitrogen levels are similar to the reference samples. Other studies of 

western harvester mounds have found elevated levels of nitrogen (Mandel and Sorenson 

1982), and both nitrate-N (NO3-N) and ammonium-N (NH4-N) (Carlson and Whitford 1991). 

Western harvesters increase nitrogen levels by depositing undecomposed and humified 

organic matter in the mound. Nitrogen is usually the most limiting nutrient for agricultural 

production in the semiarid Southwest, so any process that makes it available to plants roots is 

significant. 

The southeast and center sectors of the mound also have low C:N ratios compared to 

other mound and off-mound areas. Low C:N ratios may indicate an advanced state of organic 

matter decomposition by microbial activity. As microbes convert organic carbon to gaseous 

carbon dioxide, carbon is released to the atmosphere, nitrogen is combined into new protein 

molecules, and the C:N ratio narrows through time. Alternatively, the ants may simply 

concentrate refuse and other debris with a naturally low C:N ratio in the mound. 

Total and available phosphorus levels are higher in the mound soils than off-mound 

areas, especially in the southeast mound sector. Differences between mound and o^-mound 

available phosphorus levels are greatest in the upper 25 cm, where plant roots are 

concentrated and can thus take advantage of its availability. This is noteworthy given that 

total and available phosphorus in upper 1.5 m is actually lower than that of the uncultivated 

and fallow Helds (see Figure 4.7). Because phosphorus levels are slow to change in the soil, 

increases could have a long-lasting beneficial effect on agricultural production. Phosphorus 
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requirements for crops are not well understood for Southwest soils, but available phosphorus 

levels below 2 mg/kg (or 2 ppm) are usually considered low and values above Smg/kg are 

considered sufficient (Doerge 1985). 

Bulk densities are 1.60 to 1.6S g/cm^ in the center and southeast mound sectors, 

which is substantially higher than in the off-mound samples, which average about 1.5 g/cm^. 

Other parts of the mound have much lower bulk densities, ranging from 1.36 to 1.42 g/cm^, 

and these values are probably more representative of the mound as a whole. Although the 

mound that was sampled was receudy abandoned, there has been considerable slaking and 

infilling of entryways and passageways in the southeast and center mound sectors. These 

processes appear to be responsible for significant compaction there. Overall, ant activity in 

this study area appears to have resulted in decreased bulk density. Both decreased (Rogers 

1972) and increased (Carlson and Whitford 1991) bulk densities have been found in the 

western harvester mounds in other studies. Decreased bulk densities are associated with 

many properties beneflcial to plant production, including improved air and water 

permeability, moisture retention, seedling emergence, and root penetration, and increased 

densities have the opposite effect. 

On average, the mound fill had higher sand (59% vs. 40%) and lower clay (13% vs. 

18%) contents compared to the upper 40 cm of the submound soil. As noted previously, fme 

gravel content is about two to five times higher in the mound than the submound. Similar 

trends were also found other studies of western harvester mounds (Mandel and Sorenson 

1982; Carlson and Whitford 1991). Elevated sand and gravel contents promote aeration and 

rapid water infiltration into the rooting zone. 
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Except for clay and silt content, few differences were found between the abandoned 

and active mound soils of Dorymyrmex pyramicus and their reference samples. Their mounds 

have much higher clay contents and decreased silt contents compared to their reference soils, 

which is a major contrast with the results of die western harvester mound soil. Dorymyrmex 

mounds also have slightly elevated pH, organic carbon, and total phosphorus levels, but all 

other soil test values are very similar or even slightly decreased compared to their reference 

samples (see Table 4.3). 

Surficial Ant Nest Morphology, Colony 
Spacing, and Vegetation Associations 

In all, 73 ant colonies were documented in this field study, including 62 active and I i 

abandoned mounds. Within the 1.88-ha area where mounds were examined, total mound fill 

was estimated at 2.74 m^ for the active mounds and 0.22 m^ for the abandoned mounds. 

Sixteen active and six abandoned colonies were found in the uncultivated field; 40 active and 

five abandoned colonies were noted in the fallow field, and six active colonies were observed 

in the cultivated field. All Held observations of ant mounds, cleared areas, and vegetation 

associations are summarized in Tables 4.6 and 4.7. 

Colony spacings have been studied using many techniques (Southwood 1973), but the 

most common method, and the one used by this study, is nearest neighbor analysis (Clark and 

Evans 1954). Nearest neighbor analysis shows that colonies are more widely spaced in the 

uncultivated field, a finding interpreted as a function of a reduced food supply, especially 

grass seeds, compared to agricultural contexts. Mounds are spaced an average of 20 m in the 
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Table 4.6. Summary of mound and clearing features for active and abandoned colonies. 

Property Uncultivated Reld 

Active (n=16) Abandoned (n=6) 

Bum Mw (SOI Rinw Mmh (SD) 

Fallow Field Cultivated Raid 

Active (n=40) Abandoned (n=5) Active (n=6) 

H«ng« Hitun (SO) Hanoe Mt«n (SDI Hano* Mm (SD) 

Nearest Neighbor 

Distance (m) 

Entryways 

Number 

Aspect (deg) 

Clearings 

Length (m) 

Width (m) 

Area (tn2) 

Mounds 

Length (m) 

Width (m) 

Area (m2) 

Height (m) 

Volume (m3) 

Surface Cover (%)" 

13-30.6 20.3(5.4) nolpmsant nMpmant 8.0-22.0 13.3(3.4) nolpmani natpfesant 12.5-18.1 14.8(2.6) 

1-15 5.3(3.5) noiprasant notpmiani 

89-175 129(28) notpraiani nolpfuanl 

2.5-5.3 3.4(0.9) 1.7-3.8 3.2(0.8) 

1.8-5.1 3.0(0.9) 1.5-a5 3.0(0.8) 

3.2-21.0 8.8(5.0) ^0-10.2 7.9(3.2) 

0.8-1.8 1.2(0.3) 0.5-1.5 1.2(0.4) 

0.7-1.7 1.0(0.3) 0.5-1.4 1.1(0.4) 

0.4-2.4 1.0(0.5) 0.2-1.6 1.1(0.6) 

0.18-0.33 0.25(0.04) 0.03-0.21 0.13(0.07) 

0.03-0.26 0.08(0.06) 0.002-0.11 0.05(0.04) 

60-90 88(10) 30-50 38(10) 

1-27 10.3(5.1) notprtiant nolprutnt 

46-175 121(29) noiprasant notpraaani 

1.7-5.0 2.9(0.8) 1.8-2.9 ^4(0.4) 

1JJ-4.2 2.5(0.8) 1.5-2.7 1.9(0.5) 

1.6-16.6 6.1(3.6) M-6.1 3.7(1.5) 

0.6-1.3 0.9(0.2) 0.5-0.9 0.7(0.1) 

0.4-1.2 0.8(0.2) 0.5-0.8 0.6(0.1) 

0.2-1.2 0.5(0.2) 0.2-0.5 0.4(0.1) 

0.14-0.29 0.20(0.04) 0.02-0.10 0.06(0.03) 

0.005-0.11 0.04(0.02) 0.001-0.01 0.007(0.005) 

30-95 70(16) 0-25 14(11) 

6-22 

87-138 

2.2-3.9 

1.9-3.9 

3.2-11.9 

10.2 (6) 

112(22) 

2.9 (0.6) 

2.8 (0.7) 

6.7 (3.0) 

0.8-1.1 0.9 (0.1) 

0.5-0.8 0.6 (0.1) 

0.3-0.7 0.5 (0.1) 

0.14-0.19 0.17(0.02) 

0.01-0.03 0.02(0.01) 

20-85 48 (24) 

Table 4.7. Ubiquity values for vegetation within 5 m of active and abandoned colonies. 

Vegetation Uncultivated Reld Fallow Reld Cultivated Reld 

Active Abandoned Active Atiandoned Active 

Big sagebrush Artemesia tridentata 100 100 5 17 

Rabbitbrush Chfysothamnus nauseosus 44 50 57 33 

Juniper Juniperus 13 

Western wheat grass Agropyron smithii 13 15 

Blue gramma Bouteloua gracilis 25 33 

Broom snakeweed Gutlemia sarothrae 13 67 3 17 

Mullen Vertascum 19 65 33 

Curlycup gumweed Grendelia aphanacUs 63 50 33 

Cheat grass Bromus tectorvm 65 33 33 

Squirrel tail Hordeumjubatum 10 33 

Bind weed ipomoea putpum 40 33 100 

Miscellaneous grasses 81 67 23 50 

Note: Ubiquity values represent a percentage of colonies in each context with these plant associations. 



172 

uncultivated Helds, and 13 m and IS m in the fallow and cultivated fields, respectively. The 

wider spacing in the uncultivated field may also reflect long-term competition effects because 

larger colonies can prevent younger ones from surviving. Previous studies have shown that 

survival rates are very low for colonies younger than two years, but thereafter the likelihood 

for survival greatly increases (Nagel and Rettenmeyer 1973; Gordon 1991; Keeler 1993). 

Entryways were concentrated on the southeast side of mounds, which supports the 

fmding of previous studies that mound entries are built to take advantage of early morning 

solar heating. Observations at mounds throughout other parts of Zuni Reservation indicate a 

southeast orientation for most entryways, regardless of the aspect of the terrain where 

mounds are built. Interestingly, mounds in agricultural settings have twice as many entryways 

as those of the uncultivated field, with an average of 10 vs. 5 entryways. Older colonies often 

have much broader openings to accommodate the movement of their larger populations, and 

multiple openings on a mound surface often connect to a large crack-like passageway a few 

centimeters below surface. Most entryways, regardless of size, are built in the basal sector of 

the mound, usually about one-fourth to one-third of the way up from the bottom of the 

mound. 

Some mounds had one or more north-facing entryways, but these are probably relicts 

from moundlets representing incipient loci of earthen deposition from an early stage of 

mound construction. We observed such moundlets in recently plowed fields, prior to their 

coalescence into a single mound. Through time, it appears that southeast-facing entryways 

become dominant and most north-facing ones are plugged and abandoned. 

Mounds in the uncultivated field tend to be larger than those of agricultural contexts. 



173 

where natural vegetation has been removed and plowing has disrupted their nests. Because 

of their mean greater age, mounds in the uncultivated field have over twice the average 

volume (0.08 m^) than those in the fallow Held, and the latter have nearly twice the volume of 

those in the cultivated field. Mound construction rates vary greatly between the three parcels, 

as discussed below in the section on estimated soil turnover rates. A greater percentage of the 

surface of mounds in the uncultivated area are covered by fine gravel and granules, which 

suggests that their mound surfaces are more stable and construction rates are reduced for 

these mounds. 

Mean clearing size around active mounds in the uncultivated field is also larger than 

that of active mounds in agricultural contexts. Clearings average 8.8 m- for colonies in the 

uncultivated field, and 6.1 m- and 6.7 m- for fallow and cultivated Helds, respectively. 

Because mean clearing areas do not differ as greatly as mound volumes, the rate of 

denudation around the mound must have slowed through time relative to mound construction 

activity. The larger size of clearings in the cultivated field relative to the fallow field is due in 

part to our weeding activity in the maize field. We did, however, observe ants actively 

dismantling emerging maize seedlings around their mound, so the clearings are not the result 

of weeding alone. 

Regression analysis was conducted to examine the relationship between mound 

volume and clearing area. Both properties are a function of colony age (except for colonies 

that have moved into abandoned nests) and population size. Older and more populous 

colonies tend to have larger mounds and clearings, but the rates of mound-building and 

vegetation clearing slow through time. Mound volume and clearing area were best correlated 
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in the uncultivated field (r^ = 0.60**), followed by the fallow (r^ = 0.37*) and cultivated 

fields (r^ = 0.20), The greater correlation for colonies in the uncultivated fields (the area least 

disturbed by human activity) indicates that relative differences between mound volume and 

clearing area tend to narrow through time, so these properties become increasingly better 

predictors of one another. This finding suggests that through time, the relative energy 

expended on these two activities approaches a level of quasi-equilibrium, one that in all 

likelihood confers a competitive advantage. 

Sagebrush was associated with all colonies in the uncultivated area, which contrasts 

with only 5% of active mounds and 17% of the abandoned mounds in the fallow field having 

associated sagebrush (see Table 4.7). Colonies in the uncultivated field were the only ones 

with associated blue gramma and juniper. Even though juniper was only infrequently found 

in the uncultivated and fallow fields, we observed ants actively carrying juniper berries to 

their nest when they were available. Rabbitbrush was found near about one-third to one-half 

the colonies in the uncultivated and fallow fields. Snakeweed was a more common associate 

of abandoned mounds of both field types, which indicates that it is well suited to the soil of 

abandoned clearings. Plants that thrive in disturbed areas (curlycup gumweed, cheat grass, 

squirrel tail, and bind weed) were only found near colonies of agricultural contexts, and 

mullen was more commonly associated with colonies in the fallow field than those of the 

uncultivated field. Overall, the fallow field appeared to have the richest food supply for the 

western harvester colonies, which accounts for its higher colony density. 
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Estimated Soil Turnover Rates 

Even though mounds in the uncultivated field tend to be larger in volume than those 

of agricultural contexts, the latter's relative youth (nine years for the fallow field and one year 

for the cultivated field) means that mound construction activity, and thus the soil turnover 

rate, is actually much higher than for the uncultivated field. Based on total mound volumes 

for uncultivated, fallow and cultivated Helds, soil turnover rates were estimated at 35, 192, 

and 590 m^/ha/1000 years for each respective parcel (Table 4.8). Two assumptions were 

necessary in making these calculations. First, mound fill is assumed to originate from below 

surface rather than from the nearby surface. Our brief observations of ant behavior suggest 

this assumption is largely valid, even though some plant debris, insects, and in all likelihood, 

surface-derived gravel have been incorporated into the fill. Secondly, the total volume of 

mounds in the uncultivated field, omitting that of abandoned mounds, is assumed to represent 

40 years of mound construction, a figure that was rounded down from the mean colony 

lifespan of 43.5 years calculated by Keeler (1993) in Nebraska. Because we lack data on the 

actual mean colony lifespan for our study, our assumed value of 40 years is the weakest part 

of our estimation of soil turnover rates. If the true mean age of colonies in the uncultivated 

Table 4.8. Mean values for mound clearing attributes, spacing, and soil turnover rates. 

Field Plots Area of Height of Area of Voiumeof Surtace Surface Mean Soil Turnover Projected Time 
Qearing Mound Mound Mound Covered Covered by Nearest Rate for Entire 

(m) (cn) (nn )̂ (m  ̂ by Mounds Clearings Neighbor (m /̂ha/1000y) Surface to be 
(%) (%) (m) Ant-affected (y) 

Uncultivated 8.8 0.25 0.98 0.076 0.18 1.6 20.3 35 2500 

Fallow 6.1 0.2 0.54 0.035 0.26 3.0 13.3 192 300 

Cultivated 6.7 0.17 0.46 0.019 0.14 2.2 18.1 590 50 
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field is different, then the rate would need to be adjusted accordingly. If, for example, the 

mean colony age were found to be only 20 years, then the turnover rate would double to 70 

m^/ha/1000 years. Forty years seems to be a reasonable estimate, and it is in the range of 

colony age estimates (17 to 50 years) provided by Lyons (1994). It is likely that the turnover 

rate for the uncultivated Held is near or at a state of equilibrium, due to long time colonies 

have had to adjust to a steady food supply reflecting more stable vegetation conditions. In the 

last few decades or centuries the amount of grazing activity is probably the greatest 

perturbation to the turnover rate in the uncultivated field flats. 

The intermediate soil turnover rate (192 m^a/lOOOy) for the fallow field corresponds 

to an intermediate level of effort in mound construction. If the fallow field is not returned to 

agricultural production, and sagebrush were permitted to displace much of the grassy 

vegetation, it is likely that mound construction rates would slow and colonies would become 

more widely spaced as colonies adjust to the diminished food supply. 

The high turnover rate (590 m^/ha/lOOOy) for the cultivated field reflects an energetic 

response in relocating colonies in the year after plowing disturbed their mounds and upper 

nests. Because populations for these mounds are substantial, consisting of several thousand 

individuals rather than a few hundred as expected for a new colony, these mounds may reflect 

relocated or disturbed nests rather than new colonies. There are number of important 

implications of such high turnover rates. First, nutrient cycling is much greater so there is a 

greater benefit for soil productivity, as deeply buried nutrients are move up into the major 

rooting zone. Secondly, the higher turnover rate means that there is also a higher rate of soil 

mixing, and thus horizonation is countered to a greater degree. Despite this effect, the 



177 

widespread presence of an argillic horizon both below the surface cultivated Held indicates 

that subsurface horizonation is a more donunant long-term factor than pedoturbation. 

Ants Influences at the Soil Landscape Scale 

Vegetation clearings around mounds comprise 1.6% of the uncultivated field, 3 

percent of the fallow field, and 2.2 percent of the cultivated field (see Table 4.1), Using these 

percentages as instantaneous measures of soil influence by ants, we projected the time for the 

entire surface to become affected by ant activity for the different field types. In making these 

estimates we assume that: (I) mean colony age is 40 years (rounded from the 43.5 years 

found by Keeler (1993) in Nebraska); and (2) ant clearings do not duplicate those of previous 

nests within a clearing cycle (that is, clearings are always placed on new territory until the 

entire surface has been covered by clearings). It is recognized that the latter assumption is not 

truly met, but it is necessary to project how ant influences can be projected to the landscape 

scale. In reality, clearings must overlap previous ones in varying degrees in a patchwork-like, 

mosaic fashion. The projected time for the entire surface to become ant-affected was derived 

using the following formula: (t/c)a, where t = total area (%), c = cleared area (%), and a = 

average age of colony (y). Using this formula we projected that the entire surface of the 

uncultivated field could have been affected by ant clearing activity in the last 2500 years, 

calculated as follows: (I00%/1.6%)/40 y = 25(X) y. 

It is interesting to note that the roughly 2500-year estimate for uncultivated rangeland 

is within the approximate time frame of fanning activity documented on the Zuni 

Reservation. The true rate was probably much less than a 2500-year cycle in the past, because 
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ants have had to compete with livestock for food since the Spanish introduced sheep and 

cattle to the Zuni several centuries ago. Sheep and cattle have significantly altered plant 

distributions through overgrazing of grasses. If the effects of overgrazing by livestock could 

be removed from the equation, we would obtain a more realistic measure of ant activity for 

prehistoric conditions. We expect that the rate at which ant clearings affected the surface was 

much faster prior to livestock introduction, because thicker grasser cover would have 

supported higher ant population densities. It would be useful to repeat this study in an 

exclosure where livestock has been excluded, if such an area could be found. E)espite the 

uncertainties that exist in estimating vegetation clearance rates, there is no doubt that ants 

have had an appreciable long-term effect on soil productivity over the Holocene. 

As with the elevated soil turnover rates, farming has had an accelerating effect on the 

rate at which ants influence the soil surface by clearing vegetation. The entire surface, if 

maintained in such a state, could be modified in about 300 years in the fallow Held and SO 

years in the cultivated field. The latter figure should be viewed as only a rough approximation 

for several reasons: (1) our weeding activity extended vegetation clearances around ant 

mounds; (2) clearings were much less distinct and thus more difHcult to measure in the 

cultivated field than in uncultivated and fallow fields; and (3) potential sampling error 

resulting from the small sample size of clearings in the cultivated Held (n=6) relative to the 

fallow (n=40) and uncultivated (nsl6) Helds. 

Admittedly, there are a number of uncertainties in the projecting ant influences from 

existing cleared areas to the broader landscape of the different Held types. Although we 

cannot adequately control all factors pertinent to vegetation clearance rates associated with 
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ant activity, we still consider our estimates to be reasonable approximations. Harvester ants 

appear to have modified the entire landscape several times over during the Holocene, and 

their influence is greatly accelerated in agricultural contexts. 

SUMMARY AND CONCLUSIONS 

This investigation examined selected interactions between soil properties, vegetation 

associations, and colonies of the western harvester ant. The overall effect of ants is to 

increase the porosity, aeration, hydraulic conductivity, nutrient status, and tilth of the soil, 

especially near the surface where their burrowing activities are concentrated. Interestingly, 

Zuni farmers are aware that ant mound soils have increased soil fertility levels. Compared to 

reference soils, we found that ant mound soils generally have lower bulk densities, pHs, and 

clay contents, and higher levels of organic carbon, nitrogen, and available and total 

phosphorus, sand, and gravel. These changes are generally consistent with previous studies of 

ant influences on soil. Highly decomposed organic matter is strongly associated with the 

walls of ant chambers and tunnels, as indicated by both soil thin sections and low C:N ratios. 

Ants expend more energy in burrowing and mound construction activities in cultivated and 

fallow fields and their colonies are more closely spaced in these locales, because of the 

concentrated available food supply in active and fallow agricultural land. Consequently, the 

soil turnover and nutrient cycling rates is accelerated in these contexts as well. Ant effects on 

surface soils may extend to entire landscapes within SO to 2500 years, with the most rapid 

rates associated with cultivated Helds. Additional studies are needed to assess how western 

harvester ants influence and interact with plants and soils in other environmental contexts. 
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CHAPTERS 
CONCLUSIONS 

In this dissertation I evaluated some of the major influences that humans and western 

harvester ants have had on physical and chemical soil properties in the context of American 

Indian agricultural settings in the Southwest. This research was divided into three separate 

soil studies, including: (1) modem Zuni runoff agricultural soils in New Mexico (Zuni); (2) 

ancient rock mulch agricultural soils near Safford, Arizona; and (3) western harvester ant 

influences on soils in a Zuni field. Table S.l presents selected comparisons of soil properties 

for the three studies. 

Results of the Zuni study indicate that cultivation has largely resulted in positive 

effects on soil properties important for soil productivity. Two of the major beneficial changes 

include: (1) thickened A horizons, caused both by plowing and human manipulation to direct 

runoff water and organic-rich sediment onto agricultural Helds; and (2) organic matter 

coatings on grains and granular peds in many cultivated fields. Soil pH levels were 

commonly increased in cultivated soils due to deposition of calcareous sediment, but not at 

levels that might cause structural disaggregation or significantly limit maize production. On 

average, organic C and N, and total and available P concentrations are slightly reduced in 

cultivated soils, but generally not at statistically signiHcant levels, bnportantly, no statistical 

differences were found in all soil properties summarized in Table S. 1 for the broadest scale of 

analysis, that for the unpaired cultivated and uncultivated Helds. 

Two potential negative influences of cultivation were identified in the Zuni study. 

These include increased compaction and reduced granularity in cultivated soils. These soil 
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Table S. 1. Comparison of cultivated, uncultivated, and ant-affected soils of from the Zuni 
and Safford project areas. 

SoaPrapaity PiiradZuniRaidi UnpaindZuni FWdi Safio*dGifd«ndTMmc«Aignnwnti Ant-aAicMandOttwrSaila 

Ciit UnciiL%OMf. CuK. Unei«.%Oill. Grid UnnN.%Oilf. Twr. UnculL%0»r. SE1/4 OMring Falow UncuN. 
(n-3) (n-3) (n-<9) (n>10) (r»«) (trt) (•3) (n-3) Mound 

PH(1) 72 7.0 ^ • 7.0 6.7 - 7.7 8.4  ̂«« 7.7 8.1 ^ • 6.0 8.3 6.8 6.5 

OrganicC (g/kg) 11.3 13.3 -18 12.2 13.1 -7 5.2 4.0 30 * 5.1 8.7 •41 9.9 6.4 8.7 17.3 

N (gAig) 0J7 0.97 -11 * 0.90 0.99 -9 0.49 0.42 17 0.71 0.84 11 1.08 0.49 0.76 1i1 

C:N Ratio 12.7 13.6 -7 * 13 J 13.0 2 1SJ 20 •21 10J 12.7 -14 9.2 13.4 11.5 14.6 

AvailaMaP (mgrttg) 8.3 9.1 -9 9.5 13.7 -31 13.1 6.3 108 • 17.7 11.5 54 114 16.3 8.7 17.3 

Total P (mgAig) 324 321 1 294 322 -9 603 7I» -14 • 604 461 31 768 250 237 344 

Bulk Dan. (9'cm3) 1.S6 1.4S 8 * 1.48 1.43 3 1.39 1J4 4 1J7 1.38 -1 1.65 1.48 1.45 1.49 

S«id (*) 46 SO a 57 49 17 45 49 -8 52 44 18 57 63 67 49 

SiN (*) 31 31 -1 27 31 -14 31 38 -3 40 39 3 29 27 19 35 

Clay (%) 22 19 17 17 21 -19 18 13 38 9 17 •47 14 10 12 16 

•a«OJ • o«0.l • a«0.l 
•• a • 0.01 

•a-0.2 Notr. (alow loilla forth* Ap 
horizon;uncuH. and daaring 

(1) %dilhrinc« not ahown for pHdu* to log «calao( units wiltarsfariimlardaplha 

changes are mainly the result of two processes, structural disaggregation caused by plowing 

and incorporation of unstructured (or massive) fresh sediments carried by runoff water. 

Compaction and reduced granularity are usually viewed as a negative consequence of 

farming in most agricultural systems, especially heavily mechanized systems in more humid 

regions. But in Zuni agricultural flelds, where rainfall has a particularly strong influence on 

agricultural productivity, some compaction and reduced granularity may actually be 

beneHcial for agriculture by aiding moisture retention in the rooting zone. And because 

cultivated soils are generally friable to very friable, it is unlikely that compaction at the levels 

found (8.5% for paired fields and 3.5% for unpaired fields) impede maize root growth to any 

significant degree if at all. Additional research is needed to assess the possibility that some 

compaction and reduced granularity may be beneficial to agriculture. This research should 
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focus on measuring pore continuity and size distributions, the influence of bulk density on 

maize root growth and distributions with depth, and soihwater relationships. I am now doing 

research on the latter topic to document water infiltration rates, saturated and unsaturated 

hydraulic conduction, and plant available moisture levels. 

In attempting to evaluate anthropogenic effects on soil properties of Zuni agricultural 

runoff soils, it was difficult to impossible to adequately hold the non-anthropogenic factors 

constant, or at least approximately so, because of natural soil variability (especially that 

resulting in horizontal and vertical discontinuities in soil texture caused by alluvial 

sedimentation processes) exists over short distances. Paired field comparisons assume that 

the uncultivated samples are valid controls, but this assumption very often may not be met. 

The biggest challenge in the paired Held sampling approach is finding suitable uncultivated 

samples to serve as controls for evaluating cultivation effects. Cultivated soils in paired Helds 

sometimes appear to be more degraded, but many of the differences are explained by natural 

variability in soil texture rather than anthropogenic effects. 

The Safford study focused on soils associated with extensive rock mulch features 

(grids, terraces, and rock piles) built by ancient farmers to conserve water and nutrients in the 

shallow rooting zone. Existing native vegetation is concentrated in the rock mulch features 

today, thus showing that cobble mulch continues to be effective at conserving soil moisture 

in the thin rooting zone. Agricultural soils in the Safford study generally had reduced soil pH, 

at levels beneficial for crop production due to increased plant availability for many essential 

nutrients. Relative to uncultivated soils, mulched soils tend to have elevated C, N, and 

available P concentrations and no evidence of soil compaction. Unlike at Zuni, where maize 

is the principal crop, the crop(s) grown in the Safford Helds is currently unknown, so it much 
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more difficult to evaluate the implications of the soil properties in terms of agricultural 

production. It is likely that crops, possibly agave other highly drought-tolerant crops, were 

grown in the Safford fields. 

The Safford project area has a much hotter climate and substantially less rainfall than 

the Zuni area, so native vegetation cover and biomass is much lower at Safford. The much 

lower plant biomass and runoff rates and higher evaporation and organic matter oxidation 

rates largely explain the lower organic C and N levels in the Safford soils. And due to the 

thin soils of Safford above the root-impeding petrocalcic horizon, nutrient levels on a mass 

quantity basis are much lower in the Safford soils. 

Overall, soil properties of the gridded Safford fields indicate they are less productive 

agriculturally than those of the Zuni area. For both the Zuni and Safford studies, I found no 

convincing evidence that either runoff or ancient rock mulch fanning caused any appreciable 

soil degradation. American Indian agricultural practices in both project areas appear to have 

actually improved long-term soil quality for crop production. 

