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ABSTRACT 

Aphids are important agricultural pests with about 250 species known to cause 

damage by feeding on plant phloem and transmitting plant viruses. Current management 

relies primarily on the application of chemical insecticides, which can be deleterious to 

the environment, and the use of aphid resistant cultivars hampered by the presence of 

resistant aphid biotypes. We aim to develop novel biotechnology based approaches to 

better manage pestiferous aphids. To this end, we (i) identified and characterized aphid 

viruses, and (ii) analyzed a class of small RNA, microRNAs specific to aphids. We used 

transcriptome and small RNA sequencing datasets to identify viruses that naturally infect 

populations of various aphid species. We identified and characterized a new isolate of 

Aphid lethal paralysis virus, named ALPV-Ap (Dicistroviridae) from the pea aphid, 

Acyrthosiphon pisum and a novel virus from the soybean aphid, Aphis glycines, named 

Aphis glycines virus (AGV; Unclassified). ALPV-Ap, which has a longer genome than 

other ALPV isolates, is phylogenetically closely related to ALPV isolates from 

honeybees rather than from aphids. ALPV-Ap localizes to the aphid midgut and is not 

vertically transmitted from adult to nymph. AGV has a capsid protein similar to those of 

plant viruses while the RNA-dependent RNA polymerase is more closely related to those 

of insect viruses. Remarkably, AGV is 100% vertically transmitted. Analysis of small 

RNA datasets from various aphid species showed the presence of over 100 microRNAs. 

In addition to detection of many evolutionarily conserved miRNAs, a subset of 12 aphid-

specific miRNA was identified. The wealth of information obtained from sequencing 

datasets will allow for investigation of virus- and miRNAs-based management of aphid 

populations for reduced damage and increased crop yield worldwide.   
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CHAPTER 1 

INTRODUCTION 

 This chapter is written to provide an overview of research related to certain 

aspects of aphids, small RNA and viruses. In the first part of the chapter, the aphid as an 

important agricultural pest and the current management strategies used for aphid control 

are addressed. In the second part of the chapter, the biological process of RNA 

interference (RNAi) with a focus on insects is outlined. In the third part, the use of Next 

generation sequencing technology for virus discovery is discussed. The fourth section 

contains descriptions and discussion of viruses known to infect aphids. In the final part of 

this introduction, antiviral immunity in aphids and the potential for application of viruses 

in aphid management are described.  

Aphids as pests of agricultural crops 

 Aphids are soft-bodied arthropods in the order Hemiptera. Approximately 4,400 

aphid species have been identified and 250 species of aphids are classified as serious 

pests of economic importance (1). Aphids use modified mouthparts known as stylets to 

pierce through the plant epidermis toward the sieve tubes to feed on plant phloem (2). 

Aphids are known to affect approximately 25% of plant species in temperate regions. 

Crops affected by these pests include, maize, potatoes, barley and wheat (3). Aphids 

cause damage by (i) feeding on plant phloem and depriving the host of essential nutrients 

(4), (ii) aphid honeydew secretions that promote the growth of sooty mold fungus on 

plant surfaces (5) and (iii) vectoring and transmitting economically damaging plant 

viruses (6).  
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Aphids are among the most important insect vectors of plant viruses. Aphids are 

known to transmit 275 out of the 600 insect-borne viruses (7). Plant virus transmission by 

aphids is described as “nonpersistent”, “semi-persistent” or “persistent”. In non-persistent 

transmission, the plant virus briefly attaches to the aphid stylet during which time, the 

aphid will move to a new host plant to inoculate the plant with the virus (8, 9). In semi-

persistent transmission, the plant virus is acquired and retained in the foregut of the aphid 

before inoculation into a new host plant. The acquisition time is longer for semi-

persistent transmission compared to non-persistent transmission of plant viruses (10) . 

Persistently transmitted plant viruses that are ingested by the aphids move through the gut 

epithelium, enter the aphid hemocoel and finally enter the salivary glands from which the 

virus is secreted into a new plant upon aphid feeding (11). Persistently transmitted viruses 

are further characterized into propagative and non-propagative based on whether the 

virus replicates in the insect vector (11). Among the most important plant viruses 

transmitted by aphids are Barley yellow dwarf virus (BYDV), Beet mild yellowing virus 

(BMYV), Cucumber mosaic virus (CMV), and Turnip mosaic virus (TuMV) (12).  

Current aphid management strategies 

Several methods have been employed to manage populations of aphids. The most 

commonly used method for aphid management is the application of chemical 

insecticides. The application of chemical insecticides has increased 130-fold in soybean 

fields to control populations of the soybean aphid, Aphis glycines, an invasive pest in 

North America (13). Insecticides such as neonicotinoids, imidacloprid and dimethoate 

while effective against aphids, are damaging to the natural enemies of aphids and other 

non-target organisms in the field (1). In addition, the intense selection pressure has led to 
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the development of insecticide resistant aphid populations (14). The use of  natural 

enemies of aphids including pirate bug, Orius insidious, Asian lady beetle, Harmonia 

axyridis and brown lacewing, Micromus tasmaniae has some effectiveness in aphid 

control (15).  

Another widely adopted management strategy for aphid management is the use of 

resistant host plants such as Rag 1 and Rag 2 soybean cultivars for management of A. 

glycines and Dn 4 and Dn 7 wheat cultivars for management of Russian wheat aphid, 

Diuraphis noxia (16-18). The initial use of the Rag and Dn cultivars showed promise in 

aphid management; however, resistant aphid biotypes have been identified in natural field 

populations (19-22). 

Potential future aphid management strategies   

 Novel biotechnology approaches are at the forefront for pest management 

approaches. One widely used technology for insect pest suppression is the expression of 

toxins from the bacterium Bacillus thuringiensis (Bt) in transgenic crops. While the Bt 

toxins are effective against lepidopteran and coleopteran insects such as the western corn 

rootworm, Diabrotica virgifera virgifera, there is little efficacy against hemipteran 

insects (23). Efforts have been made to adapt existing Bt toxins to be more effective 

against aphids and this may be an option for aphid management in the near future (24). 

The ability of plant virus capsid proteins to effectively cross the aphid gut barrier was 

manipulated to deliver an insecticidal neurotoxin to aphids. The capsid protein of an 

aphid transmitted luteovirus, Pea enation mosaic virus (PEMV) was fused to a spider-

derived peptide toxin, Hv1a. The capsid protein of the virus functions to deliver the toxin 
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across the gut barrier to the aphid hemocoel to be functionally active and kill the aphid. 

Transgenic Arabidopsis plants expressing the fusion protein showed toxicity and induced 

death by paralysis in the green-peach aphid, Myzus persicae (25).  

The natural defense response of plants against insects has been explored for 

enhanced effectiveness against aphids. The plant - produced carbohydrate binding 

proteins known as lectins have been investigated for potential use in insect pest 

management. Ingested plant lectins can negatively impact physiological processes in 

insects. The plant lectin concanavalin A was shown to have toxic effects and to inhibit 

the growth of pea aphids, Acyrthosiphon pisum in feeding bioassays with artificial diet 

(26). A biotechnology approach for using plant lectins for pest management is to fuse a 

plant lectin such as the snowdrop lectin, GNA (Galanthus nivalis agglutinin) to an insect 

toxin to be delivered into the insect hemolymph through binding of a glycoprotein 

receptor on the gut (27, 28) . The plant lectin, GNA was fused to an insecticidal spider 

venom neurotoxin, SF1 (Segestria florentina toxin 1) to induce aphicidal activity in the 

M. persicae. Feeding bioassays showed ~50% aphid mortality after 2 weeks and a 

significant negative impact on the development and fecundity of the aphid (29).   

The gene silencing approach using RNA interference (RNAi) has been explored 

for aphid management as well as for functional gene studies. Multiple approaches have 

been used for introduction of exogenous silencing RNA into aphids including 

microinjection (introduction of silencing RNA into the hemolymph that bypasses the 

aphid gut barrier), feeding on treated artificial diet and on transgenic plants that expresses 

silencing RNAs (30-39). Table 1 summarizes research on aphid gene silencing mediated 

by exogenous short-interfering RNA (siRNA) or double-stranded RNA (dsRNA). A 
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broad range of responses to gene silencing in aphids was noted with some experiments 

resulting in significant gene knockdown while others had no observable negative impact 

on the aphid (35, 39). High variability in the results has also been observed for silencing 

of the same target gene when carried out by different research groups (35, 36, 39). The 

potential practical application of the silencing effect for aphid control was primarily 

tested using M. persicae in transgenic plants expressing double-stranded RNA. Aphid 

mortality does not appear to be severely impacted; however negative effects on fecundity 

and life span have been observed (34, 37). 

 

 

 

 

 

 



 
 

Table1. Summary of gene silencing experiments conducted with aphids. N/A, not applicable. 

Aphid species Silencing 

molecule 

Dose/ 

Concentration 

Target genes Silencing effects Ref 

Microinjection 

 

Pea aphid 

(Acyrthosiphon pisum) 

siRNA  50 ng Saliva transcript (Coo2) 50% mortality at Day 3 (35, 39) 

 

dsRNA 

276 ng Calreticulin 

Cathepsin L (Cat L) 

30 – 40% gene knockdown at Day 5 (30) 

80 ng Ecdysone receptor (EcR) 

Ultraspiracle (USP) 

No effects on survival or developmental  (39) 

Feeding on artificial diet 

 

 

Pea aphid 

(Acyrthosiphon pisum) 

 

 

 

dsRNA 

 

 

1 µg/µL Putative aquaporin gene 

(ApAQP1) 

Reduction of 2-fold in 24 hours. 

Transient effect of silencing 

No significant mortality 

(33) 

0 – 3 µg/µL Vacuolar ATPase subunit 

A (vATPase) 

30% gene knockdown (36, 39) 

200 ng/µL Ecdysone receptor (EcR) No effects on survival or developmental  (39) 

Grain aphid 

(Sitobion avenae) 

dsRNA 7.5 ng/µL 5 candidate genes 3 genes significantly reduced at Day 6 

2 genes completely silenced at Day 8 

(38) 

Feeding on transgenic plant 

 

 

 

 

Green-peach aphid 

(Myzus persicae) 

 

 

 

 

 

dsRNA 

 

 

 

 

 

 

 

 

 

N/A 

Myzus persicae Coo2 

(MpCoo2) 

Receptor for activated 

kinase C (Rack-1) 

60% silencing  

Reduced fecundity  

No significant mortality 

(31) 

Myzus persicae serine 

protease (MpSP) 

No significant mortality 

Reduced fecundity 

Reduced parthenogenetic population 

(37) 

Myzus persicae 

hunchback (Mphb) 

31% reduction on Day 7 (34) 

Grain aphid 

(Sitobion avenae) 

dsRNA N/A Carboxylesterase 

(CbE E4) 

30-60% reduction of expression (32) 

6
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RNA interference  

The effective use of RNA interference (RNAi) for insect pest suppression has been 

demonstrated for the corn rootworm, Diabrotica virgifera virgifera and cotton bollworm, 

Helicoverpa armigera (40, 41).  Investigation of the use of RNAi for suppression of various 

other pest species is ongoing, including for use against aphids.  

General mechanism of RNA interference  

This section has been published in a review paper by Vijayendran D, Airs PM, Dolezal K and 

Bonning BC (42). 

 RNA interference (RNAi) is an important biological process for silencing nucleic acid in 

eukaryotic cells. The RNAi pathway is trigged by the presence of endogenous or exogenous 

double stranded RNA (dsRNA) in the cytoplasm of a cell (43). The dsRNA can be derived from 

but is not limited to, (i) stem-loop RNA structures such as precursor microRNA (pre-miRNA), 

(ii) replication intermediates of viruses, (iii) silencing RNAs that is experimentally introduced 

(soaking, feeding and microinjection) or (iv) transgenes. The long dsRNA is recognized and 

cleaved into smaller duplexes (21-23nt) of RNA known as short interfering RNA (siRNA) by the 

protein Dicer, an RNase III endoribonuclease (44). One of the siRNA duplex strands (guide 

strand) is then 2’-O-methylated at the 3’ terminus and loaded onto a multi-protein RNA- induced 

silencing complex (RISC) with the help of R2D2 protein containing dsRNA binding motifs (45). 

The RISC complex consists of an Argonaute protein which is responsible for messenger RNA 

(mRNA) target recognition and cleavage (46). Any mRNA in the cytoplasm that has perfect 

complementation to the guide siRNA will be cleaved. In the case of imperfect base pairing or 

base pairing at the “seed” region which is a 2-8 base homology at the 3’ terminal of the mRNA, 
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translational repression of the mRNA occurs. Translational repression is more commonly 

observed in the miRNAs pathway compared to the siRNA pathway. The translational repression 

of mRNA is also more common in animal systems compared to plants (47). Some organisms 

have an additional step of amplifying the initial Dicer produced siRNA signal using a protein 

called RNA- dependent RNA polymerase (RdRP) (48). The resulting secondary siRNA feed 

backs into the RNAi pathway which is primarily observed in the model organism, 

Caenorhabditis elegans (49). The effect of RNA silencing has also been shown to spread from 

cell-to-cell in some invertebrates, a phenomenon known as systemic RNAi (49, 50).    

RNAi in insects 

The RNAi pathway is evolutionarily conserved in insects. Homology analysis of protein 

sequences has identified two distinct Dicer-like proteins in insects. Dicer-1 is involved in 

miRNA biogenesis while Dicer-2 is involved in processing dsRNA from other sources and is an 

important component in the antiviral immune response in invertebrates (51). All core RNAi 

proteins are encoded by the genome of A. pisum (52). A notable finding in the genome of A. 

pisum is the duplication of some genes present in the miRNA pathway. A. pisum have distinct 

Dicer proteins for processing of dsRNA, where two duplicated copies of Dicer-1 are present for 

processing dsRNA in the miRNA pathway and Dicer-2 is present for processing of other siRNA 

(53). Another major miRNA pathway component, the Argonaute-1 is also duplicated in A. 

pisum. A related Argonaute-2 is present for the siRNA pathway. Additionally, there is one 

Drosha, four copies of Pasha, and one Exportin-5 present for the miRNA pathway and one R2D2 

and Sid-1 for the siRNA pathway (53).  
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 Pioneering studies of RNAi in insects were conducted in the model organisms, vinegar 

fly, Drosophila melanogaster, red flour beetle, Tribolium castaneum and silkworm, Bombyx 

mori. The RNAi pathway has been manipulated in multiple insect species for the purposes of 

understanding the RNAi pathway, studying gene function, understanding antiviral immunity and 

for pest management approaches (35, 40-42). Increased availability of insect genome sequences 

revealed the presence and conservation of the core RNAi pathway genes. While all insects 

appear to have a functional RNAi pathway, there are major differences in the response of the 

RNAi pathway to exogenously introduced dsRNA. Responses differ according to specific insect 

species, target genes, length of dsRNA used, region of the gene targeted for silencing and 

method of delivery. Variation in efficacy makes efforts to use RNAi directly for insect pest 

management via silencing genes difficult. Some of the major differences in performance of gene 

silencing observed in model insect species based on the method of delivery are summarized in 

Figure 1 (54). Although there appears to be major variation in the success rate, specific examples 

of gene silencing in insects have been highly successful. T. castaneum shows a robust RNAi 

response and the silencing effects are carried through to the next generation, indicating a 

systemic and possible amplification of the initial siRNA signal (50, 55).   

 

Figure 1. Efficacy (low to high) of gene silencing observed in model insect species based on 

method of delivery, used with permission from reference (54).  
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Small RNA in RNA interference 

Small RNAs (sRNA) have emerged as key regulators of important biological processes in 

eukaryotes. The three major types of small RNA identified in eukaryotes are microRNA 

(miRNA), small-interfering RNA (siRNA) and PIWI-interacting RNA (piRNA). The biogenesis 

of eukaryotic sRNA shares a dependence on the Argonaute (Ago) protein family (56). Each 

small RNA type has distinct functions and characteristics including their (i) biogenesis, (ii) 

length and modifications, and (iii) targets (57).  

MicroRNAs (miRNAs) 

MicroRNAs (miRNAs) are a group of sRNA of 18-25 nt found in most eukaryotic cells. 

This class of sRNA regulates gene expression by modulating the availability of mRNA for 

translation into protein. A primary miRNA is transcribed in the nucleus by cellular RNA 

polymerase II. The primary miRNA is further processed into a precursor miRNAs by Drosha and 

Pasha. The precursor miRNA is transported into the cytoplasm to be cleaved into dsRNA 

duplexes of 18-25 nt by the Dicer protein (44). One strand of the duplex (guide strand) is loaded 

onto the RISC Argonaute-protein complex and targets mRNA in the cell. Near perfect 

complementarity of the miRNAs to the target mRNA results in the cleavage and degradation of 

the target transcript, a process most commonly observed in plants (58). In animals, the miRNAs 

seed region of 6-8 nt binds the target mRNA and prevents translation (59). Functional studies of 

miRNAs in arthropods have shown regulation of important biological processes such as wing 

development, tissue differentiation and cell proliferation (60, 61). The current version (Version  

20) of miRBase, a miRNA database contains >1000 insect miRNAs including 103 miRNAs 

identified from A. pisum (62).   
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Short-interfering RNA (siRNA)  

Short-interfering RNAs (siRNAs) can be divided into two categories, endogenous and 

exogenous siRNAs. Endogenous siRNAs (endo-siRNA) are primarily derived from 

retrotransposons and genomic RNA that forms dsRNA from overlapping transcripts or local 

secondary structures (63, 64). The production of endo-siRNA is dependent on the host RNAi 

pathway (65). Endo-siRNAs functions to silence mobile genetic elements and mRNA transcripts 

in the host (66). Exogenous siRNAs (exo-siRNA) are primarily derived from invading nucleic 

acids such as those of viruses or experimentally introduced dsRNA. Exo-siRNAs derived from 

replicating viruses are termed virus-derived small interfering RNAs (vsRNAs).  Many parts of 

the virus genome can serve as a trigger for the host RNAi-based antiviral response. The triggers 

can include the complementary dsRNA intermediate during replication, local secondary 

structures in the virus genome, virus encoded siRNA and overlapping virus transcripts (42). 

Virus sequences can be elucidated from the vsRNA products of the RNAi pathway. 

PIWI-associated RNAs (piRNA)  

PIWI-associated RNAs (piRNA) are 25-30 nt small RNAs produced in a Dicer-

independent mechanism (67, 68). Argonaute-3 (Ago3) cleaves piRNA from a precursor 

sequence, after which the piRNA is incorporated into a RISC, along with PIWI and Aubergine 

(Aub), to guide degradation of complementary RNA sequences.  A “ping-pong” mechanism for 

amplification of piRNAs is now also supported, in which a sense, primary piRNA as part of a 

RISC, binds to a complementary, antisense RNA sequence.  The target sequence is cleaved with 

the help of Aub and PIWI such that the sense, primary piRNA and the cleaved, antisense target 

contain a 10 nt overlap. A conserved feature of this overlap is an A at the first 5’ antisense 
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position and a complementary U at the 10
th

 5’ sense position. That antisense target is then further 

cleaved to become a 25-30 nt secondary piRNA.  This secondary piRNA can then bind to the 10 

overlapping nt in other sense sequences, from which the original piRNA was derived, and with 

the help of Ago3, cleaves another primary piRNA.  The production of primary piRNAs thus 

drives the production of secondary piRNAs, and vice versa (69). The presence and role of 

piRNAs was initially thought to be solely transposon repression in the germline (70). However, 

more recent studies have shown piRNA expression in somatic tissues.  First, the somatic tissue 

surrounding the Drosophila ovary was found to express PIWI proteins and piRNAs, albeit via an 

Aub- and Ago-3-independent version of piRNA biogenesis, called the primary pathway (71). 

While it is still unclear if piRNAs are expressed more broadly in fly tissue, the whole repertoire 

of PIWI-family proteins and piRNAs are now known to be expressed in the somatic head and 

thorax tissue of the yellow fever mosquito, Aedes aegypti  and the tiger mosquito, Aedes 

albopictus (72). These data set the stage to explore piRNA roles beyond transposon regulation, 

including antiviral activity.  

The use of Next Generation Sequencing technology for insect virus discovery 

This section has been published in a review paper by Liu S, Vijayendran D, and Bonning BC 

(73).  

Next generation sequencing (NGS) is being widely used to understand the role of sRNA 

in host-virus interactions in addition to the identification and discovery of novel insect viruses. 

Traditionally, insect viruses were discovered following purification of virus from diseased 

insects. Conventional approaches to virus discovery include virus purification by 

ultracentrifugation and sucrose or cesium chloride gradient steps. The sample may then be used 
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for visualization of virus particles by electron microscopy, infection of cultured insect cells and 

observation for cytopathic effects, and infection of healthy insects by spraying, injection or oral 

inoculation (74-76). Viruses would then be identified and further characterized by use of 

serological methods and nucleic acid hybridization (where specific antisera or probes are 

available), molecular cloning and genomic sequencing (77). Use of a cell line is beneficial in that 

it allows for culture and amplification of viruses that cause acute or covert infections in the host. 

However, the lack of appropriate insect cell lines for such virus screens is a common limiting 

factor and it cannot be assumed that all viruses present in an insect would replicate in a given cell 

line. In addition, viruses that accumulate to relatively low titers in the host organism or become 

latent would not be readily detected using the traditional approaches described.  

NGS, which is now being widely adopted for virus discovery, is a non-Sanger-based and 

high-throughput methodology which allows for generation of millions of sequences at once. 

Multiple high-throughput sequencing technologies have been developed (78-81). The most 

common NGS platforms are Roche 454 pyrosequencing (454 Life Science), Illumina (Solexa) 

sequencing, and SOLiD sequencing (ABI Biosystems). Viral sequences can be extracted from 

either total DNA (for DNA viruses only) or RNA isolated from insects. Alternatively, prior to 

viral DNA or RNA extraction, virus purification can be conducted to eliminate host nucleic acid 

contamination, followed by extraction of viral DNA or RNA. The sequencing reads obtained are 

then assembled and analyzed using various bioinformatics tools (82, 83). Following detection of 

viral sequences by NGS technologies, the presence of viral sequences in the sample must be 

confirmed by PCR (DNA viruses) or RT-PCR (RNA viruses). Small RNA sequencing can also 

be used to identify viruses in insects. Virus-derived siRNAs can be used to reveal the sequences 
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of any RNA or DNA virus present in the insect that is susceptible to the RNAi-based antiviral 

immune response.  

The first application of NGS technology that demonstrated the potential for virus 

discovery was a metagenomic analysis of the honeybee, Apis mellifera, conducted to elucidate 

the causes of colony collapse disorder (CCD) (84). For the metagenomic analysis, total RNA was 

extracted from bees taken from CCD and non-CCD colonies collected from the US, and 

Australia and also from royal jelly from China. The RNA libraries were subjected to 454 

pyrosequencing, and raw reads were trimmed and assembled into contigs. Contigs were used for 

BLAST analysis (BLASTn and BLASTx) against the NCBI nr database (83). Seven viruses were 

identified in bees derived from CCD colonies, compared to five from non-CCD colonies. A wide 

range of other pathogens was also detected. The presence of the viruses was confirmed by RT-

PCR and Sanger sequencing, and the presence of Israeli acute paralysis virus (IAPV) was found 

to be a significant indicator of CCD (84).  

The first report of the use of sRNA sequencing for virus identification was for analysis of 

the sweet potato. In this case, the authors inoculated the plants with the known RNA viruses, 

Sweet potato feathery mottle potyvirus (SPFMV) and Sweet potato chlorotic stunt closterovirus 

(SPCSV). Small RNA was isolated from the inoculated plants and sequenced by using Illumina 

GAII. The sRNA reads were assembled with three different assembly programs for sequence 

assembly, and contigs were reassembled to generate longer contigs using the program 

Contigexpress (Vector NTI, Invitrogen). The contigs were queried by searching the GenBank nr 

database for viral sequences. SPFMV and SPCSV sequences were successfully recovered. In 

addition, contigs similar to mastreviruses (ssDNA)  and badnaviruses (dsDNA reverse 

transcribing) were identified from the sRNA sequences (85).  
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A similar strategy was used to identify viruses present in a Drosophila cell line, and from 

published sRNA datasets for mosquitoes and nematodes (86). Four viruses (two positive single-

strand, ssRNA and two dsRNA viruses) were identified from the Drosophila S2-GMR cell line. 

In addition, two viruses, including one new virus, were identified from the mosquito. However, 

full length genomes of the viruses could not be assembled from the sRNA datasets. RT-PCR, 

RACE-PCR and sequencing were used to fill gaps in the viral sequences. While many known 

viruses have been identified using NGS, the true strength of this technology lies in the ability of 

researchers to identify novel viruses de novo. Table 2 shows novel insect viruses that have been 

identified using NGS. 

