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PART I. THEORY 
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INTRODUCTION 

Transition metal oxides have been receiving increasing 

attention from experimentalists and theorists alike, as 

model systems in which to study the solid state. Tungsten 

bronzes, for example, properly doped, form a basis for the 

study of a major portion of the field of solid state physics, 

in that depending upon the temperature and concentration of 

alkali metal, they can be insulators, semiconductors, metals, 

or super-conductors. ReO^ has been found to be a "good 

metal", reduced potassium tantalate KTa02+x has been found 

to be a semi metal, and some compounds such as SrTiO^ are 

found to be semiconductors. The cubic tungsten bronzes, 

( stolchiometry A^^WO^, where A is an alkali metal), ReO^, 

KTaOg, and SrTlG^ all have a common structural feature; the 

transition metal is octahedrally co-ordinated with oxygens, 

and, except for the case of BeO^ (which has the perovskite 

structure without the central hole filled by a non-transition 

metal atom) are all perovskite structures. 

A major question to be answered for these systems is 

"how does one think chemically about their stability, and 

physically about their transport properties?" For the 

chemist, the easiest approach is the localized molecular 

orbital picture with each metal ion in a sit© of 0^ symmetry. 

Levels are guessed at, electrons are counted, and depending 

upon the last levels to be filled, inferences are made 
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regarding the possibilities for conduction bands, generally 

labeled according to the transformation properties of the 

orbitale In question under 0^ point symmetry. The solid 

state theorist, on the other hand, is very aware that an 

exact many body calculation to infer stabilities Is not 

possible. He, therefore, uses an Independent particle 

model with the meaningful results (to him) being energy as 

a function of wave vector, and Perml surface contours. He 

realizes that point symmetry designations completely break 

down as soon as translatlonal symmetry is forced upon the 

wave functions, and has a tendency to listen with a respect­

ful, but somewhat distant ear to point symmetry, bond order, 

electronegativity etc., type arguments from his chemical 

cohorts In the solid state chemistry field. For the average 

chemist, on the other hand, vision, intuition, and compre­

hension become somewhat blurred as soon as an E(k) vs. k 

plot Is waved enthusiastically before his eyes as his 

theorist friend explains what the Fermi Surface must look 

like from the most recent band calculation. 

Objectives of the Thesis Work 

The present work Is one attempt to provide the beginnings 

of a translation between these two groups via tight binding 

calculations of the band structures of some representative, 

important and interesting cubic transition metal oxides. 
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Ttie work Is aimed at chemists via a delineation of orbitals 

participating in valence and conduction bands, and a com­

parison of how the molecular orbital model flows over into 

the band picture as translatlonal symmetry is added. For 

the physicists, we do indeed exhibit energy vs. wave vector 

plots and discuss their validity in terms of transport and 

optical properties. 

Recently, overlap calculations (1) were used to provide 

a "zeroth order" method of thinking about the possibilities 

for orbitals forming conduction bands in the cubic tungsten 

bronzes. We will now outline the theory of the first 

order method for thinking about transport properties of 

perovskite type metal oxides; In particular, we use ReO^ 

as a model to discuss the method. 

The tight-binding energy bands of a series of perovskite 

type transition metal oxides: ReO^, NaxW02(x=1.0), KTaO^ 

are calculated and the results are discussed In Parts II 

and III of the thesis. The crystal orbital properties which 

will be discussed In subsequent Parts II and III are: 

1) Density of States 

2) Joint Density of States 

3) Fermi Surface 

1^) Results of the Mulliken Population Analysis 



Before we discuss the tight-binding approximation (TBA) 

used in obtaining energy bands of crystals, we shall make 

a brief excursion into the Hartree-Pock (H-P) approximation. 

The purpose of this preliminary discussion 1? to show the 

"rigorous" equations from which we will systematically 

descend In rigor by a series of hopefully justified approxi­

mations . 
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HARTREE - POCK APPROXIMATION 

Let us assume that the electronic state of a unit cell 

(molecular unit) in a crystal is characterized by a particular 

wave vector, k, in reciprocal space. If we further assume 

that the electronic configuration is a closed-shell, i.e., 

doubly-occupied energy bands, the total wave function 

$(k) is approximated as an antisymmetrized product (ASP) of 

crystal spin-orbitals Uq(k,Xq) 

In the above^p is the parity of the P th permutation. In 

other words, we can express 5(k) as a single-Slater deter­

minant 

w h e r e t h e  a n t i s y m e t r i z e r  o p e r a t o r  d e f i n e d  b y  

- P 

( 1 )  

* # # 

( 2 )  



? 

Prom the properties of a determinant, we satisfy, as 

usual, the Paull exclusion principle while allowing for 

double occupancy of the Mjj energy bands. It is important 

to stress that Mjj for all possible k vectors need not be the 

same. 

The spin-orbital Uq(k,Xq) has a space (r) - spin ( ̂  ) 

coordinate Xq=(^, ̂ q) , We shall adapt the usual convention 

for an odd electron where 

U;. (Wr ) = ) ̂ ( r ) 

and u^+i(k,x +1) 

where the functions o( andare the usual eigenfunctions 

of the single electron spin operators and S^. The 

crystal orbital is labeled by j. So that there will be no 

confusion between the sum indices ^ and /® used further on, 

the spin functions as the above is the only place we mention 

the spin functions explicitly. 

The crystal Hamilton?an ̂  , defined for a fixed nuclear 

framework and k In the Born-Oppenhelraer approximation, is 

M = fi 

where h(r ^)=- ̂  - 2^ Z/r^ and g(r^ ,r^ )=2/r^ ̂  . 
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The one-electron and two-electron operators are expressed In 

Rydberg energy units (13.6 e.v,). ^ and V label Interacting 

electrons. Y labels the atomic site having a bare nuclear 

charge Z ̂  . In the valence shell approximation Z ̂  becomes 

the effective nuclear charge (bare nuclear charge minus the 

sum of the non-valence electrons). 

The quantum mechanical treatment of equal to 

'^Aï(k)\ XlA^(k)'^ proceeds in three steps: 

1) The expectation value of the operator is expressed 

In terras of the permutation operators and the identity 

yields the form amenable to further expansion (2) 

<X>k (.])P<3(k)|7(i P^>. 
— P 

2)  Assuming the closed shell electronic configuration, 

integration of the spin part of the above expression gives 

the resulting total energy E(k) In terms of apace type 

integrals 

E(i)= =2ir kg(k) (2Jg,(k).Kgg(k)) 

g,s  

3) We now wish to find the beat possible orbitals u ̂  

to form E(k) (restricted to a slngle-determinantal form) by 

minimizing E(k) under the constraint 



To do so, we define the functional P(k) as follows: 

P(k) = E(k).g- Lg,(k) )|Ta(lE,£^)>- &gs). 

g»s 

We then use variational techniques to find the conditions by 

which an arbitrarily small variation in the crystal orbital 

yields a vanishing of the resulting small variation of the 

functional P(k) or 5 P=0. We thereby obtain the following 

set of Hartree-Fock equations which satisfy the above 

[h(rp +^(2C,(k.r|,). 

In the three steps above we use the following notation: 

b^(k) = <f(k,£ j1 -

Kg.(k)=%(k.!:^) I T:,(k.r^)|%(k,r^)> 

L (k)= the matrix elements of the lagranglan 
" "" multipliers. 

C (k^rj andX (k,r ) are Coulomblo and exchange operators 
s —- —r s ~ 

respectively. J__(k) and K. _(k) are the corresponding 
go — gs — 

Coulomb and exchange Integrals. C„(k,rJ is defined by 
s — —^ 

Its operational meaning on^j|^(k,r ): 
o f 
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) 

Likewise X (k,rJ Is defined by 
s "" ""p 

- 'I 

Summing over 3, we obtain the total Coulomb and exchange 

operators C(k,r and ̂ (k,r ̂  ) : 

C(k,rj) =^C.(k,r.) such that 

G(k'!:^)Tg(k,r^)=2jdrj^k (rjr^) ̂ (k,r^). 

lTr~^ 

%»(k,r^) such that 

'' WFTi 

(r|r )= Pook-Dlrac density matrix /e> 

- 2 \ 1/(k.r;%(k.r^) 

8=1 

The one-electron operator on ̂  or the Pock operator^(k,r^ ) 

is defined in terms of the above operators as 

y(k,r^ )=k{r ̂  ) + C(k,r ̂  >-|')[(k,r ̂ ). (6) 

We now have the mathematical formalism to approach the 

T6A method in a manner similar to Roothaan's procedure 

for molecular orbltals In the closed shell electronic conflg-
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uration ( 3 )» The latter approach is technically called the 

ASP-SCP-MO-TiCAO method, but SCP-MO-LCA0 Is the description 

most often found in literature. 

Let us consider the rhenium oxide (cubic) crystal as 

a model for perovsklte transition metal oxides In showing 

why the Roothaan approach Is Inadequate for the whole crystal 

to obtain energy leveln. ReO^ is the molecular unit which 

is repeated periodically through the crystal because of 

tranalatlonal symmetry. The electronic system of ReO^ 

without inclusion of transiatlonal symmetry is no different 

than that of an isolated molecule. In order to make ReO^ 

part of the crystal and hence to consider the entire crystal 

as an immense molecule, we must investigate the effects of 

tranalatlonal symmetry on the molecular orbital functions. 

Prom the discussion in Appendix j,we find that the molecular 

orbitale upon forming a periodic crystal become crystal 

orbitals which are explicitly functions of the wave vector 

in reciprocal space. We will ehow in the next section how 

the TBA method encompasses both the Roothaan procedure and 

translatlonal symmetry. 
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TBA METHOD 

The crystal orbital (k,r ̂  ) is analytically expressed 

as a linear combination of Bloch sums, bq^ (k,^ giving 

Tj(k,r^) =^Cqj(k)bq^(k,r^) (7) 

where the expansion coefficients are Gqj(k). The double sum 

over atomic orbital quantum numbers q and atomic sites ^ 

is expressed in condensed form &s q<)C . 

The Bloch sums are expressed in terms of an atom 

orbital qa^by the sun over the p lattice translation vectors. 

We refer to the discussion of translateonal symmetry aspects 

of the TBA problem in Append? ÎÇ J which gives 

bq^(!£.£^) (g) 

G is the number of unit cells in a microcrystal« The 

corresponding "ground domain (G)" on the lattice trans­

lation vector set is expressed differently (Appendix J) with 

the choice here being the inequality for j components of Rp 

. (Q^ (J=l,2,3). 

We shall define Rq as the null vector, i.e. 

(Ro)j = 0 (j=l,2,3). 
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wMoh locates the q-atomic orbital at in the unit cell. 

Figures 1 and 2 show the vector notation on the yu electron 

position vectors r^- ̂  and r - Pcx -R^p. 

By Equation 7, the crystal orbltals, ) are 

expanded in a linear combination of atomic orbltals (LCAO) 

to form TBA energy bands (see Table 1 for a comparison of 

MO and crystal orbltals). The j th energy band, Ej(k) 

Is obtained from the Schrodlnger equation defined by the 

effective one-electron operator ̂ (k,r ̂ ) (Equation 6) on 

electron ^ in crystal orbital'^jCkjr ̂  ) (for the canonical 

case discussed belpw), 

=Sj(k) ^). (9) 

SCP Iterative Process 

We substitute Equation 7 into Equation to obtain a 

form amenable to a MO-LCAO-SCF type treatment of tight-

binding energy bands. We begin with the Hartree-Pock 

equations : 

• ̂  ' * n ^ m "T 

and finally obtain 

If we multiply Equation 10 by 4 p(k,r and Integrate, 



ih 

X 

ORIGIN 

Figure 1. Definition of position vector r- of an electron 
(o") with respect to atomic siTe^ , 

ORIGIN Y 

Figure 2. Definition of position vector r- i after 
translation Rj . " -M — 



Table 1 Comparison of moleculer and crystal orbitals 

Orbital 
1 

One-electron 
wave function 

Normalization 
conditî on 

The q th 
basis 
se t^ 

Linear combin-
atlon of basis 
sot 

MOLECULAR Yi(z) 

CRYSTAL "Yl'-i;..!-.) 

atomic 
orbital 
func tion 

^qoc 

)\^(k,T*)V=l B]och sum 
11 _ n function 

^qoC 

<yC 
(r)=^Ci^,(r)Sf, 

CK 

^ Clg(klbq^,r) 

®The basis set functions are nnrmali^ed. 
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we obtain 

:'mn(k))<b,^(k,r^)| b,^(k.r^)> . (ID 

We define the Hamiltonian matrix H(k) v^th elements be­

tween Block aims gia 

Vsp'ï' "sA'-f' ̂ 

and an overlap matrixA(k) with elements between Bloch stuns 

that are 

Thus, we have the following matrix form: 

H(k) = b^ ?(k) b 

andA(k) = b^b (13) 

with b = ( b]^ ... .bj^^b^^ .,. .bgya . ..b^^ . ...bj^) is the Bloch 

sums matrix ( k dependence Implied) for A,B and C Bloch sums 

specified for'*',J?,y atomic sites. 

Furthermore, the coefficient matrix is defined as 

C(k)= (C^(k) G^ik) ...C^(k) ... C^) 

where the aubmatrix ̂ ^(k) is a column matrix of the expansion 

coeffients of the nth crystal orbital function into a Bloch 

sums basis set. 
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Then, Equation 11 for a particular terra becomes 

H,.3^(1£) C'k) • 

In matrix notation, we obtain 

H(k) C„(k) E (Aj_^(k) ) L„„(k). 
m 

If we dlagonallze L by some unitary mptrlx^the resulting 

similarity transformation Is 

3^ 2 =£(1S' where «(k) ),„=E„(y . 

Thus, we obtain the canonical form of the H-P equations 

which are now written as 

H(k) 0„(k) =E^(k) 0„(yA(k). 

Prom matrix algebra, we Know that a non-trivial solution 

of the coefficient matrix , C , exists if and only if the 
r>j 

following determinant vanishes,!,e. we seek a solution 

of the secular determinant written as 

I H(k) - E(k) A.(k)l = 0 . (im 

The Pock-Dlrac density matrix defined in Equation $ can be 

expanded in terms of Bloch sums using Equation 8 to give 

= . (IS) 

The bond order matrix Pj^(q«',s/3) Is defined as 
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The bond order matrix can be varied in a SCP process to obtain 

the best crystal orbitals which lead to a minimum in the 

total electronic energy E(k) under the constraint of orthonorm-

ality on the crystal orbitals. 

Using Equations 6» 12, and 16, the Hamiltonian 

matrix elements can be expressed es 

^1 bgglk.rp) > 

The one-electron operator on f^ln state k becomes 

^(k,r|,)= 

[24)^(1,r^)b^{k,r^)| -< b^^(k,rjlb^^(k,rn . 

117) 
The SCP process which is outlined below is for the 

canonical case and gives us a means of controlling TBA 

calculations : 

1) Guess p^Xt%,v%) for each tl(,v& pair. 

2) Calculate the Hamlltonlan and overlap matrix 

elements ( the latter type are omitted If we start with 

an orthogonal basis set î if the basis set Is non-ortho­
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gonal we have the option of varying parameters In 

the analytical form of the atomic wave functions at this 

point In the SCP process). 

3) Solve the secular determinant In Equation llj. to 

yield energies and cpefflclents for crystal orbltals. 

if.) Use some type of population analysis to calculate 

the new bond order matrix and repeat steps 2-k until a 

self-consistency condition la reached. 

In the next section, we shall transform the Pock 

operator defined In Equation 17 for a particular k vector Into 

an average Pock operator over all momentum or wave vector 

space. The transformation la called the " unitary trans­

formation of the Pock operatof". 

Unitary Transformation ©f the Pock Operator 

The bond order matrix can only be obtained in step I4. of 

the SCP Iterative process If the Perml level ( (k) ® } 

la known. But the Perml level can only be found "" 

as some average quantity over the entire k space (further 

discussion of the procedure for finding is in Part II). 

Thus, the present form of the Pock operator Is useless for 

our present purpoeqs In the TPA method 

However, we can reasonably define an effective Pock 

operator which Is applicable to all k states. The average 



of the operators on electron ̂  over the G unît 

cells (or k vectors) In the mlcrocrystal is 

Furthermore, Equation 18 can be rewritten 

Ave T V /v 
^ )= G % exp(ik.Rj)exp(-ik Rj)J(k,r^) (19) 

where exp(-lk'Rj) is a phase factor for an arbitrary 

translation vector Rj. 

By using Equation 19, we are able to show that the 

average of ) over G k wave vectors is nothing more 

than unitary transformation. Ziman (II) shows how such an 

unitary transformation can be used to generate a Wannler 

function (function of position pnly ^n reciprocal apace) 

from the corroaponding Bloch sum. Since Bloch sums occur 

explicitly in the form of 3"(k,r^ ) It, therefore, seems 

reasonable to transform the Bloch sums into localized atomic 

orbitals if we define Bloch sums by Equation 8. 

The unitary transformation of the PocK operator ^(k,r^ ) 

is shown in Appendix K, The results are summarized here 

for the resulting LCAO form of the Pock operator. Using 

arbitrary labels and ̂  for atomic sites, we have: 



'V Ave. 2 Tn V* T' Ave. 

^tA?4 'I 

P(q®,VTfÇ& ^i^'°t>n(S> • (20) 

What we now have is a Pock operator which Is identical in 

form to that used in molecular orbital calculations,i.e. 

the LCAO form. The effect of translational symmetry is 

now contained pnly in the bond order matrix pAve(q^^t/0 ) 

Just the expansion coefficients of the crystal orbitale. 

In summary to this point, we have Justifiably trans­

formed the H-P equations for a crystal into the LCAO form 

in which Roothaan'g procedure may be applied to the 

energy and overlap matrices and the effects of translational 

symmetry remain only in coefficients which are solutions 

of the resulting secular determinant. An important point 

is that the periodicity of the crystal lattice is still 

preserved since the electron position vectors used in 

conjuction with the atomic orbitala explicitly show the 

dependence on the translation vectors. 

We now discuss the approximations which will be used 

in TEA calculations. 
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Approximations Used in the TBA Method 

Population analysis of crystal orbltals 

The charge density of the m th crystal orbital is 

) . 

(21) 

The sum over t^ls over the entire Bloch sum basis set and 

therefore contains the term p<. Integration of Equation 21 

gives 

< T )  ( 1 -  ) )  =  ̂  ^  ' < ^ b p ^ k , r ) | b ^ ^ ( k , r ) >  

If the Bloch aurn?^ are normalized, l.e, <^b_ Jk,r )| b (k,r 

equals one, the above equation becomes 

< %.(k.r Op%(k)Ct^k) • 
r ' !-'«< * PA. ̂  

poC 
p„(S) (22) 

where la the occupation number defined by Plodmark to 

be expressed as 

V'y ' 1=^^ + P,  „ b^^(k.r^)| b^^(k.r^)> 

(23) 

If the crystal orbital m Is normalized to one, the sura over 

the occupation numbers is also one; therefore this quantity 

defined by Plodmark(5) is the fraction of double occupancy 
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which la attributed to Bloch sum p<^. 

The analogy with Mulliken's population analysis (6) 

is implied by Flodmark's definition where Bloch sums are used 

instead of atoraiç opbitals. However, justification for 

using such a quantity for population analysis is lacking 

since the overlap of Bloch suras p^and t/^ is not clear from 

a geometrical point of view. That is, the Mulliken procedure 

to divide overlap charge between centers 4Cand«0 depends on 

the maximum of ths charge distribution being located midway 

between overlapping centers situated in real space. Since 

the Bloch sum is a function in complex space, we have no 

valid way of showing where 31 overlaps with a Bloch sum 

on another site in real space unless the exponential terras 

drop out In the overlap expression. 

In real apace, we also have problems with the Mulliken 

population analysis. For Instance, diffuse atomic orbitale, 

eg., Us on K, have a maximum in charge distribution in 

regions of .other atoms such as oxygen in KTaO-^. However, 

workers in molecular orbital calculations of transition 

metal complexes continue to divide the overlap charge 

density equally between neighboring atoms. Penske (7) has 

analyzed differences In calculated results and concludes 

that either dividing charge or placing overlap charge on 

one center gives essentially the same result. If we proceed 

in the same spirit to Bloch sum charge distributions, the 



21+ 

cK 
only problem Js to relate the quantity nqijj(k) to atomic 

orbltals. I.e., somehow we need to get rid of the phase 

factor exp(ik Rp). We attain this end by defining the 

population of orbltals , nq^ , as 

"q^ § ^ ̂  • (2k) 

where nq^ equals the number of electrons in orbital q^ 

and as defined in Equation 1 Is the number of doubly 

occupied bands. Proceeding in the game manner as we did to 

perform a unitary transformation of the Pock operator, we 

identify Equation 2l\. with an unitary transformation of the 

occupation number. The essential steps for this trans­

formation are shown In Appendix K giving 

nq = P**®(q<v,q«) + ^ -

(25) 

In terms of bond order matrices, p^^®(q^^, t^). 

Because of the LCAO nature of our T3A approach, parti­

cularly in nqo( and (r, we shall refer to the population 

analysis used as the Mulllken type. Even though the occupa­

tion numbers reflect the properties of crystal orbltals In 

complex space If analyzed individually, we may utilize the 

the density of states vg, Mulllken population analysis to 

obtain an average distribution of occupation numbers in a 

particular energy range. Then, the occupation numbers can in 

a sense be related to real space since the integration over 
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the distribution of occupation numbers va. energ? up to the 

Pertni energy glvea the population n^ identically ae Equation 

Richardson*3 approximation 

We will now simplify the TBA Pock operator In a manner 

Identical to that used by Richardson { 8) and discussed 

thoroughly by Penske ( 7 ) and Basch-Gray (9)• The essential 

part of the Richardson approximation is the application 

of Mulllken's approximation (10) to Coulomb and exchange 

parts of the Pock operator ( molecular ). We shall leave 

the details of the simplification to these three references 

( 7» 8, 9 ) and only show the résulta of Appendix £l. 

Explicitly each potential terra la expressed in Penske's 

Coulomb, exchange, and nuclear attraction operator not­

ation: 

Crystal potential 

Since charge distributions described by crystal orbitale 

can be directly related to occupation numbers nqni(k) (m th 

crystal orbital for q^th Bleoh sum), the unitary trans-

(26)  

w h e r e I s  t h e  p o t e n t i a l  f o r  a t o m i c  s i t e T f  l o c a t e d  a t  / + R  
6 

(27) 
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formation of n^(k) and 9^ ) to eliminate k dependence 

in n qx and - (r ̂  ) yields the LCAO form. Thus, the 

resulting linear combination of atomic potentials in 

Equation 27 can be properly referred to as the "crystal 

potential," U, i.e., 

n (oryatal) V (rp/^-Fp) (28) 

Variation of the atomic orbital population or Bloch sum 

occupation number of electrons in energy bands gives the TBA 

method a handle by which self-consistency of both atomic 

charge and population can be obtained. The advantage of this 

potential over a potential In the single-perticle model (e.g. 

a point charge model) is that shielding effects of diffuse 

charge distributions are included automatically. The exchange 

interactions which increase with decrease in bond distance are 

an important factor In these shielding effects. 

The seIf-eonalatency of the q«th atomic orbital popula­

tion, say for the second iteration, is obtained by the formula 

2 2 
(assumed) = nq^ (assumed) + nq^ (calculated) 

^ ^ ̂  (29) 

nqçj^(calculated^ is obtained using the Mulliken population 

analysis after eigenvectors of E(k) vs. k apd the Permi energy 

are determined. The superscripts denote the iteration. 

The assumed population values are weighted by a 

damping constant^ (taken to be +8 in our calculations) to 

prevent the oscillations of the difference between the cal­

culated and assumed values of nq^from diverging in early 
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stages of iteration. The condition for seIf-conslatency 

Is obtained when the difference between assumed and cal­

culated occupied Bloch sum charge distributions is less 

than 1%, 

The dependence of the populations on the k vector and 

the location of the Fermi energy poses the ultimate problem 

in using our method. Slncq the value of the Fermi energy can 

only be obtained after a complete E(k) vs. k calculation, we 

use the same potential for all k vectors to obtain self-

consistency for the first jBrillouin zone. 

Mattheiss (11) has recently calculated the band structure 

of ReOj at the symmetry pointa, T, X, M end R, using the 

augmented-plane-wave (APW) method (12) and has invoked the 

Slater-Koster (13) interpolation scheme to obtain E(k) over 

the remainder of thç zone. We find it hard to make an assess­

ment of the relative merits of our method compared to his 

excellent and experienced approach in which a "muffin tin" 

potential is adjusted to fit optical spectra (lit) and De Haas-

Van Alphen results (15). We do feel that our approach might 

give a better description of the lower valence bands, e.g., 

the bands involving 2s and 2p states, and will be adequate, 

for our purposes, in describing states In the neighborhood of 

the Perml energy. We mention, in particular, three character-

3sties of the present approach that we feel are desirable, and 

are lacking in the APW method: 
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1) Self-consistency of charge distribution can be 

obtained at all points in the Brlllouin zone. 

2) The potential in the present method is calculated 

using no adjustable parameters; Coulomb and exchange effects 

are Included in explicit evaluation of all two-center 

Coulomb and exchange integrals. -

3) The present method explicitly utilizes a population 

analysis to relate contributions of individual orbitals to 

energy bands. 

Atomic orbital energy 

Let us assume the effective atomic Hamlltonlan operator, 

Heff, for atom ^ located at +Rj 

>= - "SJ ' 

has an elgenfunctjon 0(r->- f* -R • ) or 
"TT^R "• J 

^qp » then, Ja the orbital energy of an electron, located at 

r- i^-R • , which has a set of quantum numbers n-,jf_ and m 
—^ —/J — j M 4 q 

Indicated by q, Vp (r- f_-R ; ) is expressed explicitly In 

Equation 27 in terms of Coulomb, exchange and nuclear 

attraction operators. 

The evaluation of can be made by either of the 

following approaches! 

(30) 
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1} Use atomic spectra data to obtain what Is 

commonly called the valence state Ionization energy (VSIE). 

2Î Using an analytical expression for the atomic 

orbital function t one may calculate the orbital energy 

exactly. 

Let us briefly discuss the first approach to explain 

why we prefer the second. 

Atomic spectra data provided by Moore (16) has been 

the prime source of valence state ionization energies 

(assumed to equal the negative of the orbital energy) which 

are used In semi-empirical methods. The difficulties with 

the semi-empirical method are twofold: 

1) One needs to average the energy of multiplets. 

This can be a difficult process when a large number of 

states exist for an atom or Ion. 

2) Atomic spectra may not be available for a particular 

atom of interest. Cotton and Harris (17) found this to be 

a problem for rhenium, even though oufficient data is avail­

able for platinum. 

Therefore, in the present method, we calculate the 

atomic orbital energy in terms of average values of two-

electron Interaction integrals g(q,t). Slater (l8) uses the 

"average energy of configuration" method to express g(q,t) 

as linear combinations of Slater-Condon parameters 

P^(n j?,n'jj,') and G^(n ̂ ,n') (see Table 2). 
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Using an analytical expression for gfq^(r- ), 

we compute 

* [^ nt;g(q,t)j + ( hg-l)g(q,q) 

where nq and n^ are the population of atomic orbltals q#and 

tfirespectively. g(q,t) is the average electronic inter­

action of electron |w In orbital qgwlth electron Y In 

orbital tf. Even though the analytical form of the atomic 

orbital will be frozen (orbital function parameters kept 

constant) during the SCP Iteration process, our choice of 

atomic orbital functions will be taken using neutral atoms 

for the following reasons. Semi-empirical MO calculations 

for transition metal complexes in recent years (19) have 

led to near-neutral atoms in the calculated molecule. 

Recent work by Penpke ( 7) using a more serai-quantitative 

method has also led to tbls result. Furthermore, the 

philosophy which has prevailed dqring the history of MO 

calculations of transition metal complexes is Pauling's (20 ) 

"electroneutrallty principle." Simply, Pauling suggests 

that the initial electronic charge distributions on 

isolated metal and ligand (eg, oxygen) atoms become evenly 

smeared about the molecule when bonding occurs between 

metal and ligar^d prbltals. The result is a neutral atom 
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constitution in molecules, if we consider the atoms in 

molecule picture or LCAO, In conclusion, we can 

effectively use Equation 31 to obtain atomic orbital 

energies; in other words, we pay that the are 

eigenfunctions of the above effective Hamiltonian within 

the given approximations. 

The Slater approach is preferred since this method 

effectively takes an average of energies of the various 

multiplet states which exist for any atom or ion. This 

method is presently being utilized by Fenske (7). 

The Slater-Condon parameters (21, 22), kinetic energy 

(22) and nuclear-attraction integrals can be calculated 

from the analytical radial functions for atomic orbitale. 

Also, Mann (2 3) has tabulated most of the necessary 

integrals and parameters which are computed in the SCP 

process. However, we will evaluate all one-center integrals 

from atomic functions (see Appendix F), 

Table 2, Two-electron interaction integrals (18) used for 
perovskite oxide calculations 

a 1 g(q,t) 

ns® ns P^(ns,ns) 

ns np pO(n8,np)-Gl(ns,np)/6 

np np pO(np,np)-2p2(np,np)/25 

®n stands for the principal quantum number. 
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Table 2(Cont.) 

a t g(q»t) 

ns nd pO(ns,nd)-G2(ns,nd)/lO 

np nd pO(np,nd)-a^(np,nd)/l5-3G3(np,nd)/70 

nd nd pO(nd,nd) -2P2 ( nd, nd ) /63-2P'+{ nd, nd ) /63 

Approximations used In evaluating energy matrix elements 
between atomic orbitale 

The following notation will be used in this thesis to 

label vectors which belong to interaction sets, 
— J 

is the vector to the j th neighbor of the type o( from the 

atom atj'-^ (the vector defined from the origin to the 

lattice point ̂  ). 

As an illustration of this notation, the vector set 

for the Re-Oi interactions would be /'jRe-Oj and ̂ Re-O] 

•-•îth coordinatsa {a/2*0.0) and (-a/2.0,0), respectively. 

An additional example would be the Oi-Og interaction set 

with four vectors: with j=l to I4. and with coor­

dinates (-a/2,a/2,0), (a/2,a/2,0), (a/2,-a/2,0) and 

(-a/2,-a/2,0). The choice In labeling the j th vector is 

purely arbitrary for any Interaction set. 

The use of frozen analytical expressions for atomic 

orbital functions (see section on atomic orbital energy) 

for neutral atoms is assumed throughout the following 
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approximations to Hamiltonlan matrix elements which arise 

between atomic orbitals. The Pauling electroneutrality 

principle is used again to justify use of the Hamiltonian 

operator for electron on atom ^ (located at ̂  ). 

Therefore, (r ' (32) 

There are two clâsses of matrix elements for which we 

desire to approximate by known techniques familiar to 

molecular orbital calculations of transition metal complexes. 

