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NOMENCLATURE 

A = Amplitude 

=c = 

= Linear stability coefficient 

a^ = Nonlinear coefficient 

C = Concentration 

Cj = Concentration at the interface 

C|^ = Specific heat of liquid per unit volume 

Go = C./K, 

Cg = Specific heat of the solid per unit volume 

C^ = Concentration from advancing interface 

D = Diffusion coefficient 

G = Weighted average thermal gradient = ic^G^ + <^G^/(Kg+K^) 

= Concentration gradient at interface at point of break up 

G^ = Concentration gradient in the liquid at the interface 

G|^ = Thermal gradient in the liquid 

9s = (Ks/K')Gs 

h(k) = As defined on page 27 

K = Curvature 

K ' = Partition coefficient 
0 

k = Wavenumber 

k* = (V/2D) + [(V/2D)2 + 

k_ = Critical wavenumber 
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Y/ASK,AT, 

2 D/V 

KoATo/G 

liqui dus slope (normally negative) 

AT^V/D 

Ks/Kl 

Supercooling 

As defined on page 27 

Temperature 

Equilibrium freezing temperature of the advancing interface 

Temperature in the liquid 

Melting point of the alloy of composition 

Temperature in the solid 

Time 

Velocity 

Break up velocity 

Break up velocity with dynamic considerations 

Critical velocity 

External, or drive velocity 

Maximum velocity at which cells can exist 

Critical velocity prior to an increase or decrease in velocity 

Transition velocity of minimum cell spacing 

Interface velocity 

Velocity with respect to the zeroth order nonlinear problem 

Velocity defined as parallel to the advancing interface 
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= Velocity with respect to the first order nonlinear problem 

z = direction of directional freezing, or heat flow direction 

Greek Symbols 

a = YG/4ASATQ^ 

g =T[m(KQ-l)] 

AH = Enthalpy of freezing 

AS = Entropy of fusion per volume in units (for example, J/m ) 

As = Entropy of fusion per volume in units (for example, J/m K) 

AT^ = mC^(KQ-l)/K^ = the freezing range of the alloy 

e = An interface perturbation 

y = Solid-liquid interfacial free energy 

YQ = Surface energy of the (100) plane 

k' = 1/2 (Cg+K^) 

K|^ = Thermal conductivity in the liquid 

Kg = thermal conductivity in the solid 

= Glickman's anisotropy parameter 

Ô = Small amplitude perturbation 

6/6 = Amplitude growth rate of a perturbation 

A = Dimensionless parameter as defined on page 165 

X = 2n/k = wavelength 

= Primary spacing 

A. = 10.58 (Iglg)!/: 

X. = 1.68 (X.i+)1/2 
J * 

y = Interface anisotropy property due to concentration 
considerations 



I X  

vtj = Interface anisotropy property due to thermal considerations 

= Interface kinetic anisotropy term 

= Time required for the occurrence of break up 

V = VATQ/GD 

= Dimensionless velocity at which experimental amplitude 
dropped sharply 

V[j = Dimensionless break up velocity 
* 

= Minimum value of V|^ 

= Threshold value of the dimensionless velocity 

VQ = Dimensionless control velocity 

0) = Wavenumber, is used in development of nonlinear model 

0) = Critical wavenumber 
c 
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GENERAL INTRODUCTION 

Nature, with all its beauty and brillance, is sometimes simple, 

sometimes complex, but always fascinating. The simplicity of nature 

is often clouded when we investigate it with concepts and opinions 

already embedded in our minds. We must keep our minds open to see the 

beauty, the simplicity, and often, the complexity and intricacy of 

nature. Sometimes, the simple seems very complex, but more often, the 

complex appears very simple. A stunning example of both simplicity 

and complexity in nature is the snowflake. Mankind has consistently 

observed the six feather-like branches which emerge from the frozen 

droplet (Figure 1), but a precise understanding of how these branches 

form still remains elusive today. Do they form by pure chance? Are 

the branches totally determined by their growth environment? Are 

patterns determined at an early time in the growth and then, simply 

left to develop with time? These basic questions of pattern formation 

remain unanswered. 

About three hundred years ago, Nicholas Steno (from reference [la]) 

systematically studied crystal growth. He found that although crystals 

grow in a manner similar to plants and animals, there were some 

differences. Up until the time of Steno, men thought that crystals were 

a form of living thing. Steno showed instead, that growth conditions 

determine the structure which is formed. Today, there is again a desire 

to investigate the similarities which exist between crystal growth and 

other biological forms. This is because the general principles which 
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Figure 1. Actual snowflakes (from reference [lb]). There 
is similarity, and yet tremendous diversity 
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govern crystal morphologies may also apply to patterns which are formed 

in biological and other physical systems. 

The concepts that have been used to describe crystal growth have 

become much more complex and detailed since the time of Steno. Great 

strides have been made in understanding many aspects of crystal growth. 

Theoretical models have been developed which produce structures that 

are similar to actual crystal growth structures, and experiments have 

been designed and carried out which shed light on some areas of crystal 

growth. We are beginning to understand what happens, but the most 

fundamental questions about pattern formation in crystal growth still 

remain unanswered. Specifically, we do not yet understand the principle 

which selects a specific pattern out of many possible patterns under 

given environmental conditions. Although the subject of pattern 

formation is fascinating to the theorist, and interesting to the pure 

scientist, discussion of utility of the study of such phenomenon seems 

to always arise. In the case of solidification, the value of studying 

the fundamental principles comes forth immediately. The reason for 

this is that all metallic parts in some stage of their processing have 

gone through the solidification process. The solidification conditions 

experienced strongly affect the microstructure which influences many 

physical and mechanical properties of the metallic part. Therefore, in 

the interest of improving properties of metallic objects, an 

understanding of the solidification phenomenon is very essential. 

Some of the specific research areas where solidification has been 

studied recently are directionally solidified turbine blades, in situ 
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composite growth, laser processing of materials, and development of 

electronic materials. Each of these research areas is important in 

commercially manufactured products. One important aspect common to 

each of the research areas mentioned is directional solidification. It 

is for this reason that the broad topic of directional solidification 

was chosen as an area of study for this work. 

During directional freezing, as velocity increases, three different 

morphologies predominate for an advancing solid-liquid interface. The 

morphologies are planar, cellular, and dendritic. Figure 2 shows these 

possible structures. Figure 2(c) shows elongated cells which are 

present near the cell dendrite transition. Elongated cells such as 

these raise the question of nomenclature because they are similar to 

dendrites in tip shape and overall length, but lack the side branches 

which are characteristic of dendritic structures. These elongated 

cells are referred to as dendritic cells. All four of the structures 

seen in Figure 2 are examined in this study. 

All of the structures seen in Figure 2 have commercial importance. 

Planar interface solidification is important during the growth of 

single crystals because planar interface growth conditions give rise 

to single crystals of uniform composition. But in many practical 

situations, the slow growth rates required for planar interface 

stability are not economically desirable. For this reason, most casting 

and welding microstructures are formed under conditions which give rise 

to cellular and dendritic structures. Consequently, the study of 

cellular and dendritic growth is essential to determine processing 



( a )  ( b )  

200/Ltm 

( c )  ( d )  

Interface structures observed during directional 
solidification of transparent metal analogs: 
(a) a planar interface, the solid is on the left, the 
liquid is on the right, (b) a cellular structure with 
solid cells growing out into the liquid, (c) cellular 
dendrites, and (d) dendrites 
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conditions which give optimum properties. These properties are largely 

influenced by the solute segregation pattern which depends on the 

cellular or dendritic spacings. The cellular-dendritic transition is 

also important in cast and welded objects because these different 

growth structures give different segregation patterns, thereby giving 

rise to different mechanical properties. 

In this dissertation, an emphasis is placed on experimental studies. 

A detailed theoretical background is, however, presented so that the 

important principles which govern solidification microstructures can 

be clearly established. The analysis of theoretical models will also 

allow us to focus on critical information that is needed to further 

understand the pattern formation phenomenon. The theoretical 

background thus provides a direction for planning critical experiments 

to examine specific ideas. 

Directional solidification was carried out experimentally on the 

apparatus shown schematically in Figure 3. Here, it is seen that a 

sample is moved at a specified externally imposed velocity through an 

externally imposed thermal gradient. The three possible solidification 

variables, the composition, growth velocity, and thermal gradient, can 

all be controlled accurately in these experiments. As mentioned above, 

there are very few physical systems in which all the variables 

important to the structure formed are completely controllable 

experimentally. For this reason, the results of directional 

solidification studies are of interest not only to materials science, 

but also to numerous other disciplines (such as physics or biology) 



COLD ZONE HOT ZONE 
1 l_ 1 .-—CONSTANT VELOCITY 

SAMPLE 
t 

SOLID 
LIQUID 

INTERFACE 
LU 1 cr 1 =) 

1 1— j > < 
(T ^—CONSTANT THERMAL 
LU 
û_ —1— GRADIENT REGION 
2 1 
LU 1 
1— 1 

1 

DISTANCE 
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where the system variables are not completely controllable 

experimentally, but where a similar pattern formation does occur. There 

is, therefore, both scientific and commercial interest in the study of 

directional solidification microstructures. 

The major questions which will be addressed in this work are: 

(1) What are the physical principles which govern the transitions 

in interface shapes, i.e., the planar to cellular and cellular to 

dendritic transitions? 

(2) What physical principles select or determine periodicity and 

amplitude of cellular or dendritic structures? 

(3) If the steady-state spacing of the system is perturbed, what 

mechanisms are important to the system for regaining a steady-state? 

(4) How does the periodicity of the pattern depend on the 

experimental variables? 

In order to examine these questions as completely as possible, 

in situ studies have been performed in transparent, metal analog 

systems. The systems selected for the present studies are the 

succinonitrile-acetone, the pivalic acid-ethanol, and the 

carbontetrabromide-hexachloroethane systems. For these organic systems, 

physical properties have been determined precisely. These systems also 

freeze with structures which are similar to metals. In addition, they 

are transparent, and therefore, are ideal for establishing answers to 

the above questions. 

The major conclusions which emerge from this study, and which are 

covered in detail in the appropriate sections of this work are: 
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(1) The experimental conditions at which a planar interface just 

becomes unstable are found to match accurately with the predictions of 

the linear stability analysis [2]. The wavelengths observed, however, 

at the occurrence of break up are significantly smaller than those 

predicted by the linear stability analysis. 

(2) Cells of a finite length (amplitude) exist below the 

threshold velocity predicted by the linear stability analysis if the 

interface is perturbed to large amplitudes. The planar to nonplanar 

bifurcation is, therefore, subcritical. This shows that nonlinear 

effects are important during the planar to nonplanar transition. 

(3) After the planar interface breaks up, the pattern formed 

starts at a small wavelength and progresses toward the longer wavelength 

until the final cellular steady state is developed. Development of 

the pattern is shown to occur when nonlinear effects become important. 

These nonlinear effects have been shown to occur at very early times 

following the break up. Both the time evolution of the steady-state 

pattern and the mechanisms which allow the adjustment in spacing are 

determined. 

(4) Dynamics were found to be very important to cell spacing 

selection. This means that care must be taken to achieve steady state. 

The system may be locked into nonsteady-state growth spacings by time 

spent previously under different growth conditions. Stable and 

metastable spacings can also be produced, depending on the path taken 

to establish the spacing. A large experimental noise is required for 

nonlinear effects to induce the changes required for the steady-state 
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spacing to be established. 

(5) The cellular state has three distinct spacing and cell length 

regions as the velocity increases above the threshold velocity. These 

are (a) a region where the cell length and spacing decrease with an 

increase in velocity, (b) a transition region where the cell spacing 

and cell length increase sharply, and (c) a region where the cell 

spacing decreases with increasing velocity. 

(6) The cell-dendrite transition is not a sharp transition. It 

can occur over a range of velocities. Dendrites can occur below the 

normally observed cell-dendrite transition. There is no theory which 

predicts this, but the occurrence is similar to the hysteresis effect 

observed in our studies of the planar to cellular interface transition. 

Explanation of Dissertation Format 

This dissertation has been written in the alternate format. In 

the first section, the planar to cellular interface transition during 

the directional solidification of a binary alloy has been studied in 

the succinonitrile-acetone system. The interface velocity at which the 

planar interface becomes unstable and the wavenumbers of the initially 

unstable interface have been precisely determined and compared with the 

linear stability analysis. Critical experiments have been carried out 

to show that the planar to cellular bifurcation is subcritical so that 

a finite amplitude perturbation below the critical velocity can also 

give rise to planar interface instability. 
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In the second section, the pattern formation problem is addressed. 

The perturbations which form on an unstable planar interface are 

studied by average spacing, average amplitude, and spatial Fourier 

analysis. It was found that anisotropy plays a role in both interface 

instability and perturbation growth. It was also found that specific 

transient wavenumbers exists during the planar to cellular pattern 

formation process. 

In the third section, directional solidification studies were 

carried out in the succinonitrile-acetone and pivalic acid-ethanol 

systems in order to study the variation in average cellular spacing with 

velocity. Three distinct behaviors were observed under steady-state 

growth conditions. For velocities near the critical velocity for 

planar interface instability, cellular spacing decreased with an 

increase in velocity. However, at velocities near the cell-dendrite 

transition, the cell spacing increased sharply. Beyond this transition 

region, the cell or dendrite spacing decreased with further increases 

in velocity. These experimental observations have been explained by 

using the current theoretical models of cell-dendrite growth. In 

addition, a finite band of velocities was identified in which both 

cellular and dendritic structures were found to be stable. A 

hysteresis effect was observed in the cell-dendrite transition 

indicating that the cell-dendrite bifurcation is subcritical. 

In the fourth section, directional solidification experiments were 

carried out in model transparent systems to establish the dynamical 

processes by which an unstable planar interface restabilizes into a 
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periodic array of cells. In the succinonitrole-acetone system, where 

the interface properties, are nearly isotropic, the cells increase their 

spacings by the cell elimination process and decrease their spacings by 

the tip-splitting mechanism. In the pivalic acid-ethanol system, the 

significantly anisotropic interface properties prevent the tip-splitting 

phenomenon. In this case, the cell spacing is decreased by going 

through either the cell-dendrite-cell or the cell-planar-cell 

transition. Dynamical studies of the variation in cellular spacing 

with changes in growth rate show that the spacing does not alter until 

a significantly large change in growth rate is imposed. When a change 

in spacing occurs, two distinctly different configurations are 

observed depending on whether the perturbation which leads to the 

change is localized or nonlocalized. 

In the fifth section, the effect of anisotropy on cell growth is 

studied. It was found that anisotropy causes cells to facet both 

during the pattern formation process and in the steady state. It is 

also found that anisotropy causes cells to translate down an advancing 

solid-liquid interface. In addition, a schematic diagram of the 

interface kinetic anisotropy is constructed. 
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THEORIES OF PATTERN FORMATION 

The models of pattern formation which have addressed directional 

solidification have come in stages. The first stage is essentially the 

zeroth order approximation to the problem. It merely addresses the 

problem of critical conditions beyond which a planar interface becomes 

unstable. This analysis was developed by Tiller et [3] in 1953. 

The first order model of linear stability analysis was done in 1964 by 

Mull ins and Sekerka [2]. This model gave not only the critical 

conditions for planar interface instability, but also the wavenumbers 

of the patterns which should be observed at instability. The third 

stage was a second order nonlinear analysis. This was done in 1970 by 

Wollkind and Segel [4]. This nonlinear analysis predicts new types of 

effects not possible in the linear theory. An extension of the second 

order nonlinear analysis has been made recently by a number of authors 

into higher order systems. These models extend into the steady-state 

cellular growth region and have predicted structures which look like 

actual physically observed cells. The main disadvantage with higher 

order analysis is that the calculations are necessarily numerical. 

Therefore, direct comparison of models with experimentally observed 

structures is lengthy and difficult. All of these stages will be 

discussed below. Experimental work relevant to each area is also 

presented. 

In review of the work done so far, it is found that although the 

models are quite well-developed, the experiments relevant to the models 
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have lagged behind. For this reason, critical experiments in the area 

of pattern selection were identified and carried out here. Experiments 

were designed to give insight into the physics of the problem so that 

theories might be developed which more accurately describe the 

phenomenon of pattern formation. 

A number of assumptions were made throughout this work, both in 

the theoretical sections and in the experimental sections to simplify 

the problem. These are: 

(1) No convection exists in the liquid ahead of the advancing 

solid-liquid interface. Convection in the liquid does occur during 

the solidification process. However, neglecting convection allows 

simplification of the already very complex situation so that the 

fundamental ideas which control the stability of a planar interface 

can be established. Convection can be thermally induced or it can be 

induced by solute density, but in either case, the driving force is 

differences in the density. 

(2) A constant value for the partition coefficient was assumed 

in all the models. 

(3) The value of the liquidus slope was kept constant. 

(4) Diffusion in the solid is neglected. 

In order to examine the theories, experimental studies which 

eliminate or minimize these effects are required. Transparent organic, 

metal analog systems generally hold well to these assumptions when 

studies are done in thin sample cells. That is an important reason 

why transport organic, metal analog systems were used in this study. 
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In this chapter, the three models described above for the break up 

of a planar interface are discussed. The three models are: 

(1) The constitutional supercooling theory proposed by 

Tiller et [3]. This model includes the thermal gradient and the 

solute field in the liquid in its prediction of planar interface 

instability. It assumes that a planar interface will be unstable if a 

positive gradient of supercooling exists at the interface. 

(2) The linear stability model developed by Mull ins and 

Sekerka [2]. This model examines the rate of the growth or decay of an 

infinitesimal sinusoidal perturbation on a planar interface. Mullins 

and Sekerka include all that Tiller et [3] include, but also 

consider the effect of surface energy and the temperature gradient in 

the solid. 

(3) The weakly nonlinear model developed by Wollkind and Segel 

[4]. This model expands on and develops the work of Mullins and 

Sekerka [2], specifically into the nonlinear regime. 

In addition to these models, there is a discussion of higher order 

theoretical models, and an analysis of critical experiments needed. 

The Constitutional Supercooling Criterion 

It was within the steady-state directional solidification 

conditions that Tiller et aT[. [3] first proposed the possibility of a 

change in the interface morphology when the velocity was increased in 

differential amounts above some critical velocity. The most important 

principle that is discussed and quantified by Tiller et [3] is the 



16 

constitutional- supercooling criterion. 

If the thermal gradient in front of the advancing interface has a 

negative slope, then normal supercooling will exist in front of the 

interface. Supercooling can also exist in the region in front of the 

interface even though the thermal gradient is positive. This can happen 

by solute pile-up in front of the interface (Figure 4). Solute caused 

supercooling is called constitutional supercooling. The existence and 

the range of this supercooling will now be examined. 

Constitutional supercooling is, therefore, supercooling that exists 

due to solutal concentrations near the moving interface. The existence 

of constitutional supercooling can be seen by examining the solute 

concentration field in front of the advancing interface. For steady-

state planar growth, the concentration field in the liquid is given by: 

1-K 
c = c_ + C„(^) exp[-Vz/D] (1) 

0 

where C is the concentration, is the concentration far from the 

interface, is the partition coefficient, V is the velocity and 

D is the solute diffusion coefficient. The equilibrium temperature is 

a function of concentration so that the equilibrium temperature wiil 

vary with distance in front of the interface in the following way: 

+ mC^ - ATQexp(-Vz/D) ( 2 )  
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where Tg is the equilibrium temperature, is the melting point of the 

pure material, m is the slope of the liquidus (which is normally 

considered negative), AT^ = mC^(KQ-l)/K^ is the freezing range of the 

alloy, V is the velocity, D is the diffusion coefficient, and z is the 

distance ahead of the interface. The imposed temperature gradient in 

front of the interface can be expressed by the following equation: 

T = Tm + mC7K„ + G|_z (3) 

where T is the temperature at the distance z, and G|^ is the thermal 

gradient. If and T are plotted as a function of z, the schematic 

results appear as seen in Figure 5. 

The shaded region denotes the region of constitutional supercooling. 

Note that constitutional supercooling exists only for a finite 

distance in front of the interface, and the supercooling increases with 

distance near the interface. 

When Eqs. (2) and (3) are plotted as in Figure 5, the point of 

intersection other than at z = 0 gives the length of the 

constitutionally supercooled zone. This constitutional supercooled 

zone is given by Tg - T from Eqs. (2) and (3). Tiller et [3] 

proposed that the interface will be unstable if a positive gradient of 

supercooling exists at the interface. If S is defined as supercooling, 

then. 

S = Tg - T = ATQ[1 - exp(-Vz/D] - G^z . (4) 
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Figure 5. A schematic diagram of possible thermal field 
with equilibrium concentration dependent solid-
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constitutional supercooling exists 



20 

The interface will be unstable if 9S/3z > 0 at z = 0, or 

0S/3z)^^q > 0 . (5) 

The critical point of stability, or neutral stability condition, is 

given by the condition 9S/3z = 0 at z = 0, which gives 

This expression is the general expression for the limits of 

constitutional supercooling. If the limits of constitutional 

supercooling are exceeded, interface instability will occur, and the 

new structure will advance into the constitutionally supercooled region 

in front of the interface. Note that AT^V/D = mG^, where is the 

concentration gradient in the liquid at the interface. Thus, the 

neutral stability condition for a planar interface can also be written 

as 

There are three possible ways to study planar interface instability 

at the threshold values. These are to vary one of V, Gj^, or AT^ while 

keeping the other two variables constant. Varying V or G^ is quite 

commonly done, but it is also possible to vary AT^ by changing 

concentration or crystallographic orientation [5]. The process of 

V = G^D/ATJJ ( 6 )  

mG - 6. - 0 c L 
(7) 
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orientation dependence on interface stability can be seen in Figure 6. 

Notice in this figure that the different grains break up differently 

due to the difference in orientation of the grains as can be seen in 

the final photomicrograph. Orientation can be obtained from inspection 

of the dendrites growth direction, and by knowing that dendrites grow 

in the [001] direction. The effective K^, which is a function of 

orientation, is lowest when the growth orientation is along the [001] 

crystallographic direction. This means that the orientation most 

closely aligned with the [001] direction will break up first, since AT^ 

is highest when is lowest. 

Linear Stability Analysis 

The interface instability model of Tiller et al_. [3] gives a good 

basic background to the problem of interface instability, but there are 

several areas in which it is not complete. The three important aspects 

that are not included in their theory are as follows: 

(1) It only considers the thermal gradient in the liquid ahead of 

the advancing interface. Neither the thermal gradient in the solid, 

nor the latent heat generated by freezing are considered. 

(2) It does not take into account the stabilizing effect of the 

solid-liquid surface energy. 

(3) It gives only the threshold conditions, it tells nothing of 

what the wavelength of the profile will be when these conditions are 

exceeded. 

There is, therefore, a need to consider other models which can take into 
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Planar interface break up in two grains with slightly 
different orientations. Notice that the right-hand 
grain breaks up slightly earlier than the grain on 
the left. This shows the importance of crystallographic 
orientation on interface stability. Times increase 
from a -»• d 
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account some or all of these three major points. Such an analysis was 

first carried out by Mull ins and Sekerka [2]. 

Mullins and Sekerka [2] consider the thermal gradient in the solid 

and the liquid. They also considered the stabilizing effect of surface 

energy for an isotropic interface, and they predicted the wavelengths 

of the perturbations which will form and grow just beyond threshold 

conditions. The coordinate system and the interface perturbation used 

by Mullins and Sekerka is shown in Figure 7. 

The analysis of Mullins and Sekerka [2] is known as linear stability 

analysis, since the boundary conditions were linearized in order to 

obtain solutions. The transport equations governing the thermal and 

solute profiles are as follows [2]. In the liquid, 

vh + (V/Dl)0C/3z) = 0, (8) 

v\ + (V/aL)0TL/3z) = 0, (9) 

and in the solid, 

V^Tg + (V/ag)(aTg/3z) = 0, (10) 

where L and s denote liquid and solid, respectively. It was assumed 

that diffusion in the solid was negligible. The variables are C = 

the concentration of the solute in the liquid, z = the direction 

orthogonal to the advancing interface, V = the constant velocity of 



24 

1~ 

X= 277/,^ = WAVELENGTH 

AMPLITUDE 

Figure 7. A schematic diagram of a perturbed solid-
liquid interface. Axis are defined 
consistent with the models explained in 
this dissertation 
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the planar interface, D|^ = the diffusion coefficient of solute in the 

liquid, = the temperature in the liquid aj^ = K^/C^ = thermal 

diffusivity of the liquid, with = the thermal conductivity in the 

liquid and = the specific heat of the liquid per unit volume, 

Tg = the temperature in the solid, a^ = = the thermal diffusivity 

of the solid, with = the thermal conductivity of the solid and 

Cg = the specific heat of the solid per unit volume. These equations 

are for the steady state at constant velocity. They consider an 

infinitesimal perturbation of the interface, as is shown in Figure 7. 