The ancillary study was undertaken to measure soil changes caused by the western 

harvester ant {Pogonomyrmex occidentalis). This research focused on measuring their effect 

on soil fertility in the context of agricultural land use and the rate at which they have 

modified the landscape. Results indicate that ant-a^ected soils have elevated levels of 

organic C, N, and available and total P, so they have a positive influence on agricultural soils. 

Their effect in enriching nutrients is greatest in the southeast quadrant of the mound, where 

their activity is focused (see Table S.l). In addition to nutrient enrichnvent, ants help to aerate 

the soil and increase its hydraulic conductivity and water-holding capacity. I projected that 

ant effects on surface soils extend to entire landscapes within about 2500 years at a 
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minimum, and their effects are greatly accelerated in agricultural contexts, where more food 

(mainly grass seeds from weedy vegetation and crops) is available. Ant influences, even 

under relatively natural conditions, occur on a time scale that is well within the agricultural 

land-use practices in the Zuni area. Overall, western harvester ants appear to have an overall 

positive long-term influence on agriculture. 

This dissertation contributes to a growing body of literature aimed at assessing the 

biotic factor on soil formation and agricultural productivity. Research on human and ant 

influences on soil properties is far from exhausted, both in the semiarid Southwestern United 

States and globally. To better understand anthropogenic influences on agricultural soils, 

much more work is needed in other environmental and agricultural contexts. 
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APPENDIX A. SOIL PROFILE DESCRIPTIONS 

Safford Soil Study: Pedon Descriptions 

Profiles were described by Jonathan A. Sandor and Jeffrey A. Homburg on March 
10-13, 1997 in Locality 1, the westernmost part of the agricultural complex. The parent 
material of all proflles consists of gravelly alluvium derived from Gila Mountain 
conglomerates and miscellaneous volcanic rocks. 

Profile Description 1: Grid interior 
Classification: Loamy, mixed, superactive, thermic Typic Petrocalcid (Cave series) 
Geomorphic setting; Backslope of alluvial fan, elevation 901 m (295S ft), 3-4% slope 
Agricultural setting; Within grid interior; profile exposed in north wall of Prospector's Pit 1 

A 0-2 cm. Pinkish gray to light brown (7.5YR 6/3) gravelly loam, brown (7.SYR 4.5/3) moist; weak 
medium and coarse plates plus weak to moderate fine and very flne subangular blocks; slightly hard, 
friable, slightly sticky, slightly plastic; common very flne and few flne roots; few flne and medium 
tubular pores; 10% gravel; slightly effervescent; moderately alkaline (pH 8.0-8.S; pH 6.S-8.0 under 
creosotebush); abrupt smooth boundary. Mantled by 80-85% gravel pavement cover, with gravel 
typically 0.8-2.0 cm in size; crust varies from I to 2 cm thick, with an algal crust on the surface, under 
creosote bush vegetation; some soil is noncalcareous and some thin carbonate coatings noted on parts 
of the surface. 

ABk 2-12 cm. Light brown (7.5YR 6/4) gravelly loam, brown (7.5YR 4/4) moist; weak fine and medium 
subangular blocks; soft, friable, slightly sticky, slightly plastic; common very flne, flne, and medium 
roots, with some pockets of many fine to very fine and few large roots; few fine tubular pores; 5-10% 
gravel and 20% cobbles; strongly effervescent; strongly alkaline (pH 8.0-8 J); clear smooth boundary. 

Bk 12-30 cm. Light brown to (7.5YR 6.5/3.5) very gravelly sandy loam: brown (7.5YR 4.5/4) moist; 
weak fine subangular blocks; soft, friable to very friable, slightly sticky, slightly plastic; common very 
flne and fine roots; few fine tubular pores; 20% gravel and 25% cobbles; violently effervescent; 
strongly alkaline (pH 8.0-8 J); abrupt smooth boundary. 

Bkm I 30-31 cm (2 to 3 cm thick in places). Matrix is weakly cemented by white (lOYR 8/1) carbonate, pink 
to pinkish gray (7.5YR 7/3) moist (no texture estimate due to cement, but is gravelly/very cobbly); 
contains some clayey zones of reddish yellow (7 JYR 6/6) stained by iron oxide (?), strong brown 
(7.5YR 5/6) moist; 20% gravel: root mat on top; strongly effervescent on top to slightly effervescent 
below, carbonates noted on all sides of gravel and cobbles, but often thickest on top; moderately 
alkaline (pH 8.0-8.5); abrupt smooth to slightly wavy boundary. 

Bkm2 31 -71 cm. Matrix is weakly cemented by white (1OYR 8/1) and pinkish white (7.5YR 8/2) carbonate, 
pink to pinkish gray (7.5YR 7/3) moist (no texture estimate due to strong cement, but is gravelly/very 
cobbly); contains some clayey zones of reddish yellow (75YR 6/6) stained by iron oxide (?), strong 
brown (7.5YR 5/6) moist; 35-40% gravel: rare fine and very fine roots; strongly effiervescent, 
carbonate coatings up to 4 mm thick on the bottom of gravel; moderately alkaline (pH 8.0-8.5); clear 
smooth boundary. 

Bkm3 71-118 cm. Matrix is weakly cemented by white (lOYR 8/1) and pinkish white (7.5YR 8/2) 
carbonate, pink to pinkish gray (7.5YR 7/3) moist (no texture estimate due to strong cement, but is 
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gravelly/very cobbly); contains some clayey zones of reddish yellow (7 JYR 6/6) stained by iron 
oxide (?), strong brown (7.5YR S/6) moist; 25% gravel and 15% cobbles; rare fine and very fine 

roots, but occasionally clustered in pockets; violently effervescent carbonate matrix and effervescent 
clay plus iron (?); moderately alkaline (pH 8.0-8.5); clear smooth boundary. 

B'k 118-125 cm. Light brown (7.5YR 6/3) very gravelly sandy loam, pink to pinkish gray (7.5YR 7/3) 
moist; massive structure; slighdy hard, fnable, slightly sticky, slightly plastic; few very Hne and fine 
roots, often in clusters; 15% gravel and 10-15% cobbles; violently effervescent, carbonate coatings on 
all sides of gravel; moderately alkaline (pH 8.0-8.5); clear smooth boundary. 

BCk 125-142 cm. Light brown (7.5YR 6/4) very gravelly sandy loam to very gravelly loamy sand, pink 
(7.5YR 7/4) moist; massive structure; soft, very fnable. slightly sticky, slightly plastic; few very fine 
and fine roots; 25% gravel and 10% cobbles; strongly to violently effervescent, few carbonate coatings 
on gravel; moderately alkaline (pH 8.0-8.5); abrupt smooth boundary. 

2C 142-162+ cm. Pink (7.5YR 7/3) loamy sand, strong brown to reddish yellow (7.5YR 5.5/6) moist; 
massive structure; soft, very friable, nonsticky, nonplastic; few very fine and fine roots; 5% gravel; 
effervescent; moderately alkaline (pH 8.0-8.5). 

Profile Description 2: Next to rock pile 
Classification: Fine-loamy, mixed, thermic Calcic Paleargid (similar to Pinaleno series; would be classified 

as a Typic Petroargid if petrocalcic horizon is present in 100-150 cm zone) 
Geomorphic setting: Alluvial fan terrace, elevation 899 m (2950 ft), 4% slope 
Agricultural setting: Desert pavement near rock pile feature; adjacent to west side of Prospector's Pit 2 

A 0-4 cm. Light brown (7.5YR 6/4) loam, brown to strong brown (7.5YR 5/5) moist; moderate medium 
plates; slightly hard, very friable, slightly sticky, slighdy plastic; few fine and very fine roots; many 
fine to very fine vesicular pores; 10-20% gravel, mainly on the surface; effervescent; moderately 
alkaline (pH 8.0-8.5); abrupt smooth boundary. Contains few filaments and faint spots of carbonate. 

Btkl 4-17 cm. Light brown to reddish yellow (7.5YR 6/5) clay loam, brown to strong brown (7.5YR 4/5) 
moist; moderate fine subangular blocks; slightly hard, friable, sticky, plastic; many moderately thick 
clay films on ped faces and pores; common very fine and fine roots; few fine tubular pores; 5% gravel; 
strongly effervescent; moderately alkaline (pH 8.0-8.5); clear smooth boundary. Contains common 
small (-Imm) masses of carbonate, and the matrix consists of 5-10% carbonate filaments. 

Btk2 17-40 cm. Light brown to reddish yellow (7.5YR 6/5) clay loam; strong brown (5YR-7.5YR 5/6) 
moist; moderate fine subangular blocks; slightly hard, fnable, sticky, plastic; many moderately thick 
clay films on ped faces and pores; few very fine and fine roots; few fine tubular pores; 5% gravel; 
strongly effervescent; moderately alkaline (pH 8.0-8.5); gradual smooth boundary. Contains common 
to many soft powdery masses, with few moderately hard masses; several are 5-l() mm across and some 
are cylindrical in shape. 

Btk3 40-59 cm. Light brown to reddish yellow (7 JYR 6/5) loam, strong brown (73YR 5/6) moist; 
moderate fine and medium subangular blocks; hard, firm, sticky, plastic; common thin ciay films on 
ped faces; few very fine and fine roots; few very fine tubular pores; 5% gravel; strongly effervescent 
matrix, and violently effervescent carbonate masses; moderately alkaline (pH 8.0-8.5); clear smooth 
boundary. Contains few to common (5-10%) masses of carbonate and some finely disseminated 
carbonates; some consist of 6-10 mm cylindrical carbonate concentrations, possibly formed in old 
insect burrows. 
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2Btlcl 59-77 cm. Pinkish gray to light brown (7 JYR 6/3) clay loam, brown to yellowish brown (7.5-lOYR 
5/3 and 5/4) moist; hard, firm, sticky, plastic; many moderately thick clay films on ped faces; few 

very fine and fine roots; few very fine tubular pores; <1% gravel; strongly effervescent matrix, and 
violently effervescent carbonate masses; moderately alkaline (pH 8.0-8.5). Contains few to common 
moderately hard masses of carbonate. 

2Btk2? 77-100+ cm. Pinkish gray to light brown (7.5YR 6/3) clay loam to clay, brown (7.5YR 5/3 and 5/4) 
moist; weak fine prisms parting to moderate fine and medium subangular blocks; very hard, very Orm, 
very sticky, very plastic; some possible clay coatings on peds; rare fine roots; rare fine tubular pores; 
strongly effervescent; moderately alkaline (pH 8.0-8 J); clear smooth boundary. Contains few to 
common seams and filaments of carbonate. 

ProHIe Description 3: Agricultural terrace, upslope of rock alignment 
Geomorphic setting: Backslope of fan terrace scarp, 10-11% slope 
Agricultural setting: Terrace, 20 cm upslope of rock alignment 

A1 0-5 cm. Pinkish gray to light brown (7.5YR 6/3) very gravelly sandy loam to loam, brown (7.5YR 
4.5/3) moist; '.v:ak to moderate fine and medium subangular blocks and some weak medium plates; 
soft, very friable, slightly sticky, slightly plastic; few to common very fine roots; few very fine tubular 
pores; 35% gravel, mainly on the surface; not effervescent; mildly alkaline (pH 7.5); abrupt smooth 
boundary. This horizon has formed in the upper terrace fill deposit, and it is covered by a patchy 
gravel pavement. 

A2 5-16 cm. Pinkish gray to light brown (7.5YR 6/3) gravelly sandy loam to loam, brown (7.5YR 4.5/3) 
moist; weak fine subangular blocks and some weak medium plates at the top; slightly hard, very 
friable, slightly sticky, slightly plastic; common very fine and fine roots; few very fine tubular pores; 
15-20% gravel; audibly effervescent; mildly alkaline (pH 7.5); clear smooth boundary. This horizon 
has formed in the lower terrace fill deposit. 

Bkl 16-30 cm. Pinkish gray to light brown (7.5YR 6/3) gravelly sandy loam to loam, brown (7.5YR 4.5/3) 
moist; weak fine subangular blocks to massive; soft, very friable, slightly sticky, slightly plastic; 
common very fine and few fine roots; few very fine tubular pores; 25% gravel; strongly effervescent; 
moderately alkaline (pH 8.0-8.5); clear smooth boundary. Matrix is dominated by finely disseminated 
carbonates. 

2Bk2 30-46 cm. Light brown (7.5YR 6/3 J) extremely gravelly sandy loam, brown (7.5YR 5/4) moist; weak 
fine subangular blocks to massive; soft, very friable, slightly sUcky, slightly plastic; 65% gravel and 
some cobbles; common very fine and fine roots; strongly effervescent matrix, and violently 
effervescent; moderately alkaline (pH 8.0-8.5); abrupt smooth boundary. Contains both finely 
disseminated carbonates and gravel coatings on all sides. 

2Bkm 46+ cm. Color of carbonate cement not described, but much lighter than above; massive, cemented: 
60-70% gravel; violently effiervescent; moderately alkaline (pH 8.0-8.5). This horizon has a laminar 
cap of carbonate above a massively cemented petrocalcic horizon. 

Profile Description 4: Beneath rock alignment between two agricultural terraces 
Geomorphic setting: Backslope fan terrace scarp, lO-l 1% slope 
Agricultural setting: Beneath rock alignment 

A1 0-5 cm. Pinkish gray to light brown (7.5YR 6/3) gravelly/very cobbly sandy loam to loam, brown to 
dark brown (7 JYR 4/3) moist; weak fine subangular blacks and some weak medium plates; soft to 
slightly hard, very friable, slightly sticky, slightly plastic; few flne roots; few very fine tubular pores; 
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IS% gravel, excluding surface gravel in rock alignment; not effervescent; mildly alkaline (pH 7^); 
clear smooth boundary. Upper boundary is irregular between rocks. 

A2 S-18 cm. Pinkish gray to light brown (7.SYR 6/3) gravelly/very cobbly sandy loam to loam, brown 
(7.SYR 4.5/3) moist; weak fine subangular blocks; soft, very friable, slightly sticky, slightly plastic; 
few to common very fine and fine roots; few very fine tubular pores; 25% gravel; not effervescent; 
mildly alkaline (pH 7.5); clear smooth boundary. Surface gravel in rock alignment extends about 13 
to 15 cm below surface. 

Bkl 18-27 cm. Pinkish gray to light brown (7.5YR 6/3) gravelly/very cobbly sandy loam, brown (7.5YR 
4.5/3.5) moist; weak fine subangular blocks; soft, very fnable, slightly sticky, slightly plastic; few to 
common very flne and few fine roots: few very fine tubular pores; 30% gravel; strongly effervescent; 
moderately alkaline (pH 8.0-8.5); clear smooth boundary. Carbonate coatings were noted on all sides 
of gravel. 

2Bk2 27-40 cm. Light brown (7.5YR 6/4) extremely gravelly loam to sandy loam, brown (7 JYR 4.5/4) 
moist; weak fine subangular blocks to massive; soft, very fnable, slightly sticky, slightly plastic; 70% 
gravel and cobbles; few to common very fine and fine roots; strongly effervescent; moderately alkaline 
(pH 8.0-8.5); abrupt smooth boundary. Carbonate coatings were noted on all sides of gravel. 

2Bkm 40f cm. Color of carbonate cement not described, but much lighter than above; massive, cemented; 
60-70% gravel; violently effervescent; moderately alkaline (pH 8.0-8.5). This horizon has a laminar 
cap of carbonate above a massively cemented peu-ocalcic horizon. 

Profile Description 5: Agricultural terrace, downslope of rock alignment 
Geomorphic setting: Backslopeof fan terrace scarp, 10-11% slope 
Agricultural setting: Terrace, 20 cm downslope of rock alignment 

A 0-3 cm. Light brown (7.5YR 6/3.5) gravelly/very cobbly sandy loam, brown to dark brown (7.5YR 
4/3) moist; weak to moderate fine and medium subangular blocks to massive; loose to soft, very 
friable, slightly sticky, slightly plastic; few very flne roots; few very flne tubular pores; 20% gravel, 
mainly on the surface; effervescent; moderately alkaline (pH8.0-8.5); abrupt smooth boundary. This 
horizon has formed in the upper terrace fill deposit, and it is covered by a gravel pavement. 

Bkl 3-18 cm. Light brown (7.5YR 6/3.5) gravelly/very cobbly sandy loam, brown (7.5YR 4J/4) moist; 
weak to moderate flne and medium subangular blocks; soft, very fnable, slightly sticky, slightly 
plastic; few to common very fine and few flne roots; few very flne tubular pores; 20% gravel; strongly 
effervescent; moderately alkaline (pH 8.0-8 J); clear smooth boundary. Contains disseminated 
carbonates in matrix and coatings on all sides of gravel. 

2Bk2 18-40 cm. Light brown (7.5YR 6/4) extremely gravelly sandy loam, brown (7.5YR 5/4) moist; weak 
fine subangular blocks to massive; soft, very fnable, slighdy sticky, slightly plastic; 70% gravel and 
some cobbles; few to common very flne and flne roots; few tubular pores; strongly effervescent; 
moderately alkaline (pH 8.0-85); abrupt smooth boundary. Contains few to common (5-10%) masses 
of carbonate and some flnely disseminated carbonates; some consist of 6-10 mm cylindrical carbonate 
concentrations, possibly formed in old insect burrows. Contains disseminated carlranates in matrix 
and coatings on all sides of gravel. 

2Btkm 40f cm. Color of carbonate cement not described, but much lighter than above; illuvial clay is light 
brown (75YR 6/4), brown (75YR 5/4) moist; weakly cemented, massive, with some clay breaking 
out in blocks; many thick clay fllms on ped faces in clayey zones; 60-70% gravel; violently 
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effervescent; moderately alkaline (pH 8.0-8.5). Contains few to common moderately hard masses of 
carbonate. 

Profile Description 6: Grid interior 
Geomorphic setting; Nearly level part of alluvial fan terrace, 1-2% slope 
Agricultural setting; Within grid interior 

A 0-3 cm. Pink to light brown (7.5YR 6.5/3.5) gravelly/very cobbly sandy loam, brown (7.5YR 4.5/3) 
moist; weak medium plates and weak fine subangular blocks; slightly hard, friable, slightly sticky, 
slightly plastic; few very fine roots; few very fine vesicular pores; 20% gravel; mildly alkaline 
(pH73); abrupt smooth boundary. This horizon has formed in the upper terrace fill deposit, and it is 
covered by a gravel pavement. 

Bt 3-10 cm. Light brown (7.5YR 6/4) very gravelly/very cobbly sandy clay loam to loam, brown to dark 
brown (7.5YR 4/4) moist; weak fine to medium subangular blocks; slightly hard, friable, slightly 
sticky, slightly plastic; common thick clay bridges and colloidal stains on mineral grains; few to 
common very fme roots; few very fine tubular pores; 30% gravel and 10% cobbles; strongly 
effervescent; mildly alkaline (pH 7.5); clear smooth boundary. 

2Bk 10-41+ cm. Light brown (7.5YR 6/4) extremely gravelly sandy loam, brown to strong brown (7.5YR 
4.5/5) moist; weak fine subangular blocks; soft, very friable, slightly sticky, slightly plastic; few thin 
clay bridges; 40% gravel and 30% cobbles up to 12-15 cm in diameter; few to common very fine and 
fine roots, mainly in clusters; sQ-ongly effervescent; moderately alkaline (pH 8.0-8.5); abrupt smooth 
boundary. Contains disseminated carbonates in matrix, coatings on all sides of gravel, and some 
filaments. 

Zuni Soil Study: Pedon Descriptions for Extensive Fields 

Pescado, Cultivated 1 
Classification: Nonacid, mixed, mesic Aridic Ustipsamment 
Geomorphic setting; Footslope of alluvial fan, elevation 2070 m (6790 ft), 2% slope 
Parent material: Alluvium derived from Cretaceous sedimentary rocks weathered from the Gallup and Crevasse 
Canyon formations 
Agricultural setting: Within cultivated cornfield that is now fallow 
Landuser; Master Eustace 
Described by Jeff Homburg, Shawn Calavaza, Vanissa Laahte, Pete Natachu, and Lindsay Quam 
Date: June 12/13, 1997 

Ap 0-21 cm. Brown (lOYR 4/3) sandy loam (moist); weak medium granules; soft, loose, nonsticky, 
nonplastic; common very fine, few fine, and few medium roots; common very fine tubular pores; 5% 
gravel; neutral (pH 7.0); clear wavy boundary. 

CI 21-38 cm. Dark yellowish brown (lOYR 4/4) loamy sand (moist); single grain; soft, loose, nonsticky, 
nonplastic; few very fme, fine, and medium roots; many very fine interstitial pores; 10% gravel; 
moderately alkaline (pH 8.0); clear smooth boundary. 

C2 38-55 cm. Yellowish brown (lOYR 5/4) loamy sand (moist); single grain; soft, loose, nonsticky, 
nonplastic; few very fine roots; many very fine interstitial pores; 35% gravel and 3% cobbles; 
moderately alkaline (pH 8.0); clear smooth boundary. 
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C3 SS-60 cm. Yellowish brown (lOYR 5/4) loamy sand (moist); single grain; soft, loose, nonsticky, 
nonplastic; few very fine roots; many very fine interstitial pores; 20% gravel; moderately alkaline 

(pH 8.0); clear smooth boundary. 

2Btb 60-75 cm. Brown (lOYR 4.5/3) loam to clay loam; weak to moderate coarse and very coarse 
subangular blocks; slighdy hard. Arm, sticky, plastic; many thin clay films on ped faces; few Hne and 
very Hne roots; many very flne and few fine tubular pores; moderately alkaline (pH 8.0); clear smooth 
boundary. 

2Btkb 7S-82-i> cm. Brown (lOYR 4/3) clay loam; weak to moderate coarse and very coarse subangular 
blocks; slightly hard, firm, sticky, plastic; many thin clay films on ped faces; few very fine roots; 
slightly to strongly effervescent, with some carbonate filaments; moderately alkaline (pH 8.0). 

Auger: 82-100 cm, 2Btkb 
110-230 cm, highly stratified alluvium, sandy loam and loamy sand 

Pescado, Cultivated 2 
Classification: Fine-loamy, mixed, mesic Aridic Haplustalf 
Geomorphic setting: Footslope of alluvial fan, elevation 2060 m (6760 ft). 4% slope 
Parent material: Alluvium derived from Cretaceous sedimentary rocks weathered from the Gallup and Crevasse 
Canyon formations 
Agricultural setting: Within cultivated cornfield that is now fallow 
Landuser: Sefferino Eriacho 
Described by Jeff Homburg, Lindsay Quam, and Kerwin Owaleon 
Date: June 19, 1997 

Ap 1 0-5 cm. Pale brown (lOYR 6/3) sandy loam, brown (lOYR 4/3) moist; weak to moderate fine and 
medium plates in upper I cm, moderate fine and medium granules; soft, very fiiable, slightly sticky, 
slightly plastic; common very fine, common fine, and few medium roots; common very fine interstitial 
pores; <1% gravel; slightly effervescent; neutral (pH 7.0); abrupt smooth boundary. 

Ap2 5-17 cm. Brown (lOYR 5/3) sandy loam, brown (lOYR4/3) moist; weak to moderate fine and 
medium granules; soft, loose, nonsticky, nonplastic; common very fine and few fine roots; few very 
fine interstitial pores; slightly effervescent; neutral (pH 7.2); abrupt smooth boundary. 

Btl 17-62 cm. Brown (lOYR 5/3) clay loam, brown to dark brown (lOYR 4/3) moist; weak to moderate 
fine and medium subangular blocks; hard, firm, sticky, plastic; many moderately thick clay films on 
ped faces and pores; few to common very fine and few fine roots; few to common very fine and few 
fine tubular pores; slightly effervescent; mildly alkaline (pH 7.8); gradual smooth boundary. 

Bt2 62-15+ cm. Brown (lOYR 5/3) clay loam, dark brown (lOYR 35/3) moist; few to moderate fine and 
medium subangular blocks; hard, firm, sticky, plastic; common moderately thick clay films on ped 
faces and pores; few very fine roots; few very flne tubular pores; 10% gravel; slightly effervescent; 
moderately alkaline (pH 7.8). 

Augen 75-150 cm, Bt horizon 
150-220 cm, BCtk horizon 
220-230-t- cm, C horizon 

Pescado, Cultivated 3 
Classiflcation: Fine-loamy, mixed, mesic Aridic Haplustalf 
Geomorphic setting: Colluvial footslope, elevation 2045 m (6710 ft), 6% slope 
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Parent material: Colluvium derived from Cretaceous sedimentary rocks weathered from the Gallup and 
Crevasse Canyon formations 

Agricultural setting: Within cultivated cornfield that is now fallow 
Landusen Celestine Kanesta 
Described by Jeff Homburg and Troy Lucio 
Date: July 9, 1997 

Ap 1 0-7 cm. Brown (lOYR 5/3) sandy loam, brown (lOYR 4/3) moist; moderate thin plates; soft to slightly 
hard, friable, nonsticky, nonplastic; many very fine roots; many very fine interstitial pores; 5% gravel; 
neutral (pH 6.8); clear smooth boundary. 

Ap2 7-15 cm. Brown (lOYR 5/3) sandy loam, brown (lOYR 4/3) moist: weak coarse subangular blocks; 
slightly hard, friable to firm, slightly sticky, slightly plastic; common very fine and few fine roots; 
many very fine tubular pores; 10% gravel; neutral (pH 7.1); gradual wavy boundary. 

Btl 15-52 cm. Brown to yellowish brown (lOYR 5/3.5) clay loam, brown to dark yellowish brown (lOYR 
4/3.5) moist; moderate very coarse prisms parting to weak to moderate coarse and very coarse 
subangular blocks; very hard, very firm, slightly sticky, slightly plastic; common thin to moderately 
thick clay films on ped faces and pores; common very fine roots; common very fine tubular pores; 
15% gravel; mildly alkaline (pH 7.4); gradual smooth boundary. 

Bt2 52-77-t- cm. Brown (lOYR 5/3) clay loam, brown (lOYR 4/3) moist; weak coarse subangular blocks; 
hard to very hard, firm to very firm, slightly sticky, slightly plastic; common thin clay films on ped 
faces and pores; few very fine and fine roots; common very fine tubular pores; 7% gravel; slightly 
effervescent; mildly alkaline (pH 7.6). 

Auger: 77-105 cm, Bt horizon, sandy loam, sandier with depth 
105-145 cm, Btk horizon, sandy loam 
145-190+ cm, C horizon, sandy loam with some cobbles 
hit cobble and stopped at 190 cm 

Pescado, Abandoned 1 
Classification: Fine-loamy, mixed, mesic Aridic Haplustalf 
Geomorphic setting: Alluvial fan, elevation 2054 m (6740 ft), 6% slope 
Parent material: Alluvium derived from Cretaceous sedimentary rocks weathered from the Gallup and Crevasse 
Canyon formations 
Agricultural setting: Abandoned cornfield 
Landuser: Hatti 
Described by Jeff Homburg, Vanissa Lahty, and Troy Lucio 
Date: July 8, 1997 

Ap 0-11 cm. Grayish brown (lOYR 5/2) loam, dark grayish brown (lOYR 4/2) moist; moderate thin 
plates and common medium granules; slightly hard, firm, slightly sticky, slightly plastic; common very 
fine and few fine roots; many very fine interstitial pores; 5% gravel; neutral (pH 6.8); abrupt smooth 
boundary. 

BA 11-20 cm. Brown (lOYR 5/3) clay loam, very dark grayish brown to dark grayish brown (lOYR 3.5/3) 
moist; strong fine and very fine granules and moderate to strong thin plates; hard. Arm, sticky, plastic; 
common thin clay films on ped faces and pores; common very fine and few fine roots; common very 
fine and fine tubular pores; 3% gravel; neutral (pH 7.1); clear smooth boundary. 
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Bt 20-61 cm. Brown (lOYR S/3) clay loam, very dark grayish brown to dark grayish brown (lOYR 
3.5/3) moist; moderate very coarse prisms parting to weak very coarse subangular blocks; hard to 

very hard, very Hrm, sticky, plastic; many moderately thick clay films on ped faces and pores; 
common very fine and few roots; common very fine and fine tubular pores; 3% gravel; neutral (pH 
7.1); abrupt smooth boundary. 

Btk 61-714- cm. Pale brown (lOYR 6/3) clay loam, brown (lOYR S/3) moist; weak coarse subangular 
blocks; very hard, firm to very firm, sUcky, plastic; few thin clay films on ped faces and pores; few 
very fine roots; common very fine tubular pores; slightly effervescent; mildly alkaline (pH 7.8). 