Table 2. Novel insect and nematode viruses identified using NGS data 

Virus Origin Ref 

Birnaviridae (dsRNA) 

Drosophila birnavirus (DBV) D. melanogaster cell line (S2-GMR) (86) 

Culicine-associated Z virus (CAZV)  O. caspius, O. detritus (87) 

Espirito Santo virus (ESV)  Ae. albopictus cell line (C6/36) (88) 

Totiviridae (dsRNA) 

Drosophila totivirus (DTV) D. melanogaster cell line (S2-GMR) (86) 

Dicistroviridae (+ssRNA) 

Big Sioux river virus (BSRV) Ap. mellifera (89) 

Iflaviridae (+ssRNA) 

Spodoptera exigua iflavirus-like 1/2 (SeIV-1/2) S. exigua (90, 91) 

Nodaviridae (bipartite +ssRNA) 

American nodavirus (ANV) D. melanogaster cell line (S2-GMR) (86) 

Mosquito nodavirus (MNV) Ae. aegypti-Liverpool strain (86) 

Santeuil virus Nodavirus C. briggsae (92) 

Orsay virus Nodavirus C. elegans (92) 

Le Blanc virus  C. briggsae (93) 

Negeviruses (proposed new taxon) (+ssRNA) 

Negev virus (NEGV) C. coronator, C. quinquefasciatus (94) 

Piura virus (PIUV) Culex sp. (94) 

Loreto virus (LORV) An. albimanus (94) 

Dezidougou virus (DEZV) Ae. aegypti (94) 

Santana virus (SANV) Culex sp. (94) 

Ngewontan virus (NWTV) C. vishnui (94) 
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Table 2. Novel insect and nematode viruses identified using NGS data (continued) 

 

Togaviridae (+ssRNA) 

Eilat virus (EILV)  An. coustani (95) 

Bunyaviridae (-ssRNA) 

SCN phlebovirus (ScPV) H. glycines (96) 

Rhaboviridae (-ssRNA) 

SCN rhabdovirus (ScRV)  H. glycines (96) 

Unclassified RNA viruses 

Noravirus (+ssRNA) D. melanogaster ovary cell line  (86) 

Lake Sinai Virus 1/2 (LSV1/2;+ssRNA) A. mellifera (89) 

Anopheline-associated C virus (+ssRNA) An. maculipennis (87) 

SCN nyavirus (ScNV;-ssRNA) H. glycines (96) 

SCN tenuivirus (ScTV;-ssRNA) H. glycines (96) 

Nudivirus (dsDNA) 

Drosophila innubila Nudivirus (DiNV) D. innubila (97) 

Parvoviridae (ssDNA) 

Culex tritaeniorhynchus densovirus C. pipiens molestus (98) 

Circoviridae (ssDNA) 

The Florida woods cockroach-associated 

cyclovirus GS140 (FWCasCyV-GS140)  

E. floridana (99) 

 

Although NGS has fundamentally changed the methodology for discovery of viruses 

from insects, there are some limitations. One limitation is that it is not possible to identify novel 

viruses that lack homology to known viruses. An exception to this is when the DNA or RNA 

sequenced is extracted from purified virus, and hence the viral origin of the sequence has already 

been established. A second limitation to the use of NGS is that full length genome sequences are 

unlikely to be acquired unless the virus is present in the host insect at high titers. Further 

sequencing of the genome by other methods will likely be required. In some cases, although 

most of the sequence is acquired, the 5' and 3' end sequences were difficult to find (89). Hence it 

is important, where possible, to retain frozen tissues for virus isolation and / or maintain a colony 

of the insect for virus extraction. A third challenge for NGS methods is the use of non-

standardized methods for data analysis. There are no clearly established guidelines as to what is 
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acceptable read quality, parameters for short read data assembly, and significance of BLAST 

hits, for example. With the increasing use of NGS, there is a real need to develop tools and 

software to handle bioinformatics analysis for any organism, rather than just model organisms. In 

addition to viruses that are known in aphids, NGS is being used for discovery of novel viruses in 

aphids.    

Viruses in aphids 

The viruses that are known to infect aphids are summarized in Table 3 (100-105) .  

Dicistroviridae 

The virus family Dicistroviridae consists of single-stranded RNA viruses (ssRNA) that 

infect arthropods. Aphid-lethal paralysis virus (ALPV) and Cricket- paralysis virus (CrPV) are 

known to negatively impact agricultural insect pests. Infection of honeybees with Israeli acute 

paralysis virus of bees (IAPV) is being more frequently reported and has been associated with 

colony collapse disorder (CCD) (84, 89). Figure 2 shows the genome organization of 

dicistroviruses. The genome has two major open reading frames (ORF). The 5’ end of the 

genome codes for the non-structural polyprotein and the 3’ end of the genome encodes for the 

structural polyprotein. The genome also has two internal ribosomal entry sites (IRES), one at the 

5’ end of the genome and the other between ORF1 and ORF2, the IGR IRES (106). 

Dicistroviruses also encode suppressors of RNAi (107-109). The suppressor proteins inhibit the 

RNAi pathway which targets the replicating virus. The Drosophila C virus (DCV) encodes the 

DCV-1A protein that binds to and inhibits the processing of dsRNA by Dicer (107). CrPV codes 

for the CrPV-1A protein that binds to Argonaute in RISC to inhibit the cleavage of the target 

RNA (108). 



 
 

Table 3. Summary of viruses that infect aphids 

       

Virus Classification Host aphid Genome  Virion structure Transmission Ref 

Aphid-lethal paralysis virus  Dicistroviridae Bird-cherry oat aphid 

(Rhopalosiphum padi), 

Pea aphid 

(Acyrthosiphon pisum) 

+ ssRNA Icosahedral 

27nm 

Vertical# (100) 

Rhopalosiphum padi virus Dicistroviridae Bird cherry-oat aphid 

(Rhopalosiphum padi) 

+ ssRNA Icosahedral Horizontal and 

Vertical 

(101) 

Brevicoryne brassicae virus Iflaviridae Cabbage aphid 

(Brevicoryne brassicae) 

+ ssRNA Icosahedral No horizontal 

via plant 

(102) 

Acyrthosiphon pisum virus Unclassified Pea aphid 

(Acyrthosiphon pisum) 

+ ssRNA Icosahedral 

31nm 

Not 

determined 

(103) 

Rosy apple aphid virus Unclassified Rosy apple aphid 

(Dysaphis plantaginea) 

+ ssRNA Icosahedral 

32nm 

Horizontal (104) 

Aphis glycines virus Unclassified Soybean aphid 

(Aphis glycines) 

+ ssRNA Icosahedral 

30nm 

Vertical Chapter 3 

Myzus persicae densovirus Parvoviridae Green peach aphid 

(Myzus persicae) 

ssDNA Icosahedral 

20nm 

Not 

determined 

(105) 

Dysaphis plantaginea 

densovirus 

Parvoviridae Rosy apple aphid 

(Dysaphis plantaginea) 

ssDNA Icosahedral 

22nm 

Horizontal (104) 

Acyrthosiphon pisum 

densovirus 

Parvoviridae Pea aphid 

(Acyrthosiphon pisum) 

ssDNA Icosahedral Unknown (104) 

# Horizontal transmission not determined 

 

1
8
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Figure 2. Schematic diagram of genome organization of dicistrovirus and picornavirus. Vertical 

lines indicated proteolytic cleavage sites. SS, silencing suppressor domain, hel, helicase from 

superfamily 3, Vpg, genome-linked protein, pro, cysteine protease (chymotrypsin-like), RdRp, 

RNA-dependent RNA polymerase, VP, virion protein, IGR, intergenic region; IRES, internal 

ribosomal entry site, UTR, untranslated region. 

 

The dicistroviruses known to infect aphids are Aphid-lethal paralysis virus (ALPV) and 

Rhopalosiphum padi virus (RhPV). The use of NGS for virus discovery has added to our 

knowledge of the prevalence of these viruses. ALPV-like viruses have now been identified in 

organisms other than aphids, including honeybees and from bat fecal samples (Table 4) (89, 100, 

110-113) . ALPV was first isolated from the bird cherry-oat aphid, Rhopalosiphum padi after 

observation of infected aphids moving away from the food source and death induced by paralysis 

(100). ALPV is transmitted vertically in R. padi at a 30% rate (n=44) and at a 17% rate in the 

wheat aphid, Sitobion avenae, (n=30) (114). Localization studies of ALPV in R. padi tissues 

using nucleic acid in situ hybridization appear to show localization of viral RNA in the gut, brain 

and embryonic tissues (115, 116).  

RhPV was isolated from R. padi  after observation of reduced longevity, fecundity and 

fitness of the aphid population (101). RhPV circulates in the plant phloem and is transmitted 
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horizontally from plants to uninfected aphids (117). RhPV is also vertically transmitted 

transovarially from mother to offspring at 15-28% in R. padi (101). Temperature has an effect on 

the titer of ALPV and RhPV virus infection in R. padi and S. avenae when tested using a double 

antibody sandwich enzyme linked immunosorbent assay (DAS-ELISA). A temperature 

difference of 5°C was sufficient to increase the incidence of both viruses. An increase of 19% of 

R. padi tested positive for ALPV with an increase of rearing temperature from 15- 20°C 

compared to 15 - 24°C. An increase of 46% of aphids was infected with RhPV at rearing 

temperatures from 10 -15°C compared to 15 - 20°C (114).  

Other aphid viruses   

 The Brevicoryne brassicae virus (BrBV) was isolated from the cabbage aphid, 

Brevicoryne brassicae. This is the first iflavirus described in aphids. The virus has a positive 

ssRNA genome of 10,161 nt and has a 3’ poly (A) tail. The virus is closely related to other insect 

iflaviruses. No virus transcripts were detected in plants infested with BrBV suggesting that BrBV 

is probably not transmitted via the plant (102).  

 The Acyrthosiphon pisum virus (APV) is a positive ssRNA virus with a genome of 

approximately 10,000 nt. The virus has two major ORFs and the virus encodes four capsid 

proteins ranging from 23 kDa to 66 kDa. APV was abundant in the epithelium and lumen of the 

digestive tract of three day-old nymphs. The virus was also less frequently localized in muscle 

cells and bacteriocytes using immunolocalization with an APV antigen.  Infection with the virus 

appears to inhibit the growth of aphids and a decline in the population was observed when the 

rearing temperature was increased by 6 – 8 °C (102).  



 
 

Table 4. Evidence for ALPV-like viruses in insects and insect predators. It is unknown if the ALPV strains isolated from bats are 

derived from prey, or whether they replicate in the bat. CP, capsid protein; NSP, non-structural protein. 

  

Virus strain Accession no Host organism Genome size Ref 

ALPV-RhP AF536531 Bird cherry-oat aphid  

(Rhopalosiphum padi)  

9,812 nt (100) 

ALPV-Ap Pending Pea aphid  

(Acyrthosiphon pisum) 

9,940 nt Chapter 2 

ALPV-An JX480861 Milkweed aphid  

(Aphis nerii) 

9,835 nt (110) 

ALPV-TJ JQ320375 Rickett’s big-footed bat  

(Myotis ricketti) 

9,819 nt (111) 

ALPV- YNH JN857319 Great roundleaf bat  

(Hipposideros armiger) 

648 nt (Partial sequence from NSP) (111) 

ALPV-Brookings HQ871932 Honeybee  

(Apis mellifera) 

4,125 nt (Partial sequence from CP & NSP) (89) 

ALPV- Spain honeybee JX045858 Honeybee  

(Apis mellifera) 

9,327 nt (near full length) (112) 

ALPV- Belgium honeybee  KC880119.1 Honeybee  

(Apis mellifera) 

465 nt (Partial sequence from NSP) (113) 

2
1
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 The Rosy apple aphid virus (RAAV) is a positive strand RNA virus isolated from the 

rosy apple aphid, Dysaphis plantaginea that has a genome organization and a high amino acid 

sequence identity to APV. RAAV was present in plant leaves previously exposed to RAAV- 

infected aphids and therefore is likely to be horizontally transmitted via the plant phloem. The 

incidence of winged aphid morphs was reduced when the aphid was co-infected with both 

RAAV and Dysaphis plantaginea densovirus (DplDNV) (104).  

 DplDNV is a densovirus isolated from the rosy apple aphid, Dysaphis plantaginea. 

DplDNV is a single stranded DNA virus with a genome of approximately 5,000 nt. DplDNV is 

transmitted horizontally via the leaf and vertically from adults to nymphs. DplDNV infection 

induces winged morphs of the host aphid thereby facilitating virus dispersal. Infection with 

DplDNV negatively affects aphid fecundity.  

An additional densovirus was also identified from expressed sequenced tag data from A. 

pisum. The virus is a putative Acyrthosiphon pisum densovirus. No further characterization of the 

virus has been published (104). Another densovirus was identified from M. persicae, named 

Myzus persicae densovirus. The virus has a genome of approximately 5,700 nt with five ORFs. 

The virus infects the stomach of infected aphids and transmission occurs horizontally (through 

plant and honeydew) and vertically from mother to offspring (105).  

Antiviral immunity in aphids 

Parts of this section have been published in a review paper by Vijayendran D, Airs PM, Dolezal 

K and Bonning BC (42). 

Arthropods lack the adaptive immune response of B and T-cells that are found in 

vertebrates. A robust immune response against viruses in arthropods includes the signaling 
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pathways; JAK/STAT, Imd and Toll pathways in addition to the antiviral RNAi pathway (118-

120). The majority of RNAi based antiviral studies of arthropods have been carried out in D. 

melanogaster and various mosquito species (86, 121-124). The RNAi response produces virus-

derived small interfering RNAs (vsRNAs) to reduce the virus load of replicating viruses. The 

production of vsRNA is an important part of the innate immune response against viruses in 

arthropods.  The RNAi based-immunity pathway in arthropods is highly developed and 

recognition of non-native RNAs triggers the defense response (125). In addition to vsRNAs, 

miRNA and piRNA are also involved in antiviral immunity (72, 126). 

The dynamics of RNAi in establishment of persistent virus infection in insects were 

recently elucidated. An emerging concept was experimentally validated using Flock house virus 

(FHV) in vitro in Drosophila S2 cells and in vivo in adult D. melanogaster. Genome segments of 

FHV were reverse-transcribed to cDNA as early as 12 hours after infection by host reverse 

transcriptases (originating from retrotransposons or endogenous retroviruses). Surprisingly, the 

cDNA form of FHV was a reorganized, recombinant form of the 2 RNA segments, RNA 1 and 

RNA 2. The FHV cDNA was then transcribed and processed into vsRNAs by the host RNAi 

machinery. These vsRNAs are loaded onto RISC and mediate RNAi of FHV RNA. The cDNA 

form is thus used early in infection to ensure that the virus forms a persistent infection instead of 

an acute infection that would compromise the host cells. The authors in addition speculated that 

insects lacking RNA-dependent RNA polymerase, a protein involved in amplification of the 

primary vsRNA signal, use this virus cDNA method to ensure a continuous immune response in 

the insect after virus infection (127).  

Sequencing of A. pisum genome allowed for analysis of genes involved in immunity in a 

hemipteran insect. While genes involved in the Toll and JAK/STAT immune signaling pathways 
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are conserved, A. pisum lacks key genes in the IMD pathway that functions to protect arthropods 

against bacterial infection (52, 128). The close association of aphids and their symbiotic bacteria 

provides a possible evolutionary reason for the loss of those antimicrobial genes. Aphids harbor 

the obligate primary endosymbiotic bacterium Buchnera housed in specialized aphid cells called 

bacteriocytes (129). Buchnera synthesizes essential amino acids for the host aphid and the aphid 

in return synthesizes non-essential amino acids from the symbiotic bacterium (130). The close 

symbiotic relationship has resulted in a reduced Buchnera genome compared to its free-living 

wild type ancestor. In addition to the primary obligate symbiont, aphids harbor various 

secondary symbiotic bacteria. Secondary symbionts may confer some additional benefits to the 

host aphid. e.g Hamiltonella defensa and Serratia symbiotica provide resistance against 

parasitoid wasps when the adult aphid is parasitized (131) and Regiella insecticola reduces 

mortality in A. pisum when exposed to the fungal pathogen, Zoophthora occidentalis (132). 

Viruses in insect management 

Insect viruses have been effectively used for management of insect pests for many years 

around the world. Field populations of  H. armigera have been effectively controlled using a 

Helicoverpa armigera stunt virus (Tetraviridae), a sRNA virus (133). The velvetbean caterpillar, 

Anticarsia gemmatalis, is a damaging foliage feeder of soybean plants that has been controlled in 

Brazil using a nucleopolyhedrovirus (Baculoviridae). The virus has been used for over 25 years 

in one of the largest virus-based insecticide programs in the world (134). In addition to 

lepidopteran insects, virus-based control has also been applied to management of a coleopteran 

pest. The rhinoceros beetle, Oryctes rhinoceros is a damaging pest in tropical countries that has 

been controlled for many years using the Oryctes virus (Genus Nudivirus; Unclassified) in oil 

palm plantations in Malaysia (135).  
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Novel aphid viruses have potential for application for aphid management. Viruses could 

potentially be produced in large quantities for field applications as previously described for 

nucleopolyhedrovirus (134, 136). In addition, novel aphid viruses in theory could be used as 

vectors for delivering silencing RNAs to aphids when they feed on the plant phloem. An 

example of this approach is the use of a Sindbis virus vector to deliver dsRNA targeting the 

Broad-complex transcription factor in the silkworm, Bombyx mori (137). Targeted silencing of 

aphid genes could further provide information about gene function. Studies on virus discovery 

and the biological interactions between aphids and viruses could also facilitate understanding of 

antiviral immune responses in aphids. 

Dissertation organization 

 The two chapters that follow this introduction focus on viruses that were identified from 

aphid sequencing data. Chapters 2 and 3 are on the identification and characterization of Aphid 

lethal paralysis virus- Ap (ALPV-Ap), a virus identified from the sRNAs of A. pisum. Chapter 4 

is on the identification and characterization of a novel aphid virus, Aphis glycines virus (AGV) 

from A. glycines. AGV was identified from transcriptome and sRNA sequencing datasets. 

Chapter 5 focuses on aphid miRNAs, identification of a subset of 12 aphid-specific miRNAs and 

the expression of three aphid-specific miRNAs in various life stages in M. persicae. In the final 

chapter the key findings from the research chapters are summarized, with general conclusions 

and discussion of implications for the development of novel biotechnology tools for aphid 

management.  
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Abstract 

Aphid lethal paralysis virus (ALPV) is a dicistrovirus that was first isolated from 

the bird-cherry oat aphid, Rhopalosiphum padi. ALPV-like virus sequences have now 

been reported from many insects and insect predators. We identified a new strain of 

ALPV from the pea aphid, Acyrthosiphon pisum, designated; ALPV-Ap. ALPV-Ap has a 

single-stranded RNA genome of 9,940 nucleotides. Phylogenetic analysis of the genome 

sequence shows that ALPV-Ap is closely related to ALPV-AM, an ALPV strain isolated 

from honeybees in Spain and Brookings, an ALPV strain isolated from honeybees in 

South Dakota, USA. The similarity of ALPV-Ap and ALPV-AM is up to 88% at the 

RNA level, compared to 78-79% between ALPV-Ap and other ALPV isolates. Similarly, 

the sequence identity of proteins between ALPV-Ap and ALPV-AM is 98-99% for both 

ORF 1 and ORF2, while only 85-87% for ORF1 and 91-92% for ORF2 between ALPV-

Ap and other ALPV isolates.  Sequencing of RACE products and cDNA clones of the 

virus genome revealed sequence variation in the 5’ untranslated regions (5’-UTR) and in 
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ORF1, indicative of a mixed population of ALPV-Ap, which could have important 

biological implications for ALPV host range and infectivity.   

Introduction  

The Dicistroviridae is an emerging family of single-stranded RNA viruses known 

to infect pest and beneficial arthropods such as aphids, the glassy winged sharpshooter, 

honeybees and shrimp. Members of this virus family can be highly pathogenic in 

arthropods (1).  For instance, Israeli acute paralysis virus (IAPV) of bees and other  

dicistroviruses have been implicated in colony collapse disorder (CCD) in honeybees (2). 

Two dicistroviruses are known to infect aphids, Aphid lethal paralysis virus (ALPV) and 

Rhopalosiphum padi virus (RhPV) (3).  

The original isolate of Aphid lethal paralysis virus (ALPV), (NCBI accession No. 

NC_004365.1) was first isolated from the bird cherry-oat aphid, Rhopalosiphum padi) in 

South Africa. We designated this isolate as ALPV-RhP based on the species name of the 

original host used in identification of the virus. ALPV-RhP is a single-stranded RNA 

(ssRNA) of 9,812 nucleotides. R. padi infected with ALPV displayed uncoordinated 

movement and death by paralysis. ALPV infection also dramatically reduced aphid 

populations in nature (3, 4). Recently, ALPV- like virus isolates has been identified from 

various species of insects and insect predators (5-8).  

An isolate of ALPV (NCBI accession No. JX480861.1) was identified in a wild 

population of the milkweed aphid, Aphis nerii in Northern Israel (ALPV-AN). The 

ALPV-AN isolate did not show any obvious pathogenic effects in A. nerii but was highly 

pathogenic to the green peach aphid, Myzus persicae in laboratory experiments (5). Three 
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reports describe ALPV-like viruses in honeybee, Apis mellifera populations that were 

being investigated in relation to CCD. A partial sequence of an ALPV isolate was 

reported in A. mellifera in Brookings, South Dakota, designated ALPV-Am-Brookings 

(NCBI accession No. HQ871932.1) (6). Nearly full length and partial sequences of 

ALPV isolates were identified in A. mellifera from Spain, designated ALPV-Am-Spain 

(NCBI accession No. JX045858.1) and Belgium, designated ALPV-Am-Belgium (7, 8). 

ALPV-like sequences (NCBI accession No.  JQ320375.1) were also reported in fecal 

samples of the Rickett’s big-footed bat,  Myotis ricketti and the great round leaf bat, 

Hipposideros armiger, designated ALPV-Bf (9). Whether these insect predators were 

infected with the ALPV-like viruses or whether the viral sequences were derived from 

insects ingested by these bats is unknown. 

The identification of ALPV isolates has been accelerated by the use of Next 

Generation Sequencing (NGS) technologies (10). Most of the ALPV and ALPV-like 

viruses from A. mellifera and bat fecal samples were identified using de-novo assembled 

sequence data. Emerging evidence suggests that ALPV-like viruses have a broad host 

range. In addition to detection in aphids, honeybees and bats, ALPV-like sequences have 

been identified in an EST library of the western corn rootworm, Diabrotica virgifera 

virgifera (S. Liu et al. unpublished data) and membrane feeding assays showed that 

ALPV can infect various species of aphids and whiteflies, Bemisia tabaci (11). The 

pathology of ALPV in aphid populations and the ability of this virus to infect multiple 

species of insect pest make it an attractive avenue to explore for insect pest management. 

However, detection of related viruses in A. mellifera may be problematic in this regard. It 

is unclear if the virus is pathogenic in A. mellifera.   
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In this paper, we describe the discovery of an isolate of ALPV from the pea aphid, 

Acyrthosiphon pisum, which we designate as ALPV-Ap. The virus was assembled de-

novo from small RNA sequencing data of a laboratory colony of A. pisum. We show that 

ALPV-Ap is closely related to the ALPV strain isolated from A. mellifera populations. 

Phylogenetic analysis suggests that ALPV have two major strains with one comprised of 

ALPV-Ap and ALPV isolates from A. mellifera and the second comprised of ALPV 

isolates from other aphid species and bat fecal samples. Geographic location does not 

seem to play a role in formation of these two strains.  We also present data on the 

sequence variation observed in the ALPV-Ap. Our results suggest that variation in the 

UTR and the ORF1 coding region could be a driving force for the evolution of new 

strains.   

Materials and Methods 

Insects 

Pea aphids, Acyrthosiphon pisum were purchased from Berkshire Biological 

(Westhampton, Massachusetts) and were raised on broad bean, Vicia faba in a growth 

chamber at 24
o
C with a 12:12 (light:dark) cycle. 

Total RNA extraction  

All instars of A. pisum were collected and used for RNA isolation.  

Approximately 50-60 aphids were homogenized in 1mL of TRIzol® Reagent (Life 

Technologies) with a pestle in a 1.5 ml microcentrifuge tube. Procedures for RNA 

isolation followed the manufacturer’s instructions. RNA was precipitated overnight in 

isopropanol at -80°C for optimal recovery of small RNAs (sRNA). Total RNA was re-
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suspended in 30 µl nuclease-free water. RNA was quantified using a Nanadrop 2000 

(Thermo Scientific) and the RNA quality assessed using a Bioanalyzer (Agilent).   

Small RNA sequencing  

A. pisum sRNA was isolated from total RNA and cDNA libraries constructed 

using the TruSeq Small RNA Sample Prep Kit (Illumina) according to the manufacturer’s 

instructions. The sRNAs were sequenced for 50 cycles using an Illumina GA II platform. 

sRNA isolation, sequencing library preparation and high-throughput sequencing  were 

conducted at the Iowa State University DNA Facility. 

Assembly of sRNA reads  

The Illumina sequencing reads were trimmed with FASTX-Toolkit to remove 

adaptors. The sRNA reads were then assembled using the Velvet assembler with multiple 

k and c parameters for optimal results (12). The assembled contigs were then used for 

BLAST searches to identify virus-derived contigs. BLAST analysis was also conducted 

with assembled contigs against the ALPV genome to identify potential ALPV-derived 

fragments. Local BLAST was performed with Bioedit software. The contigs that hit 

ALPV genomes were manually extracted for further manual assembly using Bioedit (13).  

Purification of ALPV-Ap virus particles from A. pisum 

A. pisum (~3 g) were ground in liquid nitrogen in a pre-cooled mortar and pestle. 

The powdered aphids were transferred to a 30 mL centrifuge tube on ice. Sodium 

phosphate buffer, 15 mL of 0.01M, pH 7 was added to the tube and was briefly vortexed. 

Chloroform, 7.5 mL (1/2 volume of buffer) was added to the tube. The tube was shaken 
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vigorously and incubated on ice for 5 minutes. The tube was then centrifuged at 8,000 

rpm at 4
o
C for 25 minutes in a SS34 rotor (Beckman). The resulting supernatant was 

passed through a syringe filter sterilizer (0.45 µM) into a 30 mL centrifuge tube. Sodium 

phosphate buffer, 5 mL of 0.01M was added to the filtered supernatant. The supernatant 

was once again centrifuged at 8,000 rpm at 4°C for 25 minutes in a SS34 rotor 

(Beckman). The resulting supernatant was then transferred to a 30 mL ultracentrifuge 

tube and centrifuged at 40,000 rpm at 4
o
C for 2.5 hours using a 70 Ti rotor (Beckman). 

The supernatant was removed and 5 mL of 0.01M sodium phosphate buffer was added to 

the pellet. The tube was covered with parafilm and placed on ice at 4
o
C overnight with 

shaking. The re-suspended virus mixture was transferred into 1.5 mL centrifuge tube and 

centrifuged at10, 000 rpm at 4°C for 5 minutes. The resulting supernatant was transferred 

into a new tube and the final volume was adjusted to 5.5 mL using 0.01M sodium 

phosphate buffer. The supernatant was added to the top layer of a 2.5 mL, 30% sucrose 

cushion in an ultracentrifuge tube. The tube was centrifuged at 43,000 rpm at 4
o
C for 3 

hours using a 70.1 Ti rotor (Beckman). The resulting liquid was removed and the pellet 

re-suspended overnight at 4
o
C as previously described. The stock of purified virus was 

stored at -20°C. 