The interface profile was considered to be given by z = fisinkx, where 

k = 2u/X and X is the wavelength. 

It should be noted that although Mull ins and Sekerka [2] defined 

the problem in terms of the transport equations (8-10), they revert 

back to Laplace's equation for the thermal field when they enter into 
2 2 the solution stage. Laplace's equation is given by V T^ = V T^ = 0. 

The boundary conditions at the perturbed interface are as follows: 

Tj = Tm + mCj = rsk^sinkx, (11) 

where r = Y/AS = the capillary constant, Y = the solid-liquid 

interfacial free energy, AS = the latent heat of the solvent per unit 

volume, T^ = the absolute melting temperature of a flat interface, 

K = the average curvature at a point on the solid-liquid interface, 

2 and ôk sinkx is the curvature of the perturbed interface. The 

interface velocity, v(x), at any point on the interface is then given 
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by the thermal or solute flux balance at the interface as: 

v(x) = i [Kg(3^)1 - '<l(3^)i = Cj{k-1) ' (12) 

where = the curvature of the solid, = the curvature of the liquid, 

Ci(Ko-l) = the difference in concentration between the solid and liquid 

sides of the interface, and is the equilibrium partition coefficient. 

These equations are linearized by using the following: 

Tj = TQ + adsinkx = + aW (13) 

and 

Cj = Co + bgsinkx = + bW, (14) 

where T and C„ = C /K„ are the values for the flat interface and the 
0 0 00 0 

second terms in each expression are the first order corrections for an 

infinitesimal perturbation on the interface. This, then, is 

linearization of the problem. The central result of Mull ins and 

Sekerka's analysis [2] is as follows: 

^ Vk{-2rk2[k*-(V/D)(l-Kjj] - (gs+gL)[l<*-(V/D)(l-KQ] + 2mGjk*-V/D]} 

^ ' (gs-9L)[k*-(V/D)(l-Ko] + 2kmGg 

(15) 
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where 6/6 = the amplitude growth rate of the perturbation, k = 2ir/X 

with X = the wavelength, k* = (V/2D)+[(V/2D)^ + g = (k  /k ' )g  
s 5 s 

with k' = l/2(Kg+K^), and = the thermal gradient in the solid at the 

interface, g^^ = )G|^ with Gj^ = thermal gradient in the liquid at 

the interface, and G^ = VCQ(KQ-1)/D. 

This result is significant because it describes the critical 

conditions where the amplitude growth rate 5/6 becomes positive, and 

therefore, the interface becomes unstable, as a function of the 

wavelength X = 2ir/k. The result can be used to determine variation in 

k^, the critical k for different G, V, and aT^ values, where G is given 

by G = KsGg+K^G^/(Kg+K^). It also gives the range of possible k values 

for a given G, V, and AT^ for which an interface is unstable, or stable. 

One can, therefore, predict the wavenumbers ,in the pattern that should 

be seen under given conditions. 

Equation (15) can be rewritten in terms of two functions of k as 

follows: 

6/6 = S(k)h(k), (16) 

where 

S(k) = -rkf - (gs+g^i/Z + mGc{[k*-V/D]/[k*-(l-Ko)V/D]} (17) 

and 

h(k) = 2Vk/{(gg-gL) + 2kmG^/[k*-(l-KQ)V/D]}. (18) 
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Of these two functions, only one, S(k), causes 6/6 to change sign. This 

is because h(k) is always positive and therefore, always favors 

stability. Therefore, stability depends on S(k) alone. Inspecting 

S(k) reveals that the first term arises from capillarity, and since it 

is negative for all values of V, G, AT^ and k, it promotes stability by 

damping out any existing perturbation. The second term in S(k) arises 

from thermal gradients. It is also always negative and thus, it will 

damp out all perturbations and favor stability. The third term in 

S(k) arises from solute diffusion. It is always positive and hence, 

favors interface instability. The stability of the interface is, 

therefore, determined by the relative magnitudes of the three S(k) 

terms. Instability occurs when the third term (solute diffusion) 

becomes larger than the sum of the first two terms (capillarity and 

thermal gradient). 

If S(k) is set to zero, then the neutral stability condition is 

given by: 

G - mG^{[k -V/D]/[k -(l-K^jV/D]} = -Tk^ . (19) 

If surface energy effects are neglected, i.e., r = 0, then for 

VX«1, the above condition simplifies to 

G - mG^ - 0 (20)  
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This result is similar to the constitutional supercooling criterion 

proposed by Tiller et [3]. The major difference between Eqs. (20) 

and (7) is in the thermal gradient term. Thus, if the temperature 

gradient in the liquid, in Eq. (7) is replaced with the conductivity 

weighted average temperature at the interface, the constitutional 

supercooling criterion and the results of the linear stability are 

equivalent. Equation (20), with the conductivity weighted average 

thermal gradient, is known as the modified supercooling criterion. 

In order to facilitate a better understanding of stability and 

instability, a figure is given below for each of the possible 

variables in Eq. (15). This equation was used to generate the 

information by computer. In Figures 8 to 11 below, all the variables 

other than the velocity were kept constant. The values of the 

solidification variables used in these calculations were G = 100°C/cm, 

ATQ = 10°C, D = 1.27 E-9 m^/s, = .103, AH = 4.49 E7 mJ/kg, and 

Y = 6.62 E-8 Km, unless otherwise specified. 

If the value of 6 / 6  is examined for possible unstable wavenumbers 

as a function of velocity are examined, then it is found that three 

possibilities exist. These three possibilities are shown in Figure 8. 

The first possibility is that all wavenumbers are stable at the given 

velocity, 6/6<0 for all V and k. The second possibility is that only 

one wavenumber is stable at the given velocity, that being the critical 

wavenumber, k^, where 6/6 = 0. The third possibility is that a range 

of wavenumbers is possible at a given velocity, 6/6 > 0, for a finite 

range of V and k. In order to examine the variable effect on the 
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Figure 8. A schematic diagram of unstable wavenumbers, k's. 
The region above the k axis is the region of 
instability, the region below the k axis is the 
region of stability. The three possible situations 
for unstable wavenumbers as a function of velocity 
are: (a) V < resulting in stability for all k, 
(b) V = Vc resulting in only one unstable wavenumber, 
kc, (c) V > Vç resulting in a region of unstable 
wavenumbers with the fastest growing wavenumber k 
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velocity-wavenumber relationship, calculations are carried out for two 

cases. The cases are where the temperature gradient is varied, and 

where the composition (or AT^) is varied. The results are shown in 

Figures 9(a) and 9(b). 

Figure 9(a) shows the variation of the unstable wavenumbers 

(k=2n/X) as a function of velocity for different thermal gradient values. 

The stable region is outside the loop, and the unstable region is 

inside the loop. This is true for Figures 9 to 11. Figure 9(a) shows 

that raising the value of G stabilizes the interface for a given 

velocity. It also shifts the unstable ks to higher k values. Finally, 

it also shows that at low G values and low velocities, the unstable 

wavenumber spectrum expands as the velocity decreases. This occurs at 

fmall k values. The first observation, that of stabilizing the 

interface at higher G values, follows from the equation of Tiller et al. 

[3], which is V = G^D/AT^. The other two observations are new 

results from Mull ins and Sekerka's analysis [2]. 

Figure 9(b) shows that raising AT^, which in some systems is the 

same as raising the concentration, moves the unstable region to lower 

velocities. There is also a dramatic increase in the width of the 

spectrum as AT^ is increased, which corresponds to a wide range of 

possible unstable wavenumbers. Here, as in Figure 9(a), the equation 

of Tiller et [3] explains the shift of the unstable region to 

lower velocities, but the increase in the width is only explained in 

the Mull ins and Sekerka [2] linear analysis. 
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thermal gradient, G, and (b) with a change in the 
concentration variable, ATq 
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Figure 10(a) shows the variation of the instability spectrum as a 

function of the surface energy term. The effect of increasing Y is 

uniform with velocity, but occurs only at the large wavenumber end of 

the spectrum. This is logical since surface energy effects are short 

range effects. The reason is because surface energy effects are a 

function of curvature, and as the radius of the arc of any curve goes 

up, the local curvature goes down. 

Figure 10(b) shows the variation of the instability spectrum with 

changing AH, the latent heat term. Higher values of AH cause a 

narrower unstable region. The latent heat term only affects the short 

wavenumber instabilities, and then, only at high velocities. It is 

logical that the latent heat term should be velocity related since the 

amount of heat generated and pumped into the interface is velocity 

related. 

The variation of Y and AH do not appreciably change the critical 

velocity of planar interface instability, as shown in Figures 10(a) and 

10(b). Consequently, the modified supercooling criterion, given by 

Eq. (20), which neglects the effects of the surface energy and the 

enthalpy of fusion, gives the critical velocity which is very close to 

the critical value predicted by the linear stability analysis in 

Eq. (19). The value of increases slightly when the surface energy 

term is taken into account. Linear stability analysis, therefore, 

predicts a value which is only slightly larger than that predicted 

by the modified supercooling criterion. Although the change in is 

small, the unstable wavenumber spectrum increases significantly as the 
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surface energy value is increased. Surface energy, therefore, is 

important, but in respect to the wavenumbers observed, and not in 

respect to the observed critical velocity. 

Figures 11(a) and 11(b) show the response of the stability to a 

change in system parameters. The response of stability to a change in 

KQ will be examined first. Equation (19) shows that affects the 

solute term only. The effect of in the solute term comes in two 

places. The major effect is to change AT^ and therefore, the value 

of mG^. The second effect is to change the value of the bracket in 

the solute term. When is increased, AT^ is decreased, which causes 

to increase (see Figure 9(b)). The second effect does not change 

appreciably, but it does cause the low wavenumber branch to shift 

to slightly higher values. This is shown in Figure 11(a) where AT^ 

is artificially kept constant so that the shift in the low wavenumber 

branch can be clearly seen. 

Figure 11(b) shows the effect of the diffusion coefficient on 

the stability. As the diffusion coefficient increases, the critical 

velocity increases. The wavenumber spectrum also shifts to lower 

wavenumbers as the diffusion coefficient increases at a given velocity. 

These results clearly show that the value of the critical velocity 

depends very strongly on G, AT^, and D. The effects of Y and AH in 

are quite small. Therefore, the linear analysis can normally be 

simplified to the modified supercooling criteria when examining the 

critical velocity. The difference in the value of the critical velocity 

between these two models is generally less than 10%. 
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Even though the critical velocity is not seriously affected by the 

surface energy, the values of the unstable wavenumbers are affected. 

In addition, the wavenumber spectrum near the critical velocity is 

extremely broad. This makes it very difficult to experimentally 

characterize the initial wavenumbers of the perturbed interface. A 

slight error in the velocity will allow the unstable interface to 

select from a wide range of wavenumbers. Experimentally, only G and 

AT^ can be controlled for a given system. Consequently, to reduce the 

error in wavenumber measurements, it is best to work at high thermal 

gradients and low solute concentrations. This can be seen in 

Figures 9(a) and 9(b), where the spectrum is narrower when G is large 

and when AT^ is small. Since large constant thermal gradients are 

difficult to obtain and sustain, it is important to select very dilute 

solutions. This is the best way to experimentally control the 

variables to minimize uncertainty in measured critical wavenumbers. 

Absolute Stability 

At growth conditions far into the unstable region, the capillarity 

term becomes very important, primarily because the solute and thermal 

fields become small. At very high velocities, the capillarity term 

dominates and stability is regained. This is the growth region called 

the region of absolute stability. The concept of the existence of an 

absolutely stable planar interface growth region at high velocities 

was a peculiarity in the time of Mull ins and Sekerka, but today has 

been shown to be a reality by the high velocity experiments which are 



38 

possible by using laser or electron beam scanning techniques. Mull ins 

and Sekerka [2] developed an absolute stability condition as 

V > DAT^/rk . (21) 

Great care must be taken when applying this stability condition 

since the conditions for which it is derived are the local equilibrium 

conditions. There is little doubt that at very high rates, the local 

equilibrium conditions are not satisfied. This was, however, the first 

prediction of a velocity beyond which a material would freeze without 

any segregation. 

Limitations and extensions of Mull ins and Sekerka's linear stability 
analysis 

There are several limitations to Mull ins and Sekerka's [2] linear 

stability analysis. The most severe limitation is that of the linear 

approximation. This means that at times very shortly after break up, 

the theory does not hold. It cannot, therefore, take into account the 

dynamic events which occur at times after break up. Some of the other 

limitations of the theory are neglecting anisotropy of surface 

properties and not considering problems which arise at high thermal 

peel et numbers. 

Since the first linear stability analysis, there has been a 

considerable number of studies [6-14] which have extended the original 

analysis to include some parameter which Mull ins and Sekerka assumed 

constant. With the exception of the effect of anisotropy, which is 
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reviewed in Section V, a brief reference to the work done in this 

area is given here. An excellent review of this material is given by 

Coriell et [15]. 

The effects of convection on stability have been studied by Coriell 

and Sekerka [6], Hurle et [7], and Favier and Rouzand [8]. 

Hurle [9] studied the effect of Soret diffusion and concentration 

dependence of both the liquidus slope and the partition coefficient. 

Wollkind and Maurer [10] and Sriranganathan et al_. [11] studied the 

surface energy as a function of temperature and concentration. 

Wheeler [12] showed the effect of a periodic growth rate on the growth 

structures. Huggins and Elwell [13] established a stability criterion 

for electrocrystallization of molten salts. Finally, Shewmon [14] has 

included the effect of stress and the effect of interface diffusion on 

planar interface instability in solid-solid phase transformations. 

Experimental studies on planar interface instability 

The experimental attempts at checking Mull ins and Sekerka's theory 

have been numerous [16-23]. Two major predictions of the theory, which 

have been tested experimentally are the critical velocity and the 

wavenumber of the unstable pattern at the critical velocity. 

Morris and Winegard [16] studied Pb with Sb as a solute. Their 

work indicates that the perturbations begin at defects. Since the role 

of defects on interface instability will not be considered in this 

study, and was not considered by Mull ins and Sekerka, this adds no 

special insight. 
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Davis and Fryzuk [17] worked with dilute In in Sn. Their work 

indicates that there was no stabilizing effect from the surface energy. 

Here, the system parameters.and variables are not well enough established 

to consider this result as a test of the theory. 

Work similar to Davis and Fryzuk [17] was done by Hecht and Kerr 

[18]. Hecht and Kerr worked with Sn-Bi alloys. They found that the 

interface was more stable than predicted, either by the constitutional 

supercooling criterion or by the linear stability analysis. There are 

several possibilities for this result. First, there may have been 

etching problems which made the observations erroneous. Second, 

bismuth solidifies with an interface which is faceted. Therefore, 

there may have been stabilization due to interface kinetic effects and 

anisotropic interface properties. Consequently, this does not appear 

to be a quantitative test of the theory. 

Sato and Ohira [19], Sato et al_. [20] and Shibata et £[. [21] have 

recently studied Al-Cu, Al-Ti, and Al-Cr alloys. Sato and Ohira's 

results showed that initial perturbations were randomly distributed 

throughout the interface. Their work showed a wide range of 

frequencies at the critical point. They concluded from this that they 

must have been far from the critical point. In a later work, Sato et al. 

[20] showed that small segregation coefficients allow a large range of 

wavelengths. They were, thus, uncertain just how close they were to 

the critical conditions. Scatter in the results precludes any 

definitive statements from this work. As discussed earlier, a slight 

uncertainty in the velocity can give rise to a wide range of possible 
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unstable wavenumbers. Since the velocity was not precisely measured, 

the results reported for the wavenumbers are not reliable. 

Shibata et al_. [21] used the result of the linear stability 

analysis to establish the surface energies of Al-Ti and Al-Cr. Their 

work yields surface energies that are reasonably close to other methods 

of measuring the surface energy. However, there is sufficient 

uncertainty in the measured surface energy values to preclude this 

study from being considered as a quantitative proof of the linear 

stability analysis. 

Jamgotchian et [22] have used a dilute alloy of Bi-Sb. This 

work is exceptional because they have taken care to eliminate 

convection in experiments which were designed to test Mull ins and 

Sekerka's theory. The work of Jamgotchian e;t [22] indicates that 

Mull ins and Sekerka's stability criterion gives a more accurate result 

of the critical velocity than does the expression of Tiller ejt [3] 

given in Eq. (7). Jamgotchian et obtained critical velocity values 

which range from 61-86% of the theoretical values. This work is by far 

the most complete and accurate work in this area, and yet, three 

problems exist which warrant further study. These are (1) the 

material studied was opaque and therefore, an accurate determination 

of the interface velocity at the time of break up could not be 

determined, (2) there is a considerable margin of error in the system 

parameters, especially the surface energy, and (3) the wavenumber of 

the unstable interface was not measured. 
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Kim [23] has taken a novel approach to the problem of the 

uncertainty of the interface velocity resulting from the opaque nature 

of metals. Kim pulsed the interface electronically at regular intervals 

and thereby produced markers showing the interface position in time 

revealing both the interface structure at that time and the interface 

velocity. The alloy used by Kim was In-Sb. This alloy should not 

experience convection since the density and melting points of In and Sb 

are similar. In addition, solidification was induced by changing the 

thermal field rather than by mechanical motion. There should not, 

therefore, have been mechanical vibrations in these experiments. The 

results reported are 27% lower than the theoretically predicted values 

for the threshold conditions. This was compared through the 6/6 

function in Eq. (15). The wavelengths reported at these conditions are 

approximately two times larger than the predicted values. 

Although this work is significant, there are still some problems. 

One of these is that the freezing interface was observed to facet 

shortly after break up. Once it faceted, the amplification rate of the 

perturbed interface increased sharply. This shows that there may have 

been dynamic factors involved with the formation of perturbations, 

which are at present unexplained. Facets also show surface anisotropy 

properties are present. Surface anisotropy properties were not 

considered by Mull ins and Sekerka. The effects of anisotropy will be 

discussed in a later chapter of this work where it is shown that 

anisotropy does have an effect on interface instability at the 

threshold of instability formation. 
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An overview of the experimental evidence seems to indicate that 

experimentally determined critical velocity and corresponding 

wavenumber agree with the theory to within about 15-30% and a factor 

of two, respectively. In most of the experiments, the precise 

interface velocity at the time of instability was not measured. 

Furthermore, precise values of the system parameters are not available. 

Therefore, critical experiments are needed in a system for which all 

physical constants are well known. It is also important that the 

material studied be transparent so that the interface velocity at the 

time of instability can be precisely measured. This is important 

because a small error in the measured velocity will yield a large error 

in the possible wavenumbers theoretically predicted. 

Interface Instability: Nonlinear Stability Analysis 

Introduction to nonlinear analysis 

It has been shown above that the linear theory of instability is 

useful in predicting threshold velocities for the planar to cellular 

transition. It should be noticed, however, that the linear 

assumptions break down very early after the onset of instability. For 

this reason, it is desirable to extend the analysis into the nonlinear 

regime in order to understand the principles which govern the 

reorganization of an unstable interface into a periodic array of cells. 

The extent to which linear analysis is valid can be seen in Figures 12 

and 13. Figure 12 shows an unstable interface as it is just breaking 

up. In Figure 13, the amplitude of the unstable interface profile is 
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( c )  ( d )  

Figure 12. Break up of a planar interface. Succinonitrile 0.1 w/o 
acetone, G = 3.82 K/mm, V = 1.25 pm/s, (a) at time 
= 0 s, (b) at time = 15 s, (c) at time = 30 s, (d) at 
time = 45 s, mag. = 70X 
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Figure 13. The variation in the amplitude of perturbation 
with time 
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plotted versus time, for the succinonitrile-acetone system. It can be 

readily observed that linear amplification exists for only about 170 

seconds. After this, the instability amplifies in a nonlinear manner. 

The onset of this nonlinearity corresponds to interface shape shown in 

Figure 12(c). The early advent of nonlinearity shows that a nonlinear 

analysis is required to understand the development of cellular 

structures. 

Nonlinear perturbations were observed in fluids by Reynolds [24] 

in 1883, but were not addressed theoretically until 1909 by Bohr [25]. 

Subsequently, Noether [26] and Heisenberg [27] used nonlinear theory to 

describe turbulent flow in fluids. The problem was further addressed in 

1944 by Landau [28] who again worked with turbulent flow of fluids. 

A key equation in nonlinear theory was developed by Landau and is 

expressed as follows: 

(l/A)(dA/dt) = a^ - a^A^ (22) 

where |A| is the amplitude of the dominate mode, t is the time, a^ is 

the linear coefficient, and a^ is the nonlinear coefficient, which now 

bears the name Landau constant. The stability or instability is 

determined by the signs of the coefficients a^ and a^. The left-hand 

side of Eq. (22) is essentially equivalent to 6/6 from Mull ins and 

Sekerka's analysis [2]. When a^ = 0, this result will be equivalent 

to Mullins and Sekerka's result. In general, there are four 

possibilities, as will be presented and discussed in the analysis of 
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Wollkind and Segel's [4] work below. The four possibilities are 

generally plotted in terms of d|A|/dt versus |A| and are termed 

bifurcation plots. One might intuitively suspect that Landau's 

equation (22) is a truncated series with higher order terms neglected. 

This was not expressed by Landau, but is definitely the case, as will 

be seen in the nonlinear analysis of Wollkind and Segel. If a-j =0, 

the Landau equation becomes equivalent to the linear analysis model. 

Consequently, the Landau equation merely is a one-order higher 

correction of the linear model. 

Nonlinear stability analysis is developed by using the same 

equations as the linear stability analysis with the exception that 

linearization of the boundary conditions is not imposed. The nonlinear 

stability analysis, therefore, attempts to answer the same questions as 

those answered by the linear stability analysis, i.e., pattern 

formation and solidification morphologies under given growth conditions. 

There are, as with most complex mathematical models, fundamentally two 

approaches to solve the problem, viz. the analytical solution and the 

numerical solution. There also exists a body of work which is 

analytical in the beginning, but shortly becomes untractable, except 

by numerical methods. 

Those who have presented analytical models are Wollkind and 

Segel [4], Caroli e;t [29], and Wollkind and Notestine [30]. Those 

who have used numerical techniques for solution of the nonlinear 

equation include Kerszberg [31-33], McFadden and Coriell [34], Unger 

and Brown [35-37], Unger et [38], Karma [39] and McCartney and 
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Hunt [40]. Those who have held to the analytical approach as long as 

possible before using numerical techniques are Langer and Turski [41], 

Langer [42], Dee and Mathur [43], and Ben-Jacob e;k al_. [44-45]. 

Analytical models of nonlinear stability extend the limits of the 

linear stability analysis to weakly nonlinear conditions. Weakly 

nonlinear analysis, which is the highest order analysis that is 

analytically tractable, does not go very far beyond the linear limit. 

In contrast, nonlinear models using numerical techniques have been able 

to extend the analysis out into the steady-state cellular region. 

Nonlinear analysis 

Wollkind and Segel [4] were the first to consider solidification 

problems using nonlinear stability analysis. Their analysis offers 

some interesting predictions which can be tested experimentally. 

The model of Wollkind and Segel is two-dimensional in the moving 

frame of reference with (x,z) as the axis (see Figure 7). The x axis 

coincides with the mean interface position at time = 0. For all time 

greater than zero, x satisfies the equation z = Vt + W(x,t), where 

W(x,t) describes the interface. This means that the frame of reference 

is actually a moving frame of reference, which at steady state is 

stationary in the (x,z) coordinate system. The solidifying sample is 

assumed to move through a thermal gradient at a constant velocity. 

Solute diffusion in the solid is neglected, and the expression 

Cg = KQCJ^ is assumed. In addition to this assumption, Wollkind and 

Segel [4] also assume equal solid and liquid thermal diffusion 
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coefficients, and isotropic interface properties. 

Although one could assume that the linear stability analysis of 

Mull ins and Sekerka [2] leads directly to the nonlinear analysis of 

Wollkind and Segel [4], this is not quite true. The reason for this 

is that the method of solution used by Mull ins and Sekerka is not 

identical with that used by Wollkind and Segel. Mull ins and Sekerka's 

analysis, which was not covered in detail above, uses time derivatives 

of Fourier coefficients. On the other hand. Wool kind and Segel use a 

sequence of solutions starting from the zero order case and building 

on each other. The differences are not readily apparent, but are 

thoroughly discussed by Wollkind and Segel [4]. The two main 

differences are (1) Mull ins and Sekerka implicitly assume an "exchange 

of stabilities" between real and imaginary components. Wollkind and 

Segel develop a proof to show that the assumption is correct. This 

comes out of the more general linear analysis of Wollkind and Segel. 

