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Abstract

We present a maximum likelihood (ML) method for semi-blind estimation of single-input multi-output
(SIMO) flat-fading channels in spatially correlated noise having unknown covariance. An expectation-
maximization (EM) algorithm is utilized to compute the ML estimates of the channel and spatial noise
covariance. We derive the Cramér-Rao bound (CRB) matrix for the unknown parameters and present a
symbol detector that utilizes the EM channel estimates. Numerical simulations demonstrate the performance
of the proposed method.

I. Introduction

Expectation-maximization (EM) and related algorithms (see [1]–[3]) have been applied to carrier phase

recovery [4], demodulation for unknown carrier phase [5], timing estimation [6], and channel estimation

[7]–[9] in single-input single-output (SISO) communication systems, and, more recently, to symbol detection

[10]–[12] and channel estimation [13]–[15] in smart antenna systems. In this paper (see also [17]), we treat

the unknown symbols as the unobserved (or missing) data and propose an EM algorithm for semi-blind

maximum likelihood (ML) estimation of both the channel and spatial noise covariance in a single-input

multi-output (SIMO) smart antenna scenario. This is unlike previous work in [7]–[9] and [13]–[15], where

EM algorithms were applied to channel estimation in white noise.

The signal and noise models are introduced in Section II. In Section III, we derive the EM algorithm for

estimating the unknown channel and noise parameters and in Section IV, we compute the Cramér-Rao bound

(CRB) matrix for these parameters. The EM channel estimates are incorporated into the receiver design in

Section V. In Section VI, we give some numerical examples, and conclude the paper in Section VII.

II. Measurement Model

Consider a single-input multi-output (SIMO) flat-fading channel with equiprobable constant-modulus sym-

bols. Denote by y(t) an nR × 1 data vector (snapshot) received by an array of nR antennas at time t and

assume that we have collected N snapshots from a coherent interval containing the unknown symbols. Under

a single-user slow flat-fading scenario, y(t) can be modeled as

y(t) = h · u(t) + e(t), t = 1, 2, . . . , N, (2.1)

†Corresponding author.
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where

• h is an unknown nR × 1 channel response vector;

• u(t) is an unknown symbol received by the array at time t;

• e(t) is temporally white and circularly symmetric zero-mean complex Gaussian noise vector with

unknown positive definite spatial covariance matrix Σ .

The channel h and noise covariance matrix Σ are assumed to be constant for t ∈ {1, 2, . . . , N}. The spatially

correlated noise model accounts for co-channel interference (CCI) and receiver noise1. We further assume

that the symbols u(t) belong to an M -ary constant-modulus constellation

U = {u1, u2, . . . , uM}, (2.2a)

where

|um| = 1, m = 1, 2, . . . ,M. (2.2b)

[The constant-modulus assumption can be relaxed, see Appendix A.] We model u(t), t = 1, 2, . . . , N as

independent, identically distributed (i.i.d.) random variables with probability mass function

p(u(t)) =
1

M
i(u(t)), (2.3)

where

i(u) =

{
1, u ∈ U ,
0, otherwise

. (2.4)

Our goal is to estimate the unknown channel and noise parameters h and Σ . To allow unique estimation of

the channel h (e.g. to resolve the phase ambiguity), we further assume that NT known (training) symbols

uT(τ) ∈ U , τ = 1, 2, . . . , NT (2.5)

are embedded in the transmission scheme and denote the corresponding snapshots received by the array as

y
T
(τ), τ = 1, 2, . . . , NT. Then, the measurement model (2.1) holds for the training symbols as well, with

y(t) and u(t) replaced by y
T
(τ) and uT(τ), respectively.

In the following, we present an EM algorithm for computing the ML estimates of h and Σ under the

above measurement model.

