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DEFECT DETECTION USING HIDDEN MARKOV
RANDOM FIELDS

Aleksandar Dogandžić, Nawanat Eua-anant, and Benhong Zhang

Iowa State University, Center for Nondestructive Evaluation,
1915 Scholl Road, Ames, IA 50011, USA

ABSTRACT. We derive an approximate maximum a posteriori (MAP) method for detect-
ing NDE defect signals using hidden Markov random fields (HMRFs). In the proposed
HMRF framework, a set of spatially distributed NDE measurements is assumed to form a
noisy realization of an underlying random field that has a simple structure with Markovian
dependence. Here, the random field describes the defect signals to be estimated or detected.
The HMRF models incorporate measurement locations into the statistical analysis, which
is important in scenarios where the same defect affects measurements at multiple locations.
We also discuss initialization of the proposed HMRF detector and apply to simulated eddy-
current data and experimental ultrasonic C-scan data from an inspection of a cylindrical Ti
6-4 billet.

INTRODUCTION

In nondestructive evaluation (NDE) applications, defect signal typically affects multi-
ple measurements at neighboring spatial locations. Therefore, multiple spatial measurements
should be incorporated into defect detection algorithms, leading to an improved performance
compared with the detectors that ignore spatial dependence. Markov random field models
have been widely used to describe spatially distributed random phenomena, see e.g. [1]–[3].
In this paper, we propose a hidden Markov random field (HMRF) model to describe spatially
distributed NDE observations. Under this model, the observations form a noisy realization
of an underlying random field that has a simple structure with Markovian dependence. Here,
the Markovian assumption implies that the random field at a particular measurement location
is modeled in terms of field values at neighboring spatial locations. We show how the pro-
posed HMRF model can be used to efficiently remove false alarms and detect potential defect
regions.

We first introduce the proposed HMRF models and present an approximate maximum
a posteriori (MAP) algorithm for defect detection. We then apply the proposed methods to
simulated and experimental NDE data. Finally, we conclude by outlining suggestions for
future work.
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HMRF MODEL

Assume that we have collected K spatially distributed measurements yk, k = 1, . . . , K,
modeled as an HMRF:

• yk, k = 1, 2, . . . , K are conditionally independent random variables with probability
distributions pyk|βk

(yk|βk; υ) describing the measurement-error (noise) model and

• βk, k = 1, 2, . . . , K form a Markov random field (MRF) describing a process model.

In this paper, we focus on the Gaussian measurement-error model:

pyk|βk
(yk|βk; υ) = g

(
yk; µ(βk), σ

2(βk)
)

=
1√

2πσ2(βk)
· exp

{
−

[yk − µ(βk)]
2

2 σ2(βk)

}
(1)

where υ = [µ(0), σ2(0), µ(1), σ2(1)]T is the vector of measurement-error model parameters.
Here, “T ” denotes a transpose and g(y; µ, σ2) the Gaussian probability density function (pdf)
having mean µ and variance σ2. The process model is described by the Ising MRF with the
kth location corresponding one of the following two classes:

• “defect present” (βk = 1) and

• “defect absent” (βk = 0).

Under the Ising model, the probability mass function (pmf) of βk is given by (see e.g. [1, ch.
6.5])

P [βk = 1 | N (k)] =
exp(δ uk)

1 + exp(δ uk)
(2)

where N (k) denotes the neighborhood of the kth measurement location, δ is a non-negative
constant (tuning parameter) describing the field strength, and

uk =
∑

l∈N (k)

(2βl − 1)

is the difference between the numbers of neighbors of the measurement location k that belong
to classes 1 and 0, respectively. Hence, uk is positive if class 1 prevails in the neighborhood
N (k), negative if class 0 prevails, and zero if the neighbors are equally distributed between
the two classes.

Our goal is to detect defect signals or, equivalently, estimate the MRF β = [β1, β2, . . . ,
βK ]T . We first describe an approximate MAP algorithm for defect detection assuming that
the measurement-error model parameters υ are known. We then develop an alternating-
projection algorithm for jointly estimating β and υ in the case where the measurement-error
model parameters are unknown and discuss the initialization of the proposed iteration.