Auger: 71 -130 cm, Btk horizon, clay loam 
130-190 cm, C horizon, sandy loam 
l90-220-»- cm, 2Btb horizon, loam to clay loam 

Pescado, Abandoned 2 
Classification: Coarse-loamy, mixed, mesic Fluventic Haplustept 
Geomoq>hic setting: Alluvial fan, elevation 20S4 m (6740 ft), 3% slope 
Parent material: Alluvium derived from Cretaceous sedimentary rocks weathered from the Gallup and 
Crevasse Canyon formations 
Agricultural setting: Abandoned cornfield 
Landuser: Rose Eustace 
Described by Jeff Homburg, Troy Lucio, Kerwin Owaleon, and Lindsay Quam 
Date: July II, 1997 

Ap 0-13 cm. Brown to pale brown (lOYR S.S/3) sandy loam, brown (lOYR 4/3) moist; moderate thin 
plates; soft, very friable, slightly sticky, slightly plastic; many very fine and common fine roots; many 
very fine interstitial pores; 8% gravel; neutral (pH 6.7); abrupt wavy boundary. 

Bt 13-33 cm. Yellowish brown (lOYR S/4) sandy loam, dark yellowish brown (lOYR 4/4) moist; weak 
coarse subangular blocks; slightly hard, friable, slightly sticky, slightly plastic; common thin clay films 
on ped faces and pores; comnn>on very fme, few fme, and few medium roots; common very fme, few 
fine, and few medium tubular pores; 5% gravel; mildly alkaline (pH 7.7); abrupt wavy boundary. 

CI 33-35 cm. Brown (lOYR 5/3) clay loam, brown (lOYR 4/3) moist; single grain; slightly hard, friable, 
slightly sticky, slightly plastic; common very fine roots; common very fine tubular pores; mildly 
alkaline (pH 7.7); abrupt wavy boundary. 

C2 35-39 cm. Yellowish brown (lOYR 5/4) loamy sand, dark yellowish brown (lOYR 4/4) moist; single 
grain; soft to slightly hard, friable to firm, nonsticky, nonplastic; common very Hne and few fine 
roots; common very fine interstitial pores; 5% gravel; mildly alkaline (pH 7.8), abrupt wavy boundary. 

C3 39-47 cm. Yellowish brown lOYR 5/4) sandy loam, dark yellowish brown (lOYR 4/4) moist; weak 
coarse subangular blocks; very hard, Hrm to very firm, sticky, plastic; few thin clay Hlms on ped faces 
and pores; few very fine roots; common very Hne tubular pores; 3% gravel; slightly effervescent; 
mildly alkaline (pH 7.8). 

C4 47-52 cm. Yellowish brown (1OYR 5/4) loamy sand, dark yellowish brown (lOYR 4/4) moist; single 
grain; soft, friable, nonsticky, nonplastic; 15% gravel; common very fme and few fine roots; common 
very fine interstitial pores; mildly alkaline (pH 7.8), abrupt wavy boundary. 
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C5 52-57 cm. Yellowish brown (lOYR 5/4) sandy loam, dark yellowish brown (lOYR 4/4) moist; single 
grain; soft to slightly hard, friable to firm, nonsticky, nonplastic; common very fine and few medium 

roots; common very fine interstitial pores; mildly alkaline (pH 7.8), abrupt wavy boundary. 

2Btb 51-15+ cm. Grayish brown (lOYR S/2) clay loam, dark grayish brown (lOYR 4/2) moist; weak to 
moderate coarse and very coarse subangular blocks; very hard, very firm, sticky, plastic; many 
moderately thick clay films on ped faces and pores; common very fine roots; common very fine 
tubular pores; moderately alkaline (pH 8.0). 

Auger 75-95 cm, Bt horizon, clay loam 
95-145 cm, 2Btk horizon, clay loam 
145-180 cm, 3Bt horizon, clay loam 
180-210+ cm, sandy loam, sandy loam 

Pescado, Abandoned 3 
Classification: Fine-loamy, mixed, mesic Typic Haplustept 
Geomorphic setting: Alluvial fan, elevation 2048 m (6720 ft), 3% slope 
Parent material: Alluvium derived from Cretaceous sedimentary rocks weathered from the Gallup and Crevasse 
Canyon formations 
Agricultural setting; Abandoned cornfield 
Landuser: F. Leekya 
Described by Jeff Homburg and Troy Lucio 
Date; July 10. 1997 

Ap 1 0-5 cm. Brown to pale brown (lOYR 5.5/3) sandy loam, brown (lOYR 4/3) moist; moderate to strong 
thin plates in upper 2 cm. weak to moderate fine granules; soft to slightly hard, firm, slightly sticky, 
slightly plastic; many very fine and common fine roots; many very fine interstitial pores; 8% gravel; 
slightly acid (pH 6.5); abrupt wavy boundary. 

Ap2 5-14 cm. Brown (lOYR 5/3) sandy loam, brown (lOYR 4/3) moist; weak medium and coarse 
subangular blocks and moderate thin plates; slightly hard to hard, firm, slightly sticky, slightly plastic; 
few thin clay films on pores; common very fme medium roots; many very fine tubular pores; 8% 
gravel; neutral (pH 6.8); clear wavy boundary. 

Btl 14-43 cm. Brown (lOYR 5/3) clay loam, brown (lOYR 4/3) moist; weak very coarse prisms parting to 
weak to moderate coarse and very coarse subangular blocks; hard, very firm, sticky, plastic; common 
thin clay films on ped faces and pores; common very fine roots; common very fine tubular pores; 10% 
gravel; mildly alkdine (pH 7.4). 

Bt2 43-77+ cm. Brown (lOYR 4.5/3) clay loam, dark brown (lOYR 33/3) moist; moderate very coarse 
prisms parting to moderate very coarse subangular blocks; very hard, very firm, sticky, plastic; many 
moderately thick clay films on ped faces and pores; common very fine roots; common very fine 
tubular pores; 5% gravel; mildly alkaline (pH 7.6). 

Auger. 77-95 cm, Bt2 horizon, clay loam 
95-120 cm, 2C horizon, sandy loam 
120+ cm, 3C loamy sand, too sandy to sample 

Pescado, Uncultivated 1 
Classification: Fine, mixed, mesic Aridic Paleustalf 
Geomorphic setting: Alluvial fan, elevation 2073 m (6800 ft), 3% slope 
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Parent material: Alluvium derived from Cretaceous sedimentary rocks weathered from the Gallup and 
Crevasse Canyon formations 

Agricultural setting: Uncultivated field 
Landuser: Judy Sanchez 
Described by Jeff Homburg and Suzie Loadholt 
Date: May 27-28, 1997 

A 0-S cm. Brown (lOYR S/3) fme sandy loam, brown (lOYR 4/3) moist; weak medium plates, moderate 
fine and medium granules, and moderate medium subangular blocks; soft, friable, slightly sticky, 
slightly plastic; very few to few thin clay films on ped faces and pores; common very fine and fine 
roots; many very fine and fine tubular and vesicular pores; <2% gravel; neutral (pH 7.0); clear smooth 
boundary. 

BAt S-14 cm. Brown (lOYR S/3) sandy clay loam, brown (lOYR4/3) moist; weak fine and medium 
subangular blocks and weak fine granules; hard, friable to firm, sticky, plastic; common moderately 
thick clay films on ped faces and pores; common very fine and fine roots; common very fine and fine 
tubular pores; <2% gravel; moderately alkaline (pH 8.0); abrupt smooth boundary. 

Btl 14-40 cm. Brown (lOYR 4/3) fine sandy loam, dark brown (lOYR 3/3) moist; strong medium prisms 
parting to moderate fine and medium subangular blocks; very hard, very firm, sticky, plastic; many 
moderately thick clay films on ped faces and pores; few to common very fine and fine and few coarse 
roots; few very fine and fine tubular pores; <2% gravel; neutral (pH 7.2); gradual smooth boundary. 

Btl 40-50 cm. Brown (lOYR S/3) clay loam, dark brown (lOYR 3.S/3) moist; moderate fine and medium 
subangular blocks; very hard, very firm, sUcky, plastic; many moderately thick clay films on ped faces 
and pores; few very fine roots; few very fine tubular pores; <2% gravel; audibly effervescent; 
moderately alkaline (pH 8.0); gradual smooth boundary. 

Btkl 50-71 cm. Brown (lOYR 5/3) clay loam, brown (lOYR 4/3) moist; moderate fine and medium 
subangular blocks; hard, firm, slightly sticky, slightly plastic; common thin to moderately thick clay 
films on ped faces and pores; few very fine roots; few very fine tubular pores; 2% gravel; strongly 
effervescent; moderately alkaline (pH 8.0); gradual smooth boundary. 

Btk2 71-89 cm. Grayish brown to dark grayish brown (lOYR 4.5/2) loam, very dark grayish brown (lOYR 
3/2) moist; moderate fine subangular blocks; hard, firm, sticky, plasdc; few thin clay films on ped 
faces and pores; few very fine roots; few very fine and coarse tubular pores; <2% gravel; strongly 
effervescent; moderately alkaline (pH 8.0); clear smooth boundary. 

2ABtkb 89-118 cm. Grayish brown to brown (lOYR 5/2.5) loam, dark brown (lOYR 33/3) moist; weak fine 
and medium subangular blocks; slightly hard, firm, slightly sticky, slightly plastic; few thin clay films 
on ped faces and pores; few very fine roots; few very fine tubular pores; <2% gravel; strongly 
effervescent; moderately alkaline (pH 8.0); abrupt smooth boundary. 

2ABtbl 118-142 cm. Brown (lOYR 5/3 at the top grading to lOYR 5.5/3 at the bottom) sandy loam, brown to 
dark brown (lOYR 4/3 at the top grading to lOYR 33/3 at the bottom) moist; weak to moderate fine 
and medium subangular blocks; slightly hard, friable, slightly sticky, slightly plastic; few thin clay 
films on ped faces and pores; few very fine roots; few very fine tubular pores; <2% gravel; 
effervescent; moderately alkaline (pH 8.0); abrupt smooth boundary. 

2Btb 142-147-t- cm. Brown to pale brown (lOYR 5.5/3) clay loam, dark brown (lOYR 33/3) moist; 
moderate fine and medium subangular blocks; very hard, very firm, sticky, plastic; few moderately 
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thick clay films on ped faces and pores; few very fine roots; few very fine tubular pores; <2% gravel; 
neutral (pH 7.2). 

Auger: 77-95 cm, Bt2 horizon, clay loam 
95-120 cm, 2C horizon, sandy loam 
120+ cm, 3C loamy sand, too sandy to sample 

Pescado, Uncultivated 2 
Classification: Fine-loamy, mixed, mesic Aridic Haplustalf 
Geomorphic setting: Alluvial fan, elevation 2063 m (6770 ft), 2-3% slope 
Parent material: Alluvium derived from Cretaceous sedimentary rocks weathered from the Gallup and Crevasse 
Canyon formations 
Agricultural setting: Uncultivated field, grazing area 
Landuser: Rose Eustace 
Described by Jon Sandor, Troy Lucio, and Lindsay Quam 
Date: August 1-2, 1996 

A 0-9 cm. Pale brown (lOYR 6/3) fine sandy loam, brown (lOYR 4/3) moist; weak to moderate thin and 
medium plates in upper 3 cm, moderate fme and medium granules, and moderate fine and medium 
subangular blocks parting to moderate fine and medium granules; soft and very firiable in upper 3 cm, 
slightly hard, friable, slightly sticky, slightly plastic; common very fine and fine roots; common very 
fine and fine roots; 2-5% gravel; slightly acid (pH 6.5); abrupt smooth boundary. 

BAt 9-28 cm. Pale brown to brown (lOYR 5.5/3) clay loam, brown (lOYR 4/3) moist. Moderate fme and 
medium subangular blocks and weak to moderate fine and medium granules; slightly hard to hard, 
fnable to firm, slightly sticky, slightly plasu'c; few thin clay films on ped faces and pores; few to 
common very fine and fine and few medium roots; few to common very fine and fine and few medium 
tubular pores; 5% gravel; neuu^l (pH 7.8); clear smooth to slightly boundary. 

Bt 28-69 cm. Brown to yellowish brown (lOYR 5/3.5) clay loam, brown to dark yellowish brown (lOYR 
4/3.5) moist; moderate fine and medium prisms parting to moderate to strong fine and medium angular 
and subangular blocks; very hard, firm, sticky, plastic; many moderately thick clay Alms on ped faces 
and pores; few to common very Hne and few fine and medium roots; few to common very fine and 
few fine and medium tubular pores; 5-10% gravel; neutral (pH 7.2); abrupt to clear smooth boundary. 

Btk 69-99+ cm. Pale brown to light yellowish brown (lOYR 5 J/3.5) clay loam to silty clay, brown to 
yellowish brown (lOYR 5/3.5) moist; moderate fine and medium subangular blocks; very hard, firm, 
sticky, plastic; common thin to moderately thick clay films on ped faces and pores; few very One and 
fine roots; few very fine and fine tubular pores; 5% gravel; slightly to strongly effervescent; mildly 
alkaline (pH 7.8); abrupt smooth boundary. 

2BCtk 99-137 cm. Light yellowish brown to yellowish brown (lOYR 5.5/4) sandy loam to coarse sandy 
loam, yellowish brown (lOYR 5/4) moist; few fine and medium subangular blocks; slightly hard to 
hard, Mable, slightly sticky, slightly plastic; common thin to moderately thick clay bridges and clay 
films on pores; very few very fine and fine roots; few very fine and fine tubular pores; 10% gravel; 
slightly to strongly effervescent; mildly alkaline (pH 7.8); clear smooth boundary. 

2C 137-150+ cm. Light yellowish brown to brownish yellow (lOYR 6/5) loam sand, yellowish brown 
(lOYR 5/5) moist; massive; soft, very fnable, nonsticky, nonplastic; very few clay bridges and clay 
coatings on pores; few very fine roots; few very fine and coarse tubular pores; 10% gravel; very 
slightly effervescent; mildly alkaline (pH 7.7). 
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Auger. ISO-180 cm, 2C horizon, loamy sand 
180-200 cm, 3C? horizon, sandy loam 

200-260 cm, 4Ab? horizon, loamy sand 
260-300 cm, 4Btb? horizon, sandy clay loam, slightly calcareous is parts (not in matrix) 
S-10% gravel and mostly audible to very slightly effervescent throughout 

Pescado, Uncultivated 3 
Classification: Fine, mixed, mesic Aridic Paleustalf 
Geomorphic setting: Alluvial fan, elevation 2036 m (6680 ft), 3.5% slope 
Parent material: Alluvium derived from Cretaceous sedimentary rocks weathered from the Gallup and Crevasse 
Canyon formations 
Agricultural setting; Uncultivated Held used for grazing 
Landuser; Wilbur Haskie 
Described by Jeff Homburg, Troy Lucio, and Lindsay Quam 
Date: June 26, 1997 

A 0-8 cm. Brown (lOYR S/3) fine sandy loam, brown (lOYR 4/3) moist; moderate fine granules; soft, 
very friable, nonsticky, nonplastic; many very fine and few fine and medium roots; many very fine 
interstitial pores; 3% gravel; neuu^ (pH 7.3); abrupt wavy boundary. 

AB 8-16 cm. Yellowish brown (lOYR S/4) Hne sandy loam, brown to dark yellowish brown (lOYR 4/3.5) 
moist; weak fine granules; slightly hard, friable to firm, nonsticky, nonplastic; common very fine and 
few fine roots; common very fine tubular pores; neutral (pH 7.0); abrupt smooth boundary. 

BAt 16-22 cm. Brown (lOYR 5/3) loam, brown (lOYR 4/3) moist; weak to moderate medium and coarse 
subangular blocks; slightly hard, firm, slightly sticky, slightly plastic; few thin clay Alms on ped faces 
and pores; common very fine and fine roots; common very fine tubular pores; 5% gravel; strongly 
effervescent; mildly alkaline (pH 7.6); abrupt smooth boundary. 

Bt 22-38 cm. Yellowish brown (lOYR 5/4) clay loam to loam, dark yellowish brown (lOYR 4/4) moist; 
common coarse and very coarse subangular blocks; slightly hard to hard, firm, slightly sticky, slightly 
plastic; common moderately thick clay films on ped faces and pores; common very fine roots; 
common very fine tubular pores; 5% gravel; strongly effervescent; mildly alkaline (pH 7.6); abrupt 
smooth boundary. 

2C1 38-41 cm. Yellowish brown (lOYR 5/4) fine sandy loam, dark yellowish brown (lOYR 4/4) moist; 
massive; soft to slightly hard, friable, nonsticky, nonplastic; common very fine roots; common very 
fine interstitial pores; strongly effervescent; mildly alkaline (pH 7.7); abrupt smooth boundary. 

2C1 41-46 cm. Yellowish brown (lOYR 5/4) loam, brown (lOYR 4/3) moist; massive; slightly hard, friable 
to firm, slightly sticky, slightly plastic; few very fine roots; common very fine tubular pores; 3% 
gravel; strongly effervescent; mildly alkaline (pH 7.6); abrupt smooth boundary. 

2C1 46-58 cm. Brown (lOYR 5/3) loamy sand, brown (lOYR 4/3) moist; single grain; soft, very friable, 
nonsticky, nonplastic; few very Hne roots; few very fme tubular pores; strongly effervescent; mildly 
alkaline (pH 7.8); abrupt smooth boundary. 

2C1 58-61 cm. Brown (lOYR 5/3) fine sandy loam, brown (lOYR 4/3) moist; massive; soft to slightly hard, 
finable, nonsticky, nonplastic; few very fine roots; few very fine tubular and common interstitial pores; 
strongly effervescent; mildly alkaline (pH 7.8); abrupt smooth boundary. Contains charcoal 
concentrations. 
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2C1 61-66 cm. Brown (lOYR 5/3) fine sandy loam, brown (lOYR 4/3) moist; massive; slightly hard, 
friable to firm, nonsUcky, nonplastic; few very fine and fine roots; common very fine interstitial 

pores; strongly effervescent; IS-20% gravel; mildly alkaline (pH 7.8); abrupt smooth boundary. 

3C2 66-74 cm. Brown (lOYR 5/3) gravelly sandy loam, brown (lOYR 4/3) moist; massive; soft to slightly 
hard, very fnable, nonsticky, nonplastic; few very fine roots; common very fine interstitial pores; 15-
20% gravel; strongly effervescent; mildly alkaline (pH 7.8); abrupt smooth boundary. 

4C3 74-84+ cm. Light yellowish brown (lOYR 6/4) fine sandy loam, yellowish brown (lOYR 5/4) moist; 
massive; soft, friable, nonsticky, nonplastic; few very fine roots; common very fine interstitial pores; 
8% gravel; strongly effervescent; mildly alkaline (pH 7.8). 

Auger: 84-225 cm, 4C3 horizon, stratified sand to sandy loam throughout 

Bear Canyon, Cultivated 1 
Classification: Coarse-loamy, mixed, mesic Aridic Haplustept 
Geomorphic setting: Footslope of alluvial fan, elevation 2078 m (6820 ft), 3% slope 
Parent material: Alluvium derived from Cretaceous sedimentary rocks weathered from the Gallup and Crevasse 
Canyon formations 
Agricultural setting: Within cultivated cornfield 
Landuser: David Wyaco, Sr. 
Described by Jeff Homburg and Jon Sandor 
Date: July 17, 1997 

Ap 0-33 cm. Pale brown to brown (lOYR 5.5/3) fine sandy loam, brown (lOYR 4/3) moist; weak fine 
granules and weak medium subangular blocks; soft to slightly hard, friable, slightly sticky, slightly 
plastic; common very fine and few fine roots; common very fine and fine tubular and interstitial pores; 
5% gravel; strongly effervescent; mildly alkaline (pH 7.8); abrupt wavy boundary. Upper 0J cm 
contains very fine laminae and chunks of plant residue. 

BA 33-58 cm. Pale brown to brown (lOYR 5.5/5) fine sandy loam, brown (lOYR 4/3) moist; weak 
medium subangular blocks; soft to slightly hard, friable, slightly sticky, slightly plastic; common very 
fine roots; few very fine interstitial pores; 5% gravel; strongly effervescent; mildly alkaline (pH 7.8); 
abrupt smooth boundary. Lighter sand lens note from 41 to 43 cm. 

Bwl 58-75 cm. Yellowish brown (lOYR 5/4) loamy fine sand, dark yellowish brown (lOYR 5/4) moist; 
massive; soft, very friable, nonsticky, nonplastic; common very fine and few fine roots; few very fine 
interstitial pores; 8% gravel; strongly effervescent; moderately alkaline (pH 8.0); abrupt smooth 
boundary. Fine gravel lenses noted from 64 to 66 cm. 

2Bw2 75-87 cm. Brown to yellowish brown (lOYR 5.5/4) loamy sand, yellowish brown to dark yellowish 
brown (lOYR 43/4) moist; massive; soft, very friable, nonsticky, nonplastic; common very fine com 
roots and few fine com roots; few very fine interstitial pores; 30% gravel; strongly effervescent; 
moderately alkaline (pH 8.0); abrapt smooth boundary. 

3Btb 87-108 cm. Brown (lOYR 5/3) loam, brown (lOYR 4/3) moist; weak medium and coarse subangular 
blocks; slightly hard, fnable, slightly sticky, slightly plastic; few thin clay films on ped faces and 
pores; common very fine and few fine roots; few very fine tubular pores; 8% gravel; strongly 
effervescent; moderately alkaline (pH 8.0); clear smooth boundary. Gravel lenses with 25% gravel 
noted from 92 to 99 cm. 
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3Btkb 108-118+ cm. Brown to yellowish brown (lOYR S.5/3.S) clay loam, brown to dark yellowish brown 
(lOYR 4.5/3.S) moist: weak medium and coarse subangular blocks; slightly hard to hard, friable to 

Hrm, slightly sticky, slightly plastic; common thin clay films on ped faces and pores; common very 
fme and few fine roots; few very fine tubular pores; 5% gravel; very strongly effervescent, with 
carbonate filaments in rootlet pores; moderately alkaline (pH 8.0). 

Auger 118-200+ cm, calcareous sandy loam 
Hit rock at 200 cm and stopped 

Bear Canyon, Cultivated 4 
Classification: Fine-loamy, mixed, mesic Aridic Haplustept 
Geomorphic setting; Footslope of alluvial fan, elevation 2047 m (6715 ft), 2% slope 
Parent material: Alluvium derived from Cretaceous sedimentary rocks weathered from the Gallup and Crevasse 
Canyon formations 
Agricultural setting: Within cultivated field 
Landuser: Calvert Martinez 
Described by Jeff Homburg, Troy Lucio, and Kerwin Ontaleon 
Date: July 23, 1997 

Ap 0-15 cm. Grayish brown (IOYR 5/2) loam, dark grayish brown (1OYR 4/2) moist; weak to moderate 
medium subangular blocks, moderate fine granules; slightly hard, friable, slightly sticky, slightly 
plastic; common very fine and fine roots; many very fine interstitial pores; 5% gravel; neutral (pH 
6.6); abrupt wavy boundary. 

BAt 15-25 cm. Brown (lOYR 5/3) sandy clay loam, brown (lOYR 4/3) moist; weak medium subangular 
blocks; slightly hard, friable to firm, slightly sticky, slightly plastic; few thin clay films on ped faces 
and pores; common very fine and few fine roots; common very fine and few fine tubular pores; 10% 
gravel; mildly alkaline (pH 7.4); abrupt wavy boundary. 

Bt 25-36 cm. Yellowish brown (lOYR 5/4) loamy fine sand, dark yellowish brown (lOYR 4/4) moist; 
weak to moderate medium and coarse subangular blocks; slightly hard, friable, nonsticky, nonplastic; 
few thin clay films on ped faces and pores and few bridges; common very fine and few fine roots; 
common very fine and few fme interstitial pores; 5% gravel; mildly alkaline (pH 7.8); abrupt smooth 
boundary. 

2Btkbl 36-51 cm. Brown (lOYR 5/3) loam, brown to dark brown (lOYR 3.5/3) moist; weak to moderate 
medium and coarse subangular blocks; hard to very hard, very firm, slightly sticky, slightly plastic; 
few thin clay films on ped faces and pores; common very fine and few fine roots; common very fine 
tubular pores; 3% gravel; strongly effervescent; mildly alkaline (pH 7.8); clear smooth boundary. 

2Btkb2 51-75-f cm. Brown to yellowish brown (lOYR 5.5/4) loam to clay loam, dark brown (lOYR 3/3) 
moist; moderate medium and coarse subangular blocks; hard to very hard, very firm, sticky, plastic; 
common thin to moderately thick clay films on ped faces and pores; common very fine and few fine 
roots; common very fme tubular pores; 3% gravel; strongly effervescent; mildly alkaline (pH 7.8). 

Auger: 75-90 cm, 2Btb2 horizon continues 
Hit cobbly layer (or bedrock) in two augers at 90 cm and stopped. 

Bear Canyon, Cultivated 5 
Classification: Coarse-loamy, mixed, mesic Aridic Haplustept 
Geomorphic setting: Footslope of alluvial fan, elevation 2028 m (6655 ft), 2% slope 



206 

Parent material; Alluvium derived firom Cretaceous sedimentary rocks weathered from the Gallup and 
Crevasse Canyon formations 

Agricultural setting; Within cultivated field, now fallow and covered by many grasses 
Landuser; Edward Beyuka 
Described by Jeff Homburg, Troy Lucio, and Lindsay Quam 
Date: June 4, 1998 

Ap 0-17 cm. Brown (lOYR S/3) sandy loam, brown (lOYR 4/3) moist; moderate thin plates in upper 2 
cm, weak Hne granules; slightly hard, firm, slightly sticky, slightly plastic; many very fine and 
common fine roots; many very fine and common Hne tubular pores; 1% gravel; slightly effervescent; 
mildly alkaline (pH 7.8); abrupt wavy boundary. 

BAt 17-31 cm. Brown(I0YR5/3)loam, brown (lOYR 4/3) moist; weak to moderate fine subangular 
blocks; slightly hard, firm, slightly sticky, slightly plastic; few thin clay films on ped faces and pores; 
many very Hne and common fine roots; many very fine and few fine tubular and few coarse interstitial 
pores; <1% gravel; mildly alkaline (pH 7.8); clear smooth boundary. 

C 31-44 cm. Yellowish brown (lOYR 5/4) loamy sand, dark yellowish brown (lOYR 4/4) moist; weak 
medium subangular blocks; soft, very friable, nonsticky, nonplastic; many very fine and common fine 
roots; many very fine and common fine interstitial pores; <1% gravel; mildly alkaline (pH 7.8); clear 
smooth boundary. 

2Btb 44-73 cm. Dark yellowish brown (lOYR 4/4) sandy loam, dark brown to dark yellowish brown (lOYR 
3.5/4) moist; moderate medium subangular blocks; soft, friable, nonsticky, nonplastic; few thin clay 
films on ped faces; many very fine and common fine roots; many very fine and common fine tubular 
pores; slighdy effervescent; mildly alkaline (pH 7.8); abrupt smooth boundary. 

3Btb 73-90+ cm. Very dark grayish brown to dark brown (lOYR 3/2.5) clay loam, very dark brown (lOYR 
2/2) moist; moderate to strong medium subangular blocks; very hard, very firm, sticky, plastic; many 
moderately thick clay films on ped faces and pores; many very fine and few fine roots; common very 
fine and few fine tubular pores; mildly alkaline (pH 7.8). 

Auger: 90-105 cm, 3Btb horizon, clay loam 
105-185 cm, 3BCtb horizon, loam 
185-210 cm, 4Btkb horizon, clay loam, slightly effervescent 
210-225 cm, 5Btb horizon, clay loam, audibly effiervescent 

Bear Canyon, Abandoned 1 
Classification: Fine-loamy, mixed, mesic Fluventic Haplustept 
Geomorphic setting: Alluvial fan, elevation 2079 m (6820 ft), 3% slope 
Parent material: Alluvium derived from Cretaceous sedimentary rocks weathered from the Gallup and Crevasse 
Canyon formations 
Agricultural setting: Abandoned cornfield 
Landuser: Victor Niiha 
Described by Jeff Homburg, Troy Lucio, and Lindsay Quam 
Date: June 20,1997 

Ap 0-8 cm. Brown (lOYR 5/3) and brownish yellow (lOYR 6/6) silt loam, brown (lOYR 4/3) and 
yellowish brown moist; weak very thin and thin plates in upper 3 cm, moderate very fine and fine 
granules; slightly hard, friable, sticky, plastic; very few thin clay films on ped faces and pores; many 
very fine, common fine, and many medium and coarse roots; many very fine tubular and vesicular 
pores; 4% gravel; mildly alkaline (pH 7.8); abrupt wavy boundary. 
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Btl 8-23 cm. Pale brown to brown (lOYR 5513) fine sandy loam, brown (lOYR 4/3) moist; weak to 
moderate coarse and very coarse subangular blocks; slightly hard, firm, slightly sticky, slightly plastic; 
common thin clay films on ped faces and pores; common very fine and few fine and coarse roots; 
common very fine tubular pores; 5% gravel; neutral (pH 7.0); clear smooth boundary. 