Transmission electron microscopy 

Virions were purified as previously described and re-suspended in nuclease-free 

water. Purified virions (10 µL) were placed on a carbon film grid. The grid was 

negatively stained with 2% aqueous uranyl acetate for 30 seconds. The virus particles 

were visualized using a JEOL 2100 scanning/transmission electron microscope using 

standard procedures. 
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Analysis of virus genome size  

Purified  virions were added to 5X SDS-loading buffer (10%  w/v sodium dodecyl 

sulfate, 10 mM dithiothreitol, 20% v/v glycerol, 0.2M Tris-HCl, pH 6.8 and 0.05% w/v 

bromophenolblue). The sample was boiled and loaded onto a 5% stacking, 12% resolving 

SDS-polyacrylamide gel along with 8 µL of Precision Plus, All-Blue Protein ladder 

(Biorad). The gel was stained with Coomasie Blue to visualize the protein bands. Total 

RNA was extracted from purified ALPV-Ap virions using TRIzol®reagent (Invitrogen). 

ALPV-Ap RNA (2 µg) was loaded onto a 1% native agarose gel along with 5 µl of 0.5-

10,000 base RNA ladder (Invitrogen).The gel was stained with ethidium bromide for 

visualization of RNA.   

Sequence confirmation by RT-PCR, 5’ and 3’ RACE-PCR  

To confirm the in silico assembled sequences and to fill the gaps of the resulting 

genomic sequences, primers (Table 1) were designed to amplify different regions of the 

ALPV-Ap genome based on the assembled viral sequences. Total RNA extracted from 

purified ALPV-Ap virions was used as template for RT-PCR carried out using a One-

Step RT-PCR reaction kit (Qiagen).  The resulting PCR products were isolated and 

purified from agarose gels using the Qiaquick gel extraction kit (Qiagen) and sequenced 

by Sanger sequencing. To determine the 5’- and 3’- terminal sequences, rapid 

amplification of cDNA ends (RACE) experiments were carried out by using the 

SMARTer RACE cDNA amplification kit (Clontech) with 1 µg of viral RNA as template. 

The PCR reaction was prepared using the Advantage 2 PCR kit (Clontech) according to 

the manufacturer’s recommendations with primers listed in table 1. PCR was carried out 
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using a BioRad MyCycler Thermal Cycler with 25 cycles of 94°C for 30 seconds, 68°C 

for 30 seconds and 72°C for 3 minutes.  The 5’ end RACE PCR product was ligated into 

pGEM-T easy (Promega) and plasmids were transformed into TOP 10 competent cells. 

Plasmid DNA was isolated and sequenced to determine the nucleotide sequence of the 5’ 

UTR regions. The 3’end RACE PCR product was gel purified and sequenced as 

described above. No template negative controls were included for RACE and RT-PCR 

experiments. 

Cloning of the virus genome 

The full length viral genome was amplified from viral RNA extracted from 

particles using TRIzol® reagent as described previously. To synthesize the cDNA, 40 ng 

RNA was mixed with T30-ALPV-Ap reverse primer (Table 1) and dNTPs followed by a 

denaturing step (65 °C for 5 minutes). The mixture was then added with reaction buffer, 

DTT, RNAsin (Promega) and SuperScriptIII retrotranscriptase (Life Technologies) to a 

final volume of 20 μl. The reaction was incubated in a thermocycler at different 

temperatures following a step program: 37 °C for 20 minutes, 42 °C for 20 minutes, 

47 °C for 20 minutes, 51 °C for 20 minutes, 55 °C for 20 minutes and 70 °C for 15 

minutes. PCR amplification was conducted using Platinum Taq DNA Polymerase High 

Fidelity (Life Technologies) following provider recommendations (for primers AatII-T7-

ALPV-Ap + ALsT30-R) with a ramp program:  95 °C for 3 minutes, 35 cycles of [94 °C 

for 45 seconds, 47 °C (increasing 0.1 °C/cycle) for 45 seconds, 68 °C for 10 minutes] and 

68 °C for 15 minutes.  Phusion High-Fidelity DNA Polymerase (New England Biolabs) 

was used with GC buffer and primers AatII-T7-ALPV-RhP + ALsT30-R (or AatII-T7-

ALPV + ALsKpnI-R, Table 1) following the kit protocol using a similar program: 98 °C 
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for 30 seconds, 35 cycles of [98 °C for 15 seconds, 47 °C (increasing 0.2 °C/cycle) for 30 

seconds, 72 °C for 6 minutes] and 72 °C for 10 minutes.  Amplicons were cleaned from 

the agarose gel using Ultra free-DA Centrifugal Filter Units (Millipore) and cloned with 

the BigEasy Long PCR Cloning Kit (Lucigen) following the manufacturer’s protocol. 

Positive colonies were selected by PCR screening with primers ALs6701F and 

ALs7199R (Table 1) and by restriction digestion analysis. Clones with inserts >9.5 kb 

were fully sequenced. Sequence assembly was performed using DNADynamo software 

(BlueTractorSoftware Ltd, UK). Alignment and pairwise comparison of resulting clones 

was done using CLC Main Workbench software (CLC Inc, Aarhus, Denmark). 

Bioinformatics analysis  

Sequence alignment, similarity, identity and homology analyses of RNA and 

proteins were performed by using Bioedit. ClustalW was used for multiple sequence 

alignments (EMBL-EBI, UK). Phylogenetic trees were constructed by using the test 

maximum likelihood tree method and with 500 bootstrap replications, which was 

performed using MEGA (version 6.0) (14). The RNA secondary structure of the ALPV 

5’UTR from multi-aligned sequences was predicted by LocARNA using the default 

setting (15).  

Results 

Assembly of the viral genome 

Around 21 million reads of A. pisum sRNA was generated from Illumina 

sequencing. After removing adaptor sequences and trimming low quality bases, the 
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sRNA reads were assembled by the Velvet assembler (16). A variable number of contigs 

(50-2,500 nt) was assembled from the sRNA reads depending on the parameters (varying 

hash length k and coverage c) used in assembly. BLAST analysis against the NCBI nr 

database or against ALPV-RhP genomic RNA with either BLASTx or BLASTn 

algorithms were conducted to search for contigs homologous to ALPV. Approximately 1-

2% of the contigs (minimum 50 nt) hit the ALPV genome with the longest being 2,388 nt. 

The ALPV- derived contigs were extracted and manually re-assembled using ALPV-RhP 

as a reference sequence. Three ALPV fragments of 5,052, 3,766 and 1,110 nt, were 

assembled by manual alignment. The gaps between the fragments were filled by 

sequencing of the RT-PCR fragments with primers designed to cover the gaps. The 

assembled and RT-PCR joining ALPV-Ap genomic sequences have 9,940 nt, which is 

128 nt longer than that of the ALPV-RhP sequence (9,812 nt).  The assembled ALPV-Ap 

genome sequence was confirmed by sequencing of RT-PCR fragments. Ninety-eight 

percent of the assembled Illumina-derived sequences matched sequences obtained from 

the Sanger sequencing. The 5’ and 3’end sequences of ALPV-Ap were obtained by 

RACE PCR and by sequencing of the cDNA clones of ALPV-Ap (see below). The 

genome organization of ALPV-Ap is shown in Figure 1 and the proteins encoded are 

listed in Table 2.  

Confirmation of infection with ALPV-Ap  

Assembled sRNA sequences from A. pisum revealed a new ALPV-like viral 

genome. However, no obvious disease symptoms associated with the virus were observed 

in the aphid population. To confirm infection with ALPV-Ap, we purified the virions 

from infected aphids.  Electron micrographs of purified ALPV-Ap virions showed 
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icosahedral virus particles with a diameter of ~27 nm, similar to the documented size of 

ALPV particles (Figure 2a).  In addition, the purified viruses were subjected to SDS-

PAGE and stained using Coomasie Blue. The three major capsid proteins of ALPV were 

observed. Capsid proteins one and two have similar molecular masses of 27.03 kDa and 

27.06 kDa respectively, and capsid protein three is 29.52 kDa (Figure 2b). To 

demonstrate that virions encapsulated the full length ALPV-Ap genome, viral RNA was 

isolated from purified virions and visualized on a native agarose RNA gel (Figure 2c). An 

RNA band of ~ 10,000 nt long was observed indicating that the virions encapsidate full-

length ALPV-Ap RNA. 

Determination of 5’ and 3’end sequences by RACE PCR  

RACE PCR was used to determine the 5’ and 3’ends of ALPV-Ap. The RACE 

PCR products were generated by using purified RNA as described in the methods section.  

The 3’end PCR products were isolated and sequenced. A dominant 3’ RACE PCR 

product was consistently obtained in two different experiments. The sequenced PCR 

product ended with poly-A with the same length of sequence as the assembled 3’end 

sequences (excluding the poly-A sequences). The 5’ RACE PCR product of ALPV-Ap 

was a smear on the agarose gel, ranging from ~350-500 nt in size. The gel band of ~400-

500 nt was purified, cloned and sequenced. A total of 11 clones were sequenced for the 5’ 

RACE clones. All of the clones showed the same 5’end sequences of ALPV-Ap. 

Interestingly, the 5’end sequence observed from RACE PCR was 38 nt shorter (9,888 nt) 

than that of the sequences assembled from sRNA reads and differed from the published 

ALPV-RhP sequence. 
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Confirmation of the 5’sequence of ALPV-Ap by sequencing clones of ALPV-Ap  

The ALPV-Ap genome assembled from sRNA was 9,926 nt in length, while 

RACE resulted in 9,888 nt with 38 nt less at the 5’end. To confirm the 5’end sequences 

of ALPV-Ap, we used RT-PCR to generate cDNA from the viral RNA that was isolated 

from purified ALPV-Ap. Full length genomes were amplified by two step RT-PCR using 

primers either derived from ALPV-Ap (based on the 5’ and 3’ RACE results) or from 

ALPV-RhP (Table 1).  

Several rounds of amplification and cloning were carried out, resulting in >1,500 

colonies. Among those colonies, 116 positive colonies were obtained from PCR analysis 

of 879 colonies.  After restriction digestion analysis, only 14 of the PCR positive clones 

had inserts > 9.5 kb. Among the 14 clones, 12 were from the cDNA generated by using 

the 5’primer derived from RACE results. Only 2 putative full-length clones were 

obtained from cDNA using the ALPV-RhP 5’primer.  The 5’UTR of the 14 clones was 

sequenced.  

Alignment of the 5’end sequences of the 14 clones and the 5’end sequences of the 

Velvet assembled and RACE PCR-derived sequences (Figure 3) suggested ALPV-Ap has 

the same 5’end sequence as the documented ALPV-RhP isolate. However, potential 

variation may exist, because the majority of the cDNA clones were generated by using 

the RACE product-derived 5’primer. Sequencing of the cloned cDNA also confirmed that 

the 38 nt sequence which was not found by RACE PCR was part of the ALPV-Ap 

sequence.  (Hence the cDNA generated from the ALPV-RhP primer has 53 more bases at 

the 5’end than that of the 5’end sequencing result from RACE). The total genomic RNA 
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of ALPV-Ap is 9,940 nt (excluding the poly A tail), 129 nt more than that of ALPV-RhP, 

which is the longest ALPV- like virus discovered so far.   

Comparison of sequences of ALPV isolates  

The genome organization of ALPV is shown in Figure 1. The ALPV-Ap genome 

has a G+C content of 38.3%. The non-structural ORF1 of ALPV-Ap has 2,037 amino 

acids (aa), which is 2 aa more than that of ALPV-RhP, ALPV-Am-Spain and ALPV-Bf, 

but 1 aa less than  that of ALPV-AN.  The structural protein precursor has 809 aa, which 

is the same as ALPV-Am-Spain, but 2 aa more than that of ALPV-RhP and 1 aa more 

than  that of ALPV-AN and ALPV-Bf.  Numbers of aa of each peptide and molecular 

mass (Mr) of the peptides are summarized in Table 2.  

Comparisons of ALPV-Ap RNA and protein sequences with known ALPV 

sequences are summarized in Table 3 and Table 4. The overall RNA homology between 

ALPV-Ap and the other aphid ALPV strains and bat fecal-derived ALPV is 78-79%. 

Interestingly the RNA homology between ALPV-Ap and ALPV-Am-Spain (lacking parts 

of the 5’ and 3’UTR sequences), is 88%, about 10% higher than that of the other ALPV 

isolates.  The intergenic region – IRES (IGR-IRES) sequences among all ALPV isolates 

are highly conserved (97-99% homology). The RNA sequences of the coding regions 

were relatively conserved with more than 81% homology between ALPV-Ap and other 

isolates. Again, sequence homology between ALPV-Ap and A. mellifera isolates of 

ALPV was much higher (92-96%) in ORF1 and ORF2 relative to other isolates.  

Comparison of ORF1 and ORF2 protein sequences also shows that ALPV-Ap has 

higher sequence identity with ALPV-AM (Table 4, Fig 4). Protein identities between 
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these two isolates are 98.4% for ORF1 and 98.5% for ORF2, while identities of ALPV-

Ap and three other ALPV isolates are 87% (ORF1) and 91-92% (ORF2) (Table 4). 

Although only a partial sequence is available for the ALPV-Am-Brookings strain, 

sequence comparison of the Brookings strain with the corresponding sequences of other 

ALPV strains showed that the Brookings strain is highly homologous to ALPV-Ap and 

the ALPV-Am-Spain isolate (data not shown). Indeed, phylogenetic analysis shows that 

the ALPV isolates form two groups with ALPV-Ap and the ALPV A. mellifera isolates 

grouping together, separate from other ALPV isolates (Figure 5).  

The 5’ and 3’UTRs of ALPV-Ap 

 The 5’UTR of ALPV-Ap was aligned to the known ALPV-RhP 5’UTR 

sequence (Figure 6a) and a consensus secondary structure of ALPV (Figure 6b) was 

constructed by using LocARNA program. Comparison of the 5’UTR and 3’UTR between 

the two ALPV-Ap and ALPV-RhP isolates showed that multiple insertions occurred in 

several regions of ALPV-Ap UTRs, which explains why the genomic sequence of 

ALPV-Ap is longer compared to the published ALPV-RhP sequence. Indeed, the 5’UTR 

and 3’UTR regions showed much less similarity between ALPV-Ap and other ALPV 

isolates with only 63% sequence similarity between ALPV-Ap and other ALPVs at the 

5’UTR region, while the other isolates share 90-95% homology at the 5’UTR. Lower 

similarity was also observed at the 3’UTR between ALPV-Ap and other ALPV 

sequences (Table 3). These results suggest that the 5’ and 3’UTR regions of ALPV are 

less conserved than other regions of the virus genome. Although significant sequence 

variation was observed in the 5’ and 3’ UTR regions, multiple RNA sequence folding 

results suggested that conserved RNA sequences could be identified among the ALPV 5’ 
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UTR. A consensus RNA secondary structure was predicted by the LocARNA folding 

program (Figure 6b). This suggests that most of the inserted sequence in the 5’end of 

ALPV-Ap is at the structural loop region and therefore may not affect the common 

5’UTR structure of ALPV.   

Sequence analysis of ALPV-Ap full length clones  

 For determination of the 5’sequence of ALPV-Ap, we sequenced the 5’UTR 

regions of 14 near full-length cDNA clones of ALPV-Ap. In addition to the variations 

observed in the 5’UTR, we also noticed sequence variation in the coding sequences. To 

assess variations in the ALPV-Ap sequence in the coding region, we sequenced full 

genomic sequences of 14 full length clones. The sequencing results showed that a single 

mutation in three of the 14 cDNA clones introduced a stop codon or fragment deletion 

that truncated the protein product of ORF1.This is expected to be lethal to the virus 

clones. Two clones had short 3’UTR, which might also affect transcription of the viral 

RNA. Interestingly, none of the 14 clones had mutations that might disrupt translation of 

structural protein from ORF 2 (data not shown). As each genome was PCR-amplified in 

one piece, these results represent a snap shot of sequence diversity within the viral 

population.   

Discussion 

In this paper, we identified and characterized the genome of ALPV-Ap, a novel 

isolate of ALPV with a longer genome sequence (9,940 nt) than other isolates reported so 

far. ALPV-Ap is the first ALPV isolate infecting aphids that is phylogenetically more 

closely related to A. mellifera isolates of ALPV than to other aphid isolates. Previous 
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studies using both virus isolation followed by cloning and metagenomic approaches have 

identified seven different ALPV isolates from aphids, honeybees and bat feces. In 

addition to ALPV-Ap, we have identified ALPV sequences from soybean aphid, Aphis 

glycines and western corn rootworm, Diabrotica virgifera virgifera (Liu et al. 

unpublished data), demonstrating that ALPV-like viruses have a broad host range.  

To obtain the complete genome sequence of ALPV-Ap, we employed Illumina 

sRNA sequencing and assembly, RT-PCR and RACE PCR methods. RACE PCR was 

limiting and uncovered only part of the 5’ UTR region but was used to determine the 3’ 

UTR region presumably facilitated by the poly (A) tail of the virus genome. The 

assembled sequence and the RT-PCR method used to amplify the 5’ UTR sequence 

resulted in a longer genome sequence than previously reported for this virus. These 

results highlight the limitations of the commonly used RACE PCR for identification of 

the terminal regions of the genome of newly discovered viruses. The presence of stable 

secondary structures in the 5’ UTR may block the RT reaction and prevent acquisition of 

sequence using this approach. Virus secondary structures have been known to interfere 

with RACE PCR (17). No additional stem-loop secondary structures were predicted in 

the 5’ UTR of the ALPV-Ap genome. It remains unclear whether the sequence of the 

ALPV-Ap represents a full-length sequence of the virus, considering that the 5’end 

primer used for generating the viral sequence was based on the ALPV-RhP sequence.  

The current ALPV classification is determined by the similarity of the capsid 

proteins (CP). If the homology between the CP sequences is 90% or more, viruses are 

considered different isolates of the same species (18). Indeed, the similarity of all ALPV 

CP sequences identified so far is over 90%, irrespective of the insect host of the ALPV 
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isolate (Table 4). This suggests that the sequence of ORF2 is conserved among ALPV-

like viruses. However, sequence comparison between ALPV-Ap, ALPV isolates from A. 

mellifera and ALPV isolated from other aphids demonstrates that sequence diversity is 

much greater at the RNA level. For instance, the ALPV-Ap genome is only 78.3% 

similar to that of ALPV-RhP, isolated from R. padi. In addition, although ALPV-Ap is 

also isolated from aphid, phylogenetic analysis shows that ALPV-Ap has a greater 

sequence similarity to ALPV isolates from A. mellifera. The fact that there are two 

distinguishable genomic branches suggests that the current ALPV classification criteria 

may not be sufficient for ALPV-like viruses.  

In begomoviruses, two viruses with CP homology about 90% are classified as two 

different viruses. For example, African cassava mosaic virus (ACMV) and East African 

cassava virus (EACMV) are two different viruses, but their CP protein identity is up to 

93% (19). Hence, it is possible that ALPV-Ap is a different species, which has two 

isolates, e.g. ALPV-Ap and ALPV honeybee isolate. The first identified ALPV, ALPV-

RhP, was shown to cause disease symptoms in R. padi in the field (3). However, no acute 

pathogenicity was observed from ALPV-Ap infection of A.pisum under ideal rearing 

conditions.  

    Sequence comparison of the different ALPV-Ap and other ALPV isolates show 

major nucleotide sequence variations (>60%) in the 5’ and 3’ UTR (Table 3).  Changes in 

the UTR region may enable evasion from the host RNA interference-based antiviral 

immune response. While some isolates may trigger the RNAi response, others could 

evade and successfully replicate in the host. This strategy is used by the flaviviruses, 

West Nile virus (WNV) and dengue virus (DENV) (20). Sequence variation in the UTR 
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may also correlate with pathogenicity of the virus isolate. Structural differences in the 5’ 

UTR of DENV correlates with disease severity in humans (21).  Experiments designed to 

take a closer look at the UTR of these different isolates would help in understanding the 

variations observed.  

None of the 14 clones of ALPV were infectious and acquisition of an infectious 

clone of ALPV has proven challenging. A common problem encountered for infectious 

clones is the presence of natural mutations in all regions of many genomes within a virus 

population. The concept of viral quasispecies with a high rate of mutation resulting in 

many natural variants may be at play in this scenario. In an environment where the virus 

is constantly being targeted for suppression, natural variants would enable a small 

proportion of the virus genomes to replicate and to persist in the host with noninfectious 

genomes serving as decoys for the host immune system, and providing for greater 

adaptability under changing conditions.  

With the increase in metagenomic sequencing and associated increase in virus 

discovery, more novel isolates and related viruses are being identified. These new data 

will help in our understanding of virus evolution, and toward understanding the 

determinants of pathogenicity and host specificity. Previous regions of the virus genome 

that have not been heavily investigated such as the UTRs could emerge as key players in 

host-virus molecular interactions. 
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Table 1. Primers for RT (R), PCR (P), sequencing (S) and RACE PCR (RACE) 

reactions. Letters at the end of primer name, F denotes forward primer and R denotes 

reverse primer.  

Primer name Sequence (5’-3’) Genome 

position 

(P) AatII-T7-APV-

AP 
ACTGACGTCTAATACGACTCACTATAGGG

AATAACCTGAAACCTTAGACC 
52-75 

(P) AatII-T7-

ALPV-RhP 
ACTGACGTCTAATACGACTCACTATAGGG

TTAAATAAGAAACTATATAT 
1-19 

(P) ALsT30-R TTTTTTTTTTTTTTTTTTTTTTTTTTTTTTAG

AAAAATAACATTTACATACAATACGTACTA

AACC 

9,914-9,940 

(P) AlsKpnI-R ATCGGTACCAGAAAAATAACATTTACATA

CAATACGTACTAAACC 
9,914-9,940 

(P) Als6701F GTAATTTAAGGCTTAGTTATTTAAC 6,749-6,774 
(P) Als7199R ACTAATAATAAACGCCCAGCTTG 7,225-7,248 
(P) 1-1 F CTTAGACCCGTAAGATCCTAAG 67-89 
(R/P) 1-1R AGTGTCAAATGCGTAAATCA 546-566 
(R/P) 1 R CCATGATGGTTGTTCCCATA 3,208-3,228 
(P) 1-2 F GGGAATATCTATTATATCACACACG 3,226-3,251 
(P) 3-1 F GTCCAGTTCAAGAAGACAATAC 8,981-9,003 
(R/P) 3 R CCTAAGTTACACTTCTTGATCCTC 9,882-9,906 
(R/P) AP1-769F CTTCAACTAACGGTATCTCACG 820-842 
(R/P) AP1-1539F GTGGCTTTGATTACGACAATC 1,590-1,611 
(R/P) AP1-2300F CGTATTTGGAGATATTCCAGCT 2,351-2,373 
(R/P) AP1-3081F GCTCTATTAAGGAGAACTAAACG 3,132-3,155 
(R/P) Als3750F AATTGCGTGTGTCTGTTGACTCG 3,795-3,818 
(R/P) AP1-4523 ACAAGCTTACAAACACATTATCG 4,574-4,597 
(R/P) AP1-5295F GCTATTATTGGAATAAACGGAGAC 5,346-5,370 
(R/P) API-6059F CGTAAATCATTGTTGTCTTGCTG  6,110-6,133 
(R/P) ALPVp5 GTAATTTAAGGCTTAGTTATTTAAC 6,749-6,774 
(R/P) Als7096F ATGTATAAAGCGAAATGCGAACG 7,144-7,167 
(R/P) AP1-7775F CCAATGCAGATGGAGTTGATATG 7,826-7,849 
(R/P) AP1-9142R CTGCTTCTGTGAGTATATTGACC 9,171-9,194 
(S) SL1 CAGTCCAGTTACGCTGGAGTC vector 
(S) NZ RevC  AAA TGG TCA GTT AAT CAG TTC T vector 
(RACE) 5’ end  ACGAGCTCCGACTAAGGACGTACGCAGT

ATCCT 

375-409 

(RACE) 3’ end  TGCGAGACTCAGAAGAGAGCGTGAGCGT

CAGGT 

9,571-9,605 
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Figure 1. Genome organization of ALPV-Ap. The virus encodes two polyproteins, the 

non-structural (NS polyprotein) and the capsid protein (CP precursor polyprotein). Two 

internal ribosomal entry sites (IRES) are present at the 5’ end and the intergenic region 

(IGR) between ORF1 and 2. The virus genome is capped at the 5’ terminus with a viral 

protein genome-linked (Vpg) while the 3’ end has a poly (A) tail.   
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Table 2. Summary of predicted ALPV-Ap encoded proteins  

Proteins Size (aa) Molecular mass (kDa) 

ORF1 (NS polyprotein) 2037 231.46 

ORF2 (CP precursor ) 809 89.58 

VP1 242 27.03 

VP2 241 27.06 

VP3 268 29.52 

VP4 58 6.01 
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Figure 2. Molecular characteristics of ALPV-Ap isolated from A. pisum 

(A) Electron micrographs of purified icosahedral virions of ~27 nm (arrows).  

(B) SDS-PAGE gel showing the three major capsid protein of ALPV-Ap. 

(C) ALPV-Ap RNA (2 µg) on a 1% native agarose gel isolated from purified virions. 

The genomic RNA runs just below the 10 kb marker, consistent with the 9,940 nt 

genome.    

  

B C 
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Figure 3. 5’end alignment of ALPV-Ap cDNA clones, assembled ALPV-Ap and RACE 

results. 5’end sequences of 14 ALPV-Ap cDNA clones, the 5’end sequences from 

sequencing of clones of RACE products (RACE) and the 5’end of in silico assembled 

sequences (Assembled) were aligned. While the majority of ALPV-Ap clones aligned 

with the RACE results some clones had the same sequence as the bioinformatics 

assembled ALPV sequences. Start codon begins at nucleotide 583.   
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Table 3. Percentage nucleotide sequence identity between different ALPV isolates. Ap: 

ALPV isolate from A. pisum, AN: ALPV isolate from A. nerii, RhP: ALPV isolate from 

R. padi, Bf: ALPV isolate from bat fecal sample, and Am-Spain: ALPV isolate from A. 

mellifera in Spain.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 Ap AN RhP Bf Am-Spain 

Full length 

Ap 100     

AN 78.9 100    

RhP 78.3 89.3 100   

Bf 78.7 89.3 88.7 100  

Am-Spain 87.7 78.4 77.7 78.5 100 

5’- UTR /3’-UTR/IGR-IRES 

Ap 100     

AN 63.4/60.1/

97.3 

100    

RhP 63.4/59.3/

97.8 

89.6/91.9

/98.4 

100   

Bf 62.2/60.1/

96.8 

92.7/95.2

/97.3 

95.5/94.1

/98.9 

100  

Am-Spain ND/ND/ 

99.4 

ND/ND/ 

96.8 

ND/ND/ 

98.4 

ND/ND/ 

97.3 

100 

ORF1/ORF2 

Ap 100     

AN 81.1/83.3 100    

RhP 80.8/81.4 90.7/84.5 100   

Bf 81.0/83.1 87.7/90.2 88.8/85.4 100  

Am-Spain 95.9/92.2 81.1/83.7 80.9/81.5 81.4/83.7 100 
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Table 4. Protein sequence identity between ALPV isolates. Ap: ALPV isolate from A. 

pisum, AN: ALPV isolate from A. nerii, RhP: ALPV isolate from R. padi, Bf: ALPV 

isolate from bat fecal sample, and Am-Spain: ALPV isolate from A. mellifera in Spain.  

