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Multiphase phase field theory for temperature- and stress-induced phase transformations
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Thermodynamic Ginzburg-Landau potential for temperature- and stress-induced phase transformations (PTs)
between n phases is developed. It describes each of the PTs with a single order parameter without an explicit
constraint equation, which allows one to use an analytical solution to calibrate each interface energy, width, and
mobility; reproduces the desired PT criteria via instability conditions; introduces interface stresses; and allows
for a controlling presence of the third phase at the interface between the two other phases. A finite-element
approach is developed and utilized to solve the problem of nanostructure formation for multivariant martensitic
PTs. Results are in a quantitative agreement with the experiment. The developed approach is applicable to various
PTs between multiple solid and liquid phases and grain evolution and can be extended for diffusive, electric, and
magnetic PTs.
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I. INTRODUCTION

One of the unresolved problems of the phase field approach
(PFA) for PTs is a noncontradictory description of PTs
between an arbitrary number of phases. One of the directions is
related to the description of PTs between the austenite (A) and
any of the n martensitic variants Mi and between martensitic
variants. [1] It is described with the help of n independent order
parameters ηi , each for every A ↔ Mi . This approach was
significantly elaborated in Refs. [2,3] by imposing additional
physical requirements to the Landau potential. In particular,
the desired PT conditions for A ↔ Mi and Mj ↔ Mi PTs
follow from the material instability conditions. Also, the
thermodynamically equilibrium transformation strain tensor
is stress- and temperature-independent, as in crystallographic
theories. Each order parameter ηi encodes variation of atomic
configuration along the A ↔ Mi transformation path; it is
equal to 0 for A and 1 for Mi . In Refs. [2,3] and here ηi is
unambiguously related to transformation strain through some
polynomial [see Eqs. (3) and (8)].

This theory was generalized for large strain and lattice
rotations, [4,5] and interface stresses consistent with a sharp
interface approach have been introduced for A-Mi inter-
faces. [5–7] However, the description of Mi-Mj is still not
satisfactory. The A ↔ Mi PT is described by a single order
parameter ηi , and analytic solutions for ηi for nonequilibrium
interfaces [3,5–7] allow one to calibrate interface energy,
width, and mobility, as well as the temperature dependence of
the stress-strain curve. At the same time, at a Mi-Mj interface
ηi and ηj vary independently along some transformation path
in the ηi − ηj plane connecting Mi (ηi = 1 and ηj = 0) and
Mj (ηi = 0 and ηj = 1); see Fig. 1.

The interface energy, width, and mobility have an unre-
alistic dependence on temperature, stresses, and a number
of material parameters which cannot be determined analyti-
cally. Consequently, one cannot prescribe the desired Mi-Mj
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interface parameters, and the expression for Mi-Mj interface
stresses cannot be strictly derived [5,6].

Other n-phase approaches are based on introducing n + 1
order parameters ηi obeying constraint

∑
ηi = 1, similar to

concentrations [8–10,13]. The idea is that each of the PTs
should be described by a single order parameter; then interface
parameters can be calibrated with the help of the analytical
solution. However, a single constraint cannot ensure this, and,
in general, an undesired in this community third phase often
appears at the interface between two phases. PT criteria in
terms of instability conditions are not considered. In Ref. [10]
special conditions are imposed for a three-phase system that
guarantee that the third phase can never appear at the interface
between two phases. This created some artifacts in the theory
(e.g., the necessity of equal kinetic coefficients for all PTs).
All homogeneous phases are stable or metastable independent
of the driving force (temperature); i.e., thermodynamic insta-
bility, which is the source of the PT criteria, is impossible.
On the other hand, for different materials and conditions, the
third phase is observed in experiments [11] and conditions
when it is present or not are found within more advanced
models [12]. Some drawbacks of imposing constraint with the
help of Lagrangian multipliers are presented and overcame
in Ref. [13]. However, again, instability conditions were not
discussed in Ref. [13]. All of our attempts to formulate a
theory with constraint to find polynomials (up to the tenth
degree) in order to reproduce the proper PT criteria (which are
known from two-phase treatment) from the thermodynamic
instability conditions have been unsuccessful. This led us to
the conclusion that utilizing constraint

∑
ηi = 1 prevents a

noncontradictory formulation of the PFA.
PFA in Ref. [3] is based on a potential in hyperspherical

order parameters, in which one of the phases, O (e.g., A or
melt), is at the center of the sphere, and all others, Pi (e.g.,
Mi or solid phases), are located at the sphere. Hyperspherical
order parameters represent a radius ϒ in the order-parameter
space and the angles between radius vector ϒϒϒ and the axes ηi

corresponding to Pi .
Due to some problems found in Ref. [14], the nonlinear con-

straint for the hyperspherical order parameters was substituted
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(a) (b)