(2) In Mull ins and Sekerka's analysis, the time derivatives are all 

neglected except for the amplitude growth rate time derivative. "They 

used the steady-state approximation for the solute distribution, even 

when the amplitude is changing with time. In general, time derivatives 

cannot be neglected in the diffusion equations. If D/a (a = the 

thermal diffusion coefficient) is small, the error in the temperature 

equation is not serious, but neglecting time derivatives in the 

concentration equation is not rigorously valid. To Mull ins and 

Sekerka's credit, their analysis is correct in the marginally stable 

case. Once an instability is formed, however, the analysis breaks 
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down immediately. 

Since the nonlinear model of Wollkind and Segel builds on itself 

going from the steady-state planar case to the nonlinear case, and 

since it is long and quite detailed, it will not be fully developed 

here. We shall, instead, go through the physics of the analysis and 

the solutions obtained rather than present the analysis in detail. 

Under the physical conditions described above, solutions for the 

thermal field and concentration field for the steady-state planar 

interface situation are directly determined. This is the zero order 

analysis and it is identical conceptually to the analysis of Tiller 

et al_. [3]. An analysis of the stability of the solutions is carried 

out as time ->• <». it is found that there are three possible situations. 

These are a stable interface for all time, an unstable interface, and 

an interface which sets up a finite amplitude pattern which persists 

as time ^ What will be obtained depends on the growth conditions. 

Wollkind and Segel proceeded by scaling and nondimensionalizing 

their variables. This prepares the way for their linear analysis. 

The linear analysis uses terms of first order and considers the 

velocity dependence of the interface at any point on the interface. 

The general expression is as follows: 

v(x,2,t;e) = VQ(z) + v^(x,z,t;e), (23) 

where v is the interface velocity at any point on the interface, v^ is 

the zero order problem, v-j is the first order problem, and e is a 
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perturbation on the interface. This expression is solved for the 

simultaneous equations arising from the interface shape, the 

concentration in the liquid, the temperature field in the liquid, and 

the temperature field in the solid. Perturbations are of the 

e[cos(kx)exp(aQt)] type. 

This is an eigenvalue problem, with the eigenvalue a^. Here, as 

with the planar interface problem, stability, instability, or neutral 

stability are possible as t Neutral stability is stability given 

by a finite amplitude waveform which persists on the interface as 

time -»• 00. 

These results are similar in form to Mull ins and Sekerka's [2], but 

are more general. It is at this point that Wollkind and Segel examine 

the "exchange of stabilities" for the real and imaginary components, 

and find that the imaginary components are zero for all time and 

conditions. This means that there should be no wave translation along 

the interface. Note here that this result is for isotropic interface 

properties. 

General nonlinear analysis considers perturbations of the type e", 

and velocities of the type v^(x,z,t) where n goes from 1 -+ «>. One 

realizes immediately that only one new order of terms is ultimately 

going to be considered, but the analysis proceeds as if the entire 

series is possible in the solution. 

Solutions are examined of the cos(kx) type. Immediately, one can 

recognize that this is much more limited than the corresponding linear 

analysis case, since only one wave component can be examined. Wollkind 
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and Segel make the best of this by considering the threshold, or 

critical wave component, k^. As in the linear case, the first 

question addressed is what will happen as time »? The second, and 

major point of interest, is the amplification rate equation. The 

amplification equation is the time derivative of the nonlinear 

solutions. Solvability conditions show that only odd powers exist. 

Therefore, the general solution to the amplification expression is: 

edA(t)/dt = eA(t) = a^eACt) - aieV(t) 

+ S an[GA(t)]2"+1 . (24) 
n=2 " 

This amplitude equation is the central result of the nonlinear theory 

of Wollkind and Segel, and is commonly called the Landau equation with 

a^ and a-j as the two constants. As in the introduction to this section, 

the second constant, a-j (except for the e term), is the Landau 

constant. Generally, only first and third order terms in e are 

retained, and therefore, the equation appears as follows: 

eA(t) = a^EAft) - a^eV(t) (25) 

or 

Â ( t )/A(t) = a ^  -  a ^ e V ( t )  .  (26) 
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Wollkind and Segel derive the values of the constants. The important 

physics of this problem depend upon the signs of the a^ and a-j 

coefficients. There are four possible cases that arise for the 

combination of a^ and a-j : (a) aQ<0, a^<0; (b) aQ>0, a.j<0; 

(c) aQ<0, a^>0; and (d) aQ<0, a^<0. Figure 14 shows these four 

possibilities graphically. 

In Figure 14, instability is exhibited where the curve is above 

the axis, and stability where the curve is below the axis. The 

stability or instability pictured in the above graphs is for 

2 perturbations which vary in wavelength as a function of (eA) . The 

above cases predict the following physical situations. 

(a) aQ>), ai>0. In this case, linear theory (i.e., using the 

a^ term only) predicts instability. Nonlinear theory which 

includes the a-j terms predicts finite amplitude stable 

equilibrium solutions. 

(b) aQ>0, a^<0. Here, no finite amplitude equilibrium solutions 

exist. The interface is destabilized by both linear and 

nonlinear elements. This is called supercritical bifurcation. 

(c) aQ<0, a^<0. In this case, linear theory predicts interface 

stability, while nonlinear theory introduces the destabilizing 

effect. The result is that for low values of (eA) , there 

is stability, while for higher values, instability exists 

showing that above the threshold conditions finite 

amplitude waves will exist. Finite amplitude waves can also 

exist below the threshold velocity if they are formed either 
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Figure 14. The four possibilities for an interface when nonlinear effects are included 
(from reference [4]). Instability exists above the horizontal axis, and 

(a) ao > 0, a-j > 0, stability exists below it. The possibilities are: 
nonlinear effects stabilize a perturbed interface; (b) ag > 0, a-] < 0, 
supercritical bifurcation, instability is always present for these conditions 
(c) an < 0, ai < 0, giving subcritical bifurcation, nonlinear effects 
destabilize the interface; 
for these conditions 

(d) ao < 0, 3] > 0, stability is always present 
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by large perturbations, or by time spent above the threshold 

velocity prior to a reduction in the rate to a velocity 

below the threshold value. This situation is called the 

subcritical bifurcation. 

(d) aQ<0, a^>0. This situation yields total stability within 

the limits of this analysis. 

Figure 15 shows Wollkind and Segel's speculation as to what occurs 

in different regions of G and Y. To facilitate understanding of 

Figure 15, one can note that generally, G = f(l/V) and = f(Y), 

where w here is equivalent to the wavenumber k used throughout this 

work. As shown in Figure 15, Wollkind and Segel predict that cells 

will be seen in region (a) and dendrites will be seen in region (c). 

Caroli et [29] have recently reviewed the work of Wollkind and 

Segel. They found that Wollkind and Segel made an error in their 

analysis which affects the magnitude, but not the sign of a^. The 

value of a-j is examined and simplified by Caroli e;t so that it can 

be compared to experimental work. It was found that for a small 3 

expansion of the neutral stability equation, at low velocities, the 

value of a^ can be given approximately as 

- {ral " (4Ko/e|Z/3[Ko2+4Ko.2]/4Ko . (27) 

where B = Y/CmfKg-l)], and n = Under normal conditions, the 

first term will dominate. If, however, n = 1, then, the first term 

will vanish and the second term will dominate. This is the case when 
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Figure 15. A schematic diagram from reference [4]. 
Conjectured regions of subcritical instability 
and cellular structures, as indicated 
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Kg = K^' i'G., for succinonitrile-acetone alloys. In this case, at low 

velocities, the sign of a^ will change (become positive) when 

KQ > 0.45. Remembering that this analysis is an expansion done at 

neutral stability, the bifurcation will change when a-j changes sign. 

In review, the key elements that can be understood from Wollkind 

and Segel's analysis [4] are as follows: 

(1) If the bifurcation present is supercritical bifurcation, 

then nonlinearity does not significantly influence either the threshold 

velocity, or the threshold wavenumber. This would be type (b) 

bifurcation above. Nonlinear effects could, however, show up after 

the interface has broken down. 

(2) Nonlinear theory could, according to Wollkind and Segel [4], 

also be used for predicting cells of a stable finite amplitude. This 

is given as possibility (a) above. Although cells are observed, and 

although the cellular region is nonlinear, the degree of nonlinearity 

in experimental cellular structures is far greater than that 

considered by Wollkind and Segel. Wollkind and Segel's analysis is 

presently termed weakly nonlinear, since it extends only to the first 

nonlinear term. Higher order analysis is necessary to be more accurate 

in the cellular region. 

(3) Nonlinear analysis predicts the possible existence of 

subcritical bifurcation. This is a new possibility which was not 

addressed by linear theory. Subcritical birfurcation is situation (c) 

above. It should be noticed that during subcritical bifurcation, the 

interface may still form a pattern which begins in a linear manner. 
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This is true because the linear terms will dominate for very small 

amplitudes. The cellular growth region observed in Figures 12 and 13 

is of this kind. This is because a linear region exists for a short 

time after which nonlinearity takes over. From Figures 12 and 13, it 

can be seen that the amplitude growth rate is more than weakly nonlinear. 

It is, therefore, of interest to consider the region beyond the weakly 

nonlinear region. For this reason, higher order analysis must be used 

to model cellular structures. Higher order analysis is done by 

numerical techniques. 

Nonlinear stability analysis: The numerical approach 

Whereas the analytical approach to nonlinear theory stability 

analysis is valuable only in the region near the onset of instability, 

the numerical approach allows the time evolution of interface structure 

to occur. Several different researchers have approached the problem 

and the results are encouraging, especially by comparison to 

experimental work done in metal analog systems. 

An iterative approach to the nonlinear problem was taken by 

McFadden and Coriell [34]. They use the same equations and conditions 

as Wollkind and Segel [4], and input a guess for the initial interface 

position and morphology. Iterations are then made until a steady state 

is reached. The results model the general characteristics of cells 

fairly well, as can be seen in Figures 16-18. Although the results show 

the characteristics of a cellular structure rather nicely, the method is 

somewhat suspect since the final structure is a function of the input 

structure. 
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Figure 16. Predicted concentration profiles across two cells. 
Graphs show change with solute concentration far 
from the interface, C^. Figures are from reference [34] 
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TEMPERATURE C0NT0UR MAP 

CONCENTRAT10N CONTOUR MAP 

C =.1150. V = 1.000 CM/S. X =.0005 CM 

Figure 17. Concentration and temperature profiles for a 
single cell. Figures are from reference [34] 
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Figure 18. Cell groove depth as a function of velocity. 
Figure is from reference [34] 
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There are several numerical papers dealing with nonlinear pattern 

selection presented by Kerszberg [31-33]. In these papers, Kerszberg 

uses numerical integration and a very new method of expansion of terms 

to solve the nonlinear time dependent problem. He begins with the 

concepts of linear theory and then, expands these to nonlinear theory. 

Kerszberg's linear analysis gives the curve shown in Figure 19. This 

curve is very similar to those developed by Mull ins and Sekerka [2] 

and also Wollkind and Segel [4]. Kerszberg then, expands his analysis 

into the nonlinear regime, and after doing so, presents Figure 20 

which shows that the wavelengths selected by the nonlinear analysis 

are identical with those selected by the linear stability analysis at 

the threshold velocity. This graph given by Kerszberg is similar to 

the experimental results shown in the next section, but the variation 

in the cell wavenumbers with velocity increases rather than decreases. 

The numerical analysis of Kerszberg also shows that the final 

pattern is a function of the initial choice for the input pattern. 

However, when white noise is introduced, a definite cellular spacing 

is produced. White noise is introduced because, as Kerszberg 

suggests, white noise exists in all solidification experiments due to 

mechanical vibrations or fluctuations in thermal gradient. 

Figures 21-24 are from reference [31]. These figures show the dynamics 

of cell adjustment with time. Processes such as these have been 

observed in organics [46]. Small amplitude cellular structures as 

shown in the figures were not seen in low concentration alloys of 

succinonitrile-acetone in the experiments. Small amplitude cells were 
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0.0 0.25 0.15 0.45 

Figure 19. The linear stability coefficient as a function 
of wavenumber, k. Instability exists above the 
k axis and stability below it. Figure is from 
reference [32] 
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Figure 20. Unstable wavenumbers, k, as a function of velocity. The 
unstable wavenumbers are within the parabola. The 
dashed dot line marks the most favored growth 
wavenumber from linear stability analysis. The crosses 
and shaded areas are the points predicted from the 
nonlinear analysis in reference [33] and the error 
margin, respectively. Figure is from reference [33] 
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Figure 21. Development of a cellular structure as a function 
of time given an input structure and periodic 
white noise. This figure was constructed using 
the model described in reference [33]. Figure 
is from reference [33] 
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Figure 22. Development of a cellular structure as a function 
of time given an input structure and periodic 
white noise. This figure was constructed using 
the model described in reference [33]. Figure is 
from reference [33] 
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V =  1.028 yO = l03 

Figure 23. Development of a cellular structure as a function 
of time given an input structure and periodic 
white noise. This figure was constructed using 
the model described in reference [33]. Figure 
is from reference [33] 
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Figure 24. Development of a cellular structure as a function 
of time given an input structure and periodic 
white noise. This figure was constructed using 
the model described in reference [33]. Figure 
is from reference [33] 



69 

observed in pivalic acid-ethanol and carbontetrabromide-hexachloroethane 

alloys in this work and by de Cheveigne et respectively [47, 48]. 

Unger and Brown [35-36] have also done considerable work in the 

area of nonlinear stability analysis of solidifying planar and cellular 

structures. Their work focuses on the question of subcritical versus 

supercritical bifurcation in solidification pattern formation. There 

is nothing fundamentally different done by Unger and Brown that was 

not predicted by Wollkind and Segel [4], with the exception that Unger 

and Brown predict that the wavelength will experience halving of the 

cell spacing [35] at velocities near the threshold velocity. This has 

been observed by the author and is reported i-n Section I. 

Nonlinear stability analysis: Analytical/numerical techniques and 
models 

As mentioned above, in numerical nonlinear stability analysis, 

there are several types of analytical/numerical analyses in which the 

analytical elements are retained as long as possible for understanding 

before numerical solutions are used. Although there are a considerable 

number of such analyses, there are none that have yet been developed 

that maintain analytical aspects and comes even remotely close to 

physical reality. Very recently, a review of this type of analysis 

has been published by Langer [49]. This review offers insight into 

Langer's work, and also to related works in the area. The results given 

by Langer show that there are no generalized models that have yet been 

developed that solve the pattern formation problem. It is for this 

reason that work is currently being done on localized (versus 
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generalized) models [35-39]. This new concept in modeling has shown 

some promise. Solidification structures similar to cells and dendrites 

have been predicted by these models. 

Considering the generalized models first, it is found that there 

are a number of avenues that could be followed in order to find 

workable realistic models. These possibilities are reviewed by 

Langer [49] and are given here. 

(1) The first possibility for wavelength selection is that of 

boundary conditions in a small system. If the system is small enough 

that only one stable wavelength is possible, then wavelength selection • 

is automatic. This occurs due to boundary condition constraint. If 

the boundary conditions are expanded a little to include other modes, 

then mode competition occurs, and wavelength selection will depend upon 

the systems' sensitivity to the starting conditions. 

(2) The second possibility is that an important role is played 

by some variational principle. In this case, one imagines that the 

system optimizes around some principle, such as that of maximum growth 

rate, or minimum tip undercooling. Although this approach is popular, 

it has never been proven to be generally valid. If such a principle 

were true, one could imagine a minimization of free energy as such a 

criteria. Although this is a particular tempting principle, 

wavelength selection appears not to work on this principle in the case 

of pattern formation [49]. 

(3) A third possibility is that of noise-driven selection. Such 

a process has been derived by Kerszberg [31-33]. This process of 
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noise-driven wavelength selection would not induce selection of a 

unique value. It also requires externally induced perturbations in 

order to induce selection. Langer sees this as an unlikely 

possibility since no minimization of free energy principle has been 

found to occur, for noise-driven wavelength selection. It is this 

author's opinion that noise in the system accelerates wavelength 

selection, even though it may not ultimately determine the wavelength. 

(4) The fourth possibility is that the wave selection mechanisms 

are dynamic. This is the concept of the propagation of a wave, or wave 

packet, from an already existing source. It may also be the case of a 

continuous developing wavelength as a function of time. Until recently, 

this was considered by Langer to be a plausible principle, but he has 

abandoned this in favor of localized models. Langer no longer holds 

this as the correct principle because dendrites are known to have a 

very definite and unique selection mechanism. A family of wavelengths 

is not observed for dendrites, but rather a unique value of the 

spacing is selected under given growth conditions. 

Experimental studies by Somboonsuk [46] and Esaka [50], however, 

do show a small, but definite spectrum of dendrite spacings under 

given experimental conditions. It will be shown later in this work that 

there is also a finite spectrum of wavelengths that exists for steady-

state cellular structures. The statement made by Langer is, therefore, 

not totally correct. 

(5) The final possibility proposed by Langer is that there is no 

selection. This means that the selection which is observed is a 
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function of history, and a weak function of the boundary conditions. 

This possibility allows for a vast number of final wavelengths which 

are different and not related in any simple way. Although this is not 

satisfying, this appears to be Langers best guess at the generalized 

wavelength selection process. 

The results of this analysis of pattern selection are not 

satisfying, and it is clear that considerable work still remains to be 

done in this area. Perhaps the inclusion of parameters which are 

currently neglected, such as the surface anisotropy coefficients, would 

assist in making the models match reality more closely. There may yet 

be other possibilities which are not discovered, or a combination of the 

above five possibilities which may be possible as a solution to the 

problem. It does appear, however, that some critical experiments are 

now needed to guide further theoretical developments. 

Models 

The models which are normally used for solidification are the 

symmetric model, the one-sided model, the string model, and the 

boundary layer model. These models will be described briefly here. 

The symmetric model and the one-sided model are generalized models, 

and the string model and the boundary layer model are localized 

models. The five possibilities for pattern formation discussed above 

were for generalized models. Although generalized models are preferred 

for modeling solidification because dendrites and cells exist in 

arrays in nature, localized models are more promising at present, as 



will be discussed below. 

The symmetric model considers the situation where both the solid 

and the liquid have similar thermal diffusion coefficients. This is the 

reason that the model is called the symmetric model. Besides the 

symmetry in the thermal diffusion coefficient, the model considers the 

interface to be a line heat source. This model is used for 

solidification of pure materials where only thermal diffusion needs to 

be considered. 

If solute diffusion is considered, the symmetric model is still 

sometimes used, but since the diffusion coefficients of the solute often 

differ by two orders of magnitude between the solid and liquid, the 

symmetric model is not very accurate when solute is present. Therefore, 

when solute is present, the one-sided model is more generally used. 

The one-sided model is similar to the symmetric model with the exception 

that diffusion of heat and solute is considered to occur only in the 

liquid. 

The string model is one of the local models. What is meant by 

local is that the immediate section of interface is modeled as being 

dependent only on its two end values. In other words, the interface 

is considered as a freely moving string which is chopped into 

incremental units that move together via the fact that their end 

points are attached. When using the string model, either symmetric 

or nonsymmetric conditions can be used. 

The last model considered here is the boundary layer model. This 

model is similar to the string model, but the string has a memory of 
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what has gone on in the past. This memory is produced by using a 

finite length diffusion layer in the liquid, into which the heat and 

solute diffuse. The heat and solute generated by the moving boundary 

are collected in the boundary layer. The boundary layer then, imposes 

itself onto the interface by changing the growth conditions. This 

model produces structures that are similar to cells and dendrites and 

therefore, is a very promising model. Some of the structures produced, 

for pure undercooled melts, are shown in Figures 25-27. 

Nonlinear stability: Higher order analysis 

There has been some recent work [51, 52] in third and higher order 

systems that shows unusual properties. These higher order systems are 

a class called attractors. There are, of course, many types of these 

higher order attractors, but two that may be of interest here are the 

horseshoe attractor and the Lorenz attractor. These two are unique in 

that although they appear to be random in some of their properties, they 

are entirely deterministic. This means that once set into motion, the 

end is determined from the beginning. This concept of a deterministic 

solution is a different concept of pattern formation than is usually 

considered. 

Experimental work by Trivedi and Somboonsuk [53] shows that there 

are two characteristic wavelengths observed in pattern formation of 

real solidifying structures. They label these wavelengths as and Xy 

These are connected together and to the thermal and solute length, 

respectively, by scaling laws. The scaling laws are as follows: 
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Figure 25. Development of a parabolic tip as a function of time 
using a localized boundary layer model. Figure is 
from reference [49] 



Figure 26. Development of a sixfold cellular structure as a 
function of time using a localized boundary layer 
model. Figure is from reference [49] 
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Figure 27. Development of a sixfold dendritic pattern as a 
function of time using a localized boundary layer 
model. Figure is from reference [49] 
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A. = 10.58 (Iglc)^/^ (28) 

and 

X. = 1.68 (X.lt)1/2 , (29) 

where 1 = 2D/V, K = K AT /G, and 1 = Y/ASK AT . The interest here 5  L O O  W 0 0  

is not to interprete the scaling laws, but to point out that they do 

exist. The present work also shows that the two characteristic 

wavelengths exist even at velocities extremely close to the critical 

velocity. The existence of these scaling laws indicates that the 

problem of pattern selection is not entirely chaotic. It is, rather, 

determined very distinctly by parameters of the system. Perhaps strange 

attractors should be considered in future pattern selection modeling. 

Critical Experiments Needed 

In review, we see that although there has been considerable work 

done on planar interface instability, there are several inherent 

problems that have largely been overlooked. There are, therefore, 

reasons why the experimental studies remain incomplete. One of the 

most common experimental problems is the problem of convection. This 

becomes particularly important at very low rates, where the stability 

work is generally done. A second problem is that of unknown system 

parameters. In most cases, accurate values of the system parameters 

simply do not exist. A third problem is velocity stability and 

accuracy at low rates. Very few investigators have established the 
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linearity of the velocity which occurred during the experimental run. 

Another reason why the studies are incomplete is the opaque nature of 

most sample materials. Due to the opaqueness of the samples, in situ 

experiments cannot be made. This allows for a considerable margin of 

error in the actual interface velocity at the time of break up since 

the interface velocity is assumed to be the externally imposed velocity. 

This may not be the case, as is shown in the next chapter. 

As can be seen, there remains a need for a carefully controlled 

examination of both Mull ins and Sekerka's [2] linear stability analysis 

and Wollkind and Segel's nonlinear analysis [4]. These examinations 

should be done in well-characterized transparent alloy systems. For 

these reasons, the succinonitrile-acetone system and the pivalic acid-

ethanol system are ideal for such a study. The necessary parameters are 

well-known and the systems are transparent. These, therefore, were the 

experimental systems which were used in this quantitative study. 

With the background given in the literature review, there are a 

number of critical experiments which could be done to test the accuracy 

and validity of the currently accepted theories. Some of these 

critical tests are given here. These tests give this work a purpose 

and a goal. 

(1) A definitive test should be made to check the accuracy of 

Mull ins and Sekerka's [2] linear stability analysis. Two points should 

be checked. These are, the accuracy of the critical velocity 

prediction, and the accuracy to which the theory predicts the 

wavelengths at the critical velocity. These tests can be made by 
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increasing the velocity just past the critical velocity slowly, and 

then, observing the wavelengths of the perturbations present. 

(2) A check should be made to see if Wollkind and Segel's [4] 

prediction of subcritical bifurcation exists. The theory can be 

checked by observing the amplitude of the waves present at a velocity 

near to the critical velocity. A positive proof of subcritical 

bifurcation would be obtained if waves formed at a velocity above 

persist at a velocity below V^. 

(3) Experiments which observe and measure the dynamic process of 

pattern formation would be extremely valuable for those doing 

theoretical modeling since the theory of pattern formation, in many 

respects, requires experimental input to guide further development. 

Theory would, thus, benefit greatly from a careful study of actual 

observations of the time evolution of a steady-state pattern. The path 

taken by the system toward steady state can be plotted in wavevector 

space, and the mechanisms of pattern evolution can be established. 

(4) Theoretical models of cells are based on the assumption that 

the cellular patterns formed are steady state and are of a unique 

wavelength. It is important to determine experimentally the uniqueness 

of the wavelength selection criterion. Experimental studies are needed 

to examine the statistical distribution of spacing and to see if this 

distribution is sharp or broad. 