 

 Ap AN RhP Bf Am-Spain 

ORF 1/ORF2 

Ap 100     

AN 87.5/92.0 100    

RhP 87.1/90.2 95.6/93.6 100   

Bf 87.5/91.3 94.0/97.4 95.5/94.3 100  

Am-Spain 98.4/98.5 87.7/92.9 87.2/90.7 87.8/91.9 100 
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Figure 5. Phylogenetic tree of dicistroviruses infecting insects. ALPV genomic 

sequences were downloaded from NCBI (see accession number in main text).  Sequence 

of ALPV-Am-Spain is only near full-length. ALPV-Am- Brookings is only partial 

sequence. The Sequences were aligned using ClustalW. Phylogenetic tree was 

constructed with Test Maximum Likelihood method with 500 bootstrap replications by 

MEGA6.0.    

  

Aphid origin 

Honeybee origin 

Aphid origin 
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B. 

 

Figure 6. Analysis of ALPV-Ap 5’ UTR. A) Alignment of ALPV-Ap 5’UTR. Top lines 

show putative stem-loop formation pattern.  Top line showing structural constraints; ‘(’ 

and ‘)’ indicate base-pairs forming stems, ‘.’ indicates nucleotides forming loop structure. 

The hue shows sequence conservation of the base pair. The saturation decreases with the 

number of incompatible base pairs. Thus, pattern of the hues indicates the structural 

conservation of the base pair.  Gray box at the bottom shows homologous sequences. B) 

Graphic representation of the predicted consensus 5’ UTR structure of ALPV. See A. for 

corresponding sequences and detail of the sequence alignment.  Structure prediction was 

generated by locARNA online multiple RNA structure prediction program with standard 

setting. 
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CHAPTER 3 

CHARACTERIZATION OF AN APHID LETHAL PARALYSIS VIRUS ISOLATE 

FROM A MODEL APHID SPECIES, THE PEA APHID (Acyrthosiphon pisum)  

Diveena Vijayendran, Sijun Liu, and Bryony C. Bonning 

Department of Entomology, Iowa State University, Ames, IA, 50011 

Abstract 

Aphids are pests of major crops and ornamental plants worldwide. Aphid 

management has relied mostly on the use of chemical insecticides and resistant host plant 

cultivars. Both methods show promise for suppression of aphid populations but are 

increasingly challenged by the presence of resistant aphid biotypes. The use of viruses for 

the suppression of insect pests is receiving increased attention. To this end, we identified 

a novel isolate of Aphid lethal paralysis virus (ALPV-Ap) from the pea aphid, 

Acyrthosiphon pisum (Harris). Transmission of ALPV-Ap is horizontal with no vertical 

transmission detected. ALPV-Ap was detected in aphid gut tissue. Replication of ALPV-

Ap in a cell line derived from the spotted cucumber beetle, Diabrotica undecimpunctata, 

DU182A was demonstrated. The characterization increases our knowledge on ALPV 

isolates and would aid in efforts for use in insect pest management.     
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Introduction 

Aphids are important plant pests that cause major annual losses in many crops 

including wheat, potatoes, sugar beet, citrus plants, soybean and pea (1). Aphids are also 

among the most common vectors of plant viruses and transmit economically damaging 

plant viruses such as the Barley yellow dwarf virus (Luteoviridae) (2). While there are 

many plant viruses known to be vectored by aphids, only a few viruses are known to 

infect and replicate in the aphid. A total of eight aphid viruses have been identified: 

Aphid lethal paralysis virus (Dicistroviridae) (3), Rhapalosiphum  padi virus 

(Dicistroviridae) (4), Brevicoryne brassicae virus (Iflaviridae) (5), Acyrthosiphon pisum 

virus (Unclassified) (6), Rosy apple aphid virus (Unclassified) (5, 7), Myzus persicae 

densovirus (Parvoviridae) (8), Acythosiphon pisum densovirus (Parvoviridae) and 

Dysaphis plantaginea densovirus (Parvovoridae) (7). These viruses were identified 

following observation of negative impacts on field or laboratory aphid populations. The 

number of aphid viruses identified remains relatively small compared to the more than 

4,000 species of aphids that have been identified.  

The traditional approach to virus discovery is being complemented by next 

generation sequencing and bioinformatics-based identification of viral sequences (9). 

Recently, known and novel virus sequences have been discovered from insects and from 

insect cell lines from next generation sequencing data (10, 11). Small RNA sequencing 

data also provide for identification of viruses that replicate in the host. Replicating 

viruses in insects are targeted by the RNA interference (RNAi) based immune response 

which generates virus-interfering small RNAs (vsRNA). For RNA viruses, the double 

stranded RNA (dsRNA) intermediate of a replicating virus is targeted by the dicer protein 
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for cleavage into 21-22nt vsRNA duplexes. The vsRNAs are then loaded into the multi 

protein RISC complex to target and silence the virus genome (12). Small RNA 

sequencing data can encompass such vsRNAs that can be used to assemble the viral 

genome.   

      We used sRNA sequencing data to identify viruses infecting a laboratory 

colony of the pea aphid, Acyrthosiphon pisum and identified a new strain of ALPV 

(Dicistroviridae), named ALPV-Ap (3). This virus belongs to the family Dicistroviridae 

along with several other insect infecting viruses such as the Cricket paralysis virus and 

Israeli acute paralysis virus of bees (13). The virions of ALPV-Ap encapsidate a single-

stranded RNA genome of 9,940 nucleotides that was confirmed using molecular methods 

(Chapter 2). This virus is closely related to ALPV isolates found in honeybees, Apis 

mellifera identified in Europe and USA (10, 14, 15). In this paper, we present information 

on the biological interaction of ALPV-Ap with its A. pisum host. ALPV-Ap does not 

infect all adults in an infected population. The virus is present in the midgut tissue as 

shown by fluorescence in-situ hybridization (FISH). An increase in virus titer and 

cytopathic effects were observed on transfection of the spotted cucumber beetle cell line, 

Diabrotica undecimpunctata, DU182A with purified ALPV-Ap RNA. Our study using 

FISH corroborates a previously published study on the localization of ALPV in the gut 

tissue of infected aphids. This study provides new information on virus prevalence in an 

aphid population and identification of a cell line that could be used for in vitro production 

of ALPV toward development of virus- based aphid management strategies.  
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Materials and Methods 

Aphid rearing 

Pea aphid, A. pisum was maintained on broad bean, Vicia faba in a growth 

chamber at 24°C with a 12 hour light and 12 hour dark cycle. Soybean aphid, Aphis 

glycines was maintained on soybean, Glycine max in a growth chamber at 24°C with a 12 

hour light and 12 hour dark cycle. Green-peach aphid, Myzus persicae was maintained on 

Chinese cabbage, Brassica rapa at room temperature (RT). 

Total RNA extraction for detection of ALPV-Ap in multiple aphid species 

Aphids were collected and placed in tubes containing TRIzol® Reagent 

(Invitrogen). The aphids were crushed directly in the TRIzol® Reagent using a pestle and 

RNA was extracted as per the manufacturer’s instructions with overnight precipitation of 

RNA in isopropanol at -80°C. Total RNA was re-suspended in nuclease-free water. RNA 

quality was quantified using NanoDrop 2000 (Thermo Scientific) and the quality was 

assessed using a Bioanalyzer (Agilent).  

Determination of prevalence of ALPV-Ap by RT-PCR 

To test for the prevalence of ALPV-Ap in A. pisum population, individual adults 

were placed in TRIzol® reagent and total RNA was extracted as previously described. 

One-Step RT-PCR (Qiagen) was carried out using ALPV-Ap, 3-1F forward primer, 5’ 

GTCCAGTTCAAGAAGACAATAC  3’ and ALPV-Ap, 3R reverse primer 5’ 

CCTAAGTTACACTTCTTGATCCTC  3’. The RT-PCR conditions were as follows: 

50°C for 30 minutes, 94°C for 5 minutes, 30 cycles of 94°C for 30 seconds, 46°C for 30 



73 
 

seconds, 72°C for 2 minutes, followed by one cycle of 72°C for 10 minutes. The RT-PCR 

products were run on a 1% agarose gel, and stained with ethidium bromide. We also 

assessed the prevalence of ALPV-Ap across aphid species. Laboratory colonies of 

soybean aphid, A. glycines, green peach aphid, M. persicae and two A. pisum colonies, 

one colony harboring the ALPV-Ap virus (positive control) and the other with the virus 

removed (negative control), were tested. Total RNA extraction and RT-PCR using 

ALPV-Ap 3-1F and 3R primers were conducted as described above.     

Vertical transmission of ALPV-Ap in A. pisum 

For vertical transmission studies, individual adult A. pisum were isolated in petri 

dishes containing a moist Kimwipe® and a leaf from the pea plant, Pisum sativum. The 

aphids were then monitored constantly for production of newborn nymphs. Newborn 

nymphs were isolated from the adult A. pisum before contact with the leaf. The newborn 

nymphs were isolated in petri dishes and maintained to the adult stage. The aphids were 

then placed in TRIzol® reagent (Invitrogen) and total RNA was extracted. ALPV-Ap 

detection was carried out using RT-PCR as described above.  

Establishing an ALPV-Ap free A. pisum colony 

Individual A. pisum were isolated in petri dishes containing a moist Kimwipe® on 

a pea leaf. The aphids were then monitored constantly for production of nymphs and 

newborn nymphs isolated in petri dishes prior to contact with the leaf, as described 

above. The resulting adult aphids were transferred to individual P. sativum plants and F2 

generation aphids tested for the presence of virus by RT-PCR. Virus-negative families (n 

= 3) were then pooled to create the ALPV-Ap-free A. pisum colony. 
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Purification of ALPV-Ap virus particles from A. pisum 

A. pisum (~3 g) were ground in liquid nitrogen in a pre-cooled mortar and pestle. 

The powdered aphids were transferred to a 30 mL centrifuge tube on ice. Sodium 

phosphate buffer, 15 mL of 0.01M, pH 7 was added to the tube and the tube briefly 

vortexed. Chloroform, 7.5 mL (1/2 volume of buffer) was added and the tube shaken 

vigorously before incubation on ice for 5 minutes. The tube was then centrifuged at 8,000 

rpm at 4
o
C for 25 minutes in a SS34 rotor (Beckman). The resulting supernatant was 

passed through a syringe filter sterilizer (0.45 µM) into a 30 mL centrifuge tube. Sodium 

phosphate buffer, 5 mL of 0.01M was added to the filtered supernatant, which was then 

centrifuged at 8,000 rpm at 4°C for 25 minutes in a SS34 rotor (Beckman). The resulting 

supernatant was then transferred to a 30 mL ultracentrifuge tube and centrifuged at 

40,000 rpm at 4
o
C for 2.5 hours using a 70 Ti rotor (Beckman). The supernatant was 

removed and 5 mL of 0.01M sodium phosphate buffer was added to the pellet. The tube 

was covered with parafilm and place on ice at 4
o
C overnight with shaking. The re-

suspended virus mixture was transferred into 1.5 mL centrifuge tube and centrifuged 

at10, 000 rpm at 4°C for 5 minutes. The resulting supernatant was transferred into a new 

tube and the final volume was adjusted to 5.5 mL using 0.01M sodium phosphate buffer. 

The supernatant was added to the top layer of a 2.5 mL, 30% sucrose cushion in an 

ultracentrifuge tube. The tube was centrifuged at 43,000 rpm at 4
o
C for 3 hours using a 

70.1 Ti rotor (Beckman). The resulting liquid was removed and the pellet re-suspended 

overnight at 4
o
C as previously described. The purified virus was stored in -20°C.      
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Infection of A. pisum with ALPV-Ap via feeding and microinjection 

Virus free A. pisum were infected using two different methods, membrane feeding 

and microinjection. For membrane feeding bioassays, second to third instar A. pisum 

(~10-15 aphids) were fed overnight on complete artificial diet (16) containing BSA at 

varying concentrations and purified ALPV-Ap virions. For injection bioassays, adult A. 

pisum were injected with ~0.2 µL purified ALPV-Ap virions. The fed and injected A. 

pisum were transferred onto P. sativum plants and the aphid population was allowed to 

grow for 7 days. Aphids were then tested for the presence of ALPV-Ap by RT-PCR with 

actin as an internal control gene (NCBI accession no. NM_001126200.2).  The internal 

control actin primers used were, Forward 5’ ATTGAACCCCAAGGCTAATC 3’ and 

Reverse 5’ GATCGAGACGAAGGATAGCA 3’.   

Localization of virus in aphid tissues using fluorescence in situ hybridization 

Guts from adult A. pisum were dissected in 1X phosphate buffer saline (PBS). 

The guts were then placed on a glass cover slip capsided with 0.01% poly – L – Lysine 

(BD Biocapsid ™) and fixed in 4% paraformaldehyde in PBS for 20 minutes. The guts 

were then washed 3 times in 1X PBS for 5 minutes each time, and equilibrated for 10 

minutes in hybridization buffer which contains, 5X SSC (750 mM NaCl, 75 mM Na-

Citrate, pH 7), 50% formamide , 200 mg/mL dextran sulfate , 0.1M DTT , 0.5X 

Denhardt’s solution (1% Ficoll type 400, 1% polyvinylpyrrolidone, 1% bovine serum 

albumin, BSA). The gut tissue was incubated with 10 ng of 5’ end labeled probes in 

hybridization buffer at 60°C overnight in a humid chamber. Guts were washed once for 5 

minutes in 1X wash buffer (150 mM NaCl, 15 mM Na-Citrate, pH7, 10 mM DTT), twice 
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for 15 minutes in wash buffer at 55°C and twice for 15 minutes in 0.5X wash buffer. 

Tissues were then rinsed three times for 5 minutes in 1X PBS and mounted in Fluoro- 

Gel anti-fade solution (Electron Microscopy Sciences) with 1 ng/µL DAPI (4',6-

diamidino-2-phenylindole) on a microscope slide. The slides were stored at 4°C for 2 

hours. The tissues were observed using a Carl Zeiss Axio Vert.A1 florescence 

microscope and imaged using the Zeiss Zen 2012 software. The probe sequences used for 

ALPV-Ap: 5’-/56 -FAM/CCGTGGATTTATCATGCATAG - 3’ 

5’/ALEXA/CACTCTGGTGACATTGGATTAATACCTACAGCAATAGAATTTTGCA

CGCGATTACGCATAGAGTGAGCAA- 3’.    

Anti-ALPV antibody design  

Cricket Paralysis virus (CrPV: Dicistroviridae) VP1 protein which is a conserved 

domain model for picornaviruses (Pfam: cd00205)  was analyzed in the Φ-Ψ Map viewer 

interphase of the VIPER data base (17). The exposed amino acids (on the surface) were 

identified to use as reference in a secondary structure alignment with the VP1 proteins 

from ALPV. The secondary structure alignment was performed using the CN3D tool 

available at National Center for Biotechnology Information (NCBI) website (18). The 

selected epitope PVQEDNTVIDETRT was analyzed to verify a high antigenicity index 

(above or close to 1) using the Antigenicity Plot tool from the JaMBW website 

[http://www.bioinformatics.org/JaMBW/]. The peptide and the polyclonal antibody were 

synthesized by GenScript (Piscataway, NJ, USA).    
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Localization of virus in aphid microtome sections using immunogold labelling 

 Adult A. pisum were fixed and sectioned as previously described (19). The 

treatments included no probe controls, primary antibody only control and primary and 

secondary antibody treatments. Microtome sections on microscope slides were blocked 

with 200 µL blocking buffer (1X PBS, 3% BSA, 1% normal goat serum and 0.1% fish 

gelatin). Blocking was carried out in a humidified chamber for one hour at room 

temperature (RT). The blocking buffer was replaced with 200 µL anti-ALPV primary 

antibody diluted 1:50 in blocking buffer. The primary antibody treatment was carried out 

in a humid chamber for two hours at 37°C. The sections were then washed in blocking 

buffer three times for 10 minutes at RT. The goat anti-rabbit secondary antibody 

conjugated to 10 nm gold was diluted in1:40 in blocking buffer and 200 µL applied to the 

microtome sections. The secondary antibody treatment was carried out for two hours at 

37°C. The slides were washed four times in blocking buffer for 5 minutes at RT. The 

gold particles on the secondary antibody were enhanced with silver. Silver enhancer and 

silver developer solutions were mixed in equal volumes to create the working silver 

enhancement solution. Silver enhancement was carried out with 150 µL of solution for 20 

minutes at RT in the dark. The slides were subsequently washed in sterile water four 

times for 5 minutes at RT and then allowed to air dry. Sections were visualized using a 

BX40 Olympus light microscope. 

Screening of insect cell lines for ALPV-Ap replication 

Various insect cell lines were screened for their ability to support the replication 

of ALPV-Ap RNA. The media used to culture the various cell lines are listed in the Table 
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1 below. The cell lines were seeded in a 6 well plate in medium supplemented with fetal 

bovine serum (FBS). The cells were allowed to grow to 60-70% confluence at 28°C. The 

cell line medium was removed and 2 mL medium without FBS was added to the cells. 

After 20 minutes, the cells were transfected with various treatments without FBS. The 

cell lines were transfected with three different treatments: A control treatment of 1 mL 

cell culture medium only, a transfection control of 1 mL cell culture medium with 20 µL 

Cellfectin II (Invitrogen) reagent and a virus treatment of 1 mL cell culture medium with 

20 µL Cellfectin II reagent (Invitrogen) and 3 µg of ALPV-Ap RNA purified from 

ALPV-Ap virions. The transfection procedure was carried out for 4 hours at room 

temperature with 2-4 shaking motions per minute. The transfection reagents were 

removed and replaced with 2 mL of the appropriate cell line medium with FBS. The cell 

lines were incubated at 28°C and monitored daily for cytopathic effects (CPE). Following 

collection at various time points post transfection, the cells were centrifuged at 5,000 rpm 

for 5 minutes, medium removed and the cell pellets were stored at -80°C.  

Table 1. Composition of media used for cell lines screened for infection by ALPV-Ap.  

Cell line Composition of Growth medium  

Glassy winged sharp shooter – GWSS Z15 

(Homalodisca vitripennis) 

Excell 420® (SAFC Biosciences) + 2.5% 

FBS (Atlanta Biologics) 

Leafhopper – Ac – 20 

(Agallia constricta) 

Excell 420® (SAFC Biosciences) + 2.5% 

FBS (Atlanta Biologics) 

Fall armyworm – Sf9 

(Spodoptera frugiperda) 

Sf-900™ SFM (Gibco) 

Cabbage looper – Hi5  

(Trichoplusia ni) 

EXPRESS FIVE® SFM (Gibco) 

Mosquito – C6/36 

(Aedes albopictus) 

Liebovitz's L-15 (Life technologies) + 1% 

L-glutamine (SIGMA) + 10% FBS (Atlas 

Biologics) 

Fruit fly – S2 

(Drosophila melanogaster) 

Schneider’s Drosophila medium (Gibco) + 

2.5% FBS (Gibco) 
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Table 1. Composition of media used for cell lines screened for infection by ALPV-Ap 

(Continued)  

  

Wasp – Tex-2 

(Trichogramma exiguum)  

TNM-FH (Sigma-Aldrich) + 10% FBS 

(Gibco) 

Spotted cucumber beetle – DU182A 

(Diabrotica undecimpunctata) 

Excell 420® (SAFC Biosciences) +  

3% FBS (Gibco) 

 

Relative quantification of ALPV-Ap titer in DU182A cell line 

Transfected cells were collected at various time points post transfection. Total 

RNA was extracted from the cells using TRIzol® reagent. Total RNA (100 ng) was used 

for qRT-PCR analysis. Two technical replicates were tested for each sample. The fold-

change of ALPV-Ap RNA in the cells was determined using the ΔΔCt method (20). The 

Ct values were normalized to the internal control gene, 28S ribosomal RNA (NCBI 

accession no. AY171445.1) and the negative control calibrator sample (cells in medium 

only).   

Results 

ALPV-Ap was detected in A. pisum, but not in A. glycines or M. persicae. 

 The presence of ALPV-Ap was tested by RT-PCR with primers designed to 

amplify the 3’ end of ALPV-Ap genome from nucleotide 8,971to 9,906 (Figure 1). A 

PCR product was detected in A. pisum but not in A. glycines and M. persicae.  

ALPV-Ap infectivity and transmission  

Individual adult A. pisum were tested by RT-PCR to assess the prevalence of 

ALPV-Ap in the population. In the 24 adult A. pisum tested, 17 adults (70.8%) showed 
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the presence of ALPV-Ap (Figure 2). No vertical transmission of ALPV-Ap from adult 

A. pisum to newborn nymphs was detected using single family studies (n=70). 

Establishing infection of ALPV-Ap in virus-free A. pisum was successful when purified 

virus was either microinjected directly into the aphid hemolymph or delivered orally in 

artificial diet containing BSA. A. pisum free of the virus was not infected when fed on 

artificial diet containing purified ALPV-Ap in the absence of BSA (Figure 3). Virus was 

also detected in the honeydew of aphids fed virus and BSA.  

Localization of ALPV-Ap RNA in A. pisum gut tissues 

 ALPV-Ap was localized in A. pisum using fluorophore labelled probes for viral 

RNA, and anti-ALPV primary antibody generated against the capsid protein region for 

localization of virions using immunogold experiments. ALPV-Ap RNA was localized to 

the gut of A. pisum with relatively high abundance in the midgut cell using FISH (Figure 

4). No fluorescence was observed in the negative control gut tissue. In the immunogold 

silver-enhancement experiments, the no probe controls showed no binding to the 

microtome section of the gut tissue and the primary antibody only control showed very 

low binding. Strong silver enhancement was observed for the treatment with both 

primary and secondary antibody used for ALPV-Ap virion detection (Figure 5).    

Screening of cell lines for ALPV-Ap replication 

Various insect cell lines were screened for their ability to support replication of 

ALPV-Ap (Table 2). The cell lines were transfected with 3 µg of RNA from purified 

virions. Two cell lines; GWSS Z15, Homalodisca vitripennis and Tex-2, Trichogramma 

exiguum showed cytopathic effects (CPE) but no increase in virus positive strand RNA 
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based on qRT-PCR analysis.  The spotted cucumber beetle, Diabrotica undecimpunctata 

cell line, DU182A showed cytopathic effects (Figure 6) and an increase in virus positive 

strand RNA. Cytopathic effects observed included lower cell density and rounding of the 

cells three days post transfection. A 60-fold increase of ALPV-Ap positive sense RNA 

was observed relative to control treatments one day post transfection compared to the 

negative controls, but levels of positive sense RNA dropped to basal levels by day three. 

By five days post transfection the cells had recovered and displayed similar cell 

morphology and density to the negative control treatments (Figure 6).  

Discussion 

 Current knowledge of the biology of ALPV is limited to only one isolate of 

ALPV, ALPV-RhP from R. padi (21). Localization of ALPV-RhP was detected in the 

gut, brain and embryonic tissue (22, 23), with a vertical transmission rate of 30% in  R. 

padi and a 17% rate in the wheat aphid, Sitobion avenae (24).  High temperatures 

(increase of 5°C) increased the incidence of virus in the aphid colony.  Here, we studied 

the biology of ALPV-Ap, a new isolate of ALPV from A. pisum that is related to ALPV-

RhP but more closely related to the honeybee, A. mellifera isolates (ALPV-AM) (see 

Chapter 2). We showed that ALPV-Ap does not infect all A. pisum adults in the 

population, is not vertically transmitted in the pea aphid, and is detected in the aphid 

midgut cells. In addition, our study identified an insect cell line (DU182A) that could 

support the initial replication of the virus.  

No vertical transmission was detected using single family assays for ALPV-Ap. 

This result is in contrast to data for an ALPV isolate from R. padi , ALPV-RhP which 
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had a vertical transmission rate of ~ 30% in R. padi and a 17% vertical transmission rate 

in S. avenae (24). There is a possibility that ALPV-Ap may still be vertically transmitted 

but at very low levels. Instead, ALPV-Ap may rely primarily or exclusively on horizontal 

transmission either via the plant phloem as shown for Rhopalosiphum  padi virus (RhPV) 

and Dysaphis plantaginea densovirus (DplDNV) or via honeydew contamination of the 

plant surface (7, 25). Several other dicistroviruses, Kashmir bee virus (KBV), Black 

queen cell virus (BQCV), Acute bee paralysis virus (ABPV) and Sacbrood virus (SBV) 

have been detected in pollen fed upon by A. mellifera (26). The source of the virus 

inoculum in the pollen is unknown but could have been introduced by another infected 

insect that fed on the plant or inoculation via A. mellifera saliva.  

Given that ALPV isolates have been detected in diverse species of insects, 

including honeybees, aphids, corn rootworms, and whiteflies, this virus may rely on 

horizontal transmission to multiple host species, rather than being highly adapted for 

infection of a single or a few closely related host insect species. The potential 100% 

horizontal transmission rate of ALPV-Ap makes the virus an ideal candidate for field 

application by spraying. Although sRNA and transcriptome sequencing data for A. 

glycines indicated that an ALPV-like virus is present in the laboratory colony (data not 

shown), the 3’ end of the genome between the two different ALPV isolates may be 

dissimilar as suggested by the lack of amplification of the specific RT-PCR product from 

A. glycines samples.    

ALPV-Ap RNA was detected in the gut tissue of A. pisum, similar to ALPV-RhP 

which also localized to the gut tissue of R. padi (22, 23). We established that infection of 

A. pisum with ALPV-Ap was enabled by the presence of BSA, with no infection of 



83 
 

aphids fed on purified virions in diet in the absence of BSA. A recent publication (27) 

and unpublished work (Linz LB, unpublished) demonstrated the increase in plant virus 

uptake by aphids when co-fed with BSA or with several other non-phloem proteins such 

as casein and cytochrome C (27, 28). Possible explanations for this observation include: 

(i) BSA attaches to the virus and facilitates entry of the virion into the gut cells via an 

additional receptor on the gut surface or (ii) BSA provides additional substrate for gut 

proteases thereby protecting virions from degradation by gut proteases. In nature, 

horizontally transmitted ALPV-Ap could receive similar benefits from plant phloem 

proteins if horizontally transmitted through plant phloem.  