FIG. 1. (Color online) (a) Energy level plot of the free energy at zero stresses for A1 + 3�Gθ
1 = 1000, A1 − 3�Gθ

1 = 400, A2 + 3�Gθ
2 =

230, A2 − 3�Gθ
2 = 2570, Ā + A1(θ ) + 3�Gθ

1 = −250, and A21(θ ) − 3Gθ
21 = 150, all in J/m3. Gi are the points of the local minimaxes. (b)

The zoomed part of the plot near P1.

with the linear constraint of the type
∑

ηi = 1, which, how-
ever, does not include A or melt [12,14]. For three phases, when
constraint is explicitly eliminated, the theory in Refs. [3,12,14]
is completely consistent with the two-phase theory and
produces proper PT criteria. However, due to the constraint, for
more than three phases, these theories cannot produce correct
PT criteria. Thus, noncontradictory PFA for more than three
phases or two martensitic variants is currently lacking.

In this paper, we develop PFA, which with high and
controllable accuracy satisfy all the desired conditions for
arbitrary n phases. We utilize the same order parameters ηi like
for martensitic PT and, instead of explicit constraints, include
in the simplest potential the terms that penalize the deviation
of the trajectory in the order parameter space from the straight
lines connecting each two phases. These penalizing terms do
not contribute to the instability conditions and the correct PT
criteria strictly follow from the instability conditions for O↔Pi

PT only. However, when the magnitude of the penalizing term
grows to infinity and imposes the strict constraint ηi + ηj = 1
and ηk = 0 for all k �= i,j , correct PT conditions for Pi ↔Pj

PTs do follow from the instability conditions, because for a
finite magnitude such a constraint is applied approximately
only, there is some deviation from the ideal equilibrium
phases and PT conditions. However, numerical simulations for
the almost worst cases demonstrate that these deviations are
indeed negligible. This PFA allows for an analytical solution
for the interfaces between each of the two phases, which can
be used to calibrate interface width, energy, and mobility; it
allows for the first time for a multiphase system to include a
consistent expression for interface stresses for each interface;
it includes or excludes the third phase within the interface
between the two phases based on thermodynamic and kinetic
considerations similar to those in Ref. [12].

We designate contractions of tensors AAA = {Aij } and BBB =
{Bji} over one and two indices as AAA···BBB = {Aij Bjk} and
AAA:::BBB = Aij Bji , respectively. The subscript s means sym-
metrization, the superscript T designates transposition, the
sub- and superscripts e, th, and t mean elastic, thermal, and

transformational strains, III is the unit tensor, and ∇∇∇ and ∇∇∇0 are
the gradient operators in the deformed and undeformed states.

II. GENERAL MODEL

A. Model for n order parameters

For simplicity and compactness, the small strains will be
considered but with some minimal geometric nonlinearities
required to introduce interface stresses [5–7]. Generalization
for large strain is straightforward, [4,5] and the model problem
will be solved in large strain formulation. The Helmholtz free
energy ψ per unit undeformed volume has the following form:

ψ = ρ0

ρt

ψe(εεεe,ηi,θ ) + ρ0

ρ
ψ̆θ + ψ̃θ + ρ0

ρ
ψ∇ + ψp, (1)

ψ̆θ =
∑

Ai(θ )η2
i (1 − ηi)

2 +
∑

Āij η
2
i η2

j , (2)

ψ̃θ =
∑

�Gθ
i (θ )q(ηi); q(ηi) = η2

i (3 − 2ηi), (3)

ψp =
∑

Kij (ηi + ηj − 1)2ηl
iη

l
j +

∑
Kijkη

2
i η

2
j η

2
k, l � 2,

(4)

ψe = 0.5εεεe:::EEE(ηi):::εεεe, EEE(ηi) = EEE0 +
∑

(EEEi − EEE0)q(ηi),

(5)

ψ∇ =
∑

0.5βij∇∇∇ηi · ∇∇∇ηj , (6)

εεε = (∇∇∇0uuu)s = εεεe + εεεt + εεεθ ,
ρ0

ρ
= 1 + εv,

εv = εεε:::III ,
ρ0

ρt

= 1 + (εεεt + εεεθ ):::III , (7)