Namely, 

and (33) 

2) the potential integrals which need to be evaluated 

can be represented generally by integral I 

The electron position vector notation for the two 

classes of integrals shall be expressed In terms of the 

interaction vectors / defined above. Let us first con-
- j 

slder class one and make the necessary vector notational 

changes « To do so we let r equal r'+j^+R • Then we •O —^ —P 

express Equation 33 as 
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We may remove the primes from r'^above since it is a dummy 

index of integration. Then j^^is expressed as 

=-^-A^£P--3 

so that the integral becomes 

The Hamiltonian (effective ) operates on function 

Equation 32, the function is an eigenfunctlon. 

Therefore, the eigenvalue a constant, comes out of 

the Integral and leaves the overlap integral to give the 

following approximation for class one integrals 

= (36) 

Let ua now discuss the three types of I integrals 

which exist in class two. The substitution of r=r* + ̂ +R 
*~p 

into Equation 3k.* proceeding as above,we obtain the 

following form of I which facilitates discussion of the 

three posslblitles, I.e. 

fp") \ 0 s (37) 

The subscript p in the position vector in the potential 

term denotes the possibility of different interaction 

vectors other than the j th type. We may have 



1) When.^y^^' * we have the two-center integral 

Baach and Gray (9) and later Penske .(7). have suggested a 

convenient way for evaluating this integral: 

IL -V2 + <,*")> 

-<«'a(/'l-V2 )>. (39) 

Equation 36 is used again to re-express the first term in 

which gives 

IL 

I r 

The kinetic integral can be expressed in terms of overlap 

integrals and evaluated using a method described in 

Appendix D, 

2) When ̂  =0» one obtains another type of two-

center integral, Ig, which involves an analytical expression 

for the potential V^r^ ) where 

I2 = • (W) 

The evaluation of this type of integral is discussed in 

Appendix E, eg, nuclear attraction. Coulomb (2k), etc., type, 
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3) Finally, when^j^ one has to deal with 

three-center potential integrals, where 

^3 ° ft" ' 

The Mulliken approximation (10) wag used to reduce the 

three-center integrals to linear combinations of two-center 

integrals of the type multiplied by an overlap Integral, 

1 # 8 # ^ 

I3 = L| W 

2 

+  < ^ S ( R ) |  " J R - ) L  ( K 3 )  

Encouragement for using the Mulliken approximation (despite 

its shortcomings for evaluating three-center nuclear 

attraction integrals) comes from the fact that Plodmark {^) 

has utilized the Mulliken approximation in his TBA method 

which is basically very similar to ours. Furthermore, as 

will be seen in the following chapter, the atomic potential 

is taken to be a simplified SCP potential via Mulliken's 

approximation. Thus, it is consistent to use it here. In 

any case, some estimate should be made for the integrals 

which are probably important parameters contributing to 

band energies. 
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Formulation of the Secular Determinant Between Block Sums 

Using Equation 7 to express crystal orbltals as a 

linear combination of Bloch sums, we obtain the following 

matrix formulation 

where C Is the submatrlx of C which Is represented as a 

for the Bloch sums on atomic site , Using the formulism 

outlined in the section "SCP Iterative process" we obtain 

the secular determinant shown In Equation 13 for matrix 

elements between Bloch suras. However, there Is one im­

portant exception : WG now use the TEA Fock operator 

(Equation 20) to obtain energy matrix elements of H(k) 

Instead of the k dependent operator T(k,r^). 

The solutions of the secular determinant and the 

corresponding coefficient matrix Is described In Appendix A. 

The flow chart for the computer calculation Is given in 

Appendix 3. Let us now proceed to express the Hamiltonlan 

and overlap matrix elements in terms of matrix elements 

between atomic orbital functions. 

(44) 

-P 

column vecl 

and b la defined in Equation 13 
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Overlap and Haralltonlan Matrix Elements Between Atomic 

Orbital Functions 

Let P(r ) be a general operator on electron r*. When 

P(r )=1 or P(rJ= '(r J one has an overlap or Harailtonian 
•~r """ J "~p 

matrix element <b^ Bloch sums 

b (k.r,) and b (k,r_). Expansion of the matrix element 
Q<X. - -R S/& -'-R 

into the corresponding atomic orbitale proceeds by the 

definition of Bloch sums in Equation 6 which gives the 

following expression 

-& N . = 1212 exp(-ik'(R -R )' N * N 
R R "t "J 9 
-T -J 

where the subscripts q and s for the functions ff represent 

different sets of n, , and m quantum numbers. 

Equation 14.5can be reduced to a single sum over R^ 

(as shown in Appendix C) giving 

VW'-' ° 

where R equals R.-R and G is the number of unit cells 
—p ^ —t —j 

taken in a microcrystal. 
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If we substitute r.=r' +f Into Equation 1^.6,? (k) 
-R -f* -P QXAF -

becomes 

• «''P(-1K-SP)<^Q FRSP %) 

(47) 

Since P(ris a general operator which possesses the 

t r a n s l a t l o n a l  s y m m e t r y  o f  t h e  c r y s t a l ,  P ( r e q u a l s  

F{r'+i^). After dropping the primes (dummy indices of 

integration) and defining as 

/3V 
Rp = jj - (j=l,2,...,...V) (for(X / jSand 

V vectors In the j th interaction set) 

we obtain the form of the matrix element in terms of the 

j th interaction vector, , and ( the convention of 

taking the interaction vector corresponding to j=l and 

setting it equal to j^-^î this 5s for<X/ ̂  ). Thus, 

X 1 V B'X 
F (k) = G N " N-s IE) exp(-ik'( f - L)) ' 
948# ~ Q 8 j=l J -1 

(48) 
Equation l+Qis simplified by the approximations stated in 

the previous section for the energy matrix elements and 

the steps are shown in Appendix L for the cases q^s, 

qp^s,^^; and q=s,^=^ which occur In the ^(k) . The 

corresponding overlap matrix elements are discussed first 
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In Appendix iLi to establish various additional conventions 

necessary to simplify some matrix elements ( cases 

and q=s,®<=^) computationally into cosine and sin terms 

resulting from application of Euler's relation ( exp(i@)= 

cos(0)+isln{9) ) to the exponential terras In Equation . 

In addition, the explicit form of the Bloch sura normal­

ization constant N^^ls shown in Appendix L to be derived 

from a formulation of the diagonal overlap Integral 

(k). We, therefore, refer to Appendix L for the 
QO<QC.^ — 

essential details and summarize the results here for 

overlap and Hamiltonian matrix elements between Bloch suras 

as well as the normalization constant: 

1) Matrix elements for qj^s and<'<?^^ 

(49) 
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2) Matrix elements for q^s andP 

A (k) = G «fsOO 
qets — qe« a of *-

C V «XJ*" o/ae 
2 )+(-!) ®*P(-IL'/J+I) 

v."® • " "JSIfe'®.»*»! 
r- V  ̂ a/k -J 

+ IZ] EXP(-K-/. )+(-!) EXP(-K-/J^3^)[. 
I  j = l , 2  « ' J  

oCtx R (X % C<X 

RTW (ÇÎO) 
where groups of Integrals Indicated by S( /^) ,SOO and 

VOO which are expanded as 

222= p 
p ^ 

<lcx 

The convention taken in the Equations above is the trans­

lation vectors are grouped for 
^o(« ^oCex 

= - h 

In order to express the exponential terms into cosine and 

sin terms by 

r* 1 
Uxp(-îlç'/j ) + (=1) exp(='lk';^^^)j=2oos(k'/j) 
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for an even sumfq 1. +1.2. slndc/ffor an odd 
~ "J 

sum H +f . 
q s 

3) Matrix elements for a=s and^ = ̂  

The diagonal elements of^and H are conveniently obtained 

from the form stated for ( q-^s and ; therefore, the 

cosine expression of exponential terms results since 

would always be even for q=s. The requirement that the 

Bloch suras be normalized to unity yields the expression 

of the normalization constant which for the q«3fcase 

would be 

r V ^ 

= T (51) 

The evaluation of the above matrix elements is there­

fore reduced by a series of approximations usiner exact 

diatomic Integrals: overlap and related Integrals (kinetic 

energy), Coulomb, exchange and nuclear attraction type. In 

addition, the exact evaluation of one-center integrals have 

been discussed In the section "Atomic Orbital Energy" under 

the approximations of the TBA method. Further discussion 

of these diatomic Integrals are In Appendices D (overlap 

and related integrals) and E ( potential Integrals). 

The word "exact" deserves some discussion at this point 

in the thesis. The analytical expression for the atomic 

wave functions ( the subject of the next section) Is 

approximate; but methods are available to solve diatomic 
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Integrals rapidly and efficiently using available numerical 

techniques programed into Fortran IV language and the IBM 

360-65 model computer. Then , we properly refer to the 

latter as exact within the usual round-off errors encounted 

In machine computations. In order to minimize such errors, 

we use double precision numbers in overlap. Coulomb, exchan­

ge and nuclear attraction programs to give an accuracy of 

something like 10"^ Hartree energy units (27.2 e.v. ). 

The choice of atomic orbital functions in the TEA 

method is the crux of how exactly our calculated energy 

bands and crystal orbital properties correspond to reality. 

In our realm of theoretical investigations, the H-P crystal 

equations provide the indicator of how well we are appro­

aching exactness. Hopefully, such an indice tor approximates 

as well the experimental phenomenon . In other words, we 

must approach the H-P limit in order to make the TEA 

amenable to the present state of the art of the quantum 

chemisty of diatomic molecules; thereby the correlation 

problem of crystals can become tractlble. The approximations 

that we have atrived to make in a justifiable manner 

would be useless if we unwisely used atomic orbital func­

tions . 

In the discussion of the atomic orbital energy, we 

have suggested that the choice of neutral atomic wave 

functions may be justified using the Pauling electro-
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neutrality principle. Let ua approach the atomic wave 

function problem from this a priori notion. I.e. neutral 

atoms In a crystal, and consider how the available tables 

of the numerical SCP functions for neutral atoms nay be 

used to obtain analytical functions which have the proper 

radial and nodal behavior . 



ATOMIC WAVE FUNCTIONS 

The atomic wave function, 0^, is taken as a product 

of the radial function ) and spherical harmonics 

function 

9^ = RoS(z)Tym(»' *)- (52) 

The type of radial function used in the TBA calculations 

was of the Slater orbital type (STO), i.e., 

Rn%(r) = Nr^-lexpf-S r) (53) 

where k is the orbital exponent and K is the normalization 

constant. 

The radial function may be of the single orbital exponent 

type shown above or a linear combination of STO's, i.e., 

RNAFZ.) - T&CIN^RO-LEXPF- SJ-R) 

where = (2 

R- (%) 

(2NII 

There are many ways of choosing a basis set. If a single 

orbital exponent STO is desired, the ^ parameter may be 

adjusted so that the radial function matches the numerical 

values of SCF functions in the tail-off region, as GersteJn 

et al. (1) have done. Drown and Pitzpatrick (25), who have 



investigated radial functions of all transition metal series, 

would call this type of fit to the outer region of the SCP 

radial function a Burns' type orbital (26). They refer to the 

Clementl type orbital (27) as one that better describes the 

inner region of SCP radial functions (particularly In the 

region of the maximum peak). Since both types of orbitals 

are STO's differing only in a choice of t , neither one will 

show radial nodes. Nevertheless, Brown and Pitzpatrick (2^) 

find that both types of orbitals can be used in overlap 

integral calculations and give sufficiently accurate values 

for cases Involving first-row transition metals. The 

Richardson (26) linear combination of STO's fits Watson's 

SCP functions (29) for the titanium 3d, I|.s and ij.p orbitals at 

varying charge better than single exponent STO's. In the case 

of i+s and ^.p titanium orbitals, only Richardson orbitals will 

properly describe the respective Bloch suras, since SCP radial 

function values remain negative in the region of interest In 

TEA calculations and no single STO function can describe this 

behavior. 

Brown and Pitzpatrlck have further concluded that Basch 

and Gray $d, 6s and 6p functions (30) (which are linear com­

binations of STO's) are necessary for tantalum, tungsten and 

rhenium cases where overlap integrals using them are cal­

culated. They compared Burn's orbitals with the Basch-Gray 

functions and found that the use of functions fitted to the 

outer regions of tungsten Çd orbitals produce overlap 
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integral values which are too large. The arguments in favor 

of using 6s and 6p functions to accurately describe behavior 

in the overlap region are the same for titanium I4.S and î .p 

orbitals. 

Ruedenberg (private communication, Ames, Iowa, 1969) has 

suggested that higher quantum number radial functions can be 

fitted with lower n STO's to represent the radial behavior 

correctly in evaluating two-center Coulomb and exchange 

integrals for which the available programs go to n=3. The 

extreme of the SCF function to be fitted are produced by the 

coefficients of the linear combination of STO's (always node-

less functions by themselves). The coefficients and orbital 

exponents can be found by a least squares fit procedure (31). 

The atomic radial functions which form an orthogonal 

basis set are generally obtained in the present work by the 

following recipe: 

1) i^or s and p orbitals we start with single STO's with 

the same Ji quantum numbers and Schmidt orthogonalize to form 

the valence shell functions which are orthogonalized linear 

combinations of STO's (as in EquationFor $d orbitals, 

we use the orthonormal Basch-Gray functions which are linear 

combinations of 3d, lj.d and ^d STO's. 

2) If the n quantum number of the valence shell is 

greater than 3» the least squares fit of n=3 STO's is made to 

the Schmidt orthogonalized radial function. 
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The main problem in the above procedure is obtaining the 

single STO's necessary for the s and p functions in the first 

step. Besides providing numerical values for SCF functions, 

Mann (23) tabulates the location of the maximum in the radial 

function, r^^^. If one differentiates the radial function with 

respect to r, the radial distance, and equates the expression 

to zero, the tabulated maximum distance can be related to the 

orbital exponent of a single STO: 

^ PNG = "b ^ f^nQ' A ~ ^ \ (N 6xp(-3r r ) r * )=0 

A  3 r  V  î > r  ^ r ^ ^ r ^ ^r 

= N n  exp(- t r ) r * - l  -  N i  exp( -  Vr) r2ax = 0 

where r = r 

Thus, ^ = n 

max 

Ï'MAX (95) 

Therefore, the necessary orbital exponents can be obtained. 

The np orbitals for Na(n=3), K(n=i4.) and Sr(n=5) are not 

given in the ground state configuration by Mann; thus, one 

needs to approximate the ^ for the single STO represen­

tation. If one takes the ratio of ^6p/ ̂ 6s (2.372/2.398) 

from Basch-Gray single STO representation for Re (charge = +1) 

and multiplies it by the neutral atom n8(n= 3,4,S$6) orbital 

exponent, one can obtain the single STO representation for 

neutral atoms» 
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The Schmidt orthogonalizatîon procedure for the Is, 28 

and 3s single STO basis set provides an example of obtaining 

a 3s atomic orbital function, say for Na ,, Let the non-

orthogonal STO's be represented by a row vector v: 

The v^ functions exist In Hllbert space and have a set of inner 

products <^v JI Vj^ which are represented by an overlap matrixes. 

Therefore, we seek the similarity transformation T^S T = I 

which maps v into u( a column vector of orthogonal functions). 

The transpose of u is related to % by the upper triangular 

t * 
matrix T: u = v T or 

( normalization is generally Imposed as well). The matrix JC 

can be separated into a set of three column vectors which are 

identified with the expansion coefficients of the v^ bases 

into orthogonal functions, i.e. 

V = (v V V,) » (Is 2s 3s) 
^ 12 3 

($6) 

where the primes denote orthogonal functions, 1 ,eXujî 

u, =CT VJ j=l,2,3 equations are obtained from 
J 1 ij 

the coefficients 

T33 giving 



50 

~ Is ' = T^^(ls) 

U2 = 28' = T22(LS) + TGGFBS) 

U3 = 38' = T^^DS) + T^^IZS) + TJ (38) (58) 

As mentioned above, the d STO basis set for 5d functions 

(v2 --3d, V2=It-d, v-^=Sd) is chosen from Basch-Gray (30). The 

double zeta representation used by Basch-Gray for V2=Sd is 

necessary to properly describe the outer 5d radial behavior. 

Even though we cannot apply the simple formula in Equation 55 

for this case, we could in principle do so and continue 

through step two above for ui=3d and U2=4d using Mann's data 

for Tmax* However, the respective ^ 3d and ^ i|d values are 

close for neutral (Mann) and +1 cases (Basch-Gray) and, 

therefore, to remain consistent, we use the entire Basch-Gray 

Vi(i=l,3) basis set for third-row transition metals. 

We justify the use of the Basch-Gray 5d functions for the 

neutral atom using Gianturco's (32) investigation of the size 

of the d orbital of vanadium as a function of oxidation state. 

The primary result of this study was that the 3d wave function 

varies slowly with charge in removing l|s electrons from the 

3d3i4.s2 configuration, and finally the removal of d electrons 

from the 3d3 configuration shows a small change, even though 

It is greater than in the former case. It is reasonable to 

assume that the behavior of the third-row transition metals is 

similar to the first-row transition metals; therefore, It 
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would be useful to show that the Baach-Gray Sd functions for 

configuration 5d468l6pl(Re+l) differ little from the neutral 

atom (5d^6a2) numerical radial functions provided by Mann. 

A plot of Baach-Gray,vs. Mann functions is shown in 

Figure .3, The Basch-Gray values vary from the Mann values 

at the extrema, but generally fit the S CP function over a 

wide range of radial distance: 3*5 to 8.0 a.u. 

Once we have a set of Uj functions, we may apply any 

least squares fit program to obtain a now set of functions Pj 

which have a new basis f^, or 

Pj is related to Uj (quantum numbers n', m') by the 

minimization of the deviation, D (31): 

D =B (u j ( rp)  -  (60)  

over a mesh of radial values Tp, The necessary constraints 

for this minimization are 

Each fjç function with orbital exponent ̂  ̂  has quantum numbers 

n=3, X '» »'• 

For example, a 6a function, u^, is fitted by a function 

P^ which is a linear combination of six 38 STO's: 
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6̂ ̂  °61 I) + C62 2̂) + 6̂3 Ï 3) 

+ 3s(]j ̂ ) + 33( i 5) + C55 3s(]' 5) (62) 

Thus, as a matter of convenience, each Pj is expanded Into the 

same number of bases as the corresponding uj functions, eg, 

the upper k limits on Pj = 5d, 6s and 6p least squares fit 

functions is k» 6, and 5 respectively. 



OVERLAP EFFECTS, MADELUNG EFFECTS AND THE OVERLAP CRITERION 

In 19^2, Wolfsberg and Helraholz (33) suggested a seml-

enipirical method based on two approximations: 

1) Diagonal energy matrix elements are approximated 

as the negative of the valence state ionization energy 

(VSIE) of a particular orbital q, i.e. 

Hqq= - VSIE 

2) Off-diagonal energy matrix elements are calculated 

by the expression 

Hpq= Api{HPP + Hqq] . 

Richardson (8) points out that such approximations, as 

crude as they are, incorporate many aspects of chemical 

intuition, eg., overlap of bonding orbitals and electro­

negativity. Furthermore, Jprgenson (31+) analyzes the semi-

empirical approach in terms of the physical nature of the 

chemical bond. He concludes that diagonal energy matrix 

elements are dominated by the Madelung potential, i.e., 

Madelung effects, and off-diagonal energy matrix elements 

vary as two-center kinetic energy effects. Ruedenberg (35) 

relates the lowering of two-center kinetic energy, due to 

interference effects (changes in atomic orbitals upon 

bonding), to be the cruôlal phenomenon which gives stability 

to molecules after potential energy is cancelled by nuclear-

nuclear repulsions. 
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In this theoretical Investigation, we are interested 

in applying chemical concepts to an amalgamation of 

quantum chemistry and solid state physics, i.e., the TEA. 

However, we are still unable to determine stabilities of 

crystals or cohesive energy for many reasons. For example, 

two reasons which we feel are important are : 

1) The magnitude of the correlation energy is 

unknown. 

2) The Madelung potential cannot be evaluated exactly 

in terms of Coulomb, exchange and nuclear attraction 

integrals (computationally very laborous, even for a , 

computer). 

In other words, the crystal is a giant molecule; even 

with the inclusion of translational symmetry, the multi-

center integral bottleneck exists for a large number of 

sometimes difficult integrals (eg. three-center Coulomb 

integrals)# Even though three and even four-center integrals 

are tractable now on the computer, the task to do a rigorous 

calculation would be both costly and unreasonable. 

We propose a semi-rigorous method which will be based 

on three objectives: 

1) To study a series of related crystals to observe 

possible trends and, thereby, propose some theoretical 

model. No computations will be attempted on an absolute 

energy scale. 
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2) To apply a SCP-MO-LCAO treatment to crystals 

in order to use a theoretical handle Instead of an empiri­

cal one to control calculation of energy bands. 

3) To use the LCAO procedure when conditions are 

satisfied by some well defined and pertinent criterion. 

We suggest that the "overlap criterion" (1) is a reason­

able way for choosing a TBA Interaction model. 

Besides chemical intuition, the overlap criterion 

Is based directly on many Important mathematical relations 

which are explicitly expressed In terms of overlap integrals. 

Here are three quantities which depend directly on overlap 

and occur throughout the TBA formulism: 

1) The expression for Hq^ sp (k) in Equation ij.9 

is essentially a function of overlap and two-center kinetic 

energy integrals (can be expressed as a linear combination 

of overlap Integrals). 

2) The normalization constant for the Bloch suras is 

a function of overlap integrals (Equation 5%). Evaluation 

of this quantity is possible so long as the overlap is 

adequately small. Otherwise, the cosine terms by becoming 

negative when ("2 - k «fj 4 7t ) causes the value of Nq^ to 

become negative. Since an imaginary value for Nqè could 

result, the TBA is limited by overlap. 

3) Because of quantity number 2, the TBA Pock 

operator is only possible if the identity approximately 

exists: Nq'G=l (see Appendix K ) • 
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If the off-diagonal energy matrix elements are related 

to bonding of atomic orbitals, we may suggest that differ­

ences between energy levels for molecular orbitals 

(isolated molecule) or crystal orbitals (solid state) are 

determined to a large extent by overlap effects. 

Let us now consider the Madelung potential and its 

effect çn the TBA. Ros and Schuit (36) and Basch and 

Gray ( 9) have placed much importance on shielding effects 

on the point charge model for doing molecular orbital 

calculations of transition metal complexes. 

The lack of explicit evaluation of Coulomb and exchange 

Integrals, the latter particularly, leads to deficiencies in 

the point charge model, eg. suggested by f^enske (7 ). The 

ordering of molecular orbitals is critically affected by 

the shielding effects. Since exchange integrals converge 

exponentially to zero, we suggest that the similar behavior 

of overlap integrals points to the possibility that the 

"important" effects of the Madelung potential are only 

within bonding distances, i.e., where overlap is maximum. 

In principle, we continue to include more neighboring 

atoms in the Madelung potential, oscillating as it may 

with each additional neighboring atom, until convergence 

occurs. Finally, we obtain an external potential (excluding 

nearest neighbor effects) which acts equally upon the metal 
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atom or the ligand (assuming the Pauling electroneutrallty 

principle Is valid). Thus, the whole molecular orbital 

correlation diagram is shifted on some arbitrary energy 

scale. The analogous energy band behavior has the same 

result, if we trust that the TBA model resembles the 

molecular orbital situation within the overlap criterion. 

In points 2) and 3) we show additional evidence 

that the overlap criterion has quantitative consequences 

In the TBA, Particularly, the third point exemplifies 

the connection of the overlap criterion to a choice of 

the TBA Interaction model. That Is, the one-electron 

operator converges to the molecular case In the 

limit 

-2. = 1  

"qt V 

In the present TBA method we calculate the overlap 

Integrals for various overlap pairs which are Involved 

with possible bonding orbltals . Then the overlap crit­

erion Is applied to notice from tabulated overlap integrals 

If any values are exceptionally large. If such values 

occur, we go to the quantitative aspect of the overlap 

criterion and see how the normalization constant of 

Bloch suras are affected. At this junction we decide 

whether a TBA type calculation Is reasonable and proceed 

accordingly to find a series of substances which apply. 
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Use of the Overlap Criterion to Choose a TBA Model 

In order to make TBA calculations practical, the Bloch 

sums must be limited to a small set of interacting neighbors. 

The overlap criterion mentioned above is used to choose a 

TBA model which can be applied to transition-metal oxides. 

In Table 3, various overlap pairs in the ReO^ structure are 

listed to indicate that overlap is adequately small in the 

nearest-neighbor metal-oxygen interactions and next-nearest-

neighbor metal-metal interactions to limit the size of the 

interaction set to these atoms. 

Table 3* Overlap integrals 

a b R(a.u.) 6g 

.OOÔiLÔO 7.0818 90 0 

.0276^2 7.0818 0 0 

-.014323 7.0818 90 0 
.002067 7.0818 90 90 

.021248 7.0816 90 0 

.002067 7.0818 0 0 

.000000 7.0818 90 0 

.077021 7.0818 90 0 

-.102873 3.5k09 90 0 
.205746 3.51+09 0 0 

.143401 3.5409 180 0 

.096507 3.5409 0 0 

.178181 3.5409 90 0 

6s 6s 

6Pz 

23 
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Table 3(Cont.) 

a b ^AB 
R(a.u.) 

2p^ .124189 3.5409 90 180 

6s 2s .275805 3.5409 90 0 

6pz 2s .427884 3.5409 0 0 

.115660 3.5409 90 0 

2s 2s .006946 5.0076 90 45 

2pjg 2s .005662 5.0076 90 45 

2Pz 2pz .001119 5.0076 90 45 

In Table i, is the overlap integral between orbitals 

a and b. and 0-q are the polar angles of the location of 

center B with respect to center A as the origin. The radial 

distances R are obtained by geometrical considerations using 

the lattice constant {37) of 7.O8IO a.u.. These integral 

values represent the true atonic overlap orbital after proper 

rotation of spherical harmonics from the elliptical coordinate 

system through the given polar angles. The overlap integral 

values listed are part of the TEA output. 

The TEA interaction model for rhenium trioxide is shown 

in Figure U-. Re, 0^, Op, and 0^ are the four atoms which 

make up the unit cell and a is the lattice constant. The 

primed oxygen atoms belong to other unit cells but make up a 

part of the nearest-neighbor rhenium-oxygen interaction set. 
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Z 
A 

(0,0,0) 

(-0,0,0) 

> Re 

(O.-a.O) (0,0,0) 

(0,0,0) 

(0,0,-0) 
RHENIUM-RHENIUM 
INTERACTIONS 

Z 
A 

(0^,0/2) 
(oi 

(0,-0/2,0) 

(-0/2,0,0) 

(0,0/2,0) 

(0/2,0.0) 

(0,0,-0/2) 

RHENIUM-OXYGEN AND 
OXYGEN-OXYGEN 
INTERACTIONS 

I4., TBA Interaction model. 
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The next-nearest-nejghbor rhenium atoms are located at 

positions (+8,0,0), (0,+a,0) and (0,0,+a). 

In general, the crystal lattice of perovskite transi­

tion metal oxides contain the structure ABO^ shown in 

Figure A is a transition metal and B is either vacant 

as far as ReO^ or filled by a non-transition metal such as 

alkali metals Na and K. B is commonly referred to as the 

perovskite hole in the transition metal oxide crystal lattice. 

In the recent paper on the overlap criterion (1), Na-Na 

overlap in tungsten bronzes was conveniently shown by 

considering sodium as filling the perovskite hole. However, 

for our purposes, the octahedral arrangement of oxygen atoms 

about a particular transition metal (as it was for ReO^ in 

Figure 3) and the B atom located at the corner of the unit 

cell is taken as the model for TBA interactions. 

From our discussions of overlap and Madelung. effects, we 

can propose a model for the interaction set of perovskite 

oxides in general. Mv^n though sodium-sodium interactions 

have been postulated to be important in describing the 

conduction band picture of sodium tungsten bronzes (38), 

overriding evidence exists, both theoretically (39, i4.0, lj.1) 

and experimentally (1%., k.2) that transition-metal and oxygen 

valence orbitals are the important contributors to the 

lowest conduction band. Since Na-Na 3s and 3p overlap has 

been found to be strong (1), one must seek a possible 
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explanation other than overlap effects to explain this 

dilemma. We propose that Madelung effects push sodium 

energy bands out of the conduction picture into high energy 

regions. The nearest-neighbor Madeluns; effects between 

sodium atoms are then considered to be unimportant compared 

to nearest-neighbor interactions between sodium and other 

types of atoms in the lattice. Thus, the important effect 

of orbital overlap and potential interactions between alkali 

metals (eg. Na and K) and transition-metal or oxygen atoms 

in the same unit cell makes the TBA model complete for 

nearest-neighbor interactions. 

The inclusion of metal-metal (A-A) interactions tests 

the model (39) which proposes that d states mainly make 

up the lowest conduction band. The model (39, 1+0), which 

proposes that bonded oxygen and transition metal d states 

are more important, is of course tested by the nearest-

neighbor aspect of the TBA method. 

we will now apply the above TBA method to the series 

of perovskite transition metal oxides: ReO^, Na^WO^ (for our 

present calculations we will take x to be 1.0) and KTaO^. 

Rhenium trioxlde will be discussed first (Part II) since it 

is the simplest of the three to treat in the TBA. In 

order to obtain meaningful results (Part III) for sodium 

tungsten bronze and potassium tantalate (KTaO^), we will 

scale their crystal potentials and charge distributions to 



- OXYGEN 

ReO, STRUCTURE 

Figure Perovsklte crystal lattice. 
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the ReO^ model. Hopefully, we then can obtain a theoretical 

model of perovskite transition metal oxides which gives a 

realistic picture of crystal orbitals in the LGAO limit; 

thereby we hope to delineate the nature of the admixture of 

atomic orbitals which form conduction and valence bands as 

a function of the wave vector. 
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SUMMARY 

The LCAO procedure is to be used to obtain the crystal 

potential and energy bands for transition metal oxides. The 

option to obtain self-consistency of charge distribution 

throughout all E(k) vs. k allows one to approach the accurate 

APW potential proposed by Mattheiss. The use of the Bloch 

sum basis set allows one to exactly determine the partici­

pation of atomic orbitals in various symmetry crystal 

orbitals or bands. The effects of translational symmetry 

on the traditional LCAO-MO picture can, therefore, be 

determined despite knowledge of the inherent weaknesses 

which exist for the tight-binding method. By using the over­

lap criterion, one can decide which oxides can be considered 

to be adequately described. 

Thus, one imposes all the rigor which is practically 

possible for the LCAO-MO procedure in evaluating two-center 

overlap and potential integrals and approximating other multi-

center integral values. Also, one uses good atomic orbital 

functions (descriptive of both inner and outer properties). 