III. ML Estimation

The EM algorithm is a general iterative method for computing ML estimates in the scenarios where

ML estimation cannot be easily performed by directly maximizing the likelihood function of observed

measurements. Each EM iteration consists of maximizing the expected complete-data log-likelihood function,

where the expectation is computed with respect to the conditional distribution of the unobserved data given

the observed measurements. A good choice of unobserved data allows easy maximization of the expected

1This noise model has been used in numerous recent publications to account for unstructured interference, see e.g. [18] and
references therein.
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complete-data log-likelihood. The algorithm converges monotonically to a local or the global maximum of

the observed-data likelihood function, see e.g. [3, Ch. 3]. Here, the unknown symbols u(t), t = 1, 2, . . . , N

are modeled as the unobserved (or missing) data. Given u(t), the corresponding observed snapshot y(t) is

distributed as a complex multivariate Gaussian vector with probability density function (pdf):

f(y(t)|u(t),h,Σ ) =
1

|πΣ |
· exp

{
− [y(t) − hu(t)]HΣ

−1[y(t) − hu(t)]
}
, (3.1)

where “H” denotes the Hermitian (conjugate) transpose. The above expression also holds for the training

data, with y(t) and u(t) replaced by y
T
(τ) and uT(τ). The joint distribution and mass function of y(t),

u(t) (for t = 1, 2, . . . , N ), and y
T
(τ) (for τ = 1, 2, . . . , NT) can be written as

N∏

t=1

p(u(t)) f(y(t)|u(t),h,Σ ) ·

NT∏

τ=1

f(y
T
(τ)|uT(τ),h,Σ ), (3.2)

which is also known as the complete-data likelihood function. The observed-data likelihood function to be

maximized is then
[ ∑

u(1)∈U

∑

u(2)∈U

· · ·
∑

u(N)∈U

N∏

t=1

p(u(t)) f(y(t)|u(t),h,Σ )
]
·

NT∏

τ=1

f(y
T
(τ)|uT(τ),h,Σ )

=
N∏

t=1

[ M∑

m=1

1

M
· f(y(t)|um,h,Σ )

]
·

NT∏

τ=1

f(y
T
(τ)|uT(τ),h,Σ ). (3.3)

In Appendix A, we derive the EM algorithm for maximizing (3.3): iterate between

Step 1:

h(k+1) =
1

N +NT

{ N∑

t=1

[
y(t)

M∑

m=1

u∗m · ρ(k)
m (t)

]
+

NT∑

τ=1

y
T
(τ)uT(τ)∗

}
, (3.4a)

where

ρ(k)
m (t) =

exp{−[y(t) − h(k)um]H(Σ (k))−1[y(t) − h(k)um]}
∑M

n=1 exp{−[y(t) − h(k)un]H(Σ (k))−1[y(t) − h(k)un]}
, and (3.4b)

Step 2:

Σ
(k+1) = Ryy − h

(k+1)(h(k+1))H . (3.5)

Here

Ryy =
1

N +NT

[ N∑

t=1

y(t)y(t)H +

NT∑

τ=1

y
T
(τ)y

T
(τ)H

]
(3.6)

is the sample correlation matrix of the observed data and “∗” denotes complex conjugation. Note that the

terms in the summation over t in (3.4a) can be computed in parallel. To ensure that the estimates of the

spatial noise covariance matrix in (3.5) are positive definite with probability one, the following condition

should be satisfied:

N +NT ≥ nR + 1, (3.7)

see also the discussion in Appendix A. Expression (3.4b) can be further simplified by canceling out terms

in the numerator and denominator:

ρ(k)
m (t) =

exp[2 Re{y(t)H(Σ (k))−1h(k)um}]
∑M

n=1 exp[2 Re{y(t)H(Σ (k))−1h(k)un}]
, (3.8)
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where we have used the constant-modulus property of the transmitted symbols. In the (k + 1)st iteration,

Step 2 requires computing (Σ (k))−1, which can be done using the matrix inversion lemma in e.g. [20, Cor.

18.2.10]:

(Σ (k))−1 = R−1
yy

+
R−1
yy
h(k)(h(k))HR−1

yy

1 − (h(k))HR−1
yy
h(k)

, (3.9a)

where R−1
yy

needs to be evaluated only once, before the iteration starts. Then, (Σ (k))−1h(k) simplifies to:

(Σ (k))−1h(k) =
R−1
yy
h(k)

1 − (h(k))HR−1
yy
h(k)

. (3.9b)

In the following, we discuss phase correction of the EM channel estimates.