(5) A careful study of the cellular range, and the cell-dendrite 

transition would be valuable because there is, presently, confusion in 

the literature. The confusion exists both in the theory and in 
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interpretation of experimental microstructures observed at different 

growth rates. 

(6) The observance of anisotropic interface properties, and their 

affect on interface instability would check the linear stability 

theory of Coriell and Sekerka [54], which is presented in detail later. 

Measurements of the interface kinetic anisotropy would be the first 

measurements of this parameter in a solidifying material. The importance 

of kinetic anisotropy is not known at present, but theoretical models 

show that anisotropy may play an important part in pattern formation. 
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EXPERIMENTAL PROCEDURE 

In directional solidification studies, there are three control 

variables after an alloy system has been chosen. The three variables 

are velocity, thermal gradient, and solute concentration. In this 

study, velocity was the variable which was used to cause changes in the 

growth structures. The thermal gradient and solute concentration 

remained constant throughout each experimental run. 

The experiments done here used low concentration alloys. This was 

done because the threshold velocity for the planar-cellular transition 

goes up as the concentration goes down. By using low concentration 

alloys and therefore, achieving high threshold velocities, the deviations 

in the velocity, even though they were already small, were minimized. 

This is an important experimental consideration because velocities 

below 0.1 ym/s are extremely difficult to maintain with any accuracy. 

Problems such as building vibrations, etc., become important at these 

very low rates. For this reason, the threshold velocity was also kept 

above 0.4 ym/s. In addition, the most important experiments were done 

at times when the building was sparsely used. The entire experimental 

apparatus vias placed on a shock absorbing base. 

The Solidification Equipment 

The solidification equipment is similar in principle to that 

described by Jackson and Hunt [55]. A number of modifications were, 

however, necessary to achieve higher accuracy and precision required 
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for the present studies. The modifications which were made to improve 

the linearity of the velocity are as follows: 

(1) A stepper motor with 50,000 uniform steps per revolution was 

used in place of a DC motor and gears. 

(2) A precision ground ball screw was used in place of a threaded 

nut and bolt. 

(3) No gears were used in the entire system. A tension V-belt 

was used to connect the motor to the ball screw. 

(4) Special alignment devices were made to align the ball screw 

with the glide bars. It was found that this improvement took 

the linearity in the velocity from +0.25 ym/s to better than 

+ 0.05 ym/s. 

(5) Precision bearings were used on the ends of the ballscrew in 

place of normal bearings. These were later replaced by teflon 

bushings. The teflon bushings reduced mechanical noise 

because there are no moving parts. 

The present apparatus with modifications is shown in Figure 28. 

Schematic diagrams of the apparatus are shown in Figure 29. A detailed 

discussion of the various components of the apparatus is given by Mason 

and Eshelman [56]. 

Establishing the thermal gradient 

Directional solidification was induced by moving a sample between 

fixed hot and cold chambers. The hot and cold chambers were held at a 

fixed distance apart with a machined lexan block. The lexan block below 
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Fiqure 28. Photograph of the model transport apparatus. Top: 
Entire apparatus. Top insulator sheets removed for 
clarity. Bottom; Close up of hot and cold plate 
gap area 



Figure 29. Schematic top and side view diagrams of the solidification apparatus. The 
labeled parts are: 

1. Bottom plate 
2. End shaft and bearing plate 
3. Side wall, left and right 
4. Position bearing for ball screw 
5. Solid case shafts 
6. Bearings for shafts 
7. Sample carriage 
8. Ball screw 
9. Hex jam nut 

10. Shaft and bearing plate 
11. Bottom insulator plate 
12. Center insulating block 
13. Bottom hot plate 
14. Top hot plate 
15. Hot oil connect tube 
16. Hot oil inlet and outlet 
17. Bottom cold plate 
18. Top cold plate 
19. Top cover plate hot and cold 

20. Bottom cover plate hot and cold 
21. Cold water connect tube 
22. Cold water inlet and outlet 
23. Side cold insulator 
24. Top cold insulator 
25. Sample holder 
26. Transducer rod 
27. Transducer block support 
28. Transducer block 
29. Transducer 
30. Pulley for ball screw 
31. Side hot insulator 
32. Top hot insulator 
33. Motor front brace 
34. Motor bottom brace 
35. Motor side brace 
36. Motor mount block 
37. Bearing end plug adjustor 
38. Pulley for motor 



(§) 
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the sample between the hot and cold plates established a constant 

thermal gradient, and also reduced thermal convection due to air flow 

below the sample. There was also a 150 ym thick glass cover slip over 

the sample and between the hot and cold chamber. This thin glass 

cover slip reduced air convection from the top. 

The cold chamber was controlled by passing a water/ethalene glycol 

mixture through it at a constant temperature. The fluid temperature 

was controlled by a Neslab Instruments, Inc., Portmouth, NH, Endocal 

refrigerated bath circulator model RTE-4. The temperature range 

available was -30 to 100°C, and the stability was specified to be 

+ 0.01°C within the temperature range from 20 to 60°C. The cold chamber 

was tested for stability and was found to hold a constant temperature 

of + 0.03°C or better in the temperature range 10-40°C for periods of 

1-2 days. 

Two different types of hot chambers were used in these experiments. 

The first one used a resistance furnace. The power supply was a 

constant amperage DC power supply (Harrison model 6286A, Hewlett 

Packard, Skokie, IL). This furnace was found to maintain a constant 

temperature (about + 0.5°C) for periods of several hours, but was 

found to drift with the room temperature by 1-2°C over a period of a 

day. 

In order to improve the long-term stability of the thermal 

gradient, an oil bath hot chamber was developed for use on the system. 

The hot chamber oil was regulated and circulated by a Neslab 

Instruments, Inc. (Portsmouth, NH), Exacal model 250HT constant 
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temperature bath circulator. With this system, the hot chamber 

stability was tested and found to be + 0.05°C or better, at 150°C, 

over a period of 24 hours. 

Establishing a constant velocity 

The drive mechanism was built around a precision ground ball screw. 

The drive motor was a stepping motor with 50,000 steps per revolution. 

The motor was model M57-51-R14, by Compumotor Corporation, Petalumn, CA. 

The motor was controlled by a Commodore 64 computer made by Commodore 

Business Machines, Inc., Wayne, PA. With this system, the velocity was 

reproducible within + 0.02 °C over long distances. 

The motion of the sample was measured with a linear variable 

differential transformer, LVDT (type 3000 HR, Schaevitz Engineering, 

Pennsauken, NJ). Real time velocities were attained by electronically 

differentiating the LVDT output. A schematic diagram of the electronic 

differentiator is shown in Figure 30. The motion of the sample moving 

inside the system was measured and the instantaneous velocity was found 

to be linear to + 0.02 ym/s at submicron per second velocities. A 

trace and scale of the velocity profile during an experimental run are 

shown in Figure 31. 

The temperature of the interface and the thermal gradient were 

measured during the runs with calibrated thermocouples placed inside 

the sample cells. The thermocouples were calibrated against a NBS 

certified mercury thermometer in a large dewar apparatus, which is 

shown in Figure 32. The thermocouples were calibrated to accuracies of 

+ 0.03°C using this method. 
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Figure 30. Schematic diagram of the electronic differentiator used 
in this work 
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Figure 31. Output from the electronic differentiator during 
an experimental run showing the change in the 
velocity as a function of time. The small time 
scale variations are due to electronic noise 
generated by the differentiator. The larger 
time scale variations are actual variations 
in the velocity 
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Figure 32. Apparatus used for thermocouple calibration. The 
water incoming to the apparatus was thermally 
controlled using the Neslab Endocal refrigerated 
bath circulator model RTE-4 
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Sample cell preparation 

The sample cells were made by using two 75mm x 25mm microscopy 

slides held at a constant distance apart with 150 ym thick brass shim 

stock. The slides and shims were preheated in a meeker burner between 

two stainless steel plates. After about five minutes of preheating, 

two sides and the end of the glass slides were fused with an oxygen-

propane torch. The slides were then, placed in a tube furnace for 

post weld annealing. The furnace temperature was about 600°C. 

Figure 33 shows the sample cells in various stages of preparation. In 

order to easily fill the sample cell, a hole was cut in the end 

opposite to the open end using a rotary cut-off wheel. Following the 

cutting, the sample cell was thoroughly cleaned and baked in an oven 

at 100°C for a few hours to drive off any retained moisture. 

A 75 ym calibrated chromel-alumel thermocouple was introduced into 

the sample slide through a small hold cut in the side of the slide. 

The thermocouple was inserted on the side of the slide to minimize the 

disturbance of the thermal field inside the slide. A cell with a 

thermocouple in place is shown in Figure 33. 

Sample cells were filled in a dry box under a dry nitrogen 

environment with a small pressurized chamber, as shown in Figure 34. 

When this method was used for sample filling, the sample cells had to 

be preheated in order to ensure complete filling. After filling, the 

cell was placed on a copper block to induce solidification as quickly 

as possible. This was done to avoid macro-segration in the alloy. The 

cell was then, sealed with chemically inert epoxy. The epoxy used was 
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Figure 33. Sample cells. Left to right: Glass slides with 
spacers, cell with stainless steel heat sinks 
ready to fuse, fused cell, finished sample cell 
with thermocouple 
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Figure 34. Loading equipment. Left to right: cell holder, 
cell holder with cell inserted, pressurized 
loading jar 
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Epoxi Patch, from Dexter Corporation, Olean, NY. 

Since all modeling generally neglects the effects of convection, 

it was important to ensure that convection could not occur in the 

samples. Convection was prevented by using sample cells with sample 

thicknesses of 150 ym. Somboonsuk [46] has shown that convection does 

not occur in transparent, metal analog systems in cells of this 

thickness. Somboonsuk's experiments to check convection effects used 

silica beads with sizes between 20 ym and 100 ym. The silica beads were 

never observed to move during solidification when the sample thickness 

was 200 ym or less. 

In addition, the sample cell was chosen with a thickness large 

enough that the effects of the cell walls on the motion of the 

interface in the vertical direction were negligible. Caroli et [57] 

and de Cheveigne et [48] have shown that in sample cells with 

thicknesses greater than 50 ym, there is no effect of the cell wall on 

solidification processes. 

A third reason for choosing sample cells with thicknesses of 150 ym 

was that the solidification structures operate in a two-dimensional 

manner at these thicknesses. Thicker samples show three-dimensional 

effects, and thinner samples change the growth characteristics of the 

solidifying structures [46]. 

Materials Preparation 

Three transparent alloy systems were used in this study: 

Succinonitrile-acetone, pivalic acid-ethanol, and carbontetrabromide-
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hexachloroethane. As-received material purity and the material 

purification techniques were different for each of the six materials. 

The as-received succinonitrile (SCN) had a three degree melting range. 

It was purified by standard zone refinement. In some cases, the SCN was 

double zone refined, or distilled prior to zone refinement. As 

discussed by Pfann [58], the final purity of the material is 

exponentially related to the tube length in which it is prepared. For 

this reason, the longest available (120 cm long and 8mm outer diameter) 

tubes were used. The total number of zone passes was 50-70. The 

purified SCN was found to have a melting range of + 0.03 K. 

The as-received acetone was 99.9 mol% pure. It was further 

purified by distillation and subsequent treatment with anhydrous CaSO^. 

The acetone was stored in a dry environment when not in use. 

The as-received pivalic acid contained about 10% water. It was, 

therefore, necessary to sublimate it prior to zone refinement. After 

sublimation, zone refinement was done in the same manner as described 

for SCN. The purified material had a melting point of 308.7 K. The 

highest melting point reported in the literature is 308.8 K. 

The ethanol was used as received since reagent grade absolute 

ethanol was available. The purity level was reported to be 99.95 mol% 

pure. 

The as-received carbontetrabromide (CBr^) was purified by vacuum 

sublimation. This was repeated twice. Both times, the initial and 

final fractions were discarded. The final product was found to solidify 

with a planar interface at velocities of up to 25 um/s in a thermal 
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gradient of 3.6 k/mm. 

The as-received hexachloroethane (CClg) was purified by normal 

sublimation. The initial and final fractions were discarded. 

Since the experiments in this work were critical experiments, 

the succinonitrile-acetone and pivalic acid-ethanol systems were used 

almost exclusively. The carbontetrabromide-hexachloroethane system 

was only used for comparative purposes, and then, only when anisotropic 

properties were studied. 

The physical properties of the materials studied are shown in 

Table 1. The phase diagrams of the materials studied are shown in 

Figures 35-37. 

A variety of alloys were used in the experiments done in this work. 

These are listed in Table 2. 
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Figure 35. Phase diagram for the succinonitrile-acetone binary 
alloy system. Figure is from reference [59] 



wt % Ethanol 

Figure 36. Phase diagram of the pivalic acid-ethanol binary alloy system. 
Figure is from reference [60] 
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Phase Diagram 
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Figure 37. Phase diagram of the carbontetrabromine-
hexachloroethane binary alloy system. Figure is from 
reference [61] 
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Table 1. Material and alloy properties of the experimental alloys used 

Succinonitrile Pivalic acid Carbontetra-
bromide 

Melting point, K 331.24 308.7 363.2 

Entropy of fusion, 11.21 7.4 10.88 
J/mol-K 

Density of solid, 1.016 x 10^ 0.905 x 10^ 3.26 x 10^ 
kg/m3 

Density of liquid, 0.907 x 10^ 
kg/m3 

Thermal conductivity 0.224 0.49 
of solid, J/msK 

Thermal conductivity 0.223 
of liquid, J/msK 

Surface energy, J/m^ 8.95 x 10"^ 2.81 x 10"^ 8.0 x 10"^ 

Alloy Succinonitrile- Pivalic Carbontetra-
properties acetone acid - 0.2 wt% bromide - 0.2 w/o 

ethanol hexachloroethane 

Diffusion coefficient, 1.27 x 10"^ 2.0 x 10"^ 1.5 x 10"^ 
cm2/s 

Liquid slope, K/wt% -3.02 -7.14 -0.6 

Equilibrium partition 0.103 0.4 0.43 
coefficient 
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Table 2. Alloy compositions used in this work 

Alloy Range of compositions 

Succinonitrile-acetone 0.1 - 2.8 w/o acetone 

Rivalic acid-ethanol 0.076 - 0.2 w/o ethanol 

Carbontetrabromi de-
hexachloroethane 0.2 w/o hexachloroethane 
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SECTION I. THE PLANAR INTERFACE INSTABILITY 
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INTRODUCTION 

The major aims of this work are to test the predictions of the 

linear and weakly nonlinear stability analyses by carrying out detailed 

experimental studies of the planar interface instability in a 

well-characterized system. Although a number of experimental studies 

in metal systems has been carried out to examine the conditions for the 

planar interface stability [1-7], the precise velocity of the interface 

break up, V^, could not be determined because the interface break-up 

velocity was associated with the externally imposed velocity. 

Somboonsuk and Trivedi [8] have shown that there is a sufficiently 

long transient before the actual velocity of the interface approaches 

the externally imposed velocity so that a precise measurement of 

requires not only the measurement of the actual interface velocity at 

the time of break up, but also the dynamical values of the thermal 

and solute gradients at the interface. In this paper, we shall report 

the results of directional solidification experiments in succinonitrile-

acetone system in which the actual interface velocities at the time of 

the planar interface instability were measured. These dynamical 

velocities were then correlated with the critical velocities 

predicted under steady-state growth conditions. 

Two major predictions of the linear stability analysis which will 

be examined in this study are the critical velocity and the associated 

wavenumbers for which a planar interface becomes unstable. For small 

velocities, the Mullins-Sekerka result can be simplified to give the 
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critical velocity, V^, by the relationship [9] 

Vc = 1 + 3(Ko2a)^/^ Vc^/^ av«l (1) 

where is the threshold value of the dimensionless velocity, 

V = V ATg/GD, and the parameter a is given by 

a = YG/4ASATQ^ . (2) 

Note that = 1 represents the modified constitutional supercooling 

criterion. At the critical velocity, the Mullins-Sekerka analysis 

predicts the unstable wave number, k^, to be [9]: 

k^ = (G/2ATQ)(Kq/a)1/3 av«l . (3) 

Experiments were also carried out to test the prediction of a 

weakly nonlinear analysis presented by Wollkind and Segel [10]. They 

concluded that the planar to nonplanar bifurcation can be subcritical 

so that a planar interface, if subjected to large amplitude 

deformations, could become unstable at v < v^. Thus, the second aim 

of this study is to present experimental results which examine the 

nature of this bifurcation. Our results confirmed the existence of 

subcritical bifurcation and showed that large amplitude cells remained 

stable when the interface velocity was slowly changed from V > to 

V < V^. Also, very small amplitude perturbations were not observed at 
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V just above V^. The amplitude of the interface increased from zero 

at V < Vg to a finite value when V was increased just above V^. 

Furthermore, when the interface was maintained just below for a long 

time, long amplitude perturbations with large wavelengths were also 

observed which gave rise to an unstable interface. 
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EXPERIMENTAL 

Directional solidification studies on the succinonitrile-acetone 

binary alloy system were carried out in the system described in 

the Experimental Procedure Section of this dissertation. Special care 

was taken to ensure that all the experimental variables were controlled 

and measured accurately. In these studies, the temperature gradient 

and the composition were kept constant and the interface instability 

was examined as a function of velocity. In order to observe any 

change in temperature gradient which may occur during the interface 

instability, experiments were carried out with two thermocouples in the 

cell which were positioned such that the first thermocouple traced the 

temperature profile of the steady-state planar interface growth at 

V < and the second thermocouple traced the temperature profile after 

the interface just became unstable at V > V^. No significant change 

in the temperature gradient at the interface was observed prior to and 

after the break up. 

The concentration of acetone was varied between 0.10-0.35 wt.%. 

Initially, the composition was controlled by mixing appropriate 

weights of the components. However, the exact concentration of acetone 

in the cell was subsequently determined by measuring the planar 

interface temperature with a calibrated thermocouple during a 

steady-state run at V < V^. 

Three sets of experimental studies were carried out. For a given 

composition and temperature gradient, the critical velocity was 
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calculated from Eq. (1). The sample was then solidified at velocity 

VQ, which was below V^, where a planar interface growth was observed. 

After a steady-state growth was established at V^, the external velocity 

was changed rapidly to Vg, where Vg > V^. The subscript E denotes the 

externally applied velocity. The interface location and shape were 

photographed continuously at 1 second intervals, and Figure 1 

illustrates the interface break-up phenomenon. The velocity of the 

interface with time was then calculated from the distance vs. time 

measurements, and this is shown in Figure 2. The interface velocity, 

as well as the time at which the interface just became unstable, as seen 

from the photographs, were then marked on this plot. Since the break up 

was observed before the interface velocity coincided with V^, a series 

of runs was made with different Vg values, and the interface velocity, 

V|j, at which break up occurred was measured for each Vg run. These 

experiments are shown in Figure 2. The critical velocity, V^, was then 

taken to be equal to the smallest value where the break up was 

observed. A second set of experiments was also carried out in which the 

external velocity was changed from to V > in small velocity steps. 

At each velocity, the run was made for a sufficiently long time to 

observe any sign of instability. The velocity at which the first 

break up was observed was then noted. Since the change in velocity was 

sufficiently small, about 0.05 ym/s near V^, the external velocity at 

which the break up was observed was taken to be equal to the V^. 

The third set of experiments was designed to study the planar to 

cellular bifurcation. In this study, a planar interface was first 
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( c )  

Figure 1. Break up of a planar interface. Succinonitrile 0.15 
w/o acetone, G = 3.76 K/mm, V = 0.8 ym/s, (a) at time 
= 0 s, (b) at time = 570 s, (c) at time = 870 s, 
mag. = 43X 
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Figure 2. The variation in the dimensionless interface velocity, v, with time when the 
external velocity was changed from VQ to vg. The circles denote the interface 
velocity and the corresponding time at which the planar interface became 
unstable 
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stabilized at V < V^. The velocity was then increased in small steps 

until the first sign of break up was observed. At each velocity step, 

a constant velocity was maintained for at least 15 minutes or more to 

see if the interface became unstable. When a velocity was found at 

which the planar interface just became unstable, the sample was run at 

that velocity for a sufficient time to form a periodic cellular 

structure. The amplitude and wavenumber of this periodic structure 

were then measured. Next, the velocity was decreased in steps to see 

if the interface became planar below V^. A velocity was determined, 

which was significantly less than V^, where the cellular to planar 

transition occurred. Since the cellular structure was found to be 

stable below V^, another experiment was carried out in which a planar 

interface was held just below for a long time. A large amplitude 

fluctuation in the shape was observed after about three hours. The 

stability of the interface in the presence of these large amplitude 

fluctuations was then examined. 
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RESULTS AND DISCUSSION 

Planar Interface Instability 

The theoretical analysis of the planar interface instability 

examines the stability of a planar interface which is initially moving 

at a constant rate. Experimentally, the study of planar interface 

instability requires the velocity to be changed from V = to V = V^, 

where < V^. Figure 2 shows the actual change in interface 

velocity when the external velocity was changed from to V^. Both 

the interface velocity, Vj^, at which the break up was observed and the 

time, T|j, required to reach the break-up velocity were found to be 

functions of V^. 

To examine the critical velocity at which an instability is 

observed, it is important to keep the sample at a given velocity for a 

sufficiently long time for the solute and thermal fields to readjust. 

Thus, when no interface break up is observed, the time of run must be 

sufficiently long for the interface velocity to equal the external 

velocity. When a break up of the interface is observed, the time 

taken by the interface to reach is a function of V^. This variation 

in as a function of was measured, and is shown in Figure 3. The 

time taken for the interface to reach the break-up velocity was found 

to be inversely proportional to Vg. 

The variation in as a function of is shown in Figure 4, 

where v = VAT^/GD. Although there is a significant scatter in the 

data, was found to increase as was increased. The lowest 
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velocity, where the break up was observed will be close to the 

value. This minimum value of Vj^ will be denoted by v^*. 

The theoretical value of is obtained under the assumption of a 

steady-state solute profile that is characteristic of the velocity V^. 

Experimental values of the critical velocity, however, were measured 

under nonsteady-state conditions since the interface velocity was 

changing when the interface became unstable. When and are close 

to V^, this dynamic effect may be negligible. To gain some insight 

into the difference between the critical values obtained during the 

steady-state (V^) and during the dynamic (Vj^*) conditions, we shall 

now briefly examine the factors that could influence the difference 
* 

between and V. . 
c D 

There are three important physical factors that could influence the 

magnitude of First, the destabilizing influence of the solute 

field depends on the composition gradient, G, at the interface. When 

an appropriate value of is reached, the interface can potentially 

become unstable. However, a finite time is needed for the perturbed 

profile to develop and during this time, the interface velocity can 

increase beyond V^. For this reason, the value of Vy is found to 

increase as the value of Vg-V^ is increased. 

A second factor which could also influence the value of Vy at 

large Vg-V^ values is the change in the thermal gradient. Since thermal 

conductivities of the solid (K^) and the liquid (Kj^) are nearly equal 

in the succinonitrile system, the thermal balance at the interface 

would show that the change in thermal gradients in the liquid (Gj^) and 
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in the solid (G^) at the interface are related by the equation 

6(63-6^) = , (4) 

where 5 indicates the change in gradients. Since additional heat of 

fusion due to an increase in interface velocity needs to be dissipated 

through the solid, one can obtain an upper limit on the change in 

average gradient by assuming that the liquid gradient changes 

negligibly. The maximum change in the average gradient is then given by 

6G = (AH/2KL)(Vjj-VQ) . (5) 

Thus, for large the weighted average value, G, also increases 

slightly, which would stabilize the interface to slightly higher 

values. This effect, however, is small since for V^-V^ = 1 ym/s, the 

change in gradient is only about 0.1 K/mm. Thus, the maximum change 

in gradient was less than 3% in our experiments, so that the thermal 

effects can be readily ignored. 

The third factor observed was Vg-V^ small. When this was the 

case, the change in interface velocity with time was found to be a 

very slowly varying function, as seen in Figure 2, so that one would 

not expect a significant change in interface velocity during the time 

it took to form observable perturbations in the interface shape. 