Bt2 23-33 cm. Brown to yellowish brown (lOYR S/3.S) sandy loam, brown to dark yellowish brown 
(lOYR 4/3.S) moist; weak coarse and very coarse subangular blocks; slightly hard, firm, slightly 
sticky, slightly plastic; few thin clay films on ped faces and pores; common very fine and few coarse 
roots; few very fine tubular pores; 5% gravel; mildly alkaline (pH 7.5); abrupt smooth boundary. 

2C1 33-50 cm. Yellowish brown (10YR5/4) sandy loam, brown to dark yellowish brown (lOYR 4/3.5) 
moist; massive; slightly hard, friable, slightly sticky, slightly plastic; few very fine and fine roots; 
common very fine tubular pores; 5-8% gravel; mildly alkaline (pH 7.8); abrupt smooth boundary. 

2C2 50-56 cm. Yellowish brown to lightly yellowish brown (lOYR 5.5/4) loamy sand, dark yellowish 
brown (lOYR 4/4) moist; massive; loose, very friable, nonsticky, nonplastic; common very fine roots; 
common very fine tubular pores; neutral (pH 7.2); abrupt smooth boundary. 

4C3 56-66 cm. Dark gray (lOYR 4/1) and brown (lOYR 5/3) loam, very dark gray (lOYR 3/1) and brown 
(10YR4/3) moist; massive; slightly hard, firm, slightly sticky, slightly plastic; common very fine 
roots; few very fine tubular pores; mildly alkaline (pH 7.6); abrupt smooth boundary. 

5C4 66-77 cm. Dark gray (lOYR 4/1) and brown (lOYR 5/3) sandy loam, very dark gray (lOYR 3/1) and 
brown (lOYR 4/3) moist; massive; soft, friable, slightly sticky, slightly plastic; common very fine 
roots; few very fine tubular pores; mildly alkaline (pH 7.8); abrupt smooth boundary. 

6C5 77-82+ cm. Dark grayish brown (lOYR 4/2) silt loam, dark brown (lOYR 3/2) moist; massive; 
slightly hard, friable, slightly sticky, slightly plastic; common very fine and few medium roots; 
common very fine tubular pores; audibly effervescent; mildly alkaline (pH 7.8). 

Auger: 82-120 cm, 6C5 horizon, silt loam to sandy loam 
120-200 cm, 7C6 horizon, sandy loam 
200-220+ cm. Ck horizon, loam 

Bear Canyon, Abandoned 2 
Classification: Fine-loamy, mixed, mesic Aridic Haplustalfs 
Geomorphic setting: Alluvial fan, elevation 2152 m (7060 ft), 4-5% slope 
Parent material: Alluvium derived fi-om Cretaceous sedimentary rocks weathered from the Gallup and Crevasse 
Canyon formations 
Agricultural setting: Abandoned com/bean field 
Landuser: Ira Bowannie 
Described by Jeff Homburg, Jon Sandor, Pete Natachu, Troy Lucio, Kerwin Owaleon, and Lindsay Quam 
Date: July 16,1997 

Ap 0-6 cm. Brown to grayish brown to light olive brown (23Y-I0YR 5/3) loam, very dark grayish 
brown-olive brown to brown-dark brown (2.SY-10YR 33/3) moist; moderate medium plates parting 
to moderate fine granules; soft, very friable, slightly sticky, slightly plastic; common very fine and few 
fine roots; few very fine vesicular pores; 5% gravel; audibly effervescent; mildly alkaline (pH 7.5); 
abrupt smooth boundary. 
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Ap/C 6-16 cm. Pale brown to lightly yellowish brown (lOYR 6/3.5) sandy loam, brown (lOYR 4/3) moist; 
weak Hne subangular blocks in pockets; slightly hard, finable, nonsticky, nonplastic; common very 

fine and few fine roots; common very fine tubular pores; 5% gravel; slightly effervescent; mildly 
alkaline (pH 7.8); abrupt smooth boundary. Contains 2-3 mm thick laminations. 

Bk 16-38 cm. Yellowish brown (lOYR 5/4) sandy loam, dark yellowish brown (lOYR 4/4) moist; weak 
medium subangular blocks; slightly hard, fiiable, nonsticky, nonplastic; common very fine roots; few 
very fine tubular pores; 10% gravel; slightly effervescent; moderately alkaline (pH 8.0); abrupt smooth 
boundary. 

Btl 38-48 cm. Light brownish gray-light yellowish brown to pale brown (2.5Y-10YR 6/3) loam, dark 
grayish brown-olive brown to brown (2 JY-IOYR 4/3) moist; weak to moderate medium subangular 
blocks; hard, firm, slightly sticky, slightly plastic; few thin clay Alms on ped faces and pores; few very 
fine roots; few very fine tubular pores; 5% gravel; moderately alkaline (pH 8.0); clear smooth 
boundary. 

Bt2 48-83 cm. Pale brown to brown (lOYR 5.5/3) loam, brown to dark brown (lOYR 3.5/3) moist; weak 
medium prisms parting to weak to moderate medium and coarse subangular blocks; hard, firm, slightly 
sticky, slightly plastic; common to many thin clay films on ped faces and pores; few very fine roots; 
common very fine tubular pores; moderately alkaline (pH 8.0); gradual smooth boundary. Contains 
some vertical cracks. 

Btk 83-90 cm. Pale brown (lOYR 6/3) loam, brown (lOYR 4.5/3) moist; slightly hard, fnable, slightly 
sticky, slightly plastic; common thin clay films on ped faces and pores; few very fine roots; common 
very fine tubular pores; slightly effervescent; moderately alkaline (pH 7.8). 

Auger: 90-105 cm, weak Btk horizon, sandy loam, strongly effiervescent 
105-165 cm, 2Btk horizon, clay loam 
200-220^ cm, 2BCtk horizon, loam, slightly effervescent 

Bear Canyon, Abandoned 3 
Classification: Fine-loamy, mixed, mesic Aridic Haplustalf 
Geomorphic setting: Alluvial fan, elevation 2035 m (6675 ft), 2J% slope 
Parent material; Alluvium derived from Cretaceous sedimentary rocks weathered from the Gallup and Crevasse 
Canyon formations 
Agricultural setting: Abandoned cornfield 
Landuser: Edward Beyuka 
Described by Jeff Homburg, Troy Lucio, and Lindsay Quam 
Date: July 16, 1997 

Ap 0-14 cm. Brown (lOYR 5/3) loam, brown (lOYR 4/3) moist; weak to moderate very fine and Hne 
granules; slightly hard, firm, slightly sticky, slightly plastic; many very fine and common few fine 
roots; many very fine and common fine tubular pores; 3% gravel; moderately alkaline (pH 8.0); abrupt 
wavy boundary. 

BAt 14-28 cm. Brown (lOYR 4/3) loam, dark brown (lOYR 3/3) moist; moderate fine and medium 
subangular; hard, firm, slightly sticky, slightly plastic; many very fine and common fine roots; many 
very fine and common fine tubular pores; 2% gravel; audibly efTcrvcscent; moderately alkaline (pH 
8.0); clear wavy boundary. 

Btl 28-40 cm. Brown (lOYR 4/3) sandy clay loam, dark brown (lOYR 3/3) moist; moderate fine and 
medium subangular blocks; hard, firm, slightly sticky, slightly plastic; common very fine and few fine 
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roots; common very fine and few fine tubular pores; 2% gravel; audibly effervescent; moderately 
alkaline (pH 8.0); gradual smooth boundary. 

Bt2 40-60 cm. Brown (lOYR 4/3) loam, dark brown to very dark brown (lOYR 3/2.5) moist; moderate 
fine and medium subangular blocks; slightly hard, fnable, slightly sticky, slightly plastic; many thin 
clay films on ped faces and pores; common very fine and few fine roots; common very fine and few 
flne tubular pores; slightly effervescent; moderately alkaline (pH 8.0); clear smooth boundary. 

BCt 60-81 cm. Brown to dark yellowish brown (1OYR 4/3.S) loam, dark brown (lOYR 3/3) moist; 
moderate fine medium and flne subangular blocks; slightly hard, fnable, slightly sticky, slightly plastic, 
few thin clay films on ped faces and pores; conunon very fine and few flne roots; conmion very flne 
and few flne tubular pores; 1% gravel; slightly effervescent; moderately alkaline (pH 8.0); clear smooth 
boundary. 

CB 81-90-t- cm. Brown (lOYR S/3) sandy loam, brown to dark brown (lOYR 3.5/3) moist; weak flne 
subangular blocks; slightly hard, friable, slightly sticky, slightly plastic; very few clay Alms on ped 
faces; few very flne and flne roots; few very flne and flne tubular pores; slightly effervescent; 
moderately alkaline (pH 8.0). 

Bear Canyon, Abandoned 4 
Classiflcation: Fine-loamy, mixed, mesic Aridic Haplustalf 
Geomorphic setting: Footslope of alluvial fan, elevation 2067 m (6780 ft), 3% slope 
Parent material: Alluvium derived from Cretaceous sedimentary rocks weathered from the Gallup and Crevasse 
Canyon formations 
Agricultural setting: Within cultivated fleld 
Landuser: Wilmer Quandelacy 
Described by Jeff Homburg and Troy Lucio 
Date: June 20, 1997 

Ap 0-13 cm. Brown (lOYR 5/3) flne sandy loam, brown (lOYR 4/3) moist; weak thin plates in upper I 
cm, weak medium and coarse subangular blocks; soft, friable, nonsticky, nonplastic; common very 
flne and few flne roots; many very flne tubular and many very flne vesicular pores; 8% gravel; slightly 
acid (pH 6.5); abrupt wavy boundary. 

BAt 13-29 cm. Grayish brown to light olive brown (2 JY 5/3) flne sandy loam, dark grayish brown to 
olive brown (2.5Y 4/3) moist; weak medium and very coarse subangular blocks; slightly hard, friable 
to flrm, nonsticky, nonplastic; few thin clay Alms on ped faces and pores; common very flne and few 
coarse roots; common very flne and few flne tubular pores; 10% gravel; neutral (pH 6.8); gradual 
wavy boundary. 

Btl 29-60 cm. Grayish brown to light olive brown (2.5Y 5/3) loam, dark grayish brown to olive brown 
(2.5Y 4/3) moist; weak to moderate very coarse subangular blocks; slightly hard, Arm, slightly sticky, 
slightly plastic; common thin clay Alms on ped faces and pores; conmion very flne, few medium and 
coarse roots; common very Ane and few flne tubular pores; 10% gravel; neutral (pH 7.3); clear smooth 
boundary. 

Bt2 60-69 cm. Grayish brown to light olive brown (2.5Y 5/3) loam, dark grayish brown to olive brown 
(2 JY 4/3) moist; weak to moderate very coarse subangular blocks; slightly iiard, flrm, sticky, plastic; 
moderate thin clay Alms on ped faces and pores; common very flne roots; common very flne tubular 
pores; 10% gravel; mildly alkaline (pH 7.5); abrupt smooth boundary. 
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Bt2 69-80 cm. Light brownish gray to light yellowish brown (2.5Y 6/3) sandy loam, grayish brown to 
light olive brown (2.SY S/3) moist; weak medium and coarse subangular blocks; soft to slightly hard, 

fnable to firm, nonsticky, nonplastic; few thin clay bridges; few very fine roots; common very fine 
tubular pores; S% gravel; mildly alkaline (pH 7.8). 

Auger: 80-120 cm, BCt horizon, sandy loam, no effervescence 
120-220 cm, C, loamy fine sand, no effervescence 

Bear Canyon, Uncultivated 1 
Classification: Fine-loamy, mixed, mesic Fluventic Haplustept 
Geomorphic setting: Alluvial fan, elevation 2094 m (6870 ft), 3% slope 
Parent material: Alluvium derived fi-om Cretaceous sedimentary rocks weathered from the Gallup and Crevasse 
Canyon formations 
Agricultural setting: Uncultivated field used for grazing 
Landuser: Fred Weekoty 
Described by Jeff Homburg and Suzie Loadholt 
Date: June 20, 1997 

A 0-5 cm. Brown (lOYR S/3) loam, dark grayish brown (lOYR 4/2) moist; weak thin plates in upper 0.S 
cm, weak to moderate fine and medium granules; soft, very friable to friable, slightly sticky, slightly 
plastic; common very fine and fine roots; many very fine vesicular pores; <S% gravel; neutral (pH 
7.0); abrupt smooth boundary. 

BAt S-12 cm. Brown (lOYR S/3) sandy loam, dark grayish brown (lOYR 4/2) moist; weak Hne and 
medium subangular blocks; slightly hard, friable, slightly sticky, slightly plastic; few thin clay films on 
ped faces and pores; common very fine and fine and few coarse roots; common very fine and fine 
tubular and few very fine vesicular pores; <5% gravel; mildly alkaline (pH 7.S); clear smooth 
boundary. 

Btl 12-39 cm. Grayish brown to brown (lOYR S/2.S) sandy clay loam to loam, dark to very dark grayish 
brown (lOYR 3.5/2) moist; moderate medium prisms parting to weak fine and medium subangular 
blocks; hard, friable to firm, slightly sticky, slightly plastic; common thin clay films on ped faces and 
pores; common very fine and fine roots; many very One and few fine tubular pores; <5% gravel; 
slightly acidic (pH 6.5); clear smooth boundary. 

Bt2 39-56 cm. Brown (lOYR 5/3) loam, dark brown (lOYR 3/3) moist; moderate Hne and medium prisms 
parting to weak fine and medium subangular blocks; very hard, very firm, slightly sticky, slightly 
plastic; few thin clay films on ped faces and pores; few to common fine roots; many fine and few fine 
tubular pores; 10% gravel; moderately alkaline (pH 8.0); abrupt smooth boundary. 

2C1 56-80 cm. Yellowish brown (lOYR 5/4) loamy sand, brown to dark yellowish brown (lOYR 4/3.5) 
moist; massive; soft, very friable, nonsticky, nonplastic; few fine roots; few very Hne tubular pores; 5-
10% gravel and one 15 cm cobble; moderately alkaline (pH 8.0); abrupt smooth boundary. Contains 
very few I mm laminations. 

3C2 80-87 cm. Brown (lOYR 5/3) loam, brown (lOYR 4/3) moist; massive; hard, fnable to firm, slightly 
sticky, slightly plastic; few very fine and fine roots; common very fine and few fine tubular pores; 
<2% gravel; moderately alkaline (pH 8.0); abrupt smooth boundary. Contains common I nun 
laminations and charcoal flecks. 

4C3 87-107 cm. Brown (lOYR 5/3) loam, brown (lOYR 4/3) moist; massive; slightly hard, very fnable, 
slightly sticky, slightly plastic; few medium roots; common very fine interstitial pores; 5% gravel; 
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moderately alkaline (pH 8.0); abrupt smooth boundary. Contains many 1-3 mm laminations, and a 
charcoal lens in the lower part. 

88-100 cm. Gravelly lens in southwest comer of pit. Yellowish brown (lOYR S/4) gravelly loamy 
sand, dark yellowish brown (lOYR 4/4) moist; single grain; loose, very friable, nonsticky, nonplastic; 
many fine intersutial pores; 20% gravel; moderately alkaline (pH 8.0); abrupt smooth boundary. 

4C4 107-123 cm. Pale brown (lOYR 6/3) fine sandy loam, brown (10YR5/3) moist; massive; soft, very 
fnable, nonsticky, nonplastic; few very fine and medium roots; common very fine interstitial pores; 
10-15% gravel; moderately alkaline (pH 8.0); clear smooth boundary. Highly laminated (1 mm) and 
contains many charcoal flecks. 

4CS 123-139-t- cm. Pale brown (lOYR 6/3) fine sandy loam; brown (lOYR S/3) moist; massive; soft to 
slightly hard, fnable, nonsticky, nonplastic; few fine roots; common very fine interstitial pores; S% 
gravel; moderately alkaline (pH 8.0). Highly laminated (I mm) and contains many charcoal flecks. 

Auger: 139-180 cm, 4CS horizon continues, fine loamy sand 
180-245 cm, 5C6 horizon, gravelly fine loamy sand 
Hit rock at 245 cm and stopped. 

Bear Canyon, Uncultivated 2 
Classification: Coarse-loamy, mixed, mesic Aridic Haplustalf 
Geomorphic setting; Alluvial fan, elevation 2045 m (6710 ft), 4% slope 
Parent material: Alluvium derived from Cretaceous sedimentary rocks weathered from the Gallup and Crevasse 
Canyon formations 
Agricultural setting: Uncultivated field used for grazing 
Landuser: Wilmer Quandelacy 
Described by Jeff Homburg, Kerwin Owaleon, and Lindsay Quam 
Date: June 17, 1997 

A 0-14 cm. Grayish brown to dark grayish brown (lOYR 4.5/2) sandy loam, brown (lOYR 4/3) moist; 
weak fine granules; soft, very friable, slightly sticky, slightly plastic; common very fine and few fine 
roots; common very fine interstitial pores; 5% gravel; slightly acidic (pH 6 J); gradual smooth 
boundary. 

BAt 14-45 cm. Brown (lOYR 5/3) sandy loam, brown (lOYR 4/3) moist; weak fine and medium 
subangular blocks to massive; soft, friable, nonsticky, nonplastic; very few thin clay bridges; common 
very fine roots; many very fine interstitial pores; 5% gravel; slightly acidic (pH 6.5); clear smooth 
boundary. 

Bt 45-56 cm. Brown (lOYR 5/3) sandy loam, brown (lOYR 4/3) moist; massive to very weak fine and 
medium subangular blocks; soft, friable, slightly sticky, slightly plastic; few thin clay bridges; few 
very fine roots; many very fine interstitial pores; 8% gravel; neutral (pH 7.0); abrupt wavy boundary. 

2C1 56-60 cm. Pale brown (lOYR6/3) loam, brown (lOYR4/3) moist; massive; soft, fnable, slightly 
sticky, slightly plastic; few very fine roots; few very fine tubular pores; moderately alkaline (pH 8.2); 
abrupt wavy boundary. Highly laminated (1 mm) and contains abundant charcoal flecks. 

3C2 60-86 cm. Pale brown (lOYR 6/3) loamy sand, yellowish brown to dark yellowish brown (lOYR 
4.5/4) moist; single grain; loose, loose, nonsticky, nonplastic; few fine roots; common very fine 
interstitial pores; 10% gravel; moderately alkaline (pH 8.0); abrupt smooth boundary. 
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4C3 86-93-t- cm. Brown (lOYR S/3) gravelly loamy sand, yellowish brown to dark yellowish brown 
(lOYR 4 J/4) moist; single grain; loose, loose, nonsticky, nonplastic; few very fine roots; few very 

fine interstitial pores; 35% gravel; moderately alkaline (pH 8.0). 

Auger: 93-130 cm, 4C3 horizon continues, gravelly loamy sand 
130-160 cm, SAb horizon, loam, continues many charcoal flecks 
160-220 cm, SC horizon, highly stratified sandy alluvium 

Bear Canyon, Uncultivated 3 
Classification: Coarse-loamy, mixed, mesic Aridic Haplustalf 
Geomorphic setting: Alluvial fan, elevation 2047 m (67IS ft), 3% slope 
Parent material: Alluvium derived from Cretaceous sedimentary rocks weathered from the Gallup and Crevasse 
Canyon formations 
Agricultural setting: Uncultivated field used for grazing 
Landuser: David Wyaco, Sr. 
Described by Jon Sander, Jeff Homburg, and Troy Lucio 
Date: July 17, 1997 

A 0-14 cm. Pale brown (lOYR 6/3) loam, brown (lOYR 4/3) moist; weak medium plates and weak fine 
and medium granules in upper 4 cm, weak fine and medium granules and weak medium subangular 
blocks; slightly hard, friable, slightly sticky, slightly plastic; common very fine roots; few very Hne 
tubular pores; 10% gravel; neutral (pH 7.0); clear smooth boundary. 

Bw 14-34 cm. Pale brown to brown (lOYR S.S/3) loam to clay loam, brown (lOYR 4/3) moist; weak to 
moderate medium subangular blocks; slightly hard, friable, slightly sticky to sticky, slightly plastic to 
plastic; very few to few thin clay bridges and clay Alms on pores; common very fme roots; few very 
fine tubular pores; 8% gravel; strongly effervescent; moderately alkaline (pH 8.0); abrupt smooth 
boundary. Contains some pockets of sandy loam. 

C 34-43 cm. Pale brown to light yellowish brown (lOYR 6/3.S) sandy loam, yellowish brown (lOYR 
4/3) moist; massive with some lens of weak medium subangular blocks; slightly hard, fnable, slightly 
sticky, slightly plastic; common very fine roots; few very fine tubular pores; S% gravel (in lens and 
pockets); strongly effervescent; moderately alkaline (pH 8.0); abrupt smooth boundary. 

43-51 cm. Brown (lOYR 5/3) loam from 43 to 47 cm and brown (lOYR S/3) sandy loam from 47 to 
SI cm, brown (lOYR 4.5/3) moist; massive; slightly hard, fnable, slightly sticky to nonsticky, slightly 
plastic to nonplastic; common very flne roots; few very fine tubular pores; 5% gravel (in lens and 
pockets); strongly effervescent; moderately alkaline; (pH 8.0); abrupt smooth boundary. Contains 
some charcoal flecks. 

51-58 cm. Brown (lOYR 5/3) loam, brown (lOYR 43/3) moist; massive with some lens of weak 
medium subangular blocks; slightly hard, fnable, slightly sticky, slightly plastic; common very Hne 
roots; few very fine tubular pores; 5% gravel (in lens and pockets); strongly effervescent; moderately 
alkaline (pH 8.0); abrupt smooth boundary. 

58-62 cm. Pale brown to light yellowish brown (lOYR 6/33) sandy loam, yellowish brown (lOYR 
5/4) moist; massive with some lens of weak medium subangular blocks; slightly hard, finable, slightly 
sticky, slightly plastic; common very Hne roots; few very Hne tubular pores; 5% gravel (in lens and 
pockets); strongly effervescent; moderately alkaline (pH 8.0); abrupt smooth boundary. 

62-71 cm. Contains three light bands of pale brown to light yellowish brown (lOYR 6/35) sandy 
loam, yellowish brown (lOYR 4/3) moist, and three dark bands of brown (lOYR 5/3) loam, brown 
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(lOYR 43/3) moist; massive with some lens of weak medium subangular blocks; slightly hard, 
friable, slightly sticky to non sticky, slightly plastic to nonplastic; common very fine roots; few very 

fine tubular pores; S% gravel (in lens and pockets); strongly alkaline; moderately alksdine (pH 8.0); 
abrupt smooth boundary 

71-79 cm. Brown (lOYR S/3) loam from 71 to 7S cm, brown (lOYR 4.S/3) moist, and pale brown to 
light yellowish brown (lOYR 6/3.S) sandy loam firom 15 to 79 cm, yellowish brown (lOYR S/4) moist; 
massive with some lens of weak medium subangular blocks; slightly hard, friable, slighdy sticky to 
nonsticky, slightly plastic to nonplastic; common very fine roots; few very fine tubular pores; 5% 
gravel (in lens and pockets); strongly alkaline; moderately alkaline (pH 8.0); abrupt smooth boundary 

2Btb 79-92-t- cm. Pale brown to brown (lOYR S J/3) loam, brown (lOYR 4/3) moist; weak medium and 
coarse subangular blocks; hard, friable, slightly sticky, slightly plastic; few thin clay bridges and clay 
films on pores; common very fine roots; 10% gravel, with a thin band of 50% gravel from 79 to 80 
cm; few very flne tubular pores; slightly to strongly effervescent; moderately alkaline (pH 8.0). 

Auger; 92-110 cm, 2Btb horizon continues, loam 
1 IO-19S-«- cm, 2C horizon, loam to sandy loam 

Bear Canyon, Uncultivated 4 
Classification: Fine-loamy, mixed, mesic Aridic Haplustalf 
Geomorphic setting: Footslope of alluvial fan, elevation 2048 m (6720 ft), 3% slope 
Parent material: Alluvium derived from Cretaceous sedimentary rocks weathered ftom the Gallup and 
Crevasse Canyon formations 
Agricultural setting: Within field originally thought to have been cultivated, based on presence of stone 
alignments and initial reports, but later found to be uncultivated. Rock alignments were built simply as 
erosion control features in a field using for grazing, according to Andy Laahte. 
Landuser: Chopito 
Described by Jeff Homburg and Lindsay Quam 
Date; June 16, 1997 

A1 0-7 cm. Brown (lOYR S/3) sandy loam, brown (lOYR 4/3) moist; massive; loose, very friable, 
nonsticky, nonplastic; common very fine roots; many very fine interstitial pores; <5% gravel; slightly 
acid (pH 6.5); clear wavy boundary. Represents recent alluvial deposit with little soil development. 

A2 7-16 cm. Grayish brown (lOYR S/2) fine sandy clay loam to clay loam, dark to very dark grayish 
brown (lOYR 3.5/2) moist; weak coarse subangular blocks; soft, friable, slightly sticky, slightly 
plastic; very few thin clay films on ped faces; common very flne roots; common very fme tubular 
pores; 5-10% gravel; slightly acid (pH 6.5); abrupt wavy boundary. 

BAt 16-31 cm. Grayish brown (10YR5/2) sandy clay loam today loam, very dark grayish brown (lOYR 
3/2) moist; weak to moderate very coarse subangular blocks; slightly hard, Arm, slightly sticky, 
slightly plastic; common thin clay films on ped faces and pores; common very fine roots; common 
very fine tubular pores; 5-10% gravel; neutral (pH 7.0); g^ual smooth boundary. 

Btl 31-54 cm. Grayish brown (lOYR 5/2) sand clay loam, dark grayish brown (lOYR 4/2) moist; weak to 
moderate coarse and very coarse subangular blocks; slightly hard. Arm, sticky, plastic; many thin clay 
films on ped faces and pores; few very fine roots; common very flne tubular pores; 5-10% gravel; 
moderately alkaline (pH 8.0); gradual smooth boundary. 

Bt2 54-80 cm. Grayish brown (lOYR 5/2) clay loam, dark grayish brown (lOYR 4/2) moist; weak to 
moderate coarse and very coarse subangular blocks; slightly hard, friable, slightly sticky, slightly 
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plastic; many thin ciay films on ped faces and pores; few very fine roots; few very fme tubular pores; 
S-10% gravel; moderately alkaline (pH 8.0). 

Auger: 80-125 cm, BCt horizon, sandy loam, some clay bridges 
125-190 cm, BCk, loam with carbonate threads and weak subangular structure 
190-225-1- cm, C horizon, loam sand 

Nutria, Cultivated 1 
Classification; Fine-loamy, mixed, mesic Aridic Haplustalf 
Geomorphic setting: Colluvial footslope below Mexican Hill, elevation 2091 m (6860 ft), 5% slope 
Parent material: Colluvium derived from Cretaceous sedimentary rocks weathered from the Gallup and 
Crevasse Canyon formations 
Agricultural setting: Within cultivated, now fallow 
Landuser: Dennis Peynetsa 
Described by Jeff Homburg and Nick Martin 
Date: July 24, 1997 

Ap 0-16 cm. Brown to yellowish brown (2.5Y-10YR 5/3.5) sandy loam, brown to dark yellowish brown 
(2.5Y-10YR4/3J) moist; weak to moderate fme granules and weak medium subangular blocks; 
slightly hard, friable, slightly sticky, slightly plastic; common very fine and few fine roots; common 
very fine interstitial pores; 1% gravel; mildly alkaline (pH 7.8); abrupt wavy boundary. 