APPROXIMATE MAP DETECTION

We utilize the iterated conditional modes (ICM) algorithm in [2] to obtain approximate
MAP estimates of the MRF β. Under the Ising MRF model (2), the ICM algorithm updates
βk at the kth measurement location by maximizing the “local” (conditional) MAP objective
function:

β̂k =

{
1, ln

[
pyk|βk

(yk | 1; υ)
/
pyk|βk

(yk | 0; υ)
]
+ δ uk > 0

0, otherwise . (3a)
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When applied to each k in turn, this procedure defines a single cycle of the ICM algorithm.
The cycling is performed until convergence, i.e. until the estimates of βk do not change sig-
nificantly for all k ∈ {1, 2, . . . , K}. Under the Gaussian measurement-error model in (1), the
approximate MAP decision rule (3a) further simplifies: select β̂k = 1 if

−1
2
ln σ2(1) −

[yk − µ(1)]2

2σ2(1)
+ 1

2
ln σ2(0) +

[yk − µ(0)]2

2σ2(0)
+ δuk > 0 (3b)

otherwise, select β̂k = 0. The above approximate MAP detector is based on the assumption
that the measurement-error model parameters υ are known. We now propose an alternating-
projection algorithm that jointly estimates υ and the MRF β by iterating between the follow-
ing two steps:

(i) Approximate MAP Detection: Fix the measurement-error model parameters υ = υ̂ and
update the MRF β using one cycle of the approximate MAP algorithm;

(ii) Measurement-Error Model Parameter Estimation: Fix β and estimate υ by maxi-
mizing the log-likelihood function for known β,

∑K

k=1 ln
[
pyk|βk

(yk | βk; υ)
]
, yielding

the following sample means and variances:

µ̂(1) =
1

K1

K∑

k=1

βk yk, µ̂(0) =
1

K − K1

K∑

k=1

(1 − βk) yk (4a)

σ̂2(1) =
1

K1

[ K∑

k=1

βk y2
k

]
− µ̂2(1), σ̂2(0) =

1

K − K1

[ K∑

k=1

(1 − βk) y2
k

]
− µ̂2(0) (4b)

where K1 =
∑K

k=1 βk is the number of measurement locations with defect signals
[according to the detection results from Step (i)].

Choosing the Initial Estimates of the Measurement-error Model Parameters

To implement the above iteration successfully, we need a good initial estimate υ init =
[µinit(0), σ2

init(0), µinit(1), σ
2
init(1)]

T of the model-parameter vector. Here, we compute υ init

using the ML clustering algorithm which ignores the spatial dependence. We also estimate
the prior probability π(1) that a measurement location belongs to a defect region. The ML
clustering algorithm consists of the following iterations:

(i) Choose initial estimates υ
(0)
init and π(0)(1), and compute π(0)(0) = 1 − π(0)(1).

(ii) Having calculated π(i)(1), π(i)(0), and υ
(i)
init, compute new estimates

π(i+1)(ξ) =
1

K

K∑

k=1

q
(i)
k (ξ) (5a)

µ
(i+1)
init (ξ) =

1

K π(i+1)(ξ)

K∑

k=1

q
(i)
k (ξ) yk (5b)

[σ2
init(ξ)]

(i+1)
=

1

K π(i+1)(ξ)

K∑

k=1

q
(i)
k (ξ) [yk − µ(i+1)(ξ)]2 (5c)

q
(i+1)
k (ξ) =

π(i+1)(ξ) · g(yk; µ
(i+1)(ξ), [σ2(ξ)]

(i+1)
)∑1

d=0 π(i+1)(d) · g
(
yk; µ(i+1)(d), [σ2(d)](i+1)

) (5d)

for ξ ∈ {0, 1} and k = 1, 2, . . . , K.
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(iii) When µ
(i+1)
init (ξ) = µ

(i)
init(ξ) and [σ2

init(ξ)]
(i+1)

= [σ2
init(ξ)]

(i) for ξ ∈ {0, 1} then stop.
Otherwise increase the iteration number i by 1 and go to step (ii).

Apart from having a different exit criterion [i.e. step (iii)], the above algorithm is identical to
the ML clustering algorithm in e.g. [4, pp. 529–530] and [5, ch. 3.3.1]. In the following, we
present numerical examples.