εεεt =
∑

εεεtiq(ηi), εεεθ = εεεθ0 +
∑

(εεεθi − εεεθ0)q(ηi). (8)
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Here θ is the temperature, uuu is the displacements, εεε is the strain
tensor, �Gθ

i is the difference in the thermal energy between
Pi and O, Ai and Āij are the double-well barriers between
Pi and O and between Pi and Pj , ρ, ρ0, and ρt are the mass
densities in the deformed, undeformed, and stress-free states,
respectively, βij are the gradient energy coefficients, and each
coefficient, Kij , Āij , and Kijk , is equal to zero if two subscripts
coincide. Despite small strain approximation, we keep some
geometrically nonlinear terms (ρ0/ρt , ρ0/ρ, and gradient ∇∇∇
with respect to deformed state) in order to correctly reproduce
interface and elastic stresses [5–7].

The application of the thermodynamic laws and linear
kinetics (see, e.g., Refs. [5–7]) results in

σσσ = σσσ e + σσσ st , σσσ e = ρ

ρ0

∂ψe

∂εεεe

, (9)

σσσ st = (ψ∇ + ψ̆θ )III −
∑

βij∇∇∇ηi ⊗ ∇∇∇ηj , (10)

η̇i =
∑

LijXj =
∑

Lij

[
σσσ e:::

∂(εεεt + εεεθ )

∂ηj

− ∂ψ

∂ηj

+
∑

βjk∇∇∇2ηk

]
, Lij = Lji, (11)

where Xi is the thermodynamic driving force to change ηi ,
Lij are the kinetic coefficients, and σσσ is the true Cauchy stress
tensor. We designate the set of the order parameters η̂0 =
(0, . . . ,0) for O and η̂i = (0, . . . ,ηi = 1, . . . ,0) for Pi . It is
easy to check that O and Pi are homogeneous solutions of
the Ginzburg-Landau equations (11) for arbitrary stresses and
temperature; consequently, the transformation strain and for
any PT and elastic moduli are independent of stresses and
temperature [2–4].

Without the term ψp, the local part of free energy is much
simpler than in Refs. [2,3] and does not contain complex
interaction between phases. The terms with Kijk penalize the
presence of the three phases at the same material point. By
increasing Kijk one can control and, in particular, completely
exclude the third phase within the interface between the
two other phases. For homogeneous states, this term always
excludes the presence of the three phases at the same point,
because it increases energy compared with a two-phase state.
The terms with Kij penalize deviations from hyperplanes
ηk = 0 and ηi + ηj = 1, and exponent l determines relative
weight of these penalties. In combination with the penalization
of more than two phases, this constraint penalizes deviation
from the desirable transformation paths: along coordinate lines
ηi along which O↔Pi PTs occur, and lines ηi + ηj = 1,
ηk = 0 ∀k �= i,j , along which Pi ↔Pj PTs occur. In such
a way, we do not need to impose the explicit constraint∑

ηi = 1 and will be able to (approximately) satisfy all desired
conditions, including instability conditions. Note that there is
no need for penalizing ηi = 0; however, for l = 0 the term
with Kij produces an undesired contribution to ψ for ηi = 0.

B. Thermodynamic instability conditions

For compactness, instability conditions will be presented
for the case with the same elastic moduli of all phases and
ρ0 � ρ. Since ∂Xi(η̂k)/∂ηj = 0, instability conditions for

thermodynamically equilibrium homogeneous phases result
in the following PT criteria:

O → Pi : ∂Xi(η̂0)/∂ηi � 0 → σσσ e:::(εεεti + εεεθi − εεεθ0)

−�Gθ
i � Ai(θ )/3, (12)

Pi → O : ∂Xi(η̂i)/∂ηi � 0 → σσσ e:::(εεεti + εεεθi − εεεθ0)

−�Gθ
i � −Ai(θ )/3, (13)

Pj → Pi : ∂Xi(η̂j )/∂ηi � 0 → σσσ e:::(εεεti + εεεθi − εεεθ0)

−�Gθ
i � (Ai(θ ) + Ā)/3 ⇒ wrong. (14)

While conditions for O↔Pi PTs are logical (work of stress
on jump in transformation and thermal strains exceeds some
threshold), the condition for Pj → Pi does not contain
information about phase Pj , which is contradictory even at
zero stresses. Since first and second derivatives of ψp are
zero for O and Pi , ψp does not change phase equilibrium and
instability conditions for homogeneous phases. However, as
we will see below, it plays a key role in the development of
noncontradictory and flexible PFA.