As in the molecular case, we seek interpretation of 

molecular properties (including translational symmetry) in 

terms of atomic properties, e.g., potential, orbital energy, 

and orbital functions. 
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PART II. TIGHT-BINDING ENERGY BANDS 

OP RHENIUM TRIOXIDE 
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INTRODUCTION 

I I  

Recently, L. P. Mattheiss (il) has reported an APW 

calculation of the energy banda and Perm! surface of ReO^. 

His Is the first effort to theoretically describe quanti­

tatively the electronic structure of ReO^ and provide a model 

for the perovsklte transition metal oxides. He parameterizes 

the crystal potential via the Slater-Koater (13) tight-

binding interpolation scheme between symmetry points. This 

provides a handle for empirically controlling his calculations. 

The results of his semi-empirical approach ara not in dis­

agreement with present oxperinental data (l^., 15). The tight-

binding method proposed in Pert I has boen applied to 

ReO^ to obtain an entirely different theoretical model of 

ReOj, but agreement with the sane experimental data appears to 

be comparable for the two approaches. 

Rhenium trioxic'o and the perovskite transition metal 

oxides provide a group of substances which form a borderline 

between a strictly APW (free electron) and a strictly tight-

binding (localized electron) application. Prom Table 3» we 

see, using an overlap criterion, that the TBA might provide a 

reasonable picture of the band structure of ReO^. As a matter 

of fact, Mattheiss has had to modify the APW potential or 

Muffin Tin potential to make the APW method applicable. The 

question of which method Is better cannot really be answered 

since entirely different crystal potentials are used. 
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Even though the APW method can accurately be corrected 

for ReOj, the problem of obtaining self-consistency and 

quantitative information concerning the distribution of 

atomic orbital contributions to crystal orbitals which form 

valence and conduction bands remains. The TEA method 

described in this thesis solves this problem by utilizing 

the Mulliken population analysis ( 6 ) of the Bloch sums 

basis set. 

Since Bloch sums are directly related to atomic orbitals 

by Equation 8, we have for the first time obtained a 

theoretical handle, instead of an empirical handle, to 

control band calculations. Sven though we require an em­

pirical quantity, the lattice constant, to do calculations 

at present ( a minimization of energy with respect to bond 

length is not practical), we are completely Independent of 

empirical parameters in the crystal potential. Our potential 

Is based upon the Pock operator used In making LCAO-SCP-MO 

calculations for closed-shell systems. Thus, charge dis­

tributions which are assumed before the first cycle of the 

TEA calculation are calculated at the end of that cycle by 

the Mulliken population analysis. The calculated charge dis­

tribution is essentially put into cycle two (properly weighted 

by a damping constant) and so forth. Thus, when the oscilla­

tions of assumed and calculated charge distributions for each 

atomic orbital become sufficiently small, we are confident 
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that the TBA energy bands have converged enough to give us 

useful quantitative Information. 

Because of its nature, the TBA method Invoked in this 

thesis may be called a semi-rigorous® molecular orbital 

calculation which Includes the effects of translatlonal 

symmetry on the electronic structure. 

Obviously, we cannot obtain the exact solution of the 

Schrodlnger equation of electrons in a solid, but because of 

the Born-von Karman periodic boundary (14-30» the Born-

Oppenheimer approximation and the unique nature of the 

loosely-packed structure of ReO^, we may use a Bloch sum basis 

set and solve the eigenvalue problem of the electronic 

structure in a solid varlationally using a linear combination 

of atomic potentials as the crystal potential. But even at 

this point, we cannot proceed in an ab initio manner. Instead, 

we proceed to make systematic approximations as Ruedenberg {.39) 

has stressed we must do, and continue to do so until the 

calculation is both theoretically founded and practical. The 

multi-center Integral problem has plagued progress of the TBA 

approach to solids previously. Even though we still are 

unable to evaluate three-center integrals practically, we 

resort to the Mulllken approximation (IC). The evaluation of 

all necessary two-center Coulomb, exchange, nuclear attraction. 

®A work suggested by Kaufmann (l|,5) and considered by the 
author elsewhere (U.6). 
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overlap and kinetic energy integrals makes our method at 

least a good first order attempt to describe the electronic 

structure of a group of substances, namely the perovskite 

transition metal oxides. It Is important to stress that we 

evaluate off-diagonal elements in the Hamlltonlan matrix as 

explicitly as possible and do not resort to any semi-

empirical approximations such as the Wolfsberg-Helmholz (33) 

or extended Huckel approximations (^?). For the above reasons, 

we use the description semi-rigorous when referring to the 

present TBA method. 

We will now discuss the calculation of TBA energy 

bands of ReO^ in two steps: 

1) The input data which consists of the crystal 

potential, orbital energies and orbital functions. 

2) The output data which consists of E(k) vs. k, the 

density of states, particularly at the Fermi energy, the 

results of the Mulliken population analysis, the correlation 

of the joint density of states with the imaginary part of 

the dielectric constant, and the Fermi surface. 
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THE CRYSTAL POTENTIAL 

We have calculated all Coulomb, C, exchange, X, and 

nuclear attraction integrals necessary for the crystal poten­

tial (see "Atomic Potential", Chapter I) in the TBA inter­

action model for ReOj, eg., Re-Re, Re-O]^» Oi-Og» 6tc., Inter­

actions. The "crystal potential", which is a linear combina­

tion of atomic potentials,(Equation 26) is thereby calculated 

by evaluating matrix elements of the classes shown in Equations 

33 and 3li. Only the type in Equation Llj needs to be expanded 

into C, X, and nuclear attraction integrals 

The charge distributions of crystal orbitals|^^^(k,r)|2 (i = 

occupied orbitals) are divided by the Mulliken population 

analysis ( 6 ) to give Bloch sum ( in reciprocal space) or 

atomic orbital (in real space) populations n^ for the q bases. 

The self-conslscency procedure outlined in Part I is 

applied to HeO^. 

Since we wish to use the ReO^ structure to parameterize 

a series of oxides, the obvious place to start is the crystal 

potential. 

An additional calculation of C, X, and nuclear attraction 

integrals to be used in the crystal potential for NaWO^ and 

KTaO^ was performed using the ReO^ structure (Re, 0^, O2» 0^ 

orbitals for the same lattice constant) with Na and K atomic 

orbitals situated at the (111) corner positions, i.e. in the 



perovskite positions of a hypothetical perovskite oxide 

AReO^ (A=Na or K). We scale these results for the NaWO^ and 

KTaO^ cases using the following procedure: 

1) Using a set of C, X, and nuclear attraction Integrals, 

<a alb b'> , ̂ a bl a b'> and <.l/r;^\b b respectively (defined 

in Equation 60 with b not necessarily = to b') we calculate 

a scaling factor, S, as follows: 

SReO] 
model 

<a alb b'^ ^a b\a b'^ t / <l/rA%b b'^ 
AReO^ AReO/ AReOg ( àCi) 

2) Using the respective lattice constants of KTaO^ and 

Na%W02(x=1.0) to obtain the appropriate interatomic distances, 

we calculate all nuclear attraction integrals 

<l/r^^b b«> 
KTaO] or NaWO^ 

3) We calculate QJ. NaW03 used in the crystal 

potential (Equation 28) by 

(c-sX^^Tao " ^ ̂  KTaO. 

or model or 
NaWOj NaWOj (6l) 

for each a, b and b' set. 

14.) Using (c-&x]%Ta02 or NaWO] values, we calculate all 

matrix elements of the type <b\V^\b'>. 

Justification for this scaling procedure stems from 

Fenske's "point charge approximation" (7 ) which for^bjV^lb') 
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Is "C bj V^j bb b-Z^^l/r^îb b'> or In other 

w o r d s  ̂ b  b ' ^ ; ^ C - 2 - X ,  

The scaling factor S calculated for set a, b, and b' 

in step 1 above is introduced into Equation 61 by 

to give a general expression for point charge approximations 

(Penske's is for S = 1). 

A l/R^g behavior is exhibited by Coulomb integrals at 

sufficiently large interatomic distances R^g, e.g. at from 

center B, the charge distribution a^s-a on center A appears as 

a point charge to center B, The exchange integral, however, 

which behaves like an overlap integral 4aib^, diminishes 

exponentially with increase in R^g. Hence, the point charge 

approximation is good for first-row transition metal 3d 

orbitals, i.e. a=3d gives 3=0.99 (8,). 

If a=i|.s or i^p for first-row transition metals, we would 

expect that the point charge approximation would not be 

reasonable. The Us and ij-p orbitals have such a large ̂ r^ 

that for usual R^g distances encountered in transition metal 

oxides (3-^ a.u.), the diffuse a-"-a charge distribution still 

has a finite value, eg. for Ti (23) ^r 3^^^ l»k^7 a.u. but 

^r 3.766 a.u. The situation for rhenium is about the 

same for titanium: ^ r I.8OO and <r 3.691+ for 

RRe-0 = 3.5 a.u. 

a 

(62 )  



75 

Therefore, we Introduce the parameter S into our cal­

culations for two main reasons: 

1) We facilitate the evaluation of C-^X integral values 

by the fast and easy calculation of nuclear attraction 

integrals (Appendix E). 

2) We quantitatively measure the shielding effects of 

diffuse charge distributions in showing why the simple point 

charge approximation is of no value to TBA calculations of 

perovskite transition metal oxides. 

The result of the above analysis is shown in Table U 

using nuclear attraction integrals listed in Table S. 

We thereby avoid the extensive evaluation of Coulomb 

and exchange Integrals each time, but also construct a 

crystal potential which is directly related to the ReO^ model. 

As trends become obvious, we may calculate Coulomb and 

exchange integrals more accurately if desired as the TBA 

method is improved (evaluation of three-center integrals ex­

plicitly). Until then, our semi-rigorous method will be kept 

at the present level of approximation. 



76 

Table k' Coulomb-exciaange Integrals and shielding param­
eters for perovaklte transition metal oxides 

Atomic orbitals^ 

1 1 k 1 C-X/2' 

^20 
^21 
$22 
600 
610 
611 

$20 
$21 
$22 
600 
610 
611 

200 200 
210 210 
211 211 

300 300 
310 310 
311 311 

$20 
$20 
$20 
$20 
$20 
$20 

$20 
$20 
$20 

$20 
$20 
$20 

$20 
$20 
$20 
$20 
$20 
$20 

$20 
520 
520 

$20 
$20 
$20 

0.1$7796 
0.1$$40$ 
Oo1$1178 

0.1$0008 
0.164212 
0.1i|.0$68 

0.302k$k 
0.317908 
0.29$973 

0.168116 
0.19$724 
0.1$U021 

0.000492 
0.000032 
0.000002 
0.001$13 
0.0038$3 
0.000074 

0.030307 
0.024608 
o.oo4$i$ 

0.0033$2 
0.008270 
0.000207 

400 400 $20 $20 0.162177 0.002$48 
410 410 $20 $20 0.1950$$ 0.006899 
411 411 $20 $20 0.144611 0.000190 

0.14722$ 
0.14$206 
0.141270 
0.143033 
0.1$6877 
0.135348 

0.960167 
0.96672$ 
0.940$21 
0.9$22$8 
1.044430 
0.904423 

0.287300 1.009110 
0.305604 1.073400 
0.293715 1.031560 

0.160795 0.718775 
0.185090 0.827377 
0.1^8696 0.664646 

0.155445 0.694860 
0.185106 0.827448 
0.139614 0.624093 

®The atomic orbitals i, j, k, and 1 which have quantum 
numbers n, S. , and m are indicated by the integer nii m. The 
i and j orbitals are located on atom A and the k and 1 orbi­
tals are located on atom B. 

^The value of the Coulomb integral in atomic units of 
27.2 e.v. are indicated by G. Electron 1 is in the orbitals 
1 and j and electron 2 is in orbitals k and 1. 

°The value of the corresponding exchange integral is 
indicated by X and is in atomic units of 27.2 e.v. 

^The value of the difference is corrected for the re-
normalization of 5d and 6s orbitals where necessary. 

®The shielding parameter is indicated by S. It is 
evaluated by the following expression: 

S=(C-X/2)/Xl-\ kl\ 
^^A « X 
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Table i(.(Cont. ) 

Atomic orbitals 

1 1 k 1 G X C-X/2 S 

520 520 
521 521 
522 522 
600 600 
610 610 
611 611 

200 200 
210 210 
211 211 

300 300 
310 310 
311 311 

14.00 14.00 
klO ii.10 
I4.II it.ll 

520 520 
521 521 
522 522 
600 600 
610 610 
611 611 

200 200 
210 210 
211 211 

300 300 
310 310 
311 311 

14.00 14.00 
14.10 I4.IO 
1^11 I4.II 

521 521 
521 521 
521 521 
521 521 
521 521 
521 521 

521 521 
521 521 
521 521 

521 521 
521 521 
521 521 

521 521 
521 521 
521 521 

522 522 
522 522 
522 522 
522 522 
522 522 
522 522 

522 
522 522 
522 522 

522 522 
522 522 
522 522 

522 522 
522 522 
522 522 

0.155405 
0.153452 
0.149478 
0.148305 
0.161381 
0.139752 

0.283718 
0.294120 
0.279989 

0.166610 
0.193123 
0.153731 

O.I6151S 
0.193911 
0.145001 

0.151176 
0.149478 
O.146C40 
0.144715 
0.156117 
0.136795 

0.244397 
0.253269 
0.239959 

0.162769 
0.187294 
0.150326 

0.159128 
0.190297 
0.142617 

0.000032 
0.000077 
0.000002 
0.000306 
0.000779 
0.000334 

0.002058 
0.001893 
0.005414 

0.001891 
0.004589 
0.001830 

0.002380 
O.OO6O36 
0.001953 

0.000002 
0.000002 
0.000001 
O.OOOOii.6 
0.000123 
0.000014 

0.000037 
0.000029 
0.000032 

0.000795 
0.002088 
0.000230 

0.001415 
0.003757 
0.000391 

0.145206 
0.143359 
0.139681 
0.141980 
0.155627 
0.134934 

0.282689 
0.293173 
0.277282 

0.1601114 
O.I8W169 
0.147724 

Q.154986 
0.16^531 
0.139225 

0.141270 
0.139681 
0.136468 
0.138655 
0.150655 
0.132230 

0.244378 
0.253254 
0.239943 

0.156961 
o.i8ook4 
0.145206 

0.153238 
0.182140 
0.137675 

0.979560 
0.967100 
0.942288 
0.957797 
1.049860 
0.910265 

1.083700 
1.123880 
1.062970 

0.715865 
0.836697 
0.670032 

0.702970 
0.836978 
0.631483 

0.977904 
0.966905 
0.944664 
0.959803 
1.044250 
0.915327 

1.024930 
1.062160 
1.006330 

0.729712 
0.837025 
0.675063 

0.712404 
0.846769 
0.640051 
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Table ^(Cont.) 

Atomic orbitals 

1 A k 1 G X C-X/2 S 

520 S20 
521 >21 
5^2 S22 
600 600 
610 610 
611 611 

200 200 
210 210 
211 211 

300 300 
310 310 
311 311 

Uoo 14.00 
Uic li.10 
411 ij.li 

520 520 
521 521 
522 522 
600 600 
610 610 
611 611 

200 200 
210 210 
211 211 

300 300 
310 310 
311 311 

UOO 24.00 
i;10 UlO 
lj.ll ij.ll 

52c 600 
520 600 
520 600 
520 600 
520 600 
520 600 

520 600 
520 600 
520 600 

520 600 
520 600 
520 600 

520 600 
520 600 
520 600 

600 600 
600 600 
600 600 
600 600 
600 600 
600 600 

600 600 
600 600 
600 600 

600 600 
600 600 
600 600 

600 600 
600 600 
600 600 

0.006kk2 
0.005900 
0.005174 
0.005090 
0.007292 
0.003850 

0.028791 
0.030923 
0.028911 

0.004827 
0.006681 
0.003807 

0.002754 
0.003563 
0.002163 

0.150008 
0.148305 
0.144715 
0.142534 
0.153122 
0.134951 

0.257590 
0.260103 
0.257748 

0.156238 
0.173393 
0.147367 

0.149951 
0.169898 
0.138887 

0.000083 
0.000002 
0.000000 

-0.001536 
-0.006265 
-0.000198 

-0.002830 
0.000000 
0.000000 

-0.000206 
-0.000129 
-0.000008 

-0.002333 
-0.OO3LO4 
-0.000170 

0.001513 
0.000306 
0,000046 
0.010168 
0.020046 
0.000921 

0.046575 
0.014386 
0.009476 

0.031179 
0.057084 
0.003679 

0.042908 
0.077311 
0.004384 

0.006056 
0.005581 
0.004896 
0.005685 
0.010206 
0.003874 

0.030206 
0.030923 
0.028911 

0.004103 
0.005614 
0.003171 

0.003263 
0.004382 
0.001872 

0.143033 
0.141980 
0.138664 
0.135089 
0.141865 
0.132438 

0.234302 
0.252910 
0.253010 

0.139435 
0.143602 
0.144272 

0.127389 
0.130110 
0.135516 

0.810935 
0.747330 
0.655604 
0.761256 
1.366580 
0.518752 

0.403997 
0.413587 
0.386670 

0.409289 
0.559965 
0.316319 

0.315859 
0.424194 
0.161092 

1.134460 
1.126110 
1.099810 
1.071450 
1.125200 
1.050430 

0.828300 
0.894082 
0.894436 

0.971801 
1.000840 
1.005510 

0.887846 
0.906810 
0.944487 



Table U.(Cont.) 
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Atomic orbitals 

1 1 k i C X C-X/2 S 

520 520 
521 521 
522 522 
600 600 
610 610 
611 611 

200 200 
210 210 
211 211 

300 300 
310 310 
311 311 

U-OO i+OO 
1+10 I+IO 
l+ll i+ll 

520 520 
521 521 
522 522 
600 600 
610 610 
611 611 

200 200 
210 210 
211 211 

300 300 
310 310 
311 311 

i+OO f+OO 
i+io U3 0 
i+11 411 

520 610 
520 610 
520 610 
520 610 
520 610 
520 610 

520 610 
520 610 
520 610 

520 610 
520 610 
520 610 

520 610 
520 610 
520 610 

600 610 
600 610 
600 610 
600 610 
600 610 
600 610 

600 610 
600 610 
600 610 

600 610 
600 610 
600 610 

600 610 
600 610 
600 610 

0.017103 
0.016178 
0.014837 
0.014625 
0.018665 
0.012294 

0.057395 
0.060451 
0.057036 

0.011678 
0.014045 
0.010131 

0.041916 
0.040436 
0.037771 
0.037026 
0.044702 
0.032449 

0.000126 
0.000003 
0.000000 
-0.002370 
-0.006265 
-0.000310 

-0.004946 
0.000000 
0.000000 

-0.003691 
-0.005606 
-0.000275 

0.000345 
0.000088 
0.000018 
-0.005150 
-0.014077 
-0.000959 

0.015655 
0.014861 
0.013632 
0.015410 
0.021431 
0.012240 

0.059868 
0.060451 
0.057836 

0.015162 
0.005614 
0.003171 

0.013298 
0.016566 
0.010097 

0.038839 
0.037582 
0.035135 
0.039089 
0.051517 
0.032786 

0.113235 
0.111291 
0.111854 

0.039754 
0.046689 
0.035181 

0.039534 
0.046168 
0.029137 

3.824680 
3.630700 
3.330440 
3.764830 
5.235750 
2.990310 

0.786713 
0.794368 
0.760011 

1.467910 
1.829370 
1.29016© 

1.326530 
1.652520 
1.007220 

1.703470 
1.648360 
1.541010 
1.714450 
2.259550 
1.438000 

0.889485 
0.874214 
0.878637 

0.689140 
0.808355 
0.609100 

0.684475 
0.799325 
0.500447 

0.110093 -0.006283 
0.111291 0.000000 
0.111854 0.000000 

0.039407 -0.001287 
0.046695 -0.000686 
0.035417 -0.000052 

0.031926 -0.015806 
0.036706 -0.019612 
0.028722 -0.001265 

0.015239 -0.000361 
0.006681 -0.000129 
0.003806 -0.000008 
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Table ^(Cont.) 

Atomic orbitals 

i 1 i£ i C-X/2 

520 520 610 610 
521 521 610 610 
522 522 610 610 
600 600 610 610 
610 610 610 610 
611 611 610 610 

200 200 610 610 
210 210 610 610 
211 211 610 610 

300 300 610 610 
310 310 610 610 
311 311 610 610 

400 400 610 610 
410 410 610 610 
411 411 610 610 

520 520 521 611 
521 521 521 611 
522 522 521 611 
600 600 521 611 
610 610 521 611 
611 611 521 611 

200 200 521 611 
210 210 521 611 
211 211 521 611 

300 300 521 611 
310 310 521 611 
311 311 521 611 

400 400 521 611 
410 410 521 611 
411 411 521 611 

0.16^212 
0.161381 
0.156117 
0.153122 
0.168031 
0.129780 

0.165389 
0.185154 
0.15500s 

0.151+332 
0.174658 
0.1^2651 

0.011230 
0.011030 
0.010342 
0.010369 
0.012331 
0.009475 

0.028137 
0.028074 
0.029312 

0.011589 
0.013859 
0.010910 

0.161518 
0.193911 
0.145001 

0.003853 
0.000779 
0.000123 
0.020046 
0.047714 
0.000014 

0.120665 
0.034146 
0.024790 

0.037250 
0.061839 
0.005051 

0.038066 
O.O6O805 
0.004550 

0.000008 
0.000011 
0.000000 

-0.000062 
-0.000190 
-0.000239 

-0.000015 
0.000000 
0.000000 

-0.000006 
-0.000004 
-0.000017 

0.002380 
0.006038 
0.001953 

0.156877 
0.155627 
0.150855 
0.141865 
0.144174 
0.129773 

1.169900 
1.160580 
1.124990 
1.057950 
1.075170 
0.967776 

0.252775 0.755407 
0.300008 0.896561 
0.302682 0.904552 

0.146764 0.689023 
0.154234 0.724093 
0.152482 0.715821 

0.135299 0.635198 
0.144255 0.677244 
0.140376 0.659033 

0.010310-10, 
0.010128-10, 
0.009502 -9. 
0.010138-10. 
0.012218-12, 
0.009433 -9. 

731300 
541900 
890200 
551600 
717000 
818060 

0.028145 0.761270 
0.028074 0.759336 
0.029312 0.792835 

O.I6OI44 
0.013628 
0.010736 

0.154986 
0.184531 
0.139225 

5.911890 
7.069160 
5.568750 

5.125560 
6.021650 
4.893640 
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Table l|.(Cont.) 

Atomic orbitala 
i 2 k 1 G X C-X/2 S 

520 520 
521 521 
522 522 
600 600 
610 610 
611 611 

200 200 
210 210 
211 211 

300 300 
310 310 
311 311 

I4-OO koo 
ii.10 I4.10 
i|.ll i|ll 

520 520 
521 521 
522 522 
600 600 
610 610 
611 611 

200 200 
210 210 
211 211 

300 300 
310 310 
311 311 

i|.00 14.00 
ii.10 I4.I0 
411 411 

611 611 
611 611 
611 611 
611 611 
611 611 
611 611 

611 611 
611 611 
611 611 

611 611 
611 611 
611 611 

611 611 
611 611 
611 611 

200 200 
200 200 
200 200 
200 200 
200 200 
200 200 

200 200 
200 200 
200 200 

200 200 
200 200 
200 200 

200 200 
200 200 
200 200 

0.1U0566 
0.139752 
0.136795 
0.134951 
0.143041 
0.129780 

0.227914 
0.229277 
0.229285 

0.148858 
0.163824 
O.143316 

0.144952 
0.163608 
0.137363 

0.302454 
0.283718 
0.244397 
0.257590 
0.313108 
0.227914 

0.199695 
0.203837 
0,197625 

0.190554 
0.228161 
0.171216 

0.179941 
0.221059 
0.157759 

0.000074 
0.000334 
0.000014 
0.000921 
0.002057 
0.001885 

0.002059 
0.000827 
0.007324 

0.005383 
0.010215 
0.010757 

0.008990 
0.016365 
0.015336 

0.030307 
0.002058 
0.000037 
0.046575 
0.120665 
0.002059 

0.000028 
0.000040 
0.000001 

0.014012 
0.030600 
0.000330 

0.017658 
0.048655 
0.000400 

0.131321 
0.134934 
0.132230 
0.133330 
0.142012 
0.128837 

0.226884 
0.228863 
0.225623 

0,146166 
0.158716 
0.137937 

0,140457 
0.155425 
0.129695 

0.287300 
0.282689 
0.244378 
0.234302 
0.252776 
0.226884 

0,199681 
0.203817 
0,197625 

0.183548 
0.208861 
0.171051, 

0.171112 
0,196731 
0.157559 

1.159280 
1.191180 
1.167310 
1,177020 
1.253660 
1.137350 

0.993315 
1.001980 
0.987794 

0,806322 
0.875554 
0.760926 

0.774828 
0.857399 
0.715460 

1.009110 
1.083700 
0.865343 
0.829664 
0.895080 
0.803397 

0.999925 
I.020640 
0.989629 

0,919137 
1.045890 
0.856556 

0,856862 
0,985152 
0,788994 



82 

Table ^(Cont,) 

Atomic orbitals 
i j k 1 C X C-X/2 S 

0.06k313 0.005210 
0.059865 -0.000423 
0.04.0324 -0.000027 
0.027597 -0.025030 
0.038969 -0.082532 
0.023021 -0.002228 

520 520 
521 521 
522 522 
600 600 
610 610 
611 611 

200 200 
210 210 
211 211 

300 300 
310 310 
311 311 

400 400 
410 410 
411 411 

520 520 
521 521 
522 522 
600 600 
610 610 
611 611 

200 200 
210 210 
211 211 

200 210 
200 210 
200 210 
200 210 
200 210 
200 210 

200 210 
200 210 
200 210 

200 210 
200 210 
200 210 

200 210 
200 210 
200 210 

210 210 
210 210 
210 210 
210 210 
210 210 
210 210 

210 210 
210 210 
210 210 

210 
210 
210 

210 
210 
210 

0.024668 
0.026203 
0.023902 

0.018337 
0.025005 
0.014.646 

0.013147 
0.016566 
0.010941 

0.317908 
0.294120 
0.253269 
0.260103 
0.317081 
0.229277 

0.203837 
0.208494 
0.201510 

0.192631 
0.231841 
0.172437 

0.180837 
0.222689 
0.158189 

0.000000 
0.000000 
0.000000 

-0.000032 
-0.000033 
-0.000001 

-0.002449 
-0.004435 
-0.000036 

0.024608 
0.001893 
0.000029 
0.014386 
0.034146 
0.000827 

0.000040 
0.000061 
0.000001 

0.004927 
0.013406 
0.000142 

0.004503 
0.012495 
0.000132 

0.061708 
0.059077 
0.040337 
0.040111 
0.080236 
0.024135 

0.024668 
0.026203 
0.023902 

0.018353 
0.025022 
0.014646 

0.014371 
0.016804 
0.010959 

0.305604 
0.293173 
0.253254 
0.252910 
0.300008 
0.228863 

0.203817 
0.208463 
0.201510 

0.190167 
0.225138 
0.172366 

0.178585 
0.226433 
0.158123 

1.250890 
1.197560 
0.817679 
0.813104 
1.626470 
0.489245 

0.999927 
1.062250 
O.96S877 

0.743946 
1.014260 
0.597735 

0.582534 
0.762207 
0.444207 

1.073400 
1.123880 
0.861054 
0.859684 
1.020020 
0.778125 

0.999892 
1.022680 
0.988574 

0.932927 
1.104490 
0.845599 

0.876108 
1.110842 
0.775725 

300 300 210 
310 310 210 
311 311 210 

400 400 210 
410 410 210 
411 411 210 
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Table ^(Cont.) 

Atomic orbitals 
1 1 is i C X C-X/2 S 

520 $20 
521 $2] 
522 522 
600 600 
610 610 
611 611 

200 200 
210 210 
211 211 

300 300 
310 310 
311 311 

Loo Loo 
Wo Lio 
Lii /ill 

520 520 
521 521 
522 522 
600 600 
610 610 
611 611 

200 200 
210 210 
211 211 

520 520 
521 521 
522 522 
600 600 
610 610 
611 611 

211 211 
21] 211 
211 211 
211 211 
211 211 
211 211 

211 211 
211 211 
211 211 

211 211 
211 211 
211 211 

211 211 
211 211 
211 21] 

300 300 
300 300 
300 300 
300 300 
300 300 
300 300 

300 300 
300 300 
300 300 

400 400 
400 400 
400 400 
400 400 
400 400 
400 400 

0.295973 
0.279989 
0.239959 
0.257748 
0.315077 
0.229285 

0.197625 
0.201510 
0.195747 

0.189881 
0.227376 
0.171234 

0.179956 
0.221590 
O.I5S248 

0.168116 
0.166610 
0.162769 
0.156238 
0.165389 
0.148858 

0.190554 
0.192631 
0.189881 

0.162177 
0.161518 
0.159128 
0.149951 
0.154332 
0.144952 

0.004515 
0.005414 
0.000032 
0.009476 
0.024790 
0.007324 

0.000001 
0.000001 
0.000001 

0.002572 
0.007156 
0.001134 

0.003455 
0.009642 
0.001457 

0.003352 
0.001891 
0.000795 
0.031179 
0.037250 
0.005383 

0.014012 
0.004927 
0.002572 

0.002548 
0.002380 
0.001415 
0.042908 
0.038066 
0.008990 

0.293715 
0.277282 
0.239943 
0.253010 
0.302682 
0.225623 

0.197625 
0.201510 
0.195747 

0.188595 
0.223798 
0.170667 

0.178228 
0.216769 
0.157519 

0.160795 
0.160144 
0.156961 
0.139435 
0.146764 
0.146166 

0.183548 
0.190167 
0.188595 

0.155445 
0.154986 
0.153238 
0.127389 
0.135299 
0.140457 

1.031560 
1.062970 
0.867617 
0.914867 
1.094480 
0.815837 

1.000000 
1.019660 
0.990497 

0.954307 
1.132440 
0.863590 

0.901849 
1.096870 
0.797060 

1.005350 
1.001280 
0.981374 
0.871796 
0.917557 
0.913880 

0.954245 
0.988656 
0.980483 

0.936195 
0.983283 
0.972193 
0.808198 
0.858382 
0.891106 



Table ^^Cont.) 