EXAMPLES

Simulated Eddy-current Data

Figure 1(a) shows a magnitude plot of low-noise experimental eddy-current impedance
measurements in a sample containing two realistic flaws, where each pixel corresponds to a
measurement location. To simulate noisy measurements, we added independent, identically
distributed (i.i.d.) zero-mean complex Gaussian noise yielding the magnitude plot in Figure
1(b). We first apply an energy detector to the noisy data and then utilize the proposed ap-
proximate MAP method to remove false alarms. A testing window Y T of size 10 × 10 was
swept across the noisy image. At each window location, we computed the energy-detector
test statistic:

ED = (2/σ2) · tr(Y TY H
T

)

= (2/σ2) · (sum of squared magnitudes of all pixels in Y T)

where, in this example, the noise variance was σ2 = 0.4. In the absence of defect signal, the
ED test statistic is distributed as a χ2 random variable with 2md degrees of freedom. Figure
2(a) shows the (logarithms of) ED test statistics. In Figure 2(b), black pixels correspond to
the test values [from Figure 2(a)] that were larger than a a specified threshold. The threshold
was set to guarantee the false-alarm probability PFA = 1%. We now apply the approximate
MAP algorithm to the ED results in Figure 2(a) using a 5× 5 neighborhood shown in Figure
3. [Here, the MAP algorithm is initialized by the results of the ML clustering algorithm and
the ML clustering algorithm is initialized using the energy-detector results in Figure 2(b).] In
Figure 4, we show the results of the MAP algorithm for the field strength δ = 2. Clearly, the
MAP detector removes the false alarms caused by the energy detector.

Experimental Ultrasonic Data

We now apply the approximate MAP method to experimental ultrasonic C-scan data
from an inspection of a cylindrical Ti 6-4 billet. The sample, taken from the contaminated
billet, contains 17 # 2 flat bottom holes at 3.2” depth. The ultrasonic data were collected
in a single experiment by moving a probe along the axial direction and scanning the billet
along the circumferential direction at each axial position. The raw C-scan data with marked
defects are shown in Figure 5. The vertical coordinate is proportional to rotation angle and the
horizontal coordinate to axial position. We consider two approaches to construct the HMRF
observations yk:

• subtracting row means from the C-scan image and

• using generalized likelihood ratio (GLR) test statistics for correlated noise in [6].

Using the first approach with a 7× 3 neighborhood (shown in Figure 6) and the field strength
δ = 2.5, the MAP detector yields the results in Figure 7. All defects are successfully detected

707 This article is copyrighted as indicated in the article. Reuse of AIP content is subject to the terms at:

http://scitation.aip.org/termsconditions. Downloaded to  IP:  129.186.176.217 On: Wed, 08 Oct 2014 15:29:52



0  

0.5

1  

X axis

Y
 a

xi
s

(a)

50 100 150 200 250

20

40

60

80

100

0.5

1  

1.5

X axis

Y
 a

xi
s

(b)

Y
T

50 100 150 200 250

20

40

60

80

100

FIGURE 1. (a) Magnitude plot of low-noise eddy-current measurements with peak value normalized
to one and (b) magnitude plot of eddy-current data in (a) corrupted by complex white Gaussian noise
with variance σ2 = 0.4.
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FIGURE 2. (a) Logarithms of ED test statistics and (b) energy-detector results for PFA = 1%.
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FIGURE 3. A 5 × 5 neighborhood used to remove false alarms from the ED results in Figure 2.
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FIGURE 4. Results of the MAP detector applied to the ED image in Figure 2, for δ = 2.

and there is one false-alarm region. We now apply the second approach where the GLR test
statistics are computed using a testing window of size 5×5 around the measurement location
of interest. The GLR test statistics and detection results for PFA = 1% are shown in Figure 8.
Since the GLR test yields enlarged defect areas, we use a larger neighborhood with a 7 × 5
window (see Figure 9) and a larger field strength δ = 3.5. Applying the MAP algorithm to
the GLR test results yields the best performance with no false alarms, see Figure 10.
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FIGURE 5. Ultrasonic C-scan data with 17 defects.
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FIGURE 6. A 7 × 3 neighborhood used to analyze the ultrasonic C-scan image in Figure 5.
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FIGURE 7. Results of the MAP detector applied to the ultrasonic C-scan data, for δ = 2.5.
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FIGURE 8. (a) GLR test statistics and (b) GLR detector results for PFA = 1%.
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FIGURE 9. 7 × 5 neighborhood used to remove false alarms from the GLR results in Figure 8.
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FIGURE 10. Results of the MAP detector applied to the GLR image in Figure 8, for δ = 3.5.

CONCLUSIONS

We developed an approximate maximum a posteriori defect detector for hidden Markov
random fields with Gaussian measurement-error and Ising process models. We also dis-
cussed initialization of the MAP iteration and applied the proposed detector to simulated
eddy-current and experimental ultrasonic C-scan data. Further research will include

• developing a false-discovery-rate (FDR) based method (see e.g. [7]) that utilizes a
realistic ultrasonic noise and signal models and

• applying the HMRF framework to other NDE problems with focus on data fusion.
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