 On the basis that research on ALPV-Ap would be facilitated by a cell line that 

supports replication of this virus, we screened cell lines for their ability to support virus 

replication. In the absence of aphid cell lines, the following cell lines derived from other 

hemipteran insects were screened: lines were derived from the glassy – winged sharp 

shooter (GWSS), H. vitripennis, and the leafhopper, A. constricta, Ac-20. While the Ac-

20 cell line showed no CPE following transfection of ALPV-Ap RNA, CPE were 

observed in the GWSS cell line.  No increase in virus titer as indicated by the presence of 

increased amounts of positive strand RNA was detected however. A similar observation 

was made with the Tex-2 cell line, a hymenopteran cell line tested on the basis that an 

ALPV-like virus, ALPV- Am-Brookings, was detected in A. mellifera (10).  On further 

analysis of infection of the GWSS Z15 cell line, we determined that icosahedral virus-

like particles ranging from 20 to 45nm in diameter were present in non-transfected 

GWSS cells by TEM indicating that this cell line is covertly infected with other viruses 

(Supplementary Figure 1). 
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The DU182A cell line showed an initial 60-fold increase in viral RNA but the 

cells recovered from the infection by day 3 post transfection. This result indicates that 

this cell line can support ALPV-Ap replication but only in the short-term. Recovery of 

the transfected cells may result from an RNAi-based antiviral response. ALPV-Ap capsid 

proteins were not detected by western blot in the DU182A cell line (data not shown). A 

similar observation (increased viral RNA in the absence of detectable capsid protein) was 

made for the replication of Homalodisca coagulata virus-1 (HoCV-1: Dicistroviridae) in 

the GWSS Z15 cell line (J.A. Kroemer et al. unpublished). Further experiments are 

needed to elucidate why the capsid proteins are not produced via the IGR IRES as 

expected on entry of the RNA into these cell lines (29). The IGR IRES have not been 

tested for functionality in a hempiteran cell line. 

Since the first described ALPV isolate (ALPV-RhP), a second isolate was 

identified in A. mellifera colonies 23 years later (10). Since then, ALPV isolates have 

been identified in multiple colonies of A. mellifera, A. nerii and in bat fecal samples (14, 

15, 30, 31). Laboratory studies have further established that ALPV can infect multiple 

other aphid species and whiteflies (30, 32). These publications show the wide host range 

of ALPV isolates in nature and the ability of this virus to infect multiple insects. It 

appears that ALPV may be a virus that is less adapted to one specific host like some other 

dicistroviruses such as RhPV and Drosophila C virus that would have a higher rate of 

vertical transmission (33-35). The specific ecological strategy of ALPV to infect a host 

insect is similar to that of another dicistrovirus Cricket paralysis virus (CrPV)  that has a 

wide host-range and the ability to infect multiple insects (35). CrPV has been showed to 
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transmit horizontally in populations of olive fruit fly, Dacus oleae by fecal contamination 

(36).  

 The study provides characterization of ALPV-Ap and its interactions with the 

model aphid species, A. pisum. The availability of the genome sequence for A. pisum will 

make future studies for aphid – virus interactions a possibility especially in aspects of 

antiviral immunity. Analysis of antiviral immunity responses other than RNAi using A. 

pisum and ALPV isolate from R. padi  showed no significant differences in the immune 

response (37). There appears to be natural variation in the pathogenicity of the various 

ALPV isolates with some isolates being highly virulent to the host aphid (21) and others 

having no apparent negative impact on the host aphid (30). Surprisingly, the ALPV-AN 

isolate from A. nerii was not virulent to the natural host aphid but showed high virulence 

towards another species of aphid, M. persicae in laboratory assays. Additional ALPV– 

host studies will further facilitate our understanding of ALPV and potentially pave the 

way toward development of virus – based insecticides that could be used in insect pest 

management. 

Author Contributions 

 DV conducted all experiments and wrote the manuscript. SL was involved in 

experimental design and data analysis. BCB was involved in experimental design, 

discussion of data analysis and writing of the manuscript. 

 

 



86 
 

Acknowledgements 

 The authors would like to thank Dr. Jimena Carrillo-Tripp for design of the anti-

ALPV antibody and Dr. Jeremy Kroemer for advice on maintaining the various 

hemipteran cell lines. This work was funded by the North Central Soybean Research 

Program, and the Iowa State University Plant Sciences Institute Virus-Insect Interactions 

Initiative. 

  



87 
 

References 

1. Dedryver CA, Le Ralec A, & Fabre F (2010) The conflicting relationships 

between aphids and men: a review of aphid damage and control strategies. C R 

Biol 333(6-7):539-553. 

 

2. Ng C. K. J & Perry L. K (2004) Transmission of plant viruses by aphid vectors. 

Mol. Plant. Pathol. 5(5):505-511. 

 

3. Williamson C & Rybicki EP (1989) A comparative study on the cell-free 

translation of the genomic RNAs of two aphid picorna-like viruses. Arch Virol 

109(1-2):59-70. 

 

4. D'Arcy CJ, Burnett PA, Hewings AD, & Goodman RM (1981) Purification and 

characterization of a virus from the aphid Rhopalosiphum padi. Virology 

112(1):346-349. 

 

5. Ryabov EV (2007) A novel virus isolated from the aphid Brevicoryne brassicae 

with similarity to Hymenoptera picorna-like viruses. J Gen Virol 88(Pt 9):2590-

2595. 

 

6. Richards S, et al. (2010) Genome Sequence of the Pea Aphid Acyrthosiphon 

pisum. Plos Biology 8(2). 

 

7. Ryabov EV, Keane G, Naish N, Evered C, & Winstanley D (2009) Densovirus 

induces winged morphs in asexual clones of the rosy apple aphid, Dysaphis 

plantaginea. Proc Natl Acad Sci U S A 106(21):8465-8470. 

 

8. van Munster M, et al. (2003) Characterization of a new densovirus infecting the 

green peach aphid Myzus persicae. J Invertebr Pathol 84(1):6-14. 

 

9. Liu S, Vijayendran D, & Bonning BC (2011) Next generation sequencing 

technologies for insect virus discovery. Viruses 3(10):1849-1869. 

 

10. Runckel C, et al. (2011) Temporal analysis of the honey bee microbiome reveals 

four novel viruses and seasonal prevalence of known viruses, nosema, and 

crithidia. PLoS ONE 6(6):e20656. 

 

11. Wu Q, et al. (2010) Virus discovery by deep sequencing and assembly of virus-

derived small silencing RNAs. Proc Natl Acad Sci U S A 107(4):1606-1611. 

 

12. Csorba T, Pantaleo V, & Burgyan J (2009) RNA Silencing: An Antiviral 

Mechanism. Advances in Virus Research, Vol 75, Advances in Virus Research,  

(Elsevier Academic Press Inc, San Diego), Vol 75, pp 35-71. 

 



88 
 

13. Bonning BC & Miller WA (2010) Dicistroviruses. Annu Rev Entomol 55:129-

150. 

 

14. Granberg F, et al. (2013) Metagenomic detection of viral pathogens in Spanish 

honeybees: co-infection by Aphid lethal paralysis, Israel acute paralysis and Lake 

sinai viruses. PLoS One 8(2):e57459. 

 

15. Ravoet J, et al. (2013) Comprehensive bee pathogen screening in Belgium reveals 

Crithidia mellificae as a new contributory factor to winter mortality. PLoS One 

8(8):e72443. 

 

16. Febvay G, Delobel B, & Rahbe Y (1987) Influence of the amino acid balance on 

the improvement of an artificial diet for a biotype of Acyrthosiphon pisum 

(Homoptera: Aphididae). Can.J.Zool 66:2449-2453. 

 

17. Carrillo-Tripp M, et al. (2009) VIPERdb2: an enhanced and web API enabled 

relational database for structural virology. Nucleic Acids Res 37(Database 

issue):D436-442. 

 

18. Wang Y, Bryant S, Tatusov R, & Tatusova T (2000) Links from genome proteins 

to known 3-D structures. Genome Res 10(10):1643-1647. 

 

19. Boyapalle S, Pal N, Miller WA, & Bonning BC (2007) A glassy-winged 

sharpshooter cell line supports replication of Rhopalosiphum padi virus 

(Dicistroviridae). J Invertebr Pathol 94(2):130-139. 

 

20. Livak KJ & Schmittgen TD (2001) Analysis of relative gene expression data 

using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods 

25(4):402-408. 

 

21. Williamson C, Rybicki EP, Kasdorf GF, & Von Wechmar MB (1988) 

Characterization of a new picorna-like virus isolated from aphids. J Gen Virol 

69:787-795. 

 

22. Laubscher JM, Jaffer MA, & von Wechmar MB (1992) Detection by immunogold 

cytochemical labeling of Aphid lethal paralysis virus in aphid Rhopalosiphum 

padi (Hemiptera:Aphididae). J Invertebr Pathol 60:40-46. 

 

23. Hatfill SJ, Williamson C, Kirby R, & von wechmar MB (1990) Identification and 

localization of Aphid lethal paralysis virus in thin tissue sections of the 

Rhopalosiphum padi aphid by in situ nucleic acid hybridization. J Invertebr 

Pathol 55(2):265-271. 

 

24. Laubscher JM & von Wechmar MB (1992) Influence of Aphid lethal paralysis 

virus and Rhopalosiphum padi virus on aphid biology at different temperatures. J 

Invertebr Pathol 60:134-140. 



89 
 

 

25. Ban L, Didon A, Jonsson LM, Glinwood R, & Delp G (2007) An improved 

detection method for the Rhopalosiphum padi virus (RhPV) allows monitoring of 

its presence in aphids and movement within plants. J Virol Methods 142(1-2):136-

142. 

 

26. Chen Y, Evans J, & Feldlaufer M (2006) Horizontal and vertical transmission of 

viruses in the honey bee, Apis mellifera. J Invertebr Pathol 92(3):152-159. 

 

27. Bencharki B, et al. (2010) Phloem protein partners of Cucurbit aphid borne 

yellows virus: possible involvement of phloem proteins in virus transmission by 

aphids. Mol Plant Microbe Interact 23(6):799-810. 

 

28. Bonning BC & Chougule NP (2014) Delivery of intrahemocoelic peptides for 

insect pest management. Trends Biotechnol 32(2):91-98. 

 

29. Brödel AK, et al. (2013) IRES-Mediated Translation of Membrane Proteins and 

Glycoproteins in Eukaryotic Cell-Free Systems. PLoS One 8(12):e82234. 

 

30. Dombrovsky A & Luria N (2013) The Nerium oleander aphid Aphis nerii is 

tolerant to a local isolate of Aphid lethal paralysis virus (ALPV). Virus Genes 

46(2):354-361. 

 

31. Ge X, et al. (2012) Metagenomic analysis of viruses from bat fecal samples 

reveals many novel viruses in insectivorous bats in China. J Virol 86(8):4620-

4630. 

 

32. Van Munster M, et al. (2002) Sequence analysis and genomic organization of 

Aphid lethal paralysis virus: a new member of the family Dicistroviridae. J Gen 

Virol 83(Pt 12):3131-3138. 

 

33. Gildow FE & D'Arcy CJ (1990) Cytopathology and experimental host range of 

Rhopalosiphum padi virus, a small isometric RNA virus infecting cereal grain 

aphids. J Invertebr Pathol 55(2):245-257. 

 

34. Kapun M, Nolte V, Flatt T, & Schlötterer C (2010) Host range and specificity of 

the Drosophila C virus. PLoS One 5(8):e12421. 

 

35. Plus N, Croizier G, Reinganum C, & Scott PD (1978) Cricket paralysis virus and 

Drosophila C virus: serological analysis and comparison of capsid polypeptides 

and host range. J Invertebr Pathol 31(3):296-302. 

 

36. Manousis T & Moore NF (1987) Cricket Paralysis Virus, a Potential Control 

Agent for the Olive Fruit Fly, Dacus oleae Gmel. Appl Environ Microbiol 

53(1):142-148. 

 



90 
 

37. Gerardo NM, et al. (2010) Immunity and other defenses in pea aphids, 

Acyrthosiphon pisum. Genome Biol 11(2):R21. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



91 
 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1. ALPV-Ap was not detected in other species of aphids.  A. glycines and M. 

persicae were tested for the presence of ALPV-Ap by RT-PCR. Positive control, ALPV-

Ap infected A. pisum; negative control, ALPV-Ap free A .pisum. NTC, no template 

control. Primers designed to amplify 3’ end of virus genome from 8,971nt to 9,906nt 

were used for detection. L, DNA ladder. 
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Figure 2. Prevalence of ALPV-Ap in A. pisum population. A total of 70 adult A. pisum 

were tested for the presence of the virus by RT-PCR and a representative gel is shown. 

Positive control, random sample of multiple A. pisum from the infected colony; negative 

control, A. pisum from the ALPV-Ap – free colony. NTC, no template control. L, DNA 

ladder.  
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Figure 3. BSA is required for oral infection of virus free A. pisum with ALPV-Ap. 

Microinjection and feeding bioassays with varying concentrations of bovine serum 

albumin (BSA) or diet only were used. Droplets of honeydew in the feeding dish 

containing the virus and BSA mixed with the diet were pooled for the honeydew sample. 

Positive control, ALPV-Ap infected A. pisum; negative control, ALPV-Ap-free A. pisum; 

NTC, no template control for the RT-PCR experiment. Aphids were microinjected with 

or fed on virus and tested after 7 days. 
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Figure 4. Presence of ALPV-Ap in A. pisum gut. Virus was detected using fluorescence 

in situ hybridization. The negative control guts were from ALPV-Ap-free A.pisum. DAPI 

staining of DNA was used for visualization of nuclei. ALEXA 488 conjugated probe 

antisense to the virus genome was used in the probe treatment. Images are representative 

of two independent experiments. 1, foregut; 2, midgut; 3, hindgut.  
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Figure 5. Localization of ALPV-Ap to A. pisum gut. Immunogold labelling with silver 

enhancement was used for microtome sections of A. pisum gut for localization of ALPV-

Ap. No antibody and no primary antibody controls serve as negative controls. Images are 

representative of four independent experiments. Lower image shows the light image of 

the aphid gut tissue microtome section shown above.  
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Table 2. Insect cell lines screened for their ability to support replication of ALPV-Ap. 

Cell lines were monitored for cytopathic effects (CPE) and qRT-PCR conducted to 

monitor for changes in virus titer based on the abundance of positive sense RNA.   

 

* GWSS Z15 contains viruses that naturally infect the cell line (Supplementary Figure 1). 

 

  

  

Insect order Insect cell line screened Cytopathic 

effects 

Increase in 

viral RNA 

Hemiptera Glassy winged sharp shooter – 

GWSS Z15 

(Homalodisca vitripennis) 

Yes* No 

Hemiptera Leafhopper – Ac-20 

(Agallia constricta) 

No No 

Lepidoptera Fall armyworm – Sf9 

(Spodoptera frugiperda) 

No No 

Lepidoptera Cabbage looper – Hi5  

(Trichoplusia ni) 

No No 

Diptera Mosquito – C6/36 

(Aedes albopictus) 

No No 

Diptera Fruit fly – S2 

(Drosophila melanogaster) 

No No 

Hymenoptera Wasp – Tex-2 

(Trichogramma exiguum)  

Yes No 

Coleoptera Spotted cucumber beetle – DU182A 

(Diabrotica undecimpunctata) 

Yes Yes 



97 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6. Cytopathic effects in DU182A cells following transfection with ALPV-Ap 

RNA. Images show cells at different days post treatment. Cells were transfected with 3 

µg of virus RNA. Cytopathic effects were evident at one and three days post transfection, 

but cells had recovered by day 5. Medium only and Cellfectin show cells in negative 

control treatments.  
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Supplementary information  

Supplementary Figure 1. The GWSS Z15 cell line is naturally infected with viruses 

Glassy – winged sharp shooter (GWSS) Z15 cells were grown in large quantities 

(~30 mL of 100% confluent cells) and were kept frozen at -80°C. The tube containing the 

cells was thawed and vortexed to break open the cells and release the virus particle. The 

tube was centrifuged at 3,200 x g for 15 minutes at 4°C. The supernatant was collected 

after centrifugation and used to precipitate virus particles using 7.5 mL Polyethylene 

glycol (Biovision). Virus particles were precipitated overnight at 4°C. The tube was 

centrifuged at 3,200 x g for 30 minutes at 4°C to pellet the precipitated virus particles. 

The pellet was re-suspended in 0.5 mL1X PBS. Virus particles were negatively stained 

and viewed using a transmission electron microscope as previously described (Liu et al. 

2014).  

 

Transmission electron micrograph of purified virions from GWSS Z15 cells, negative 

stained with uranyl acetate. In addition to some cellular debris, icosahedral structures that 

are consistent with virus particles were observed (arrow heads). The diameter of the 

virus-like particles ranged from 20 nm – 45 nm.  
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CHAPTER 4 

A NOVEL VIRUS OF SOYBEAN APHID WITH PLANT VIRUS 

CHARACTERISTICS 

Diveena Vijayendran, Sijun Liu and Bryony C. Bonning 

Department of Entomology, Iowa State University, Ames, IA, 50011 

Abstract 

The soybean aphid, Aphis glycines is a major pest on soybean worldwide resulting 

in losses in the billions of dollars per year. We identified a novel A. glycines virus named 

Aphis glycines virus (AGV) from transcriptome sequences. This virus has a single-

stranded RNA genome of ~ 4,771 nt  and potentially encodes four proteins. The RNA-

dependent RNA polymerase (RdRP) showed similarity to insect tetraviruses while the 

capsid protein show similarity to plant sobemoviruses. AGV is wide-spread in A. glycines 

populations and persistently infects the aphid with a 100% vertical transmission rate, 

suggesting that AGV is highly adapted to this species. AGV genome sequences was not 

detected in the A. glycines genome. AGV was suseptible to the RNAi pathway, but only 

in the presence of a second A. glycines virus, indicating that AGV may have evolved to 

avoid the host immune response and persistently infect soybean aphids. 

Introduction 

 Aphids are major pest of agricultural crops worldwide because of their ability to 

feed on plant phloem and transmit a significant number of economically important plant 

viruses (1, 2). The soybean aphid, Aphis glycines Matsumura was introduced into North 
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America in 2000 and has since become one of the primary pests in soybean fields (3). 

The estimated losses resulting from low yields combined with the cost of management of 

this pest in North America alone were $1.6 billion over a 10 year period (4). Current 

management strategies to control A. glycines populations include the use of chemical 

insecticides, the use of predatory arthropods and development of aphid resistant soybean 

cultivars (1, 5, 6). Although soybean cultivars such as Rag 1 and Rag 2 showed promise 

in aphid management, resistant biotypes of A. glycines have been identified (7). One 

novel avenue that has yet to be explored for aphid management is the identification and 

utilization of insect viruses.  

 Insect viruses were traditionally identified when symptoms were observed in the 

infected organism. While symptoms usually result from an acute infection of the host 

insect, viruses with low pathogenicity or that are asymptomatic were not commonly 

identified. Next generation sequencing (NGS) has been successfully used for 

identification of viruses from multiple insect species that lacked disease symptoms. The 

first report of insect viruses identified from sequencing data was from a metagenomic 

analysis of the honey bee, Apis mellifera conducted to elucidate the causative agents of 

colony collapse disorder (CCD) (8). Since this report, there have been more than 20 

reports of novel viruses identified from insects and from insect cell lines (9-12). It is also 

being realized that some insect viruses such as the Aphid lethal paralysis virus (ALPV) 

have a much broader host range than previously thought with detection of this virus in 

aphids, honeybees and corn rootworm (11, 13-15). Sequencing data therefore provide a 

useful resource for the identification of novel viruses that can enhance our understanding 

of insect virus evolution and insect-virus interactions. 
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 We used our previously published A. glycines transcriptome sequencing data for 

identification and assembly of virus sequences. We report on the identification of a novel 

A. glycines virus, Aphis glycines virus (AGV). Remarkably, the 5’ end of the genome that 

encodes nonstructural proteins resembles an insect virus, while the 3’ end of the genome 

resembles a plant virus. Although all A. glycines tested harbor this virus, symptoms were 

not apparent. Small RNA sequencing data showed that AGV is susceptible to the host 

RNA interference (RNAi) - based antiviral immune response. We detected 22 nt virus-

derived small  interfering RNAs (vsRNAs) which are characteristic of dicer processing of 

viral replication intermediates (16). This study describes the first A. glycines virus in 

addition to providing evidence for a functional RNAi-based antiviral response in aphids.            

Materials and Methods 

Aphid rearing  

Soybean aphid, Aphis glycines Matsumura was reared in the laboratory from Iowa 

and Ohio field collected samples. The aphids were reared on soybean plants, Glycine max 

at room temperature (20°C to 25°C) with a continuous light cycle. 

AGV genome discovery  

The methods for assembly of the A. glycines transcriptome sequencing data 

generated using Illumina sequencing have been described (17).  Briefly, the sequencing 

reads were trimmed to remove adaptor sequences, and the resulting reads were assembled 

by using the Velvet assembler (18). The resulting contigs were used for BLAST against 

the NCBI nr database by using the Blast2GO platform (19). Contigs with viral genes as 

top hits were extracted. The contigs with viral hits were then used as subject sequences 
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and the total contigs as query sequences for local BLAST to search for additional 

homologous sequences derived from viruses. The final AGV genomic sequences were 

assembled by reassembling the contigs with viral hits. The transcriptome reads were 

subsequently reassembled by using the Trinity assembler using the default settings (20). 

Sequence confirmation and 5’ and 3’ end determination 

 The assembled genome sequence of Aphis glycines virus (AGV) was confirmed 

using RT-PCR with primers based on the assembled AGV genome sequence (Table 1). 

Purified AGV virions were used for total RNA isolation using TRIzol® reagent 

(Invitrogen). Total RNA was extracted according to the manufacturer’s recommendations 

with overnight precipitation of RNA in isopropanol at -80°C. RT-PCR was carried out 

using a One-Step RT-PCR reaction kit (Qiagen).  The resulting PCR products were 

isolated and purified from agarose gels using the Qiaquick gel extraction kit (Qiagen) and 

sequenced by Sanger sequencing.  

The ends of the virus genome were determined using rapid amplification of 

cDNA ends (RACE) with the SMARTer RACE cDNA amplification kit (Clontech). Viral 

RNA (2 µg) was used as template to generate RACE ready cDNA. The Advantage 2 PCR 

kit (Clontech) was used for the PCR reaction according to the manufacturer’s protocol. 

The primers used for the RACE-PCR are listed in Table 1. A touchdown PCR reaction 

was carried out in a thermocycler (BioRad MyCycle Thermal Cycler) for 5 cycles of 

94°C for 30 seconds and 72°C for 2 minutes, 5 cycles of 94°C for 30 seconds, 68°C for 

30 seconds and 72°C for 2 minutes followed by 94°C for 30 seconds, 66°C for 30 

seconds and 72°C for 2 minutes. The RACE-PCR products were separated on 1% 



103 
 

agarose gels and 5’ RACE products > 515 bp and 3’ RACE products >340 bp were 

ligated into pGEM-T easy (Promega). Plasmids were transformed into TOP 10 competent 

cells, isolated and sequenced to determine the end sequences.  

Sequence alignment and phylogenetic analysis 

Local BLAST and pairwise sequence alignments of RNA and protein sequences 

were performed using the BioEdit Sequence Alignment Editor (version 7.2.5) 

(http://www.mbio.ncsu.edu/bioedit/bioedit.html).  Phylogenetic analyses were performed 

using the Phylogeny.fr website (www.phylogeny.fr) for the RNA-dependent RNA 

polymerase (RdRP) and the capsid protein (CP) amino acid sequences of AGV (21). The 

top hits from protein BLAST analyses were extracted and used in the phylogenetic 

analyses (22). Multiple sequence alignment was carried out using MUSCLE software 

(23). The phylogeny was constructed using PhyML, providing an estimate of maximum 

likelihood method for amino acids with posterior probability values (24). The 

phylogenetic tree was visualized using the Phylodendron Phylogenetic tree printer 

(http://iubio.bio.indiana.edu/treeapp/treeprint-form.html). 

Homology modeling of RdRP and CP structures 

To predict the putative protein structure of RdRP and CP, homology modeling of 

proteins was performed by LOMET (Local Meta-Threading-Server) (25). 

Isolation of dicistrovirus-free, AGV infected A. glycines 

As A. glycines were also found to harbor dicistroviruses, we isolated single 

families to establish an AGV-positive, dicistrovirus-negative A. glycines colony. 

http://www.mbio.ncsu.edu/bioedit/bioedit.html
http://www.phylogeny.fr/
http://iubio.bio.indiana.edu/treeapp/treeprint-form.html
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Individual A. glycines were isolated in petri dishes containing a moist Kimwipe® and a 

soybean leaf. The aphids were monitored constantly for production of newborn nymphs. 

The newborn nymph was isolated from the adult A. glycines before contact with the leaf. 