Atomic orbitals 
i I i£ i G X C-X/2 S 

200 200 400 400 0.179941 
210 210 400 400 0.180837 
211 211 400 400 0.179956 

520 520 300 310 0.059897 
521 521 300 310 0.058695 
522 522 300 310 0.055319 
600 600 300 310 0.048263 
610 610 300 310 0.053318 
611 611 300 310 0.044347 

200 200 300 310 0.075673 
210 210 300 310 0.077420 
211 Ail 300 310 0.075419 

520 520 400 410 0.065835 
521 521 400 410 0.065483 
522 522 400 410 0.063893 
600 600 400 410 0.074976 
610 610 400 410 0.077166 
611 611 400 410 0.050174 

200 200 400 410 0.078509 
210 210 400 410 0.079038 
211 211 400 410 0.079033 

520 520 310 310 0.195724 
521 521 310 310 0.193123 
522 522 310 310 0.187294 
600 600 310 310 0.173393 
610 610 310 310 0.185154 
611 611 310 310 0.163824 

200 200 310 310 0.228161 
210 210 310 310 0.231841 
211 211 310 310 0.227376 

0.017658 0.171112 0.938618 
0.0014.^03 0.178585 0.979611 
0.003455 0.178228 0.977652 

0.001203 0.057319 0.995078 
0.000736 0.056384 0.978838 
0.000350 0.053790 0.872514 

-0.049829 0.072547 1.259440 
-0.050633 0.078635 1.365130 
-0.011824 0.050259 0.933814 

-0.001605 0.076475 0.971049 
0.000000 0.077420 0.983049 
0.000000 0.075419 0.957641 

0.001214 0.063055 0.946059 
0.001016 0.062811 0.942398 
0.000636 O.O61457 0.902923 

-0.074855 0.111434 1.671920 
-0.050681 0.102506 1.537970 
-0.020011 0.060180 0.922083 

-0.002148 0.079584 0.963838 
0.000000 0.079038 0.957225 
0.000000 0.079033 0.957165 

0.008270 0.185090 0.979354 
0.004589 0.184469 1.001280 
0.002088 0.160044 0.981374 
0.057084 0.143602 0.759831 
O.O6I839 0.154234 0.816087 
0.010215 0.158716 0.913880 

0.038600 0.208861 0.894648 
0.013406 0.225138 0.964370 
0.007156 0.223798 0.958630 
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Table ^(Gont.) 

Atomic orbitais 
1 1 k 1 C-X/2 

520 
521 
$22 
600 
610 
611 

200 
210 
211 

520 
521 
522 
600 
610 
611 

200 
210 
211 

520 

521 
522 
600 
610 
611 

200 
210 
211 

520 UlO 
521 it-io 
522 ii.10 
600 lilo 
610 ii-lO 
611 1+10 

200 UlO 
210 1+10 
211 1+10 

520 311 
521 311 
522 311 
600 311 
610 311 
611 311 

200 311 
210 311 
211 311 

520 1+11 
521 1+11 
522 i+11 
600 1+11 
610 1+11 
611 1+11 

200 1+11 
210 i+11 
211 i+11 

i+10 
1+10 
1+10 
i+10 
1+10 
i+10 

1+10 
i+10 
1+10 

311 
311 
311 
311 
311 
311 

311 
311 
311 

i+11 
i+11 
i+11 
i4.ll 
kll 
un 

i+11 
i+11 
i+11 

0.195055 
0.193911 
0.190297 
0.169898 
0.171+658 
0.163608 

0.221059 
0.222689 
0.221590 

0.154021 
0.153731 
0.150326 
0.11+7367 
0.155088 
0.11+3316 

0.171216 
0.1721+37 
0.171231+ 

O.li+i+611 
O.li+5001 
0.11+2617 
0.138887 
0.1^2651 
0.137363 

0.157759 
0.158189 
0.15821+8 

0.006899 
0.006038 
0.003757 
0.077311 
0.060805 
0.016365 

0.01+8655 
0.0121+95 
0.00961+2 

0.000207 
0.001830 
0.000230 
0.003679 
0.005051 
0.010757 

0.000330 
0.00011+2 
0.001131+ 

0.000190 
0.001953 
0.000391 
0.001+381+ 
0.001+550 
0.015336 

0.0001+00 
0.000132 
0.0011+57 

0.185106 
0.181+531 
0.18211+0 
0.130110 
0.11+1+255 
0.1551+25 

0.196731 
0.2261+33 
0.216769 

O.li+8696 
0.1i+772i+ 
0.11+5206 
0.144272 
0.152482 
0.137937 

0.171051 
0.172366 
0.170667 

0.139614 
0.3 39225 
0.137675 
0.135516 
0.140376 
0.129695 

0.157559 
0.158123 
0.157519 

0.959451 
0.956471 
0.944078 
0.674393 
0.747710 
0.805607 

0.938618 
0.979611 
0.977652 

1.010140 
1.003530 
0.986427 
0.980082 
1.035860 
0.937047 

0.889274 
0.738323 
0.996427 

1.004190 
0.882075 
0.99021+7 
0.974718 
1.009670 
0.932850 

0.998323 
1.001810 
0.997979 
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Table 5. Nuclear attraction integrals® calculated for 
perovskite transition metal oxides in the 
rhenium trioxide model 

Potential 
center A 

Quantum numbers^ 
of orbitals 

i 1 

Distance^ 

/\
 

_
 

V
 

Re 520 520 7.08182 0.150204 
0 , 520 520 3.54091 0.284707 
AM° 520 520 6.1330I4. 0.223707 
Re 521 521 7.08182 0.148236 
0 521 521 3.54091 0.260856 
AM 521 521 6.13304 0.220473 
Re 522 522 7.08182 0.144462 

0.238434 0 522 522 3.54091 
0.144462 
0.238434 

AM 522 522 6.13304 0.215100 
Re 520 600 7.08182 0.007468 
0 520 600 3.54091 0.074768 
AM 520 600 6.13304 0.010329 
Re 600 600 7.08182 0.126080 
0 600 600 3.54091 0.282871 
AM 600 600 6.13304 0.143481 
Re 520 610 7.08182 0.004093 
0 520 610 3.54091 0.076099 
AM 520 610 6.13304 0.010025 
Re 600 610 7.08182 0.022800 
0 600 610 3.54091 0.127304 
AM • 600 610 6.13304 0.057753 
Re 610 610 7.08182 0.134094 
0 610 610 3.54091 0.334621 
AM 610 610 6.13304 0.213003 
Re 521 611 7.08182 . -0.000961 
0 521 611 3.54091 0.036971 
AM 521 611 6.13304 0.001928 
Re . 611 611 7.08182 0.113278 
0 611 611 3.54091 0,228411 
AM 611 611 6.13304 0.181275 

®The integral values are in atomic units of 27.2 e.v, 

^The quantum numbers n, X, and m are expressed as an 
Inteeer n^m. The indicated orbitals are on center B. 

®The distance between potential center A and the in­
dicated orbitals on center B is expressed in Bohr units. 

^AM is any element which fills the perovskite hole. 
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Potential Quantum numbers Distance /1 j\ 
center A of orbJtais ^ 

i I 

Re 200 200 3.SL091 O.282LO6 
0 200 200 Ç.00760 0.199696 
AM ?00 200 S.00760 0.199696 
Re 200 210 3.?L091 O.OL9331 
0 200 210 S.00760 0.02L670 
AM 200 210 5.00760 0.02L670 
Re 210 210 3.<L091 0.29L121 
0 210 210 <.00760 0.203839 
AM 2]0 210 5.00760 0.203839 
Re 211 211 3.SL091 0.27655L 
0 211 211 <.00760 0.197625 
AM 211 211 S.00760 0.197625 
Re 300 300 6.I330L O.1599L0 
0 300 300 5.00760 0.1923L9 
AM 300 300 5.00760 0.1923L9 
Re 300 310 6.1330L 0.057602 
0 300 310 5.00760 0.078755 
AM 300 310 5.00760 0.078755 
Re 310 310 6.1330L 0.188992 
0 310 310 5.00760 0.233L56 
AM 310 310 5.00760 0.233L56 
Re 311 311 6.I33OL 0.1L720L 
0 311 311 5.00760 0.171279 
AM 311 311 5.00760 0.171279 
Re 14.00 LOO 6.1330L 0.157621 
0 LOO LOO 5.00760 0.182302 
AM iiOO Loo 5.00760 0.182302 
Re Loo LIO 6.133OL 0.066650 
0 LOO Lio 5.00760 0.082570 
AM . Loo LIO 5.00760 0.082570 
Re Lio Lio 6.1330L 0.192929 
0 Lio Lio 5.00760 0.2280L6 
AM Lio Lio 5.00760 0.2280L6 
Re Lii Lii 6.3 330L 0.139031 
0 LU Lii 5.00760 0.157838 
AM Lii Lii 5.00760 0.157833 
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ATOMIC ORBITAL FUNCTIONS AND ENERGIES 

Using the values of from Mann's data (29), we used 

Equation 55 to obtain tho orbltol exponents of the rhenium 

68 and 6p and other nn and np (n = 2,3,k) STO expansions 

resulting from Equation 5U/i. The expansion coefficients were 

then found by the Schmidt orthogonallzstlon procedure and 

listed In Table 6, 

Using s least-square s-program proposed by Raffenetti 

we have been able to express all principal quantum number 

STO*s in terms of 3d» 38 and 3p STO's for the Basch-Gray 5d, 

6s and 6p functions. The Basch-Gray functions are listed in 

Table 7. The Raffenetti least squares fits are shown below 

Table 7. The resulting functions are compared both graphi­

cally (Figures 6 to 8) and in Table 8. A comparison of 

radial expectation values for ̂ rQ)> in a.u. (q=2,-l,0,l,2) is 

given In Table 8. Outer region radial properties depend on 

reliable < r'> and<'r2> values while inner properties depend 

on and ^ r"^)^ values. It can be seen that except 

for <'r~2> values, we obtained a least-squares fit function 

which appears to be adequate for making two-center integral 

calculations. The original SCF type functions will be used to 

evaluate all one-center integrals. Thus, the deficiencies in 

the nodal behavior at the nucleus, as exhibited byKr'^^ , of 

the fitted functions need not be of concern In the TBA cal­

culations. Cusachs (Ùr9) has made a careful study of radial 

properties vs. inner and outer behavior. 
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Table 6, Coefficient matrix elements for Schmidt ortho* 
gonallzed atomic orbital radial function used 
in tight-binding calculations of rhenium trl-
oaide onorgy bands 

atom Uj 1 1 
b 

H 

OXYGEN Is 1 1 1.000000 1 7.723800 
2s 1 2 -0.240748 1 7.723800 

2 2 1.028571 2 2.285810 

OXYGEN 2p 1 1 1.000000 2 2.401410 

RHENIUM 3d 1 1 1.000000 3 20.255000 
kd 1 2 -0.1+81633 3 20.255000 

2 2 1.109941 4 10.409000 
5d 1 3 0.123000 3 20.255000 

• 2 3 -0.334200- 4 10.409000 
3 3 0.666200° 5 5.343000 

0.591000 5 2.277000 

angulary I.e. 
®Theae are elements of matrix T which Is upper tri-

^11 ll2 ****'\ 
Xpp O o 0 o e 0 1 

j 
The Sctimldt orthogonalized funotl&ns, u< , with 
njjjcn* are taken as a linear combination of 
Vj[ where 

Uj=V2Tij+V2T2j+ ... +' VjTjj with 1=1, ... , n*-(' or J. 

Thus, the 8TO basis set v Is mapoed by JJ into a set of func­
tions Uj which are orthogonal oryujau^ 

^The principal quantum number n^ for STO v^. 

°The orbital exponent^ for STO 

^The rhenium $d is a double-zeta STO. 



Table 6(Cont.) 

93 

atom Uj 1 1 nj 
kl 

RHENIUM is 1 1 1.000000 1 74.604500 
2s 1 2 -0.343106 1 74.604500 

2 2 1.057223 2 27.425000 
3s . 1 3 0.182846 1 74.604500 

2 3 -0.671419 2 27.425000 
3 3 1.185138 3 15.012400 

i+s 1 4 -Oo100416 1 74.604500 
2 à 0.386493 2 27.425000 
3 11 -0 <.886654 3 15.012400 
iî. 4 1.253684 4 8.907850 

5s 1 5 0.043263 1 74.604500 
2 5 -0.168471 2 27.425000 
3 5 0.409206 3 15.012400 
ii 5 -0.723755 4 8.907850 

6s 
5 5 1.157926 5 4.841620 

6s 1 6 -0.008305 1 74.604500 
2 6 0.032385 2 27.425000 
3 6 -0.079161 3 15.012400 

4 6 0.143364 4 8.907050 
5 6 -0.256261 5 4.841620 
6 6 1.024283 6 1.905020 

RHENIUM 2p 1 1 1.000000 2 35.291400 
3P 1 2 -O.4179I6 2 35.291400 

4p 
2 2 1.083814 3 15.914866 

4p 1 3 0.212250 2 35.291400 
2 3 -0.670135 3 15.914066 

5p 
3 3 1.176621 4 8.885510 

5p 1 4 -0.079740 2 35.291400 
2 k 0.261209 3 15.914Ô66 
3 
k i 

-0.553094 
I.IO6O88 

4 
5 

8.885510 
4.511780 

6p 1 5 0.017990 2 35.291400 
2 5 -0.059165 3 15.914866 
3 5 0.127640 4 8.885510 

4 5 -0.284291 5 4.511780 
5 5 1.032576 6 1.963498 
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Table 7. Baseh-Gray"rfienium functions 

- . - ' - • -

Orbital n® Expansion Orbital 
coefficient exponent 

b 
3 0.1230 20.255 
4 -0.3342 10.409 
5 0.6662 5.343 
5 0.5910 2.277 

1 -0.0140 74.535 
2 0.0505 28.821 
3 -0.1232 15.279 
4 0.2424 8.657 
5 -0.4845 4.682 
6 I.0860 2.398 

2 0.0269 35.294 
3 -0.0751 18.084 
k 0.1546 10.041 
5 -0.3338 5.191 
6 1.0439 2.372 

®The principal quantum number of tbe Slater type 
orbital basis. 

b 
The least squares function.Is 

5d=0.58350i;( 1.51+671 ) +0.668I4.50 ( 3. SSklk ) 
-0.5o5987(8»l6695)+0.l8i4.065(l8.76656) where 

the number in parenthesis is the orbital exponent and the 
number preceding the parenthesis is the corresponding coef-
ficient. 

The least squares function is 
6s=-0.179520(0.99199)+2.03k^32(1.S6I88) 

-1.2^6671(2,45917)-0.547268(3.87195) 
+0.869837(6.09637)-0.307880(9.59870). 

^The least squares function is 
6p=.0.159442(0.998k7)+l.256337(1.43424) 

+0.789819(2.06021)-1.977675(2.95936) 
+0,785272(4.25094). 



Table 8. Analysis of leaat-squarea-fit functions for rhenium atomic orbitals* 

SCP type 
function" 

Weighted 
self-overlap 
of SCpG 

Weighted 
self-overlap 
of LSP type 

Weighted 
mean-square 
deviation 

Basch-Gray 0.070989 

Basch-Oray 6s 0.0^2237 

0.078859 

0.0I4.03I4.0 

0.000128 

0.001897 

Radial expectation values® 

<r%cP> < S 

-2 1.160198 1.171559 
-1 0.789875 0.788594 
0 0.999995 0.995184 
1 1.653259 1.631237 
2 3.3k93Wk 3.277541 
3 8.071030 7.942476 

-2 1.99714-12 0.233403 
-1 0.^22368 0.403403 
0 1.000026 0.998402 
1 2.8039^.0 2.804037 
2 8.U92696 8.512128 
3 27.353992 27.543308 

®Least-squares-fit functions are referred to as LSF type. See Tabled-. 

^The function which is fitted la based upon self-consistent radial functions 
(SCP). 

°The weighted self-overlap, S, Is defined as S=^|f(r ^r where f(rp) is 
the value of the function at the radial distance rp, 

^The weighted mean-square deviation, D, Is defined as: (lt.8) 

D=^ [sCP(rp)-LCP(rp)] 

®Atomlc units. 



Table 8(Cont.) 

SCP type Weighted Weighted 
function self-overlap self-overlap 

of SCF of LSP type 

Basch-Gray 6p 0.0^0575 0.038971 

Weighted Radial expectation values 
mean-square , . , . 
deviation ^ ^ ? LSP/ 

0.001601}. .2 0.381871 
-1 0.^05748 
0 0.999970 
1 2.798682 
2 8.I4.36718 
3 27.098299 

O.I8I4.I65 
0.389708 
0.99641$ 
2.795653 
8.^21913 

27.076257 



Table 9. Comparison of Schmidt orthogonalized function 
radial expectation values with Mann's SC? 
results for neutral rhenium (a.u.) 

Function Radial expectation value 

a (r^SOP*) ^^SîANN^ 

Basch-Gray 5d -2 1.160198 1.160285 
-1 0.789875 0.722333 
1 1.653259 1.799927 
2 3.3k93Wk 3.845362 

SCP^ 6s -2 0.7697^7 0.881567 
-1 0.338750 0.337196 
1 3.320042 3.694182 
2 11.857742 15.666920 

LSP^ 6s -2 0.182571 0.881567 
-1 0.335347 0.337196 
1 3.330900 3.694182 
2 12.048085 15>666920 

^The subscript SOF means Schmidt orthogonalized 
function. 

^The single zeta Slater type orbital basis set based 
upon Mann's SCP r^ax values are Schmidt orthogonalized to 
give analytical functions which are labeled SCP, 

°The weighted mean square deviation of the least-
square s -fit (LSP) function, D, is O.OO3I4.O3. 

The 5d and 6s radial functions for neutral rhenium in 

Table 6 were fitted by n=3 STO's and the calculated rQ^ , 

radial expectation values, of our basis set for rhenium are 

compared with Mann's values in Table 9. The 6s and 6p least 

squares functions for the neutral rhenium atom are shown in 

Table 10. 
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Table 10, Least squares functions for 6s and 6p orbitals 

Orbital Least squares function* 

6s 1.46078(1.29317) 0.93009(2.^2117) 
0.l6$5%(k.23311) + 0.12909(8.48725) 
-0.13028(15.8905) +• 0.04871(29.7515) 

6p 1.58713(1.3014.92) M 1.03977(2.25186) 6p 
0.02002(3.88597) + 0.24836(6.70589) 
-0.10577(11.5721) 

0.24836(6.70589) 

®-The number in the parenthesis is the orbital exponent 
and the number preceding the parenthesis is the corresponding 
expansion coefficient. 

Using programs based upon Appendix F, we have calculated 

the atomic orbital energy parameters (see Table 11) which 

will be put into the TBA calculation. The formulation for 

calculating Slater-Condon parameters is obtained from 

Ros and Schu5t (36). 



Table 11. ReO^ orbital energy parameters® 

Orbital Two-electron inter­
action energy 

i 1 

OXYGEN 2s Is 23 
2p 2s 
2s 2s 

OXYGEN 2p Is 2p 
2s 2p 
2p 2p 

RHENIUM 5d Is 5d 
2s 5d 
2p 5d 
3s 5d 
3p 5d 
3d Sd 

1.579712 
1.567410 
1.5721+72 
1.532314.0 
1.536908 
1.549390 

One center 
kinetic energy 

6.24103 

5.76677 

12.17131 

Core Orbital 
energy^ energy^ 

-14.0796 -2.072135 

-13.44-45 -0.721791 

-106.3099 -0.671732 

^Orbital energy parameters are in Rydberg units. 

br The core energy of the j th orbital is expressed as the value of the 
integral j _ 2 _ 2Zj j 0j/ where Zj is the bare nuclear charge. 

'This is the orbital energy for the neutral atom. 
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Orbital 

RHENIUM 5d 

RHENIUM 6s 

Two-electron inter­
action energy 

i 1 £(1.3) 

Its Sd 
Up gd 
Ud 5d 
ll-fd 
Ss Sd 
Sp Sd 
Sd Sd 
6s 5d 
6p Sd 

Is 6s 
2s 6s 
2p 6s 
3a 6s 
3p 6s 
3d 6s 
lj.s 6s 
ij-P 6s 
Ùd 6s 
iji* 6s 

1.1}.68756 
1.^70050 
I.I1.I8938 
I.I4.62356 
1.211320 
1.170556 
1.076252 
0.626782 
0.619212 

0.674316 
0.670548 
0.671698 
0.666742 
0.667558 
0.668898 
0.661294 
0.662210 
0.663802 
0.662356 

^Basch-Oray 4^ functions havo 

One center Core Orbital 
kinetic energy energy energy 

1.67557 -49.1369 -0.330855 

n used to evaluate g(4f»j) terms. 
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Orbital Two-electron inter­
action energy 

i 1 

RHENIUM 6s 

RHENIUM 6p 

5s 6s 
6s 
6s 

6s 6s 

Is 6p 
2s 6p 
2p 6p 
3s 6p 
3p 6p 
3d 6p 
Us 6p 
ii-p 6p 
li-d 6p 
W 6p 
5s 6p 
5p 6p 
5d 6p 
6s 6p 
6p 6p 

0.6398^8 
0.648272 
0.626782 
0.51^7078 

0.667286 
0.66L77k 
0,665388 
0.66150k 
0.66177-+ 
0.6630I4.0 
0.65621} 8 
0.656188 
0.657893 
0.656386 
0.641836 
O.6ÛOIO8 
0.619212 
0.474214 
0.512740 

One center 
kinetic energy 

Core Orbital 
energy energy 

1.679749 -48.39085 -0.134514-
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E(k) 73. k AND DENSITY OP STATES 

The eigenvalues of crystal orbltala are E^(k) 

for the 1 th energy band. Since the energy is a periodic 

function of k, the k vectors which are to he chosen for band 

calculations can be restricted to lie within a unit cell of 

wave vector or momentura space which is called the primitive 

Brillouin zone. 

Rhenium trioxide and the perovskite transition metal 

oxides belong to the cubic space group 0^. In reciprocal 

or wave vector space, the first Brillouin zone is a cube with 

side 2 7t/a where a is the lattice constant. Por ReOj, a is 

3.7477 Â (37) All of the syimetry points and lines found in 

the simple cubic Brillouin zone can be placed on the surface 

of a polyhedron which is only lA6 of the Brillouin zone 

volume (Figure 9)• Thus, the choice of k vectors can be 

restricted further to lie within the l/l*.8 volume. Slater ($0) 

lists the degeneracies of the k vectors which correspond to 

symmetry points and lines on the surface of the I/I4.6 Brillouin 

zone. A non-symmetry point within this surface represents a 

total of lj.6 points in the entire Brillouin zone because of the 

space group symmetry, 

A convenient choice of 56 points shown in Table 12 was 

used to obtain the energy bands of ReO^» KTaO^ and NaWO^. 

These points are evenly spaced in the 1/^.8 Brillouin zone with 

a cubic mesh of side 0.2i*/a. This choice represents 1000 

«oints in the entire Brillouin zone. 
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Table 12. K vector basis used in energy band calculation 
of perovskite transition metal oxides in the 
1/14.8 Brillouin zone 

Number 
V 4 

Number 
4 

g 

1 0 0 0 1 29 2 1 0 21+ 
2 1 0 0 6 30 3 1 0 2ij. 
*3 
y 2 0 a 6 31 1+ 1 0 21+ 
h 3 0 0 6 32 3 2 0 21+ 
.•? If 0 0 6 33 i+ 2 0 21+ 
6 5 0 0 3 3I4. i+ 3 0 2k 
7 5 1 0 12 35 2 1 1 21+ 
6 5 2 0 12 36 3 n 

JL 1 21+ 
9 5 3 0 12 37 i+ 1 1 21+ 
10 5 0 12 38 2 2 1 2k 
11 5 5 0 3 39 3 2 1 1+3 
12 5 s 1 6 1+0 k 2 1 1+8 
13 5 s 2 6 1+1 5 2 1 21+ 
11+ 5 5 3 6 1+2 3 3 1 2k 
15 5 5 k 6 1+3 k 3 1 1+3 
16 S S 1 Ï-1+ 5 3 1 21+ 
17 h k h 6 1^5 k i+ 1 21+ 
18 3 3 3 8 5 k 1 2k 
19 2 2 2 8 h.7 3 2 2 21+ 
20 1 1 1 8 1+8 k 2 2 21+ 
21 1 1 0 12 k9 3 3 2 2k 
22 2 2 0 12 ^0 1+ 3 2 kô 
23 3 3 0 12 51 5 3 2 2k 

L k 0 12 ^2 k 2 2k 
2^ 5 1 1 12 53 5 k 2 2k 
26 5 2 2 12 % 1+ 3 3 21+ 
27 $ 3 3 12 55 1+ k 3 2k 
28 5 k k 12 56 5 i+ 3 2k 

*The kx, ky and kg components of k are in units of 
0,2 tr/a where a" ia the lattice constant. 

^The number of points in the entire Brillouin zone 
are indicated. 
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In Figure G1 (Appendix G), we see the E(k) vs. k curve 

and the density of states histogram. The E(k) vs. k values 

for , X, M, and fi symmetry points are listed In Table G1 

(Appendix G). Mote that the E(k) vs. k curve is limited to 

the region 1.0 to Rydberg units. This range was taken 

because we wish to show the important details of the energy 

bands in the region of the Perml energy wh3ch has been found 

to be -1,14.828 Rydbergs, Only the top and lowest bands which 

are excluded from Figure Gl, are represented by the four 

examples in Tables G2 to G^ to roughly show their relative 

variation in k space. 

The histogram for the density of states is determined 

as follows. We choose an increment of energy E and count 

the number of energy levels (S(k) calculated at 1000 k 

vectors) N(E) within a particular energy interval E to 

E+A-E. Thus the density of states G(E) at an energy E in 

each unit cell volume is 

S(E) = 2 . p-1 (63) 

where the factor of 2 is included to account for the spin 

degeneracy, p is the sura of k vectors taken, i.e. 1000 

resulting from the present mesh taken for the l/l|.8 zone 

(Table 12). The energy axis is divided into increments E + 

n Ae (n=0,l,2...) and the partitioned columns formed from 

G(E) produce the histogram. 

There are 25 valence electrons considered in the ReO^ 

calculation, seven from rhenium and six each from the three 

oxysçen atoms. The computed energy bands must accommodate 
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these 25 electrons via the Paul! exclusion principle by 

filling the energy bands below the Ferrai level with two 

electrons each. 

In order to simplify the calculation of the Fermi energy, 

we guess at which bands are definitely filled and consider 

only those bands which are within the region of where we 

expect the Fermi level to be. For ReO^, we are left with nine 

electrons which are to fill levels to the Fermi energy. 

The determination of 'CKe Fermi energy is simple 

arithmetic. The number of times an energy corresponding to 

a given k is counted (on the basis of k vector degeneracies 

listed in Table 12). Then, we number the lowest energy level 

one and proceed numbering energies to the next lowest level 

and so forth, until the list of energies is exhausted. For 

example, if there are nine electrons or 4.5 electron pairs and 

1000 k vectors in the Brillouln zone, i;500 energy states will 

be occupied, and all higher energies will be unoccupied. 

Thus, the approximate Fermi energy lies somewhere between 

energy number 4500 and l|.501. Generally, both energies have 

the same value. 

The density of states at the Fermi energy, G(Ef), in the 

independent particle model, is related to the electronic 

specific heat. Ce, by s='^T, 

G(E^) = 3^/«2a3k2No. (64) 

a is the- lattice constant, k is Boltzmann's constant, and No 

is Avagadro's number. If G(Ef) Is expressed as states 
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-8.v."^-om"3, ̂  Is given by joules-mole"l-deg"2, and a is 

expressed in angstroms, evaluation of the physical constants 
SI 

gives ($1): 

G(Ef) = k'2k2 X 1026 /a3. (^5) 

Taking the value of C/(E^) at ̂  E=.0^ Rydberg units, 21.1 

electron states/Ryd.-unit cell or 2.9k * 10^2 states -e.v.'l 

-cm"^, one obtains if from Equation 65 and finds it to be 

3.66 X 10"3 joules-mole'^deg-Z. 

Thus, by a measurement of the specific heat of ReO^ at 

low temperatures such as Sandln and Keeson (52) have done for 

reduced TiOg, the constant ̂  can be found and compared with 

our value. At this time, we know at least that our K(E) vs. E 

at correlates with the fact that ReOj is a conductor as it 

has been found experimentally (53)» 

The Fermi level actually lies close to a peak in the 

density of states which amounts to 6^. electron states/kyd.-

unlt cell. The value of 21.1 states/Ryd. was obtained by 

counting the number of states just above this peak. Since the 

gap between the Pernil level and the next higher peak is filled 

by a constant number of states (20-21) and the results (51) 

for sodium tungsten bronzes are of this magnitude, we feel 

that the value of 21.1 states/Ryd. is not unreasonable. 

If rhenium trioxide is slightly reduced, eg. R0O2.99* 

the specific heat at low temperatures should have an out-
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standing increase above that of the pure substance to the 

extent that Ej, lies above the peak. Certainly, such 

measurements would help to test our density of states 

picture, 
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RESULTS OF THE MULLIKEN POPULATION ANALYSIS OP ReO^ 

In Tables G2 to G5 (Appendix G), we show the results of 

the Mill liken population analyses. We use Equation 23 to 

obtain the % orbital contribution of atomic orbitals to 

crystal orbital 3^ with eigenfunction If (normalized to 

one) and eigenvalue E^(k) at the symmetry points (gamma), 

X, M and R. 

The main contribution to the crystal states immediately 

below the Pormî level comas from oxygen 2p^ orbitals. These 

orbitals form narrow bands which are rather insensitive to 

change in tranalational symmetry, as evidenced by the very 

flat group of bands at the Perml level in Figure Gl, The 

electrons in these bands are localized on the oxygens by 

the overlap criterion. The Re-0 e^ type bands cross the Fermi 

level (see Figure 10 vjhich is a magnification of the region 

about the Fermi level) and, therefore, contribute to the 

conduction band, but the direction of the "Eg" band-Fermi 

energy intersection contributes little to the 21,1 electron 

states/Ryd, discussed in the previous section. This is so 

because the derivative, N(E)/AE, is small. 

An interesting thing happens at the R symmetry point 

where stabilization of tgg type bands (Rg^i) brings dif-2p^ 

states very close to the Fermi level. A dj^y type band (M^) 

also comes close to the Fermi level at the M symmetry point. 
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Figure 10. ReO^ energy bands near Fermi enorgy (numbers label 1 th energy band). 
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The small curvature of the conduction bands at and 

contribute mainly to the 21.1 electron states at the Fermi 

level. Then d^ -2p^ bands give rise to a large number of 

states from the Fermi level to -1.0 Rydbergs. Therefore, 

within the limits of our TBA, the Slenko-Goodenough d^ -

model i(39, îj.0) applies to ReO^. 

The localized Oq molecular orbital picture of ReO^ 

qualitatively agrees with our bands at the and R symmetry 

points, e.g. the Giy(6p and 2p), '^2g""'"^2g^^'^Tr ^ » ®g*"®g 

($dg^ -2p^ )g and aig*(6p)-aig(2s) orbitals are the main 

contributors to bands at and R and are Identified as such 

in Tables G2 to G$. 

The seIf-consIstent crystal potential (obtained by 

calculating k vectors at ,7 minutes/k vector) involved 

a lengthy and expensive computation without some prior edu­

cated guess about approximate charge distribution. We,there­

fore, sought a method to obtain the approximate charge dis­

tribution for a given k vector, in order to guess occupation 

numbers before executing an entire E(k) vs. k calculation. 