BAt 16-30 cm. Yellowish brown (2.5Y-I0YR 5/4) sandy loam, dark yellowish brown (2.5Y-10YR 4/4) 
moist; weak medium subangular blocks; slightly hard, friable to Hrm, nonsticky, nonplastic; very few 
to few thin clay films on ped faces and pores; common very fine and few fine roots; common very fme 
and few fine tubular pores; 3% gravel; audibly effervescent; mildly alkaline (pH 7.8); abrupt smooth 
boundary. 

2BtbI 30-57 cm. Brown (lOYR 4.5/3) loam, dark brown (lOYR 3/3) moist; weak to moderate medium and 
coarse subangular blocks; slightly hard, firm, slightly sticky, slightly plastic; few thin clay films on 
ped faces and pores; common very fine roots; common very fine tubular pores; 2% gravel; strongly 
effervescent; moderately alkaline (pH 8.0); gradual smooth boundary. 

2Bb2 57-70 cm. Grayish brown to brown (lOYR 5/2.5) loam, very dark grayish brown to dark brown 
(lOYR 3/2.5) moist; moderately medium and coarse subangular blocks; hard, firm, slightly sticky, 
slightly plastic; common thin to moderately thick ciay films on ped faces and pores; common very One 
roots; common very fine interstitial pores; 1% gravel; strongly effervescent; moderately alkaline (pH 
8.0); clear smooth boundary. 

2Btb3 70-91 cm. Grayish brown to brown (lOYR 5/2.5) clay loam, very dark grayish brown to dark brown 
(lOYR 3/2 J) moist; moderate medium and coarse subangular blocks; very hard, firm, sticky, plastic; 
many moderately thick clay films on ped faces and pores; few very fine roots; common very fine 
tubular pores; 1% gravel; strongly effervescent; moderately alkaline (pH 8.0); clear smooth boundary. 

2Btkb 91-101+ cm. Brown (lOYR 4.5/3) clay loam, brown to dark brown (lOYR 3.5/3) moist; weak to 
moderate medium and coarse subangular blocks; hard, firm, sticky, plastic; common to many 
moderately thick clay films on ped faces and pores; few very fine roots; few very fine tubular pores; 
1% gravel; strongly effervescent; moderately alkaline (pH 8.0). 

Auger: 101-125 cm, 2Btkb, clay loam 
125-150 cm, 2Bkb, clay loam 
150-185 cm, 2BCkb, sandy clay loam 
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18S-230 cm, 2CBkb, sandy loam 
230-240+ cm, 2Ckb, sandy loam 

Nutria, Cultivated 2 
Classification: Fine-loamy, mixed, mesic Aridic Haplustalf 
Geomorphic setting: Alluvial fan, elevation 2070 m (6790 ft), 5% slope 
Parent material: Colluvium derived from Cretaceous sedimentary rocks weathered from the Gallup and 
Crevasse Canyon formations 
Agricultural setting: Within cultivated com and squash field 
Landuser: Wilmer Quandelacy 
Described by Jeff Homburg and Troy Lucio 
Date: June 23, 1997 

Ap 0-18 cm. Grayish brown to light olive brown (2.SY S/3) loam, dark grayish brown to olive brown 
(2.SY 4/3) moist; weak to moderate fine and medium granules and weak to moderate medium and 
coarse subangular blocks; slightly hard, friable to firm, slightly sticky, slightly plastic; common very 
fine and few flne and few coarse roots; many very fine vesicular and interstitial pores; 3% gravel; 
mildly alkaline (pH 7.S); abrupt wavy boundary. 

Bt 18-37 cm. Light brownish gray to light brownish yellow (2.SY 6/3) clay loam, grayish brown to light 
olive brown (2.5Y S/3) moist; weak to moderate medium and coarse subangular blocks; hard, firm to 
very firm, sticky, plastic; common thin clay films on ped faces and pores; common very fine and few 
medium roots; common very fine tubular pores; 3% gravel; neutral (pH 7.0); abrupt smooth boundary. 

2C1 37-47 cm. Light olive brown (2.SY S/4) fine sandy loam, olive brown (2.SY 4/4) moist; massive; 
slightly hard, firm, slightly sticky, slightly plastic; common very fine and few medium roots; common 
very flne tubular pores; 3% gravel; mildly alkaline (pH 7.0); abrupt wavy boundary. Contains many 
charcoal flecks. 

3BCtkb 47-77 cm. Grayish brown to light olive brown (2.SY S/3) clay loam, dark grayish brown to olive 
brown (2.SY 4/3) moist; weak medium and coarse subangular blocks to massive; slightly hard to hard, 
firm to very firm, sticky, plastic; few thin clay films on ped faces and pores; common very fine and 
few fine roou; common very fine tubular pores; 3% gravel; slightly effervescent; mildly dkaline (pH 
7.8); abrupt smooth boundary. Contains some fine laminations. 

4C2 77-82 cm. Light yellowish brown (2.SY 6/4) fine sandy loam, light olive brown (2.SY 5/4) moist; 
massive; soft to slightly hard, friable, nonsticky, nonplastic; few very fine roots; few very fine 
interstitial pores; 3% gravel; mildly alkaline (pH 7.4). 

Auger: 82-90 cm, 4C2 continues, sandy loam 
90-130 cm, SBkb, loam to clay loam 
130-220+ cm, 5C, highly stratified alluvium/colluvium 

Nutria, Cultivated 3 
Classification: Fine-loamy, mixed Aridic Haplustalf 
Geomorphic setting: Colluvial footslope below Mexican Hill, elevation 2085 m (6840 ft), 8% slope 
Parent material: Colluvium derived from Cretaceous sedimentary rocks weathered from the Gallup and 
Crevasse Canyon formations 
Agricultural setting: Within cultivated field, now follow 
Landuser Chauncey Simplicio 
Described by Jeff Homburg, Jon Sandor, Vanissa Laahty, Troy Lucio, and Kerwin Onlaleon 
Date: July 22, 1997 
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Ap 0-19 cm. Brown (lOYR 4/3) sandy loam, dark brown (IOYR 3/3) moist; weak fine granules and 
weak medium subangular blocks; slightly hard, fnable, slightly sticky to nonsticky, slightly plastic to 
nonpiastic; common very fine and few fine coarse roots; many very fine interstitial pores; 3% gravel; 
slightly effervescent from 2-19 cm; moderately alkaline (pH 8.0); abrupt wavy boundary. 

BAt 19-28 cm. Dark brown to very dark brown (IOYR4/3) loam, dark brown (IOYR 3/3) moist; weak to 
moderate medium subangular blocks; hard, firm, slightly sticky, slightly plastic; few thin clay films on 
ped faces and pores; common very fine roots; common very fine tubular pores; 2% gravel; slightly 
effervescent; moderately (pH 8.0); clear smooth boundary. Contains few fine carbonate filaments. 

Btkl 28-S8 cm. Brown (IOYR 4/3) clay loam, dark brown (IOYR 3/3) moist; moderate medium and coarse 
subangular blocks; very hard, very firm, sticky, plastic; common thin to moderately thick clay films on 
ped faces and pores; common very fine and few medium roots; common very fine and few coarse 
tubular pores; S% gravel; strongly effervescent; moderately alkaline (pH 8.0); clear smooth boundary. 
Contains common fine carbonate filaments and coatings; cobbles have coatings on all sides, but 
thickest on the bottom. 

Btk2 58-78 cm. Yellowish brown (IOYR 5/4) sandy clay loam, brown (IOYR 4/3) moist; moderate medium 
and coarse subangular blocks; hard, firm, slightly sticky, slightly plastic; few thin clay films on ped 
faces and pores; few very fine and few medium roots; few very fine and coarse tubular pores; 3% 
gravel; slightly effervescent; moderately alkaline (pH 8.0); clear smooth boundary. Contains few fine 
carbonate filaments. 

BCtk 78-88 cm. Pale brown (IOYR 6/3) sandy loam, brown (IOYR 4/3) moist; weak to moderate medium 
subangular blocks; hard, firm, slightly sticky, slightly plastic; few very fine and medium roots; few 
very fine tubular pores; 3% gravel; strongly effervescent; moderately alkaline (pH 8.0). Contains very 
few fine carbonate filaments. 

Auger: 88-120 cm, BCtk continues, sandy loam 
120-150 cm, BCtk, loam 
150-240+ cm, BCk-CBk, sandy loam, very few clay films 

Nutria, Abandoned 1 
Classification: Fine, mixed, mesic Aridic Haplustalf 
Geomorphic setting: Alluvial fan, elevation 2097 m (6880 ft), 2% slope 
Parent material: Colluvium derived fi-om Cretaceous sedimentary rocks weathered from the Gallup and 
Crevasse Canyon formations 
Agricultural setting: Abandoned field 
Landuser: Rex Chimoni 
Described by Jeff Homburg, Troy Lucio, and Lindsay Quam 
Date: July 14,1997 

Apl 0-5 cm. Grayish brown to light olive brown (2.5Y 5/3) loam, dark grayish brown to olive brown 
(2.5Y 4/3) moist; moderate thin plates (0 to 0.7 cm) and moderate very fine granules; soft to slightly 
hard, fnable, slightly sticky, slightly plastic; common very fine and few medium roots; many very fine 
vesicular pores; 3% gravel; neutral (pH 6.7); abrupt smooth boundary. 

Ap2 5-16 cm. Grayish brown to light olive brown (2.5Y 5/3) loam, dark grayish brown to olive brown 
(2 JY 4/2.5) moist; weak medium subangular blocks; slightly hard, fnable, sticky, plastic; few thin 
clay films on ped faces and pores; common very fine and few fine and medium roots; common very 
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fine and few fine tubular pores; 2% gravel; mildly alkaline (pH 7.8); abrupt wavy boundary. 
Contains very few fine carbonate filaments. 

Bt 16-38 cm. Grayish brown to light yellowish brown (2 JY S J/3) clay loam, dark grayish brown to 
olive brown (2.5Y 3/3) moist; moderate coarse and very coarse subangular blocks; hard, firm, sticky, 
plastic; many moderately thick clay films on ped faces and pores; common very fine and few fine 
roots; common very fine and few coarse tubular pores; <1% gravel; audibly effervescent; neutral (pH 
7.2); gradual smooth boundary. 

Btkl 38-62 cm. Grayish brown to olive brown (2.SY S/3) clay loam, dark grayish brown (23Y 4/2) moist; 
weak to moderate medium and coarse subangular blocks; very hard, very firm, sticky, plastic; common 
thin clay films on ped faces and pores; common very few and few fine roots; few very fine tubular 
pores; 1% gravel; slightly effervescent; mildly alkaline (pH 7.7); clear smooth boundary. Contains 
very few fine carbonate filaments. 

Btk2 62-75 cm. Grayish brown to light grayish brown (2.SY S.5/3) clay loam, dark grayish brown to olive 
brown (2.SY 4/2.S) moist; weak to moderate medium and coarse subangular blocks; hard, firm, sticky, 
plastic; common thin clay films on ped faces and pores; few very fine; few very fine tubular pores; 4% 
gravel; slightly effervescent; mildly alkaline (pH 7.7). Contains very few fine carbonate filaments and 
many small charcoal flecks. 

Auger: 75-105 cm, Btk2 continues, clay loam 
105-200+ cm, Ck, clay loam 

Nutria, Abandoned 2 
Classification: Fine, mixed, mesic Aridic Haplustalf 
Geomorphic setting: Alluvial fan, elevation 2073 m (6800 ft), 3.5% slope 
Parent material: Alluvium derived from Cretaceous sedimentary rocks weathered from the Gallup and Crevasse 
Canyon formations 
Agricultural setting: Abandoned field 
Landusen ? 
Described by Jeff Homburg and Lindsay Quam 
Date: July 14, 1997 

Ap 0-13 cm. Light brownish gray to olive brown (2.5Y 6/3) loam, grayish brown to light olive brown 
(2.5Y 5/3) moist; moderate thin plates (0 to 0.5 cm) and moderate Hne granules; slightly hard, fnable 
to firm, slightly sticky, slightly plastic; common very fine and few fine roots; many very fine vesicular 
and interstitial pores; <1% gravel; slightly effervescent; neutral (pH 7.1); abrupt wavy toundary. 

BA 13-23 cm. Grayish brown to light yellowish brown (2.5Y 5.5/3) clay loam, dark grayish brown to 
light olive brown (2 JY 4.5/3) moist; weak coarse and very coarse subangular blocks; hard, very firm, 
sticky, plastic; few thin clay films on ped faces and pores; common very fine roots; common very fine 
tubular pores; audibly effervescent; neutral (pH 7.2); clear smooth boundary. 

Bt 23-42 cm. Grayish brown to light yellowish brown (2.5Y 5.5/3) clay loam, dark grayish brown to 
olive brown (2.5Y 4/3) moist; moderate very coarse prisms parting to moderate coarse and very coarse 
subangular blocks; hard, very firm, sticky, plastic; common moderately thick clay films on ped faces 
and pores; common very One roots; common very fine tubular pores; slighdy effervescent; neutral (pH 
7.2); gradual smooth boundary. 

Btk 42-75+ cm. Grayish brown to light yellowish brown (2.5Y 5 J/3) clay loam, dark grayish brown to 
light olive brown (2 JY 43/3) moist; weak to moderate very coarse subangular blocks; hard, very 
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firm, sticky, plastic; common moderately thick clay Hlms on ped faces and pores; few very few roots; 
few very fine tubular pores; slightly to strongly effervescent; mildly alkaline (pH 7.8). Contains few 

fine carbonate Hlaments. 

Auger: 15-190 cm, Btk continues, clay loam 
190-220f cm, Ck, sandy loam 

Nutria, Abandoned 3 
Classification: Fine-loamy, mixed, mesic Ruventic Haplustept 
Geomorphic setting: Alluvial fan, elevation 2070 m (6790 ft). 1.5% slope 
Parent material: Colluvium derived from Cretaceous sedimentary rocks weathered from the Gallup and 
Crevasse Canyon formations 
Agricultural setting: Abandoned field 
Landuser: Bennie Laate 
Described by Jeff Homburg and Troy Lucio 
Date: July 23, 1997 

Ap 0-10 cm. Brown to yellowish brown (lOYR 5/3.5) sandy loam, brown (lOYR 5/3) moist; weak fine 
granules; soft, very friable, nonsticky, nonplastic; common very fine and fine and few medium roots; 
many very fine interstitial pores; 5% gravel; slightly effervescent; mildly alkaline (pH 7.8); clear wavy 
boundary. 

Bw 10-24 cm. Brown to pale brown (lOYR 5.5/4) sandy loam, dark yellowish brown (lOYR 4/4) moist; 
medium subangular blocks; slightly hard, friable, nonsticky, nonplastic; common fine and few flne and 
medium roots; common very fine interstitial pores; 8% gravel slightly effervescent; moderately 
alkaline (pH 8.0); abrupt smooth boundary. 

CI 24-35 cm. Yellowish brown (lOYR 5/4) sandy loam, dark yellowish brown (lOYR 4/4) moist; 
massive; hard, firm, slightiy sticky, slightly plastic; common very fine roots; common very flne 
interstitial pores; 10% gravel; slightiy effervescent; moderately alkaline (pH 8.0); abrupt smooth 
boundary. 

C2 35-42 cm. Brown to yellowish brown (lOYR 5/3.5) sandy loam, brown to dark yellowish brown 
(lOYR 4/3 J) moist; massive; hard. Arm, slightly sticky, slightiy plastic; common very flne roots; 
common very flne interstitial pores; 5% gravel; slightiy effervescent; moderately alkaline (pH 8.0); 
abrupt smooth boundary. 

C3 42-58 cm. Yellowish brown (lOYR 5/4) sandy loam, brown to dark yellowish brown (lOYR 4/3.5) 
moist; massive; hard, flrm, slightly sticky, slightiy plastic; common very flne roots; common very flne 
interstiti'al pores; 10% gravel; slightiy effervescent; moderately alkaline (pH 8.0); abrupt smooth 
boundary. 

C4 58-68 cm. Brown (lOYR5/3) sandy loam, brown (lOYR 4/3) moist; massive; hard, flrm, slightiy 
sticky, slightiy plastic; common very flne roots; common very flne interstiti'al pores; 5% gravel; 
slightiy effervescent; moderately alkaline (pH 8.0); abrupt smooth boundary. 

2C5 68-90 cm. Brown to yellowish brown (lOYR 5/3) sandy loam, brown to dark yellowish brown (lOYR 
4/3.5) moist; massive; slightiy hard, fnable, slightiy sticky, slightiy plastic; common very flne roots; 
common very flne interstiti'al pores; 8% gravel; slightiy effervescent; moderately alkaline (pH 8.0). 

Augen 90-120 cm, 2C5 continues, sandy loam 
120-180 cm, 3Bt, clay loam 
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180-190 cm, 3C horizon, sandy loam 
190-t- cm, too sandy to auger 

Nutria, Uncultivated 1 
Classification; Fine, mixed, mesic Aridic Haplustalf 
Geomorphic setting: Alluvial fan, elevation 2085 m (6840 ft), 6% slope 
Parent material: Alluvium derived from Cretaceous sedimentary rocks weathered from the Gallup and Crevasse 
Canyon formations 
Agricultural setting: Within uncultivated field used for grazing 
Landuser: Bennie Laate 
Described by Jeff Homburg and Vanissa Laahty 
Date: June 10-11, 1997 

A 0-6 cm. Light brownish gray (2^Y 6/2) loam, dark grayish brown (2.SY 4/2) moist; moderate thin 
plates (0-1 cm) and moderate fine granules; soft, very friable, slightly sticky, slightly plastic; common 
very fine and fine roots; common very fine vesicular and common very fine tubular pores; <2% 
gravel; moderately alkaline (pH 8.0); clear smooth boundary. 

BAt 6-17 cm. Light brownish gray to light yellowish brown (2.5Y 6/3) clay loam, dark grayish brown to 
olive brown (2.5Y 4/3) moist; weak to moderate coarse subangular blocks; slightly hard, friable to 
firm, sticky, plastic; few thin clay films on ped faces and pores; common very fine and fine roots; 
common very fine tubular pores; <2% gravel; moderately alkaline (pH 8.0); gradual smooth boundary. 

Bt 17-58 cm. Light brownish gray to light yellowish brown (2.SY 6/3) clay loam, dark grayish brown to 
olive brown (2.5Y 4/3) moist; weak to moderate coarse and very coarse subangular blocks; hard, firm, 
sticky, plasUc; common thin clay films on ped faces and pores; few very fine and fine roots; common 
very fine tubular pores; <2% gravel; slightly to strongly effervescent; moderately alkaline (pH 8.0); 
diffuse smooth boundary. 

Btk 58-127 cm. Light brownish gray to light yellowish brown (2.5Y 6/3) clay loam, dark grayish brown to 
olive brown (2.5Y 4/3) moist; weak to moderate coarse and very coarse subangular blocks; hard, very 
firm, sticky, plastic; few thin clay films on ped faces and pores; few very fine roots; few very fine 
tubular pores; <2% gravel; slightly to strongly effervescent; moderately alkaline; (pH 8.2); gradual 
smooth boundary. 

2BCk 127-150-t- cm. Light brownish gray to light yellowish brown (2.5Y 6/3) clay loam, dark grayish brown 
to olive brown (2.5Y 4/3) moist; weak coarse subangular blocks; hard, very firm, sticky, plastic; very 
few thin clay films on ped faces; few very fine roots; few very fine tubular pores; 5-10% gravel; 
slightly to strongly effervescent; moderately alkaline (pH 8.2). 

Auger: 150-210 cm, 2BCkt horizon, clay loam, sandier with depth 
210-240 cm, 3Btkb horizon, clay loam 
240-285 cm, 3Btb horizon, clay loam 
285-295+ cm, 3C, sandy loam 

Nutria, Uncultivated 2 
Classification: Fine-loamy, mixed, mesic Aridic Haplustalf 
Geomorphic setting: Alluvial fan, elevaUon 2097 m (6880 ft), 3.5% slope 
Parent material: Alluvium derived from Cretaceous sedimentary rocks weathered firom the Gallup and 
Crevasse Canyon formations 
Agricultural setting: Within uncultivated field used for grazing 
Landusen Cattle User's Association 
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Described by Jeff Homburg and Lindsay Quam 
Date: June 25, 1997 

A 0-6 cm. Grayish brown to light olive brown (2 JY S/3) fme sandy loam, dark grayish brown to olive 
brown (2.SY 4/2.5) moist; weak fine granules; soft, very friable, nonsticky, nonplastic; many very fine 
and few fine roots; many very fine vesicular and few fine tubular pores; 2% gravel; neutral (pH 7.2); 
abrupt smooth boundary. 

Btl 6-25 cm. Grayish brown to olive yellow (2.5Y 5.5/3) clay loam, dark grayish brown to olive brown 
(2.5Y 4/2.5) moist; weak medium subangular blocks; slightly hard to hard, firm, sticky, plastic; many 
thin to moderately thick clay films on ped faces and pores; common very fine and few fine roots; 
common very fine and fine tubular pores; 3-5% gravel; mildly alkaline (pH 7.4); gradual smooth 
boundary. 

Bt2 25-44 cm. Grayish brown to light yellowish brown (2.5Y 5/3) clay loam, dark grayish brown to olive 
brown (2.5Y 4/3) moist; weak coarse prisms parting to weak to moderate medium subangular blocks; 
very hard, very firm, sticky, plastic; many moderately thick clay films on ped faces and pores; 
common very fine roots; common very fine and fine tubular pores; 3-5% gravel; mildly alkaline (pH 
7.7); clear smooth boundary. 

Btkl 44-65 cm. Grayish brown to light yellowish brown (2.5Y 5/3) clay loam, dark grayish brown to olive 
brown (2.5Y 4/3) moist; weak to moderate coarse and very coarse subangular blocks; very hard, very 
firm, sticky, plastic; many moderately thick clay films on ped faces and pores; few very fine roots; 
common very fine and fine tubular pores; 8% gravel; slightly effervescent; moderately alkaline; (pH 
7.9); clear smooth boundary. 

Btk2 65-83+ cm. Light brownish gray to light yellowish brown (2.5Y 6/3) clay loam, dark grayish brown to 
light olive brown (2.5Y 4.5/3) moist; weak medium subangular blocks; very hard, very firm, sticky, 
plastic; many thin to moderately thick clay films on ped faces; few very fine roots; few very fine 
tubular pores; 3% gravel; slightly to strongly effervescent; moderately alkaline (pH 8.0). 

Auger: 83-90 cm, Btk horizon continues, clay loam 
90-1 to cm, C horizon, sandy loam 
110-130 cm, 2Blb horizon, clay loam 
130-2204- cm, 2C, sandy loam 

Nutria, Uncultivated 3 
Classification: Coarse-loamy, mixed, calcareous, mesic Aridic Ustifluvent 
Geomorphic setting: Alluvial fan, elevation 2073 m (6800 ft), 3% slope 
Parent material: Alluvium derived firom Cretaceous sedimentary rocks weathered from the Gallup and Crevasse 
Canyon formations 
Agricultural setting: Within uncultivated field used for grazing 
Landuser: Fred Bowanne 
Described by Jeff Homburg and Shawn Calevasia 
Date: July 21,1997 

A 0-6 cm. Light olive brown to light yellowish brown (2.SY 5.5/4) sandy loam, olive brown (2.SY 4/4) 
moist; weak to moderate thin plates (0-0.5 cm) and weak to moderate fine granules; soft, very friable, 
slightly sticky, slightly plastic; common very fine and few fine roots; many very fine interstidal pores; 
3% gravel; slightly effervescent; mildly alkaline (pH 7.9); abrupt smooth toundary. 
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BC 6-26 cm. Light olive brown (2.5Y S/4) sandy loam, olive brown (2.5Y 4/4) moist; weak medium 
subangular blocks; soft, very friable, nonsticky, nonplastic; many thin to moderately thick clay films 

on ped faces and pores; common very fine and few fine roots; common very fine and fine tubular 
pores; 3-5% gravel; slightly effervescent; mildly alkaline (pH 7.4); abrupt smooth boundary. 

2C1 26-35 cm. Grayish brown to light olive brown (23Y S/3) loamy fine sand, dark grayish brown to 
olive brown (2.5Y 4/3) moist; massive; soft to slightly hard, friable, nonsticky, nonplastic; common 
very fine and few fine and medium roots; many very fine interstitial pores; 3-5% gravel; slightly 
effervescent; moderately alkaline (pH 8.0); abrupt smooth boundary. 

3C2 35-43 cm. Light olive brown (2.5Y 5/3.5) sandy loam, dark grayish brown to olive brown (2.5Y 4/3) 
moist; massive; soft to slightly hard, ftiable, nonsticky, nonplastic; common very fine roots; common 
very Hne interstitial pores; 3% gravel; slightly effervescent; moderately alkaline (pH 8.0); abrupt 
smooth boundary. 

3C3 43-50 cm. Grayish brown to light olive brown (2.5Y 5/3) sandy loam, dark grayish brown to olive 
brown (2.5Y 4/3) moist; massive; slightly hard. Arm, nonsticky, nonplastic; common very fine roots; 
common very fine interstitial pores; 3% gravel; slightly effervescent; moderately alkaline (pH 8.0); 
abrupt smooth boundary. 

4C4 50-55 cm. Grayish brown to light olive brown (2.5Y 5/3) sandy loam, dark grayish brown to olive 
brown (2.5Y 4/3) moist; massive; soft to slightly hard, friable, nonsticky, nonplastic; common very 
fine roots; common very fine interstitial pores; 10% gravel; slightly effervescent; moderately alkaline 
(pH 8.0); abrupt smooth boundary. 

SC5 55-63 cm. Grayish brown to light olive brown (2.5Y 5/3) loamy fine sand, dark grayish brown to 
olive brown (2.5Y 4/3) moist; massive; soft, very friable, nonsticky, nonplastic; common very fine 
roots; many very fine interstitial pores; 5% gravel; slightly effervescent; moderately alkaline (pH 8.0); 
abrupt smooth boundary. 

5C6 63-93 cm. Light olive brown (2.5Y 5/4) sandy loam, olive brown (2.5Y 4/4) moist; massive; soft to 
slightly hard, friable, nonsticky, nonplastic; common very fine roots; common very fme interstitial 
pores; 5% gravel; slightly effervescent; moderately alkaline (pH 8.0). 

Auger: 83-90 cm, Btk horizon continues, clay loam 
90-110 cm, C horizon, sandy loam 
110-130 cm, 2Btb horizon, clay loam 
130-220+ cm, 2C, sandy loam 

Zuni Soil Study: Pedon Descriptions for Intensive Fields 

Sanchez Field (Field 133) -Cultivated Soil 
Classification: Fine-loamy, mixed, mesic Aridic Haplustalf 
Geomorphic setting: Alluvial fan, elevation 2080m (6325 ft), 3% slope. 
Parent material; Alluvium derived primarily from Cretaceous sandstone, mudstone, and shale. 
Agricultural setting: Runoff field-historic and probably prehistoric use. Primary crop is maize. 
Radiocarbon age: 24,320mkI 130 yr BP. (Beta-63163) for charcoal and soil organic matter 160-220 cm depth. 
Described by Jon Sandor, June 20,1991. 

Ap 0-23cm. Brown (lOYR 5/3) clay loam, brown (lOYR 4/3) moist; cloddy (just plowed) plus 
moderate fine and medium subangular blocks and granules; slightly hard (clods hard), Mable, 
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sticky, plastic; few to common very flne, fine, and medium roots; common tubular pores; <1% 
gravel; neutral (pH 7.1); abrupt smooth to irregular boundary. 

Bw 23-30cm. Brown (lOYR S/3) clay loam (few pockets of flne sandy loam), brown (lOYR 4/3) moist; 
moderate medium subangular blocks; hard, fnable to Arm, sticky, plastic; few very fine, flne, 
medium, and coarse roots; common tubular and planar pores; <1% gravel; some audible carbonate; 
moderately alkaline (pH 7.9); clear smooth boundary. 

Bkl 30-46cm. Light yellowish brown (lOYR S.5/4) clay loam (few pockets/strata of flne sandy loam 
and loamy sand), dark yellowish brown (lOYR 4/4) moist; weak to moderate medium subangular 
blocks plus some strata; hard, friable, sticky, plastic; few very flne, flne, and medium roots; conmion 
tubular and planar pores; <1 to 5% gravel; common carbonate fliaments; slighdy effervescent; 
moderately alkaline (pH 8.1); abrupt smooth boundary. 