A. Phase Correction

We describe a method for correcting the phases of the channel estimates in the EM iteration. Observe that

the first product term in (3.3) is due to the unknown symbols, whereas the second term

NT∏

τ=1

f(y
T
(τ)|uT(τ),h,Σ ) (3.10)

is due to the training symbols, and is equal to the likelihood function for the case where only the training

data are available. For i.i.d. constant-modulus symbols considered here [see (2.3)], the first term in (3.3)

has M equal maxima (due to the phase ambiguity), which could cause the above EM iteration to converge

to a local maximum of the likelihood function. We correct the phase of the EM channel estimates h(k) to

ensure that (3.10) is maximized. For example, for a QPSK constellation, we find which of the following four

vectors: h(k), h(k) exp(jπ/2), h(k) exp(−jπ/2), and h(k) exp(jπ) maximizes the training-data likelihood

function in (3.10) and update h(k) accordingly. This test is computationally very efficient and may not need

to be performed at every step of the EM iteration.

IV. Cramér-Rao Bound

We derive the CRB matrix for the unknown parameters under the measurement model in Section II. First, de-

fine the vector of the unknown channel and noise parameters ζ = [ηT ,ψT ]T , where η = [Re(h)T , Im(h)T ]T

and ψ = [Re{vech(Σ )}T, Im{vech(Σ )}T ]T . (The vech and vech operators create a single column vector

by stacking elements below the main diagonal columnwise; vech includes the main diagonal, whereas vech

omits it.) Define also the vector of the observed data

υ = [y(1)T ,y(2)T , . . . ,y(N)T ,y
T
(1)T ,y

T
(2)T , . . . ,y

T
(NT)T ]T (4.1a)

and the vector of the unobserved data

u = [u(1), u(2), . . . , u(N)]T . (4.1b)

Then, the CRB matrix for the unknown parameters ζ is computed as (see [3, Ch. 3.8.1]):

CRB(ζ) =
{
E υ[s(υ; ζ)s(υ; ζ)T ]

}−1
, (4.2)
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where the expectation is performed with respect to the distribution of υ and s(υ; ζ) is the observed-data

score vector. The observed-data score vector can be computed as (see [3, eq. (3.42)]):

s(υ; ζ) = E u|υ[sc(υ,u; ζ)|υ], (4.3)

where sc(υ,u; ζ) is the complete-data score vector, obtained by differentiating the complete-data log-

likelihood function [i.e. the logarithm of (3.2)] with respect to ζ. Computing the expectations in (4.2)

and (4.3) is discussed in Appendix B, where the expression for sc(υ,u; ζ) is also given.

V. Detection

We now utilize the channel and noise estimates proposed in Section III to detect the unknown transmitted

symbols u(t). We apply the (estimated) maximum a posteriori (MAP) detector:

û(t) = arg max
u(t)∈U

exp{−[y(t) − ĥu(t)]HΣ̂
−1[y(t) − ĥu(t)]}

∑M
n=1 exp{−[y(t) − ĥun]HΣ̂−1[y(t) − ĥun]}

= arg min
u(t)∈U

[y(t) − ĥu(t)]HΣ̂
−1[y(t) − ĥu(t)] (5.1a)

= arg max
u(t)∈U

Re{y(t)HR−1
yy
ĥ · u(t)}, (5.1b)

where ĥ = h(∞) and Σ̂ = Σ
(∞) are the ML estimates obtained from the EM iteration (3.4)–(3.5) upon

convergence. To derive (5.1b), we have used the identity (3.9b) and the constant-modulus property of the

transmitted symbols. Interestingly, the detector in (5.1b) is a function of the channel estimate ĥ only,

through the R−1
yy
ĥ term. Note that the above detection problem is equivalent to finding m ∈ {1, 2, . . . ,M}

that maximizes ρ(∞)
m (t) in (3.8) [see also (3.4b)]. The detector (5.1) and EM algorithm (3.4)–(3.5) can be

easily modified to account for unequal prior probabilities of the transmitted symbols.