Three values of damping constant,IK , were tried. These 

values were 2, I4., and 8. The k vector was chosen to be 

(0.0,0.0,0.0) in an E(k) calculation over 3 cycles. The 

Mulliken population analysis was accomplished by assuming that 

Ei2(k,r)=Ef. In Figure 11 we see that=8 gives the best 

control over charge distribution oscillations (indicated by 
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CYCLES 

Figure 11. Variation of rhenium energy banda during three 
cycles ( =2, --- . 
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variation of metal band energies) which occur in the self-

conaistency cycling procedure. Furthermore, =8 gave good 

convergence for the metal orbital charge distributions after 

5 cycles at k = (0.0,0.0,0.0), (Figure 12). 

Comparison of assumed-calculated charge distributions 

using ̂  =8 for all k vectors with proper weighting of k 

vector degeneracies in the entire Brillouin zone can be 

made from Table 13. 

The op type levels at P symmetry are spread widely apart, 

but converge to a narrow band near R symmetry. This phenom­

enon is an indication of the incomplete se If-cons latency of 

6p charge distributions which have not yet converged to the 

same value for the ôpg, 6p^ and 6py Bloch sums. 

Because of the convergence of other charge distributions 

(^d, 6s, 2s, 2p), we find that only 1 to 2 cycles using all 

56 k vectors are necessary to approximate self-consistent 

tight-binding energy bands. The fact that the 6p states do 

not converge to SCP states Is not a serious problem because of 

the small mixing of 6p states with other rhenium and oxygen 

states. 
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Figure 12. Variation of rhenium atomic orbital occupation 
numbers at =8 (---- assumed and calculated). 
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Tabla 13. BeO^ charge distributions 

Orbital Initial charge Cycle on© for Cycle two for 
distribution^ 56 k vectors 56 k vectors 

a 

assumed calc. assumed calc. 

P 
|dp-y2 

% 

28(1) 
2Pz(l) 
2Px(l) 
2p^(l) 

2a{2) 
2pz(2) 
2p (2) 
2py{2) 

23(3) 

feis 

0.570000 
0,520000 
0.520000 
0.570000 
0.520000 
o,kooooo 
0.133333 
0.133333 
0.133333 

1.000000 
0.666667 
0.666667 
0.666667 

1.000000 
0.666667 
0.666667 
0.666667 

1.000000 
0.666667 
0.666667 
0.666667 

0.562463 
0.%.1917lt 
0.kl9321 
0.56266k 
0.419408 
0.466548 
0.121009 
0.122265 
0.121786 

0.939621 
0.750217 
0.571473 
0.750037 

0.938646 
0.750191 
0.750509 
0.567457 

0.938929 
0.573808 
0.750621 
0.750488 

0.508856 
0.262088 
0.255052 
0.440582 
0.254642 
0.576255 
0.156211 
0.266513 
0.284138 

0.556507 
0.401720 
0.401069 
0.549099 
0.401101 
0,478738 
0.124920 
0.138292 
0.139825 

0.594902 
0.440543 
0.412365 
0.601975 
0.491285 
0.598266 
0.155003 
0.304171 
0.297851 

0.820419 0.926371 0.825832 
0.635612 0.765261 0.758865 
0.755541 0.591925 0.745573 
0.8626&0 0.762553 0.729168 

0.883222 0.932488 0.890104 
0.843977 0.760612 0.742527 
0.788706 0.754753 0.594019 
0.677464 0.579680 0,646704 

0.906650 0.935343 0.906099 
0.556071 0.571837 0.502240 
0.740925 0.749544 0.593041 
0.773804 0.753079 0.669813 

^Values prior to iteration at k=(0.0,0.0,0.0). 
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THE CORRELATION OP THE JOINT DENSITY OP STATES WITH 

THE IMAGINARY PART OP THE DIELECTRIC CONSTANT 

In the reflectance method [Sh) » one determines the reflec­

tivity R which is given by 

R = ((n-l)2 + k2)/((n+l)2 + k^) (66) 

where n is the real and k is the imaginary part of the refrac­

tive index. The complex dielectric constant, (£ , is related 

to n and k by 

£= €, =(n-ik)2 (67) 

where the real part,€^, i£; and the imaginary part, 62» 

is 2nk. ^2 is a function of a photon frequency, w, (5U.) I.e. 

^pCu») = ^ (2/(2TC ) 3 ) «  
2iïi2U>2 B.Z. 

^ (68) 

where e, and ra are the electric charge, Planck's constant 

divided by 2 % and the electron mass. The subscripts 0 and u 

refer to occupied and unoccupied bands, respectively. 00 OjU^—^ 

corresponds to the electronic transition energy at a parti­

cular wave vector k or <^o^u(k)=(E^(k)-EQ(k) )/^. The mo­

mentum matrix element, M^^^Ck), is expressed as | -

iVl^u(k,r)'^ between crystal orbitala o and u (Equation 7). 

^o,u(lE)*'^o,u(-^ related to the transition 

probability of an electron in state o being promoted by some 

electromagnetic interaction, eg. light waves. Into state u. 
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The delta function Is defined by 

K C 
(69) 

^ - Cu ) = 1 if 1 -w| 6 ( ^^2) 

= 0 otherwise 

The momentum matrix element can be considered to be 

constant throughout the Brillouin zone (B.Z.) and the factor 

^ be taken as a constant as well. Thus, 

the behavior of € g Is determined essentially by the quantity 

J ^ (W./k).o,)a3k 

which ia the joint density of states for the two bands 

indexed by o and -u . Peinleib (l^J points out that this 

quantity could be an Important parameter in energy band cal­

culations. Accordingly, ( w )'A.cu is the number of pairs 

of states in bands o and u with 

6(E^(k)-Ejk))^4(6u+ (71) 

Brust (S$) suggests a sampling procedure which replaces the 

integral in Equation 70 by a finite sum. We have 

J<, (to=Wi) = 3 ^ 5(^om (k)-Wj^) (72) 
Acu (2 TT )-^ k 

where k is a set of uniformly spaced sampling points lying 

within the first B.Z. The sum is defined for a set of values 

W ^ such that + Atu . is the volume surrounding 

the sampling points. In our TBA calculations, we take a 
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k=|o2-~ H where a is the lattice con­

stant. We choa© a value of oOi}. Ryd. for A. E to give the 

joint density of states va. energy histogram. The degeneracy 

of k vectors ia Includod in the sura which gives a total of 

1000 sampling points in tfca Brillouin zone. The calculated 

joint density of states may be compared with £ g found by 

Feinlelb {Ik)» He determined optical properties of ReO^ by the 

reflectance czatlioc over ths photon energy range 0.1 to 22 e.v. 

In Table li^. wci abc.w a comparison of our peaks (Figure 13) in 

the joint danaisy of states and the maxima in the G g values 

found by Feinlelb. 

Table II4.. Joint density of states peaks of ReO^ 

Rydberg units Elec tron-volts Feinlelb results 

0.06 0.816 
0.16 2.IS 2.30 
0.26 3.5L k.20 
0*k-6 6.26 

k.20 

0.51+ 7.35 7.0 
0.60 8.16 8.5 
0.7k 10.03 9.3 
0.90 12.22 
I.II4. 15.52 ik.o 

We wieh to obtain experimental verification from the € 2 

maxima Feinlelb aaleulates from reflectivity data. The 

Feinlelb peaks are placed along side the closest joint density 
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Figure 13. Joint density of states; ReOj. 
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of states peak. The low energy maximum begins 3.5 e.v. and 

extends to k,2 e.v. where the latter is observed experi­

mentally. Other peaks which are not observed can partially 

be explained since the probability of Intraband transition 

haa been neglected in obtaining the joint density of states. 

Thus, forbidden transitions indicated by a zero momentum 

integral are included. 

Since a low energy maximum has been detected in our 

analysis, we conclude that our calculated results have 

correlated with the observed optical properties of ReO^. 
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PERMI SURFACE 

Marcus (l5) has made a number of de Haas-van Alphen 

measurements of ReOg. Mattheiss was the first to give a 

theoretical description of the Fermi surface. He finds that: 

1) The ^ sheet is centered close to the point. 

The constancy of the related areas in 100, 110, 111, etc., 

directions for the measure frequencies, implies that the 

sheet of the Fermi surface is essentially spherical in shape. 

The orbit is therefore closed. 

2) The S sheet is larger than the cK sheet but is 

also shaped around the Jf point. However, it has a more 

cubic shape with rounded corners. This orbit is also closed. 

3) Finally, the 1) sheet consists of tubes which extend 

out from the point along all x, y, z directions. Besides 

having an open orbit at the 100, 001, 010 faces, another 

open orbit moves along the curvature of the tubular structure. 

In Figure li^., we give the intersection of the Fermi 

surface with symmetry points and lines along the 100 and 110 

directions for the Mattheiss results and ours. The overall 

agreement with three sheet-Fermi surface theory is better than 

expected but two othar sheets are found, open as the % sheet. 

The spherical sheet about H can be explained by the stabiliz­

ation noted in energy bands at R symmetry. Again, no adjust­

ments have been made in our calculations to obtain these 

results. 
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(a) Matttieiss: ReO^ 

T A X  

M T R 

V A X  

X 

M T R 

(b) 7BA method: ReO^ 

Figure II4.. Intersection of Fermi surface with planes defined 
by sjnametry points and lines. 
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SUMMARY 

We now give a quantitative, within our TBA limitations, 

answer to the question "why is rhenium trioxide a conductor?" 

The energies are relatively unchanged from that of the 

neutral oxygen 2p orbitals because of Madelung effects. But 

orbitals are stabilized by the Madelung effect of the 

crystal potential at R and K symmetry to become suitable for 

bonding with 2p^ orbitals since -2p-^ overlap Is signif­

icant (Table 3). It appears that energy bands which should 

be Considered to have some contribution to the conduction are 

^ type bands which are immediately above the x band. The 

metal^* or eg* orbitals combine with the oxygen 2p^ orbitals 

to form these ^ type bands. Thus, even though 2p-2p overlap 

is small and incapable of promoting conduction of electrons, 

mixture with 5d^(t2g) states at M and R symmetry where the 

minimum occurs in the conduction band allows tne non-bonding 

2p ^ bands to be the prime cause of conduction in ReO^, 

The small and negative "Knight shift of ^®'^Re NMR reson­

ance in Re03 measured by Narath and Barham ($6) correlates 

with our calculated absence of tungsten 6s states near the 

Per mi level. 

It is interesting to observe that Mattheiss also has a 

bonding model of the ReO^ Fermi surface but with the 

contribution being the prime source of conduction with small 

contribution of 2p^ orbitals. Also, he has an eg type band 
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just above this tpg manifold which he attributes to crystal 

effects of the octahedral electrostatic potential field. The 

similarity of his model with ours in the existence of an 

eg-tgg arrangement suggests that perhaps our TBA method is 

describing physically the same picture as the A?W method. 

This may explain how our results correlate well with experi­

ment as Matthelss* results. 

We have an eg* or gr ^ band where Mattheiss does, but a 

good portion of the contribution is within the 

2s bands which are also ̂  like. The ability of the TBA 

method to quantitatively analyze atomic orbital contributions 

allows us to gain a clearer picture of chemical binding in 

solids. This is possible because we introduce chemical 

concepts directly into the TBA model. For instance, we 

Include overlap and electronic interaction terras explicitly 

instead of using empirical parameters. Then, application 

of the Mulliken population analysis follows to give a complete 

picture of chemical binding. We, therefore, not only know 

what the atomic orbital charge distributions are in the 

crystal orbltals for the 1 th energy band, but have 

a good idea as to how they got there, e.g. by overlap and 

Madelung effects. 
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. PART III. TIGHT-BINDING ENERGY BANDS OP 

POTASSIUM TANTALATS AND SODIUM TUNGSTEN BRONZE 
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INTRODUCTION 

Cubic strontium titanate, SrTlO^, potassiiom tantalate, 

K T a O ^ ,  a n d  s o d i u m  t u n g s t e n  b r o n z e ,  N a ^ W G ^  ( 0 h a v e  

been the subject of a wide variety of experimental work as 

is shown in Table 16. 

Many workers in the field of perovskite transition metal 

oxides have attempted to explain the conduction of electrons 

in the tungsten bronzes, (Table 15)* 

Table 1$. Theoretical models based on various experimental 
evidence 

Name Atomic orbital constituting 
lowest conduction band 

Slenko (39) W 5<^(t2g) states 

Keller (57) W 6s states 

Mackintosh (58) Na 3p states 

Puchs (38) Na states 

Goodenough (l+O) Tf bonded 0 and W 5d (tgg) states 

Ours is the first attempt to obtain the tight-binding 

energy bands of Na^WO^Cx^l.C). Even though the complete 

filling of perovskite holes by sodium, x=1.0, has not been 

accomplished at present, this hypothetical substance allows 

us to study the trend - ReOj - NaWOj - KTaO^ where a metal -

non metal transition exists. 
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Table 16, Summary of experimental data pertinent to energy 
band structures of transition metal oxides 

Experimentalist and method Observations and conclusions 

SrTiOr 

Gundy{59): absorption meas­
urements 

Cohen and Blunt(60): reflec­
tivity and electroreflec-
tance in the neighborhood 
of the fundamental absorp­
tion edge 

Frederikse et al.(61): 
magnetoresistance and Shub-
nikov-de Haas effect 

Tufte and Stelser(62): 
piezo-resis tance 

Noland(63) : optical trans­
ition measurements 

DiDomenico and Wemple (6lf. > : 
optical measurements 

Peldraan and Korowî tz(65) : 
rotary transmission measure­
ments of stress-induced 
dichroiara 

Cardona(66): reflecslvity 
measurements 

Malitaon(67 ) : high 
precision measurements of 
the refractive index 

Baer(68): intraband Faraday 
rotation 

Energy gap is at 3.15 e.v. 

Band gap is observed at 
8.V. 

Minima lie along the 100 
direction . 

Minima lie at the center of 
the Br'iilouin zone. 

Absorption edge is at 3.22 
e.v. 

Band gap is at 3.^- e.v. 

A direct transition at zone 
edge (X) is improbable . 

Absorption peaks observed at; 
3.2,4.0,4.86,5.5,6.$2,7.4 
9.2,9.9,12.5 and 15.3 e.v. 

The data can be fitted to a 
Sellmeir relation with the 
major oscillator at e.v. 

The rotation la negative, 
monatonically increasing in 
magnitude as band gap is 
approached. This implies a 
p-d fundamental absorption 
with band gap at 3.4 e.v. 
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Table l6{Cont.) 

Experimentalist and method Observations and conclusions 

SrTlG 

Schooley et al.(69): uni­
axial stress on the super­
conducting critical temp­
erature 

The presence of supercond­
uctivity Indicates that the 
conduction band minima Is 
located off k-0 and the 
effect of the stress indic­
ates that the minima is in 
the 100 direction. 

KTaO^ 

Prova and Boddy(70); electro-
reflectance 

Wômple(71): photoconductivity 
and reflectance measurements 

Baer(68): Faraday rotation 

DiDomenico and Weaple ( 6ij.) ; 
absorption measurements 

Na^3 

Brown and Banks(72) rabsorp-
tion spectra measurements 
with varying x values 

Singularities observed In 
the 100 direction were: 
3.57,3.80,4.kO,k.88 and 5.5 
e .V. 

The photoconductivity peak 
was observed to be 3.58 e.v, 
and the absorption band gap 
to be at 3*50 e.v, 

Tho rotation was negative 
for the same reasons as for 
SrTlD) The band gap was 
estimeted to be about 3*00 
e.v. 

Band gap is 3.9 e.v. 

A 14.100 A absorption peak ia 
obtained for a value of x 
=1.0 by extrapolation of the 
observed data. 
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Table l6(Cont,) 

Experimentalist and method Observations and coaclusious 

Fromhold and Narath(73)î 
nuclear magnetic reson­
ance measurewenta 

Narath and Wallace(7U): 
Ibid 

Jones et al.(75):ibid 

Greiner et al.{76)îmagnetlc 
susceptibility measurements 

Sienko and Gulick{ 77) : 
NMR studies of potassium 
tungsten fluoroxlde bronzes 

Dickens et al,(78): measured 
reflectance spectra of the 

NaiWO^.WOg qg. W02.72,WQ3 

Vest et al.(51): low temp­
erature specific beat measure­
ments 

Gardner and Danielson(79 ): 
measurement, of electrical 
conductivity 

Studies reveal a very small 
or zero Knight shifts for 
both the Na and W nuclei. 
Thus s orbltals of alkali 
atoms cannot participate to 
the lowest conduction band 
but 5d and 6p (but not 6s) 
orbltals of W may do so. 

Weak temperature independ­
ent paramagnetism is found. 

Oxygen was-.partially subst­
ituted by 9P. TËe Knight 
shift is less than 0.001#. 

Low energy peak present in 
the bronzes but not WO? 
(1.39 e.v.). 3.30 e.v.^ * 
band gap extrapolated from 
data for x=l,0 , 

Obtained electronic specific 
heat coef. for x=.$6 to .86. 
The extrapolated density of 
states at x=l is 2.2X10^^ 
electron states/e.v.-cc. 

The bronzes are conductors 
from .i4.5 to 1,0 X values. A 
maximum in conductivity is 
observed at .7^. 



x30 

Although SrTÎO^ tight-binding energy bands have been 

obtained by Kahn-Leyendecker (-.lj.1) , the related compound KTaO^ 

has not been studied theoretically. Our theoretical investi­

gation of KTaOj, therefore, provides the first attempt to 

use TBA energy bands to interpret the optical and insulator 

properties of KTaO^. 

In Table 17 we have KTaO^ and Naj^W03(x=l .0) overlap 

integral values which may be compared with the ReO^ values in 

Table 3. Thus, the overlap criterion can be applied to 

establish a TBA interaction model as was done for ReO^. For 

example, if we consider KTaO^, a reasonable TBA Interaction 

vector set is listed in Table 18. Of course, the potassium 

atom is replaced by sodium if we consider Na^WO^(x=l,0). 

Attempts to calculate TBA energy bands for SrTiO^ with 

inclusion of the Ti i{.s and i(.p orbltals in the Bloch sum basis 

have failed for the nearest«neighbor model because of the 

large overlap, about 0.[|.. The problem exists in the 

evaluation of the l{.s Bloch sum normalization constant in 

Equation li|.. The exponential exp(ik*Rj^) gives rise to 2co3( 

k*Rj) since interactions are in + directions. The values of 

k»Rj; are close toTr for SrTlO^, therefore, the cosine is 

negative. The large value of the %a-^s overlap integral 

causes the normalization constant squared to be negative or 

the impossible situation of an imaginary normalization con­

stant. The failure of the nearest-neighbor model has also 

been noted by Andre (80). 



Table l?» Overlap integrals in KTaO^ and Naj^WO^l x=l .0) 

a b 0g efg KTaO^ NaxWO^( x=l .0) 

R{a.u.) SAB R(a,u.) ^AB 

90 
0 

0 
0 

7.537793 
7.<37793 

0.012757 
0.038959 

7.306311 
7.306311 

O.OIOLLOU 
0.032668 

5^x2 90 
90 

0 
90 

7.537793 
7.537793 

-0.02^221 
0.00^063 

7.306311 
7.306311 

-0.018871 
0.002983 

2 
•V 90 

0 
0 
0 

7.537793 
7.537793 

0.030235 
0.00^063 

7.306311 
7.306311 

0,0252^7 
0.002983 

6s 6s 90 0 7.537793 0.149123 7.306311 0.1^6516 

6Pz ^Pz 90 0 7.537793 0.078803 7.306311 0.077109 

54,2 2s 90 
0 

0 
0 

3.768896 
3.768896 

-0.1092I|2 
0.218^85 

3.653156 
3.653156 

-0.105011 
0.210022 

2Pz 180 0 3.768896 0.1303^9 3.653156 0.13U755 

^̂ K.Z 2Px 0 0 3.768Û96 0.095L68 3.653156 0.095019 

2 
-V 2s 90 0 3.768896 0.189213 3.653156 0.l8l88[|. 

54,2 2 
-y 2Px 90 180 3.768996 0.112336 3.653156 0.116701 



Table 17(Cont.) 

a b OB KTaO] Na^V/O^C x= =1.0) 

R(a.u.) 

1 

m
 

<
 

CO 

i i 

R(a.u.) 
^AB 

6s 2s 90 0 3.768896 0.260562 3.653156 0.269152 

^Pz 2s 0 0 3.768896 o.ko582k 3.653156 0.kl6765 

6P2 2p2 90 0 3.766896 0.102230 3.653156 0.1087k2 

23 2s 90 5.33002k 0.00kl39 5.1663k2 0.005391 

2Px 2s 90 k5 5.33002k 0.003356 5.1663k2 0.00k38k 

2Pz 2Pz 90 hS 5.33002k 0.000605 5.1663k2 0.000828 

SdgZ ns^ 5i|.7 hS 6.527920 0.000000 6.327k5l 0.000000 

Sdxz ns ^k-1 6.527920 0.025k6k 6.327k5l 0.036625 

ns 54.7 LS 6.527920 0.000000 6.327k5l 0.000000 

6s ns 54.7 6.527920 0.355602 6.327k5l 0.315373 

^Pz ns k̂'7 6.527920 0.170806 6.327k5l 0.186985 

2s ns 90 5.33002k 0.163196 5.1663k2 0.1k9607 

®n equals h for KTaOg and 3 for Na^WO^Cx=l.0). 



Table 17(Cont.) 

a b ^ B KTaOj 

R(a,u.) 

ns 45 90 5.330024 

2Pz ns 45 90 5.330024 

nPz 54.7 45 6.527920 

5^xz nPz 54.7 45 6.527920 

nPz 54.7 45 6.527920 

63 "Pz 54.7 lk5 6.527920 

6pz nPz 54.7 45 6.527920 

2s nPz 45 90 5.3300^4 

2Px "^Pz 45 90 5.330024 

2Pz 45 90 5.330024 

"Px 54.7 45 6.527920 

np^ 54.7 U5 6.527920 

Na^WO^(x=l.0) 

SAB R{a.u.) S^B 

0.000000 

0.032728 

0.059551 

•0.002021 

0.000000 

.0.279541 

O.Ohj-3065 

•0.191010 

0.000000 

-O.Oi3ij.2i 

-0.029775 

-0.002021 

5.16631+2 

5.1663^2 

6.3271+51 

6.327)4.51 

6.327L51 

6.327431 

6.327451 

5.166342 

5.166342 

5.166342 

6.327451 

6.327451 

0.000000 

0.041873 

0.051505 

-0.013406 

0.000000 

-0.243009 

0.051631 

-0.174044 

0.000000 

-0.025070 

-0.025752 

-0.013406 



Table 17(Cont.) 

a b ©B «"b 

nPx Sk.7 h5 

6s npx 5U.7 1+5 

6pz npx 54-7 1+5 

2s np^ !+5 ^0 

2px npx 1+5 90 

2Pg nPx 1+S 90 

KTaO^ 

R(a.u.) 

NaxWO^tx^l.O) 

R{a.u.) ^AB 

6.527920 0.051572 6.327451 0.044604 

6.527920 -0 .27951+1 6.327451 -0.243009 

6.527920 -0 .192713 6.327451 -0 .192178 

5.33002^ 0.000000 5.166342 0.000000 

5.33002% 0.046236 5.166342 0.043181 

5.330024 0.000000 5.166342 0.000000 



Table 18, TBA interaction vector set for KTa03 

Interaction Vectors in terms of unit cell 
translation vectors^ 

T1 T2 T3 

Ta-Ta 1.0 0.0 0.0 
-1.0 0.0 0.0 

0 . 0  1 . 0  0 . 0  
0.0 -1.0 0.0 
0.0 0.0 1.0 
0.0 0.0 -1.0 

Ta-On 0.5 0.0 0.0 
-0.5 0.0 0.0 

Ta-02 0.0 0.5 0.0 
0.0 -0.5 0.0 

0-1—Oo -0.5 0.i> 0.0 
-0.2 -0.5 0.0 
0,5 0.5 0.0 
0.5 -0.5 0.0 

Ta-Og 0.0 0.0 0.5 
0.0 0.0 -0.3 

On-Oo -0.5 0.0 0.5 
^ -0.5 0.0 -0.5 

0.5 0.0 0.5 
0.5 0.0 -0.5 

Op-On 0.0 -0.5 0.5 
^ 0.0 -0.5 -0.5 

0.0 0.5 0.5 
0.0 0.5 -0.2 

®In terms of components (X, Y, Z), the unit cell trans­
lation vectors in Angstrom units are: 

T1 = (3.980, 0.0, 0.0) 
T2 = (0.0, 3.980, 0.0) 
T3 = (0.0, 0.0, 3.980) . 
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Table l8(Cont.) 

Interaction Vectors in terms of unit cell 
translation vectors 

T1 T2 T3 

Ta-K 

Oi-K 

O2 -K 

O3-K 

0.$ 0.5 0.5 
0.5 -0. ̂  0.5 

-0.5 -0.5 0.5 
-0.$ 0.5 0.5 
o.s 0.5 -0.5 
0.5 -0.5 -0.5 

-0.5 -0.5 -0.5 
-0.5 0.5 -0.5 

0.0 0.5 0.5 
0.0 0.5 -0.5 
0.0 -0.5 -0.5 
0.0 -0.5 0.5 
0.0 0.5 0.5 
0.0 0.5 -0.5 
0.0 -0.5 -0.5 
0.0 -0.5 0.5 

0.5 0.0 0.5 
-0.5 0.0 0.5 
-0.5 0.0 -0.5 
0.5 0.0 -0 « 5 
0.5 0.0 0.5 

-0.5 0.0 0.5 
-0.5 0.0 -0.5 

0.5 0.0 -0.5 

0.5 0.5 0.0 
0.5 -0.5 0.0 

-0.5 -0.5 0.0 
-0.5 0.5 0.0 
0.5 0.5 0.0 
0.5 -0.5 0.0 

-0.5 -0.5 0.0 
-0.5 0.5 0.0 
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We suggest that the essence of the overlap criterion 

can best be shown by this evaluation of the Bloch sum normal­

ization constant. If the value of this constant is real, we 

may conclude that the TBA model la possible. Even though 

6s-6s overlap in KTaO^ and 3!îa^WO^(x=sl.O) Is larger than the 

case of ReO^ (zero value), the values are small enough to 

allow the TBA method to be applicable. 

The obvious remedy to the SrTlO^ situation is to go 

further out to nest-nearest-neighbors, etc., until the normal­

ization constant converges to a real number. 

Since the series ReO^- Ka^VJ0^(x=l,0)-KTa0^ is complete 

in itself in describing metai-non metal transitions in perov-

skite transition metal oxides, wo reserve the SrTiO^ calc­

ulation to future work, KTaO^ represents a good model of 

insulators like SrTlO^. 

We will now discuss the input and output aspects of the 

tight-binding calculations of KTaO^ and Na^W0^(x=1.0) . 
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ATOMIC ORBITAL FUNCTIONS, ORBITAL ENERGIES, AND 

CRYSTAL POTENTIAL 

The radial functions of K,Ta,Na and W atoms are 

Schmidt orthogonallzed linear combinations of STO's (Table 19) 

obtained using the same method as for ReO^. The least-aquares 

functions used in the evaluation of overlap and nuclear 

attraction Integrals are listed in Table 20. 

The shielding constants listed in Table I4. are used to 

obtain the Coulomb-exchange integrals needed to calculate the 

crystal potential (Equation 28)^ The charge distributions 

for KTaOj and Na^WO^Cx^l'O) are listed in Tables 21 and 22 

respectively. The oscillations which exist In the preliminary 

self-consistency cycles at kss(0,0,0,0,0.0) can be seen In 

Figure 15. While the KTaO^ energy bands are converging, the 

sodium tungsten bronze states are definitely diverging. The 

latter phenomenon occurred because the 3p states are occupied 

at the gamma point. As will be seen in the discussion on 

the Mulliken population analysis of crystal orbltals, the 3p 

states depopulate as we move from the center of the Brlllouln 

zone. Therefore, the average occupation numbers for 3s and 

3p Bloch sums should be close to zero. 

Because of the above behavior, the NaxWO^fxsl.O) crystal 

potential cannot reliably be iterated at one point In k space. 

In order to utilize the preliminary iteration as efficiently as 



Ffgure 15. Variation per cycle for energy bands (Rydberg 
units) corresponding to atomic orbitals in 
KTaO^ and Na%W02(z=1.0) ( KTaO^ and 
NaWOi). 8 and p aanote perovskit© hole . 
atomic orbitals (3s and 3p on Ka, l^s and 
i4.p on K ). 
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Table 19. Coefficient matrix elements for Schmidt ortho-
gonalized atomic orbital radial function used 
in ti%ht-bindlng calculations of sodium tungsten 
bronze and potassium tantalate energy bands 

Atomic orbital 1 i "13 n S 

Na 33 1 1 1.000000 1 10.705400 
1 2 -0.256i4.12 1 10.705400 
2 2 1.032350 2 3.290039 
1 3 0.035387 1 10.705400 
2 3 -0.1511+61 2 3.290039 
3 3 1.010707 3 0.884802 

Na 3p 1 1 1.000000 2 3.641939 Na 3p 
1 2 -0.109832 2 3.641939 
2 2 1.006013 3 0.875209 

K i;s 1 1 1.000000 1 18.670288 K i;s 
1 2 -0.296611 1 18.670288 
2 2 1.043118 2 6.271990 
1 3 0.110129 1 18.670288 
2 3 -0.kJ5717 2 6.271990 
3 3 1.083821 3 2.772440 
1 i; -0.018244 1 18.670288 
2 k 0.072960 2 6.271990 
3 k -0.199036 3 2.772440 
ii. k 1.016745 4 0.920539 

K 4p 1 1 1.000000 2 7.580839 K 4p 
1 2 .0.238385 2 7.580839 
2 2 1.028021 3 2.580910 
1 3 0.045855 2 7.580839 
2 3 -0.211194 3 2.580910 
3 3 1.020888 4 0.910559 

Ta Sd 1 1 1.000000 3 19.604000 
1 2 -0.473525 3 19.604000 
2 2 1.106447 4 9.997000 
1 3 0.105200 3 19.604000 
2 3 -0.284400 4 9.997000 
3 3 0.681500 5 4.762000 
3 3 0.577400 5 1.938000 

ra 6a 1 1 1.000000 1 72.584686 
1 2 .0.342833 1 72.584686 
2 2 1.057135 2 26.669189 
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Table 19(Cont.) 