2Bk2 46-61cm. Light yellowish brown (lOYR S.S/4) flne sandy loam (few coarser strata), dark yellowish 
brown (lOYR 4/4) moist; weak medium subangular blocks plus some strata; slightly hard, friable, 
slightly sticky, slightly plastic; few roots; few tubular pores; IS to 25% gravel in discontinuous 
lenses; common carbonate fliaments; slightly effervescent; moderately alkaline (pH 8.1); abrupt to 
clear smooth boundary. 

2Bk3 61-88cm. Yellowish brown (lOYRS/4) sandy clay loam (few coarser strata), dark brown (lOYR 
3.S/3) moist; weak medium subangular blocks plus some strata; slightly hard, friable, slightly sticky, 
slightly plastic; few roots; few tubular pores; <1 to 5% gravel plus IS to 25% gravel in 
discontinuous lenses; common carbonate fliaments; slightly effervescent; moderately alkaline (pH 
8.1); abrupt to clear smooth boundary. 

3?BtkbI 88-97cm. Yellowish brown (lOYR 5/4) sandy clay loam, dark brown (lOYR 3.5/3) moist; weak 
flne and medium subangular blocks; slightly hard, friable, slightly sticky, slightly plastic; few roots; 
few planar pores; few thin clay coatings; <1 to 5% gravel; common carbonate fliaments; slightly 
effervescent; moderately alkaline (pH 8.0); abrupt smooth boundary. 

3?Btkb2 97-113cm. Yellowish brown (lOYR 5/4) sandy clay loam, dark yellowish brown (lOYR 4/3.5) 
moist; weak and moderate flne and medium subangular blocks; slightly hard to hard, fnable, slightly 
sticky, slightly plastic; few roots; common planar pores; common thin to moderately thick clay 
coatings; <1 to 3% gravel; common carbonate fliaments; slightly effervescent: moderately alkaline 
(pH 8.0); abrupt to clear smooth boundary. 

4ABtkb 113-155-K:m. Sandy clay loam, dark brown (lOYR 3/3) moist; weak and moderate flne and medium 
subangular blocks and granules; slightly hard, friable, sticky, plastic; few roots; few tubular pores; 
common thin clay coatings; <1% gravel; few carbonate fliaments; slightly effervescent; moderately 
alkaline (pH 8.2). 

Note: augered below 155cm depth: gradual boundary to BC or C horizon by 170cm. Fine sandy loam to sandy 
loam to 310cm depth. 

Sanchez Field (Field 133) -Uncultivated Soil 
Classiflcation: Fine, mixed, mesic Aridic Haplustalf 
Geomoiphic setting: Alluvial fan, elevation 2080m (6820 ft), 3% slope. 
Parent material: Alluvium derived primarily from Cretaceous sandstone, mudstone, and shale. 
Vegetation/coven Big sagebrush (Artemisia tridentata), bare ground, grasses and forbs. 
Agricultural setting: Just upslopc from runoff fleld (probably former part of fleld or runoff management zone-

see 1935 aerial photo). 
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Radiocarbon age: 8,010+80 yr B.P. (Beta-63164) for soil organic matter in SAb horizon, 134-ISS cm depth. 
Described by Jon Sandor and Roman Pawluk, August 1, 1991. 

A 0-7cm. Light yellowish brown (lOYR 6/35) fine sandy loam, brown (lOYR S/3) moist; weak fine 
subangular blocks and weak fine and medium granules plus some strata; soft, very friable, 
nonsticky, nonplastic; common very fine, fine, medium, and coarse roots; few to common tubular 
pores; S% fine gravel; slightly acid (pH 6.4); abrupt smooth boundary. 

BA 7-l8cm. Brown (lOYR S/3) clay loam, brown (lOYR 4/3) moist; moderate fine and medium 
subangular blocks and granules; hard, friable to firm, slightly sticky, slightly plastic; conunon very 
fine, fine, medium, and coarse roots; few to common tubular pores; few to many thin clay coatings; 
<2% gravel; neutral (pH 6.9); abrupt smooth boundary. 

Bt l8-47cm. Brown (lOYR S/3) clay loam, brown (lOYR 4/3) moist; moderate medium prisms and 
fine angular blocks; very hard, firm, sticky, plastic; few to common very fine and fine and few 
medium, and coarse roots; common planar and few to common very fine tubular pores; many thin to 
moderately thick clay coacir.gs; <2% gravel; neutral (pH 7.1); abrupt smooth boundary. 

BtkI 47-6Scm. Yellowish brown (lOYR 5/3.S) clay loam, dark yellowish brown (lOYR 4/3 J) moist; 
moderate fine and medium subangular blocks; hard, firm, sticky, plastic; few very fine, fine, 
medium, and coarse roots; common planar and few to common very fine tubular pores; common 
thin clay coatings; <2% gravel; few carbonate filaments; slightly effervescent; mildly alkaline (pH 
7.8); abrupt smooth boundary. 

2Btk2 6S-77cm. Yellowish brown (lOYR 5/4) very gravelly sandy clay loam, dark yellowish brown 
(lOYR 4/4) moist; weak to moderate fine subangular blocks; slightly hard, friable, slightly sticky, 
slightly plastic; few very fine and fine roots; few tubular pores; few to common thin clay coatings; 
40 to S0% gravel; common carbonate filaments and seams; slightly effervescent; moderately 
alkaline (pH 7.9); clear smooth boundary. Some areas of gravelly clay loam. 

2BC 77-116cm. Yellowish brown (lOYR S/4) gravelly sandy clay loam, dark yellowish brown (lOYR 
4/4) moist; mostly massive (stratified), some weak to moderate fine subangular blocks; 
slightly hard, friable, slightly sticky, slightly plastic; few very fine, fine, and medium roots; few thin 
patchy clay coatings; 2S-35% gravel; very few carbonate filaments; non-effervescent matrix mildly 
alkaline (pH 7.7); abrupt smooth boundary. 

3CI 116-I35cm. sandy clay loam, dark yellowish brown (lOYR 4/4) moist; massive (partly stratified); 
slightly hard, very friable, slightly sticky, slightly plastic; few very fine, fine, and medium roots; 

gravel; non-effervescent; mildly alkaline (pH 7.6); abrupt smooth boundary. 

4C2 135-IS5-K:m. gravelly sandy clay loam, yellowish brown (10YR4.S/4) moist; massive (stratified); 
friable, slightly sticky, slightly plastic; few very fine, fine, and medium roots; 1S% gravel; non-
effervescent; mildly alkaline (pH 7.8). 

SAb 134-ISScm. Clay loam, very dark grayish brown (lOYR 3/2) moist; weak to moderate fine 
subangular blocks; slightly hard, friable, sticky, plastic; few very fine, fine, and medium roots; few 
tubular and planar pores; possible thin clay coatings; no gravel; slightly effervescent; mildly alkaline 
(pH 7.8). Note; This horizon occurs as pocket in south side of excavation. 

Note: augered from ISS to 300cm depth: Below 4C2 gravelly sandy loam and sandy loam C horizons. Below 
SAb, loam ACb to 205cm then C horizon as elsewhere. 
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Field 75-Lower Uncultivated Soil 
Classification: Sandy over loamy, mixed (calcareous), mesic Typic Ustifluvent 

Geomorphic setting: Valley floor-toeslope, elevation 1928m (6325 ft). 2% slope. 
Parent material: Alluvium derived from sedimentary rocks and other unconsolidated sediments, including 

aeolian sand. 
Vegetation and cover: Rabbitbrush {Chrysothanmus nauseousus), grasses and forbs, bare ground. 
Agricultural setting: Inactive runoff field-historic and probably prehistoric. 
Described by Jon Sandor, June 18, 1991. 

A1 0-7cm. Reddish brown (SYR S/4) fine sandy loam, reddish brown (SYR 3.S/4) moist; weak fine and 
medium subangular blocks and granules; slightly hard, very friable, slightly sticky, slightly plastic; 
common to many very flne, fine, and few medium roots; common very fine and fine tubular pores 
with roots; no gravel; strongly effervescent; mildly alkaline (pH 7.8); clear smooth boundary. Upper 
2cm soft to loose consistence. 

A2 7-24cm. Light reddish brown (SYR 6/4) sandy clay loam, reddish brown (SYR 4/4) moist; weak 
medium subangular blocks and weak fine and medium plates; slightly hard, friable, slightly sticky, 
slightly plastic; few to common very fine and few fine and medium roots; common very fine and fine 
tubular pores; no gravel; surongly effervescent; moderately alkaline (pH 8.0); abrupt smooth 
boundary. 

2AC 24-31cm. Light reddish brown (SYR 6/4) loamy fine sand, reddish brown (SYR S/4) moist; weak 
fine and medium subangular blocks; soft, very fh'able. nonsticky, nonplastic; few very fine and fine 
roots; no gravel; strongly effervescent; moderately alkaline (pH 8.1); abrupt smooth boundary. 

2C1 31 -47cm. Light brown (7.S YR 6/4.S) loamy fine sand (fine strata 1 -Smm thick, 31 -40cm), strong 
brown (7.SYR4.S/4.5) moist; massive; soft, very friable, nonsticky, nonplastic; few very fine, fine, 
and medium roots; no gravel; strongly effervescent; moderately alkaline (pH 8.2); abrupt, smooth, 
slightly angled boundary. 

2C2 47-S6cm. Pink (7.SYR 7/4) loamy fine sand (some fine strata), brown (7.SYR S/4) moist; massive; 
soft, very fnable, nonsticky. nonplastic; few very fine and fine roots; no gravel; strongly 
effervescent; moderately alkaline (pH 8.0); abrupt smooth boundary. 

2C3 56-74cm. Pink (7.SYR 7/4) fine sand, brown (7.SYR S/4) moist; massive; soft, very fnable, 
nonsticky, nonplastic; few very fine and fine roots; no gravel; strongly effervescent; moderately 
alkaline (pH 8.1); abrupt smooth boundary. 

3C4 74-93cm. Light brown (73YR 6/4) very fine sandy loam, brown (7.SYR 5/4) moist and SYR 4/4 for 
some finer sediment; massive; soft, very friable, slightly sticky, slightly plastic; few very fine and 
fine roots; no gravel; strongly effervescent; moderately alkaline (pH 8.2); abrupt smooth boundary. 

3CS 93-113cm. Light brown (lOYR 6/4) very fine sandy loam, yellowish brown to brown(lOYR 5/4 to 
7.SYR 4/4) moist; massive; soft, very friable, slightly sticky, slightly plastic; few very fine and fine 
roots; no gravel; strongly effervescent; moderately alkaline (pH 8.3); abrupt smooth boundary. 

3C6 113-131cm. Light brown (lOYR 6/4) loam, yellowish brown to brown(10YR 5/4 to 7 JYR 4/4) 
moist; massive; soft, very friable, slightly sticky, slightly plastic; few very fine and fine roots and one 
coarse root; no gravel; strongly effervescent; nioderately alkaline (pH 8.3); abrupt smooth boundary. 

3C7 13 l-145cm. Light brown (7.SYR 6/4) loam, yellowish brown to brown (7.5YR 5/4) moist; massive; 
slightly hard, fnable. slightly sticky, slightly plastic; few very fine and fine roots; no gravel; strongly 
effervescent; moderately alkaline (pH 8.3); abrupt smooth boundary. 
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3C8 14S- 160cm. Light reddish brown (SYR 6/4) loam, reddish brown (SYR 4/4) moist; massive; hard, 
firm, slightly sticky, slightly plastic; few very fine and fine roots; no gravel; strongly effervescent: 
moderately alkaline (pH 8.4). 

Note: Augered firom 160cm depth: Strata of silty clay loam, fine sandy loam, and clay loam to 310cm depth. 

Field 75-Lower Cultivated Soil 
Classification: Sandy over loamy, mixed (calcareous), mesic Typic Ustifluvent 
Geomorphic setting; Valley floor-toeslope, elevation 1928m (632S ft), 2% slope. 
Parent material; Alluvium derived from sedimentary rocks and other unconsolidated sediments, including eolian 

sediments. 
Agricultural setting: Runoff field-historic and probably prehistoric. Profile described in cunently fallow part of 

field. Primary crop is maize. 
Radiocarbon age: 8SC^80 yr B.P. (Beta-63S86) for organic matter-rich sediment and charcoal at top of SCS 

horizon, 95 cm depth. 
Note: numerous animal burrows in field and some krotovina in upper part of profile. 
Described by Jon Sander and Jeff Homburg, June IS, 1991. 

Ap I 0-4cm. Reddish brown (SYR S/4) fine sandy loam, reddish brown (SYR 4/4) moist; weak fine and 
medium subangular blocks, single grain in parts of upper 1cm; soft, very friable, slightly sticky, 
slightly plastic; few to common very fine and fine roots; common very Hne and fine tubular pores; no 
gravel; strongly effervescent; moderately alkaline (pH 8.4); abrupt smooth boundary. 

Ap2 4-29cm. Light reddish brown (SYR S3/4) fine sandy loam, reddish brown (SYR 4/4) moist; weak 
medium subangular blocks; slightly hard, friable, slightly sticky, slightly plastic; few very fine and 
flne roots; few very fme tubular pores; no gravel; few fine carbonate filaments; strongly effervescent; 
moderately alkaline (pH 8.4); abrupt smooth boundary. 

2CI 29-49cm. Reddish yellow (7.SYR 7/S) fine sand, strong brown (7.SYR S/6) moist; massive; soft, 
very friable, nonsticky, nonplastic; very few very fine and fine roots; no gravel; strongly effervescent; 
strongly alkaline (pH 8.S); abrupt smooth boundary. 

3C2 49-70cm. Light brown (7.5YR 6/4) very fine sandy loam, brown (7.SYR S/4) moist; massive; soft, 
very friable, slightly sticky, slightly plastic; very few very fine and fine roots; no gravel; strongly 
effervescent; moderately alkaline (pH 8.4); abrupt U-shaped (across excavation) boundary. 

3C3 70-79cm. Very fine sandy loam, brown (7.SYR S/3) moist; massive; soft, very friable, slightly 
sticky, slightly plastic; very few very fine and fine roots; no gravel; strongly effervescent; moderately 
alkaline (pH 8.4); abrupt smooth boundary. Layer includes 3cm thick discontinuous sand lens. 

4C4 79-9Scm. Loam, brown (7 .SYR 5/4) moist; massive; soft, very friable, slightly sticlQr, slightly 
plastic; very few very fine and fine roots; no gravel; strongly effervescent; moderately all^ine (pH 
8.3); abrupt smooth boundary. Note loamy very fine sand lens (lOYR 6/4 moist) firom 90-97cm in 
one area. 

SCS 9S-I06cm. Very fine sandy loam (fine strata of very fine sandy loam and silt loam/silty clay loam), 
yellowish red (SYR S/6-vfsl) to reddish brown (SYR 4/4-sil) moist (sonne greenish to yellowish 
colors also observed); massive; soft, very friable, slightly sticky, slightly plastic; very few very fine 
and fine roots; no gravel; violently effervescent; moderately ail^ine (pH 8.4); abrupt smooth 
boundary. Some lOYR colors? 
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6C6 106-124-fcin. Clay loam (fine strata of very fine sandy loam and silt loam/silty clay loam), 
yellowish red (7^YR S/4-vfsl) to reddish brown (SYR 4.S/4-sil/sicl) moist; nnassive; hard, firm, 

slightly sticky to sticky, slightly plasuc to plastic; very few very fine and fine roots; no gravel; 
violently effervescent; moderately alkaline (pH 8.4); abrupt smooth boundary. 

7C7 l24-140+cm. Clay, reddish brown (SYR 4/4) moist; massive; very hard, very firm, sticky, very 
plastic; no roots observed; no gravel; violently effervescent; strongly alkaline (pH 8.5). 

Note; Augered below 140cm depth: Strata of fine sandy to clayey sediments to 3 lOcm depth. 

Field 75-Upper Uncultivated Soil 
Classification: Sandy, mixed, mesic Aridic Haplusialf 
Geomorphic setting; backslope, elevation 1930m (633S ft), 10% slope. 
Parent material: Colluvium, alluvium, and eolian sediment derived primarily from Mesozoic sedimentary rocks. 
Vegetation and cover: grasses and forbs, few shrubs like rabbitbrush (Chrysothamnus nauseosus). 
Agricultural setting: 13 m outside of runoff agricultural field (matched to profile inside field). 
Described by Jon Sandor and Wendy Fontenelle, June 13-14, 1991. 

A 0-9cm. Brown (7.SYR S/4) loamy sand, dark brown (7.SYR 4/33) moist; weak to moderate fine to 
medium subangular blocks and granules; soft, very friable, nonsticky, nonplastic; common to many 
very fine and common fine roots; few very fine and fine tubular pores; <1% gravel; neutral (pH 7.0); 
abrupt wavy boundary. 

Bt 9-26cm. Brown (7.SYR S/4) loamy sand, brown (7 .SYR 4/4) moist; weak fine and medium 
subangular blocks to massive; slightly hard, friable, slightly sticky, nonplastic; few to conunon very 
fine and few fine roots; few very fine and fine tubular pores; few clay coatings bridging and staining 
sand grains; <1% gravel; moderately alkaline (pH 8.0); abrupt wavy boundary. 

Btk 26-46cm. Brown (7.SYR 5/4) loamy sand, brown (7.SYR 4/4) moist; weak fine to coarse subangular 
blocks; slightly hard, very fnable, nonsticky, nonplastic; few to common very fine and few fine, 
medium, and coarse roots; few very fine and fine tubular pores; few clay coatings bridging and 
staining sand grains; <1% gravel; few carbonate filaments along root channels; slightly effervescent; 
moderately alkaline (pH 8.0); clear smooth boundary. 

Bkl 46-71cm. Strong brown (7.SYR 5/6) loamy sand, strong brown (7.SYR 4/6) moist; weak medium 
and coarse subangular blocks to massive; soft, very fnable, nonsticky, nonplastic; few to common 
very fine and few Hne, medium, and coarse roots: <1% gravel; common carbonate filaments and 
seams; strongly effervescent; moderately alkaline (pH 8.2); gradual wavy boundary. 

Bk2 7 l-92cm. Strong brown (7.SYR 5/6) loamy sand, strong brown (7.SYR 4/6) moist; weak medium 
and coarse subangular blocks to massive; soft, very fnable, nonsticky, nonplastic; few very fine, fine, 
medium, and coarse roots; <1% gravel; common carbonate filaments and seams; strongly 
effervescent; moderately alkaline (pH 8.3); gradual wavy boundary. 

Bk3 92-1 lOcm. Brown (7.SYR S/4) loamy sand, brown (73YR 4/4) moist; massive with few weak 
medium and coarse subangular blocks; soft, very fnable, nonsticky, nonplasu'c; few very fine, fine, 
medium, and coarse roots; <1% gravel; few to common carbonate filaments; slightly effervescent; 
moderately alkaline (pH 8.3); clear smooth boundary. 

Bk4 110-126cm. Strong brown (7.SYR 5/5) loamy sand, strong brown (7.SYR 4/S) moist; massive with 
few weak medium and coarse subangular blocks; slightly hard, friable, nonsticky, nonplastic; few 
very fine, fine, medium, and coarse roots; <1% gravel; common carbonate filaments and seams; 
strongly effervescent; moderately alkaline (pH 8.0); clear smooth boundary. 
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BC 126-160+cm. Strong brown (7.5YR 5.5/5) fine sand, strong brown (75YR 4.5/5) moist; massive; 
soft, very friable, nonsticky, nonplastic; few very fine, fine, medium, and coarse roots; <1% gravel; 
few to conmion carbonate filaments and seams; strongly effervescent; moderately alkaline (pH 8.1). 

Note: Clay coatings observed in thin section from surface down into Bt horizon. It is inferred that original 
surface horizon(s) were truncated, exposing part of original Bt horizon. An argillic horizon is then 
inferred even though the required clay increase is marginal. The other possible classification is 
Mixed, mesic Aridic Ustipsamment. Augered below 160cm depth calcareous loamy sand and sand C 
horizons to 325cm depth. 

Field 75*Upper Cultivated Soil 
Classification: Sandy, mixed, mesic Aridic Haplustalf 
Geomorphic setting: backslope, elevation 1930m (6335 ft), 10% slope. 
Parent material: Colluvium, alluvium, and eolian sediment derived primarily from Mesozoic sedimentary rocks. 
Agricultural setting: Runoff field-historic and probably prehistoric. Primary crop is maize. 
Described by Jon Sandor and Wendy Fontenelle, June 12-13,1991. 

Apl O-lOcm. Brown (7.5YR 5/4) loamy sand, brown (7.5YR4/4) moist; weak fine and medium 
subangular blocks and granules; soft, very friable, nonsticky, nonplastic; common very fine and few 
fine roots; common various pores; <1% gravel; mildly alkaline (pH 7.6); abrupt smooth boundary. 

Ap2 10-32cm (varies from 21 to 32cm). Strong brown (7.5YR 5/5) loamy sand, brown (7.5YR 4/4) 
moist; weak fine and medium subangular blocks and granules, partly massive and compacted (plow 
pan); slightly hard, friable, nonsticky, nonplastic; few very fine roots; <1% gravel; moderately 
alkaline (pH 8.1); abrupt smooth boundary. Note: curved streaks of sand 12-28cm (73YR 6^ dry, 
7.5YR 4/3 moist), probably from plowing.. 

Ab 32-36cm. Brown (7.5YR 5/3.5) loamy sand, brown (7.5YR 4/3) moist; weak fine and medium 
subangular blocks and granules; slightly hard, friable, nonsticky, nonplastic; few very fine roots; few 
very fine and fine tubular pores; <1% gravel; moderately alkaline (pH 8.3); abrupt smooth boundary. 

Bt 1 36-47cm. Brown (7.5YR 4/4) loamy fine sand, dark brown (7.5YR 3.5/4) moist; weak medium and 
coarse subangular blocks; slightly hard, friable, slightly sticky, slightly plastic; few to conunon very 
fine and fine roots; few very fine and fine tubular pores; few clay coatings bridging and staining sand 
grains; <1% gravel; moderately alkaline (pH 8.3); clear smooth boundary. 

Bt2 47-54cm. Brown (7.5YR 4/4) loamy sand, dark brown (7.5YR 3.5/4) moist; weak medium and 
coarse subangular blocks; slightly hard, friable, slightly sticky, slightly plastic; few clay coatings 
bridging and staining sand grains; few to common very fine and fine roots; few very fine and fine 
tubular pores; few clay coatings bridging and staining sand grains; <1% gravel; few fine carbonate 
filaments along root channels (noneffervescent in matrix); moderately alkaline (pH 8.3); clear 
smooth boundary. 

Bkl 54-69cm. Brown (7 JYR 4/4) loamy sand, dark brown (7.5YR 3.5/4) moist; weak medium and 
coarse subangular blocks; slightly hard, friable, slightly sticky, slightly plastic; few very fine roots; 
few very fine and fine tubular pores; <1% gravel; few to common cartonate filaments and soft 
masses; slightly effervescent; moderately alkaline (pH 8.3); clear smooth boundary. 

Bk2 69-80cm. Strong brown (7.5YR 4/6) loamy sand, strong brown (7.5YR 4/6) moist; weak medium 
and coarse subangular blocks; slightly hard, friable, slightly sticl^, slightly plastic; few very fine 
roots; few very fine and fine tubular pores; <1% gravel; few to common cartxmate filaments and soft 
masses; slighUy effervescent; moderately alkaline (pH 8.3); clear smooth boundary. 
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Bk3 80-94-K:m. Strong brown (7 JYR 4/6) loamy sand, strong brown (7.5YR 4/6) moist; weak medium 
and coarse subangular blocks; slightly hard, fKable, slightly sticky, slightly plastic; few very fine 
roots; few very fine and fine tubular pores; <1% gravel; few to common carbonate filaments and soft 
masses; slightly effiervescent; moderately alkaline (pH 8.3); gradual smooth to wavy boundary. 

Bk4 94-129-K:m. Reddish yellow (7.SYR 6/5) loamy fine sand, strong brown (7.SYR 5/S) moist; weak 
medium and coarse subangular blocks; slighdy hard, firiable, slightly sticky, slightly plastic; few very 
fine roots; few very fine and fine tubular pores and one krotovina; <1% gravel (S% gravel stratum 
near base); few carbonate filaments and soft masses; slightly effervescent: moderately alkaline (pH 
8.4); abrupt smooth boundary. 

BC or C 129-160-K;m. Reddish yellow (7 JYR 6/S) fine sand, strong brown (7.SYR S/S) moist: massive; soft, 
very fnable, nonsticky, nonplastic; few very fine roots; <1% gravel; few carbonate filaments and soft 
masses; slightly effervescent: strongly alkaline (pH 8.6); abrupt smooth boundary. Note: 
concentration of S0-7S% gravel from 129-136cm in part of exposure. 

Note: Clay coatings observed in thin section from surface down into Bt horizon. It is inferred that original 
surface horizon(s) were truncated, exposing part of original Bt horizon. An argillic horizon is then 
inferred even though the required clay increase is not present. The other possible classification is 
Mixed, mesic An'dic Ustipsamment. Augered below 160cm depth-calcareous loamy sand and sand C 
horizons to 300cm depth. 

Weekoty Field-Cultivated Soil 
Classification: Fine-loamy, mixed, mesic, Aridic Argiustoll 
Geomorphic setting: Alluvial fan, elevation 2088 m (68S0 ft), 2-3% slope 
Parent material: Alluvium derived from Cretaceous sedimentary rocks weathered from the Gallup and Crevasse 
Canyon formations 
Agricultural setting: Cultivated field (currently fallow) 
Landuser: Fred Weekoty 
Described by Jon Sandor 
Date: July 29, 1996 

Ap 0-17 cm. Brown (lOYR S/3) sandy loam, dark brown (lOYR 3/3) moist; weak thin plates in upper S 
cm, weak fine granules and weak to moderate fine and medium subangular blocks; soft to slightly 
hard, very friable, slightly sticky, slightly plastic; few to common very fine and fine roots; 5% gravel; 
neutral (pH 6.8); abrupt to clear smooth boundary. 

ABt 17-28 cm. Brown (lOYR S/3) sandy loam, dark brown (lOYR 3/3) moist; weak to moderate fine and 
medium subangular blocks; slightly hard to hard, friable, slightly sticky, slightly plastic; few to 
conunon thin clay films on ped faces and pores; few very flne and fine roots; S-10% gravel; neutral 
(pH 6.8); abrupt to clear smooth boundary. 

Bt 28-68 cm. Brown (lOYR S/3) clay loam, brown (lOYR 4/3) moist; moderate One and medium prisms 
parting to weak to moderate flne and medium subangular blocks; hard. Arm, slightly sticky to su'cky, 
slightly plastic to plastic; conunon thin clay films on ped faces and pores; few very flne and fine roots; 
tubular and planar pores; 5% gravel; neutral (pH 6.9); abrupt irregular boundary. Charcoal flecks 
scattered throughout 

Bt or BCt 68-81 cm. Yellowish brown (lOYR S/4) sandy loam to sandy clay loam, dark yellowish brown 
(lOYR 4/4) moist; weak flne and medium subangular blocks; hard, friable, slightly sticky, slightly 
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plastic; common thin clay films on ped faces and pores; few very fine, fine, and medium roots; 5% 
gravel; mildly alkaline (pH 7.4); abrupt to clear smooth boundary. 

Bt or BCt 81-105 cm. Yellowish brown (lOYR 5/4) fine sandy loam, dark yellowish brown (lOYR 4/4) moist; 
weak medium subangular blocks; slightly hard, friable, slightly sticky, slightly plastic; few thin clay 
films on ped faces and pores; few very fine and fine roots; 5% gravel; moderately alkaline (pH 8.0); 
effervescent; abrupt to clear smooth boundary. Contains a few carbonate filaments. 

2Btkl 105-141 cm. Yellowish brown (lOYR 5/4) clay loam, dark yellowish brown (lOYR 3/4) moist; 
moderate medium subangular blocks; slightly hard, friable, sticky, plastic; few very fine and fine 
roots; 5% gravel; moderately alkaline (pH 8.0); effervescent abrupt smooth boundary. Contains a 
few carbonate filaments. 

2 or 3 Btk2 141-150+ cm. Yellowish brown (lOYR 5/4) sandy clay loam, dark yellowish brown (lOYR 4/4) 
moist; weak medium subangular blocks; slightly hard, friable, slightly sticky to sticky, slightly 
plastic; few very fine roots; 5% gravel; moderately alkaline (pH 8.4); strongly effervescent. 
Contains many carbonate filaments and an 8-cm wide krotovina. 