However, the interface velocity was still changing so that the 

concentration gradient in liquid at the interface, G^, was not equal to 
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that for a steady-state interface growth at V^. This difference in 
"k 

at the interface could give rise to some deviation between and 

values. Smith et [11] have shown that when the velocity of the 

interface is suddenly increased, the concentration in the liquid and in 

the solid at the interface suddenly increases from the steady-state 

values of C^/K^ and C^, respectively, where is the average 

composition of the alloy. This increase occurs because the total mass 

of solute ahead of the planar interface decreases as the velocity is 

increased. Therefore, solute concentration in the solid must increase 

from its steady-state value of C^. The solute concentration in the 

liquid will first increase, then go through a maximum, and finally, 

decrease to its steady-state value of C^/K^. This variation in 

interface composition will change the value of in the transient 

regime. If C|^ is the concentration in the liquid at the interface when 

the interface velocity is Vj^, then the concentration gradient, G^ is 

given by 

or 

mG^ = (VyATyD)(KgYC^) , (6) 

and linear stability analysis shows the condition for the planar 

interface stability (Eq. 19) in the general literature review as 



118 

-G + mG i ̂ ^ ' V/2D ] - (r)k^ = 0 . (7) 
^ k - V/2D (1-K^) 

For low velocities and for = 0.1, the term in the large bracket 

will be nearly unity, so that one may estimate the change in critical 

velocity by substituting mG^ in place of mG^ for the dynamical 
• 

conditions. This will relate and Vy by the following equation: 

\ ' \ (K, C|_/C„) . (8) 

The actual determination of thus, requires the measurement of C|_. 

Experimentally, we have determined the displacement Ax of the 

interface, in a reference system attached to the interface, from its 
* 

steady-state position to its location at V|^ when the break up occurred. 

From this displacement, the change in interface temperature was 

calculated and the value of was then calculated from the phase 

diagram. This gave the relationship 

KoCL/C. = 1 - (K^GAx/m^C_) . (9) 

By substituting the above result in Eq. (8), and using the 

dimensionless velocity v, one obtains 

Vc = Vy [1 - (K^GAx/mLC^)] . (10) 
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For our experimental results, = 0.1, G = 3.76 K/mm, = -3.02 k/wt%, 
* 

= 0.15 wt%. Ax = 0.26 mm, and Vy = 0.84, we obtain 

Vg = 1.02 . (11) 

The theoretical value of from the modified supercooling criterion 

is given by = 1, and for the linear stability analysis of Mull ins 

and Sekerka [12] ,= 1.03. The experimentally determined value of 

is thus, very close to that predicted by the linear stability 

analysis. 

Another experiment was carried out for G = 3.82 k/mm and = 0.10 

wt% acetone in which a planar interface was established below V^. The 

velocity was then increased in steps of 0.05 ym/s, and at each velocity, 

a sufficient time was allowed to establish the steady-state condition. 

The planar interface was found to be stable at V = 1.55 ym/s, but it 

became unstable at V = 1.60 ym/s. This experimental value corresponds 

to Vjj = 0.87, and it will be close to the theoretical value of 

= 1.065 if dynamical effects, as described earlier, were taken into 

account. These experimental results thus, clearly establish the 

validity of the linear stability analysis in predicting the critical 

velocity for the planar-nonplanar bifurcation. 

For the experiments described in Figure 2 and a number of other 

experiments, the initial wavenumber of the perturbation was also 

determined. To eliminate the effect of grain boundaries, the wavenumbers 

were measured at interface locations far from any boundaries. The 
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variation in initial wavenumbers with velocity are shown in Figure 5. 

It was found that the wavenumbers increased with an increase in the 

velocity at which the instability was observed. The variation in the 

critical wavelength, with composition and thermal gradient is shown 

in Figures 6(a) and 6(b), respectively. The experimental value of the 

wavelength observed at Vy* is also shown in Figure 6(a) for comparison. 

The experimental value of the wavelength was found to be significantly 

smaller than that predicted by the linear stability analysis. The 

difference between the theoretical and experimental values is so large 

that it cannot be justified by the dynamical effects discussed 

previously. A more detailed discussion on the wavenumber selection is 

given in Section IV of this dissertation. 

Planar-Cellular Bifurcation 

The stability of a planar interface for finite amplitude 

perturbations was first examined by Wollkind and Segel [10]. Their 

results can be expressed by the Landau equation, valid in the immediate 

vicinity of the bifuraction, which is given by 

dAk o 
dtr= *o(k)Ak - *1*% • (12) 

The condition, a^ = 0, gives the bifurcation point, as predicted by the 

linear stability analysis. The parameter a^ is known as the Landau 

constant. From the Landau equation, it is predicted that a planar 

interface becomes unstable when dA^/dt > 0, so that it is possible to 

have an unstable planar interface if a^ < 0 and a-j < 0, such that 
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Figure 5. The variation in the initial wavenumbers of an unstable interface with the 
break up velocity Vj). The solid line is the marginal stability curve and 
the dotted line represents the wavelengths with maximum amplification rate 
as predicted by the linear stability analysis of a planar interface. 
Experimental results are for G = 4.28 K/mm and CQ = 0.35 wt.% acetone. The 
open circle value is for = 0.15 wt.% 
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dA^/dt > 0. This condition is known as the subcritical bifurcation. 

Subcritical bifurcation means that a planar interface will become 

unstable at v < if large amplitude perturbations are present. It 

also shows that for v > v^, there is no continuous transition from 

planarity to small amplitude deformations. Such a continuous transition 

would, however, be observed if a^ >0, a condition known as the 

supercritical bifurcation. For supercritical bifurcation, a planar 

interface is unstable only for v > v^. 

In order to examine the type of bifurcation that is present in 

the succinonitrile-acetone system, experiments were carried out in 

which a planar interface was first established at V < V^. The 

experimental conditions were as follows: G = 3.82 K/mm, = 0.10 wt% 

acetone and a steady-state planar interface was established at 

V = 0.5 ym/s. The external velocity was then increased in steps of 

0.75, 1.0 , 1.25, 1 .325, 1 .40, 1 .45, 1 .50, 1.55, and 1.60, and at each 

velocity, sufficient time was allowed to obtain a steady state. It was 

found that at V = 1.60 ym/s, the planar interface became unstable after 

4 minutes. When the first instability was observed, the sample was 

solidified for a long time until a steady-state cellular array was 

established. It was found that the amplitude of cells was quite large. 

The amplitude, thus, increased discontinuously at v just above v^. This 

indicates that the planar-to-cellular bifurcation is subcritical in the 

succinonitrile-acetone binary alloy system. For subcritical bifurcation, 

the large amplitude cells should also remain stable for v < v^,. 

Consequently, once the cell structure was established at v just above 
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Vç, the velocity was decreased slowly in steps. At each velocity, 

sufficient time was allowed for the cell amplitude to change. For some 

velocity range, v < the cell structure did not change to a planar 

interface, but remained stable with a slightly different amplitude. The 

variation in the amplitude with v > is shown in Figure 7. The cell 

structures up to v = had strong cusps, where is the subcritical 

velocity at which the amplitude dropped sharply, i.e., 1.0 ym/s. 

+ 
However, at v < v , the cusps disappeared and the amplitude decreased 

+ 
quite sharply. At the lower velocities, v < v , the sample was run for 

about 15 minutes at each velocity. This time was not sufficient for the 

small amplitudes to decay so that the actual behavior could be^more 

accurately indicated by the dotted line. A similar subcritical 

bifurcation has recently been reported by de Cheveigne et [13, 14] 

for the planar interface instability in an impure carbon tetrabromide 

system. 

Figure 8 shows the variation in wavelength with velocity. Note 

that the wavelength increased initially as the velocity was decreased. 

However, at V = 1.4 ym/s, a tip instability was observed which 

significantly reduced the wavelength. This tip-splitting continued 

until V = 1.3 ym/s. Below this velocity, the wavelength again increased 

as the velocity was decreased until V = 0.9 ym/s. This increase in 

wavelength occurred by the process of elimination of some of the cells. 

At V < 0.9 ym/s, the cusps were removed and the wavelength decreased 

by cell elimination until a planar interface was again established. 
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We shall now examine the nonlinear stability analysis of Wollkind 

and Segel [10] to see the condition for the existence of the subcritical 

bifurcation. Caroli et [15] have given the expansion for a^ under 

the condition of small velocities. For equal thermal conductivities 

of the solid and liquid, the sign of a^ can be determined from the 

relationship [15]: 

ai = (4KqATQD AS/YV)2/3 [(K/ + 4KQ - 2)/4K^] . (13) 

Since all the parameters in the first bracket on the right-hand side 

are positive, the sign of a^ will be determined by the value of the 

second bracket, which becomes negative when < 0.45. Since = 0.1 

in the succinonitrile-acetone system, this theory predicts the existence 

of subcritical bifurcation. In order to check the theory further, it 

would be desirable to study another solute in succinonitrile in 

which K > 0.45. The existence of a subcritical transition has also 
0 

been predicted by the numerical simulations of McFadden and Coriell [16] 

and Unger and Brown [17]. Unger and Brown [17] also predicted a 

second bifurcation close to the where the wavelength suddenly 

becomes half. Our experimental results show that at V = 1.3 ym/s, 

such a change in wavelength is observed (see Figure 8). 

Since our results indicated the presence of subcritical 

bifurcation, an experiment was carried out in which the sample was held 

close to, but just below V^, where a planar steady-state interface was 

established. For this experiment, the theoretical critical velocity 
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was 0.55 ym/s, and the experimental velocity was kept constant at 

0.50 ym/s where a planar interface was present. After about three 

hours at this velocity, a finite amplitude perturbation with large 

wavelength was observed. This perturbation could either be due to 

fluctuations over a long period of time or due to the cell being a 

finite width. However, when the amplitude of perturbation became 

large, the interface became unstable, as shown in Figure 9. The 

perturbation initiated at the low temperature part of the interface 

and then, propagated along the interface. Note that the leading part 

of the interface was always stable. 

One may examine this result by considering a very simple model 

which assumes that for long, large wavelength, the depressed part of 

the interface could be considered planar with little influence from 

the interface at a distance from it. At the location where the interface 

became unstable, the interface temperature was lower so that the 

equilibrium interface concentration was higher. By measuring the 

displacement. Ax, the temperature and the composition of the interface 

were calculated from the equilibrium phase diagram. By using a 

localized model, the critical velocity for this composition condition 

was calculated and was found to be 0.41 ym/s, which is slightly below 

the experimental imposed velocity of 0.5 ym/s. Therefore, instability 

of the interface was actually to be expected. This long wavelength 

interface perturbation was predicted by Sivashinsky [18]. 
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(b) 

Rtl 

(a) 

Figure 9. Long wavelength interface break up. Succinonitrile 
0.35 w/o acetone, G = 4.0 K/mm, V = 0.5 ym/s, (a) after 
3.6 hrs., (b) after 4.5 hrs., mag. = 57X 
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CONCLUSIONS 

Directional solidification experiments in the succinonitrile-

acetone system were carried out under conditions close to the critical 

conditions for the planar interface instability. It was found that 

the critical velocity of the interface agrees with that predicted by 

linear stability analysis. The initial wavenumbers of the unstable 

interface were significantly larger than those predicted by the linear 

stability analysis. The planar-to-cellular bifurcation was shown to 

be subcritical. Due to this large amplitude, perturbations were found 

to give rise to a nonplanar interface below the critical velocity. 
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SECTION II. PATTERN FORMATION: DYNAMIC STUDIES 
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INTRODUCTION 

The phenomenom of pattern formation in systems which are driven far 

from thermodynamic equilibrium has received an increasing amount of 

theoretical interest in a variety of scientific disciplines [1-8]. 

The places where pattern selection is of interest include advancing 

fronts of redox reactions in metaorites [1], muscle tissue [2, 3], 

supersonic jets [4], hydrodynamics of turbulent flow [5], and 

solidification in metallurgical systems [6-8]. The system that will be 

considered here is the directional solidification of a two-component 

alloy system. At low velocities, a planar sol id-liquid interface exists. 

As the velocity is increased above some critical value, V^, the planar 

interface becomes unstable and reorganizes into a periodic array of 

cells. If the velocity is increased further, a transformation from a 

cellular to a dendritic pattern occurs. 

When a planar interface is driven just beyond the critical 

velocity, experimental studies [9-14] show that the steady-state 

cellular structure which emerges has a definite wavelength and amplitude 

whose magnitudes depend on the value of the steady-state velocity. 

Theoretical models, based on the solvability condition, predict a 

discrete set of wavelengths [15]. The principle which selects a 

particular wavelength from a set of possible wavelengths is not yet 

established. It is generally found that the selection process occurs 

in a highly nonlinear manner [16], which allows the elimination or 

creation of cells to reach a final spacing. 
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The process of the evolution of a pattern to the final spacing is 

what will be studied here. The analysis of interface pattern formation 

is done by inspection of average amplitude and spacing development with 

time, and by spacial Fourier analysis of interface profiles observed 

at progressing times. 
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EXPERIMENTAL 

The alloys used for this study were succinonitrile 0.15 w/o acetone 

and pivalic acid 0.2 w/o ethanol. The compositions, the growth 

velocities, and the thermal gradients were carefully controlled and 

measured in each experimental run. Growth orientations were determined 

after the run by increasing the growth velocity into the dendrite growth 

regime. In the dendrite growth regime, the [001] direction is given 

by the dendrite tip growth direction. 

The onset of instability was induced by solidifying the sample at 

a subcritical velocity for several hours and then, increasing the 

velocity from a value just below the critical velocity to a value 

slightly above the critical velocity. Photomicrographs were taken 

with automatic photographic equipment at 30-second intervals for 

120 minutes. The general characteristics of the structures were 

observed and determined by direct measurements. Spacial Fourier 

transforms were obtained by digitizing the photomicrographs and 

inputting the data sets into a VAX computer for analysis. The data 

sets were smoothed with a 3-point center weighted smoother and the 

Fourier transform was then preformed using the complete transform. 

Smoothing of the Fourier transform was done for trend analysis. 
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RESULTS AND DISCUSSION 

The experimental results will be presented in two parts. The 

first section will present a general examination of the dynamical 

evolution of the steady-state cell spacings. The second part will 

examine the Fourier analysis spectrum produced. 

Cellular Spacing Evolution, General Characteristics 

Figure 1 shows the time-evolution of the interface profile in the 

succinonitrile-acetone system when an initially planar interface was 

subjected to V = 0.8 ym/s which is greater than V^. The initial 

cellular spacing was small (Figure 1(a)), but it increased with time by 

eliminating some cells such as those marked "E" in Figure 1(b). During 

the process of spacing adjustment, the system over-eliminated the 

cells, and thus, needed to decrease its spacing. This was achieved by 

the tip-splitting mechanism, indicated by "S" in Figure 1(c), which 

created additional cells and thus, reduced the spacing. These 

mechanisms of cell elimination and tip-splitting were also observed 

earlier by Jackson and Hunt [17]. 

The variations in the average cell spacing and cell amplitude with 

time are shown in Figure 2. Average cell spacing was measured at the 

leading front and the average amplitude was taken as the average 

distance between the cellular front and the base of the cells. The 

adjustment of the cell spacing, first by the cell elimination process 

and then by the tip-splitting process, is quite evident in this figure. 



Figure 1. A sequence of micrographs showing the time-evolution 
of a cellular structure in the succinonitrile -
0.15 wt.% acetone alloy directionally solidified 
at G = 3.76 K/mm and V = 0.8 ym/s: (a) 11 min., 
(b) 49.5 min., (c) 59.5 min., and (d) 74.5 min. 
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Figure 2. Variations in the average (a) cell spacing, and (b) cell 
amplitude with time. Alloy composition and 
solidification conditions are the same as in Figure 1 
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Note that the dynamics of the tip-splitting process again created more 

cells so that further cell-elimination occurred, as indicated by the 

second region "E" in Figure 2. These dynamic processes of cell-

elimination and tip-splitting caused a continuous adjustment of spacing 

even after long times. 

Often, one observes a nearly steady-state cell spacing in a given 

array, except at some locations where a specific cell will show an 

oscillating pattern. This occurs when the local spacing is only 

slightly larger than the steady-state spacing. In this case, the system 

attempts to lower the spacing by tip-splitting. However, the new 

spacing created by the additional cell is smaller than the steady-state 

spacing so that one of the cells gets eliminated, which again gives rise 

to a slightly larger spacing. Thus, the processes of tip-splitting 

and elimination continue giving rise to an oscillatory growth pattern 

for that cell, as shown by the letter 0 in Figure 1(d). 

Figure 2(b) shows the variation in amplitude with time. Initially, 

as the cell spacing increased by the cell-elimination process, the 

amplitude of cells also increased. The amplitude reached its final 

value and remained unaltered, while the spacing continued to adjust by 

tip-splitting and cell elimination. 

Figure 3 shows the dynamics of cellular array formation in the 

pivalic acid-ethanol system. In this system, we shall report the 

time-evolution of only those cellular arrays in which the growth 

direction of cells coincided with the heat flow direction for reasons 

that are discussed below. The initial evolution of the cellular array 



Figure 3. A sequence of micrographs showing the time-evolution of 
cellular structures in the pivalic acid - 0.2 wt.% 
ethanol alloy solidified at G = 2.98 K/mm and 
V = 0.5 ym/s. (a) 38 min., (b) 50 min., (c) 60 min., 
and (d) 125 min. 
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was very similar to that observed in the succinonitrile-acetone system, 

i.e., fine spacings observed initially coarsened with time by the 

cell-elimination process. However, no tip-splitting mechanism was 

observed in the pivalic acid-ethanol system. This is due to anisotropy 

of the interfacial energy and the interface kinetics effect which exist 

in this system [18]. These anisotropy effects make it difficult for 

the tip to split since it requires the tip orientation to deviate from 

the favorable growth orientation. In other words, the anisotropy 

effects stabilize the tip, and thereby, prevent the tip-splitting 

phenomenon. This observation is reflected in the variation in the 

average cell spacing and cell amplitude with time, shown in Figure 4. 

Both cell spacing and cell amplitude increased with time until they 

reached their steady-state values. 

The variation in the cell amplitude with time showed two plateaus. 

The first plateau occurred when the initial instability, observed at a 

few locations of the interface, propagated laterally until the entire 

interface became cellular, as seen in Figures 3(a) and 3(b). Once a 

uniform cellular pattern was formed, the amplitude of cells increased 

slightly as the cell elimination began. The amplitude then, remained 

nearly constant as the unstable cells were being eliminated gradually. 

Once the initial cell elimination process was completed, further 

elimination of cells occurred rapidly which caused the amplitude to 

increase sharply. This cell-elimination process continued until a 

steady-state cellular spacing was established. 
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Figure 4. Variation in (a) the average cell spacing, and (b) the 
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those given in Figure 3 
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In order to examine the manner in which the cell amplitude 

increased with time, we have measured the location of the cell 

tips as a function of time. The distance of the cell tips from 

an arbitrary point in a moving coordinate system (or as viewed under a 

microscope) was measured, and the results are shown in Figure 5. The 

tip location, after some initial change, reached a fixed value long 

before the amplitude reached its steady-state value. This indicated 

that a further increase in amplitude occurred by the deepening of the 

cells with time while the tip position remained essentially fixed. 

Analysis of Pattern Formation by Fourier Analysis 

The above analysis shows that the interface breaks up with a 

spacing smaller than the final steady-state spacing. It also shows that 

anisotropy stabilizes a given pattern once the pattern is formed. To 

give more insight into the dynamics of pattern selection, the Fourier 

transformed digitized interface patterns will now be examined. The 

Fourier analysis of pattern formation observed here will be presented 

in two parts. First, the results observed in the succinonitrile-acetone 

alloy will be presented, and second, the results from the pivalic 

acid-ethanol system will be presented. The reason for separating the 

two studies in this manner is to investigate the effect of anisotropic 

interface properties on cellular pattern formation. Since 

succinonitrile has much smaller anisotropy, it is examined first. 
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Pattern formation in the succinonitrile-acetone system 

The digitized interface patterns are shown in Figure 6. Spacial 

Fourier transforms of the digitized interface patterns are shown in 

Figure 7. The initial instability occurs with a peak at the wavenumber 

of 0.0708 ym~^ under the growth conditions stated. There is also a 

peak at the wavenumber 0.003 ym"\ but it is difficult to track since 

it is under the bias near the origin. This second peak corresponds to 

the long wavelength perturbation which can be seen in Figure 1(a). The 

existence of two characteristic wavenumbers for the initial instability 

of the interface was also discussed by Trivedi and Somboonsuk [19]. 

Since the low wavenumber peak disappears in the cellular growth region 

once the interface is uniformly perturbed, it will not be discussed 

further here. 

In general, the characteristics of the spectrum do not change 

significantly between 0 and 2 minutes, except that the peak at 

0.0708 ym~^ shifts to the left. This shift responds to the slight 

increase in spacing which occurs between the pair of perturbations 

shown in Figure 1(a). In addition to the shift, small peaks begin 

to appear at lower wavenumber values. A sharp change in the spectrum 

occurs between 2 and 3 minutes. It will be shown later that this time 

corresponds to the onset of nonlinear effect. 

Figure 7(b) shows the continued growth of the major peaks from 6 

to 10 minutes after the onset of instability. There is some shifting of 

the peaks, but generally, only peak growth is occurring. 
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Figure 8(a) shows the Fourier spectra for t = 0, 5, 10, 15, and 20 

minutes after the onset of interface instability. Two important 

observations can be made from this figure; (1) a finite number of 

peaks is observed, and (2) the peak which corresponds to the lowest 

wavenumbers begins, after time to amplify at the largest rate. 

Figure 8(b) shows the spectra after 50 minutes. Note that one peak is 

prominent, indicating that the pattern is approaching the steady-state 

wavelength. 

This analysis of the interface shapes gives insight into the 

dynamical nature of the pattern formation. The initial peak, which 

forms in the linear region, amplifies more slowly compared to the 

subsequent peaks which dominate in the nonlinear region. In order to 

examine the amplification rate of these various wavenumber peaks, the 

amplitude of particular wavenumbers was plotted as a function of time 

for three characteristic peaks, as shown in Figure 9. The three 

wavenumbers which were chosen represent the initial, intermediate, and 

final wavenumbers of the pattern. 

The initial peak, which corresponds to k = 0.0708 ym~\ shows 

a linear behavior up to about 2 minutes. After 2 minutes, sharply 

nonlinear behavior occurs. At later times, this peak begins to grow 

more slowly and other peaks become dominate. The intermediate peak 

(k = 0.0507 ym"^) grows at a slower rate than the peak at 0.0708 ym"^ 

initially, but then it competes with the final peak (k = 0.0199 ym"^) 

until about 20 minutes. The peak at k = 0.0199 ym"^ finally becomes 

predominate at about 20 minutes. The final peak has a significant 
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width (Figure 8(b)) which shows that the wavelength selection criterion 

is not extremely sharp. 

The pattern selection process can, therefore, be divided into 

linear and nonlinear regions. In the linear region, the k = 0.0708 ym~^ 

peak predominates. An increase in the growth rate peaks at lower 

wavenumbers occurs when nonlinear effects become important. In the 

early nonlinear region, several peaks coexist for a period of time. At 

longer times, the lowest wavenumber peak begins to amplify sharply 

and dominates. This rapid amplification occurs when nonlinear effects 

allow cell elimination, as shown in Figures 1 and 3, which causes the 

pattern to decrease the value of the dominate wavenumber. 

In these experiments, the initial instability was observed when 

the external velocity was changed from 0.7 to 0.8 um/s. In Section I, 

it was shown that the instability occurs before the planar interface 

reaches the imposed velocity. Since the instability occurs during the 

transient period, it is not possible to compare the initial wavenumber 

observed experimentally here with the results predicted by the linear 

stability analysis [7]. 

Pattern formation in the pivalic acid-ethanol system 

Figures 10(a) and 10(b) show computer reconstructions of the 

interface patterns observed in Figure 3. The first observation that is 

readily evident from these two figures is that the pattern which is 

formed is more regular than the pattern which was formed in succinonitrile-

acetone in Figure 1. From Figures 11-13, it can be seen that at times 
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between 0 and 25 minutes, the dominant wavenumber is k = 0.0774 ym"^. 

From 25 to 40 minutes, the dominate wavenumber is k = 0.0632 )jm"\ 

and for 60 to 100 minutes, k = 0.0556 ym"^ is the dominate wavenumber. 

The amplitudes of these three important wavenumbers have been plotted 

as a function of time in Figure 14. There are two important points 

shown in Figure 14. The first of these is the interaction of the three 

major wavenumbers, as discussed above. Here, as was the case for the 

succinonitrile-acetone system, the interface forms a pattern with 

wavenumbers higher than the final steady-state wavenumber. Over time, 

the interface adjusts to give one dominant wavenumber which amplifies 

faster than the other wavenumbers. This process was seen in Figures 10a 

and 10b. The result is a steady-state final wavenumber with a value much 

less than the initial dominant value. There is a transient region both 

for pivalic acid-ethanol and succinonitrile-acetone in which several 

wavenumbers are present. The final dominant wavenumber becomes 

prominant after some time. 