C. O ↔ Pi phase transformations

If O↔ Pi PT is considered only with all other ηj = 0,
Eqs. (2)–(6) simplify to

ψ̆θ = Ai(θ )η2
i (1 − ηi)

2, ψ̃θ = �Gθ
i (θ )q(ηi),

(15)
ψp = 0, ψ∇ = 0.5βii∇∇∇ηi · ∇∇∇ηi,

EEE(ηi) = EEE0 + (EEEi − EEE0)q(ηi), εεεt = εεεtiq(ηi),

εεεθ = εεεθ0 + (εεεθi − εεεθ0)q(ηi), (16)

σσσ st = (ψ∇ + ψ̆θ )III − βii∇∇∇ηi ⊗ ∇∇∇ηi, (17)

η̇i = Lii

[
σσσ e:::(εεεti + εεεθi − εεεθ0)

dq

dηi

− ∂ψ

∂ηi

+ βii∇∇∇2ηi

]
. (18)

These equations possess all desired properties [2–4] of two-
phase models.

D. Pj ↔ Pi phase transformations

Next, we consider how to make the description of Pj →
Pi PTs completely similar to that of O↔ Pi PTs. Let us
increase parameters Kij and Kijk to very high values so
that they impose constraints ηi + ηj = 1 and ηk = 0 ∀k �= i,j .
Substituting these constraints in Eq. (1) and taking into account
the following properties of function q, q(1 − ηi) = 1 − q(ηi)
(which is crucial for our PFA), we reduce all equations to the
single order parameter:

ψ̆θ = Aij (θ )η2
i (1 − ηi)

2, Aij = Ai + Aj + Āij , (19)

ψ̃θ = �Gθ
j + �Gθ

ij (θ )q(ηi), �Gθ
ij = �Gθ

i − �Gθ
j , (20)

EEE = EEEj + (EEEi − EEEj )q(ηi), (21)
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ψ∇ = 0.5bij∇∇∇ηi · ∇∇∇ηi, bij = βii + βjj − 2βij , (22)

εεεt = εεεtj + (εεεti − εεεtj )q(ηi), εεεθ = εεεθj + (εεεθi − εεεθj )q(ηi),

(23)

σσσ st = (ψ∇ + ψ̆θ )III − bij∇∇∇ηi ⊗ ∇∇∇ηi,
(24)

lij = (LiiLjj − L2
ij )/(Ljj + Lij ),

η̇i = lij

[
σσσ e:::(εεεti + εεεθi − εεεtj − εεεθj )

dq

dηi

− ∂ψ

∂ηi

+ bij∇∇∇2ηi

]
,

(25)

Pj → Pi , ∂Xi(η̂j )/∂ηi � 0 → σσσ e:::(εεεti + εεεθi − εεεtj − εεεθj )

−�Gθ
ij � Aij (θ )/3. (26)

It is evident that Eqs. (19)–(26) for Pj → Pi PTs are
noncontradictory (i.e., contain an expected combination of
parameters of Pj and Pi) and coincide to within constants
and designations with Eqs. (15)–(18) for O↔ Pi PTs; i.e.,
they are as good as the equations for O↔ Pi PTs. Thus, our
goal is achieved.

E. Energy landscape and P j ↔ Pi instability conditions
for finite Ki j

Note that instability condition (26) works in the limit Kij →
∞; for finite Kij it is imposed approximately only. To better
understand the interaction between instability conditions (14)
and (26), we consider some examples. We consider the case
when PT conditions for O↔ Pi PTs [(12) and (13)] and for
Pj → Pi PT (26) are not met, but when the wrong condi-
tion (14) is fulfilled with quite large deviation from the stability
region. Under such conditions, Pj loses its stability, but instead
of transforming to Pi , the local energy minimum slightly shifts
from η1 = 1, η2 = 0 to a close point η1 = 0.989, η2 = 0.019
(Fig. 1). There is an energy barrier (saddle point) between
Pj and Pi , and until it disappears [i.e., correct condition (26)
for Pj → Pi PT is met], Pj → Pi PT is impossible. Thus,
an approximate character of the imposed constraint through
the penalty term exhibits itself in a slight shift of the local
minimum from Pj to some very close point, which should
essentially not affect the accuracy of the simulations.

If PT conditions for O↔ Pi PTs (13) and (14) are not
fulfilled but the correct condition (26) for Pj → Pi PT is met,
then these equations result in Ā < 0. It is easy to show that in
this case the wrong Pj → Pi PT condition (14) should be also
fulfilled. Thus, if the correct Pj → Pi PT condition is met, this
PT will occur.