The newborn nymphs were isolated in petri dishes and maintained to adults. The aphids 

were transferred to individual soybean plants and F2 generation aphids tested for the 

presence of the dicistroviruses, Rhopalosiphum padi virus (RhPV) and ALPV-like virus 

using RT-PCR with primers designed based on the assembled virus contigs (Table 1). A. 

glycines colonies that tested negative for the viruses were allowed to grow for 2 weeks 

and re-tested for the presence of viruses using the same RT-PCR method. The colonies 

with no dicistrovirus sequence amplification were then pooled as the AGV-only infected 

A. glycines colony.  

AGV virion purification 

 AGV was purified from the laboratory colony of A. glycines infected only with 

AGV. A. glycines (~40 mL) were homogenized in liquid nitrogen and transferred to 

0.01M sodium phosphate buffer, pH 7.0. The homogenate was centrifuged at 7,000 rpm 

(5,856 x g) for 10 minutes to pellet aphid debris. The supernatant was filtered through 

four layers of cheesecloth to remove contaminating lipids. The supernatant was added to 

the top of 30 mL of a 10% sucrose cushion in ultra-centrifuge tubes. The tubes were 

centrifuged at 27,000 rpm at 4°C for 3.5 hours in a SW28 swinging bucket rotor 

(Beckman). Sodium phosphate buffer (400 µL of 0.01M) was added to each pellet and 

the tubes were covered with Parafilm and placed on ice at 4°C with gentle shaking 

overnight. 
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 The pellets were re-suspended in 400 µL of 0.01M sodium phosphate buffer with 

additional buffer added to completely dissolve the pellet. The tubes were centrifuged at 

14,000 rpm (23,425.7 x g) for 10 minutes at 4°C to pellet any undissolved proteins. The 

supernatant was passed through a sucrose cushion as previously described. The resulting 

pellet was re-suspended in 500 µL of 0.01M sodium phosphate buffer on ice at 4°C. The 

virus was stored at -20°C in 100 µL aliquots. 

Sample preparation for electron microscopy 

Purified AGV virions (10 µL) were pipetted onto a carbon film grid. The grid was 

negatively stained with 2% aqueous uranyl- acetate for 30 seconds. The virus particles 

were visualized using a JEOL 2100 scanning/transmission electron microscope. 

Vertical transmission of AGV in A. glycines 

For vertical transmission studies, individual adult A. glycines were isolated in 

petri dishes containing a moist Kimwipe® and a soybean leaf. The aphids were 

monitored constantly for production of nymphs. Each newborn nymph was isolated from 

the adult A. glycines before contact with the leaf. The newborn nymphs were isolated in 

petri dishes. The adult aphids were then placed in TRIzol® reagent (Invitrogen) and total 

RNA extracted using the manufacturer’s protocol. A proportion of newborn nymphs were 

directly placed in TRIzol® reagent.  

AGV detected using RT-PCR with primers specific for the RNA-dependent RNA 

polymerase region with Tet-F and Tet-R primers (Table 1). The RT-PCR reactions were 

carried out using the One-Step RT-PCR kit (Qiagen). The reactions were incubated in the 
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BioRad MyCycle Thermal Cycler with the following cycle, 1 cycle of 50°C for 30 

minutes, 95°C for 15 minutes, 35 cycles of 94°C for 30 seconds, 53°C for 30 seconds and 

72°C for 2 minutes with a final extension step of 72°C for 10 minutes. A no template 

negative control and a random sample of AGV infected aphids (positive control) were 

included for RT-PCR. 

Horizontal transmission of AGV in soybean plants 

Leaves from three individual soybean plants infested with AGV- infected A. 

glycines were collected in a petri dish. The aphids were gently removed and the leaves 

were washed in 10% bleach solution and deionized water for 1 minute to surface sterilize 

the leaf material and to remove honeydew and shed cuticles. Approximately 2-3 leaves 

were grouped together for each sample tested. The leaves were homogenized in liquid 

nitrogen. Total RNA extraction and testing for the presence of AGV by RT-PCR were 

conducted as described above.  

Prevalence of AGV in field collected A. glycines and in other aphid species 

A. glycines were collected from soybean fields in Iowa, Ohio and Michigan and 

laboratory colonies established. Laboratory colonies of three aphid species, the green 

peach aphid, Myzus persicae, the bird cherry-oat aphid, Rhopalosiphum padi and the pea 

aphid, Acyrthosiphon pisum were also tested for the presence of AGV. Aphids (~0.1 mL) 

of all stages were ground in TRIzol® reagent. RNA extraction and AGV testing using 

Tet-F and Tet-R primers were conducted as described above.  
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Testing for the presence of AGV sequences in the A. glycines genome  

To assess whether AGV sequences were present in A. glycines genome, A. 

glycines (~0.1 mL) of all stages were ground in 800 µL of DNAzol® (Invitrogen). Total 

A. glycines DNA were used for PCR with primer combinations to span the entire length 

of the AGV genome (Table 1). The PCR was carried out using Choice Taq DNA 

Polymerase with 1 cycle of 94°C for 3 minutes, 35 cycles of 94°C for 30 seconds, 55°C 

for 30 seconds, 72°C for 3 minutes and 1 cycle of 72°C for 10 minutes. The PCR was 

repeated with a reduced annealing temperature of 50°C to amplify products with low 

melting temperature primers. The amplified PCR products were separated on 1% agarose 

gels, excised from the gels and purified using the Qiaquick gel extraction kit (Qiagen). 

The PCR products were sequenced to determine the identity of amplified products.  

Mapping small RNA reads to the AGV genome 

Total RNA extraction and sRNA sequencing from A. glycines were as previously 

described (Chapter 2). The sRNA sequencing reads were trimmed to remove adaptors 

and lower quality sequences using FastQC programs (Babraham Bioinformatics, 

Babraham Institute, Cambridgeshire, UK). A script written in Perl was used to map the 

sRNA reads to AGV sequences. The script was designed to only map reads with perfectly 

matched bases to the AGV genome sequence. Positions and orientation in the AGV 

genome were recorded for each mapped read. 

Analysis of expression levels of AGV, Dicer-2 and Argonaute-2 in A. glycines 

 Total RNA was extracted from A. glycines infected only with AGV and from A. 

glycines co-infected with AGV and an ALPV-like virus using TRIzol® reagent as 
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previously described. qRT-PCR was carried out using the iTaq™ Universal SYBR® 

Green One-Step Kit (Biorad) in 10 µL reactions with 50 ng of total RNA. Primers used 

for amplification of the internal control gene actin and each target template are listed in 

Table 1. The qRT-PCR reaction was incubated in the Bio-Rad My iQ5 thermocycler 

using the following cycle: 50°C for 30 minutes and 95°C for 5 minutes followed by 35 

cycles of 95°C for 10 sec and 53.5°C for 30 seconds. Melt curve analysis was carried out 

to ensure that there was no non-specific amplification. No template controls were 

included for each primer pair. The experiments were carried out with three biological 

replicates and two technical replicates. The data was normalized to the internal control 

gene actin and fold change calculated relative to transcript levels in the AGV only 

infected A. glycines.  

Results 

Assembly of the AGV genome 

Analysis of our A. glycines transcriptome dataset indicated the presence of two 

known aphid viruses, ALPV and  RhPV (17).  In addition to these two aphid 

dicistroviruses, four contigs of 1,004, 1,279, 3,147 and 3,280 nt had nucleotide BLAST 

hits to the putative RNA-dependent RNA polymerase (RdRP) of either Drosophila A 

virus (DAV, Unclassified), Euprosterna elaeasa virus (EEV; Tetraviridae) or Thosea 

asigna virus (TAV; Tetraviridae). These contigs were then used as subject sequences for 

BLAST to search for additional putative genomic sequence derived from AGV.  Three 

additional viral contigs of 450-2,090 nt were identified. The contigs of putative viral 

origin were assembled into a 4,811nt contig, which was predicted to be the near full-
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length viral genome. We then re-assembled the transcriptome reads using the Trinity 

assembler and obtained a viral contig of 4,795 nt. Confirmation of the genome sequence 

using RT-PCR and RACE PCR resulted in a genome size of 4,771 nt.    

The newly identified virus was named Aphis glycines virus (AGV) after the host 

aphid. To facilitate further studies of this virus, an A. glycines colony infected with only 

AGV was established using single family isolation. This A. glyciens colony was tested 

using RT-PCR specific to ALPV and RhPV to ensure complete removal of these 

dicistroviruses from the colony before further analysis of AGV.  

AGV has a single-stranded, positive sense RNA (ssRNA) genome. The 4,771nt 

genome is predicted to encode three major ORFs (P145, P28 and P35) and one additional 

small ORF (P10) (Figure 1). The capsid protein ORF (P28) overlaps with the RdRP ORF 

(P145). The ORF encoding P35 is a putative read through domain (RTD) which is 

predicted to be translated by read through of the capsid protein (CP) stop codon (UAG) to 

generate a 63 kDa CP-RTD protein (Figure 1 and Table 2). AGV may encode a 

subgenomic RNA for the expression of CP-RTD protein. 

5’ and 3’ UTR of the AGV genome 

 The complete AGV genome sequence was confirmed using RT-PCR with primers 

designed to span the entire assembled genome of AGV except for the extreme 5’ and 3’ 

untranslated regions (UTR). The terminal ends of the genome were determined using 

RACE PCR. The genome sequence of assembled AGV matched the RACE results well at 

the 5’ UTR except for an additional 24 nt in the extreme 5’ end from the genome 

assembled using Trinity software. The assembled 3’ UTR extreme end was confirmed 
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using RT-PCR but was not obtained using RACE PCR. The RACE PCR results did not 

extend beyond the already assembled sequence. 

The RdRPs of AGV and insect tetraviruses are closely related  

The 145 kDa RdRP of AGV consists of 1,121 amino acids (aa).  BLAST analysis 

of the sequences suggested similarities between AGV RdRP and those of the insect 

tetraviruses, Euprosterna elaeasa virus (EEV) and Thosea asigna virus (TAV) in addition 

to Drosophila A virus (DAV). The tetraviruses, EEV and TAV were identified from 

Lepidoptera while DAV is currently unclassified (26-28). Amino acid sequence 

comparison of AGV RdRP with the RdRPs of the tetraviruses and DAV showed 33-34% 

sequence identities. To further examine the similarities between the RdRP of AGV and 

tetraviruses, the RdRP tertiary structures of AGV, DAV, and EEV RdRP were predicted 

by homology modeling using the LOMETS server. The structure prediction results 

clearly demonstrated that the RdRP of AGV has a similar structure to that of the 

tetraviruses and DAV (Figure 2), although they only share 33-34% amino acid sequence 

identities. 

Some tetraviruses encode a permuted RdRP core motif (29). A permuted RdRP is 

a non-conical arrangement of the core motifs present in the palm subdomain of the 

protein encoded by RNA viruses. The typical arrangement of A-B-C subdomains is 

inverted to a C-A-B arrangement (30). AGV also encodes an RdRP with a permuted core 

motif. Phylogenetic analysis was carried out for the RdRP of AGV with the RdRP amino 

acid sequences from tetraviruses (EEV and TAV) and members of the Birnaviridae family 

(Figure 3). The results show that AGV is closely related to DAV and more closely related 
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to the insect tetraviruses with the permuted RdRP compared to the birnaviruses. This 

result suggests that the permuted RdRP of the insect viruses have the same evolutionary 

origin. EEV, TAV and DAV also contain viral protein genome-linked (VPg) sequences in 

the N-termini of their RdRP sequences. Sequence alignments of the RdRP N-termini of 

AGV, EEV, TAV and DAV showed putative VPg sequences present in the AGV genome 

(Figure 4), suggesting that the AGV genome is capped with a VPg. 

The CP of AGV is structurally similar to the CP of plant viruses 

The 28 kDa AGV capsid protein contains 217 aa. Interestingly, BLAST analysis 

showed similarity to the capsid proteins of plant viruses. The top hit was from a newly 

identified plant virus isolated from bat fecal material, Bat sobemovirus (BSV; NCBI 

Accession No: AGN73380.1 (31) ) with 31% amino acid identity and 79% sequence 

coverage. For comparison, protein BLAST analysis of AGV CP to DAV CP showed a 

25% amino acid identity and 46% sequence coverage. Homology modeling to determine 

the tertiary structure of AGV CP suggested that it could form a similar structure to the CP 

of Tobacco necrosis virus (TNV), a tombusvirus (Figure 5). These results indicate that 

AGV is structurally closer to plant viruses with T=3 virion structures than to insect 

viruses. Phylogenetic analysis of the AGV CP amino acid sequence shows a close 

relationship to the CP of BSV and other sobemoviruses (Figure 6). In addition to the 

major CP, AGV also encodes a putative 35 kDa read through domain (RTD) of 267 aa, 

which may be translated into a 63 kDa and 485 aa CP-RTD protein. The N-terminus of 

RTD contains a poly-proline track, a common motif found in the RTD of luteoviruses, a 

group of plant viruses encoding CP-RTD proteins (32).  BLAST analysis of the RTD 
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sequence did not result in significant hits of any viral genes, but had low similarity (29% 

identity) to the methyltransferase genes of bacteria and insects. 

Electron micrograph of purified AGV virions 

 AGV virions were icosahedral with an estimated diameter of 30 nm (Figure 7). 

The virion diameter is consistent with most small RNA viruses. The AGV encoded 

capsid protein is similar to the CP of sobemoviruses that have a diameter in the range of 

25 – 33 nm.  

AGV is widely distributed in field samples of A. glycines and may infect multiple 

species of aphid 

 To examine the distribution of AGV, total RNA isolated from field collected A. 

glycines was tested using RT-PCR for the presence of AGV. AGV was detected in A. 

glycines samples collected from Iowa, Ohio and Michigan (Figure 8a). An RT-PCR 

product of 929 bp corresponding to the RdRP region of AGV was detected for all 

samples. The same testing method was used to check for AGV in laboratory colonies of 

other species of aphids. In addition to the laboratory colony of the A. glycines, RT-PCR 

products of the correct size were detected from the M. persicae and R. padi but not A. 

pisum (Figure 8b).  

AGV has a 100% vertical transmission rate 

 To assess the rate of vertical transmission of AGV, newborn A. glycines nymphs 

were isolated before contact with the leaf. Some newborn aphids were directly used for 

RT-PCR while other nymphs were maintained to the adult stage before testing, to ensure 
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that detection was possible in the event that the virus titer was too low in newborn 

nymphs. RT-PCR detection of RdRP viral sequences showed that AGV was present in all 

tested nymphs and single families. The virus was 100% vertically transmitted from adult 

females to the newborn nymphs (n=63). This highly efficient vertical transmission rate 

thwarted efforts to isolate a virus-free A. glycines colony. The possibility for horizontal 

transmission through the soybean plant was also investigated by testing 2-3 leaves from 

three soybean plants infested with AGV infected A. glycines. No AGV sequences were 

identified from any of the leaves tested.  

AGV is not detected in the genome of the A. glycines  

 Insertion of sequences of persistent insect RNA viruses into the host genome has 

been reported for Flock house virus (FHV, Nodaviridae) and Israeli acute paralysis virus 

of bees (IAPV, Dicistroviridae) (33, 34).  The detection of AGV in every A. glycines 

colony tested and the 100% vertical transmission rate prompted testing for the possibility 

of AGV presence in the genome of A. glycines. A combination of primer pairs spanning 

the entire genome of the virus was used in PCR reactions with A. glycines total DNA. 

The PCR reactions amplified only non-specific unknown products or A. glycines genes. 

None of the sequenced PCR products matched any part of the AGV genome sequence 

(Supplementary Figure 1).  

AGV is targeted by the RNAi pathway of A. glycines 

 To determine whether silencing of AGV is regulated by the RNAi pathway, we 

sequenced sRNAs of A. glycines infected by AGV. Illumina sequencing sRNA reads 

were trimmed and mapped to the AGV genome. Around 0.4% of reads (20.6 million 
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reads in total) matched AGV genomic RNA. A typical vsRNA distribution pattern with a 

peak at 22 nt derived from both strands of the replicating virus was observed (Figure 9), 

suggesting AGV was degraded by the RNAi pathway.  Over 20,000 vsRNA reads were 

derived from AGV with the most abundant peak at 22 nt (13,534 reads). Fewer vsRNA 

reads were detected at other sizes (19 nt-21 nt, 23 nt). The vsRNA reads were derived 

from all regions of the virus genome with some regions of the genome targeted more 

frequently for degradation. The region targeted most frequently for dicing corresponds to 

the RdRP region (Supplementary Figure 2 A-D).  

RNAi pathway is affected by an ALPV-like virus in A. glycines 

In order to confirm that we established a dicistrovirus free A. glycines colony, we 

sequenced sRNA from the AGV- only infected A. glycines colony. The sRNAs were 

assembled by Velvet assembler, followed by aligning the obtained contigs to NCBI nr 

database with BLASTx algorithms, or mapped to Aphid lethal paralysis virus (ALPV) 

genomes, a virus previously identified in our A. glycines colony. No ALPV and other 

known virus sequences were identified by BLAST analysis or by ALPV genomic 

mapping. When the sRNA reads were mapped to the AGV genome, we found that 

vsRNAs (16-30 nt) derived from the AGV genome were reduced 10-fold when compared 

to AGV-derived vsRNAs in the presence of the ALPV-like virus (Figure 10). The total 

reads of sRNA isolated from A. glycines infected with both viruses were 20.6 million and 

reads from the AGV only A. glycines were 18.4 million. Hence, the reduction of AGV 

specific vsRNAs was not the result of the number of reads generated by Illumina 

sequencing. A. glycines collected from soybean fields in Ohio were tested for the 

presence of ALPV-like virus and AGV using RT-PCR. The Ohio colony harbored AGV 
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but not the ALPV-like virus. Mapping of sRNA reads from the Ohio field colony to the 

AGV genome further confirmed that few reads were derived from AGV (Figure 10). 

Taken together, these results suggest that RNAi-mediated degradation of AGV was 

promoted by infection with the ALPV-like virus in A. glycines.   

To test whether the presence of the ALPV-like virus could stimulate either 

increased replication of AGV or an up-regulation of the aphid RNAi machinery resulting 

in degradation of AGV, we investigated potential differences in transcript levels for 

AGV, Dicer-2 and Argonaute-2 using quantitative RT-PCR. The presence of the ALPV-

like virus did not result in any significant differences in transcript levels for AGV, Dicer- 

2 or Argonaute-2 (Student’s t-test, p>0.05) (Figure 11).  

Discussion 

 In this study, we described the identification and characterization of a novel A. 

glycines virus, Aphis glycines virus. The virus has a unique genome structure that appears 

to result from a fusion between the polymerase sequence of an insect virus and the capsid 

protein sequence of a plant virus. AGV is the first insect virus identified with a capsid 

protein similar to the CP-RTD of plant viruses. The CP-RTD of AGV suggests that the 

capsid protein of AGV originated from a plant virus. The RdRP of AGV has the motif 

arrangements of a permuted RdRP that was first described in tetraviruses and 

birnaviruses (30), none of which have been previously described in aphids. It has been 

proposed that viruses with a permuted RdRP share a common evolutionary event that 

resulted in switching of the sequence motifs. While the RdRP of tetraviruses and 

birnaviruses may be related, discrepancies exist when phylogenetic analysis is carried out 
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using capsid protein sequence even among birnaviruses with the same permuted RdRP 

(35). Phylogenetic analysis and virus classification may have to be re-evaluated to 

accommodate current outlier viruses such as AGV and DAV that have the same permuted 

RdRP and a capsid protein similar to those of plant viruses (26). The role of the RTD 

encoded by the AGV genome is unclear in the life cycle of this A. glycines virus. In aphid 

transmitted luteoviruses, the RTD is implicated in facilitating virion transcytosis across 

the aphid accessory salivary gland, basal lamina and cell plasma membrane and may 

affect transmission efficiency (36).  

AGV is widespread in field populations of A. glycines within the United States. 

The presence of the faint RT-PCR products in multiple aphid species suggests that AGV-

like viruses infect other aphid species. AGV persistently infects A. glycines with a 100% 

vertical transmission rate, remarkable among insect viruses. Polydnaviruses are also 

100% vertically transmitted in insects but these viruses function more as symbionts with 

genes integrated into the parasitic wasp genome. Polydnavirus gene products function to 

suppress the host immune response to allow for wasp larval development in the 

parasitized host (38).  

Based on our experiments, we conclude that genome sequences of AGV have not 

inserted into the genome of A. glycines. AGV sequences were also not identified using 

bioinformatics analysis with an unpublished A. glycines genome draft. AGV therefore 

may represent a new group of RNA viruses with a unique transmission mode to persist in 

aphid populations. Whether AGV has established a true symbiotic relationship with A. 

glycines remains to be determined.  
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All major components of the RNAi pathway are present in the A. pisum genome 

(40).  The role of RNAi in antiviral defense in aphids has not been demonstrated until 

now. Our data show that RNAi functions in silencing the replication intermediate and 

local secondary structures of AGV. It further demonstrates that AGV is an actively 

replicating virus in A. glycines with a genome that is susceptible to the host antiviral 

immune response. The susceptibility of AGV to the immune response is however more 

pronounced on co-infection of A. glycines with a dicistrovirus (ALPV). We hypothesized 

that AGV remains elusive to the host RNAi response in the absence of infection by a 

second virus. However, no significant differences were observed in Ago-2 and Dicer-2 

transcript levels in the presence of AGV versus AGV and the ALPV-like virus.  

In our study we were unable to detect viral RNA using gel electrophoresis. A 

smear was always observed for RNA extracted from purified AGV virions. A similar 

observation was reported for DAV. The RNA of DAV was shown to be degraded rapidly 

during extraction and electrophoresis (26). It has been demonstrated that RNA extraction 

from tetraviruses results in high levels of degradation presumably because the RNA is not 

stable outside the virion (37). We were also unable to obtain the protein profile for this 

virus. A protein with a molecular mass of ~58 kDa was consistently observed. N-terminal 

sequencing revealed the identity of the protein to be similar to glycoside hydrolase, a 

common protein found in all organisms. 

In summary, we describe a virus of A. glycines that represents a new type of 

insect infecting RNA virus along with DAV. AGV and DAV may represent an ancestral 

group of viruses from which plant and insect viruses emerged or represent a more recent 

recombination between insect and plant viruses. The ability of hemipteran insects such as 
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aphids to acquire and transmit plant viruses provides opportunity for recombination 

between plant viruses and insect viruses.  Future studies on the origin of AGV and DAV 

may increase our understanding of plant and insect virus evolution.  
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Table 1. Primers used in RT-PCR and RACE PCR for AGV, ALPV and RhPV in A. 

glycines.  F denotes forward primer while R denotes reverse primer. N/A, not applicable. 

Primer name Sequence (5’ – 3’) AGV genome position 

Tet – F AGTGGCTGCGCATGCTCGTT 1,733-1,753 

Tet – R  ACGCGCCTCTCCGTTGAACT 2,642-2,662 

AGV 3’S – R CCTGCTGAACCGCTCTT  

AGV 3’ – F  CAGTACAGCAATACGGCTCATT 4,322-4,344 

AGV 5’ – F GCAGGACCTTGCCTCGCTCAAA 198-220 

AGV R/C – F CACGCGCGGAATCTTTGCAG 3,014-3,034 

AGV R/C – R TCGGTCTTGGCGGCGTCATA 3,863-3,883 

AGV C/T – F TGTGACTCCGACACCGTCGAA 3,923-3,944 

AGV C/T – R GCACCGGGAGAAATCCCAGAG

T 

4,462-4,484 

AGV 3’ RACE  TCTCCCGGTGCCTCGTCTCACC

ACAGG 

4,473-4,500 

AGV 5’ RACE AAGTGCCGTAGCGCTGCCTCGA

GCAC 

514-540 

ALPV – F TGAACTTCGTGCAACGAACACT

GTT 

N/A 

ALPV – R TCCGCCTGCGTTAGGAAGAAGA N/A 

RhPV – F AATCTGGCGTTGACGCGCTC N/A 

RhPV – R TCCCCCATCATCAACATAGATG

CGT 

N/A 

qRT-PCR AGV – F  TCCCCGCCACGTGAAGTGAA 2,662-2,687 

qRT-PCR AGV – R  GCTACTGCGTGCGTGGTGAA 2,860-2,880 

qRT-PCR Ago2 – F  CGTGTGTCAATGGTGTCATTTT N/A 

qRT-PCR Ago2 – R  ACTCGAGAGAGCTAAAGAGTC

AGG 

N/A 

qRT-PCR Dicer2 – F  CGTTCGTCAAGTGTCAAGTGT N/A 

qRT-PCR Dicer2 –R  ACCAGGAGATCCATTGTTTGGT

T 

N/A 

qRT-PCR Actin – F  ATTGAACCCCAAGGCTAATC N/A 

qRT-PCR Actin – R  GATCGAGACGAAGGATAGCA N/A 
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Figure 1. Schematic representation of the predicted AGV genome organization. The 

virus genome is capped at the 5’ terminus with the putative RNA-dependent RNA 

polymerase (RdRP) encoded by the 5’ ORF. The capsid protein (CP) is encoded towards 

the 3’ terminus along with a putative read-through domain (RTD). AGV may encode a 

subgenomic RNA for the expression of CP and CP-RTD. VPg is encoded at nucleotides 

580 to 619.
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Table 2. Predicted AGV ORFs with the corresponding nucleotide position in the genome 

sequence, amino acid size, molecular mass and identity of encoded proteins.  

  

ORF Positions on genome (nt) Size (aa)  Mr (kD)  Proteins 

P10  744 – 977  78  10.41 Unknown   

P145 119 –3481 1121 145.51 RdRP 

P28 3,351 - 4,001 217 28.18 Capsid protein 

P35 4,005-4,805 267 35.03 Read through domain 
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Figure 2. The predicted RdRP structures for AGV, DAV and EEV are similar. 

Homology modeling of tertiary protein structures of RNA-dependent RNA polymerase 

from (a) Aphis glycines virus (AGV), (b) Drosophila A virus (DAV) and (c) Euprosterna 

elaeasa virus (EEV). Image (d) shows the superimposed images of all three predicted 

RdRP structures. The images were generated using the LOMETS server.  
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Figure 3. Phylogenetic tree of AGV RNA-dependent RNA polymerase with closely 

related viruses based on BLAST results of amino acid identity. Phylogenetic trees were 

constructed using the Phylogeny.fr tool with the maximum likelihood method. The 

numerical numbers on the branches represent the posterior probability values (a fraction 

closer to 1 indicates higher confidence levels). Thosea asigna virus (TAV; Accession no. 

AAQ14329.1) and Euprosterna elaeasa virus (EEV; NP573541.1) are closely related to 

but phylogenetically distinct from Drosophila A virus (DAV; YP003038595.1) and AGV. 

The birnaviruses form a distinct group from the tetraviruses. Birnaviruses used in the 

analysis, Infectious pancreatic necrosis virus (IPNV; AAV48847.1), Drosophila X virus 

(DXV; NP690806), Tellina virus 1 (TV_1; CAI74982.1), Infectious bursal disease virus 

(IBDV; ACS44343.1), Blotched snakehead virus (BSV; YP052864).   
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Figure 4. The AGV genome is predicted to be capped by a VPg. Clustal W sequence 

alignment of N-terminal sequences of Euprosterna elaeasa virus (EEV), Thosea asigna 

virus (TAV), Aphis glycines virus (AGV), and Drosophila A virus (DAV). The sequence 

alignment shows conservation of amino acid sequences (highlighted sequences) for the 

viral protein genome-linked (VPg) that caps the virus genome sequence at the 5’ 

terminal.  
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Figure 5. The predicted structures of AGV and TNV capsid proteins are similar. 