It is important to note that even in the transient period, specific 

wavenumbers exist. There is not a broad band of transient wavenumbers. 

Rather, a discrete set of wavenumbers exists in the transient region. 

This is true for pattern formation processes in both the succinonitrile-

acetone and pivalic acid-ethanol systems. 

The second point that can be seen in Figure 14 is the length of the 

linear growth region. It can be seen that the weakly nonlinear growth 

region persists until about 25-30 minutes after interface break up. As 

can be seen from Figure 10a, the onset of sharp nonlinearity occurs when 
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the interface is uniformly perturbed. Once the interface is fully 

perturbed, then nonlinear effects become important. 

As can be seen, the results for the pivalic acid-ethanol pattern 

formation are qualitatively very similar to those of succinonitrile. 

There are differences in the pattern formation processes, such as a 

longer length of a linear region in pivalic acid-ethanol, but the 

general characteristics in the two systems are very similar. Some of 

the other growth characteristics which are different between the two 

experimental systems studied here are discussed in subsequent sections 

of this work (see Sections IV and V). 
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CONCLUSIONS 

The process of planar interface break up and the dynamical changes in 

pattern formation which lead to the selection of a steady-state cellular 

wavenumber were investigated. The time-evolution of a steady-state 

interface pattern shows that wavenumber selection process occurs in the 

nonlinear growth region. The spacing and wavenumber formed in the 

linear region amplifies slowly in the nonlinear region. Therefore, it 

is overtaken by other peaks. In the nonlinear region, a discrete set 

of wavenumbers are observed which ultimately leads to selection of a 

unique wavenumber as steady-state is approached. The final peak in 

both experimental systems shows a significant width meaning that the 

wavelength selection criterion is not extremely strong. The patterns 

formed in the two experimental systems experience similar dynamics in 

the process of pattern selection. 

The effect of anisotropic interface properties on spacing 

adjustment shows that anisotropy does play a role in pattern selection. 

The Fourier analysis shows that anisotropy causes the linear growth 

region to be longer. In other respects, anisotropy did not play a 

major detectable role when the cell growth orientation was aligned 

with the [001] crystallographic orientation. In subsequent sections, 

anisotropy is shown to play a significant role when these two directions 

are not aligned. 
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SECTION III. CELLULAR SPACINGS: STEADY-STATE GROWTH 
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INTRODUCTION 

The instability of a planar interface and the subsequent 

reorganization of the interface shape into a periodic array of cells or 

dendrites are the key processes which characterize most microstructures 

of solidified alloys. Once the planar interface becomes unstable, the 

dynamic process leading to the evolution of a periodic array of cells 

is a nonlinear phenomenon [1, 2]. The theoretical criterion which 

determines the wavelength of such a periodic spatial structure has not 

yet been established. Furthermore, experimental studies in different 

systems have not yielded a consistent relationship between the steady-

state cellular array wavelength and the growth velocity. The major aim 

of this paper is to present detailed experimental studies to precisely 

characterize the velocity-dependence of the steady-state cellular 

wavelength. In subsequent papers [3, 4], the dynamic processes which 

lead to wavelength selection will be discussed. The theoretical models 

and the experimental results available in the literature on cellular 

spacing will now be discussed. 

Theoretical Models 

Theoretical models on cellular spacings have been developed mainly 

for steady-state growth conditions and these models have been based on 

the solution of the steady-state transport equations. 

There are three models for steady-state cell spacing: Hunt's 

model [5], Trivedi's model [6], and Kurz and Fisher's model [7]. 
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Hunt's model [5] considers the sides of a cell to be modeled by 

the Scheil equation. Since solidification is a free boundary problem, 

the cells select shapes which are dependent on the immediate growth 

environment. The cellular shapes that are formed experimentally are 

somewhat flat behind the tip, but the curvature increases in the tip 

region. Since modeling using the Scheil equation requires uniform 

concentration in the direction perpendicular to the growth direction. 

Hunt's model is not valid near the tip. Thus, Hunt proposes a sphere 

for the tip. The necessity of replacing the tip with a sphere can be 

seen when the two-dimensional diffusion problem in the region near 

the tip is considered. Two-dimensional diffusion is present wherever 

the interface is curved. Since the curvature is large near the tip, 

two-dimensional diffusion must be considered. 

Hunt's model [5] uses the radius equation of Burden and Hunt [8] 

to solve for the radius. As in all the models, the radius is not 

uniquely described unless a selection criterion is used. Hunt uses 

the principle of minimum tip undercooling as the principle by which 

the radius is selected. The solution for the primary spacing follows 

from the analysis after the radius is selected and is given by the 

following equation: 

= -(64YD/As)[m(l-KQ)C^ + K^GD/V] . (1) 

Trivedi [6] modified Hunt's model by imposing a parabolic shaped 

tip rather than a spherically shaped tip. Trivedi also used the 
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marginal stability criterion as the criterion by which a particular tip 

radius and consequent spacing were chosen from a family of possible 

radii. The marginal stability criterion uses the wavenumber selection 

criterion of Mull ins and Sekerka [9] at the point of neutral, or 

marginal, stability to determine the length of the wave, or radius, 

present under given conditions. The final spacing is given by 

Trivedi as 

A = (X/G/pKqAT^) (2) 

where 

A = 4/2 AL/pZ , (3) 

with 

A = yV/2ASDKqATQ (4) 

and L = 1/2(1+1)(l+2) in which 1 = 6 is the harmonic found to be 

operative for dendrite growth. The value of is determined by 

solving for the velocity at a given peclet number (p), and then, 

solving for the radius and subsequently, . It should be noted that 

this model is expressed by Trivedi [6] to be valid only in the region 

of the cell dendrite transition. 

Kurz and Fisher [7] modeled cells assuming the cell to be fully 

described as an eliptical shape. Using this assumption for the cell 

shape and the marginal stability criterion, Kurz and Fisher solve for 



166 

the primary spacing in the high and low velocity region. The equations 

are: 

C A T '  T  T  

For low velocity, = EGTMÇT ' (5) 

For high velocity, = 4.3AT'T/2(_Dr^_)l/4y-l/4g-l/2 ^ (g) 
0 0 

These three models are compared in Figure 1. As can be seen, all 

the models predict that the cell spacing will go to zero at the 

critical velocity. This is the case for all three models, since the 

radius of curvature, upon which is inversely dependent, goes to 

infinity when a flat interface is approached. In this chapter, it is 

shown that the cell spacing goes to infinity in just discontinuity 

at V, the critical velocity. 

Hunt's model predicts that the cell spacing first increases, then 

goes through a maximum and finally, decreases as the velocity is 

increased beyond the critical velocity, V^, for planar interface 

instability. The maximum in cellular spacing can be shown to occur at 

2Vc- Trivedi's model predicts the maximum in cell spacing to occur 

near the cell-dendrite transition velocity, which is approximately 

equal to V^/K^, with being the solute distribution coefficient. 

Kurz and Fisher's model is covered in relation to the length of the 

cellular region in the Results part of this section. 

More detailed theoretical models on steady-state cell spacings 

have been based on an analogy with the nonlocal models of dendritic 
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growth [10, 11] and with the analysis of viscous fingering in a Hele-shaw 

cell [12, 13]. These models show that the solvability condition is the 

key criterion by which the cellular wavelength is selected. By using 

this approach. Karma [14, 15] has developed a relationship which 

predicts the cellular and dendritic wavelength as a function of 

velocity. This relationship was derived for a specific phase diagram 

in which the solidus and the liqui dus lines were parallel, and the 

actual determination of spacing required numerical calculations. 

Nevertheless, the general qualitative picture that emerged from this 

analysis showed that the cellular spacing decreases with an increase in 

velocity. 

Experimental Studies 

Experimental measurements of cellular spacings have been carried 

out by a number of investigators [16-25], whose results appear to show 

contradictory behavior. One can classify these results into five 

different groups: 

(1) Venugopalan and Kirkaldy [18] reported that no steady-state 

cellular spacings were observed near in the succinonitrile-salol 

system. 

(2) Sharp and Hellawell [19] studied the variation in cell 

spacing with velocity in an Al-Cu system by changing the velocity in 

steps. They found that the cell spacing did not change appreciably as 

the velocity was increased near the critical velocity. 
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(3) By using the décantation technique, Rutter and Chalmers [20] 

and Tiller and Rutter [21] found that cell spacings decreased with an 

increase in velocity. A similar result was qualitatively reported by 

Jin and Purdy [22] in Fe-8 wt.% Ni alloys, de Cheveigne e;t [23, 24] 

and Venugopalan and Kirkaldy [18] studied the variation in cellular 

spacing with velocity in transparent organic systems, and they found a 

similar behavior at velocities larger than V^, although in a very low 

composition alloy Venugopalan and Kirkaldy [18] observed the cell 

spacing to increase initially and then, decrease with velocity. 

(4) Somboonsuk et [16], Mason et al_. [25, 26], and Esaka and 

Kurz [17] found cell spacing to increase with velocity near the cell-

dendrite transition velocity in the succinonitrile-acetone system. 

A similar variation in cell spacing was observed by Bechhoefer and 

Libchaber [27] in an impure pivalic acid system. Klaren et al_. [28] 

also observed a similar variation in the Pb-Au alloys. 

(5) Jamgotchian e;t [29] and Miyata et [30] reported that 

cellular, as well as dendritic spacings decreased with velocity. They, 

however, observed a sharp increase in spacing at the cell-dendrite 

transition. Similar results were obtained by McCartney and Hunt [31] 

who showed that the variation in cell and dendrite spacings with 

velocity were similar except that the dendrite spacings were higher 

than cell spacings. 

In order to precisely characterize the velocity dependence of the 

steady-state cellular spacing, detailed experimental studies on 

cellular spacings were carried out over the entire range of velocities 
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where cellular structures exist. These experiments were also extended 

to examine the higher velocities at which dendritic structures readily 

form so that the changes in spacing at and above the cell-dendrite 

transition could be characterized completely. Succinonitrile-acetone 

and pivalic acid-ethanol systems were selected for these experimental 

studies since they are optically transparent. The existence of 

steady-state growth conditions can, therefore, be ascertained readily. 

These experimental results were then compared with the existing 

theoretical models and also with previously reported experimental results 

in other systems. 
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EXPERIMENTAL 

Experimental studies were carried out on directional solidification 

equipment [32, 33] initially in the succinonitrile-acetone system since 

all the thermophysical properties of this system have been measured 

quite precisely [34]. Since the solid-liquid interfacial energy of 

succinonitrile is nearly isotropic [34, 35], experiments were also 

carried out in another system which exhibits significant anisotropy in 

the solid-liquid interfacial energy. For this purpose, the pivalic 

acid-ethanol system was chosen. Glicksman and Singh [35] have shown 

that pivalic acid has about 5% anisotropy in interfacial energy. 

Experiments shown later in Section V on cellular growth also show that 

a significant kinetic anisotropy was present in this system [4]. In 

order to compare the cellular spacing variation with velocity in 

succinonitrile-acetone and pivalic acid-ethanol systems, only those 

cells which grew along the heat flow direction were considered in this 

study. 

The experimental conditions used for the directional 

solidification runs on the two systems are summarized in Table 1. The 

compositions and temperature gradients were selected such that the 

critical velocities for the planar interface instability were about 

0.5 m/s for both the systems. In all these experiments, the initial 

velocity was first maintained at a constant value at which the planar 

interface was stable. The velocity was then increased rapidly to the 

desired value. The sample was solidified at this velocity for a 

sufficiently long time to ensure that steady-state conditions had been 
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Table 1. Conditions used for the directional solidification experiments 

Succinonitrile-acetone 
system 

Rivalic acid-ethanol 
system 

Solute content, wt.% 0.15, 0.35 0.076 

Temperature gradient, K/mm 3.76 2.98 

Initial velocity, ym/s 0.5 0.08 

Velocity range, ym/s 0.8 - 20.0 0.5 - 20.0 

established. This experimental approach is to be distinguished from 

the approach in which the velocity is increased continuously or in 

very small increments. This is an important consideration [3], which 

has generally been ignored, since these two types of approaches may 

yield an entirely different set of cell spacings at a given velocity 

[3, 28, 36]. 
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RESULTS 

Figure 2 illustrates the effect of velocity on the steady-state 

cellular structures in pivalic acid-0.076 wt.% ethanol system under a 

constant temperature gradient condition of 2.98 K/mm. As the velocity 

was increased above 0.5 ym/s, both the wavelength and the amplitude of 

the cells decreased. With further increase in velocity, the cellular 

spacing and amplitude increased sharply at some velocity, as seen in 

Figure 2c. After this sudden increase, the cell spacing again decreased 

gradually with an increase in velocity (Figure 2d). The variation in 

cell spacing with velocity is shown in Figure 3a. Similar results 

were also obtained in a.succinonitrile-0.35 wt.% acetone binary alloy 

system and these results are shown in Figure 3b. 

Figure 3 shows that both cellular and dendritic structures coexist 

within a finite band of velocities. In this region, when an 

experiment was repeated several times, cells were observed in some 

experiments and dendrites in other experiments. These cellular and 

dendritic structures were observed under identical experimental 

conditions, as shown in Figure 4. Frequently, cells and dendrites were 

observed to coexist in the same experiment, and these results are 

shown in Figure 5. For both these cases, the dendrite spacings were 

always larger than the cell spacings. A change in the shape of 

the tip was also observed as cells transformed to dendrites. 

Experiments were extended into the region where only dendritic 

structures were stable and Figure 6 shows such a dendritic structure in 
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Figure 2. Steady-state cellular structures observed in the 
pivalic acid - 0.76% ethanol alloy at growth 
velocities of (a) 0.5, (b) 1.0, (c) 3.0, and 
(d) 7.0 ym/s 
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Figure 3. Variation in the intercellular and interdendritic spacing 
with the growth velocity, (a) Pivalic acid - 0.076 wt.% 
ethanol system at G = 2.98 K/mm, (b) succinonitrile -
0.35 wt.% acetone system at G = 3.76 K/mm. The open 
circle data point is for succinonitrile - 0.15 wt.% 
acetone, and the arrow indicates a correction to 0.35 wt.% 
acetone by using the relationship X a where C 
is the solute concentration 



200 fjm 

G1 

Figure 4. Duplicated experimental runs showing (a) cellular and (b) dendritic 
structures observed in two different experimental runs conducted 
under identical conditions of V = 7.0 ym/s and 6 = 2.98 K/mm in the 
pivalic acid - 0.076 wt.% ethanol system 



Figure 5. Simultaneous occurrence of cellular and dendritic 
structures in the cell-dendrite transition regime: 
(a) pivalic acid - 0.076 wt.% ethanol alloy 
solidified at V = 5.0 ym/s, (b) succinonitrile -
0.35 wt.% acetone alloy solidified at V = 1.0 ym/s 
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Figure 6. Steady-state 
pivalic acid 

dendritic microstructure observed in the 
- 0.076 wt.% ethanol system at V = 20 ym/s 
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the pivalic acid-ethanol system at V = 20.0 ym/s. The dendrite 

spacings within the transition velocity band and at higher velocities 

were found to fall on one line, as shown in Figure 3a. 

In the pivalic acid - 0.076 wt% ethanol system, the critical 

velocity for the planar interface instability was estimated to be about 

0.5 ym/s for a temperature gradient of 2.98 K/mm. An experiment was 

carried out in which a steady-state run was first made at 0.25 ym/s 

to establish a planar interface. When the velocity was increased to 

0.5 ym/s, the interface reorganized into a periodic array of cells with 

a finite amplitude, as shown in Figure 2a. The existence of finite 

amplitude cells near the critical velocity indicates that the planar to 

nonplanar bifurcation in the pivalic acid-ethanol system is subcritical. 

Similar subcritical bifurcations have also been established in the 

succinonitrile-acetone system [2] and in the carbon tetrabromide-bromine 

system [23, 24]. 

Figure 3 plots the average cellular spacing with velocity. Since 

the mechanisms by which local cellular spacings adjust do not allow 

small changes in spacings, the selection of cell spacings is not very 

sharp. This weak spacing selection criterion is responsible for the 

long time needed to establish the steady-state profile, particularly 

near the threshold velocity for the planar interface instability. 

There is also a small but finite variance in the spacing at a given 

velocity even when steady-state growth conditions are attained after a 

long duration of the experiment. In order to study the distribution of 

spacings, a Fourier spectrum of the interface shape was calculated, and 
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the results are shown in Figure 7. A definite peak was obtained at a 

wavenumber of 0.063 ytn"\ and a small peak corresponding to the first 

harmonic was also observed. The width of the major peak was small, but 

finite. 



Figure 7. Analysis of the wave pattern of cells in pivalic 
acid - 0.076 wt.% ethanol. (a) The structure at 
V = 0.5 um/s, (b) the digitized interface 
structure, (c) spatial fast Fourier transform of 
the interface profile shown in (a) 
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DISCUSSION 

The variations in the cell and dendrite spacings will be discussed 

first, and second will be an examination of the reasons for the 

coexistence of cells and dendrites within a finite velocity band. 

Subsequently, the results will be compared with the existing 

theoretical models and with the available experimental results in other 

systems. 

Cell and Dendrite Spacings 

In view of the cell and dendrite spacing variation with velocity, 

shown in Figure 3, the experimental velocities studied in this paper 

will be divided into three parts: (1) the velocity range between 

and V^, where is the velocity at which a local minimum in the cell 

spacing was observed, (2) the velocity range between and where 

is the largest velocity at which a cellular structure was found to 

be stable, and (3) the velocity range above V^, where only dendritic 

structures were observed. 

Significant differences in cell characteristics were observed 

between the cells which formed below and those which formed above 

V^. Within the first velocity range, V = - V^, the spacing and the 

amplitude of the cells decreased with an increase in velocity. The 

amplitude of the cells was also of the same order of magnitude as the 

cell spacing. When the velocity was increased above V^, a significant 

increase in spacing and a very large increase in amplitude were 
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observed. In the velocity range above V^, the cell amplitudes were at 

least an order of magnitude larger than the cell spacings. The tip 

region, which was somewhat blunt below V^, became very sharp and assumed 

a nearly parabolic shape as the velocity was increased above V^. Such 

cells are sometimes called the dendritic cells. 

The second velocity range, between the velocities and V^, 

represents a range of velocities over which the cell-dendrite transition 

occurs. Several important observations were made in this region which 

give a clearer insight into the cell-dendrite transition phenomenon, 

(i) The cell-dendrite transition was not sharp, but it occurred over 

a range of velocities, (ii) Within this velocity band, either a stable 

cellular structure, or a stable dendritic structure, or a coexisting 

cellular and dendritic structure was observed for given experimental 

conditions. It was, therefore, concluded that two solutions for the 

steady-state growth problem exist in this region, one solution giving 

rise to a cellular structure, and the other to a dendritic structure, 

(iii) Above V^, the cellular spacing variation with velocity exhibited 

a maximum. The dendritic spacing, however, decreased continuously with 

velocity, (iv) A hysteresis effect was observed in the cell dendrite 

transition. A cellular structure, obtained just above V^, remained 

cellular as the velocity was increased. When the velocity exceeded V^, 

a cell to dendrite transition occurred. This dendritic structure then 

remained stable when the velocity was decreased. In succinonitrile-

acetone systems, the transition from dendrites to cells occurred 

slightly below V^. These results indicate that the cell-dendrite 
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bifurcation is subcritical. 

The general characteristics of the planar-cellular-dendritic 

transitions observed under directional solidification conditions can be 

represented by a bifurcation diagram shown in Figure 8. Subcritical 

bifurcation is observed for the^planar to cellular transition. The 

finite amplitude of cells at is then found to decrease as the 

velocity is increased up to V^. Above V^, a sharp increase in the 

amplitude occurs. At V^, subcritical bifurcation is again observed for 

the cell-dendrite transition. In addition, between and V^, two 

steady-state solutions yielding cellular and dendritic structures are 

shown to exist. Finally, above V^, only dendritic structures form for 

the velocity ranges examined in this work. 

The factors which are critical in determining whether a cellular 

or a dendritic structure would be present in the velocity region 

between and V^, where both these structures were found to be 

possible, will now be examined. The actual selection of a cellular 

or dendritic structure depends on the dynamical processes which are 

operative as the interface reorganizes into a steady-state pattern. 

Although the detailed dynamic studies will be presented in Section IV, 

the aspects which are germane to the cell or dendrite selection process 

are briefly discussed here. 

First, the process by which an unstable interface reorganizes 

into a cellular or a dendritic process will be examined. Figure 9 

illustrates the pattern evolution with time for conditions where only a 

dendritic structure is stable. The unstable planar interface first 
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Figure 8. A schematic diagram showing the subcritical bifurcations for 
planar to cellular and cellular to dendritic transitions 



Figure 9. Time evolution of solidification structures observed 
in the pivalic acid - 0.076 wt.% ethanol system at 
a constant growth rate of 7.0 ym/s. (a) t = 100 s, 
(b) t = 340 s, and (c) t = 1440 s 
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forms a cellular structure which then, transforms to a dendritic 

structure. The cellular spacing of the intermediate pattern is smaller 

than the final dendritic spacing so that some cell elimination is 

required for the transition from a cellular to a dendritic pattern. In 

the velocity range where both cellular and dendritic structures are 

possible, the difference in the cell and dendrite spacing is small. 

Consequently, once the interface forms a cellular array, it finds it 

difficult to increase the spacing of the entire array which is required 

for the formation of dendrites. Thus, in some cases, a cellular 

structure is retained. In other cases, a local change in spacing can 

be achieved by eliminating some cells, and a dendritic structure then, 

results in this area. Such coexisting structures are shown in Figures 

4 and 5. 

The dynamic studies on interface velocities, reported by Somboonsuk 

and Trivedi [36] and by Eshelman and Trivedi [2], have shown that when 

the external velocity is increased to a specific value, the interface 

velocity first overshoots and then, decreases to the value imposed by 

the external velocity. Consequently, during this velocity overshoot, 

some over-elimination of cells will occur which will increase the cell 

spacing sufficiently to form a dendritic structure. The difference 

in cell and dendrite amplitudes is small, whereas the difference in 

cell and dendrite spacing is more pronounced. A decrease in spacing 

is, therefore, required for a dendritic structure to transform to a 

cellular structure as the interface velocity decreases to match the 

external velocity. This spacing adjustment cannot be achieved 
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readily [3] so that dendritic structures will be retained. 

Comparison with Theoretical Models 

The first detailed model of cellular spacing, developed by Hunt [5], 

predicted that the cellular spacing would increase sharply from zero 

to a maximum as the velocity was increased from to 2V^. At higher 

velocities, the cell spacing decreased with velocity and no discontinuity 

in spacing was predicted at the cell dendrite transition. Kurz and 

Fisher [7] assumed the cell shape to be elliptical and derived a 

relationship between the cell spacing and velocity. Their model gave 

results which were similar to the results of Hunt's model [5], except 

that a large decrease in cell spacing was predicted as the velocity was 

increased to the cell-dendrite transition. The experimental results 

reported in this paper do not agree with either of the two above-

mentioned theories. 

The theoretical model of Hunt [5] was subsequently modified by 

Trivedi [6] for dendrite spacings only. This modified Hunt model 

predicted a maximum in spacing near the cell-dendrite transition. This 

prediction is consistent with our observations, although this theory 

assumes a parabolic tip, which is valid only for dendrites and for 

cells near the cell-dendrite transition. Recently, theoretical models 

for cellular growth have been proposed by Billia e;t [37] and Karma 

[14, 15]. Both these models use the mathematical models of viscous 

fingering to determine the shape of the cells which develop during the 

directional solidification of alloys. The model developed by Billia 
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[37] predicts a finite spacing near the critical velocity, V^, 

for the planar interface instability. However, the spacing is found 

to increase first, then go through a maximum and finally, decrease 

without any discontinuity at the cell-dendrite transition. These 

predictions are again not validated by our experimental results. 

Let us first examine the velocity region (AV) near the critical 

velocity for planar interface instability, in which the cellular spacing 

decreases with velocity. In this region, the model of Trivedi [6] 

cannot be applied since the shape of the cell tip deviates strongly from 

a parabola. In addition. Hunt's model [5] is based on the mass balance 

which uses the Scheil equation, to determine the cell shape far behind 

the cell front. In this model, the shape of the cell near the tip 

region was not determined, but was approximated as a sphere. However, 

Figures 2a and 2b show that the amplitude of cells is of the same order 

of magnitude as the wavelength so that the solute and thermal fields 

in the vicinity of the cell tip are critical in determining the cell 

spacing. Consequently, Hunt's model cannot be applied in this region. 