Atomic orbital i 1 n 

1 3 0.182006 1 72.584686 
2 3 -0.668358 2 26.669189 
3 3 1.183608 3 14.564799 
1 k -0.099316 1 72,584686 
2 k • 0.3820$^ 2 26.669189 
3 h -0.877559 3 14.564799 
k k 1.214.91+96 1+ 8.609929 
1 5 0.041293 1 72.534686 
2 S -0.160633 2 26.669189 
3 0.389805 3 14.564799 

5 -0.68938k 4 8.609929 
5 5 l.làL889 5 4.597790 
1 6 -0.007583 1 72.584686 
2 6 0.029534 2 26.669189 
3 6 -0.072095 3 14.564799 
k 6 0.130257 L 8.609929 
5 6 -0.2L0275 5 4.597790 
6 6 1.021850 6 1.857920 

1 1 1.000000 2 34.298294 
1 2 -0.415865 2 34.298294 
2 2 1.083025 3 15.427500 
1 3 0.209432 2 34.298294 
2 3 -0.662656 3 15.427500 
3 3 1.173199 8.574^00 
1 I4. -0.074746 2 34.298294 
2 k 0.244908 3 15.427500 
3 h -0.510795 h 8.574400 

k 1.094313 5 4.251989 
1 5 0.016522 2 34.298294 
2 5 -0.054325 3 15.427500 
3 5 0.117028 k 8.574^00 

5 -0.273337 5 4.251989 
5 5 1.030778 6 1.837780 

1 1 1.000000 3 19.929000 
1 2 -0.477561 3 19.929000 
2 2 1.106180 k 10.202000 
1 3 0.113900 3 19.929000 
2 3 -0.307700 " k 10.202000 
3 3 0.694000 5 4.982000 

Ta 6s 

Ta 6p 

W $à 



Table 19(Cont.) 

1̂ 3 

Atomic orbital 1 1 •Ij n 

W 

W 6s 

W 6p 

3 3 0.$63100 5 2.068000 

1 1 1.000000 1 73.583898 
1 2 -0.31+291+1 1 73.588898 
2 2 1.057170 2 27.043488 
1 3 ,0.1821^21 1 73.588898 
2 3 -0.669920 2 27.043488 
3 3 l.lôk391 3 14.786900 
1 k -0.099891 1 73.588898 
2 k 0.381+1+00 2 27.043488 
3 h -0.882^36 3 14.706900 
k k 1.251753 4 3.759060 
1 5 0.042293 1 73.588896 
2 5 -0.16^625 2 27.0434s8 
3 5 0.399708 3 14.786900 

k 5 -0.706786 4 8.759060 
5 5 1.1511+11 5 4.719649 
1 6 -0.007981 1 73.588898 
2 6 0.031108 2 27.043488 
3 6 -0.076006 3 14.786900 
k 6 0.1371+1+9 4 8.759060 
5 6 -O.2ii.95i5 5 4.719649 
6 6 I.O232S8 6 1.924379 

1 1 1.000000 2 34.797699 
1 2 -O.i+16931 2 34.797699 
2 2 1.083435 3 15.672999 
1 3 0.210792 2 34.797699 
2 3 -0.666151+ 3 15.672999 
3 3 1.174785 4 8.729130 
1 -0.077279 2 34.797699 
2 k 0.253140 3 15.672999 
3 k -O.S3628I 4 8.729130 
il- k 1.100271 5 4.382429 
1 S 0.017330 2 34.797699 
2 5 -0.056981 3 15.672999 
3 5 0.122881 4 8.729130 
k 5 -0.280071 5 4.382429 
5 S 1.031954 6 1.903520 
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Table 20» Least squares functions for Ta, W and K orbitals 

Orbital Least squares function 

Ta Sd 0.561397(1.31205) + 0.68^^28(3.16^1^) 
-0.^38158(7.63065) + 0.150918(18.^021) 

Ta 6s 2.856544(1.L1425) - 3.511150(1.99978) 
+2.434400(2.82772) - 1.997370(3.99845) 
+1.335460(5.65387) - 0.392740(7.99468) 

Ta 6p 1.560500(1.21565) - 1.006810(2.12183) 
0.034422(3.70348) + 0.218623(6.46413) 

-0.093881(11.2826) 

w 5d 0.549610(1.40651) + 0.703046(3.32302) 
-0.476221(7.85101) + 0.166869(18.5489) 

W 63 2.967210(1.47395) - 3.764970(2.07141) 
+2.701230(2.91104) - 2.228700(^.09102) 
+1.480270(5.74929) - 0.433006(0.07974) 

W 6p 1.576230(1.26262) - 1.027670(2.18974) 
0.028008(3.79763) + 0.234639(6.58617) 

-0.100397(11.4223) 

K 4s 1.140140(0.77057) - 0.274258(1.65456) 
-0.120426(3.55265) + 0.082456(7.62824) 

K 4P 1.098740(0.75447) + 0.039917(1.19488) 
-0.366921(1.89239) 

possible, we used the weighted assumed charge distributions 

after two cycles at k-(0.0,0.0,0.0) to obtain input for 

the final TBA calculation for the 56 k vectors. These vectors 

are determined by the lattice constants of KTaO and Na WO3 

(x5=1.0i jWhlch are 3.989 A CYl). and 3.6665 A (81) respectively, 

and Table Id. 
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Table 21. KTaO^ charge distributions 

Orbital Initial charge Cycle one for $6 
distribution k vectors 

assumed calculated 

5d 2 

% 

% 

0.500000 
0.300000 
0.300000 
0.500000 
0.300000 
0.500000 
0.033333 
0.033333 
0.033333 

0.412124 0.404526 
0.205142 0.073766 
0.206918 0.076799 
0.394830 0.308389 
0.206567 0.072350 
0.676954 0.547901 
0.035517 0.098634 
0.038636 0.178331 
0.040142 0.385103 

28(1) 

liî! 
1.000000 
0.666667 
0.666667 
0.666667 

1.074887 0.830380 
0.723710 0.848941 
0.760111 0.606833 
0.739724 0.790418 

28(2) 

ipj(f) 

2Py(2) 

1.000000 
0.666667 
0.666667 
0.666667 

1.091937 0.732372 
0.763929 0.692407 
0.771929 0.803928 
0.750674 0.751210 

23(3) 
2p,(3) 

1.000000 
0.666667 
0.666667 
0.666667 

1.067212 0.759119 
0.753050 0.622150 
0.727040 0.846893 
0.731064 0.794906 

4s 

kPx 
kPy 

0.000000* 
0.000000 
0.000000 
0.000000 

-0.488564 0.262203 
0.021557 0.226848 
0.022153 0.117416 
0.026123-0.042396 

In order to represent as close as possible to the ReO. 
model we chose zero values for potassium orbitals. Even ^ 
though this choice temporarily violates the charge neutral­
ity of the unit cell, the final iteration over the 56 k vec­
tor set corrects for this difference. ~ 
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Table 22. Na^WO^ charge distributions for x=l,0 

Orbital Initial charge 
distribution 

Cycle one for 56 
k vectors 

assumed calculated 

i; 

6px 

2s(l) 
2P2(1) 

2a(2) 

|ii 
28(3) 

i:ii 
3s 

0.600000 
0.i|.00000 
0.If00000 
0.600000 
O.Ii.00000 
0.50COOO 
0.033333 
0.033333 
0.033333 

1.000000 
0.666667 
0.666667 
0.666667 

1.000000 
0.666667 
0.666667 
0.666667 

1.000000 
0.666667 
0.666667 
0.666667 

0.000000 
0.000000 
0.000000 
0.000000 

0.514-0509 
0.356320 
0.357455 
0.54039k 
0.357454 
0.458284 
0.025945 
0.025877 
0.025530 

0.388784 
0.082889 
0.094965 
0.306277 
0.073552 
0.439432 
0.158390 
0.142986 
0.325123 

1.025343 0.832141 
0.658260 0.834392 
Go692675 0.809648 
Oo654045 0.551243 

1.025914 0.759421 
0.659942 0.884756 
0.660065 0.832776 
0.692834 0.768167 

1.024786 0.818941 
0.692292 0.612055 
0.658446 0.831038 
0.654157 0.866219 

-0.080707 0.373114 
0.096989 0.554747 
0.098091 0.052772 
0.099100 0.117558 
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Table 23. KTaO^ and Na%W0j(x=1.0) energy parameters® 

Orbital Two-electron inter- One center Gore 
action energy kinetic energy energy 

1 I &(!, j) 

Ta 5d 

Ta 63 

Ta 6p 

Is 5d 
2s 5d 
2p 2d 
38 2d 
3p Sd 
3d Sd 
JIS 5d 
i4-P Sd 
lid Sd 

5d 
5s Sd 
Sp $d 
$d 2d 
6s Sd 
6p 2d 

Is 6s 
2s 6s 
2p 6s 
3s 6s 
3p 6s 
3d 6s 
It-S 6s 
ij-P 6s 
lid 6s 
iji* 6s 
5s 6s 
5P 6S 
5d 63 
6p 6s 

Is 6p 
2s 6p 
2p 6p 
3s 6p 
3p 6p 
3d 6p 
I4.8 6p 
4p 6p 
ij-d 6p 

1.413834 
1.405152 
1.408750 
1.379804 
1.363094 
1.392094 
1.332458 
1.333250 
1.347452 
1.320788 
1.112624 
1.073412 
0.960438 
0.281030 
0.573640 

0.629908 
0.626846 
0.627788 
0.623608 
0.624420 
0.625494 
0.619166 
0.619966 
0.621244 
0.619850 
0.606948 
0.607446 
0.561030 
0.444326 

0.623696 
0.621416 
0.622094 
0.618870 
0.619114 
0.620188 
0.614456 
0.614394 
0.615824 

9.283373 -93.930159 

1.370633 -44.801565 

1.412651 -44.134531 

BRydberg uni ts. 
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Table 23(Cont.} 

Orbital Two-electron, inter­
action energy 

i j 

One center Core 
kinetic energy energy 

Ta 6p 

w 5d 

W 6s 

w 6p 0.614470 
5 8 6p 0.601476 

6p 0.599788 
5d 6p 0.573640 
6s 6p 0.44^:326 
6p 6p 0.464592 

is $d 1.505390 
2a 5d 1.495006 
2p 5d 1.499326 
3s 5d 1.465050 
3p 5d 1.468974 
3d 5d 1.479642 
5s 5d 1.409790 
ilp 5d 1.410822 
kd 1.427548 
kf Sd 1.400672 
$8 5d 1.168008 
Sp 5d 1.126452 
5d 5d 1.027510 
6s 5d 0.605248 
6p 5d 0.597614 

Is 6s 0.653252 
2s 6s 0.649720 
2p 6s 0.650798 
3s 6s 0.646228 
3p 6s 0.646316 
3d 63 0.648222 
i+s 6s 0.641210 
4p 6s 0.642074 

6s 0.643516 
w 6s 0.642054 
5s 6s 0.628020 
5p 6s 0.631162 
5d 6s 0.605248 
63 6s 0.530642 
6p 6s 0.459920 

10.739013 -100.662215 

1.$29606 -I4.7.OIOI4.26 
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Table 23(Cont.) 

Orbital Two-electron inter­
action energy 

1 1 £( i J ) 

One center Core 
kinetic energy energy 

W 6p 

Na 33 

Na 3p 

K k.3 

K i^p 

Is 6p 0,646$Oo 
2s 6p 0.644210 
2p 6p 0.644802 
3s 6p 0.64121Ù 
3P 6p 0.641474 
3d 6p 0.6L2618 
4a 6p 0.616332 
4P 6p 0.6-,6278 
4d 6p 0.637850 

6p 0.636292 
5s 6p 0.622528 
5P op 0.6k36k2 
5d op 0.597460 
6s 6p 0.L59920 
6p 6p O.497O6O 

Is 3s 0.599058 
2s 3s 0.579812 
2p 3s 0.585014 
3s 3s 0.452126 
3p 3s 0.375500 

Is 3p 0.589784 
2s 3p 0.578078 
2p 3p 0.579366 
33 3p 0.375S00 
3p 3p 0.429974 

Is 4s 0.469734 
2 s 4s 0.463486 
2p 4s 0.465290 
3s 4s 0.450782 
3P 4s O.L52184 
4s 4s 0.365094 
4P 4s 0.318634 

Is Up 0.464678 
2s 4p 0.460638 
2p 4p 0.461494 

1.552321 -46.311767 

O.L^$36l -6.210933 

0.$2L253 -S.975097 

0.457099 -8.549737 

0.491857 -8.347437 
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Table 23(Cont,) 

Orbital Two-electron inter- One center Cora 
action energy kinetic energy energy 

i i 6(1,j) 

K l<.p 3s 

S 
ÏP 

14.P o.iuj.8350 
!i.p G.kkl^ld 
kp 0.318634 
l;p 0.343922 

Atomic orbital parai^ters usod in obtaining tight-

binding energy bands are listed in Table 23. 
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E(k) VS. k, DENSITY OP STATES, JOINT DENSITY OP STATES AND 

RESULTS OP THE MULLIKEN POPULATION ANALYSIS OP KTAOJ 

The E(k) versus k and density of states curves for po­

tassium tantalate are shown in Figure HI (Appendix H). The 

energy band values at symmetry points are listed in Table HI. 

The corresponding results of the Mulliken population analysis 

are listed in Tables H2-H5 (Appendix H). The Permi energy 

is found to be -3.8905 Rycberg units. 

The minimum in KTaO^, like ReO^, conduction band is 

located at the R symmetry point. This property is evidenced 

by the rapid drop in valence bands at R accompanied by a 

minimum in the R251 bands. 

The gap between the 2p ground state and the type 

conduction band is 0.3 Ryd. (ij-.O e.v.) which is comparable with 

the observed value of 3.8 e.v. (.68). The joint density of 

states curve shown in Figure 16 with peaks listed in Table 2%. 

gives a peak at 0.3 Ryd. which we identify with this conduction 

band minimum. Furthermore, most of the peaks compare quali­

tatively with experimental results (70) as well as resemble 

the SrTiOj results (66). The latter agreement suggests a 

justification for supposing the KTaO^ is a good model for per-

ovskit© transition metal oxides which behave as insulators. 

The difference between the intermediate Sg states at R12 

and the top of the valence band is not experimentally available 

since Ri5»->Ri2 transitions are symmetry forbidden as 
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- 2.00 

- 1.50 
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Figure 16. Joint density of states; KTaO^. 
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Table 2^.. Joint density of states peaks of KTaO^ 

Rydberg 
units 

Electron-volts Prova-Boddy 
results^ 

Cardona results 
for SrTiOg* 

0.06 C.816 
0.19 2.58 3.57 3.20 
0.28 3.81 3.80 4.00 
0.34 4.63 4.86 
0.39 $.31 4.88 5.5 
0.46 6.25 5.5 6.52 
0.S4 7.32 7.40 
0.62 8.43 
0.66 8.97 9.20 
0.74 10.03 9 . 9  
0.82 11.15 
0.85 11.58 12.5 
1.06 14.41 
1.14 15.50 15.3 

^Results are in electron-volts. 

determined by Casella's rules (82). Thus, the 2.^8 e.v, peak 

in the joint density of states (attributed to such a transition) 

is not obtainable by reflectance spectroscopy. 

We now discuss the unusual behavior of l^-s and l^p occupa­

tion numbers at the symmetry points listed in Tables H2 to H5. 

The crystal orbitals ̂ i(k,r) are normalized to 1 or<[^j^^]> = 

1, but large positive and negative ni^g and n^^p values occur. 

One may argue that the Mulliken population analysis has failed, 

if we compare the TBA calculation with the usual molecular 

orbital calculation where negative occupation numbers are 

forbidden. However, we have a different situation when one 

applies such a procedure to a crystal. The dependency of 
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occupation numbers on k vectors relaxes the strict require­

ment on positive occupation numbers. However, the average 

occupation number over the entire Brlllouin zone should be 

non-negative since we would then be back to the molecular 

situation. The average occupation number may be calculated 

to be negative at some stage of iteration of the crystal 

potential, but the final number should be positive. For the 

most part, our final iteration gives such a result. 

The problem of normalization of Bloch sum noted in the 

introduction of this part arises in the KTaO^ calculation in 

a rather unique way. Because the normalization constant of 

6s and 6p Bloch. sums at M and R symme'Gry points is small 

(about .1), the TBA method is on the verge of breaking down 

for upper states as expected from overlap integrals of 6p-6p 

and 68-65 pairs (Table 17). 

The number of electron states/Ryd.-unl t cell for KTaO^ 

is much smaller than the value of 21.1 for ReO^, in that the 

density of states drops abruptly to zero in the band gap 

region. Therefore, no estimate of the actual density of 

states can practically be made. Within th& approximations 

used in the TBA method, it is reasonable to assign KTaO^ to 

be an Insulator as It is thought to be. For the same reason, 

no Fermi surface is considered. 
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E(k) VS. k, DENSITY OP STATES, JOINT DENSITY OP STATES AND 

MCJLLIEEN POPULATION ANALYSIS OP NaxW0^(%=:1.0) 

The S(k) vs. k and density of states curves for Na^WO^ 

(x=1.0) are shown in Figure II (Appendix I). The energy band 

values at symmetry points are listed in Table li. The corres­

ponding results of Mullikan population analysis are listed in 

Tables 12 to 1$ (Appendix I). The Fermi energy is located at 

-3.2252 Ryd. 

The nuraber of s ta te syd,-unit cell for Na^WO^ is found 

to be 20.5 or 2.60 x 10^2 electron states/e.v.-ciu3 which 

corresponds to a value of é equal to 3*55 mi11ijoulea-mole 

deg"^. The value of 3.0 millijoules-mole'-^deg"'^ from the 

extrapolation of experimental (51» 76) values to x=1.0 gives 

encouraging agreement with our results. Furthermore, it is 

interesting that the value of 21.1 for ReO^ is almost identical 

to the 20.5 value for Na%W02(x=1.0). 

Lot us expand the picture of bands in the Ferrai level 

region to produce Figure 17 and then use the Mulliken popula­

tion analysis results in Tables 12 to 15 (Appendix I) to 

quantitatively determine why Na^WO^ should be a conductor at 

x=l.0. 

We no longer have the simple picture postulated for HeOg 

and KTaO^ since most low lying conduction bands cross the 

Fermi level nearly perpendicularly. Even the 6s type band 

crosses the Fermi level at X symmetry. However, the low lying 
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eg type conduction band crosses in many places.. We may 

conclude that conduction is associated primarily with <d@g 

orbi tals. 

Projections of the Fermi surface in the l/lj.8th reduced 

zone are shown In Figure l8. We predict three Fermi surface 

sheets which may eventually be correlated with de Haas van 

Alphen measurements. 

The Joint density of states is shown in Figure 19 and 

the corresponding peaks are tabulated (Table 2^). Comparison 

of the low energy peaks with experiment can only be by 

extrapolation, but agreement with Dlcken's results (78) 

is reasonably close. 

Table 2^. Joint density of states peaks for Na^WOi 
(x=l.0) 

Rydberg units Electron-volts 

0.08 
0.18 
0.30 
0.1+2 
0.54 
0.S9 
0.85 
0.98 
1.14 

5.72 
7.35 
8.03 

11.58 
13.31 
15.51 

1.09 
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Figure l8. TBA method; WaWO3. 
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« 3.20 

2.40 

0.00 
0.00 0.40 0.80 1.20 i.ÔO 

ENERGY (RYDBERGS) 
2.00 2.40 

Figure 19. Joint density of states; NaWO^, 
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PART II'- DISCUSSION 
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W© have utilised the overlap criterion to 3«t up the 

TBA interaction model for nearest-neighbor atoms. Then we have 

proceeded in a "semi-rigorous" manner to make theoretically 

justifiable approximations to make S(k) vs, k calculations 

practical. The proper choice of good atomic orbital functions 

and the explicit evaluation of all two-center integrals {over­

lap, nuclear attraction. Coulomb, and exchange) enables us to 

quantitatively investigate chemical effects in crystals,eg. 

Madelung and overlap effects. 

The approximation of the crystal potential as a linear 

combination of atomic potentials is an important part of the 

LCAO procedure. By using the Mulliken population analysis 

over all k space, we are able to treat this crystal potential 

in a SCP-MO manner. Thereby, we obtain an internal handle for 

controlling TBA results instead of the usual a priori semi-

erapirical procedures. Only bond distances are initially need­

ed. 

The role of empirical control on TBA energy bands 

is purely ad hoc in nature. Instead of parametrizing the 

crystal potential to make various calculated electronic prop­

erties agree with experiment, we proceed to improve the 

method. For instance, we could seek better convergence in 

the SCP treatment of charge distributions which occur in the 

crystal potential. In other words, if we trust the overlap 

criterion to show when the TBA method is applicable, deflc-
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iencles in our theoretical résulta as compared with experiment 

are thought to reflect the need to increase the rigor of our 

method. The crux of such a philosophy is some observable trend 

in preliminary results which reflect qualitative agreement with 

experimental results. 

The series RaO , NaMO^, KTaO^ has provided a good model 

for making further theoretical investigations of perovskite 

transition metal oxides using the TBA method. The density of 

states diagrams for these three substances show quantitatively 

the metal-non metal transition which until present has only 

been qualitatively understood. In addition, the calculation of 

the electronic specific heat coefficient and the joint density 

of states representation of optical spectra provide other 

avenues between theory and experiment» The results described 

in this thesis can be said to be better than just qualitatively 

descriptive of the electronic structure of crystals; perhaps, 

the LCAO description of crystals gives us a semi-quantitative 

handle for looking beyond present observable phenomenon to 

produce some surprising predictions. The consistent agreement 

of our results with empirical information ,therefore, shows 

that the molecular picture of crystals can be accurate if we 

include the effects of translational symmetry. 

The SCP procedure will be the subject of further work in 

this area. More efficient procedures will be sought to obtain 

convergence of charge distributions. Also the TBA interaction 

model will be expanded to include more neighboring atoms 
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in order to handle perovskite oxides which represent borderline 

cases for application of the TBA method , eg. SrTiO^. With 

these and othar improvements we can ultimately investigate a 

series of substances which are little understood or may not yet 

have been synthesized. 
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Appendix A, Solution of the Secular Determinant 

The problem is 

JH - E S I = 0 (Al) 

where the Hamiltonian matrix, rl=b'^ K b and overlap matrix 

S= b'^b result from the Bloch sum basis set b = (tSfbg, ... 

b^) where m indicates number of atomic orbltals considered, 

and the Hamlltonian operator shown in Equation 3. The 

solution of the secular determinant is carried out in two 

steps : 

1) Orthogonalize the Bloch suras by the Schmidt method 

to transform ̂  into an identity matrix. 

2) Diagonalize the transformed Harailtonian matrix to 

give the eigenvalues and eigenvectors. 

The description of the two steps can be lengthy, but 

a general idea of the procedure is summarized In the 

following equations: 

The transformation is made by an upper triangular 

matrix , i.e., 

I s - ss i 2^ =0 

= lg<t Hc< - Sgjl 

U t H o < - E l |  =  0  ( A 2 )  

where ̂  is the identity matrix, i.e., (I)ij = The 

overlap matrix is rewritten as S = T f T where T = o<} T is 
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chosen to be upper triangular. I.e., T^j =0, 1> j. The 

elements of this triangular matrix are generally complex 

functions, thus, = a^j +ibjj. It can be shown that 

Tii 

i-i 

Sii - jC: + Jkij * 
k=l J 

n 

ij " Sfi -

(A3) 

^11 

which gives the original matrix elements of ̂  as: 

«11 = l/Tii 

.1-1 

=-2iSL3d- (AI,) 

Therefore, the can be calculated in the following order 

^11» ^22' ̂ 12' ' ' ' * ^ In* ^33' ̂ 23'**' ̂  2n * ' ' ' 

When the eigenvalues and eigenvectors of H= c< are found, 
»v» 

we then have 

V"^ n' V = E where (E),, = E,L, and 
' XSV ^ J i •' J 

V is the eigenvector matrix 

or 
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yt H av = E 
/%•» f\0  ̂̂ 

= V+ c('^b+ Kb o< V = E 
y-\̂  /%* /V •>*» 

= (b c)t X(b cj where c = ̂ v, or 

<bl"!Xlbj"> = Ejlij 

where bj" = S • (A$l 

Hence, we see that the columns of ̂  define linear combinations 

of the Bloch sums which form the function i ^ (Equation 1). 

The diagonalization procedure follows from the trans­

formation U"^ K U = D where D is diagonal % = 0 for 

which U is defined as 

Thus, U la a unit matrix except for the elements Ujj, 

and Uj^. The diagonalization is accomplished by an iteration 

process which ultimately makes D approximately diagonal. The 

following sequences are repeated until the values of all of 

the off-diagonal elements are on the order of 10 Rydberg 



17k 

uni ts: 

1) Find the largest off-diagonal element of H, 

2) Calculate TJ 

3) Make the transformation U = H' 

The choice of U is basically the same as Jacobl's 

method for real symmetric matrices, but modifications must 

be made to account for the complex form of i.e., j = 

a + ib. 

If 

/ a b-ic 
H = / 

[ b+ic d 

and 

cos 0 -sin 0 exp(-iô ) 

^ sin 0 expdô ) cos 0 

then the elements of 

D = H U 

are 

Dii= a cos^ l^+d sin^ ^ (b-ic)exp(i9 )+(b+ic)exp(-i6 )"^ * 

sin 0 cos 0 

sin^ 0+d cos^ (b-ic)exp(i 6 )+(b+ic)exp(-i 0 )^ • 

sin 0 cos 0 

0^2= a 

~ (d-a) sin 0 cos 0 exp(-l 0)+(b-ic) coa^ 0 

- (b+ic) sln^ 0 expi-Sid ) (A?) 
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By setting 0^2 = 0 = solving for 0 and 0, we find 

that D will be diagonal if 

9 = 1 = 

.'1̂ 2̂  _2\t 
tan 20 = 

_ (b"+ o<) 2 

i(a-d) (a8) 

Using sin^6+ cos^© = 1, we obtain 

a b cos a = —-—:r~T- , , 
(b2+c2)2 (A9) 

By Euler's relation exp(i©) = cos 0 + i sin 6 , we have 

_ b ± ic 
t— • 

( a l o )  

Thus, exp(-l 6) is simply 

b-lc 
[(b+lc}(b-ic)^ ^ 

or . 

If we let 

"X = (b^+c^)^ 

H = è(a-d) 

^ = sign (^)• 

( 



then, 

and 
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"" ' • 

COS ÇS = (1-sin^ gf)"® 

cos 0 -sin 0 "^2 
" = ' a,n , Ha, 521 

|Ĥ | COS ^ / (All) 

a cos^ 0+d sin^ 0+2\'^i^ sin 0 cos 0 

D22= a sin^ 0+d cos^ 0-2 |H22^ sin 0 cos 0 

Di2=D2i= ^(d-a)sin 0 cos 0 +^#121 (cos^ 0 _ sin^ 
la 

= 0 (A12) 
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Appendix B. Plow Chart for Computer Calculation 

The flow chart of our program la outlined below. The 

matrix elements could have initially been set up in alge­

braic form. Substitution of overlap and two-center poten­

tial integrals (evaluated in elliptical coordinates) and k 

vectors would give the Hamiltonian and overlap matrix 

elements. The Schmidt orthogonalization of the overlap 

matrix and diagonallzation of the transformed Hamiltonian 

matrix would then be an easy chore in terms of shorter 

computer time. However, when we go from cubic to say, hex­

agonal symmetry, the length of the tables necessary would 

Increase, It is always desirable to make these calculations 

as automatic as possible via the computer. Our program, 

therefore, eliminates the need for matrix element tables as 

well as overlap Integral tables, from which are sometimes 

difficult to interpolate accurate values. In a sense, the 

TEA program generates all necessary tables within the 

computer. When the k vector is read in, it rapidly makes 

algebraic substitutions and in about 60 seconds a 2$ x 2^ 

matrix problem is solved. 
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INPUT DATA 

1.Unlt cell translation vectors 
2.Translation vectors in TBA 

interaction set 
3«0verlap,Coulorab=exchange,nuclear 

attraction integrals calculated 
by a previous program and stored 

j on tape 
Ij.,Indexing parameters 
S,Charge distributions 
6,Orbital energy parameters 

1,Calculate potential matrix ele 

2.Rotate spherical harmonics and 
take a proper linear combination 
of integrals over lattice sites 

Rotate spherical harmonics and 
take a proper linear combination 
of integrals after orbital energies 
are calculated 

I 
READ k VECTORS 

CALCULATE MATRIX 
ELEMENTS BETWEEN BLOCH 

SCHMIDT ORTHOGON-
ALIZE BLOCK SUM OVERLAP 

MATRIX 

TRANSFORM HAMILTONIAN 
MATRIX 

DIAGONALIZE H MATRIX 
TO OBTAIN EIGENVALUES 

CALCULATE EIGENVECTORS 

CRYSTAL POTENTIAL 

ments, V^i^a > 

OVERLAP 
IN 

SUMS 
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I DETERMINE THE FERMI ENERGY 

MULLIKEN POPULATION ANALYSIS 

1 i.Calculate the occupation numbers of 
the Bloch sum basis set for each k 
vector " 

2.By proper welghtinfr of the k vector 
degeneracies in the entire ÏÏrillouin 
zone, obtain the average charge dis­
tributions 

3.With^=6 and using Equation 29 calc- | 
ulate the assumed charge distribution 
for the next iteration j 

! GO TO STEP 5 IN INPUT UNTIL 
SELF CONSISTENCY IS 

ESTABLISHED 
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Appendix C. Reduction of Double Sum to Single Sum 

Since the sums over Rj_ and are over the same vectors, 

we can write the double sum as N times.the single sum, i.e., 

R  T  P ( R I ,  R J  =  ^  Z  F ( R , ,  R J  ( C I )  
R, R. R, -i -j -J 

where N is the number of unit cells in the crystal. The 

proof is as follows: 

Because of the periodic boundary conditions 

P(Rl + + ̂ '3%)= F(Ri) (02) 

where = N and and are the primitive cell 

translations. 

•rfe can also write 

= hh * * 3̂̂ 3 i^,i2,i^ = integers 

&j = Jill + Jgig + 

Hence 

2 2 

= integers 

(03) 

N^-l Ng-l N3-I N^-1 Kg-l N3-1 

Y Z r E r r 
ll=0 l2=0 1^=0 3i=o J2=0 ^3=0 

F((Jl-ll)ti + (j2"l2)^2 ^J3"^3^i3^ (C4) 
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Let us consider the double sum for integral components 

along 

2 E 

ll Jl 

where (Ji-ii) = 

If we expand the sum in the brackets above, 

we obtain 

(jl-il) - (O-i-) •!- (i-ix) (2-i^) + .... 
^1 ^1 ^1 

+ (N^-l~i]^) 

= (0-0) + (1-0) + (2-0) + .... + (Nj^-l-O) 

+ (0-1) + (1-1) + (2-1) + .... + (N^-1-1) 

+ . 

+ (O-N^+l) + (1-Ni+l)  + . . . .  + (Ki'l-Ki+l)  (05) 

Now if we look at the first two rows above, we see that the 

terms in each row are identical except for the terms (N^-l) 

and (-1). However, from the periodic boundary conditions, 

we know that P(Ni^)=P(0), Therefore, the two terms (N^-l) 

and (-1) are really identical. 