Auger: 150-210 cm, 2 or 3BCtk horizon, loamy sand, charcoal flecks scattered throughout, effervescent, few 
carbonate threads and few clay films 
210-230 cm, 2 or 3BCtk horizon, loam, effervescent, few carbonate threads and few clay films 
230-300 cm, 2 or 3BCtk horizon, loam, effervescent, few carbonate threads and few clay films, 5-10% 
gravel throughout 

Weekoty Field-Uncultivated Soil 
Classification: Fine-loamy, mixed, mesic, Aridic Argiustoll 
Geomorphic setting: Alluvial fan. elevation 2088 m (6850 ft), 2-3% slope 
Parent material; Alluvium derived from Cretaceous sedimentary rocks weathered from the Gallup and Crevasse 
Canyon formations 
Agricultural setting: Uncultivated field 
Landuser: Fred Weekoty 
Described by Jon Sandor 
Date: July 30, 1996 

A 0-9 cm. Brown (lOYR 5/3) loam, dark grayish brown (lOYR 4/2) moist; weak thin plates in upper 0.5 
cm, weak to moderate fine and medium granules; soft, very friable to friable, slightly sticky, slightly 
plastic; common very fine and fine roots; many very fine vesicular pores; <5% gravel; neutral (pH 
7.0); abrupt smooth boundary. 

BAt 9-27 cm. Brown (lOYR 5/3) sandy loam, dark grayish brown (10YR4/2) moist; weak fine and 
medium subangular blocks; slightly hard, friable, slightly sticky, slightly plastic; few thin clay films on 
ped faces and pores; common very fine and fine and few coarse roots; common very fine and fine 
tubular and few very fine vesicular pores; <5% gravel; mildly alkaline (pH 7.5); clear smooth 
boundary. 

Btl 27-59 cm. Grayish brown to brown (lOYR 5125) sandy clay loam to loam, dark to very dark grayish 
brown (lOYR 35/2) moist; moderate medium prisms parting to weak fine and medium subangular 
blocks; hard, friable to firm, slighdy sticky, slightly plastic; common thin clay fihns on ped faces and 
pores; common very fine and fine roots; many very fine and few fine tubular pores; <5% gravel; 
slightly acidic (pH 6.5); clear smooth boundary. 
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Bt2 59-82 cm. Brown (lOYR 5/3) loam, dark brown (lOYR 3/3) moist; moderate fine and medium 
prisms parting to weak fine and medium subangular blocks; very hard, very firm, slightly sticky, 

slightly plastic; few thin clay films on ped faces and pores; few to common fine roots; many fme and 
few fine tubular pores; 10% gravel; moderately alkaline (pH 8.0); abrupt smooth boundary. 

BCtl 82-101 cm. Yellowish brown (lOYR 5/4) loamy sand, brown to dark yellowish brown (lOYR4/3.5) 
moist; massive; soft, very fnable, nonsticky, nonplastic; few fine roots; few very fine tubular pores; 5-
10% gravel and one 15 cm cobble; moderately alkaline (pH 8.0); abrupt smooth boundary. Contains 
very few 1 mm laminations. 

BCt2 101-132 cm. Brown (lOYR 5/3) loam, brown (lOYR 4/3) moist; massive; hard, fnable firm, slightly 
sticky, slightly plastic; few very fine and fine roots; common very fine and few fine tubular pores; 
<2% gravel; moderately alkaline (pH 8.0); abrupt smooth boundary. Contains common 1 nun 
laminations and charcoal flecks. 

BCt3 132-150+cm. Brown (lOYR 5/3) loam, brown (lOYR4/3) moist; massive; slightly hard, very friable, 
slightly sticky, slightly plastic; few medium roots; common very fine interstitial pores; 5% gravel; 
moderately alkaline (pH 8.0); abrupt smooth boundary. Contains many 1-3 mm laminations, and a 
charcoal lens in the lower part. 

Auger: 150-170 cm, BCt3 horizon, fine sandy loam, 5% gravel, noncalcareous, has clay films 
170-220 cm, BCtkl horizon, sandy loam, 5% gravel, carbonate filaments and few clay films 
220-230 cm, BCtk2 horizon, loam, carbonate filaments and few clay flints 
230-275 cm, BCtk3 horizon, fine sandy loam, 5% gravel, carbonate filaments and few clay films, 
effervescent 
275-300 cm, 2BCtk4 horizon, clay loam, clay coatings 
300-310 cm-f, 2 BCt?k5 horizon, loam, 

Field 153-Cultivated Field 
Classification: Fine-loamy, mixed, mesic Aridic Ustifluvent 
Geomorphic setting: Distal fan toeslope/alluvial plain, elevation 2070 m (6790 ft), 1% slope 
Parent material: Alluvium derived from Cretaceous sedimentary rocks weathered from the Gallup and Crevasse 
Canyon formations 
Agricultural setting: Cultivated field used for grazing 
Landuser: Bennie Laate 
Described by Jon Sandor and Jay Norton 
Date: August 5, 1996 

Ap 0-23 cm. Light brownish gray to light yellowish brown (2.5Y 6/3) loam, dark grayish brown to olive 
brown (2.SY 4/3) moist; moderate fine and medium subangular blocks and granules; slightly hard, 
friable, slightly sticky, slightly plastic; few very fine and fine roots; effiervescent; mildly to moderately 
alkaline (pH 7.8-8.0); abrupt smooth boundary. 

2CI (sandy) 23-37 cm. Light yellowish brown (2.5Y 6/4) sandy clay, olive brown (2.5Y 4/4) moist; finely 
stratified; slightly hard, friable to firm, slightly sticky, slightly plastic; few very fine and fine roots; 
effervescent; mildly to moderately alkaline (pH 7.8-8.0); abrupt smooth boundary. 

2C1 (silty) 23-37 cm. Light yellowish brown (2.5Y 6/4) silty clay loam, light olive brown (2.5Y 5/4) moist; 
massive, finely stratified; hard, fh'able, slightly sticky, slightly plastic; few very fine and fine roots; 
effervescent; mildly to moderately alkaline (pH 7.8-8.0); abrupt smooth boundary. Contains 1-mm 
wide pellets. 
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2C2 37-68 cm. Grayish brown to light olive brown (2.SY S/3) clay loam, dark grayish brown to olive 
brown (2 JY 4/3) moist; massive, weakly stratified, few weak subangular blocks; hard, firm, sticky, 

plastic; few very fine and fine roots; effervescent; mildly to moderately alkaline (pH 7.8-8.0); clear 
smooth boundary. Contains I-mm wide pellets. 

3C3 (sandy) 68-96 cm. Light olive brown to light yellowish brown (2.5Y S J/4) sandy loam, olive brown 
(2.SY 4/33) moist; massive, finely stratified; soft, very fiiable, slightly sticky, slightly plastic; few 
very fine and fine roots; effervescent; mildly to moderately alkaline; (pH 7.8-8.0); abrupt smooth 
boundary. 

3C3 (silty) 68-96 cm. Light olive brown (2 JY S/3.S) silty clay loam, olive brown (2.SY 4/3.5) moist; massive, 
finely stratified; slightly hard to hard, firm, slightly sticky, slightly plastic; very few very fme and fine 
roots; effervescent; mildly to moderately alkaline (pH 7.8-8.0); abrupt smooth boundary. 

4Btb 96-119 cm. Light brownish gray to grayish brown (2.5Y 5.5/3) silty clay, dark grayish brown to olive 
brown (2.5Y 4/3) moist; weak medium subangular blocks to massive (compressed); very hard, very 
firm, very sticky, very plastic; many thin to moderately thick clay films on ped faces and pores; few 
very fine and fme roots; effervescent; mildly to moderately alkaline (pH 7.8-8.0); clear smooth 
boundary. 

4Btkb 119-140 cm. Light brownish gray to light yellowish brown (2.5Y 6/3) silty clay, olive brown (2.5Y 
4/3.5) moist; weak medium subangular blocks to massive (compressed); very hard, very firm, sticky to 
very sticky, very plastic; common thin to moderately thick clay films on ped faces and pores; very few 
very fine and fine roots; effervescent; mildly to moderately alkaline (pH 7.8-8.0); abrupt smooth 
boundary. 

4BCtkb 140-150+ cm. Light brownish gray to light yellowish brown (2.5Y 6/4) silt loam, light olive brown 
(2.5Y 5/4) moist; massive; slightly hard, firm, slightly sticky, plastic; very few thin clay films on ped 
faces and pores; very few very fine and fine roots; few very fine and fine tubular pores; effervescent; 
mildly to moderately alkaline (pH 7.8-8.0). 

Auger: 150-200 cm, 4BCtkb horizon continues, silty clay loam, sandier with depth, effervescent 
200-3(X) cm, silty clay, carbonate filaments, effervescent 

Field 153-Uncultivated Field 
Classification: Fine-loamy, mixed, mesic Aridic Ustifluvent 
Geomorphic setting; Distal fan toeslope/alluvial plain, elevation 2070 m (6790 ft), 1% slope 
Parent material: Alluvium derived from Cretaceous sedimentary rocks weathered from the Gallup and Crevasse 
Canyon formations 
Agricultural setting: Uncultivated field used for grazing 
Landuser: Bennie Laate 
Described by Jon Sandor 
Date: August 5,1996 

A 0-17 cm. Light brownish gray to light olive brown (2.5Y 55/3) loam with some very fine sand, dark 
grayish brown to olive brown (23Y 4/3) moist; weak fine and medium subangular blocks, weak fine 
granules, and some fine plates or laminae; slightly hard, fiiable, slightly sticky, slightly plastic; few 
very fine and fine roots; effervescent; mildly to moderately alkaline (pH 7.8-8.0); abrupt smooth 
boundary. 

2Cl (silty) 17-40 cm. Light yellowish brown (2.5Y 6/4) silt loam to silty clay loam, olive brown (25Y 4/4) 
moist; massive, finely stratified; slightly hard to hard, fnable, slightly sticky, plastic; common to many 
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very fine and fine roots; slightly effervescent; mildly alkaline (pH 7.8); abrupt smooth boundary. 
Contains 2-3 cm thick laminations altemating with 11 cm thick stratum of loamy fine sand (described 

below) 

2C1 (sandy) 17-40 cm. Light yellowish brown (2.5Y 6/4) loamy fine sand, olive brown (2.SY 4/4) moist; 
finely stratified; soft, very fh'able, nonsticky, nonplastic; common to many very fine and One roots; 
effervescent; mildly alkaline (pH 7.8); abrupt smooth boundary. 

3C2 40-80 cm. Light yellowish brown (2.SY 6/4) silt loam, light olive brown (2.5Y 5/4) moist; massive, 
finely stratified; slightly hard, friable, slightly su'cky, plastic; few very fine and fine roots; 
effervescent; mildly alkaline (pH 7.8); abrupt smooth boundary. Contains charcoal in lenses from 38 to 
48 cm. 

4C3 80-107 cm. Light yellowish brown (2.SY 6/4) very fine sandy loam to loam, light yellowish brown to 
light olive brown (2.5Y 5.5/4) moist; massive, finely stratified; slightly hard to hard, friable, slightly 
sticky, slightly plastic; few to common very fine, fine, and medium roots; effervescent; mildly alkaline 
(pH 7.8); abrupt smooth boundary. 
Interstratified with very fine and fine sand and 1-2 mm silty laminae. 

5Btb 107-126 cm. Light brownish gray to light yellowish brown (2.5Y 6/3) silty clay, olive brown (2.5Y 
4/3.5) moist; moderate fine and medium angular and subangular blocks; very hard, firm, sticky to very 
sticky, very plastic; common thin to moderately thick clay films on ped faces and pores; few very fine 
and fine roots; mildly alkaline (pH 7.8; clear smooth boundary. 

5Btkb 126-150+ cm. Dark grayish brown to olive brown (2.5Y 6/3) silty clay, olive brown (2.5Y 4/3) moist; 
moderate fine and medium angular and subangular blocks; very hard, firm, sticky to very sticky, very 
plastic; few very fine and fine roots; audibly to very slightly effervescent; mildly alkaline (pH 7.8). 

Auger: 140-155 cm, 5Btkb horizon continues, silty clay 
155-165 cm, silt loam to silty clay loam, carbonate filaments, strongly effervesces 
165-290 cm, silty clay loam with some fine sand, some areas with carbonate filaments, effervescent 

Ant and Soil Study: Pedon Descriptions 

Ant Mound and Submound 
Classification: Fine-loamy, mixed, mesic Aridic Haplustalfs 
Geomorphic setting: Alluvial fan, elevaUon 2088 m (6850 ft), 2-3% slope 
Parent material: Alluvium derived from Cretaceous sedimentary rocks weathered from the Gallup and 

Crevasse Canyon formations 
Agricultural setting: Uncultivated field used for grazing 
Landuser: Fred Weekoty 
Described by Jeff Homburg 
Date: July 14, 1998 

mound 0-18 cm. Brown (10YR5/3) gravelly fine sandy loam, brown (10YR4/3) moist; moderate thin plates 
and weak to moderate fine granules; soft, very fnable, slightly sticky, slightly plasuc; few very fine 
roots; few medium and common very fine tubular and common fine and very One vesicular pores; 
<25% gravel; slightly acid (pH 6 J); clear smooth boundary. 
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mound +18-10 cm. Brown (lOYR 5/3) sandy loam, brown (10YR4/3) moist; moderate fine granules; soft, 
very friable, nonsticky, nonplastic; common very fine and fine roots; common very Hne and fine 

tubular; <10% gravel; slightly acid (pH 6.5); abrupt smooth boundary. 

mound -i-lO-O cm. Brown (lOYR 5/3) gravelly sandy loam, brown (lOYR 4/3) moist; weak to moderate fine 
granules; soft to slightly hard, very fnable, nonsticky, nonplastic; few thin clay films on ped faces and 
pores; few thin clay films on ped faces and pores; many very fine and common fine roots; many very 
fine tubular pores; <18% gravel; mildly alkaline (pH 7.5); abrupt smooth boundary. 

A 0-10 cm. Brown (lOYR 5/3) fine sandy loam, dark brown (lOYR 3/3) moist; weak to moderate fine 
granules and weak to moderate medium and coarse subangular blocks; slightly hard, friable to Hrm, 
slightly sticky, slightly plastic; common thin clay films on ped faces and pores; many very fine and 
common fme roots; common very fme tubular pores; 5% gravel; moderately alkaline (pH 8.0); slightly 
effervescent, clear smooth boundary. 

Btl 10-20 cm. Brown (lOYR 4.5/4) loam to sandy clay loam, dark brown (lOYR 3.5/3) moist; moderate 
to strong medium and coarse subangular blocks; hard, firm, slightly sticky, slightly plastic; common 
very fine and fine roots; common very fine and few medium tubular pores; 9% gravel; moderately 
alkaline (pH 7.9); slightly effervescent; clear smooth boundary. 

Btl 10-35 cm. Brown (lOYR 4/3) loam to sandy clay loam, brown (lOYR 3.5/3) moist; moderate to 
surong medium and coarse subangular blocks; hard, firm, slightly sticky, slightly plastic; many thin 
clay films on ped faces and pores; common very fine and fine roots; common very fine and few 
medium tubular pores; 8% gravel; moderately alkaline (pH 7.9); slightly effervescent; abrupt smooth 
boundary. 

Btkl 35-57 cm. Brown (lOYR 4/3) loamy sand, dark brown (lOYR 3/3) moist; weak medium and coarse 
subangular blocks; soft; very friable, nonsticky, nonplastic; few thin clay films on ped faces and pores; 
common very fine and fine roots; common very fine and fine and few medium tubular pores; 8% 
gravel; moderately alkaline (pH 8.0); slightly effervescent; clear smooth boundary. 

Btk2 57-72 cm. Brown to pale brown (lOYR 5.5/4) sandy loam, brown (lOYR 4/3) moist; weak to moderate 
medium and coarse subangular blocks; soft, very fnable, slightly sticky, slightly plastic; few thin clay 
films on ped faces and pores; common very fine and fine and few medium roots; common very fine and 
few fine and medium tubular pores; 8% gravel; moderately alkaline (pH 8.0); effervescent; gi^ual 
smooth boundary. 

BCtk 72-106 cm. Brown (lOYR 5/3) sandy loam, brown (lOYR 4/3) moist; weak to moderate medium and 
coarse subangular blocks; slightly hard, friable, siighdy sticky, slightly plastic; few thin clay films on 
ped faces and pores; few very fine and fine roots; few very fine tubular pores; 8% gravel; moderately 
alkaline (pH 8.0); effervescent; gradual smooth boundary. 

2BCtk 106-123+ cm. Brown (lOYR 5/3) Fme sandy loam; brown (lOYR 4/3) moist; weak to moderate 
medium and coarse subangular blocks; slightly hard, friable, slightly sticky, slightly plasUc; few thin 
clay films on ped faces and pores; few very fine and fine roots; few very fine tubular pores; 20% 
gravel; moderately alkaline (pH 8.0); effervescent 

Note: 3-16 cm wide and 1-2 cm tall ant chambers connected by 5-9 mm tunnels found between 20 and 143 
cm depth, most of which are concentrated at 0-40 cm depth. 

Clearing Next to Ant Mound 
Classification: Fine-loamy, mixed, mesic Aridic Haplustalfs 
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Geomorphic setting: Alluvial fan, elevation 2088 m (6850 ft), 2-3% slope 
Parent material: Alluvium derived from Cretaceous sedimentary rocks weathered from the Gallup and 

Crevasse Canyon formations 
Agricultural setting: Uncultivated field used for grazing 
Landuser: Fred Weekoty 
Described by Jeff Homburg 
Date: July 14,1998 

A1 0-3 cm. Pale brown (lOYR 6/3) fine sandy loam, brown (lOYR S/3) moist; moderate thin plates from 
0-0.S cm and weak to moderate fine granules from 0.5-3 cm; soft, fnable, slightly sticky, slightly 
plastic; few very fine roots; common very fine and fine tubular pores; 20% gravel; acid (pH 6.0); 
abrupt smooth boundary. 

A2 3-11 cm. Pale brown (lOYR 6/3) fine sandy loam, brown (lOYR 5/3) moist; weak to moderate fine 
granules and weak to moderate medium subangular blocks; slightly hard, fnable, slightly sticky, 
slightly plastic; common very fine and fine roots; few very fine tubular pores; 15% gravel; slightly 
acidic (pH 6.5); clear smooth boundary. 

ABt 11-18 cm. Brown (lOYR4.5/3) loam to sandy clay loam, dark brown (lOYR 3/3) moist; moderate to 
strong medium and coarse subangular blocks; slightly hard, firm, slightly sticky, slightly plastic; few 
thin clay films on ped faces and pores; common very fine and fine and few medium roots; common 
very fine medium tubular pores; 5% gravel; acidic (pH 6.0); clear smooth boundary. 

BAt 18-25 cm. Brown (lOYR 4.5/3) loam to sandy clay loam, dark brown (lOYR 3/3) moist; moderate to 
strong medium and coarse subangular blocks; hard; firm, slightly sticky, slightly plastic; common thin 
clay films on ped faces and pores; common very fine and fine roots; common very fine and fine 
tubular pores; 5% gravel; slightly acidic (pH 6.5); clear smooth boundary. 

Btl 25-59 cm. Brown (lOYR 5/3) loam to sandy clay loam, brown (IGYR 4/3) moist; moderate to strong 
medium and coarse subangular blocks; hard, firm, slightly sticky, slightly plastic; many thin clay films 
on ped faces and pores; common very fine and fine and few medium roots; common very fine and few 
fine and medium tubular pores; 8-9% gravel; neutral (pH 7.0); effervescent; abrupt smooth boundary. 
Contains charcoal flecks. 

Bt2 59-68 cm. Yellowish brown (lOYR 5/4) loamy sand, brown to dark yellowish brown (lOYR 4/3.5) 
moist; weak to moderate medium subangular blocks; soft; friable, nonsticky, nonplastic; few thin clay 
films on ped faces and pores; common very fine and fine roots; common very fine and fine and few 
medium tubular pores; 7% gravel; moderately alkaline (pH 8.0); effervescent; gradual smooth 
boundary. Contains charcoal flecks. 

Btk 68-96 cm. Brown (lOYR 5/3) sandy loam; brown (lOYR 4/3) moist; weak to moderate medium and 
coarse subangular blocks; soft, very fnable, slightly sticky, slightly plastic; few thin clay films on ped 
faces and pores; common very fine and fine and few medium roots; common very fine and few fine 
and medium tubular pores; 8% gravel; moderately alkaline (pH 8.0); slightly effervescent; carbonate 
threads visible on ped faces; gradual smooth boundary. 

BCtk 96-124-t- cm. Brown (lOYR 5/3) sandy loam; brown (lOYR 4/3) moist; weak to moderate medium and 
coarse subangular blocks; slightly hard, friable, slightly sticky, slightly plastic; few thin clay films on 
ped faces and pores; few very fine and fine roots; few very fine tubular pores; 12% gravel; moderately 
alkaline (pH 8.0); slightly effervescent 
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Fallow Soil 
Classification: Fine-loamy, mixed, mesic, Aridic Argiustolls 

Geomorphic setting; Alluvial fan, elevation 2088 m (6850 ft), 2-3% slope 
Parent material: Alluvium derived from Cretaceous sedimentary rocks weathered from the Gallup and 

Crevasse Canyon formations 
Agricultural setting: Cultivated field (currently fallow) 
Landuser: Fred Weekoty 
Described by Jon Sandor 
Date: July 29, 1996 

Ap 0-17 cm. Brown (lOYRS/3) sandy loam, dark brown (lOYR 3/3) moist: weak thin plates in upper S 
cm, weak One granules and weak to moderate flne and medium subangular blocks; soft to slightly 
hard, very friable, slightly sticky, slightly plastic; few to common very fine and fine roots; S% gravel; 
neutral (pH 6.8); abrupt to clear smooth boundary. 

ABt 17-28 cm. Brown (lOYR S/3) sandy loam, dark brown (lOYR 3/3) moist; weak to moderate Hne and 
medium subangular blocks: slightly hard to hard, friable, slightly sticky, slightly plastic; few to 
common thin clay films on ped faces and pores; few very flne and fine roots; S-10% gravel; neutral 
(pH 6.8); abrupt to clear smooth boundary. 

Bt 28-68 cm. Brown (lOYR S/3) clay loam, brown (lOYR 4/3) moist; moderate fine and medium prisms 
parting to weak to moderate fine and medium subangular blocks; hard, Arm, slightly sticky to sticky, 
slightly plastic to plastic; common thin clay films on ped faces and pores; few very flne and flne roots; 
tubular and planar pores; 5% gravel; neutral (pH 6.9); abrupt irregular boundary. Charcoal flecks 
scattered throughout. 

Bt or BCt 68-81 cm. Yellowish brown (lOYR S/4) sandy loam to sandy clay loam, dark yellowish brown 
(lOYR 4/4) moist; weak flne and medium subangular blocks; hard, friable, slightly sticky, slightly 
plastic; common thin clay fllms on ped faces and pores; few very flne, flne, and medium roots; 5% 
gravel; mildly alkaline (pH 7.4); abrupt to clear smooth boundary. 

Bt or BCt 81 -1 OS cm. Yellowish brown (1 OYR S/4) flne sandy loam, dark yellowish brown (1 OYR 4/4) moist; 
weak medium subangular blocks; slightly hard, friable, slightly sticky, slightly plastic; few thin clay 
fllms on ped faces and pores; few very flne and flne roots; S% gravel; moderately alkaline (pH 8.0); 
effervescent; abrupt to clear smooth boundary. Contains a few carbonate fliaments. 

2Btkl lOS-141 cm. Yellowish brown (lOYR S/4) clay loam, dark yellowish brown (lOYR 3/4) moist; 
moderate medium subangular blocks; slightly hard, friable, sticky, plastic; few very flne and flne 
roots; S% gravel; moderately alkaline (pH 8.0); effervescent; abrupt smooth boundary. Contains a few 
carbonate fliaments. 

2 or 3 Btk2 141-1S0+ cm. Yellowish brown (lOYR 5/4) sandy clay loam, dark yellowish brown (lOYR 4/4) 
moist; weak medium subangular blocks; slightly hard, fnable, slightly sticky to sticky, slightly plastic; 
few very flne roots; 5% gravel; moderately alkaline (pH 8.4); strongly effervescent Contains many 
carbonate fliaments and an 8-cm wide krotovina. 

Auger: 150-210 cm, 2 or 3BCtk horizon, loamy sand, charcoal flecks scattered throughout, 
effervescent, few carbonate threads and few clay fllms 

210-230 cm, 2 or 3BCtk horizon, loam, effervescent, few carbonate threads and few clay 
fllms 

230-300 cm, 2 or 3BCtk horizon, loam, effervescent, few carbonate threads and few clay 
fllms, 5-10% gravel throughout 
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Uncultivated Soil 
Classification: Fine-loamy, mixed, mesic, Aridic Argiustoils 
Geomorphic setting: Alluvial fan, elevation 2088 m (6850 ft), 2-3% slope 
Parent material: Alluvium derived from Cretaceous sedimentary rocks weathered from the Gallup and 

Crevasse Canyon formations 
Agricultural setting: Uncultivated field 
Landuser: Fred Weekoty 
Described by Jon Sandor 
Date: July 30, 1996 

A 0-9 cm. Brown (lOYR 5/3) loam, dark grayish brown (lOYR 4/2) moist; weak thin plates in upper 0.5 
cm, weak to moderate flne and medium granules; soft, very friable to friable, slightly sticky, slightly 
plastic; common very fme and fine roots; many very fine vesicular pores; <5% gravel; neutral (pH 
7.0); abrupt smooth boundary. 

BAt 9-27 cm. Brown (IGYR 5/3) sandy loam, dark grayish brown (lOYR 4/2) moist; weak fine and 
medium subangular blocks; slightly hard, friable, slightly sticky, slightly plastic; few thin clay films on 
ped faces and pores; common very fine and fine and few coarse roots; common very fine and fine 
tubular and few very Hne vesicular pores; <5% gravel; mildly alkaline (pH 7.5); clear smooth 
boundary. 

Btl 27-59 cm. Grayish brown to brown (lOYR 5/2.5) sandy clay loam to loam, dark to very dark grayish 
brown (lOYR 3.5/2) moist; moderate medium prisms parting to weak fine and medium subangular 
blocks; hard, friable to firm, slightly sticky, slightly plastic; common thin clay films on ped faces and 
pores; common very flne and fme roots; many very flne and few flne tubular pores; <5% gravel; 
slightly acidic (pH 6.5); clear smooth boundary. 

Bt2 59-82 cm. Brown (lOYR 5/3) loam, dark brown (lOYR 3/3) moist; moderate flne and medium prisms 
parting to weak fine and medium subangular blocks; very hard, very firm, slightly sticky, slightly 
plastic; few thin clay fllms on ped faces and pores; few to common flne roots; many flne and few fine 
tubular pores; 10% gravel; moderately alkaline (pH 8.0); abrupt smooth boundary. 

BCtl 82-101 cm. Yellowish brown (lOYR 5/4) loamy sand, brown to dark yellowish brown (lOYR 4/3.5) 
moist; massive; soft, very friable, nonsticky, nonplastic; few flne roots; few very flne tubular pores; 5-
10% gravel and one 15 cm cobble; moderately alkaline (pH 8.0); abrupt smooth boundary. Contains 
very few I mm thick laminae. 

BCt2 101-132 cm. Brown (lOYR5/3) loam, brown (lOYR 4/3) moist; massive; hard, friable flrm, slightly 
sticky, slightly plastic; few very flne and flne roots; common very flne and few flne tubular pores; 
<2% gravel; moderately alkaline (pH 8.0); abrupt smooth boundary. Contains common 1mm thick 
laminae and charcoal flecks. 

BCt3 132-1504-cm. Brown (10YR5/3) loam, brown (I0YR4/3) moist; massive; slightly hard, very friable, 
slightly sticky, slightly plastic; few medium roots; common very flne interstitial pores; 5% gravel; 
moderately alkaline (pH 8.0); abrupt smooth boundary. Contains many 1-3 mm thick laminae, and a 
charcoal lens in the lower part. 