VI. Simulation Results

We evaluate the performance of the proposed estimation and detection algorithms using numerical simula-

tions. We consider an array of nR = 5 receiver antennas. Our performance metrics are the mean-square error

(MSE) and symbol error rate (SER), averaged over 5000 random channel realizations generated using an

i.i.d. Rayleigh fading model with unit-variance channel coefficients. The transmitted symbols were generated

from an uncoded QPSK modulated constellation (i.e. M = 4) with normalized energy. We added a three-

symbol training sequence (NT = 3), which was utilized to obtain the initial channel estimate h(0), computed

using least squares. The initial estimate of the noise covariance matrix was chosen as Σ
(0) = Ryy. The

signal was corrupted by additive complex Gaussian noise with spatial noise covariance matrix Σ whose

(p, q)th element is

Σp,q = σ2 · 0.9|p−q| · exp[j(π/2)(p− q)], (6.1)

which is the noise covariance model used in [22] (see also references therein). The bit signal-to-noise ratio

(SNR) per receiver antenna was defined as

SNR = 10 log10

[ 1

σ2 · log2(M)

]
= 10 log10

( 1

2σ2

)
(dB). (6.2)
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Fig. 1. Average mean-square errors and corresponding Cramér-Rao bounds for the channel estimates obtained using the proposed
EM algorithm, DW-ILSP method, and an EM algorithm for spatially white noise, as functions of N for NT = 3 and SNR = −1 dB.

In the cases where the EM algorithm did not converge within 40 iterations, it was restarted using a randomly

selected initial value for the channel coefficients2. [We implemented the same restart procedure in all

algorithms whose performance is analyzed in this section.] We also applied the phase correction technique

in Section III-A at every step of the EM iteration.

In the first set of simulations, the bit SNR was set to −1 dB. In Figs. 1 and 2, we show the average MSEs

(and corresponding average CRBs) for the ML estimates of the channel coefficients3 and selected elements

of the spatial noise covariance matrix Σ (obtained using the proposed EM algorithm) as functions of the

block length N . Fig. 1 also compares the MSE performance of the proposed EM algorithm with

• the decoupled weighted iterative least squares with projection (DW-ILSP) method in [23] and

• an EM algorithm that assumes spatially white noise.

For low SNR (−1 dB), few training symbols (NT = 3) and short block lengths, the proposed EM algorithm

clearly outperforms the DW-ILSP method. In this scenario, the proposed method attains the CRB for N = 100

symbols, compared with more than 4000 symbols needed for the DW-ILSP method. [Note also that in

fading channels the block length N is limited by the coherence time of the channel.] The average numbers

of iterations needed for the EM, white-noise EM, and DW-ILSP algorithms to converge were 9, 9, and 6,

respectively. For N = 100, restart was needed in less than 0.1% of the total number of trials. A single EM

iteration has higher computational complexity than a DW-ILSP iteration for the same N , and the complexity

2Note that fast convergence of the EM algorithm or utilizing the above restart method do not guarantee convergence to the
global maximum of the observed-data likelihood function. Hence, our simulation results represent upper bounds on the performance
achievable by the exact ML method.

3Here, averaging is performed over both the channel coefficients for different antennas (i.e. elements of ĥ) and random channel
and training-data realizations.
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Fig. 2. Average mean-square errors and corresponding Cramér-Rao bound for the ML estimates of Σ1,1, Re{Σ2,1}, Im{Σ2,1},
Re{Σ3,1}, Im{Σ3,1} obtained using the proposed EM algorithm, as functions of N for NT = 3 and SNR = −1 dB.

of both iterations increases linearly with N . However, the proposed EM algorithm typically needs a smaller

N to attain the same MSE. To demonstrate the importance of incorporating the spatial color of the noise in

channel estimation, we also show the performance of an EM algorithm that assumes spatially white noise in

the scenario where the noise is colored [with covariance (6.1)]. The EM algorithm for spatially white noise

follows from (3.4)–(3.5) by substituting Σ
(k) = (σ̂2)(k)InR

into Step 1 in (3.4) and applying the following

Step 2: (σ̂2)(k+1) = tr(Σ (k+1))/nR, where Σ
(k+1) was defined in (3.5), and InR

denotes the identity matrix

of size nR. For low SNR (−1 dB) and few training symbols (NT = 3), the white-noise EM algorithm breaks

down.