Similar arguments hold for any pair of rows and, hence, 

all Kj rows are Identical, so we can write 
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N^-l N^-1 

S S = "i ^ 
il=0 j.=0 

Similarly, 

N^-1 N]-l 

Z 2 {J2"^2^ ~ ̂ 2 (^2-12) 

l2=0 02=0 ^2 

and 

N 2 — 1 N^-1 

^ ^ (jo~io) = N_ (C6) 
lj=0 j_=o j j 3 jj j 

Therefore, we can write Equation Ck 

Z  R  F ( R , , R J  =  N - T N P N .  Z  Z  2  
2:1 -j " 2 3 j2 j] 

P( ( J'l-il )li+( j2-l2)l2+( "'3"̂ 3) 

= N ^ P(R..R, ) . (C7) 
R.. -j -1 
— J  

Since Rj-Rj^ is also a crystal translation, we can make the 

substitution 

Rjj =Hr£j 

and then by summing over R^ instead of Rj, we merely inter­

change the order of summation to obtain Equation 
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Appendix D, Overlap and Related Integrals 

The two-center kinetic energy and overlap integrals, 

are evaluated using a method proposed by Silver and 

Ruedenberg (63). 

This method requires that the coordinate system of the 

two centers be parallel with their z-axes pointing towards 

one another. In our calculations, however, the coordinate 

systems at the two centers are both parallel to that of the 

crystal as a whole. The problem remains, then, to transform 

the atomic orbitals at the two centers into coordinate 

systems of the type necessary for evaluation. 

At the center. A, this will be a rotation and at the 

center B, it will be an inversion of the z'-axes followed 

by the same rotation as at A, Since the radial part of the 

atomic orbitals Is invariant under such transformations, 

we need only examine their effect on the spherical harmonics. 

The inversion is given simply by 

V®' = V-

=(-1)-*-«Y e', (?•) (Di) 

With the primes indicating the inverted system. 

Since the spherical harmonics forms the bases for the 

irreducible representations of the three-dimensional rotation 

group, we can utilize the matrix elements of these represen­

tations to accomplish the transformation. 



l8lv 

For a complex spherical harmonic, on center A 

i ^ 

t '-a .-f) ̂ k' 9A/Â' (»2) 

where (6^, and (6 0'^) are the polar coordinates of 

the unprimed and primed coordinate systems, respectively, 

of Figure Dl. 

o<f , - 6 and -0 are the Euler angles necessary to 

rotate the (x'y'z') systen into coincidence with the (xyz) 

system, 0 and are measured from the x' and x axes, 

respectively, to the z-s' plane. 6 is measured from the 

z-axis to the z'-axia. 

The coefficients are given by 

^ S 
= exp(-ik oc )6xp(-im^ )dj^(/5 ) 

where 

5 V *• r(i+m)i (jf-m){ ( j+k)i {i-k)i è 

"" ^ {J^+k-t)i (JP-ra-t)[ ( t+ra-k)[ t [ 

(cos f/2)2'*+k-m-2t(sin^/2)2t+m.k 
(D3) 

the index, t, running from max (0,k-m) to mln -m, J?+k). 

If one defines the real spherical harmonics, as 

^(m) ^(m)^J?fmi| 
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A y  

Figure Dl. Coordinate systems 
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where ra > 0 

N(m) = ? m = 0 

Y-è m < 0 

and m 
f(-l) ïïi è 0 

I(r,) = |,_i)n>+l ^ 0 (D5) 

then utilizing Equations ûl and D2 for the necessary trans­

formations, we get as a final expression for the two-

centered integrals 

= <«n( Yfo' ÔA'̂ A'1 ? 1 «nTVo' ÔB'Î B'> 

min(4,2' ) c , , ^ Ç ,1 ,! 
+ 2 [c(k)+(-l)^ In i c*(k)]<R^g 

k=l 

with 

C(k)=(-l)K ̂ expd N (- Ô )+I^^^exp(-1 Im] (-6)J 

.^exp(-l Im'l |Tn«| (-8 ) + I(uii )expCl )] 

(D6) 

The dependence on the Euler angle o^has dropped out 

corresponding to the one degree of freedom we have in 
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choosing the primed coordinate system. 

Equation D5 is the overlap integral if P=1 and the 

potential integral if 

P = V(r -/j ) 

If F includes coulomb and exchange operators, it must be 

transformed in a similar manner. 
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Appendix S, Potential Integrals 

The atomic potential used in the IBA method consists of 

three operators. These are Coulomb and exchange operators, 

giving rise to Coulomb and exchange integrals, and a third 

operator -2.Zg/rg for an electron attracted to center B 

that gives rise to nuclear attraction integrals. The 

Coulomb and exchange integrals are evaluated by methods 

prograiîimed for the IBM 360-65 computer (24, ^5) . The 

nuclear attraction integrals are of the type 

where the aingle-zeta, normalized STO's are 

' làfr (El) 

for a function located on atomic center A. The nuclear 

attraction integrals are evaluated by the use of the 

expression 

 ̂)*+&(2 [(2|;+1)(2%'+1)/ 

(2n)t.(2n')\"\ 4 

, i*i' ' "i . •£, , (i i' ^\[ I V 
L~ \ Q 0 0 /\ m-m 0 / 
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^ n + n '  + L ^ n + n '  

The summation index L is limited by the constraint 

that J|+ J^'+L = even,J?* i3\ la the Wigner 3J symbol (8h.,), 

Vn2m2m^ / 

R = interatomic distance between centers A and B,^ = 

R( ̂  ^ ) and the functions ) and ) are given 

by ( 21|,) 

^1 

E^(x) = I dt t^ exp(-xt) 
•̂ 0 

Aj^(x) = { dt t^ exp(-xt). (E3) 

These functions are obtained usins; the recursion relations 

Sjç(x) = j^k E%_i(x) - exp(-x)] /x 

A^fx) = [k A%_i(x) + exp(-x)"] /x (Eif) 

from the starting functions 

E 0 
(x) = [l - exp(-x)] /x 

A q ( x) = exp(-x)/x. (E$) 

In order to maintain uniform accuracy, an Infinite series is 

used for computing E^(x) if the relation, 

x  <(0.072 V 0.012kjnax) Wx (E6) 

is satisfied; 
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E%.(x) = k[ exp(-x) x^/dc+i+i) 1. (S?) 
1=0 

The expression %lven for Equation E2 can be derived by 

using the LaPlace expansion for the inverse distance 

between electron i and nucleus B: 

OO ^ -

(385 

where r_^ (r .^) is ohe lessor (greater) of and R,g and 

the y j^jyr are real normalized spherical harmonics. One can 

then integrate the resulting expression directly and, by 

interchanging summations, arrive at Equation E2, 

The Coulomb and exchange integrals necessary to obtain 

the cryatal potential in Equation • are evaluated for 

single Slater type orbitals (STO's) which are subsequently 

linearly combined by an auxiliary program. The linear 

combination is necessary sines the atomic orbital functions 

used in the TBA calculation are multi-STO types (Equation 5a ). 

The STO^s used in the computer programs developed by 

Silver ( 2!i ) and Me hier ( : S ) for Coulomb and exchange Inte­

grals are real spherical harmonics. Since the rotation of 

spherical harmonics described in Appendix 0 uses the ima­

ginary spherical harmonics as a basis (only this type is an 

elganfunction of the ^-dimensional rotation group), we must 

be careful in using the integrals. Fortunately, we obtain a 
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convenient identity which may be demonstrated for the real 

and functions. By Equation Dli, we have after dropping 

the radial part of Pj^ and P^ 

and 

P y =  

Y2 

The real normalized spherical harmonica may be linearly 

combined to give the imaginary normalized spherical harmonics: 

and 

ïj = .(P; + IP.) 

If we consider the charge distributions and 

Y^ for electron one, the corresponding Coulomb integrals 

of the electrostatic interaction between these distributions 

and an arbitrary charge distribution ̂ (2) for electron 

two are: 

ïî̂ l/(2)> ={< f /2 

<yJ . /"(a)) =f'<Vsl +<PyP̂  /'(2)>]/2 
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Therefore, Yîlj/(2)) = Since 

^PxPx\^^2)/^ =<^PyPy [J'(2)^ , there exists a one to one 

correspondence between the imaginary and real spherical 

harmonics, e.g. n 2)^ y]; Y^{^^2)^ . The iden­

tity allows one to use the numerical values of Coulomb and 

exchange integrals obtained from real functions to represent 

the imaginary case. 

Some difficulty arose in the evaluation of Coulomb and 

exchange integrals when + ̂ g) = 360 where R^g is the 

internuclear distance expressed in Bohr units and and ^ g 

are the orbital exponents of STO's located on centers A and 

B respectively. In auxiliary functions used in the eval-

uatlon, exp(±R^g( ) occurs and the computer limit of 

an exponential is +174* Apparently, the present programs 

are not written to handle this situation. Therefore, we had 

to apply a reasonable approximation to integrals where this 

problem arose. The rhenium 5d and 6p functions have large 

orbital exponents in inner radial region (as have been seen 

in the discussion on orbital functions) which are neglected in 

integral evaluations. Therefore, renormalization of these 

orbltals is necessary since a small part has been cut out. 

The normalization constant of the ^d is 1.01709 and 6s is 

1.004342. 
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Appendix P. Atomic Orbital Energy Parameters 

The one-electron terms which are generally referred to 

as the core energy, I, is the sum of the kinetic energy and 

potential energy from the field of the bare nucleus. 

The core energy is evaluated from the following 

integral 

where P,(r) = 2 C .Rn. Oj(r)r exp(- t.r)r^j. 
1 j ^ J - J 

Integration gives upon expansion of 

I = z  
4 1 

( P  n y , .  >  r r >  + n < - i ) f  
+ .,W L 

it if The Slater-Condon parameters, P and G , are calculated 

via the following integrals: 

i 

o 
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G^(ni ,nj i^) = j & P^PjY^(n^ nj^_j)dr 

o ^ 

where the potential function Yj^(i,j) is 

oo 

Y^(i,j)= r"^ y PiPjdr r^+l ^ P^P, 

Brown-fitzpatrick { 2^) and Roa-Schuit (3^) express the 

Slater-Condon parameters in terms of SDater t^'pe orbitals. 

The latter formulation has been programed to obtain param­

eters for the g(i,j) terms in Equation 31, 

The derivation of the and expressions are 

lengthy but straight forward if one utilises the standard 

integral 

b n V , 
J x" exp(-^x)dx = ^ (-b^ exp(- pb)+a^exp(-|i 

a 1=0 *' 
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Appendix G. TBA Results of ReO^ 

The 1 th energy band corresponding to the crystal 

orbital with functionis numbered along the left 

column. The eigenvalues of*^^(k,r) are listed in Table Gl. 

The % rhenium, Oj, Og and 0^ atomic orbital contributions to 

are listed in Tables G2, G3» Gi^ and G5 for k = 

(0.0,0.0,0.0),(2,0.0,0.0),(2,0.0) and (2?',tr,2:) respectively. 
& & & 8 8 & 

Thus, we have the symmetry points gamma (JP ), X, M and R 

represented. The subscripts labeling the oxygen atoms O^, Og 

and 0^ are indicated in parenthesis. 

The eigenvalues in Table 01 are listed in Fortran 

notation where E Ox denotes X 10%. The energies are in 

Rydberg units. 

The Fermi energy is -l.l+ÔSS Rydbergs. 



ELECTRON STATES/RYD. - UNIT CELL (xio'l 

2 00 0 00 1.0 «00 e.oo 10.00 12.00 

0.0 

fermi energy 

t 2 0 

3 0  

-4.0, 

g  i e )  

Figure Gl. ReOg energy bands. 



TABLE Ci £(K) VS. K: ENERGY BANDS AT THE 
ZCNt OF RHENIUM TRiOXiDd 

ENERGY 
BAND 

1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
2C 
21 

SYMMETRY POINT 
GAMMA X 

0 .36B914E Cl 0 .441146E CI 
0 .631159E CC c .396006E 01 
c .628287E CC -0 .3941S2E CC 

-G -863311E 00 -0 .1Û7109E 01 
— C • 1C7 6C4E CI -0 .1116235 01 
-0 .108265Ê 01 -0 .120046E CI 
-0 .112029Ë 01 -0 .124299E CI 
-D .115133E CI -0 .125083E CI 
-0 .115938E 01 -0 .148676E 01 
-0 .148002E 01 -0 .148984E 01 
-0 •i48647E 01 -0 .15CS88E CI 
-0 .148982E 01 —0 .1621Ô0E 01 
-0 .174371E CI -0 .1718312 01 
-0 -174951E CI -0 .1729C3E 01 
-0 .175334E CI -0 .1751800 01 
—0 .274463É CI -0 .2C9894E 01 
-0 .275342E 01 —0 .272283f: 01 
- c  .3284C9E CI -0 .3Û9Ù85E CI 
-Q .355427E 01 -0 .353293E 01 
-0 .358245E 01 —0 -358377E CI 
-0.360345E 01 —C .422571E 01 

SYMMETRY POINTS LF THE ÔRILLCUIN 

M R 

C.231y85E C3 
-0.1979 60 E 00 
-0.25640CE OC 
-C.1138CaE CI 
-C.124153E Ci 
-U. 12455C& CI 
-C.144344E Ci 
-:.147999E Gl 
-C.1493566 CI 
-J.149545E 01 
-0.156414E CI 
-Ù.166783E 01 
-Û.171873E Ci 
-G.172339E Cl 
-0.184292C 01 
-0. 214C84E 01 
-0.2162S6E 01 
-L.292919& 01 
-C.32S2C7E 01 
-C.3èe44e[ 01 
-w.43337JE 01 

0 .  18C480E CO 
0 .  1757d9E CC 
Ci 12388ÛE 0 0  

- c .  144122E G l  
- 0 .  1 4 4 4 5 4E 0 1  
- c .  146216E 0 1  
—  0  .  148081C 01 
—ÎJ .  150742 £ 01 
-  0 .  15123iiE CI 
—0' « 155368E 01 
— 0.1 5645o£ CI 
—  0  «  1653430 ul 
- c .  166219G 01 
- 0 .  166592E Ci 
- 0  .  202745E Ci 
— 0 .  2195 96E 0 1  
—  0 .  22C243E Ci 
— 0  .  24Q139E 01 
—  0 .  402C56E Cl 
—  0 »  403012E Cl 
—0.446861c 01 



TABLE G2 KULLIKEN POPULATION ANALYSIS CF CRYSTAL LRBITALS AT 
GAMMA SYMMETRY POINT 

ENERGY 
BAND 

1 
2 
3 
4 
5 
e 
7 
8 
9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 

% RHENIUM ATOMIC ORBITAL CONTAIBUTIuN 
2 5D 5D 50 2 2 5C ÔS 6P dP 6P 
Z X2 YZ X -Y XY Z X 

0 . 0  C.C c .  c  0 .  Q  c . c  2 5 . 3  1 1 . 8  1 2 . 0  1 1 . 8  
2  •  s  0 . 1  o . c  0 . 3  0 . 1  - 0 . 0  5 2 . 2  2 . 4  3 2 . 2  
0 . 3  o . c  0 . 1  2 . 9  0 . 0  - 0 . 0  5 . a  5 5 . 0  2 5 . 9  
0 . 0  3 . 4  3 . 3  C . C  3 . 5  1 7 . 7  1 0 . 9  1 1 . 2  1 0 . 5  
1 . 0  1 5 . 6  2 . 5  0 . 1  4 0  . 6 O.C 0.1 C.l C.2 
o . c  2 3 . 3  3 3 .  C  l.C 2.5 c.o 0 .0 0.3 0.0 
0 . 2  1 7 . 1  1 9 . 2  0 . 4  1 3 .C 2.2 3.9 4 . 9  3 . 7  
c . o  0 . 2  1.5 32.6 0.2 C.l 0 . 1  1.6 3. C 
32.8 0. 6  0 . 6  0 . 0  C . 5  0 . 0  3.5 0.5 O.b 

0 . 0  0. 0  0.0 0.0 O.C c . c  O.U 0.3 0.3 
G. û 0 . 0  0 . 0  - 0 . 0  0 . 0  0.0 0.2 0.7 C.l 
0 . 0  o . c  0. G -0. 0 #  V  0. U  0.8 0.0 0.5 

-C.O 0 . 1  0  . 0  0.0 39.5 - c . c  C.C - 0. c  -C.l 
0 . 0  39.4 c . l  0.0 0. 1  -0.0 -0. 1  -0.0 - 0 . 0  
0 . 0  C . l  3 9 . 6  C.C L  #  V  — C.C -0.0 - c .  c  -C. 0 
c . l  C.C O.C 64 .4 û  #0 —0 .0 -0.0 —C . 4 — c .4 

6 4 . 4  C . C  O . C  C . l  c . c  —c. c -0.6 - 0 , 1  - 0 . 1  
0 . 0  0.0 0 . 0  - 0 . 0  0 . 0  99.C 0.1 c . l  c .  0  

-1.8 0 . 0  C.C — 0 .  0 c . o  - 1 8 . 0  11 .3 0.5 0.4 
0.1 0 . 0  0 . 0  -1.7 c . c  -2.2 0.0 1. 2 7.2 
û .  1 c . c  o . c  - u . l  0.0 -24.1 0 .2 9.6 3.9 



TABLE G2(CLNT.) 

ENERGY % OXYGEN ATOMIC ORBITAL CQNTRIBUTICN 
BAND 2SU) 2P (1) 2P 11) 2P <1) 25(2) 

Z X Y 

1 10. 1 0.1 2.8 0.1 10.3 
2 Oc2 0.6 -O.C 0.4 3. 2 
3 5.5 0.0 -0.4 0.2 2.5 
4 -2.7 2.1 13.5 2.0 -2.4 
5 0.0 5.2 O.C 13.3 C » v 
6 c.o 8.0 C.7 0.9 -0 .0 
7 —c . 6 5.0 6.C 3.7 -c. 3 
8 -0.9 0.2 27.5 -C.O -1.-3 
9 — 0.3 — 0. C 9. 2 0.1 -0.3 
10 0.0 2.7 0.0 46.1 C.C 
11 0.0 43.5 C.O 3.3 0.0 
12 0.0 4.2 -c.c 0.3 Ù. c 
13 0 «G 0.0 0.0 29.8 c. c 
14 C- C 28.6 0.0 0.0 0.0 
15 C.O C.l O.C 0.0 0.0 
16 3.9 -0.0 15.3 -0.0 2. 6 
17 1.6 -0.0 3.3 0.0 2.3 
18 — 6. 8 —c. c 7.0 -0. c -5. 8 
19 -0.9 -0.1 1.8 -0.0 -1.3 
2C 18. C — C.o 0.5 - c.l 69.4 
21 72.8 -0.0 12.9 -0.0 21.1 

2P (2) 
Z 

2P 1 2 )  
X 

2P 12) 
Y 

0.1 0 .1 2.5 
0.6 0. 0 -0.2 
0 .1 0.6 -0.1 
2.0 1.7 11.2 
0.8 13.0 C.4 
11.3 0.7 0.7 
5. 6 3.5 1.5 
0.6 0.3 34.1 
—0 . 0 0.1 9.7 
1.2 45.6 O.C 
3.3 3.3 0 .  c  

45.5 0.3 0 . 0 
0. 0 30.6 - 0. 0 
0.1 0 .1 G . j 
29.0 0 .0 O.C 

0.0 -C.O 14.5 
-0.0 0.0 4.4 
-C.O -0. 0  6.6 
-0. 1 0. 0  1.5 
0.0 - 0.0 7.7 

— c .  0  0.0 5.3 



TABLE 62(CCNT«) 

ENERGY % GXYGEK ATOMIC Cî<6ITAL CCMBIBUTION 
BAND 2SC3) 2P  (3) 2P (3) 2V  (3J 

Z X V 

1 1 0 . 6  2 . 3  0. 1  c .  1  
2 5 . C  - 0 . 3  0.0 0 . 4  
3 C • 6  — OoC G .  7  0 .  4  
4  - 2 . 4  1 1.1 1.6 1 . 6  
5 —  C .  C  1.2 C o 9  
6 -0 .0 C . l  7.1 10.4 
7 - C . 2  1 . 1  4 . 6  5 . 5  
8 - o . c  C . l  - c . c  0 .  2  
9 - 1.6 4 3 . 2  ' J . 4  C . 5  

1 0  O . C  - 0 . 0  2 . 6  1 . 2  
1 1  û . G  0 . 0  4 2 .  1  3 . 3  
1 2  0.0 0 . 1  3 . 9  4 4 . 3  
1 3  c .  c  o. c  C . l  0 . 0  
1 4  o . c  - 0 . 0  3 1 . 7  C.l 
1 5  c .  c  - 0 . 0  ù . 1 3 1 . 2  
1 6  C.G c . o  — O.C - 0 . 0  
17 2 . 8  2 1 . 9  0 . 0  c . c  
18 -6.4 6.3 - j . o  - 0 . 0  
1 9  9 4 . 3  1 2 . 4  c . c  0 . 0  
2U —0 . 3 0.1 0 . 0  - o . c  
2 1  —  2 . 4  0 . 5  c . c  - 0 . 0  



EK; 
6AI 

1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 
14 
15 
16 
17 
16 
19 
20 
21 

MULLIKtN FCPULATIGN ANALYSIS CP CHYSTAL CRBITALS AT 
X SYMMETRY POINT 

% RHENIUM ATCMIC ORBITAL CONTRIBUTION 
50 2 50 50 50 2 2 5C 
I xz YZ X -Y XY 

0, I -C.C 0.1 C.l -C.C 
0-9 -0.0 0.0 0 . 3  -C.O 
1.4 C.l O.I 4.5 C.l 

-Û .0 o . c  54.9 1.6 C. 0  
23.7 ~ c .  c  1.6 12.6 . 0  
6.9 o. c  5. 7 5.5 O.c 
-0.0 0.0 O.C 0.0 52.1 
G. C 52.6 C.C 0. 0  'J . \j 
0.5 0.0 0.0 1.1 C.2 
—0. G 0.0 0.0 0.3 0 . 0  
-C.C C.l C.C 0. 0  c.l 
9.9 O.C 0.6 3G.5 C.O 
C. 1 7.1 O.C 0.3 39.5 
C.O 39.5 C.C 0.1 7.4 
G.l C. 1 37. C C.2 C.C 
0.8 G.5 C.C 2.S L.5 

46.2 0.0 0.0 17.2 C.G 
9. 1 -C.G 0. c  18. 1 —0 . G 
0.7 0.0 o.c 1.9 -C.O 
-1.5 C.C o . c  -1. 0  C. 0 
1.2 0.0 Û . 0  3.d 0.0 

65 6P 6P 6P 
I X Y 

2. 2 47.3 C.C 38.5 
0.0 42.0 C.C 50.5 
4.8 0.5 73.7 0.5 
1.8 0.1 0.6 —0 . 0 
C .3 0.3 c .  c  2. 1 
11. 3  3.9 0.8 2 .6 
C.O 0. 0 c . c  C.O 
C.O 0.0 G.l V  •  'J 
C.4 0.2 u.l -O.v 
C.l -C.2 0.0 — C.C 

— O.C 1 .5 0.0 1.6 
11. 8 u. 3 c . 9  0.4 
-0 .0 -0 .0 0.7 0 . C 
-O.C 0.0 0.1 0.0 
0.0 0 .5 -0 .0 0.5 
-1.5 0.1 32.4 0.1 
0.2 -0.5 - c . c  -C.7 
53.2 -C.Ô -1.4 —0 . 5 

-16.5 2.4 -0.2 1.9 
0.0 1.6 -O.C 2.1 
31.7 0.4 -7.8 C.4 



TABLt G3(CÛ,MT.| 

ENERGY t CXVGtN ATOMIC ORBITAL 
BANC 2S(1) 2P (i) 2P (1) 

2 X 

1 0 . 1  0 . 2  0  . 0  
2  c . o  0 .  2  0 .  0  
3  - 2 . 0  0 . 0  1 6 . 2  
4  - C .  1  0 . 0  0 . 1  
5  - C . C  0 . 0  0 . 0  
6  - 0 . 1  0 . 4  - 0.0 
7 - c . c  C . O  0 . 1  
8  - 0 . 0  1 . 2  0 . 1  
9  0 . 4  1 6 . 3  1 . 7  

1 0  0 . 1  5 9 . 7  0 . 2  
1 1  0 . 0  12.5 0 . 0  
1 2  1 2 . C  2.4 2 6 . 6  
13 0.4 0 . 6  1.4 
14 0.1 5.9 0 . 2  
15 0. 1  0 . 0  0 . 2  
16 1C.4 0 .  1  49. 5 
17 0.1 0 . 0  -0.0 
1 8  10.9 0 . 0  0.9 
19 1.7 0.1 0 . 2  
2 0  0 . 0  0 .  1  -0.0 
2 1  65.9 Û.Û 2.3 

CCNTRIBLTICK 
2P Ci) 23(2) 

Y 
2P (2) 
Z 

2P (2) 
X 

2 ?  ( 2 )  
Y 

0.2 4.5 1.3 0.0 — 0.2 
0.2 2.9 1 .2 0.0 -0.9 
0.0 I  .  2  0.1 -0.5 0.2 
0.0 0.0 17.3 -0.0 5.4 

-1. t 1.1 -0.0 39.C 
0.4 -0.5 C. 4  c . c  19.7 
1.1 -0.0 0.0 46 .6 O.C 

— 0. G -0. 0 -C.O 0.0 0.0 
66 .2 0 . 3 2.4 5.9 0.2 
7.9 0.0 13.1 0.7 0.0 
14.2 0.1 23.9 1.5 C. 1 

2 . 1  0.7 O.C 0.2 C.3 
5. G 0. 1 O.C 36.8 0.1 
1.3 - o . c  0.0 7.1 -c.c 
C.O 0.0 29.4 0 .0 C. 1 
C. 1 L.4 0.0 1 . 4  0.0 
0.0 2.7 -0.0 C.O 17. 6 
0 . 1  -5.5 -0.0 0  .c 9.2 
0. 1 44. 3 -0.1 C.O 4.2 
0 .  1 51.e —0 .1 0 .0 3.5 
0 . 0  -G.5 - c . c  C.l 1. 5 



TABLE G3(CCNT. ) 

ENERGY 2 CXYGtK ATCKIC CRBITAL 
BAND 2S(3) 2P (3) 2P ( 3 ) 

Z X 

1 5 .2 -0.5 0.0 
2 2. C -C. 8 C.O 
3 0.2 C.l -C.4 
4 G.3 1.2 -0 .0 
5 -C.7 21.5 - G. c 
6 -1.1 43.0 — 0.0 
7 -G. C C.O 0.0 
8 — ù .0 0.0 45.9 
9 0.2 0.3 1.4 
IG C. 1 C.O 5.3 
11 0.2 0.2 1^3 
12 C.7 0.2 & o 2 
13 C. 1 0.0 6.6 
14 0.1 0.0 38.1 
15 C. C 0.1 0.1 
16 0.4 0.1 1.4 
17 2.7 14.2 C «0 
18 —4. 3 10.6 c.c 
19 55.1 4.5 C.O 
20 39.6 3. 9 C.O 
21 -0.6 1.4 C«1 

CCMRI8UT1ÛK 
2P (3) 

Y 

1 . 1  
I .4 
C.l 

16.3 
0.0 
1 . 1  
G .0 
ù.C 
2 . 2  

12.6  
32.7 
C .3 
0 .  1  
C.O 
31.8 
— 0. 0 
-0.0 
-0.0 
-G. 1 



TABLE G4 MULLIKEN PCPULATION ANALYSIS OF CRYSTAL 
M SYMMETRY POINT 

ENERGY % RHENIUM 
BAND 50 2 50 

Z XZ 

1 o.c -C.C 
2 3.6 c.c 
3 0.0 0.1 
4 33.4 C.C 
5 O.C 54.2 
6 o.c c.o 
7 -Ù.C C.C 
6 G.O -C.l 
9 0.3 -0.0 
iC C.C c.l 
11 0.0 0.2 
12 -C.C o.c 
13 0.3 35.1 
14 0.0 9.3 
15 15.C 0. e 
16 6.5 c.l 
17 0.1 0.2 
18 42.6 - G. C 
19 —4.4 c.c 
20 C.G C.C 
21 2.7 C.C 

CRÔITAL CONTRIBUTION 
50 50 2 2 50 

vz X -Y XY 

-0.0 0.0 -0.0 
0. 1 0. 1 — C. G 
0.0 9.1 —C.O 
C.o 0.0 0.0 
C.C C.C C. Ù 

53.7 0.0 0-0 
C. c c.o 32.2 

-C.C 0.2 C . u 
0.1 0.0 U.l 

— 0. c Col 0.0 
0.2 62. 1 c. ?. 
0 mO 0.1 66 .6 
8. 5 0.1 C • Cr 
36.C 0.8 0.0 

C.7 0.0 0 .6 
C.2 o.c C. 1 
0.1 5.8 0.0 
-C.C c.c C.C 

0.0 C.O C 
C.G 21 .6 0.0 
C.C C.G c.o 

OftÔlTALS AT 

6S 6P 
Z  

0.0 101.4 
3 . 9  -0.0 
0 . 0  -0.0 
2 . 3  0.5 
0. c 0 . 0  
0.0 c.o 

—c.o 0 .0 
o.c -0.0 
o .c -0. c 
o.c -C .0 
C .  0 -0.0 

-0.1 — O.J 
0 . 2  0.0 
C.G 0.0 
22.6 0.1 
3.4 0. 1 
C.C 0 . c 
32.4 — 1 m'/i 
-5.3 -0.7 
C.O -o.u 
4G. 5 -0.0 

6P fcp 
X Y 

c.o C.C 
33.3 45.6 
47.2 33.S 
C.2 0.2 
0.2 -0 .0 
C.o 0.2 
0.1 0.3 
C.L L *v 

-C.C C.I 
0.3 0.4 
— 0. 0 —C . 0 
0.0 C.C 
0.3 0.1 
-0. 1 c.l 
-o.s -1.1 
14.8 17.ë 
16.8 14. 8 
-0.7 -0.7 
-C.C -C.C 
— 6.6 -7.1 
-5.1 —4 .6 



TABLE G41C0NT.) 