Auger 150-170 cm, BCt3 horizon, flne sandy loam, 5% gravel, noncalcareous, has clay films 
170-220 cm, BCtkl horizon, sandy loam, 5% gravel, carbonate fllanwnts and few clay 

fllms 
220-230 cm, BCtk2 horizon, loam, carbonate fliaments and few clay films 
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230-27S cm, BCtk3 horizon, fine sandy loam, 5% gravel, carbonate filaments and few 
clay films, effervescent 

275-300 cm, 2BCtk4 horizon, clay loam, clay coatings 
300-310 cm-t-, 2 BCt?kS horizon, loam 
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APPENDIX B. SOIL DATA FOR ZUNI STUDY 

Chemical and Physical Soil Data for Intensive (Paired) Transects 
pH <!)fOC ill 6n KT"7o3rP Buk  ̂til M  ̂ s«id cas« Fivsa » S!*" 

n§to OiM> 
(0^1 (otel (Ificrtat tmaliQl (Qte) trnatQ) ImM fatemM (%\ l») t%) {%\ (%) (%) (%> (%) (%1 <%) 

&1 7.7 U 0.71 - 114 12.3 420 1.56 0.1 0.2 4.6 24 14 43 IS 17 32 26 

G'Z 7.7 *2  ̂ &I8 - 14S ttJ 466 ao OJ 11 11 14 36 16 31 39 2S 

&3 7f ^0-9 0.7t - 14.4 ia7 465 1.S4 0.0 02 2.4 17 17 37 19 20 39 24 

&4 7.1 ^0.4 &7t - lit lt.5 4S6 1.46 ao 02 IS 21 14 37 20 16 37 2S 

&S 7.7 0.7t - 110 11.7 427 1.S4 0.1 ai 26 17 16 M 21 19 40 2S 

C4 7.7 &7t - lit U.7 456 1.S9 0.0 02 16 1\ 19 A\ 20 IS 36 23 
07 7.7 ac7 1£t 105 401 1J4 0.0 02 19 29 17 49 17 12 29 22 

&• 7.t o.«o - 114 ia2 396 1.S6 ai 0.2 16 26 16 46 16 13 31 23 

C-0 7.1 10  ̂ 0.74 - lit IS 406 1.46 ai 03 44 22 17 42 19 17 3S 23 
&I0 7.1 i-0 0.16 - 12.1 10.1 361 1.S6 0.1 06 AI 30 12 SI 16 13 29 20 
k unctfUMiM 

u>t 7.1 '0 0.13 - 12.f It 430 1.46 0.0 02 2.4 31 17 SO IS 12 27 23 

U-2 7J *7.S IJS . 119 20.2 S24 1.40 0.1 02 12 20 14 36 20 16 36 26 
U>3 7.1 ato - 11.1 ia7 360 1.46 ao oi 10 36 16 S4 16 12 27 19 

U-4 7.1 an - 1S.9 11.0 441 1.4S at 09 a2 19 22 46 11 IS 26 28 

u-i 7.1 (̂-3 1.10 • IM 3̂ 470 1.34 ao 02 2.1 13 17 30 23 20 43 27 

U4 7.7 0.72 • 12.9 11.5 460 1.46 ai 02 1.9 27 16 4S 14 14 26 27 

U.7 7.7 '5 aia . 11.t 9.5 41S 1.43 ai 0.2 1.3 a 16 40 21 14 34 2S 
7.7 *15 0.9S - US 116 479 1.S0 ao 02 IS 26 16 4S 19 13 32 23 

7.9 0.W . 17.4 110 460 1.26 ai 02 04 12 20 31 23 16 41 26 
U>10 7.6 1.07 . 1S.C lis 506 1.40 ai 03 04 5 20 24 27 21 46 29 

C'l 6.6 113 094 12.0 76 254 1J2 06 26 14.2 33 14 70 6 13 16 12 

0-2 7.0 9.S 062 11.6 11.1 273 1.57 09 2.4 11.9 33 16 64 11 13 24 12 

7.0 075 11.S 5.S 253 1.81 2.0 2.1 109 32 16 66 11 • 21 14 

&4 6.6 75 066 11.3 6.4 246 1.46 2.0 2.6 11.5 34 16 66 11 6 19 13 

&S 6.6 *0-4 093 112 1.9 261 1.12 1.2 11 116 33 14 67 10 9 20 14 

&6 6.4 9i7 071 12.4 76 271 1.S3 1.1 16 126 34 13 66 10 9 19 15 
C.7 7,5 osa lis 5.1 237 1.43 06 12 140 33 13 16 12 11 23 11 

&6 70 S-9 062 11.2 S7 232 1.52 1.0 26 12.2 36 16 M 11 « 17 IS 

09 6.9 a64 11.5 5.1 250 1.55 1.2 25 11.3 33 16 46 12 1 11 16 
C-10 6.7 OSS 11.4 15 217 1.52 07 21 11.7 36 14 66 11 7 16 16 

WmMf mt IHI<> CyHnM i 

U*1 C3 *3.5 1.02 113 5.6 276 1.40 1.2 IS 121 19 IS 52 16 15 34 IS 

U*2 6.4 116 1.03 112 60 319 1.46 25 26 12.3 21 11 SO 17 20 36 14 

U-3 6.6 *̂ 0 1.06 113 6.6 290 1.82 1.4 29 11.4 23 12 52 13 16 29 19 

IM 6.0 1.09 124 6.1 263 1.40 06 24 117 30 15 63 13 11 24 13 
6.2 9.6 061 121 4.6 236 1.54 03 1.7 11 4 34 19 66 13 6 20 12 

(M 6.3 **>9 1.12 112 70 264 1.S2 1.0 4.4 16.3 21 12 54 17 16 33 12 
li-7 6.3 32.7 223 146 116 411 1.39 06 11 7.6 11 7 31 17 26 46 24 
IM 6.9 *9-7 1.3S 124 1C2 37S 1.44 I.S 10 106 22 13 82 13 17 30 16 
ii-9 6.4 <*-3 091 123 44 276 142 1.4 1.9 65 29 16 60 14 11 25 16 
u-to 6.4 6-5 074 11.5 57 272 1.36 1.4 1.9 123 34 15 67 10 9 19 14 

C2-1 6.9 72 059 - 123 - 1.46 1.1 10 14.3 34 13 67 9 10 19 14 

C2-2 6.9 126 1.02 - 124 - 1.46 06 17 149 32 14 67 11 10 20 13 
C2>3 7.0 1S.0 1.24 - 121 - 1.57 1.2 26 11J 33 16 67 13 9 22 11 
C2>4 7.4 10-9 062 - 114 - 1.46 07 2S 11.7 33 16 67 13 6 21 12 

C2-5 7.5 9.9 079 - 125 - 1.47 06 29 116 36 16 70 11 9 20 to 
C2-6 7.0 (>7 aS9 - 11.4 1.S3 07 1.6 11.6 36 IS 66 16 7 23 11 

C2-7 7.4 6J 064 - 129 - 1.62 06 29 12J 31 14 70 11 9 20 to 
C3-6 7.4 7.9 066 - 111 ~ 1.S3 1.2 13 15.0 29 IS 63 12 10 23 14 

Q-9 7.5 11-7 066 - 116 - 143 1.1 24 107 29 17 62 14 10 24 14 

C2.10 6.6 S.7 047 - 123 - 1.56 20 4.S 16.4 36 13 73 8 6 16 10 

&1 C9 2X2 1.61 06 17.6 144 - 10J 267 1.61 

&2 6.6 247 1.66 22.1 17.2 146 - 126 340 146 

&3 7.4 245 1.06 120 119 11.5 - 72 243 1.80 
&4 7.5 101 091 7.3 126 11.1 - 16 321 1.74 

&B 7.4 OlS 060 5.9 112 11.9 - 6J 306 1.63 
o% 7.1 13.S 093 7.9 15.6 16.2 - 09 297 1.63 
C.7 6.9 22.4 t.S4 6.4 206 145 - 12.1 370 146 

04 6.9 16.6 1.42 6l5 16.5 113 - 9iS 207 1.$6 

&9 7.1 106 096 7.6 11.6 11.1 - 6.2 246 1.66 
&10 7.1 6it a60 14 104 11.4 - 16 366 1.75 

U>1 7.0 116 096 19 94 143 - OO 212 1.43 

U-2 7.0 02 046 1.4 7.7 117 - 17 237 146 
U>3 CI 17.2 1.03 19 11.7 16.7 - U 216 1.46 

U-4 6.4 26.6 1.92 242 141 140 - 11.3 343 146 
IM 6.9 6.1 067 14 74 121 - 16 174 146 
tM 6.9 7.9 osr 1.1 810 119 - 8L6 247 1.63 
IJ.7 7.0 117 091 17 102 110 - 7.9 16t 1.S2 

6.7 12.9 ait 44 105 114 - U 201 1.42 
MS 49 11.3 096 19 12.1 114 - 64 183 147 

U>10 6.9 6.9 079 1.7 I09 11.7 - 6.6 173 1.47 

24 25 21 46 30 

23 24 23 47 30 
24 21 21 42 34 

31 17 21 36 31 

42 17 14 31 27 
36 19 17 36 26 
36 19 19 36 26 
29 20 22 42 29 
29 20 20 40 31 

36 16 16 36 27 

56 16 12 26 17 

66 12 9 21 10 

44 26 14 40 16 

13 26 22 41 19 

SO 16 IS 31 19 
79 10 5 IS 9 

S6 16 10 29 16 

SS 14 IS 29 16 

66 11 12 23 21 

SI 14 12 21 16 
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Chemical and Physical Soil Data for Intensive (Paired) Profiles 
PiMMdSal BJ^nSSi pH 55? R Nos  ̂ NHMi 58 Me>(.£ ifP T3r? Ki SS 3 Bl R 5f5 EaToSTTlini SS 55  ̂

Heflm DMO DM. 

IM («tel ImolM CWtal (.*0) (nwlal (.-M Iftcnq 1%) fW l»l 1%) 1%1 fW f»l &1 Q] OL 
•.iMH.IKlil MOMMCMM 

0  ̂

t 
7.5 11.1 871 _ 147 OS! 89 484 1.61 ao OJ 12 21 19 43 17 16 33 25 

2C1 23>37.Mnd|r 71 7.1 847 - - 115 870 14 •09 1.48 80 83 18 29 21 53 14 13 38 21 

2Ct ZMT.tAy 7.7 1^8 0.71 - - 18.8 8.9B 14 413 1.3* 0.0 0.1 89 S 9 1$ 22 34 58 29 
2C2 37-«B 77 89 881 - - 115 865 14 7^0 1.48 80 81 11 19 11 34 11 24 36 31 

3C3 CMlMndy 71 182 881 ~ - 113 884 43 702 1.40 0.1 1.0 88 36 17 61 9 11 30 19 
3C3 71 SJ 829 - - 149 894 42 477 1.48 80 80 88 9 9 19 19 32 51 30 
4a» «'tt9 76 7.0 88S - - 187 811 81 437 1.68 80 80 88 18 10 21 13 24 37 43 
4806 t1^140 79 180 887 - - 12.9 1.48 75 493 1.62 80 82 1.9 12 12 28 17 30 47 27 
4acsft 140*160 79 13.1 887 - - 180 149 89 571 1.36 81 81 86 2 11 U 25 21 47 39 
•ug* 27S-2M 76 87 885 ~ - tl4 866 73 536 - 80 80 81 1 2 1 13 31 44 S5 

A 
w unsiMnMBw) 

O'lT 77 189 898 - - 17.9 848 83 453 1.36 88 81 87 14 23 36 21 15 38 29 
2C1 17-40. UMy 80 11 827 - - 85 883 40 147 1.43 80 84 188 S3 11 75 5 6 13 13 

2a 17*40. MRV 71 149 878 - - 186 895 12 470 1.36 80 80 83 1 3 3 19 69 87 10 
3C2 40*00 7i 14.1 891 - - 146 896 83 538 1.40 80 81 1.0 7 9 16 28 30 58 28 
4C3 •0*107 79 80 859 - - tl9 8.79 80 393 1.38 8.0 0.1 83 14 28 *3 18 17 33 25 
sen lOMM 76 84 890 - - 183 811 111 493 1.55 80 80 84 7 10 17 15 25 40 43 
SBttt) 130*150 77 79 874 - - 89 883 88 481 1.70 80 80 83 9 9 17 13 25 37 48 
Augw 2i0*290 76 6.6 0.80 " - 117 833 73 486 - 80 82 1.9 12 14 29 11 21 33 39 

A 0*11 75 85 877 - - 189 0 11.8 399 1J6 86 1.4 84 38 13 57 13 10 32 20 
AC IMS 80 81 877 - - 185 0 43 403 1.66 83 1.4 49 27 10 44 16 13 28 28 
C 10*30 82 86 851 ~ - 189 0 13 403 1.48 82 1.2 49 a 14 13 11 12 23 24 

2AC1 30*48 82 83 848 - - 11.6 0 13 296 1.53 86 18 88 38 9 69 11 11 21 20 
2AC2 4M2 82 10 844 - 11.3 0 19 345 1.47 1.1 49 110 37 9 70 3 9 12 18 
aAbt t2*72 82 84 851 - 115 0 40 464 1.58 1.4 19 87 27 10 53 18 13 23 25 

]Ab2&3Aa» 72-tO 82 88 870 - - 83 0 49 36S 1.48 8  ̂ 12 14 23 12 44 14 14 28 28 
SBtt io*ai 81 79 869 - - 11.5 0 10 291 1.75 0.2 89 15 18 13 33 18 16 33 35 

3Bltt1 M*t18 82 86 883 - - 113 8 18 n7 t.86 Q.« 1.7 15 17 U 37 14 17 33 31 
attts 11$*1S0 83 81 863 - - 148 0 13 283 1.85 0.2 89 18 18 9 30 15 23 38 12 
aBOhb 249*300 

AA CUM^MIBS  ̂̂ fs8i 
82 - - ~ - - - - 0.9 1.5 15 21 10 39 14 16 33 30 

WMetty»iniiM 
Ap 0*17 6.1 87 878 - - 11.5 0 86 237 1.46 1.4 19 113 3S 18 69 8 10 19 12 
ABI 17*21 86 81 861 - - 180 0 19 216 1.55 1.1 13 11.1 36 17 55 19 14 33 12 

Bltnai 2t*40 87 87 883 - - 187 0 17 283 1.50 12 17 180 33 14 61 13 9 23 17 
Bl 2M8 81 89 854 - - 187 0 17 233 1.48 89 1.9 84 34 15 $9 15 n 28 18 

aioreo M*I1 70 19 837 - - 183 0 14 194 1.48 1.5 17 113 38 18 67 13 9 23 13 
eiorBQ §1*106 76 85 849 - - 114 0 14 208 1.40 85 86 48 31 20 58 11 15 28 19 

jetki 106*141 79 87 859 - - 149 0 12 247 1.54 83 1.0 12 17 8 34 9 23 33 33 
2et3eua UMSO 76 80 840 - - 110 0 3.0 191 1.48 1.1 11 141 36 IS 68 10 9 18 13 

AuQir 
Wifesdy»inlMM 

270*300 76 89 834 ~ - 281 0 43 304 - 87 1.0 17 2S 25 57 13 13 25 19 

A 0*0 84 22.7 1.83 - - 140 0 110 413 1.48 80 16 188 21 13 47 14 23 37 16 
BAI 0*27 86 11.2 873 ~ - 113 0 17 2W 1.60 85 10 189 28 14 S3 18 16 33 1« 
Bit 27*68 87 80 859 - - 114 0 17 255 1.58 85 1.7 12 25 13 51 11 19 28 21 
Ba SM2 87 19 849 - - 11.9 0 1.7 237 1.83 84 85 44 25 19 49 13 14 28 24 
BQ1 t2'101 87 19 847 - - 117 0 1.7 215 1.52 1.2 17 115 28 11 S9 5 14 18 23 
sea 101*132 70 19 844 - - 111 0 10 234 1.48 85 1.2 74 27 19 SS 11 12 24 21 
ttca 1»*tS0 7.7 4.7 833 - - 144 0 10 198 1.49 83 1.5 181 38 17 67 6 10 19 15 
Augar 276*300 86 73 843 ~ 171 0 15 238 - 81 84 1.6 9 14 25 17 25 42 33 

0*23 7.1 188 1.48 81 41.1 13.9 0 81 303 1.S4 84 89 17 6 11 24 23 24 48 30 
9« 23*30 79 82 878 1.2 0 189 0 16 177 1.58 82 83 88 6 IS 22 20 24 44 34 
Bkl 3048 81 85 889 1.2 12.3 13.7 0 19 388 1J4 1.4 13 48 7 9 24 24 23 48 30 
2ek2 4841 81 15 852 1.5 0 187 0 12 168 1.54 17 85 ItJ 20 13 54 14 U 38 18 
ttU 8148 81 82 853 0 0 11.9 0 11 331 1.S3 1.2 19 11.9 25 15 57 11 11 23 21 

17BIISI 8847 80 48 853 0 72 89 0 15 230 1.71 59 6 11 19 22 
37BIIS2 87*113 80 43 850 0 73 73 0 15 300 1.70 88 9 13 31 24 
4AaM 113*168 82 89 870 0 74 89 0 45 287 1.53 - *. - - - 47 14 13 28 27 
Augv 300*310 82 X2 834 0 49 88 0 81 311 69 9 9 18 14 

A 0*7 84 17.8 1.16 11.5 189 18.3 0 119 288 1.38 68 14 9 29 11 
BA 7*18 88 11.7 899 0 110 11.9 0 45 232 1.81 37 18 19 34 29 
81 1847 71 It.t 890 0 180 13J 0 10 314 1.87 28 13 31 34 39 

Bftt 4748 79 tt.4 8n 0 8S 147 0 380 210 1.83 30 18 30 38 34 
2Bdi3 88-77 79 87 861 1.1 84 119 0 17 228 1.57 - - - - - 48 9 16 24 29 
2BC 77-118 (ceaiM) TJ 87 843 0 79 lis 0 49 287 1.81 59 9 13 21 31 
260 77*t18<flnt) 7.8 89 84B 0 84 145 0 47 233 1J8 S7 7 13 20 33 
3C1 118-138 78 84 85B 0 70 113 0 43 368 1.48 48 12 14 21 38 
4C2 13B-I86C 78 15 837 0 17 147 0 49 308 1.83 62 7 11 18 20 
S0t 13«>l8B«b 78 89 878 0 8t izr 0 49 432 1.70 22 19 29 43 38 

Auaar 288*300 78 1Z7 853 43 43 243 0 82 128 66 9 9 18 17 
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Chemical and Physical Soil Data for Extensive (Unpaired) Transects 
R53 3iii»*hPmi« tH S;?; R NOM SR woftC CT ToiS? EE 5S S SB H SM cau Fn.sit !i 5  ̂

RcBo OM*. 
_____ latei taw liw»iwl (moftgl imanal liwtHI IfMti (%! |%| ja (%! fW CB (%) (%l CU (a. 

NCI CI t.a C7 lis - - 112 - 10 304 1.41 12 1.6 1X3 39 IS 70 9 9 11 12 
NyiMlM o 7.0 10.2 o.ts - - 11.t - 1X1 32t 1J9 12 1.9 11.4 36 13 63 12 7 20 17 

C3 7.3 It (157 - IS - 1X0 2sa 1.S4 06 Z2 1X3 37 14 67 6 11 19 14 
C4 7.3 C.2 Itl - - 113 - 111 314 1.57 OS X6 t7.» 36 12 70 1 7 16 14 
CS 7.t 102 Itt - - tat - 21.1 309 1.41 14 X6 2X1 36 7 48 9 t 16 IS 
CS 7.0 5.7 o.st - - It - 110 311 1.43 02 1.6 107 36 9 CO 12 t 16 13 
C7 7.t S.0 0.5S - - 11 - IS 237 1.52 03 U 13 43 9 71 9 7 16 13 
CI 7.4 5.1 0.51 tao - tis 216 1.57 05 xs 14t 36 13 IS t t 16 IS 
a 7.8 L2 ISS - - 11.2 - tt.t 24t 1.51 OS X9 lit 30 13 64 11 13 23 13 
CIQ <.S SS att - - 11.1 - lit 2tS 1.47 02 XI 2X0 41 t 74 7 7 13 13 

NO CI 7.5 1.4 0.52 - - 112 - 4t 267 1.49 07 1.4 115 37 12 tl 10 11 22 17 
QHIIIMHV C2 7.4 1Z4 171 - - 17.3 17 267 1.54 07 XI tot 27 12 53 14 13 27 20 

a 7.4 14.4 att - 114 - It 239 1.$4 09 1.6 14 2S 12 49 15 IS 30 21 
04 7.3 21.5 1.20 17.9 - 12 293 1.51 02 05 1.5 1 It 22 23 2S 49 X 
CS 7.4 2S.7 1.53 - 17.4 - 11.0 327 1.51 00 03 1.4 7 to 20 23 26 49 31 
CS 7.t 11.t ai4 17.4 - It 251 1.51 06 X6 1X4 X to 57 12 13 2S 16 
C7 7.4 20.0 1.10 - 111 - IS 2tS t.a 02 1.2 15 12 13 » 21 23 43 36 
ct 7.5 15.3 0.t7 - I7.t - It 3M 1.49 00 09 49 19 15 41 19 17 36 23 
C8 7.3 24.6 t.44 - 17.3 - til 3t6 1.50 at 03 1.1 5 9 16 23 29 52 a 
CIO 7.S 243 1.37 - 17.t - 1X2 378 1.45 02 02 1.1 7 11 21 2S 26 51 26 

NO a 7.7 7.5 lit ~ - 11.1 - 11 299 1.45 06 43 11.1 37 9 63 It 10 21 16 
tlMfNClO C3 7.7 15 a<2 - tas - 5.7 317 1.44 09 43 11.4 34 11 62 11 11 22 ts 

a 7.5 7.5 an - - tat - 7.B 315 1.3S 1.3 X9 11.J 37 11 IS 11 9 20 15 
C4 7.7 15 at3 - - 102 - 5.0 319 1.41 1.2 X9 14 36 13 12 12 11 23 15 
CS 7.S IS Its - 5i7 13 2tS 1.36 xo 47 txs 36 9 16 10 9 16 13 
CS 7.S 10 ast - ia3 - 40 271 1.43 xo 40 11.9 37 10 16 to to 20 IS 
C7 7,S 10 157 - 115 - U 366 1.34 I.t X9 11.1 39 9 M to 10 20 14 
a 7.1 7.7 a;i lis - 43 272 1.40 03 12 112 37 11 63 It 11 23 IS 
CS 7.7 7.1 ai4 11.2 - It 256 1.44 X4 49 1X9 36 9 16 9 10 19 IS 
ao 7.« 13 a<2 - lao - 17 320 1.42 06 41 1X9 42 t flS to 6 19 13 

fMrti 
At 7,2 14.2 t.io _ 1X0 lis 29S 1.52 Ol 06 52 17 t 32 17 21 39 X 

CWHWH A2 7.3 117 1.21 ~ - IXt - 147 317 1.40 OO 06 41 13 7 2S 19 27 46 29 
A3 7.2 15.1 t.os - 140 - 1X5 310 1.47 02 07 XI 9 7 20 20 29 49 31 
A4 7.4 115 t.52 ~ txs 117 374 1.« OO 04 1.7 6 1 15 24 31 SS X 
AS 7.3 110 1.23 ~ 1X0 t7.2 364 1.4S 03 04 X3 7 5 16 20 30 SO 34 
M 7.t lit 1.14 .. 1X7 - 11.3 275 1.46 OO 04 It 13 9 27 22 23 a 29 
A7 7.4 14.t t.tO - 1X2 - 1X5 261 1.40 02 02 XI t2 t 24 22 26 49 27 
At 7.3 IIS 1.34 - - 141 - 112 376 1.51 Ol 03 1.5 t 7 16 23 30 52 32 
AS 7.3 2at 1.$t ~ 1X0 - 21.0 410 1.50 03 06 1.7 t t 15 25 30 SS X 
AlO 7.5 17.3 1.31 - - 1X2 - 210 361 1.53 OS 06 45 12 t 2S 19 27 46 29 

MM A1 7.4 12 153 - - 11.7 - It 312 1.51 07 1.5 42 2S 52 It It 26 21 
A2 7.1 7.1 177 - - ia2 - 15 294 1.40 07 X5 49 15 to 34 20 14 33 33 
A3 (.1 4.1 144 - 13 7.t 273 1.59 09 49 140 27 11 S9 13 9 22 19 
U 7.1 It Itl - - lat ~ 1X3 362 1.39 1.3 X6 19 20 to 42 It 19 37 21 
AS C.S tio t.02 - - 1X7 - lit 370 1.32 t.3 17 11 16 10 U 22 14 36 20 
M 7.t IS 154 ~ - ia7 - 13 257 1.44 1.7 X3 IS 21 12 44 It 13 M 26 
A7 7.5 17 a77 ~ .. 11.2 - 13 312 1.41 1.0 X6 13 22 13 46 17 12 29 3S 
Al 7.t IS 0.W - IS 10 m 1.59 1.3 X2 11 It 11 40 13 14 26 » 
AS 7.0 15 ast - - 17 - 10 313 1.49 OS 09 7.2 23 12 46 15 13 29 26 
AtO CS 13 Its 17 - 1X1 269 1.49 X4 X9 113 21 9 a 14 13 26 26 

ma At •.4 24.3 107 - t i t  211 312 1 49 Ol XI 11 14 4 30 It 29 43 27 
UM A2 S.S 10 lit - - tas - 1X1 263 1.53 1.2 XO 103 31 12 S9 IS 12 26 IS 

A3 7.0 10 ast - ia2 - 1X3 26S 1.45 Xt X4 1X1 37 12 19 12 1 20 tt 
A4 7.2 10 173 - 11.0 ~ 117 316 1.60 07 XI 17 31 12 St 14 12 26 16 
AS «.» 12 171 - lis - 119 246 1.51 06 X7 19 X 12 S6 IS 11 26 16 
M 27.4 X12 - - 1XB - 2X7 373 1.36 OO 09 X3 t 7 19 21 30 SI X 
A7 t.4 t7.t 1.50 - - 11.9 - 2X3 316 1.59 03 Xt 71 24 10 45 14 20 34 21 
Ai 7.3 5.4 157 - 14 - 10 229 1.57 X5 42 11.3 33 11 64 12 9 21 15 
AS C.S 12.S I.Ot - - 11.9 - 2at 30S 1.62 Ot X2 7.4 23 It 46 II 15 32 23 
AtO 
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Means and Standard Deviations for Extensive Fields 

pH: Nutria Study Area 

NCt NC3 NC3 AINC NA1 NA3 NA3 AINA NU1 NU3 NU3 AINU 

Bulk Density: Nutria Study Area 

Study Units Study Unit 

pH: Pescado Study Area 

PCt K2 PC3 MPC PAt PH PAl MM PUt  ̂ PU3 MPU 

Study Units 

Buiic Density: Pescado Study Area 

PCI PC3 PC3 MFC PAt PAZ PAl 4IPA PIS PU3 MPU 

Study Unit 

pH: Bear Canyon Study Area 

Study Units 

Bulk Density: Bear Canyon Study Area 

K1 K« Ki MK iAI IM Ml tM MIA 

Study Unit 



246 

Means and Standard Deviations for Extensive Fields 

Organic 0: Nutria Study Area 

MCI WC3 NC3 MNC MAt MS MAS MNA NUt MU3 NUS MNU 
Study Unit 

Nitrogen: Nutria Study Area 

Study Area 

Organic C: Pescado Study Area Nitrogen: Pescado Study Area 

Study Unit Study Unit 

Organic C: Bear Canyon Study Area Nitrogen: Bear Canyon Study Area 
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Means and Standard Deviations for Extensive Fields 

Total P: Nutria Study Area 

Study UrM 

Available P: Nutria Study Area 

MCt NC3 Ma MNC MAI PIM MM MNA NU1 NIB NUI MNU 
Study Unit 

Total P: Nutria Study Araa 

NCI NCZ NC3 MNC NA1 NA3 NA3 MN* NUI NU2 NUI MNU 

Shxiy Unit 

Available P: Pescado Study Area 

 ̂  ̂ PCS »»PG P«1 PM PM MPA PU1 na PUI MPU 
study Unit 

Total P: Bear Canyon Study Area 

M M tM MM an 
Study Unit 

Availabia P: Baar Canyon Study Araa 
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APPENDIX C. SKETCH MAPS OF UNPAIRED ZUNI FIELDS 
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