In Fig. 2, we show the average MSEs for the ML estimates of Σ1,1, Re{Σ2,1}, Im{Σ2,1}, Re{Σ3,1}, and

Im{Σ3,1} (obtained using the proposed EM algorithm) and the corresponding CRBs as functions of N .

In Fig. 3, the average MSEs for the channel estimates obtained by the proposed EM algorithm for spatially

correlated noise, DW-ILSP method, and EM algorithm for spatially white noise are shown as functions of

the bit SNR per receiver antenna for block lengths N = 50, 100, and 150. When the average MSE is

0.03 and N = 100, the EM algorithm has an advantage of about 9 dB over the DW-ILSP algorithm; this

advantage further grows as N decreases. An intuitive explanation for this performance improvement is that

the EM algorithm exploits additional information provided by the prior distribution of the unknown symbols

in (2.3). Note also that the number of parameters in the random-symbol measurement model in Section

II equals n2
R

+ 2nR, and, therefore, is independent of N . This is in contrast with the DW-ILSP and other

deterministic ML methods (e.g. [24], see also [25]) where the number of parameters grows with N . For low

SNRs, the white-noise EM algorithm performs poorly, see also Fig. 1. However, for high SNRs and small
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Fig. 3. Average mean-square errors for the channel estimates obtained using the proposed EM algorithm, DW-ILSP method, and
EM algorithm for spatially white noise, as functions of the bit SNR per receiver antenna for block lengths N = 50, 100, and 150.

block lengths, it outperforms the EM algorithm for spatially correlated noise. Hence, in this scenario, the

fact that the white-noise EM algorithm estimates a small number of parameters (2nR + 1) becomes more

important than accounting for spatial noise covariance (which, in addition, is poorly estimated due to the

small block length).

In Fig. 4, we compare symbol error rates of the detector (5.1) which uses the ML estimates of h and Σ

[obtained from the EM iteration (3.4)–(3.5)] with

• the DW-ILSP detector in [23] and

• a white-noise detector

arg max
u(t)∈U

Re{y(t)H ĥwhite EM · u(t)}, (6.3)

where ĥwhite EM is computed using the EM algorithm for spatially white noise.

The symbol error rates are shown as functions of the bit SNR per receiver antenna for block lengths

N = 50, 100, and 150. For the given range of SNRs and block lengths, the proposed detector significantly

outperforms the DW-ILSP detector. As expected, the white-noise detector performs poorly for low SNRs

due to poor channel estimates provided by the white-noise EM algorithm. Similarly, for high SNRs and

small block lengths it outperforms the detector in (5.1) due to the fact that the white-noise EM algorithm

outperforms the EM algorithm for spatially correlated noise in this scenario. The performance of the detector

(5.1) improves significantly as the block length increases due to the improved channel estimation. In contrast,

the performance of the white-noise detector is insensitive to the choice of the block length (for the block

lengths considered in Fig. 4), which can be explained by the fact that the white-noise EM algorithm estimates

a small number of parameters (and thus requires a relatively small data size).



9

−7 −6 −4 −2 0 2 4 6 7

10
−5

10
−4

10
−3

10
−2

10
−1

Bit SNR per receiver antenna (dB)

S
ym

bo
l E

rr
or

 R
at

e

Dash−dot line:  N=50      
                          
  Dashed line:  N=100     
                          
       Solid line:  N=150 

white−noise EM 

DW−ILSP 

EM 
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VII. Concluding Remarks

We developed an expectation-maximization algorithm for semi-blind estimation of single-input multi-output

fading channels in spatially correlated noise having unknown covariance. We also derived a method for

phase correction of the EM channel estimates and computed the Cramér-Rao bounds for the unknown

parameters. The proposed channel and noise estimators were incorporated into the receiver design. We

presented numerical simulations that demonstrated the performance of the proposed methods, and compared

them with the existing techniques.

Further research will include extending the proposed methods to the multi-input multi-output (MIMO)

scenario and reducing their computational complexity. For coded transmission, we will develop iterative

schemes that combine EM channel estimation with decoding under the correlated noise scenario, generalizing

the white-noise based methods in e.g. [26] and [27].