Homology modeling of tertiary protein structures of viral capsid protein for (a) Aphis 

glycines virus and (b) Tobacco necrosis virus, a plant virus. Image (c) shows 

superimposed images of the two predicted CP structures. The images were generated 

using the LOMETS server.    
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Figure 6. Phylogenetic tree of AGV capsid protein with closely related viruses based on 

BLAST results of amino acid identity. Phylogenetic trees were constructed using the 

Phylogeny.fr tool with a maximum likelihood method. The numerical number on the 

branches represents the posterior probability values (a fraction closer to 1 indicates higher 

confidence levels). AGV CP groups closely with the CPs of sobemoviruses, Bat 

sobemovirus (BSV; AGN73380.1), Sowbane mosaic virus (SMV; YP002158815.1) and 

Lucerne transient streak virus (LTSV; AAA79990.1). Other viruses used in this analysis, 

Olive latent virus 1 (OLV1; AHE40766.1), Carnation mottle virus (CarnMV; 

CAH59636.1), Yam spherical virus (YSV; YP008828158.1), Pothos latent virus (PLV; 

CAA60597.1), Cucumber Bulgarian virus (CBV; NP835255.1), Oat chlorotic stunt virus 

(OCSV) and Pea stem necrosis virus (PSNV; NP862839.1).  
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Figure 7. Virions of Aphis gycines virus viewed using a transmission electron 

microscope. Arrows indicate AGV virions. The virus has an icosahedral shape and a 

diameter of ~30 nm.  
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Figure 8. Detection of AGV RdRP sequence from (A) field collected A. glycines and (B) 

laboratory colonies of different aphid species. The 929 bp RT- PCR product was detected 

in field collected A. glycines from Iowa, Ohio and Michigan. The virus was also detected 

at low levels in the green peach aphid, Myzus persicae and bird cherry-oat aphid, 

Rhopalosiphum padi (arrows). The positive control and soybean aphid, Aphis glycines 

samples amplified the expected PCR products. No amplification was detected in the no 

template control (NTC) sample.  
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Figure 9. Virus-derived small interfering RNA (vsRNA) sequences derived from the 

sense (blue) and anti- sense (red) genome of AGV. Reads were extracted from a small 

RNA sequencing dataset of A. glycines infected with AGV and an ALPV-like virus. The 

majority of the AGV vsRNAs are 22 nt long, characteristic of double stranded RNA 

processing by the dicer protein.  
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Figure 10. AGV vsRNA are more abundant in the presence of an ALPV-like virus. The 

vsRNAs were isolated from A. glycines populations infected with both AGV and an 

ALPV-like virus (blue bars), AGV alone from Iowa (red) and AGV alone from Ohio 

(green). VsRNA that mapped to the positive strand (above) and to the negative strand 

(below) of the AGV genome are shown. 
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Figure 11. Relative transcript levels of AGV, Argonaute-2 and Dicer-2 in A. glycines 

infected with AGV in the presence or absence of an ALPV-like virus. Three independent 

biological replicates were carried out for each target transcript with data normalization to 

the internal control, actin. Black lines show standard error bars. There were no significant 

differences in transcript levels between the two treatments (Student’s t-test, p<0.05). 
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Figure 1. AGV sequences are not detected in the  A. glycines genome. Primers spanning 

the entire AGV genome were used to test for the presence of AGV sequence in the A. 

glycines genome. A representative agarose gel with amplified PCR products is shown. 

Labels indicate region of AGV genome spanned by the PCR primers. CP, capsid protein; 

RTD, read through domain and RdRP, RNA-dependent RNA polymerase. The sequenced 

PCR product from A and B did not have any significant matches to AGV or the NCBI 

database. PCR product C hit a pea aphid prestin-like transcript variant 5.   
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Figure 2. Distribution of vsRNAs on the sense (upper) and antisense genome (lower) of 

AGV based on small RNA read size. The X-axis shows the position on the virus genome 

while the Y-axis shows number of reads.  
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CHAPTER 5 

NEXT GENERATION SEQUENCING FOR IDENTIFICATION OF APHID-

SPECIFIC MICRORNAS IN FOUR SPECIES OF APHIDS 

Diveena Vijayendran and Bryony C. Bonning 

Department of Entomology, Iowa State University, Ames, IA, 50011 

Abstract 

Aphids are serious agricultural pests of economic importance. Current 

management options rely heavily on the use of chemical insecticides and on the use of 

aphid resistant cultivars, but these options are being challenged by the development of 

resistant aphid biotypes. In our efforts to identify novel avenues to manage these pests, 

we studied the microRNA (miRNA) expression profile from the small RNA (sRNA) 

datasets of four pest species of aphid, the pea aphid, Acyrthosiphon pisum, the soybean 

aphid, Aphis glycines, the green-peach aphid, Myzus persicae and the bird cherry-oat 

aphid, Rhopalasiphum padi. We describe the identification and abundance of conserved 

miRNAs in all four species and further identified a subset of 12 aphid-specific miRNAs. 

Relative quantification of three candidate aphid-specific miRNAs showed miRNA 

expression in multiple life stages of M. persicae. The identification of such pest-specific 

miRNAs could lead to development of miRNA-based management options unique to the 

targeted pest, in this case aphids.  
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Introduction 

MicroRNA (miRNA) is a class of small RNA (sRNA) identified in eukaryotes for 

the regulation of genes. A primary miRNA (pri-miRNA) is transcribed by cellular RNA 

polymerase II in the nucleus; the pri-miRNA is processed by Drosha with cofactor Pasha 

into pre-cursor miRNA (pre-miRNA) of ~70 nt. The characteristic hairpin loop structure 

of the precursor miRNA is recognized by the cellular protein Dicer which cleaves it into 

smaller duplexes of 18-25 nt long (1). One strand of the duplex is then loaded onto an 

Argonaute-protein complex (RISC complex) guiding it to target messenger RNA 

(mRNA). Micro RNA is known to bind most frequently at the 3’ UTR of the target 

mRNA although other regions of the mRNA can also be targeted for gene regulation (2-

4). Increasing research in animal models has shown the ability of a single miRNA to 

regulate many mRNA targets in a cell (5). Although much less common, incidents of 

multiple miRNAs simultaneously regulating a particular target mRNA have also been 

observed (6).  

The current version of miRBase, a miRNA database includes over 1000 insect 

miRNAs including 103 miRNAs identified from A. pisum (7). Targets have been 

identified and validated for a small subset of these insect miRNAs primarily in 

Drosophila (8-10). The miRNA functional studies carried out in insects have shown 

regulation of mRNAs involved in important biological functions such as wing-

development, tissue differentiation and cell proliferation (10, 11). The miRNAs of the 

cotton-melon aphid, Aphis gossypii were differentially expressed when the aphid fed on 

host plant cultivars that were either susceptible or resistant to the aphids (12). 
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The importance of miRNA function in insects makes it an attractive biological 

phenomenon that could be manipulated for the development of management strategies for 

pests such as aphids. Aphids are of major economic importance worldwide (13). A. 

glycines alone is estimated to have resulted in $1.6 billion in losses over a 10 year period 

in the United States, resulting both from yield loss and from application of chemical 

insecticides for management (14). The propensity for aphid populations to increase 

exponentially when conditions are favorable combined with their ready evolution of 

resistance to chemical insecticides (15, 16) make them particularly problematic. In 

addition, aphids are not particularly susceptible to toxins derived from the bacterium 

Bacillus thuringiensis which have increasingly been adopted for development of insect 

pest resistant transgenic plants (17). Although two promising strategies for development 

of aphid resistant transgenic plants have recently been published (18, 19), additional 

strategies for aphid management would allow for more durable management to be 

achieved when multiple physiological target sites in the pest are used (20). 

In this study, we looked at the abundance of conserved and unique miRNAs in 

four species of economically important aphids, the pea aphid, Acyrthosiphon pisum, the 

soybean aphid, Aphis glycines, the green-peach aphid, Myzus persicae and the bird 

cherry-oat aphid, Rhopalasiphum padi. . We show that many conserved insect miRNAs 

are expressed in all four aphid species and identify a subset of aphid-specific miRNAs. 

We also present data on the expression profile of three of the aphid-specific miRNAs 

which are present in multiple life stages in M. persicae.   
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Methods and Materials 

Insects 

Pea aphids, Acyrthosiphon pisum were purchased from Berkshire Biological 

(Westhampton, Massachusetts) and were raised on broad bean, Vicia faba in a growth 

chamber at 24
o
C with a 12:12 (light:dark) cycle. Field collected soybean aphids, Aphis 

glycines Matsumura were reared on soybean, Glycine max at room temperature (20°C to 

25°C) with a continuous light cycle. Green peach aphids, Myzus persicae were reared on 

Chinese cabbage, Brassica rapa at room temperature (20°C to 25°C) with a continuous 

light cycle and the bird cherry-oat aphids, Rhopalasiphum padi were reared on corn, Zea 

mays in a growth chamber at 25
 o
C with a 12:12 (light:dark) cycle. 

Total RNA extraction  

All instars of each aphid species were collected and used for RNA isolation.  

Approximately 50-60 aphids were homogenized in 1mL of TRIzol® reagent (Life 

Technologies) with a pestle in a 1.5 ml micro centrifuge tube. Procedures for RNA 

isolation followed the manufacturer’s instructions. RNA was precipitated overnight in 

isopropanol at -80°C for optimal recovery of sRNA. Total RNA was re-suspended in 30 

µl nuclease-free water. RNA was quantified using a Nanadrop 2000 (Thermo Scientific) 

and the RNA quality assessed by using a Bioanalyzer (Agilent).   

Small RNA sequencing  

sRNAs were isolated from total RNA and cDNA libraries constructed using the 

TruSeq Small RNA Sample Prep Kit (Illumina) according to the manufacturer’s 

instructions. The sRNAs were sequenced for 50 cycles using an Illumina GA II platform. 
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sRNA isolation, sequencing library preparation and high-throughput sequencing  were 

conducted at the Iowa State University DNA Facility. 

MicroRNA analysis 

 sRNA reads were trimmed with custom Perl code. Reads (> 2 copies) were 

grouped together for analysis. The sRNA reads from each sample was analyzed for 

presence of known miRNAs using miRanalyzer 

(http://bioinfo5.ugr.es/miRanalyzer/miRanalyzer.php) with no mismatches allowed for 

mature miRNA reads matched to mirBase. 

Staging developmental stages of M. persicae   

M. persicae were isolated into individual petri dishes on a leaf with a wet paper 

towel. The adults were monitored for new born nymphs. Five newborns were pooled into 

1.5 mL tube containing 500 µL TRIzol® reagent. The remaining newborns were further 

isolated into petri dishes as previously described. The individual aphids were monitored 

for molting and isolated based in the number of molts which correspond to the life stages. 

Aphids were collected at 24 hour time points with an average molting time of ~30-35 

hours/instar stage. A total of five aphids were grouped together and three biological 

replicates were collected for each life stage. Life stages collected were, new born (NB), 

first and second instar (1-2 instar), third and fourth instar (3-4 instar) and adults (A).  

 

 

http://bioinfo5.ugr.es/miRanalyzer/miRanalyzer.php
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Relative quantification of miRNA levels  

 Expression of the most abundant aphid-specific miRNAs (miR-3024, miR-3027 

and miR-3050) was determined for staged M. persicae using stem-loop RT-PCR. Total 

RNA was extracted as previously described. Primers used are listed in Table 1. The RT-

step was carried out in a 10 µL reaction with 500 ng of total RNA using Superscript 

III®RT (Life technologies) according to the manufacturer’s recommendations with gene 

specific primers. The qRT-PCR was carried out using the iQ SYBR® Green Supermix 

(Biorad) in 10 µL reactions with 100 ng of cDNA template. The protocols for RT and 

PCR were as previously described (21). The experiments were carried out with three 

biological replicates. The relative expression level was calculated by data normalization 

to ubiquitin as the internal control gene and the adult life stage used as the calibrator 

sample. Standard errors were calculated and significance was determined using student’s 

t-test with p-value <0.05.   

Results 

Many conserved insect miRNAs are expressed in aphids 

 Over 100 mature miRNAs were identified from all four species of aphids (Table 

2). The highest number of miRNAs was identified from A. pisum with a total of 94 

miRNAs. This represents 91.3% of all miRNAs that have been identified from A. pisum 

by previous researches. Of the 94 identified miRNAs, 42 have sequence conservation 

with miRNAs identified from other organisms. In comparison, only ~68% of miRNAs 

identified from the other aphid species were conserved relative to A. pisum miRNAs. A 

subset of 16 miRNAs is A. pisum- specific and these miRNAs are not conserved with 
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those of other insects or other species of aphid. The miRNA fraction of the total sRNA 

ranged from 27.8% in A. glycines to 7.4% in M. persicae.  Although the percentage of 

miRNA reads was low in M. persicae, the number of miRNAs identified was not low 

compared to the other species of aphids. Figure 1 shows miRNA conservation in the four 

species of aphids.  

Abundance of miRNAs in multiple aphid species 

Several miRNAs were highly abundant in all species of aphids including miR-8, 

miR-1, miR-184 and mir-276. The least abundant miRNAs in aphids included miR-iab-4, 

miR-92 and miR-100 which are universal miRNAs found in other species of insects. The 

majority of the miRNAs identified were present at very low levels with fewer than 10 

copies. The number of miRNAs identified was reduced as the copy number increased 

with relatively few (six or less) miRNAs expressed at >100,000 reads, and 34 to 45 

miRNAs with 10 or fewer reads (Figure2).  

A group of aphid-specific miRNAs 

 Analysis of miRNA profiles for each species of aphid revealed conservation of 12 

miRNAs that were expressed in all aphid species analyzed. These miRNAs have thus far 

only been described in aphids with no sequence conservation with any other organism 

(Table 3). The aphid-specific miRNAs range in size from 21 nt to 24 nt. These miRNAs 

were generally present at low abundance compared to other conserved miRNAs. Some of 

the aphid-specific miRNAs are encoded in A. pisum genome as clusters; miR-3016, 3024 

and 3032 (superscript a) are encoded together while miR-3031, 3047 and 3037 
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(superscript b) are encoded together. The other miRNAs are expressed individually or 

with other miRNAs that are not unique to aphids.  

Three aphid-specific miRNAs are expressed in all life stages of M. persicae 

 Expression of the three aphid-specific miRNAs with the highest abundance, miR-

3024, miR-3027 and miR-3050 was determined in M. persicae. Figure 3 shows the 

relative expression of these miRNAs in the various aphid life stages compared to the 

adults. All three miRNAs were detected in the various life stages. Peak miR-3024 

expression was detected in the third and fourth instars with the lowest expression levels 

in newborns. The expression of miR-3024 increased with the development of the aphid 

with levels in the newborns and the first and second instar stages being significantly 

lower than the levels in the adult life stage (Student’s t-test, p<0.05). miR-3027 was 

detected at similar levels throughout the nymphal stages with similar levels in the adults 

and newborn. Levels of miR-3027 were significantly higher in the first and second instars 

(Student’s t-test, p<0.05). miR-3050 was present at all life stages with significantly 

higher expression in the newborns compared to adults (Student’s t-test, p<0.05). The 

standard error obtained between biological replicates for miR-3027 and miR-3050 was 

notably larger than for miR-3024.   

Discussion 

In this paper, we present data on the identification and abundance of miRNAs 

from four species of aphids. We further describe a subset of 12 miRNAs that is unique to 

aphids. Some of these aphid-specific miRNAs are encoded in clusters in the genome of A. 

pisum . MicroRNA biogenesis with the transcription of pri-miRNAs of these clusters 
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suggests that these miRNAs are expressed at the same level and may target related genes 

in a pathway for modulation of gene expression. The abundance of miRNAs in aphids 

varies from low copy number (<10) to more than 100,000 copies. The highly 

abundantmiRNAs are conserved with other organisms and appear to be universal 

miRNAs such as miR-8 that is involved in determination of body size in Drosophila (22). 

The organism-specific miRNAs appear to be present at much lower levels in comparison. 

Low abundance however should not be taken to indicate that the miRNAs are any less 

important to the organism as small changes in expression of a gene can have major 

effects on an organism. The role of low abundance miRNAs as an important regulator of 

colon cancer was recently demonstrated (23). 

Aphid miRNAs have been previously examined in A. pisum and in A. gossypii 

(12, 24). Key bioinformatics analysis of the A. pisum genome revealed duplications of 

genes involved in the miRNA pathways, specifically detection of two copies of Dicer-1 

and Argonaute-1 each and four copies of Pasha (25). It was further determined that one 

copy of Dicer-1 and Argonaute-1 is evolving slowly while the other copy is evolving 

rapidly in the aphid (26). This duplication and differential rate of evolution of genes 

involved in the miRNA pathway may provide aphids with the ability to generate novel 

miRNAs from new transcripts with potential development of aphid-specific miRNAs 

(25). MicroRNA studies in the cotton-melon aphid in relation to susceptible and resistant 

melon plants showed the presence of a subset of 9 novel A. gossypii miRNAs that were 

differently regulated between the treatments (12). Using sequence comparison, we 

detected 8 of the 9 novel A. gossypii miRNAs in our sRNA datasets from other aphid 

species (data not shown). This result suggests that there may be little conservation of 
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miRNAs at the species level and perhaps more conservation at the family level. 

Additional sequencing data from other aphid species across different subfamilies would 

provide greater insight into miRNA conservation. The complete genome sequence would 

however be needed to identify novel species-specific miRNAs. When discovered, 

species-specific miRNAs could provide insights into novel regulation of pathways as 

revealed in other organisms (27, 28). 

Our analysis of the abundance of three aphid-specific miRNAs in M. persicae 

shows that these miRNAs are expressed at all life stages of the aphid with variation in 

levels at different developmental stages. Statistical analysis showed large variations in 

miR-3027 and miR-3050 levels between three biological replicates but almost no 

variation was observed for miR-3024. This could be attributed to the function of the 

miRNAs in various biological processes and the targets of these specific miRNAs could 

be rapidly modulated resulting in the large variation observed. More precise 

developmental staging of the aphids, increasing the representative number of aphids used 

in each biological replicate and target predictions could further clarify the results 

obtained.  

From an aphid management perspective, it is important for a target miRNA to be 

expressed in all life stages for effective targeting of the pest. Molecular studies to disrupt 

miRNA function could be used to further characterize these miRNAs and assess their 

importance for aphid survival. To establish which miRNAs would be good candidates for 

further studies, bioassays using synthetic miRNA mimics and inhibitors can be utilized. 

The effectiveness of this method has been demonstrated for other pest insects. Disruption 

of miR-275 function using antagomiR (modified miRNA inhibitors) effectively blocked 
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blood digestion and egg development in Aedes aegypti mosquitoes (29).  Over-expressing 

and inhibiting miR-2002b by feeding larvae on synthetic inhibitors and mimics resulted 

in negative effects on the cotton bollworm, Helicoverpa amigera  (30). 

The ultimate goal for aphid management is the ability to target the miRNAs using 

a plant-mediated approach. It has been demonstrated that stable transgenic plants can be 

used to express double stranded RNA for targeted gene silencing in the green peach aphid 

(31, 32). MicroRNAs inhibition has been shown to be an effective method not only for 

gene function assays but also for management strategies. Over-expression or inhibition of 

miRNAs will result in mis-regulation of protein synthesis which could be devastating to 

the pest. Our identification of these aphid-specific miRNAs presents a unique opportunity 

for development of an aphid-specific insecticide for generation of aphid resistant 

transgenic plants.  
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Table 1. Primers used for stem-loop RT-PCR analysis of miRNA expression in M. 

persicae.  

Primer name Sequence (5’ to 3’) 

api-miR-3024-F CGCCGGTCTTTGGGATTTAATAG 

api-miR-3024-RT GTCGTATCCAGTGCAGGGTCCGAGGTATTCGCACTGGATAC

GACACCGGC 

api-miR-3027-F CGACGCCAGTCTTGCATTTATTC 

api-miR-3027-RT GTCGTATCCAGTGCAGGGTCCGAGGTATTCGCACTGGATAC

GACAGTGGA 

api-miR-3050-F CGAGCTGTGAGATCTTGATAAACT 

api-miR-3050-RT GTCGTATCCAGTGCAGGGTCCGAGGTATTCGCACTGGATAC

GACAGGCGA 

Universal-RT GTGCAGGGTCCGAGGT 

Ubiquitin-F GCTACTGGAAGCCGTCACTG 

Ubiquitin-R GGCGAGCCTTCTTGTTCTTGG  
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Table 2. Mature miRNAs identified from small RNA datasets of multiple aphid species 

Aphid species Total 

number 

of  

miRNAs 

Conserved 

with pea 

aphid 

Conserved 

with other 

organism 

Percentage 

of known 

miRNAs 

from pea 

aphid 

Percentage of 

sRNA reads 

corresponding 

to miRNAs 

Pea aphid, 
Acyrthosiphon 

pisum 

136 94 42 91.3% 16.5% 

Soybean aphid, 
Aphis glycines 

125 71 54 68.9% 27.8% 

Green-peach 

aphid, 
Myzus persicae 

147 70 77 68% 7.4% 

Bird cherry-oat 

aphid, 
Rhopalosiphum 

padi 

141 72 69 69.9% 23.7% 
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Figure 1. Conservation of miRNAs identified in four species of aphid. Blue represents 

percentage of miRNAs conserved with previously identified A. pisum miRNAs. Red 

represents percentage of miRNAs conserved with other organisms and green represents 

percentage of miRNAs that are aphid-specific.    
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Figure 2. Abundance of miRNAs identified from multiple species of aphids. miRNA 

reads from aphids were identified with reference to mature miRNA sequences in 

miRBase. Identical reads of >2 with no sequence mismatch were used for the analysis. 

Among the most highly expressed miRNAs (> 100,000) are miR-1, miR-184, miR-276 

and miR-263 which are highly conserved in insects.  
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Table 3. Aphid-specific miRNAs identified from four species of aphids. The different 

superscript letters indicate miRNAs that are encoded in clusters. api-miR refers to 

miRNAs identified from A. pisum.  

api-miR Sequence Length 

miR-3016
a AUUGGUAACACAUACGUCUUUAG 23nt 

miR-3024
a UCUUUGGGAUUUAAUAGAGCCGGU 24nt 

miR-3032
a UGUUAGUAUAACUCUUAGUAACA 23nt 

miR-3031
b UUGCUUUUUAACAAGUUUCACUA 23nt 

miR-3047
b CAAAACAUUCAAAACUCCCUAC 22nt 

miR-3037
b UUACAAAACAUUCAGAAUUUUG 22nt 

miR-3027 CCAGUCUUGCAUUUAUUCCACU 22nt 

miR-3039 AAAAACGUCAAAACACGGUGG 21nt 

miR-3040 CAGCCGGUGGUGACUGUUUCCACA 24nt 

miR-3041 UUAAAGCUUUGAUGACGGGAUA 22nt 

miR-3050 UGAGAUCUUGAUAAACUCGCCU 22nt 

miR-3051 AAGGAACGUUAAAAACCAUUGU 22nt 
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Figure 3. Abundance of three aphid-specific miRNAs, miR-3024, miR-3027 and miR-

3050 during various developmental stages of M. persicae. The experiments were carried 

out with 3 biological replicates with 5 aphids in each replicate. The relative expression 

was normalized to ubiquitin and relative to the expression levels in the adults, which was 

set at 1.0. NB, newborn. Lines represent standard error and (*) indicate expression levels 

that are significantly different from the adult (Student’s t-test, p<0.05).  
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CHAPTER 6 

SUMMARY AND CONCLUSIONS 

 Aphids negatively impact plants of economic importance by feeding and by 

transmission of plant viruses, and present a challenge to our efforts to increase crop 

yields. Efforts to identify novel avenues for management of aphids and aphid transmitted 

viruses include identification of aphid gut binding peptides that interfere with plant virus 

transmission (1), modification of Bacillus thuringiensis toxins for increased effectiveness 

against aphids (2) and the use of a plant virus coat proteins to deliver neurotoxin into the 

aphid hemocoel (3). In this dissertation, additional avenues for development of aphid 

management tools were explored. Next-generation sequencing of aphid transcriptomes 

and small RNA (sRNA) was used to identify novel viruses infecting aphids and 

microRNAs (miRNAs) common to multiple species of aphids.  

In Chapter 2 of this dissertation, the genome of a novel isolate of Aphid lethal 

paralysis virus (ALPV) from A. pisum was described. The genome of ALPV-Ap was 

9,940 nt, which is longer than the genomes of other ALPV isolates. The genome 

sequence was determined using bioinformatics analysis of sequence data, RACE PCR, 

molecular cloning and sequencing of clones. The use of any one method would have 

resulted in acquisition of a shorter genome sequence. Our experience with genome 

assembly emphasizes the need for multiple approaches for assembly and validation of the 

genome sequence of novel viruses.  For example, the published genome sequence of 

Infectious myonecrosis virus (IMNV) that infects shrimp was shorter at the untranslated 

regions (UTR) of the virus genome compared to the recently assembled sequence (4). 

The additional sequence was confirmed to be part of the virus genome (Loy et al, 
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unpublished). Phylogenetic analysis showed that ALPV-Ap is related to the ALPV 

isolates derived from A. mellifera (5-7), although other isolates of this virus have been 

identified from two different species of aphid, R. padi and A. nerii (8, 9).  

Variation between ALPV isolates was more common in the 5’ UTR of the virus 

genome with high conservation in the protein coding regions. An interesting observation 

with the various ALPV isolates is the report of disease symptoms due to ALPV infection. 

The first identified strain of ALPV was ALPV-RhP from R. padi which was shown to 

cause a reduction of aphid populations due to death by paralysis (10). The ALPV-An 

strain isolated from A. nerii was not pathogenic to A. nerii but was highly pathogenic to a 

different species of aphid, M. persicae  (8). The ALPV isolates from A. mellifera were 

also not associated with obvious disease symptoms.  