III. PARAMETER IDENTIFICATION

Due to equivalence of all equations for O↔ Pi and Pj →
Pi PTs, the analytical solution for a propagating with velocity
c interface is [8]

η = 0.5 tanh[3(x − ct)/δ] + 0.5, δ =
√

18β/Ai(θ ),

c = Lδ�Gθ (θ ), γ = β/δ, (27)

where δ and γ are the interface width and energy. In contrast
to solutions for other interpolating functions q [5–7], interface
width and energy are independent of �Gθ (θ ). That is why ψ̆θ

and interface stresses σσσ st are also independent of �Gθ (θ ). All
material parameters for each bulk phase can be determined
based on thermodynamic, experimental, and atomistic data as
was done, e.g., in Refs. [2,3] for NiAl. Equations (27) allow
calibration for each pair of phases the three interface-related
parameters Ai(θ ), β, and L when width, energy, and mobility
of interfaces between each pair of phases are known.

The obtained system of equations has been solved with the
help of the finite element code COMSOL for various problems.
Here we solved exactly the same problem on the evolution of
two-variant nanostructure in a NiAl alloy during martensitic
PT including tip bending and splitting in martensitic variants
as in Ref. [14]. Note that the theory in Ref. [14] for two
variants satisfies all required conditions exactly but cannot
be generalized for more than two variants. Some material
parameters [like EEE,εεεti , �Gθ (θ ), θe, �s] here have been chosen
the same as in Ref. [14]; other [Aij (θ ), βij (θ ), Lij , θc] are
chosen to get the temperature dependence of the energy, width,
and mobility of all interfaces, and temperature for the loss of
stability of P like in Ref. [14]. Note that all thermodynamic
properties of martensitic variants M1 and M2 are the same;
they differ by the transformation strain only.

We have the following definition of parameters: �Gθ
1 =

�Gθ
2 = −�s(θ − θe), where �s = si − s0 is the jump in

entropy between phases Mi and A, and θe is the thermodynamic
equilibrium temperature for phases Ti and A. We express the
coefficients A1(θ ) = A2(θ ) = A∗(θ − θ∗). Here parameter A∗
and the characteristic temperature θ∗ are related to the critical
temperatures for barrierless A → Pi (θ0i

c ) and Pi → A (θ i0
c )

PTs by the equations θ01
c := (A∗θ∗ − 3�sθe)/(A∗ − 3�s) and

θ10
c := (A∗θ∗ + 3�sθe)/(A∗ + 3�s), which follow from the

thermodynamic instability conditions.
In the current simulation we used the following values:

�s = −1.467M Pa K−1, θe = 215 K, θ01
c = −183 K, θ10

c =
−331.65 K, θ∗ = −245.75 K, A∗ = 28M Pa K−1, β01 =
β02 = 5.31 × 10−10 N, β12 = 5.64 × 10−10 N, L0i = L12 =
2596.5 m2/N s. These parameters correspond to a twin inter-
face energy EP1P2

= 0.543 J/m2 and width �P1P2
= 0.645 nm.

Isotropic linear elasticity was utilized for simplicity; bulk
modulus K = 112.8 G Pa and shear modulus μ = 65.1 G Pa.
In the two-dimensional plane stress problems, only P1 and P2

are considered. The components of the transformation strains
were UUUt1 = (k1,k2,k2) and UUUt2 = (k2,k1,k2) with k1 = 1.15
and k2 = 0.93 corresponding to the NiAl alloy in Ref. [15].
In addition, Kijk = 0 and two values of K12 = 1.5 × 1012 and
K12 = 7.25 × 1013 J/m3 have been used. All lengths, stresses,
and times are given in units of nm, GPa, and ps, respectively.
All external stresses are normal to the deformed surface.

IV. EVOLUTION OF MARTENSITIC NANOSTRUCTURE

A. Numerical procedure

We used Lagrange quadratic triangular elements with five to
six elements per interface width to achieve a mesh-independent
solution; see Ref. [16]. This resulted in 165 601 mesh points
and 329 760 elements with 1 982 883 degrees of freedom.
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FIG. 2. (Color online) Initial conditions (a) and stationary solution for two-variant martensitic nanostructure exhibiting bending and splitting
martensitic tips based on the current theory (b) and theory in Ref. [14] (c); experimental nanostructure from [15] (d). Green is for austenite,
blue and red are for martensitic variants P1 and P2.