A more detailed model developed by Karma [15] takes the shape of the 

interface into account by using an analogy with the viscous 

fingering model. His model requires numerical calculations and it is 

proposed for a phase diagram which has a constant miscibility gap, i.e., 

parallel soli dus and liqui dus lines. Since the miscibility gaps in our 

systems are temperature-dependent, we cannot directly apply this 

theoretical model to study quantitatively the variation in spacing with 

velocity. Kama's model does, however, predict the spacing to decrease 
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with velocity in the velocity range close to V^, which is consistent 

with our observation. The experimental results show that the 

-0 5 spacing decreases as V ' , as shown by curve 3 in Figure 10. 

Figure 2 shows that the sharp increase in spacing that is observed 

experimentally can be correlated with a sharp change in cellular 

characteristics. The cell amplitude increases sharply and the ratio of 

amplitude to wavelength becomes very large. Furthermore, the cell tip 

approaches a parabolic shape. We may, therefore, apply the model 

developed by Trivedi [6] for V > V^. Curve 1 in Figure 10 shows the 

result of this model which agrees reasonably well with the experimentally 

observed variation of the cell spacing with velocity. 

The variation in dendrite spacing with velocity shows a linear 

relationship in Figure 10. If the marginal stability criterion for 

dendrite growth, proposed by the Langer and Muller-Krumbhaar model [1], 

is substituted in the spacing equation given by Trivedi, the theoretical 

results represented by curve 2 are obtained. These results agree 

remarkably well with our experimental observations. Thus, the 

interface structure, in a small velocity range, can either be cellular 

or dendritic depending on whether the tip dimension is affected by the 

thermal field or not. If both structures exist, the tip temperature 

should be higher for the dendrites than for the cells, in which case, 

the dendritic front will lead the cellular front by a very small 

distance. This is indeed observed experimentally (Figure 5). 
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Figure 10. Comparison of the theoretical model with the 
experimental data on primary spacing in the 
succinonitrile - 0.35 wt.% acetone system. Line 1 
is predicted by the general model of Trivedi [6]. 
Line 2 is the result of Trivedi's model when the 
Langer and Muller-Krumbhaar model of the stability 
criterion [1] for dendrite tip radius is used. 
Line 3 represents experimental results for which 
no satisfactory model is available 
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Comparison with Other Experimental Results 

The detailed experimental studies shown here show that the spacings 

decrease with velocity, except for a sharp increase near the cell-

dendrite transition in both the succinonitrile-acetone and the pivalic 

acid-ethanol systems. Such variations in spacings have also been 

found in a number of other systems, specifically in the Al-Tl system by 

Jamgotchian et [29], in the Al-Cu system by Billia et [37], and 

in the Al-Cu by Miyata e;t [30]. Cellular structures in metallic 

systems generally exist at very low velocities where thermosolutal 

convection effects become important. It is, therefore, necessary to 

examine experimental results in which convection effects were negligible. 

One such careful study was carried out by McCartney and Hunt [31] who 

showed that cell and dendrite spacings decrease with velocity except 

that the results for cells and dendrites could not be represented by 

the same line. In their experiments, a ternary alloy of Al-Si-Mg 

was designed in which the density driven convection effect was carefully 

eliminated. Although their results were given for different values of 

gradients, we have normalized their results by considering the spacing 

to vary as (using Hunt's model [5]). These normalized results 

are shown in Figure 11. These results also show that there is a range 

of velocities over which dendritic and cellular structures can be 

present. 

A number of experimental studies have been reported in the 

literature to characterize the variation in the cellular spacing with 

velocity, A decrease in cellular spacing with velocity was observed by 
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Figure 11. Variation in the primary spacing of cellular and 
dendritic structures with the growth rate in an Al-Si-Mg 
alloy. The data are taken from the work by McCartney 
and Hunt [31] and replotted by normalizing them to a 
constant temperature gradient of 3.0 K/mm 
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Rutter and Chalmers [20] and Tiller and Rutter [21] in the Pb-Sn 

system, Jin and Purdy [22] in the Fe-Ni system, de Cheveigne et [23, 

24] in the carbon tetrabromide-bromine system. Sharp and Hellawell [38] 

in the Al-Cu system, and Venugopalan and Kirkaldy [18] in the 

succinonitrile-solol systems. These experiments, however, were carried 

out only in the cellular region so that the increase in spacing, which 

would have occurred near the cell-dendrite transition, was not 

observed. 

The increase in cellular spacing with velocity was reported by 

Somboonsuk et [16] and Esaka and Kurz [17] in succinonitrile-acetone 

systems and by Bechhoefer and Libchaber [27] in an impure pivalic acid 

system. Similar results were also found by Klaren e;t [28] and 

Mason et [25, 26] in Pb-Au and Pb-Pd systems. All these studies 

were carried out near the cell-dendrite transition so that the observed 

increase in spacing is consistent with the observations reported in 

this paper. 

Venugopalan and Kirkaldy [18] reported that no steady-state 

cellular structure was observed near in the succinonitrile-solol 

system. However, detailed experimental studies in the succinonitrile-

acetone [2] and the carbon tetrabromide-bromine [23, 24] systems have 

clearly shown the existence of steady-state cellular spacings near V^. 

The time required to establish the steady state near was found to be 

quite long [2, 23, 24] and it appears that Venugopalan and Kirkaldy [18] 

did not carry out their experiments for times sufficient to establish 

the steady-state configuration. 
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Sharp and Hellawell [19, 38] observed that there was no appreciable 

change in spacing with velocity near V^, although spacings did decrease 

as the velocity was increased further. This observation of constant 

spacing with velocity is a dynamical effect which will be discussed in 

detail in Section IV. 

The various experimental results on cellular and dendritic 

spacings can now be explained in terms of a general variation shown in 

Figure 12. Two important parameters are AV and AX which are functions 

of the system parameters. As discussed by Kurz and Fisher [7], the 

value of V, i.e., - V^, depends on and can be given by 

AV = V^ (1-Kq)/Kq Kq < 1 . (7) 

In contrast, we still do not have a clear understanding of the parameters 

which control the magnitude of AX. 
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Figure 12. Schematic diagram showing the general variation in 
primary spacing with the growth velocity. AV 
represents the range of velocities in which steady-
state cellular structures develop. AA is the change 
in primary spacing which occurs near the cell-dendrite 
transition velocity 
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CONCLUSIONS 

Experimental studies were carried out in the succinonitrile-acetone 

and pivalic acid-ethanol systems to characterize the variation in cell 

and dendrite spacings with velocity. The entire velocity range, for 

which stable cellular structures exist, was investigated. Both systems 

showed similar behaviors when the cells were oriented in the heat flow 

direction. The cellular spacing was found to decrease with an increase 

in velocity above the critical velocity for the onset of planar 

interface instability. However, a sharp increase in cell spacing was 

observed at velocities close to the cell-dendrite transition. With 

further increase in velocity, the cell or dendrite spacing again 

decreased steadily. The increase in cellular spacing was correlated 

with the sharp increase in the amplitude of the cells and with the 

sharpening of the cell tips. 

Both cellular and dendritic structures were found to exist within 

a finite band of velocity. A small, but finite spectral width of 

cellular spacings was also observed and was attributed to the 

limitations of the dynamical processes which enable the cells to adjust 

their spacings. 

The initial decrease in cellular spacing with an increase in 

velocity, near the critical velocity for planar interface instability, 

was qualitatively explained by using the theoretical model of Karma. 

In this region, the shape of the cellular front and the thermal and 

solute fields near the tip region are shown to influence the spacing 
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significantly. A detailed quantitative model of cellular spacing in this 

region is not yet available, although recent theoretical developments, 

based on the viscous fingering model, appear to be encouraging. 

The sharp increase in cellular spacing with velocity near the 

cell-dendrite transition velocity and the subsequent decrease in 

cellular spacing with velocity were in reasonable agreement with the 

predictions of Trivedi's model [6]. Furthermore, when the temperature 

gradient effects on the tip radius were neglected, the theoretical 

spacing matched precisely with the observed dendrite spacing. It is, 

thus, concluded that within a narrow band of velocities, both cellular 

and dendritic structures can be stable. The development of a cellular 

or dendritic interface is a free boundary problem, and the interface 

would select the specific structure depending on the^ relative effects 

of the thermal and the solute fields on the tip radius. When the thermal 

effects on the tip radius are small, the interface assumes a dendritic 

structure with a slightly higher amplitude and a smaller tip radius. 

When the thermal effects on the tip radius are not negligible, a 

cellular structure with a slightly smaller amplitude and a larger tip 

radius is formed. A bifurcation diagram, which shows the existence of 

these two solutions in a finite velocity range, is proposed. 

Experimental results indicate that the cell-dendrite bifurcation is 

subcritical, although further experimental studies are required to 

quantitatively establish the cell-dendrite bifurcation. 
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SECTION IV. CELLULAR SPACINGS: DYNAMICAL STUDIES 
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INTRODUCTION 

Interface pattern formation during the directional solidification 

of alloys has recently received considerable theoretical attention 

[1-11]. In the directional solidification, a solid-liquid interface is 

driven externally at a constant velocity under fixed conditions of 

temperature gradient and composition. The interface shape undergoes a 

planar to cellular to dendritic transition as the velocity is increased. 

So far, only the critical velocity, V^, above which a planar interface 

becomes unstable, has been well-established. This critical velocity 

has been predicted by the linear stability analysis of Mull ins and 

Sekerka [12], and its validity has recently been confirmed by the 

experimental studies of Eshelman and Trivedi [13]. 

Once a solid-liquid interface is driven beyond V^, the unstable 

planar interface reorganizes into a periodic array of cells. The 

development of this periodic interface profile is a free boundary 

problem and experimentally, under given conditions, the interface has 

been found to assume a steady-state shape with definite amplitude and 

wavelength [14]. In contrast, theoretical models which neglect surface 

energy effects predict a continuum of possible wavelengths. 

Furthermore, when surface energy effects are taken into account, the 

microscopic solvability condition gives rise to a discrete set of 

possible wavelengths rather than a particular wavelength. Thus, the 

critical aspect that is not yet well understood is the principle which 

governs the selection of a definite wavelength of cellular patterns 
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under a given.set of experimental conditions. 

Experimental studies [15-17] have shown that the steady-state 

cellular wavelengths are always significantly larger than the fastest 

growing wavelengths predicted by the linear stability analysis. Trivedi 

and Somboonsuk [15] have carried out experimental studies to examine 

the dynamical changes in interface pattern formation. They have shown 

that the initial wavelength of an unstable planar interface is 

significantly smaller than the steady-state cellular wavelength which 

emerges after a sufficiently long time. This dynamical evolution of 

the steady-state wavelength occurs in a nonlinear regime [13] so that 

the linear stability analysis cannot be used to predict the steady-state 

cellular wavelength. The nonlinear analyses, however, predict multiple 

solutions. Until now, most of the theoretical approaches and 

experimental studies have been aimed at characterizing the steady-state 

cellular profile. Only a few experimental studies on the development 

of a periodic cellular structure during the transient period have been 

carried out [15-20]. Langer [2] has suggested that the key to the 

wavelength selection may lie in the dynamics of the pattern evolution, 

and it appears that such studies are now needed to provide an insight 

into the cellular wavelength selection principle. This paper, therefore, 

reports experimental studies on the dynamics of cellular wavelength 

selection. 

The dynamics of the cellular spacing evolution have been studied 

theoretically by Kerszberg [9-11] who has solved the nonlinear equation 

of motion by numerical techniques. This approach predicts periodic 
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steady-state cellular structures which resemble experimentally observed 

profiles. However, a range of steady-state spacings is obtained and 

the final spacing of the cellular array is found to depend on the 

initial profile assumed for the calculations. A unique spacing is 

observed only when a small, but finite white noise is imposed on the 

system. This noise is responsible for inducing the strongly nonlinear 

events which drive the profile to a unique wavelength by eliminating 

some cells or by creating new cells via tip-splitting [11, 19]. 

The theoretical model gives us some insight into the dynamics of 

the spacing selection process. However, a number of questions still 

remain unanswered. Kerszberg [10] has found that the solutions depended 

on the order of the expansion considered. Furthermore, the model 

assumes a phase diagram with a constant miscibility gap, i.e., parallel 

liquidus and soli dus lines. When a more realistic phase diagram with a 

temperature-dependent miscibility gap is considered, no stationary 

solutions were observed. In contrast, experimental studies described 

earlier [14] show unique stationary solutions for systems with 

temperature-dependent miscibility gaps. In addition, Kerszberg has 

predicted that the spacing will increase with increasing velocity. 

This is contrary to the experimental observations which show that the 

cellular spacing decreases with increasing velocity near the critical 

velocity for planar interface instability. 

In order to obtain a better understanding of the cellular array 

problem, some critical experimental studies are needed which can give 

clear insight into the dynamics of the spacing selection process. In 
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this section, such experimental studies will be reported, with an 

emphasis on the following aspects of the cellular growth: (1) the 

mechanisms of cellular spacing adjustment in the nonlinear regime of 

pattern evolution, (2) the effect of anisotropy in interface properties 

on the mechanism of wavelength selection, and (3) the response of the 

interface to both small and large changes in velocity. 
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EXPERIMENTAL 

Directional solidification studies were carried out in an 

apparatus which is previously described by Somboonsuk et £[_. [21] and 

Mason and Eshelman [22]. All the experimental variables, viz. 

velocity, temperature gradient and composition, were controlled and 

measured precisely [22, 23]. Two systems, based on succinonitrile and 

pivalic acid, were selected for this study. Both these materials have 

low entropy of fusion which causes the solid-liquid interface to move 

by the continuous growth mechanism [24]. Furthermore, both of these 

materials solidify with cubic structures for which the preferred growth 

direction is <100>. The major difference between these systems is in 

the anisotropy of interface properties. Glicksman and Singh [25] and 

Huang and Glicksman [26] have measured the anisotropy in surface energy 

for these systems, and they have shown that the surface energy, Y, can 

be expressed as 

Y/YQ = 1 + ^ cos 48 , (1) 

where Y^ is the surface energy of the (100) plane and 9 is the angle 

between the normal to a given orientation and the normal to the (100) 

plane. The anisotropy parameter, was reported to be 0,005 for 

succinonitrile and 0.05 for pivalic acid [27]. The factor of ten 

difference in the anisotropy coefficient should be sufficiently large 

to bring out the effect of anisotropy on the cellular morphology. 
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The presence of kinetic anisotropy in a given system can be 

studied by examining the direction of cell formation with respect to 

the heat flow direction. Coriell and Sekerka [28] have shown that the 

kinetic anisotropy does not affect the amplification rate of the 

perturbation on a planar interface. It does, however, translate the 

perturbation parallel to the interface. Consequently, if appreciable 

kinetic effects are present, a significant deviation in the cell shape 

will occur. In impure succinonitrile, a small deviation in the cell 

shape was observed by Heslot and Libchaber [20]. In order to examine 

the kinetic effect in the pivalic-acid ethanol system, we have carried 

out experiments on the formation of cellular structures. A significant 

displacement of cell tip region along the preferred crystallographic 

growth direction was observed, as shown in Figure 1. Careful 

examination of this figure also shows the definite presence of small 

faceted regions. Thus, kinetic anisotropy effects are quite significant 

in the pivalic acid-ethanol system. In order to obtain a meaningful 

comparison of the dynamical processes in the succinonitrile-acetone 

and pivalic acid-ethanol systems, only those cellular arrays which 

grew along the heat flow directions were considered in this study. 

Two sets of experimental studies were carried out. In the first 

set, the system was solidified at a velocity below the threshold 

velocity, V^, for the planar interface instability. Once the steady-

state planar growth was established, the system was driven at a velocity 

V > V^, and the time-dependent changes in the average spacing and the 

average amplitude were measured. These experiments were carried out 



Figure 1. Steady-state cellular microstructure obtained in the pivalic acid -
0.2 wt.% ethanol system at V = 0.5 pm/s. Anisotropy in growth 
kinetics causes the translation of the cell tips along the solid-
liquid interface and leads eventually to the growth of cells at an 
angle to the heat flow direction 
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for sufficiently long times during which steady-state cellular arrays 

were formed. The mechanisms by which the cellular spacings and 

amplitudes approached their steady-state values were then established. 

These experiments were carried out in both the succinonitrile-acetone 

and the pivalic acid-ethanol systems. 

In the second set of experiments, a steady-state cellular array was 

first established at a velocity just above V^. The velocity was then 

increased in small steps, and at each step, the system was allowed to 

solidify for 15 minutes. The response of the interface profile to 

these changes in velocity was then studied. The velocity of the system 

was then changed by larger steps to examine the dynamical changes in 

spacing which occurred when the system was subjected to larger 

perturbations. The compositions of the materials and the conditions 

used for these two sets of experiments are given in Table 1. 

In addition to the time-dependent changes in the average cellular 

spacing, the distribution of spacing for a given steady-state profile 

was also measured. A correlation was observed between the local 

spacing and the local amplitude of the cell. 
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Table 1. Summary of the experimental conditions and the compositions 
of the materials used 

Experiments Materials used Temperature Velocity 
gradient (ym/s) 

G(K/mm) 

Evolution of SCN - 0.15 wt% acetone 3.76 0.8 
cellular structure 
at constant PVA - 0.2 wt% ethanol 2.98 0.5 
velocity 

Interface dynamics PVA - 0.076 wt% ethanol 2.98 0.5-2.0 
with changes in 
velocity 

®SCN = succinonitrile; PVA = pivalic acid. 
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RESULTS AND DISCUSSION 

The experimental results will be presented and discussed in this 

section in two parts. First, will be consideration of the dynamical 

response of the cellular pattern to both small and large changes in 

growth conditions. Second, the relationship between the cell amplitude 

and cell spacing will be presented. 

Interface Dynamics with the Change in Velocity 

In this set of experiments, a steady-state cellular structure was 

first established in the pivalic acid-ethanol system at a velocity of 

0.5 ym/s which was just above V^. The velocity was then increased in 

steps of 0.1 ym/s and the system was directionally solidified for 

15 minutes at each velocity. The velocity-time cycle is shown in 

Figure 2. 

Previous experimental studies [14] show-that the steady-state 

cellular spacing in this alloy decreases with an increase in velocity 

in the velocity range of 0.5-1.5 ym/s. Since the tip-splitting 

mechanism which is required to decrease the spacing does not operate 

readily in anisotropic systems, it is important to examine the 

alternative mechanisms by which a reduction in the cell spacing occurs. 

This was achieved by examining the response of the interface to a 

gradual increase in velocity. The cellular spacings which were observed 

at the end of each step are shown in Figure 3. The steady-state 

spacings measured earlier [14] are superimposed on this figure to 
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Figure 2. The velocity-time cycles used for studying the dynamic 
changes in the cell spacing and cell morphology 
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Figure 3. Variation in the average cell spacing with velocity 
when the velocity was increased from 0.5 to 1.7 ym/s 
in steps of 0.1 ym/s. Steady-state cellular-dendritic 
spacings are also included in the figure for 
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provide a comparison between the steady state and the dynamical 

spacings of cellular structures. 

When the velocity was increased from 0.5 ym/s, no change in 

cellular spacing was observed up to the velocity of 1.1 ym/s. The 

interface shape, however, changed significantly, as shown in Figure 4. 

The amplitude of the cells increased with an increase in velocity and 

the cells became thinner. Furthermore, the cell tips became sharper 

causing the radius of the cell tip to decrease with velocity. This 

observation is similar to that reported by Somboonsuk and Trivedi [27] 

for the dynamics of dendrite growth. They showed that, when the 

velocity was increased, dendrite spacings did not change, but the 

dendrite tip radius rapidly changed to its steady-state value. Thus, 

the system was able to adjust locally in the tip region, but the 

spacing change, which requires long-range interactions, did not occur 

readily. 

As the velocity was increased from 1.1 to 1.4 ym/s, the cellular 

front became unstable. Two different regions of the interface followed 

two distinctly different paths to change the spacing. This bifurcation 

is shown in Figure 3. In one region (marked A), the spacing increased, 

whereas in the other region (marked B), the spacing decreased sharply. 

In the region where the cellular spacings decreased, B, the 

change in the spacing was initiated by a localized perturbation which 

then propagated along the interface. This local perturbation occurred 

at a specific cell whose local spacing was slightly larger than the 

average spacing. As the velocity was increased to 1.4 ym/s, this cell 



Figure 4. Cellular structures in pivalic acid, (a) Steady-
state cellular structure obtained at V = 0.5 ym/s. 
(b) Cellular structures obtained dynamically 
(after 15 min. of growth) at V = 1.1 ym/s. 
Pivalic acid - 0.076 wt.% ethanol system 
directionally solidified at G = 2.98 K/mm 
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transformed into a dendrite, as shown in Figure 5. The dendrite side 

arm rotated and became a cell (Figure 5b). As this new cell was 

created, the diffusion field interaction with the neighboring cell 

caused the neighboring cell tip to become nearly flat (Figure 5c). 

This flat region then became unstable, thereby creating an additional 

cell (Figure 5d). This process of cell creation and interaction with 

the neighboring cell propagated the instability along the interface 

(Figure 5e), until an array of cells with a finer spacing was formed 

(Figure 5f). Thus, the cellular array decreased its spacing by going 

through a cell-dendrite-cell transition. When the velocity was further 

increased in steps to 1.7 ym/s, the cell spacing approached the 

steady-state spacing. 

In the second region of the cellular structure. A, the cellular 

spacing increased sharply as the velocity was changed from 1.4 ym/s to 

1.5 ym/s. Here, the perturbation was nonlocalized. The entire 

cellular front first became unstable, as shown in Figure 6. Each 

alternate cell was eliminated and a doubling of spacing was observed. 

Thus, instead of decreasing the spacing to achieve the steady-state 

value, the system underwent a sharp increase in the spacing. It is 

interesting to note that the high-velocity branch of the steady-state 

cellular spacing, if extrapolated, will pass through the point 

representing the large spacing formed at V = 1.7 ym/s under dynamical 

conditions. Thus, the bifurcation in spacing, which was observed over 

the velocity range of 1.4 - 1.5 ym/s, appears to be the result of the 

system moving toward the stable steady-state and the metastable 



Figure 5. A sequence of micrographs showing the reduction in 
cell spacing through the cell-dendrite-cell transition. 
V = 1.4 ym/s, (a) 1 min., (b) 3 min., (c) 6 min., 
(d) 7 min., (e) 9 min., and (f) 15 min. 
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Figure 6. Time sequence of cellular structures when the velocity 
was changed from 1.4 to 1.5 ym/s, illustrating the 
rapid coarsening of the cellular structures: 
(a) 1 min., (b) 4 min., (c) 7 min., (d) 15 min. 
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Figure 7. Variation in dynamic cell spacing with velocity. The 
velocity was changed suddenly from 1.7 to 1.0 vim/s 
and then to 1.8 ym/s. Further changes in velocity 
from 1.8 to 2.9 ym/s were in steps of 0.1 ym/s. The 
relevant portion of the steady-state cellular spacings 
vs. velocity plot is included for comparison 
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steady-state cellular spacing values. 

Experimental studies, described above, clearly show that the 

cellular spacings do not respond quickly to the small changes in 

velocity. Further experiments were, therefore, carried out in which 

the velocity was changed significantly. The cellular structure, which 

was formed at a velocity of 1.7 ym/s, was first subjected to a sudden 

decrease in velocity from 1.7 to 1.0 ym/s and then, to a sudden 

increase in velocity from 1.0 to 1.8 ym/s. The cellular spacing was 

found to decrease sharply and approach the steady-state value, as the 

velocity was decreased from 1.7 to 1.0 ym/s and held at 1.0 ym/s for 

11 minutes (Figure 7). The velocity was then increased sharply from 

1.0 to 1.8 ym/s, and the cell spacing was found to increase to the 

steady-state value. Thus, a large change in the system, or a large 

noise, was found to drive the system toward the steady-state spacing 

quite rapidly. 

The mechanisms by which the cellular spacing decreased as the 

velocity was decreased from 1.7 to 1.0 ym/s were also studied. 