Several factors may contribute to the presence or absence of symptoms in infected 

hosts. The regions with variation (5’ UTR) may be involved with the pathogenicity of the 

virus. To address this, an ALPV infectious clone could be constructed with different UTR 

to test for effects on virus properties in a cell line. The ability of ALPV-Ap to replicate to 

a limited extent in the DU182A cell line derived from the spotted cucumber beetle, 

Homalodisca vitripennis (Chapter 3) provides an additional tool that could potentially be 

used for investigation of the different isolates of ALPV. The titer of virus in the host 

insect is expected to be a major determinant of pathogenicity. R. padi was shown to 

exhibit behavioral changes when infected with ALPV-RhP. The aphids moved away from 

the food source, perhaps to reduce the virus load acquired by the aphid (10). Differences 

in tissue tropism between ALPV isolates may also contribute to differences in 

pathogenicity. The ALPV isolate known to cause paralysis in R. padi localized to the 
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nervous system (11). Therefore, pathogenicity (paralysis in particular) could be 

associated with the ability of the virus to escape the gut barrier and infect the nervous 

system of the aphid.   

In Chapter 3, the characterization of ALPV-Ap and A. pisum host-virus 

interaction was described. In an effort to more effectively work with this virus, a screen 

to identify an insect cell line that will support replication was carried out. The DU182A 

cell line supported limited replication of ALPV-Ap. The primary justification for testing 

this particular cell line for ALPV-Ap replication was the discovery of ALPV-like 

sequences in corn rootworm transcriptome datasets (Liu et al. unpublished). The 

DU182A cell line showed initial symptoms of infection with ALPV-Ap but recovered 

three days post infection. This could be attributed to a robust immune response by the 

cell. Suppressors of RNA silencing have been identified from many dicistroviruses 

(Chapter 1) that help the virus to replicate without being silenced by the host RNA 

interference-based immune response. Future work with the cell line could involve co-

transfection of a suppressor of RNAi to limit the effectiveness of the RNAi immune 

response to further promote replication of ALPV-Ap.  

Sequence analysis of ALPV did not identify any region of the virus genome with 

known motifs of a silencing suppressor. A potent silencing suppressor is encoded by 

CrPV that is associated with production of acute disease. The first isolate of ALPV, 

ALPV-RhP caused acute infection with paralysis but no obvious symptoms were 

observed for the other isolates. The silencing suppressor of the non-paralytic isolates of 

ALPV may differ from that of ALPV-RhP, which could contribute to lower 

pathogenicity. The UTR regions could also be involved in silencing. Non-conical 
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suppressors of silencing such as decoy small RNA have been discovered for other viruses 

(12, 13).  Examination of the silencing suppressors of different ALPV isolates would be 

of interest to assess if the efficacy of the suppressor correlates directly with 

pathogenicity, as suggested by previous research (14). Replacement of the DCV 

suppressor with the Cricket paralysis virus (CrPV) suppressor resulted in acute infection 

and paralysis not normally seen in DCV infections of Drosophila melanogaster (14)  

ALPV is emerging as a virus that can infect many different host insects similar to 

another discistrovirus, CrPV(15).  This reflects a dichotomy seen in several insect virus 

families where viruses are either adapted for efficient replication and vertical 

transmission in one or a few closely related host insects (e.g. RhPV), or adapted to infect 

multiple species in a given order with low or no vertical transmission in any given 

species. These two strategies exploit two very different ecological niches contributing to 

the overall success of the insect viruses.  

ALPV-Ap is not vertically transmitted suggesting that the transmission route is 

entirely horizontal. This complete reliance on horizontal transmission is ideal for an 

insect virus that might be applied by spray for suppression of aphid populations on the 

basis that horizontal transmission is likely to be efficient. However, the potential for this 

virus to infect beneficial species of insects (specifically bees) would need to be examined 

before ALPV-Ap could be deployed as an insecticide.   

Our efforts to identify a cell line that will support replication of ALPV-Ap virus 

lead to the discovery of a natural virus infection in a hemipteran cell line, GWSS Z15 

derived from H. vitripennis. This result highlights the need for researchers to be cautious 
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with cell lines and laboratory organisms used for scientific experiments, particularly for 

virus-related research.  

During the course of the experiments, the ALPV-Ap virus was lost from the A. 

pisum colony which prevented further work on this virus isolate. The most plausible 

explanation for loss of the virus is a combination of 1) increased temperature in a new 

incubator that most recently housed the colony triggered ALPV-Ap replication resulting 

in death of infected aphids, and 2) loss of viability in virus that was stored long term at -

20°C. An increase in ALPV-RhP in R. padi  when the rearing temperature was increased 

by only 5°C has previously been observed (16). Another possibility is that the aphids 

developed immunity to the virus and effectively cleared virus infection. However, no 

virus infection was obtained on microinjection of virus directly into the hemocoel, or by 

feeding using the same A. pisum colony or using newly acquired A. pisum (Berkshire 

Biologics, MA). These negative results suggest that the virus stock used for infection had 

lost viability, rather than the lack of infection resulting from the aphid immune response.  

Following the detection of ALPV negative strand RNA in the honeybee 

population in Belgium, the A. mellifera isolate of ALPV was shown to infect and 

replicate in A. mellifera (6). It remains to be determined if the virus could cause severe 

pathogenic effects in the bees, but given recent challenges associated with CCD and the 

fact that bees are already known to be infected by more than 18 viruses (17), caution is 

required regarding use of this particular virus for aphid suppression. ALPV isolates have 

also been identified from bat fecal samples (18). These viruses are most likely to have 

been acquired by the bat when feeding on insects infected with ALPV. In contrast to 

detection of A. mellifera virus negative strand RNA in A. mellifera, virus negative strand 
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has not been detected in bats. The extensive use of next-generation sequencing is likely to 

uncover more isolates of ALPV and sequence comparisons will facilitate our 

understanding of virus host range and evolution.  

In Chapter 4 of the dissertation, we described the identification and 

characterization of Aphis glycines virus (AGV), a unique insect virus with both insect and 

plant virus-like properties. The genome sequence of AGV was assembled from the A. 

glycines transcriptome. Assembly of the near full length virus genome was not possible 

from the small RNA sequencing data. It is unclear if this virus represents the ancestor of 

plant and insect viruses or is an evolutionarily more recent virus that developed from a 

recombination event between an insect virus and a plant virus. AGV is 100% vertically 

transmitted and is highly adapted to the host aphid. Vertical transmission could occur 

from infection of the developing embryo or from a dose of virus acquired in the birth 

canal. Localization studies of AGV in A. glycines would be needed to determine the exact 

mechanism of vertical transmission.  

The susceptibility of AGV to A. glycines RNAi pathway was demonstrated with 

observation of a 22 nt peak of virus-derived small RNAs (vsRNA). This result 

demonstrated a key aspect in aphid antiviral immunity showing a functional response 

from the RNAi pathway. This response was however only observed on co-infection of the 

host with an ALPV-like virus. Mapping of AGV vsRNAs against the genome of AGV 

indicated hotspot regions i.e., regions of the virus genome that are more often targeted by 

the dicer protein for silencing.   
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In Chapter 5 of this dissertation, the identification of microRNAs (miRNAs) from 

multiple aphid species was described. A total of 12 miRNAs were further classified as 

being aphid-specific. These 12 miRNAs were identified in all aphid species analyzed but 

not previously described in any other organisms. Duplication of miRNA pathway genes 

has been suggested as a possible means for aphids to generate novel miRNAs that could 

aid in the evolution and adaptability of these insects in nature (19). The miRNAs detected 

so far represent a snap-shot of the current miRNA profile of aphids. Three of the aphid-

specific miRNAs in M. persicae were detected at all developmental stages. The large 

variation in levels of some miRNAs between biological replicates may represent a 

relatively recent functionality of the aphid-specific miRNAs with possible roles in 

regulating multiple mRNA at multiple developmental stages. Improvements in target 

prediction tools and technology will aid in the identification of targets for aphid-specific 

miRNAs for a better understanding of their role in the aphid.  

All of the knowledge gained from this dissertation provides the foundation for 

further work on both aphid viruses and aphid miRNAs. The newly identified virus, AGV 

or the full length clones of ALPV-Ap may provide candidates for development of an 

infectious clone for use as a virus insecticide or as a vector for gene silencing. Both 

ALPV-Ap and AGV will present unique challenges for development as insecticides. 

ALPV-Ap may not be aphid-specific and may infect beneficial insects, specifically A. 

mellifera. Knowledge of the bases of pathogenicity of ALPV-Ap would facilitate 

development of this virus as an insecticide for aphid control. While AGV is highly 

adapted to A. glycines, it is unknown whether AGV also infects other insects. The 

difficulty in obtaining intact genomic RNA and protein profiles makes AGV a 



165 
 

particularly challenging virus to work with. Studies of AGV in the absence of AGV-free 

A. glycines would also be challenging. Laboratory experiments using miRNA mimics and 

inhibitors will be needed to demonstrate the importance of the aphid-specific miRNAs 

prior to engineering transgenic plants for miRNA-mediated aphid resistance.  
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GENES IN THE PEA APHID GUT 
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Department of Entomology, Iowa State University, Ames, IA, 50011 

Introduction 

 RNA interference (RNAi) is an important biological phenomenon in eukaryotes 

that has been manipulated in insects for functional genomics studies and explored for 

novel pest management strategies. The pioneering study for RNAi in pest management 

was carried out in a coleopteran pest, the western corn rootworm, Diabrotica virgifera 

virgifera. The vacuolar ATPase subunit A (V-ATPase) gene was silenced when double 

stranded RNA (dsRNA) was orally administered in artificial diet. Feeding of the 

rootworms on transgenic corn plants engineered to express the same dsRNA resulted in 

larval stunting and mortality. There was also reduced damage to the plant roots (1). This 

was the first study that showed the potential use of RNAi for pest management.  Many 

studies have since been carried out to demonstrate gene silencing in pest insects such as 

that of the cytochrome P450 gene in cotton bollworm, Helicoverpa armigera (2) and the 

trehalose phosphate synthase gene in brown planthopper, Nilaparvata lugens (3).  

Silencing studies have also been carried out in aphids using feeding or 

microinjection for the delivery of silencing RNA. Microinjection of short-interfering 

RNA (siRNA) targeting the Coo2 transcript in pea aphid saliva, Acyrthosiphon pisum 
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resulted in a 2-fold reduction of the target transcript after 24 hours (4). Microinjection of 

dsRNA targeting a calcium binding protein, calreticulin and cathepsin L resulted in ~40% 

silencing of target genes by Day 5 (5). Gene silencing by feeding on artificial diet mixed 

with dsRNA was demonstrated for silencing of a putative aquaporin gene (ApAQP1) (6), 

the V-ATPase gene in A. pisum (7) and five candidate target genes in the grain aphid, 

Sitobion avenae (8). Transgenic plants expressing dsRNA have also been used for gene 

silencing in aphids. Genes targeted include, Myzus persicae Coo2 (MpCoo2), receptor for 

activated kinase C (Rack-1), Myzus persicae serine protease (MpSP) and the Myzus 

persicae hunchback gene (Mphb) in the green peach aphid, Myzus persicae (9-11). The 

carboxylesterase gene (CbE E4) was targeted in S. avenae using transgenic wheat, 

Triticum aesticum (12). Target gene knockdowns were observed in the range of 30-80% 

in these assays.  

In this study, we attempted silencing of gut-specific cathepsin genes in A. pisum. 

The study follows from published results of silencing of Cathepsin L in A. pisum by 

dsRNA microinjection (5). Cathepsins are a large family of cysteine protease genes. A 

subset of cathepsin genes, namely Cathepsins L, B84, B16, B16D, B1874 and B2744 

were identified to be preferentially and widely expressed in the gut cells of aphids (13, 

14). Aphid gut genes were chosen because they would be ideal candidates for silencing 

effects in gut cells upon acquisition of silencing dsRNA by feeding. Aphid feeding 

bioassays were hugely variable with high mortality rates. The cathepsin B16 gene was 

moderately silenced in the gut of A. pisum fed on 0.25 µg/µL dsRNA after 3 days of 

continuous feeding.    
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Materials and Methods 

Aphid guts dissections and total RNA extraction 

Adult pea aphids, Acyrthosiphon pisum were dissected in 1X phosphate buffer 

saline (PBS). A total of 200 dissected aphid guts were directly placed into TRIzol® 

reagent (Life Technologies). Aphid guts were gently homogenized in TRIzol®  reagent 

using a pellet pestle and total RNA was extracted from the aphid guts using the TRIzol® 

reagent according to the manufacturer’s protocol with overnight precipitation of RNA in 

isopropanol at -80°C to maximize the amount of RNA precipitated.   

Reverse transcription and PCR amplification of A. pisum cathepsin genes 

 Total RNA extracted from A. pisum guts was quantified using Nanodrop (Thermo 

Scientific). Approximately 5 µg of total RNA from A. pisum guts was reverse transcribed 

to cDNA using Superscript III Reverse Transcriptase (Life Technologies). A. pisum 

cathepsin genes (B84, B16, B16D, B2744, B1874 and L) were PCR amplified using the 

gut cDNA and primers listed in Table 1 without the T7 promoter sequence. PCR 

reactions (25 µL) were carried out for each target cathepsin gene using the PCR 

conditions: 94°C for 10 minutes, 30 cycles of 94°C for 30 seconds, 57°C for 30 seconds, 

72°C for 2 minutes followed by one cycle of 72°C for 5 minutes. The PCR products were 

run on a 1% agarose gel, stained with ethidium bromide and imaged using a gel imager 

(Fotodyne). Amplified PCR products were excised from the gel and purified using the 

QIAquick Gel Extraction Kit (Qiagen).  

The purified PCR products were then used as templates for PCR amplification of 

A. pisum cathepsin genes with T7 overhangs. Primers that were used are listed in Table 1. 
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PCR conditions were as described above. The negative control gene, Lac Z was PCR 

amplified directly from 50 ng of pGEM T-easy (Promega) using the T7 primer listed in 

Table 1. PCR conditions used: 94°C for 2 minutes, 30 cycles of 94°C for 30 seconds, 

53°C for 30 seconds, 72°C for 2 minutes followed by one cycle of 72°C for 5 minutes. 

An additional negative control gene, GFP was PCR amplified directly from a previously 

cloned plasmid in the lab, refer to (15). PCR conditions used for GFP amplification : 

94°C for 2 minutes, 30 cycles of 94°C for 30 seconds, 58°C for 30 seconds, 72°C for 2 

minutes followed by one cycle of 72°C for 5 minutes. PCR products were visualized and 

purified as previously described. All PCR products were sequenced at the ISU DNA 

Facility to ensure correct amplification of the target gene.   

Double stranded RNA synthesis  

 Double stranded RNA for silencing all genes was produced in-vitro using the 

MEGAscript RNAi Kit (Life Technologies). Approximately 2 µg of purified PCR 

product with a T7 overhang was used in each dsRNA synthesis reaction. Reactions were 

carried out according to the manufacturer’s directions.     

A. pisum feeding bioassays  

 A. pisum (3
rd

 and 4
th

 instars) were starved at 4°C for approximately 4 hours before 

feeding bioassays. The feeding bioassays were carried out using a Parafilm ® membrane 

feeding method in a petri dish. In-vitro synthesized cathepsin, lac Z or GFP dsRNA was 

added to aphid complete diet (16) at concentrations of either 0.25 µg/µL or 0.5 µg/µL. A 

complete diet only control was also included in each bioassay. Aphids were monitored 

daily for feeding behavior, percent mortality and number of progeny produced. Aphid 
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mortality data was analyzed using Student’s t-test, data is significantly different if p-

value <0.05.   

Quantitative RT-PCR amplification of cathepsin gene knockdown 

Aphid guts were dissected from A. pisum from the diet only control, GFP dsRNA 

fed and cathepsin B16 dsRNA fed treatment at Day 3. Total RNA was extracted from the 

guts using TRIzol® (Life Technologies) according to the manufacturer’s directions. qRT-

PCR was carried out using the iScript One-Step RT-PCR with the SYBR Green kit (Bio-

Rad). The reactions were carried out with 10 ng of total gut RNA in a 10 µL reaction 

using gene-specific primers (Table 1). Ribosomal protein (Rp L7) was used as an internal 

control gene. All reactions were carried out with duplicate technical replicates. 

Additional no template negative control reactions were included. qRT-PCR was carried 

out in the iCycler IQ system (Bio-Rad) using the protocol of 1 cycle of 50°C for 30 

minutes and 95°C for 5 minutes, 30 cycles of 95°C for 10 seconds and 53°C for 30 

seconds. A dissociation melt curve analysis was carried out with 81 cycles of 15 second 

increments of 0.5°C starting at 55°C. The data were analyzed using the ΔΔCT method 

(17) with data normalized to the internal control gene and the diet only treatment. 

Double stranded RNA stability assay 

 In-vitro synthesized dsRNA that was stored at -20°C was thawed on ice. dsRNA 

(0.2 µL) was incubated at room temperature for 3 hours. Equal volumes of the thawed -

20°C samples and the room temperature incubated samples were loaded on a 1% agarose 

gel. The gel staining and viewing as previously described.   
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Results 

Amplification of cathepsin genes from A. pisum and dsRNA synthesis 

 The annotated sequences of A. pisum cathepsin genes were obtained from the 

National Center for Biotechnology Information (NCBI) sequence database. Primers were 

designed to amplify ~ 600-700 bases of the target cathepsin genes from the guts of A. 

pisum. The list of gene accession numbers and primer sequences is provided in Table 1. 

All target cathepsin genes amplified except for cathepsin B2744 and B1874 (Figure 1). 

PCR amplification using 2 additional primer sets did not change the outcome (data not 

shown). These cathepsin genes were not included in further assays. The T7 gene-specific 

primers yielded PCR products at the expected sizes (Figure 2) for the target cathepsin 

genes, Lac Z and GFP controls. Double stranded RNA (dsRNA) was produced for each 

target cathepsin and for Lac Z. The dsRNA migrated through the agarose gel slower than 

the DNA counterpart as observed with the Lac Z sample (Figure 3).  

Impact of dsRNA feeding on A. pisum mortality and fecundity  

 A. pisum fed on 0.5 µg/µL target dsRNA had a higher mortality rate compared to 

diet-only fed aphids. However, A. pisum fed on negative control dsRNA Lac Z also had 

high mortality (Figure 4). The fecundity of A. pisum is affected by feeding on cathepsin 

dsRNA compared to the diet-only control but was not significantly different when 

compared to the negative control Lac Z dsRNA treatment using Student’s t-test (p>0.05) 

(Figure 5). Reasoning that Lac Z might be having a non-target silencing effect in A. 

pisum, a new negative control gene was used instead. The dsRNA synthesized from the 

GFP gene was used for the second set of bioassays.  
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 The mortality of A. pisum is higher in the cathepsin B16 dsRNA at 0.25 µg/µL 

fed aphid sample compared to the diet-only and GFP controls at Day 3 (Figure 6a). The 

mortality is however not significantly different (p>0.05, Student’s t-test). Cathepsin L 

dsRNA feeding for 5 days at 0.25 µg/µL did not result in significant mortality (Figure 

6b). 

Silencing of cathepsin B16 in A. pisum gut 

 The guts from surviving A. pisum in the cathepsin B16 knockdown feeding 

bioassay (10-15 guts) were dissected out at day 3. qRT-PCR was carried out using total 

RNA extracted from the gut samples from each treatment with data normalization of B16 

mRNA expression to the diet-only fed aphid guts. The internal control gene used for the 

analysis was Rpl7, the same internal control gene used in a previous cathepsin L 

knockdown experiment by microinjection (5). The cathepsin B16 mRNA was reduced 

30% in A. pisum that fed on dsRNA targeting cathepsin B16. There was an increase in 

cathepsin B16 expression level in aphids that fed on dsRNA targeting GFP (Figure 7). 

Stability of in-vitro synthesized dsRNA at room temperature 

 The stability of the cathepsin dsRNA used in the experiments was tested with 

incubation for 3 hours at room temperature and the original dsRNA thawed from the 

freezer. Significant degradation of the dsRNA is observed after 3 hours at room 

temperature (~ 21°C) (Figure 8). This could explain some of the lack of silencing 

observed in feeding bioassays.   
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Discussion 

 The results obtained from the silencing of cathepsin genes in A. pisum guts were 

highly variable. The A. pisum feeding bioassays present one challenging aspect of the 

experimental design. The use of negative control dsRNA Lac Z induced high levels of 

mortality in A. pisum although this same negative control has been successfully used in 

previous aphid knockdown bioassays (5). Additional factors that may play a crucial role 

in determining the success of gene knockdown studies in aphids include the abundance of 

the target gene in tissues targeted at various life stages, the activation of the RNAi 

pathway by the exogenous dsRNA, stability of dsRNA fed to aphids and the mode of 

delivery.   

 Although all the core RNAi pathway genes are present in A. pisum (18), silencing 

of aphid genes has proved to be challenging. High concentrations of dsRNA are required 

for even very low levels of gene silencing (4, 5). Continuous feeding on siRNA in plant 

phloem reduced the target transcripts in M. persicae by 60% (11). There appears to be 

much that we still do not understand about the RNAi pathway, especially in non-model 

organisms such as A. pisum. Several recent publications provide information about 

unsuccessful RNAi-based gene knockdown experiments in insects that could facilitate 

improved experimental design (19, 20).  
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Table 1. The primers used for amplification of cathepsin genes from A. pisum guts and 

Lac Z from pGEM T-easy vector. The T7 promoter sequence was incorporated at the 5’ 

end of the T7 gene-specific primers  

T7 promoter sequence: 5’ TAATACGACTCACTATAGGGAGA 3’ 

Target Accession No. Primer sequence (5’ to 3’) 
Cathepsin 

B84 
gi 209863087 Forward: T7- GTGTGGACAGATATTAAACC    

Reverse: T7- GTGTCTTTCTGCATGGTTG 
Cathepsin 

B16 
gi 161343834 Forward: T7- CGATTATTTTCCAGCAAAACC 

Reverse: T7- ATTTTTTTCAATTGGCTTACCG 
Cathepsin 

B16D 
gi 201023314 Forward: T7- AATAATTGGCGAAAAGTTGC 

Reverse: T7- TACATCTGTGATTCGATTCCC 
Cathepsin 

B2744 
gi 209863078 Forward: T7- CGAAGACGATTTACATAAAAC 

Reverse: T7- GTAGGTAGGTACTACTAAAG 
Cathepsin 

B1874 
gi 201023320 Forward: T7- TTGTCAACCATATACAATCCC 

Reverse: T7- AATTATTTTATGACATCAAGACC 
Cathepsin 

L 
gi 209693434 Forward: T7- ATTATAGTCTACGTTATTGTCTG 

Reverse: T7- GTCATCCTCGGCTTCATAT 
Lac Z pGEM T easy vector Forward: T7- CGTAATCATGGTCATAGCTG 

Reverse: T7- TTCATTAATGCAGCTGGCAC 
GFP GBP3.1-EGFP vector Forward: T7- TAAACGGCCACAAGTTCAG 

Reverse: T7- TGTACAGCTCGTCCATGC 
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Figure 1. RT-PCR amplification of cathepsin genes from A. pisum gut total RNA using 

gene-specific primers. Amplification of cathepsin genes B2744 and B1874 was 

unsuccessful. All other target cathepsin genes amplified and were visualized at the 

expected sizes.   
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Figure 2. PCR amplification of cathepsin genes, Lac Z and GFP with T7 promoter 

sequence overhangs using T7-gene-specific primers from purified PCR products.  
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Figure 3. In-vitro synthesized dsRNA for A. pisum cathepsins B16, B16D, B84, L and 

the negative controls Lac Z and GFP. The dsRNA appears to run at a higher size than 

expected. Molecular size comparison with Lac Z PCR product and Lac Z dsRNA shows 

that dsRNA migrates more slowly in the gel.  
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Figure 4. Mortality of A. pisum fed on artificial diet containing 0.5 µg/µL dsRNA against 

target genes, cathepsin B16, B16D, B84 and L. Control represents aphid fed on complete 

diet only. Lac Z dsRNA served as a negative control. 20 adult A. pisum were used for 

each treatment (2 technical repeats of 10 aphids per feeding plate). Mortality data was 

recorded daily for 3 days. No significant differences was observed for cathepsin dsRNA 

treatment compared to controls, p>0.05 (Student’s t-test).   
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Figure 5. Fecundity of A. pisum fed on artificial diet containing 0.5 µg/µL dsRNA 

against target genes. Control represents aphids fed on complete diet only. Lac Z dsRNA 

served as a negative control. Adult A. pisum (20) were used for each treatment (2 

technical repeats of 10 aphids per feeding plate). Newborn aphids were counted daily for 

3 days then transferred out of the feeding dish.  
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Figure 6. Mortality of A. pisum fed on artificial diet containing 0.25 µg/µL dsRNA 

against Cathepsin B16 (A) and Cathepsin L (B). Control represents aphid fed on 

complete diet only. GFP dsRNA served as a negative control. 30 A. pisum between 3
rd

 

and 4
th

 instar were used for each treatment (2 technical repeats of 10 aphids per feeding 

plate). Mortality data was recorded daily for 3 days. No significant differences was 

observed for both B16 and L dsRNA treatment compared to the controls, p>0.05 

(Student’s t-test).  
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Table 2. Primers used in qRT-PCR analysis of cathepsin B16 gene silencing in A. pisum 

guts at Day 3 of feeding on dsRNA at 0.25 µg/µL.    

 

 

  

Target Accession No. Primer sequence (5’ to 3’) 
Cathepsin 

B16 
gi 161343834 Forward: ACAATAACGGCTATATCCCGAGGACA 

Reverse: GGCTTTGATCGGGTATCCTCCG  
RpL7 gi 209571476 Forward: CGCAAAGCCCGTACAGCATTCA 

Reverse: GGAGCTACTTGGTTCACACCACGA 
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Figure 7. The relative expression level of cathepsin B16 gene in guts of A. pisum fed 3 

days on GFP dsRNA and B16 dsRNA at 0.25 µg/µL concentration. The qRT-PCR data 

were normalized to cathepsin B16 expression in gut samples from diet only fed A. pisum. 
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Figure 8. Stability of in-vitro synthesized dsRNA directly thawed from stored samples at 

-20°C versus dsRNA that has been incubated at room temperature for 3 hours. Equal 

volumes of the same sample aliquot were loaded on a 1% agarose gel for each assayed 

cathepsin.  
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