Appendix A. EM Algorithm Derivation

We relax the constant-modulus assumption (2.2b) and first derive the EM algorithm for the general case

where the symbols u(t), t = 1, 2, . . . , N, uT(τ), τ = 1, 2, . . . , NT belong to an arbitrary constellation. This

algorithm is then simplified to the constant-modulus scenario in Sections II and III.

By taking the logarithm of (3.2) and neglecting terms that do not depend on the parameters h and Σ , we

obtain the complete-data log-likelihood function

L(h,Σ ) = −(N +NT) ·
{

ln |Σ | + tr[Σ−1 · (Ryy − ryuh
H − hrH

yu
+ ruuhh

H)]
}
, (A.1)
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where | · | denotes the determinant and

Ryy =
1

N +NT

[ N∑

t=1

y(t)y(t)H +

NT∑

τ=1

y
T
(τ)y

T
(τ)H

]
, (A.2a)

ryu =
1

N +NT

[ N∑

t=1

y(t)u(t)∗ +

NT∑

τ=1

y
T
(τ)uT(τ)∗

]
, (A.2b)

ruu =
1

N +NT

[ N∑

t=1

|u(t)|2 +

NT∑

τ=1

|uT(τ)|2
]
, (A.2c)

are the natural complete-data sufficient statistics for estimating h and Σ , see e.g. [16]. At the kth iteration,

the E step computes the conditional expectation of the complete-data log-likelihood given the observed data

υ [see (4.1a)] at the current parameter estimates h(k) and Σ
(k):

Q(h,Σ ;h(k),Σ (k)) = −(N +NT) ·
{

ln |Σ | + tr[Σ−1 · (Ryy − r
(k)
yu
hH − h(r(k)

yu
)H + r(k)

uu
hhH)]

}
, (A.3)

where r(k)
yu

= E u|υ[ryu|υ;h(k),Σ (k)] and r(k)
uu

= E u|υ[ruu|υ;h(k),Σ (k)]. The above expression is obtained

from (A.1) by replacing ryu and ruu with their conditional expectations r(k)
yu

and r(k)
uu

. The M step maximizes

the above Q function with respect to h and Σ to produce

h(k+1),Σ (k+1) = arg max
h,Σ

Q(h,Σ ;h(k),Σ (k)). (A.4)

The maximization of L(h,Σ ) in (A.1) with respect to h and Σ has well-known solutions given by ryu/ruu

and Ryy − ryur
H
yu
/ruu (respectively), provided that Ryy − ryur

H
yu
/ruu is a positive definite matrix, see e.g.

[18] and [19, Th. 10.1.1]. (These expressions follow from the multivariate analysis of variance (MANOVA)

model in multivariate statistical analysis, see [18] and [19].) Hence, the M step is obtained by replacing ryu

and ruu in ryu/ruu and Ryy−ryur
H
yu
/ruu with their conditional expectations and the EM iteration follows:

Step 1:

h(k+1) =
1

N +NT

{ N∑

t=1

[
y(t)

M∑

m=1

u∗m · ρ(k)
m (t)

]
+

NT∑

τ=1

y
T
(τ)uT(τ)∗

}/
r(k)
uu
, (A.5a)

where

r(k)
uu

=
1

N +NT

{ N∑

t=1

M∑

m=1

[|um|2 · ρ(k)
m (t)] +

NT∑

τ=1

|uT(τ)|2
}
, (A.5b)

Step 2:

Σ
(k+1) = Ryy − r(k)

uu
· h(k+1)(h(k+1))H , (A.6)

where ρ(k)
m (t) is computed using (3.4b). Note that (A.5) and (A.6) each incorporate both E and M steps.

The condition (3.7) is needed to ensure that Σ
(k+1) is a positive definite matrix with probability one, which

follows using arguments similar to those in [19, Th. 3.1.4], see also [18, eq. (4)] and [19, Th. 10.1.1].