Specifically investigated was the response of the large cell spacing 

branch observed at 1.7 ym/s to a sharp decrease in velocity. As the 

velocity was decreased rapidly from 1.7 ym/s to 1.0 ym/s, the amplitude 

of the cells decreased and the radius of the cell tip increased 

sharply, as shown in Figures 8a and 8b. The cell fronts then became 

nearly planar and the amplitude of the cells became very small, even 

though no change in the spacing occurred (Figure 8c). These flat 

cells then became unstable, breaking up into a finer cellular array 
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Figure 8. A sequence of micrographs illustrating the cell-planar-cell 

transition when the velocity is suddenly decreased from 
1.7 to 1.0 ym/s and held at 1.0 ym/s for (a) 0 min., 
(b) 5 min., (c) 8 min., (d) 10 min., (e) 11 min. and 
(f) 15 min. after the change in velocity from 1.0 to 
1.8 ym/s 
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spacing (Figure 8e). Thus, the cellular spacing adjustment occurred 

by the system going through a cellular-planar-cellular transition. 

The velocity was now increased rapidly from 1.0 to 1.8 ym/s. Both 

the amplitude and the cell spacing increased to values which were 

characteristic of the steady-state condition, as seen in Figure 7. Thus, 

the system which was far from steady-state at V = 1.7 ym/s, achieved 

the steady-state configuration quite rapidly when it was subjected to 

a velocity-cycle of large magnitude, i.e., 1.7 -> 1.0 -> 1.8 ym/s. 

The experimental results presented so far clearly show that 

dynamical effects are very important in systems with significantly 

anisotropic interface properties. Reproducible steady-state spacings 

were observed only when the system was driven from V < directly to 

the required velocity. Once a cellular structure forms, a significant 

driving force or large noise in the system is required to establish 

steady-state configurations. Thus, the results of many experimental 

studies in which a correlation between microstructure and growth rate 

is determined by changing the velocity in small steps should be viewed 

with caution. 

Cell Spacing and Cell Amplitude 

The steady-state cellular profiles, described in [14], showed that 

both the spacing and the amplitude of cells decreased with an increase 

in velocity. Furthermore, the dynamical studies, presented here, 

showed that as the velocity was increased, no change in spacing occurred 

up to a certain velocity. Thus, the difference between the actual 
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spacing and the steady-state spacing became larger with the increase 

in velocity. This was accompanied by an increase in the amplitudes of 

the cells. These observations suggest that some correlation may exist 

between the cell spacing and the cell amplitude. 

In the previous section, it was shown that the cellular spacing 

selection criterion is not very sharp. A spatial Fourier transform 

gave a peak with a finite width. This indicated that the local cell 

spacing can deviate significantly from the average value. Therefore, 

the local cell spacing and the local cell amplitude (or the groove 

depth) were measured for the transient as well as the steady-state 

arrays of Figures 9c and 9d. The results, shown in Figure 10, clearly 

indicate that cellular amplitudes increased with an increase in 

cellular spacings. 

Previous studies in metallic systems on cellular spacing variation 

with distance behind the tip indicated that cellular spacings 

increased with an increase in the distance behind the tip [28]. From 

this observation, it was concluded that cells coarsened with time. 

No coarsening of cells was, however, observed in our experiments. The 

apparent increase in the cell spacing is the result of the spectrum of 

groove depths which develop due to the fluctuations in cellular 

spacings. If cellular spacings in successive sections were measured, 

one would indeed observe an increase in spacing when the section passes 

the smallest groove length. 



Figure 9. A sequence of micrographs showing the time-evolution 
of cellular structures in the pivalic acid - 0.2 wt.% 
ethanol alloy solidified at G = 2.98 K/mm and 
V = 0.5 ym/s: (a) 38 min., (b) 50 min., (c) 60 min., 
and (d) 125 min. 
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Figure 10. Relation between cell amplitude and cell spacing in the 
pivalic acid - 0.2 wt.% ethanol alloy, directionally 
solidified at V = 0.5 ym/s and G = 2.98 K/mm. 
A = steady-state morphology; o = transient morphology 
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CONCLUSIONS 

One of the major unresolved questions in the theory of cellular 

growth is the principle which governs the selection of a specific 

cellular spacing under given experimental conditions. Anisotropy was 

found to play a significant role in spacing selection. As shown in 

Section II, cell spacing adjustment in isotropic systems occurs by 

cell elimination and tip-splitting. Dynamical studies in an anisotropic 

system show that no tip-splitting occurs at the cell tip unless the 

cell tip loses its sharp curvature. Thus, the creation of additional 

cells requires the system to go through the cellular-dendritic-cellular 

or the cellular-planar-cellular transition. 

The spacing selection criterion in an anisotropic system has been 

found to be so weak that a cellular spacing formed at one velocity 

could be retained at significantly higher velocities. The amplitude 

and the radius, however, respond quickly to the changes in the velocity. 

These results indicate that the theoretical model to study the 

evolution of the steady-state spacing in anisotropic systems would be 

very complex and would require the presence of a very large noise which 

will allow the existing spacing to respond to the change. The shape of 

the cell front and the cell tip radius, however, respond quickly to the 

changes in growth conditions so that the tip shape and the tip radius 

selection criteria appears to be quite sharp. Furthermore, what 

happens near the tip region is found to play a key role in predicting 

the variation in the steady-state cellular spacing with velocity in the 
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cellular region close to V^. Thus, additional theoretical and 

experimental studies are needed to understand the development of cellular 

profiles near the tip region. 
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SECTION V. THE ROLE OF ANISOTROPY ON SOLIDIFYING MICROSTRUCTURES 
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INTRODUCTION 

When studying anisotropy and the role that it plays in 

solidification, it should be remembered that there are two kinds of 

anisotropy that may both be important. The two kinds of anisotropy are 

surface energy anisotropy, and anisotropy of interface solidification 

kinetics. Although these two may be related, they should be kept 

separate, both in mathematical modeling and in the consideration of 

the physics of solidification. 

Surface energy anisotropy, which was first discussed by Gibbs [1], 

arises from a crystallographic dependence of the surface energy Y. It 

was following this concept that the Wulff theorem and Wulff plots arose 

(see Figure 1). Later, Hoffman and Cahn [2] and Cahn and Hoffman [3] 

modified the original analysis of Gibbs in vector form. The result of 

this is that previously unexplained problems of equilibrium shapes, 

such as the problem of discontinuity of interface energies at corners, 

are fully explained. 

Surface energy anisotropy has, thus, been shown to give rise to 

deviations from a spherical shape in the case of equilibrium conditions 

for small solid spheres in a pool of liquid. Recently, Glicksman and 

Singh [4] have used the equilibrium shape concept to determine small 

surface energy anisotropics for succinonitrile and pivalic acid. 

The second kind of anisotropy which is present is interface 

kinetic anisotropy. This kind of anisotropy exhibits itself in the 

interface mobility term. Glicksman and Singh [4] claim that surface 
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Figure 1. Schematic diagram of the variation in 
interface energy as a function of 
orientation 
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energy anisotropy stabilizes the dendrite tip, whereas Cahn [5] has 

shown that interface kinetics can also stabilize perturbations on 

paraboloids, to which dendrites match quite closely. Therefore, 

interface kinetic anisotropy should not be overlooked as an explanation 

for dendrite tip stability. Dendrite tip stability will not be 

discussed further here. The subject was introduced to illustrate the 

roles played by the different kinds of anisotropy in interface growth 

structures. The effect of anisotropic interface properties on shapes 

of interface structures formed after interface break up will be 

discussed in this section. 

An additional theoretical prediction by Coriell and Sekerka [6] 

shows that while interface energy anisotropy contributes to a deviation 

from the shape observed in equilibrium conditions, interface kinetic 

anisotropy promotes wave translation during the growth of a perturbed 

planar interface. This translation effect is examined in the present 

work. From the theoretical work, it is not clear which kind of 

anisotropy is active, and when it is active. For this reason, 

critical experiments need to be done to clarify this problem and 

investigate the importance of anisotropic interface properties. 
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THEORY 

An extension of the work of Mullins and Sekerka [7] on linear 

stability of an interface which included interface anisotropy was first 

carried out by Coriell and Sekerka [6]. They include the two possible 

types of anisotropy, i.e., the surface energy anisotropy and the 

interface kinetic anisotropy. A brief review of Coriell and Sekerka's 

work will be given here since the anisotropics which they discuss are 

important to the interpretation of the experimental work which will 

follow. 

Coriell and Sekerka begin with the same basic assumptions that 

Mullins and Sekerka used with the exception of the inclusion of the two 

types of interface anisotropy mentioned. Their model considered 

variations in the surface energy and interface kinetic coefficients 

as a function of orientation in three dimensions. Since our 

experimental studies need to consider only one dimension along a 

surface, we shall simplify the model to the two-dimensional case. 

Furthermore, we shall assume constant liquidus and solidus slopes with 

the equilibrium partition coefficient equal to k and the slope of the 

liquidus equal to m. Coriell and Sekerka's model of planar interface 

instability is similar to that of Mullins and Sekerka, except that 

Coriell and Sekerka consider the effect of anisotropic kinetics on the 

interface. Coriell and Sekerka start with the same thermal and solute 

transport equations used by Mullins and Sekerka in the Theories of 

Pattern Formation Section of this Dissertation. The boundary 
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conditions are modified, and are as follows. 

At the interface (1) 

C31 = K„C, . (2) 

The velocity, v, of the perturbed interface is related to the imposed 

velocity, V, of the unperturbed interface by the following: 

V = V + 0W/9t) , (3) 

where W is the shape of the perturbed interface. The velocity, v, is 

obtained from the thermal and solute flux balance at the interface: 

V = (kg/LyifBTg/Bz), - (k^/L^)0TL/9z)j (4) 

and 

V = -D(3C/ 3Z);/C;-Cs; . (5) 

The major difference between Mull ins and Sekerka's model and 

Coriell and Sekerka's model is in the description of the temperature 

field along the interface. The local equilibrium condition of Mull ins 

and Sekerka's model is relaxed by Coriell and Sekerka, and they 

consider the velocity to be proportional to the deviation from 
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equilibrium. Coriell and Sekerka [6] consider a general form for the 

velocity as: 

V = nVT^j. C,. W^. W,,) (6) 

where 

Te = Tm + ""=1 " ''«1 + ' (?) 

and subscript x denotes partial differentiation with respect x, and 

K is the curvature. 

The function f is expanded about the unperturbed values to give: 

" ' fCTeo-TuiO'Clo] * "TlTer^LIl* * "cCl, + N"X "xx"xx ' 

where MJ = 3f/3(Tg - T^j), = 9f/8Cj, = 9f/3W^, and y^^ = Sf/aW^x 

where partial derivatives are evaluated in the unperturbed state. The 

y^ function is an interface kinetic anisotropy term. The first term on 

the right-hand side is equal to the unperturbed velocity, V. 

Using these equations and boundary conditions, Coriell and 

Sekerka [6] obtain solutions for the interface shape and position by 

Fourier transformation and integration. The result is that for a 

perturbation of the form cosfk^x), the solution is given by 

W(x,t) = cos(k^x+ 2jSjt)exp(2jS|^t) (9) 
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or 

W(x,t) = cos{k^[x + 2J(k)(yj^/u^)t]}exp[2J(k)S[^t] , (10) 

where k* u/n ? 
S„(k ) = [-G + mG / - - n h 

^ ^ k - (1 -KQ)V/D ^  

- [rk%^(^xx/Y) - KxVvt 

+ (%^)( . '' 'V/0 )] (11) 
k - (1 -KQ)V/D 

with 

and 

k* = (V/2D)  +  [ (V/2D)2  +  k2]T/2 (12)  

J(k) = Vk/{(Gg-GL)Cl+2KQk/L^y^] 

+ 2kG^[ni+u^/ii^]/[k*-(l-KQ)V/D] . (13) 

h = W^T • (14) 

In Eq. (11), there are three main terms. The first of these 

main terms corresponds to Mull ins and Sekerka's results. The second 

term contains three subterms. The first of these subterms corresponds 

to the surface energy anisotropy, the second corresponds to the 

interface mobility, and the third corresponds to the change in the 
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thermal gradient due to the anisotropy effect. 

As can be seen, the amplitude of the perturbation is governed by 

the function 2J(k)S^t, where the subscripts R and I denote the real 

and imaginary components, respectively. The amplitude is controlled by 

the real part only. It also can be seen that an imaginary, or 

travelling wave component will be present when Sj f 0. This is an 

interesting result because it predicts that it is possible for the 

perturbations to travel down the interface. The velocity of the 

travelling wave is given by: 

In different terms, the initial perturbation will have a phase 

velocity which is inclined to the unperturbed interface normal by an 

angle 0. The angle 0 is given by 

Note that this is an experimentally measurable quantity. Such 

measurements are made in this chapter. It is possible to measure 0 and 

in turn, estimate y^. Although the value of 0 is measurable, it must 

be remembered that the conditions for which the analyses were done are 

conditions of linearity. This makes the measurement truly valid only 

at very small amplitudes. The linear stability analysis breaks down 

v^ = (-2jy^/y^) = [-2J(k)y^/y^] (15) 

0 = arctan [v^/V] . ( 16 )  
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when slopes of the order of 12-15 [8] degrees from a planar interface 

are present. Even though this is so, measurements still should offer 

some rough estimate for the interface kinetic anisotropy parameter, 

which up to now has been completely elusive. 

The interface energy anisotropy also plays a role in interface 

stability, according to Coriell and Sekerka [6]. The degree to which 

the anisotropy affects stability is given by a parameter which 

is: 

Q(k^) = k/tï . . (17) 

The interface is most unstable where Q(k^) is a minimum. This q(k^) 

term only plays a role at the point of instability. Once the interface 

has established a pattern, the growth rate of the pattern and the 

translation of the pattern are not affected by the surface energy 

anisotropy, according to Coriell and Sekerka [6]. 
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EXPERIMENTAL 

The material solidified in these experiments was pivalic acid 

0.2 wt.% ethanol. In the experimental runs, the critical velocity was 

approximately 0.2 ym/s. The runs were, therefore, started at 0.1 ym/s 

for a period of several hours. The velocity was then increased to 

0.2 ym/s for about half an hour. In this short time, the interface 

remained planar. The velocity was then increased to the final velocity 

of 0.5 ym/s, where interface break up and subsequent reorganization 

into a cellular pattern was observed. 

The occurrence of break up was recorded photographically. 

Exposures were taken at 30 second intervals for 125 minutes. 
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RESULTS 

The break up of a planar interface of different materials is shown 

in Figures 2(a) and 2(b). Figure 2(a) shows break up in the 

succinonitrile-acetone binary system. Figure 2(b) shows break up of a 

planar interface in the pivalic acid-ethanol binary system. The primary 

difference between succinonitrile and pivalic acid which concerns 

solidification properties is the interface anisotropy properties. 

Succinonitrile has been shown [4] to have a surface energy anisotropy 

an order of magnitude lower than pivalic acid. This difference in 

anisotropy can be observed in Figure 2(b) where the cells are growing 

slightly asymmetrically. Whereas both Figures 2(a) and 2(b) have cells 

which have crystallographic directions nearly identical, only pivalic 

acid grows with cells which are asymmetric. This is because heat 

flow controls the cellular growth for succinonitrile, but both heat 

flow and crystallography are important to cellular growth of pivalic 

acid. 

The development through time of the asymmetry of the cellular 

growth is shown in Figure 3 and plotted in Figure 4. The angle given 

was calculated by measuring the motion of the cell tips as a function 

of time during the break-up process. Studying the angle as a function 

of time shows that the growth starts out in the direction of heat flow 

and then, turns toward the [001] growth direction. The anisotropic 

growth velocity, defined as v^/V, was between 17% and 25% of the 

growth velocity V. 
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( a )  

200fim' 

(b )  

Figure 2. Interface patterns just after planar interface break up in 
pivalic acid 0.2 w/o ethanol, G = 2.98 K/mm, V = 0.5 ym/s. 
(a) [001] crystallographic orientation aligned with the 
heat flow direction; (b) [001] crystallographic 
orientation is at 25° to the heat flow direction 
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Figure 3. Growth angle 0 = v%/V as a function of time for growing 
perturbations in pivalic acid 0.2 w/o ethanol, G = 2,98 K/mm, 
V = 0.5 ym/s 
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( C )  

Figure 4. Interface pattern formation after planar interface break 
up. Times are (a) 13 minutes, (b) 16 minutes, and 
(c) 20 minutes after planar interface break up 
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In order to determine the [001] growth direction precisely, the 

velocity was increased at the end of the experimental run to form 

dendrites as shown in Figure 5. The dendrites form on the leading tip 

of the cells, and there is a one-to-one correspondence between the 

cellular and dendritic spacings. Careful inspection of Figure 5 shows 

that there are several initial perturbations on the opposite side of 

the cell where the dendrite does not form. These perturbations which 

did not form dendrites are in the [Oil] direction. The respective 

growth angles are given in Figure 5. It is interesting to notice that 

the [Oil] perturbations do not form dendrites even though they are 

more closely aligned to the heat flow direction and therefore, should 

have more favorable growth conditions than the [001] direction, which 

actually does form the dendrites. The angle between the heat flow and 

the [001] direction is 25 degrees. The angle between the heat flow and 

the [Oil] direction is 20 degrees. 



Figure 5. The planar to cellular transition in pivalic acid 0.2 w/o ethanol, 
G = 2.98 K/mm, V = 0.5 ym/s 
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DISCUSSION 

From Figures 2(a) and 2(b), it is clear that anisotropy is 

important to the process of interface break up, or pattern formation, 

from the point of instability onward. Even the very small 

perturbations can be seen to be misshaped. Since the structures in 

Figure 2 are dynamic growth structures, the misshapen nature of the 

structures is due to difference in growth rates for different 

orientations. This means that the anisotropy responsible for the 

asymmetry is interface kinetic anisotropy. 

The degree to which the kinetic anisotropy is affecting the growth 

as a function of time following break up can be obtained from Figure 3. 

This plot shows that the velocity component parallel to the interface 

(V^ = -(2jp^/uy) increases as a function of time after break up. This 

was generally the case for the wave growth velocities plotted. In a 

few cases, particularly for those waves which formed before the bulk 

of the interface broke up, the parallel velocity component at early 

times was higher than the final value. In these cases, the parallel 

velocity component decreases with time to the steady-state value. The 

reason for this discrepancy is that those cells which form while the 

bulk of the interface is still stable, grow without being inhibited 

by other cells. They grow more like isolated cells. The cells which 

form later as a group are constrained by other cells in the growth array. 

From the value of the growth angle, the velocity component parallel 

to the interface, and the value of could be approximated if j(k) 
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was first specified. This is not yet possible because j(k) contains 

several poorly established parameters. The importance of the 

is that it affects the growth velocities and growth shapes. 

The fact that the dendrite growth direction picks a direction not 

favored by the heat flow, as shown in Figure 5, shows the importance of 

growth orientation on dendritic growth. It would be valuable to study 

the cell-dendrite transition as a function of concentration in other 

transparent metal analog systems to see when, or if, the dendrites 

change their growth orientation from the [001] growth direction to 

some other direction. A solution to this problem would be valuable 

for directionally grown material where orientation is important to some 

material property. 

The shapes of the steady-state cells are shown in Figure 6. 

Examining the shapes of the cells closely, and knowing the [001] growth 

direction (from Figure 5), the two facets seen in Figure 6 were 

determined to be type (111) and type (Oil) growth planes. The type 

(111) plane is on the front of the cell, and the type (Oil) plane is 

on the side of the cell. 

Figure 4(c) is a photomicrograph from the competitive growth 

region. Examining the figure reveals that facets exist on many of the 

larger cell structures. Knowing the crystallography from Figure 5, 

the crystallographic planes on each of the facets can be determined. 

This has been done in Figure 7. The facets that were observed are of 

types (111), (112), (Oil), and (001). These facets are marked where 

they were observed in Figure 4(c). 



200^m 

ro tn 

Figure 6. Steady-state cells 
G = 2.98 K/mm, V = 

showing facets in pivalic acid 0.2 w/o ethanol, 
0.5 ym/s 
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Early Growth Forms 
Heat Flow 
Direction 

Steady- State Growth 
Heat Flow. , 
Direction [001] Growth 

^ Direction 

Facet Types 
® 001 
(2) on 

Figure 7. Schematic diagram of faceted cells showing growth 
planes. The cells here are the prominent cells 
shown in Figure 4c 
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The presence of the facets in Figures 6 and 7 and their relative 

sizes give some approximation of the degree of anisotropy which exists 

in the kinetic anisotropy parameter at different orientations. This 

also shows which orientations contain strong anisotropy variations 

with a variation in crystallography. If a schematic kinetic anisotropy 

versus orientation plot is constructed from the orientations and 

relative sizes of the facets seen in Figures 6 and 7, the plot shown 

in Figure 8 results. 
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Orientation 

Figure 8. Schematic diagram of the orientation 
dependence of the kinetic anisotropy 
coefficient 
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CONCLUSIONS 

Interface anisotropy affects both cell shape and cell growth 

velocities. Anisotropy introduces a velocity component for growth 

which is parallel to a perturbed directionally growing interface. 

This parallel velocity component was measured in the pivalic acid-

ethanol alloy system and found to be 21% + 4% of the growth velocity 

at velocities near the critical planar interface velocity. This 

velocity component is for cells that have a crystallographic 

orientation 25 degrees off of the heat flow direction. 

In addition, cells were seen to facet along (001), (Oil), (111), 

and (112) type planes during interface break up. Dendrites were also 

shown to prefer a nonfavored growth direction due to their 

crystallography during the cell-dendrite transition. 
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GENERAL SUMMARY 

In summary, there are a number of important conclusions which can 

be drawn from the critical experiments done in this work. From the 

work done on the critical velocity measurements at which planar interface 

breaks up, it was shown that the velocity predicted by Mull ins and 

Sekerka's linear stability analysis [2] gives a value very close to 

the value observed experimentally. This is true even in systems where 

the nonlinear effect of subcritical bifurcation is present. The 

commercial importance of these findings is that Mull ins and Sekerka's 

estimate of the true critical velocity can be used for single crystal 

growth. The commercial importance of the existence of subcritical 

bifurcation, which exists where < 0.45, is that a perturbed 

interface will continue to be perturbed far below V^. It is, therefore, 

important to keep the growth velocity substantially below where 

subcritical bifurcation is present because regaining a planar interface 

is difficult once it is perturbed. 

While the critical velocity for break up of a planar interface is 

accurately given by Mull ins and Sekerka's linear stability analysis [2], 

the wavenumbers observed at initial break up are three to four times 

smaller than predicted. The reason for the discrepancy is still unknown. 

A second major conclusion that can be drawn from the study of 

pattern formation. It was observed in the study of pattern formation 

that the interface breaks up into wavenumbers that are larger than the 

steady-state values. The interface then goes into a region where a set 
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of discrete wavenumbers are present. There is, in fact, a dominant 

transition wavenumber which is present. Following the transition 

region, a wavenumber corresponding to the steady-state wavenumbers is 

established. The key points from this analysis are (a) the pattern 

formation process is not entirely chaotic. There is instead, a 

transition region which exists which has several wavenumbers present, 

(b) The interface is stabilized by surface anisotropy properties. 

A third major conclusion comes from the study of steady-state 

cellular spacings. It was found there that none of the existing 

models of cellular growth accurately predict the decrease, increase, 

and subsequent decrease with spacing that occurs as the velocity is 

increased. The cell model of Trivedi [62] does, however, give a good 

estimate of the maximum spacing observed just prior to the cell-dendrite 

transition. There is, therefore, a need for a theoretical model to be 

developed which can describe the entire cell growth region. The study 

done here clarifies the current confusion in the literature which 

exists in the area of cell spacing trends as the velocity is increased. 

This work clarifies the cell growth region which is important 

commercially in determining material properties. 

A fourth conclusion that comes from the dynamic studies of cell 

spacings is that care must be taken when doing cell spacing 

measurements because dynamics are important to the observed spacings. 

This is especially true for systems which contain considerable 

anisotropy in interface properties. 
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A fifth conclusion which comes from the work on anisotropy during 

and following pattern formation is that anisotropy is important to the 

growth structures observed. Cells will show facets during the pattern 

formation process and even in the steady state. These cells will 

also translate down a growing steady-state interface. The translation 

velocity in the pivalic acid-ethanol system studied was 21% of the 

growth velocity. 

Work is required to establish anisotropy parameters. This work is 

of interest commercially because one could then calculate the velocity 

of growing facets along an interface during in situ growth in metals. 

This could be an important factor in single crystal or slowly grown 

commercial materials. 

This work helped solve some fundamental questions in material 

science such as modes of bifurcation present, the accuracy of linear 

stability analysis of planar interface break up, and the general nature 

of pattern selection. But, work clearly still remains in the areas of 

pattern formation modeling, cell-dendrite bifurcation modes, and 

establishing the role of anisotropy in growth structures. 
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