Adaptive mesh generation was utilized. The time-dependent
equations were solved using the segregated time-dependent
solver and backward Euler integration technique [17] for
250 ps. Integration time steps were chosen automatically such
that a relative tolerance of 0.001 and absolute tolerance of
0.0001 are held.

B. Nanostructure

Because numerous alternative solutions exist, one has to
carefully choose the initial conditions. We did this using the
following steps. An initial random distribution of the order
parameters η1 and η2 in the range [0.4; 0.8] were prescribed in
a square sample sized 50 × 50 with the austenite lattice rotated
by α = 45◦. The roller support was used for one horizontal
and one vertical surface; i.e., the normal displacements and
shear stresses are zero. Homogeneous normal displacements
at two other surfaces were prescribed and kept constant during
simulations, which resulted in a biaxial normal strain of
0.01. Shear stresses were kept zero at external surfaces. A
two-dimensional problem under plane stress condition and
temperature θ = 100 K was solved. The stationary solution for
θ = 100 K shown in Fig. 2(a) (which is practically the same
as presented in Ref. [14]) was taken as an initial condition for
the next stage of simulation with the following modifications:
temperature was reduced to θ = 0 K, and parameter β12 was
reduced to β12 = 5.64 × 10−11N , which led to twin interface
energy EP1P2

= 0.371 J/m2 and width �P1P2
= 0.363 nm. The

final solution evolution of η1 − η2 is presented in Fig. 2(b).
Results of the current simulations for both K12 practically

coincide with those in Ref. [14] [Fig. 2(c)]; they resemble the
experimental nanostructure from Ref. [15] and quantitatively
reproduce the bending angle [Fig. 2(d)]. Thus, we proved that
for two variants our theory does not work worse than the

theory, [14] which strictly satisfies all desired conditions for
two variants. However, in contrast to Ref. [14], the current
theory can be applied for an arbitrary number of variants.
Since our theory splits the general n-phase case into a set of
independent three-phase formulations, this means that it will
work equally well for arbitrary n as well. An important point
also is that such a complicated nanostructure was obtained
from a completely different initial nanostructure [Fig. 2(a)].
For example, the splitting and bending of the tips were
also reproduced in Ref. [18] utilizing strain-based phase-field
formulation. However, the initial conditions in Ref. [18] were
very close to the final solution, because probably otherwise
the solution converges to the primitive alternating twins. Note
that the strain-based order parameters are not as universal as ηi

(e.g., they cannot be used for melting or grain evolution). and
as was written in Refs. [2,3], they do not allow one to satisfy
the required conditions even for a single order parameter.
Interface stresses also were not introduced for strain-based
order parameters.

C. Stresses

Components of the stress fields, including interface stresses,
are shown in Fig. 3. They are seldom presented in literature
because of large artificial oscillations. Here oscillations are
absent, and stress concentration has a regular character, which
underlines the advantages of the current simulations. Since
twin boundaries represent invariant plane, it is generally
assumed in a sharp interface approach that they are stress-free
and do not generate elastic energy. Here we unexpectedly ob-
serve large shear stress σxy , which changes the sign across the
twin interface. Shear stress appears due to the accommodation
of large alternating shears across a finite-width interface in a
constraint sample.

y x xy

(a) (b) (c)

FIG. 3. (Color online) Stationary stress fields (in GPa) for K12 = 1.5 × 1012J/m3.
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V. CONCLUDING REMARKS

To summarize, as a solution of a critical outstanding
problem, we developed PFA for multiphase materials, which
with high and controllable accuracy satisfy all the desired con-
ditions for arbitrary n phases. Instead of explicit constraints,
we included in the simplest potential the terms that penalize the
deviation of the trajectory in the order parameter space from the
straight lines connecting each of the two phases. It describes
each of the PTs with the single order parameter, which allows
us to use an analytical solution to calibrate each interface
energy, width, and mobility. It reproduces the desired PT
criteria via instability conditions, introduces interface stresses,
and allows us to control the presence of the third phase at
the interface between the two other phases. Finite-element
simulations exhibit very good correspondence with results
based on the exact three-phase model in Ref. [14] (which,

however, cannot be generalized for n > 3) and with nontrivial
experimental nanostructure. The developed approach unifies
and integrates approaches developed in different communities
(in particular, solidification and martensitic PTs) and is
applicable to various PTs between multiple solid and liquid
phases and grain evolution and can be extended for diffusive,
electric, and magnetic PTs.
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