In the constant-modulus scenario (2.2b), we have that r(k)
uu

≡ 1 for all k. Hence, setting r(k)
uu

= 1 in

(A.5)–(A.6) yields the EM iteration (3.4)–(3.5).
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Appendix B. Cramér-Rao Bound

We present the expression for the complete-data score vector sc(υ,u; ζ) under the measurement model

(2.1)–(2.3) and discuss evaluating the expectations in (4.2) and (4.3), needed for computing the CRB matrix.

The complete-data score vector sc(υ,u; ζ) for this measurement model is obtained by differentiating the

complete-data log-likelihood function (A.1) with respect to ζ (see [21, App. 15C]) and setting ruu = 1:

sc(υ,u; ζ) = [Re{sc,h(υ,u; ζ)}T , Im{sc,h(υ,u; ζ)}T , sc,ψ(υ,u; ζ)T ]T , (B.1)

where

sc,h(υ,u; ζ) = 2 · Σ−1 ·
{ N∑

t=1

[y(t)u(t)∗ − h] +

NT∑

τ=1

[y
T
(τ)uT(τ)∗ − h]

}

= 2 · (N +NT) · Σ−1 · (ryu − h), (B.2a)

[sc,ψ(υ,u; ζ)]i = −(N +NT) · tr
(
Σ

−1 ∂Σ

∂ψi

)
+ (N +NT) · hH

Σ
−1 ∂Σ

∂ψi

Σ
−1h

+
N∑

t=1

y(t)H
Σ

−1 ∂Σ

∂ψi

Σ
−1y(t) +

NT∑

τ=1

y
T
(τ)H

Σ
−1 ∂Σ

∂ψi

Σ
−1y

T
(τ)

−hH
Σ

−1 ∂Σ

∂ψi

Σ
−1 ·

N∑

t=1

[y(t)u(t)∗] −
N∑

t=1

[y(t)Hu(t)] · Σ−1 ∂Σ

∂ψi

Σ
−1h

−hH
Σ

−1 ∂Σ

∂ψi

Σ
−1 ·

NT∑

τ=1

[y
T
(τ)uT(τ)∗] −

NT∑

τ=1

[y
T
(τ)HuT(τ)] · Σ−1 ∂Σ

∂ψi

Σ
−1h

= (N +NT) ·
{
− tr

(
Σ

−1 ∂Σ

∂ψi

)
+ tr

(
Σ

−1hhH
Σ

−1 ∂Σ

∂ψi

)
+ tr

(
Σ

−1RyyΣ
−1 ∂Σ

∂ψi

)

− tr
[
(Σ−1ryuh

H
Σ

−1 + Σ
−1hrH

yu
Σ

−1) ·
∂Σ

∂ψi

]}
, i = 1, 2, . . . , n2

R
. (B.2b)

To compute (B.2b), the following identities can be utilized:

tr
(
A ·

∂Σ

∂Σp,p

)
= Ap,p, p = 1, 2, . . . , nR, (B.3a)

and

tr
(
A ·

∂Σ

∂ Re{Σ}p,q

)
= 2 Re{Ap,q}, (B.3b)

tr
(
A ·

∂Σ

∂ Im{Σ}p,q

)
= 2 Im{Ap,q}, 1 ≤ q < p ≤ nR, (B.3c)

where A is an arbitrary nR × nR Hermitian matrix. It follows from (B.2) that computing the observed-data

score vector s(υ; ζ) in (4.3) reduces to replacing ryu in (B.2) with its conditional expectation given υ:

E u|υ[ryu|υ] =
1

N +NT

{ N∑

t=1

[
y(t)

M∑

m=1

u∗m · ρm(t)
]

+

NT∑

τ=1

y
T
(τ)uT(τ)∗

}
, (B.4a)

where

ρm(t) =
exp{−[y(t) − hum]HΣ

−1[y(t) − hum]}
∑M

n=1 exp{−[y(t) − hun]HΣ−1[y(t) − hun]}
. (B.4b)
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Finally, the CRB matrix is computed using (4.2), which requires multidimensional integration to evaluate

the expectation with respect to the distribution of υ; this can be performed using Monte Carlo integration,

i.e. by averaging s(υ; ζ)s(υ; ζ)T over many realizations of υ.
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