ENERGY % CXYGtN ATOPIC CREITAL 
B A N D  2 S ( I )  2 P  ( I )  2 P  C  i l  

Z X 

1 0.0 0.0 0.0 
2 -2.4 -e.c 7.0 
3 -4.2 -o.c 8.8 
4 0,1 0.2 0.5 
5 — 0. C 1.3 G.C 
6 0.0 0.0 0.0 
7 G.C w.l 0.8 
8 e.' j 59.3 O.C 
5 û. c  32.2 0.1 

10 <J.C G.C 1.6 
11 4.7 0.2 13.6 
12 — G.C C. Û 2. 2 
13 -0 .0 5.4 2.1 
14 0. 1 1.2 -O.C 
15 4. 9 C. 1 19. 2 
16 9.1 O.C 14.5 
17 5.7 0.0 25.8 
18 4.9 0.0 0.4 
19 0.4 ô .C  -0.0 
20 42.1 c .  0 2. 2 
21 34.4 o .c  1.2 

CONTRIBUTION 
2P ( Il 2S( 2) 

Y 
2P (2) 

Z 
2H (2J 

X 
2P (2) 

Y 

0.0 0.0 0.0 0. 0 0. c 
1.5 -3.2 . —0 * 0 0.8 9.7 
1.2 -2. 6 —0. 0 1.3 5.9 
0.1 0.1 0.2 0.1 0.4 
0.0 0.0 0.0 L .0 j  .1; 
0.0 — O.C 1.1 U. 0 o.o 

33.2 —U .  (j  0.0 31.7 1.4 
1.1 0.0 31.0 0. 9 0. 0 
1 .0 -0 • 0 5u.2 ^ oO O.C 

44. 1 -c. 1 4.7 46.7 1 .9 
0.2 4.6 0.2 0.1 13.7 

15.1 (j « u O.C 14.0 1.7 
0.0 0.1 1.4 0. 0 1.5 
c.o 0.1 4.9 0 .0 0.6 
1.1 5. 4 o. 1 0.0 17.6 
0.7 9.6 O.C w. Y 17. y 
0.5 4.2 0 .  0 C.7 24.1 
C.O 4. 7 c. c L. 0 V.5 
u.o 0.4 0.0 0.0 -0.0 
0.1 45.3 0.0 0 .0 2.1 
O.i 31.4 C .L L» * L» 1. 2 



TABLE G4(CGNT.) 

ENtRGY % CXYGEN ATOMIC ORBITAL CCNTRIbUTlON 
BAND 25(3) 2P (3) 2P (3) 2P ( 3 )  

Z X Y 

1  0 . 1  - 1 . 5  Û . C  0 . 0  
2  0 . 4  0 . 1  - 0 .2 -0.2 
3  C .  0  0 . 0  —  C .  3  - 0 . 2  
4 - 1 .2 6 2 . 8  o . c  0 . 0  
5  — c .  c  0 . 0  4 4 . 1  0  .  c 
6  —  0  .  G  0 . 0  C .C 4 4 .  9  
7  0 . 0  0 . 0  0 . 0  0 . 0  
8  c . c  0 . 0  5 . 1  2 .  5  
9  C . l  0 . 1  2 . 9  4 . 9  

1 0  0 . 0  c . o  C.O 0 . 3  
1 1  0 . 0  0 . 0  C.O 0 . 0  
12 c .c 0 . 0  Û .0 0  . 0  
13 c. t 0 . 1  3 5 . 7  8. 6 
1 4  0  .0 0 . 0  9 . 9  3 6 . 9  
1 5  2 . 7  7 . 6  1 . 5  1  .3 
1 6  2 . 3  1 .3 0 . 4  C .  5  
1 7  0 . 0  0 . 0  C . 5  0 . 5  
1 8  —  8 .  6  2 5 . 6  C . C  C.C 
1 9  1 0  6  •  2  3 . 5  C .O 0.0 
20 —G. C 0.0 0.1 0.1 
2 1  - 2 . 0  0.3 C . l C. 1 



TABLE Ci) MULLIKEN POPULATION ANALYSIS OF CRYSTAL CRBITALS AT 
R SYMMETRY POINT 

ENERGY ? RHENIUM ATOMIC ORBITAL CCNTRIBUTICN 
BAND 50 2 50 50 50 2 2 50 6S 6P cP CP 

z XZ YZ X -Y XY Z X Y 

1 
2 
3 
4 
5 
6 
7 
8 
9 

IC 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 

9.0 -0.0 -0 .0 0.4 —0 . Û 0.0 55.6 4.6 22. 9 
0.4 -o.c -c.c 9.0 -C.C C.O  3.1 47.5 33.5 
0.0 -o.c -0.0 C.O -C.C 4. 1 25.4 33.7 28.2 
0.0 2.4 1.3 0.0 29.4 -C .0 0.0 C.O C. I  
0.0 19.4 10.6 0.1 L.3 —G. 0 O.C O.C -0 »G 
0 .0 12.1 20.9 0.0 4.3 -0.1 0.3 C. 1 C. 1 
0.0 0.2 C.C 0.0 0.0 0.6 C.O C.C 0.0 
0.1 1.4 2.1 1.2 C.C C. G C.U 0.2 U.2 
0.1 0.4 0.0 0.0 1.4 C.C C.6 0.0 C.2 
1.0 C.O C.C 61.4 C.2 O.C 0.0 0.2 C.l 

62.0 0.2 0.2 l .C C.l 0.0 0.2 -O.C C.C 
0.4 0.4 C.6 0.1 62.4 -O .I -0.0 o.c C.O  
0.1 57.0 7.2 0.2 C. S —c« c 0.0 —C . 0 -0 .0 
0.3 6.2 56.6 0.0 C.l -0. 1 C.O  -C.C C.C 
0.1 0.3 0.3 0.0 C.3 7.9 5.1 7.C 5.7 
C.l G.C C.C 4.3 C.C -0.0 G.Ô id.l 14.a 
4.1 0.0 0.0 0. 1 C.C C.C 23.0 2.6 8.5 
c.o 0.0 O.C 0.0 Û .0 42.4 2.3 2.6 2. i 

19.6 C.O 0.0 2. 6 C.C -O.C -10.7 -0.4 -7.3 
2.6 0.0 0.0 19.4 0.0 C.C -1.5 -11.7 -5.2 
C.O o.c C.O 0 . «J  C.O 45 .  8 -4 .1 —4.4 — 4. 0  

O 



TABLE G3(CCM.» 

ENERGY % OXYGEN ATOMIC UKOITAL 
BAND 2S<li 2P (1) 2P 11) 

2 X 

1 -C.6 1.5 G.7 
2 —6» C 0.1 7.6 
3 —4 * 6 0.7 5.9 
4 0.0 1.2 C.2 
5 0,0 31.3 C.l 
6 0.0 7.7 C.9 
7 -o.c 1C.8 C.C 
8 0.2 11.3 2.2 
9 0.0 16.3 0.4 

10 5.4 0.0 15.6 
11 1.1 0.2 3.1 
12 c.c c. c 2. 1 
13 0.0 14.2 1.1 
14 C. 0 2.2 C.7 
15 -1.4 1.3 24.6 
16 5.4 0.0 26.5 
17 C.9 c.9 3.7 
18 17.6 C.O -C.l 
19 1,9 C.2 C.l 
20 57.7 C.C 2.6 
21 22.3 0.1 0 .8 

CGNTRlBLTICiN 
2P (1) ZS{<) 

Y 
Z P  ( 2 )  

Z 
2 P  ( 2 )  

X 
2P ( 2 )  

Y 

C .6 -2.8 1.5 0.1 3.7 
0.9 -4. C c. I  I.C 5.2 
Û .6 -3.0 0.7 C .  7 5.2 

28.6 —C .  Û 0.1 2o .5 0.5 
2.1 C . L  19.6 0. 1 — c .  c  
1 .9 —G .  C 17.0 4.2 1.1 

21.5 c .  c  11.7 24.1 c . 2  
21.9 o . c  1. c 24.8 1.5 
2.0 O.G 29.2 0 .3 I . C  
C.l 3. 9 C.C O.C 11.7 
C.l 2.5 0.2 C.l 6.7 

1 6 .  5  C . C  0.3 15.6 1. i  
0.5 C. 1 1. 1 C. 1 C. C 
C.l C .  'J 1 4 . 4  0 .0 2.2 
i . 3 -1. 2 1. 3 1.3 22.C 
0 .6 4.4 C. 1 c.3 21. 1  
0.4 2.6 0.9 0.1 12.1 
C.C 16 . 2  C. 0 0. c  -0.3 
0.1 35 .  h 0.2 0.0 2.3 
L .  1 25. 6 C.O c . l 1.4 
J . l 2 C . ^  C.l o.c L .  6 



TABLE G5(CUNT.) 

ENERGY % CXYGEK ATCMIC 
8AJ\D ZS(3) 2P (3J 

2 

1 -6.5 6.7 
2 — 0*4 C. 5 
3 -3.3 4.9 
4 —C .  C 0 .0 
5 -C.C 0.1 
6 -0.1 2 .2 
7 c . c  O.ù 
8 0.0 0 .1 
9 -0.1 3.7 

IC c. 1 G.3 
11 6 .C 16.3 
12 C.l G .2 
13 0. c 0.5 
14 0 .0 2.4 
15 -1.0 22.2 
16 0.2 1.1 
17 6 .6 32.9 
18 17.5 -0.3 
19 52.5 3.0 
20 7.4 L.4 
21 20.9  Û . 9  

CRBITAL CCKTRiBUTIGN 
2P (3) 2P (3) 

X Y 

O.i C.5 
1. 0  C.7 
L.7 0.6 
4.9 4 , 8  
G. 6  6 « 4 
9.5 17.2 

17 .6 13.8 
23. 1 a. 1 
14.5 29.4 
0. G O.G 
0 .2  0 .  1 
0 . 2  0 . 0  

14.7 2.3 
1. 2  13 .6 
1.4 1. 2  
C. 9 0 .  e 
C .l 0.4 
C .C J.ù 
c  . 0  0. 1 
c.l O.C 
c . c  o.c 
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Appendix H, TBA Results of KTaO^ 

Using the same notation as in Appendix G, Table HI 

contains the eigenvalues of crystal orbital function*^^{k,r) 

for the 1 th energy band and Tables H2 to H5 are the corres­

ponding % atomic orbital contributions. 

The Fermi energy is -3.890$ Rydbergs. 
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Figure HI. KTaO^ energy bands 
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TABLE HI E(K) VS. K: ENERGY BANDS AT THE 
ZONE CF POTASSIUM TANTALATE 

ENERGY SYMMETRY POINT 
BAND GAMM4 X 

1 C.16QC5CE 01 C.7Û17Ç4E 01 
2 0-163i>C3E 01 0.68Û399E 01 
3 C.1563C9E 01 û.179607fc 01 
4 0-867332E- 01 0.16237SE Cl 
5 -0.218392E 01 G.171296E CÛ 
6 -0.223361E 01 0.159333E GO 
7 -0.243G24E 01 -0.279Û47E 01 
8 -C.3C9717E Cl -0.3065596 01 
9 -0.310371E 01 -0.329t;47t Cl 

10 -0.312C58E 01 -0.332234E 01 
11 -C.36C746C Cl -C.348923E Cl 
12 -0.36 249 IE 01 -0.365690E 01 
13 -C.388166E 01 -0.389538E 01 
14 -C-391499E Cl -C.392919E 01 
15 -Û.3941Û7E 01 -0.395278E Cl 
16 -C.395550E Cl -C.395887E Cl 
17 -0.397562E Cl -C.398559E Cl 
18 -0.399961E 01 -C.4Û27C5E 01 
19 -0.455147e 01 -0.412729É Cl 
20 -0.527699E 01 -0 .450 7 57 E 01 
21 -G.529992E 01 ~C.459063c 01 
22 -Û.685393E 01 -0.552841E 01 
23 -0.760151E 01 -0.533213E 01 
24 -0.781378e Cl -0. 116373E 02 
25 -0.991951E 01 -0.14G545Ë 02 

SYMMETRY PCI NTS OF THE BRILLOUIN 

M 

0. 125720E 04 V* 282755E 04 
0.  237674E 01 0. 176C71E 01 
0. 738557E 00 0. 160138E 01 
0. 36284SE cc  0. 158046E 01 
0. 766816 E--01 0. 938545c 00 

-0. 2I6799E 01 —0.  246137E 01 
—0 .  2937165 Cl — 0. 250C47E 01 
-0. 32263ÛE 01 -0. 284783E 01 
— 0. 328495L Cl —c .  3Ï4217E Cl 
-0 .  332456L 01 -0.  355523E Cl 
-0. 351424E 01 —ù» 356930E 01 
— 0 .  36866CE U1 - 0. 363931E 01 
-0. 37209lE 01 —0 •  3Ô6422E 01 
-c .  3&749ÔC Ci — Cl»  389963E 01 
-0.389224E Cl — c .  391516E 01 
-0. 391349E 01 —G e 392837E 01 
— 0.  3S9299L 01 — 0.  4175486 Cl 
-û .403129E 01 ~û • 420914E 01 
— 0. 424267E 01 -c .  516682E Cl 
-0.447299E 01 -0.  641il8Ê 01 
-U. .483281 h 01 -0,  641911E 01 
— 0. 515645E 01 -0. 668282k 01 
-0, .586593 E 01 — G « 117V29E 02 
-G.  119667E 02 —0,  122124E 02 
-0 .  .129463E 02 —c .  244844E 02 



TABLE H2 MULLIKEN POPULATION ANALYSIS OF CRYSTAL 
GAMMA SYMMETRY POINT 

ENERGY % TANTALUM ATOMIC ORBITAL CONTRIBUTION 
BAND 50 2 50 50 50 2 2 50 

I XZ YZ X -Y XY 

1 0.1 0.1 0.0 0.1 0.1 
2 0.2 0.0 0.2 0.2 0.1 
3 0.1 0.2 0.0 0.1 0.0 
4 0.0 -0.0 -0.0 0.0 -0.0 
5 0.9 C.l 0.1 3.0 0.2 
6 3.0 C.C 0.2 1.0 0.3 
7 O.C 0.8 0.8 0.1 0.7 
8 0.0 0.3 8.3 0.0 79.7 
9 0.0 0.1 79.B 0.0 8 .6 

10 0.0 88.2 0.2 0.1 C.2 
11 21.7 O.C 0.6 45.2 0.2 
12 44. 1 0.3 O.C 25.6 0.4 
13 0.1 0.0 0.0 0.1 O.C 
14 1.6 0.0 1.1 5.2 1 .3 
15 0.3 3.6 1.5 2.1 1.8 
16 1.9 0.0 3.9 0.7 3.7 
17 0. 1 5. 8 2.C 1 .C 1.2 
18 13.8 C.C 0.8 2.6 1.1 
19 -O.C 0.3 0.2 C.2 0.2 
20 1.2 O.C 0.0 5.2 C.C 
21 4.2 0.0 0.0 0.8 0.0 
22 C. 1 0.2 0.2 0.2 0.2 
23 1.8 C.l C.C 4.8 G.O 
24 4.7 0.0 0 .0 1.7 0.1 
25 0.1 O.C 0.0 C. 0 C.C 

CR8ITALS AT 

6S 6P 6P 6P 
Z X Y 

0.4 —4.4 -2.2 —0 .4 
0.0 -2.0 -4.1 -0.1 
0.5 0.1 0.0 -5.4 

165.1 -6.3 —6. 1 -4. 8 
0.1 24.7 25.6 48.4 
0.0 51.0 47.2 0.0 
2.0 22.9 25.1 49.4 
0.1 0 .8 0.4 0.3 
0.0 -0.0 0.4 0.1 
0. 0 O.i 0.1 0.2 
0.0 -0.1 -C.2 -C.l 
O.C -c . 2  -0.0 -0.3 
O.C 0.0 0.0 0.0 
0.2 -0.2 -0.1 —  G . 4  
6. 6 o.O c.l -C.l 
O.C -0.0 -0.0 0.0 
O.C —0 .c -G.O -0.2 
0. 0 -0.9 -C.7 -0.0 

85.3 -0.2 -0.3 -0.4 
0.3 -0.2 -0.4 -1.5 
O.C -1.1 -0.7 0.0 
9.6 1.4 1.6 -0.3 
G. 3 1.6 1.4 9.5 
G.O 5.9 5.7 C.O 

27.3 5.2 6.3 6.9 



TABLE H2(C0KT.) 

ENERGY % OXYGEN ATOMIC ORBITAL 
BAND 2S{I) 2P (1Ï 2P (1) 

Z X 

1 -0. C -0. 5 -1.3 
2 0.1 -0.2 -2.6 
3 c.c 0.1 -0.0 
4 17.1 0.2 0.7 
5 1.9 —0 • 3 -0.7 
6 4.4 -1.1 -1.1 
7 0.3 — 0.6 1.0 
8 0.0 0.0 -Û .0 
9 o.c 0.0 0.8 

10 —0 .0 5.0 0.1 
11 -2.8 1.8 18.4 
12 -0.0 0.3 0.1 
13 -0.0 25.9 -0 .0 
14 — C. 0 0.1 0.2 
15 —0 .0 14.2 5.5 
16 -0.1 4.7 0.0 
17 -0.0 24.7 O.C 
18 -0.4 17.4 0.2 
19 3.2 2.7 0.9 
20 15.9 -O.C 5.1 
21 33.9 0.5 7.7 
22 0.5 3.6 35.6 
23 4.9 -0.0 4.6 
24 9.0 2.2 28.0 
25 122.2 C.7 5.9 

CONTRIBUTION 
2P (1) 2S(2) 

Y 
2P (2) 

Z 
2P (2) 

X 
2P (2» 

Y 

0 . 0  
0.0 

-0.5 
0.2 

-C.9 
0.1 

- 1 . 2  
4.3 
0.7 

-0 .0  
2 .1  
0.7 
9.5 
6.0 

22 .2  
34.4 
13.4 

0.6 
2.6 
0.6 
C .0 
2.5 
3.C 
0 . 1  
0.9 

0. 1  
c. c 
G.O 

22.C 
5.1 
-0.0 

1.4 
-0.0 
-0.0 
o.c 

-0.5 
-2.5 

o.c  
-0.3 

0. 1 
0 .0  

-o .c  
- 0 . 0  

0 .4 
50. 6 
0.7 
3.7 

12 .1  
D.O 

122. 6 

—0.5 
-0. 1 
-0.0 
0.1 

— 0.4 
-1.3 
— C. 4 
0.6 
3.9 
0.0 
0.7 
2.9 

14.9 
35.1 
1.7 
3.1 
4.8 

28.3 
1.0 
0. 1 
0.7 
1.8  
0.3 
2.8 
0.3 

—0 .2 
-0.4 
-0.0 
0.1 

-0.4 
- 1 . 2  
-0.4 

4.2 
0.3 
0 . 0  
2.6 
0.2 

12.7 
44.8 
1.3 
3.0 
1.4 

25.8 
0.9 
0.1 
0.4 
2.0 
C.3 
2.8 
0.5 

—0 .3 
-0.0 
-3.4 
0.7 

—1. 5 
-0.0 
1,7 
C.l 
0.0 
0.4 
3.3 

16.5 
O.C 
0.1 
5.7 
0 .0  

-0 .0  
-0. 0 

0.1  
13.7 
0.1 

17.5 
46* 6 
0.1 
6.4 



TABLE H2(CGNT.} 

ENERGY % OXYGEN ATOMIC ORlilTAL CONTRIBUTION 
BAND 2Sf3) 2P (3) 2P C3) 2P 13) 

Z X Y 

i  0. C -2 .7 -0.2 -0.0 
2 0.0 — 1.3 -C.4 0. 1 
3 0.0 0.0 0.2 -0.5 
4 16.0 0.7 0.2 0.2 
5 1.8 -0.7 — C. 3 -0. 8 
6 4.6 -1.3 —1 .0 0.1 
7 0.2 1.1 -0.6 -1.2 
3 0.0 0.5 — 0 .0 0.3 
9 -c.c 0.3 0.0 4.7 

IC -c.c 0.1 5.0 - C o  0 
11 -0.9 7.3 1.2 0.2 
12 -1.8 11.4 C.7 2.5 
13 -o.u — O.C 25.7 11.0 
14 —Û .  c 0.1 0.2 5 .4 
15 C. 2 5.6 11.4 17.0 
16 -D.I -0.0 8.1 36.5 
17 -C. C 0.0 29.Ô 16.4 
16 -G.5 0.1 12.1 C. 1 
19 3.3 1.0 2.6 2.4 
20 6. a 2. 5 C. 0 0.4 
21 42.5 10.2 0.3 0. 1 
22 0.5 33.5 3.9 2.6 
23 4. 9 6.1 -C.l 3. 1 
24 9.9 29.1 2.1 C.C 
25 119.2 3.6 1.0 1.1 



TABLE H2(CCIVT.)  

ENERGY % POTASSIUM ATOMIC ORBITAL CCNTHIBUTICN 
BAND 4S 4P  4P  4P  

Z X Y 

1 -G.l 72.5 34.9 4.2 
2 -C.C 37.0 72.6 0.7 
3 -0.2 1.0 2.9 104.8 
4 -1C4. 9 -C. 1 -C. 1 -0.9 
5 -0.0 — 1.5 -1.5 — 3.0 
6 -C.C —2.6 -2 .4 —0 .  0 
7 -C.7 -0.5 -C.6 -1.2 
8 0.0 0.1 0.0 t.O 
9 -0.  c 0.1 0.2 0.0 

10 0.0 C.C c .o 0. 1 
11 —C.C -0.2 -0.5 -0.1 
12 -0.0 —0. 3 C.C -0.5 
13 —G .0 o.c  0 . 0  O.G  
14 -C.C -C.l -0.1 -U.I 
15 -C.7 -0.0 -C.C 0. 0 
16 -o.c  0.1 0.1 —0 .  0 
17 -c. c - 0 .  c -C.C -0.2 
18 -o .c  -0.2 — C.l —  0 . 0  
19 -8.9 0 .3  0 .8  0 .9  
20 -o .c  -0.1 -0.2 —  0 . 3  
21 -0.0 -0.2 -0.1 — 0.0 
22 —  13 .  C  —3 • 2 - 3 . 4  - 1 . 4  
23 —0 .  6 -C .6  -C .5  - 3 .  9  
24 -0 .0 -2.2 -2.1 —0 .  0  
25 -326.9 — 0. 4 -C .5  - 0 . 4  



"ÏA8LE H3 KULLIKEN PCPULATICN ANALYSIS OF CRYSTAL 
X SYMMETRY POINT 

ENERGY % TANTALUM ATOMIC ORBITAL CONTRIBUTION 
BAND 5D 2 5D 5D 3D 2 2 5D 

I  XZ YZ X -Y XY 

1 0. 1 -o .c  0. c  0.0 0.0 
2 C.O C.C o.c  G. l  -C.O 
3 0.3 —0.0 0 .0 -0.0 0 .0 
4 -0.  c o.c  0.0 0.1 0.0 
5 0.0 0.1 0.1 0.0 C. 1 
6 3.0 0 .0 o.c  9.9 -0.0 
7 1.3 C.4 C. 3 3.2 c.4 
8 0.0 0.0 91.1 0.1 0.0 
9 0 .0 5.2 0. c 0.1 87.1 
10 Û.1 87.3 C.C 0.3 6.4  
11 30.9 0.0 0.0 20.5 0 .0  
12 16.0 0.3 0.4 26.8 0 .3  
13 0.4 0.2 0 .0  0 .2  1.4 
14 0.4 1.0 0.1 U.O 0 .5  
15 -0.0 0.1 G.C 0.1 3 .5  
16 0.1 2.9 0 .0  0 . 5  -0. 2  
17 0.4 C.9 4 . 6  1.9 C. 3 
18 -C.O 1.0 3.3 O.G 0 .6  
19 2.6 0 .6  C. 1 9. 2 C.7 
20 -0.1 0.0 0.0 39.4 0 . 0  
21 53.4 —C.O 0 .0  -0.2 0 . 0  
22 0.4 o.c  0. c 0.2 -C.C 
23 -5.7 - C  . 0  0 .L -1.7 -C.O 
24 10.1 -o .c  — 0 . 0  26.7 0 . 0  
25 -1.0 - 0 .0 — 0 .0 -2.8 -C.O 

ORBITALS AT 

6S 6P 6P 6P 
Z X Y 

0.1 92.9 O.G C.C 
0. 1 0.0 C.O 90.5 
0.5 0.3 c.5 C.C 
0.3 0.0 0.5 2.9 
1. 1 0.0 -2.1 0.0 

-11.1 0.8 -0.2 1.0 
1.1 0.0 84.9 -C.O 
O.C 0.2 C. 1 0.2 
o.c 0.0 c. c O.C 
C.O C.O 0.2 —0 .0 
0.0 0.7 C.l 1.5 
2.1 1 .1 0.9 0.7 
C.2 0.0 — C.O C.C 
0 .0 1.8 0.0 1.2 
0.2 0.0 —G. G 0.2 
0.8 c.4 C.C C.O 
C.7 G.l G.l 0.3 
0.1 1.3 C.C 1.7 
1.1 C .4 2.3 0.5 

— 0.2 0.0 8.5 —0 .  4 
0.1 —C .  4 2.6 C.l 

77.7 0.2 2.4 -c .0 
0.0 U. 6 0.2 c.4 

•389.3 -3.6 -0.2 -2.5 
-1. 1 O.C -5.3 O.C 



TABLE H3(CCNT.) 

ENERGY % OXYGEN ATOMIC ORBIIAL CUNTRIôUTION 
BAND 2S(1) 2P (11 2P (1) 2P (1) 25(2) 2P (2) 2P (2) 

Z X Y Z X 

1 C.O 0 . 1  C.O —Û .C 0 . 0  3 . 1  0 . 0  
2  - 0 . 0  —  0 .  0  — O.C 0 . 1  1 .  7  -C.G - 0 . 0  
3 c . l  0 . 1  - 0 . 0  - 0 . 1  - 0 . 1  0 . 0  0 . 0  
4 -O.C - 0 . 1  c . c  0 . 1  1 . 4  0 . 0  -0 .0 
5  - 2 8 . 0  — 0 . 0  -O.C - 0 . 0  -C.l 0 . 0  0.5 
6  C.2 0 . 0  5.7 0 .0 -5.0 0.1 0 . 0  
7 1.7 0 . 1  1C.5 C. 1 c .  c C.O  —J .  4 
8  0 . 1  0 . 0  0.0 0 . 0  0 .0 4. 1 O.C 
Ç C. 2 - 0 . 0  0.0 -0.7 -0.0 Ô.0 7. 2  

IC 0 . 6  -C.7 O.C -O.C 0. c  C.G C.2 
1 1  O.C 0.3 - 0 . 0  0.2 -2.2 0 . 6  0.0 
1 2  0.2 C.C 6 . 1  0.7 . -0.» 0 1 .2 0.3 
13 0 . 1  22.2 1 . 5  33.6 O .C 5.2 24.8 
14 c . c  1 . 2  0.4 0.0 0.0 45.1 5.6 
15 0.5 45.9 i.e 4. 1 C.C C.9 37.9 
1 6  1.2 6  . 6  4.6 33.8 c .c  6 . 4  C.O 
17 1 . 1  9.8 3.8 12. 6 0.4 16.4 3.4 
18 0.8 13.9 C.3 14.5 0.2 16.4 6.7 
19 -0.3 45.0 35.9 0 . 1  0.5 0 .5  11.9 
2 0  - 0 . 1  O.C 25.7 0.2 -0.3 0 . 0  0.0 
2 1  -0 . 0  0.2 7.6 C.l 0.6 c . l - 0 . 0  
22 0 .  1  0. C 1.9 0 . 2  6 .  C 0 .Ù  0  . 1  
23 -O.C 0 .4 C . l  0 . 2  53. C 0 .  c -C.O 
24 -1.3 -0. J -14.7 -G  .2 -793.2 0 .1 - 0 .1 
25 — 563.6 0. C 0 .  v — U. 0 — C.l —0 * 0 -13.3 

2P (2) 
Y 

G.G 
1.9 
O.C 
0.0 

-O.C 
0 . 1  
C.Û 
C.l 
U .0 
O.C 

29.6 
15.1 
c .  c  
G.3 
2.0  
2 . 2  
1 , 2  
1.4 
9.4 

28.3 
6. 4 
2.6  
0.2 
C.l 

-0 . 0 



TABLE H3(C0NT.) 

ENERGY % CXYGEN ATCKIC ORBITAL CCNTPIBUTIGN 
BAND 2S(3) 29 (3) 29 C 3) 29 (3) 

Z X Y 

1 1.0 loB -G.O 0 . 0  
2 O.C O.C -0 . 0  2.9 
3 4.4 0.1 0.0 0.0 
4 -0.1 0.0 -0 .0 0.2 
5 -0*1 OoO C.5 0.0 
6 —5.3 0.1 0.0 0. 1 
7 0.1 0.1 -0.2 - 0 . 0  
8 O.C 0.1 G .O 3.9 
9 0.0 0.0 0.8 0.0 

10 c.o 0.0 6.6 0.0 
11 -1.5 18.5 C.C 0.7 
12 —0. 8 28.0 0.5 0 .1 
13 0.2 0.0 7.0 2.9 
14 0.2 0.3 11.0 31.1 
15 0.3 0.6 1.6 0.8 
16 0.5 1 .2 36.3 2. 6 
17 0.0 2.5 8.5 31 . 0  
18 c .  1 3.3 11.2 23.2 
19 0.4 9.4 14.1 0.7 
2C 0.4 0.0 0.1 0 .-0 
21 -2.7 32.2 C. C 0.0 
22 8,6 2 . i  C.l 0 . 0  
23 48.6 0.5 — 0 . 0  - 0 .0  
24 -835.0 0.2 - c . l 0 . 0  
25 -0.1 - o . u  -13.6 - 0 . 0  



TABLE H3(C0NT.» 

E N E R G Y  %  P O T A S S I U M  A T O M I C  C R 8 1 T A L  C G M R I B U T I O N  
B A N D  4 3  4 P  4 P  4 P  

Z  X  Y  

1  — 0  #  C  0 . 0  0 . 0  0 . 8  
2  0 . 0  2 . 6  — c .  c  0 .  0  
3  - 0 . 1  0 . 4  - 0 . 3  9 3 . 8  
4  - 0 . 0  9 4 .  5  — 0 . 4  0 . 5  
5  1 2 7 . 4  0 . 0  C .  1  0 .  2  
6  0 . 4  0 . 7  9 9 . 4  0 . 0  
7  - 4 .  5 0 . 4  C o  C  0 . 4  
8  0 . 0  O . C  -  G  « û  0 . 0  
9  - O . C  0 . 0  - 0 . 0  0 . 0  

1 0  —  C .  C  0 . 0  —  C .  0  0 . 0  
1 1  - 0 . 0  0 . 1  0 . 0  0 . 1  
1 2  - C . 4  0 . 1  - 0 . 1  0 . 3  
1 3  - 0 .0 - 0 . 1  - 0 . 0  - c .  1 
1 4  0 .0 - 0 . 0  - O . C  O.C 
1 5  - c .  0 - 0 .  1  - c . c  - 0 . 0  
1 6  — 0 . 0  0 . 1  -c .1 -c. 1 
1 7  - O . C  — u .  c  - C . l  0 . 1  
1 8  - 0 . 1  0 . 0  - c . c  0 .  u 
1 9  — 0  . 0  0 .V - 0 . 3  0 . 1  
2 C  - 1 . 7  0 .  0  - 0 . 0  0 .1 
2 1  - 0 . 5  0 . 0  — c . c  0 . 2  
2 2  — 0  . 9  0 .8 -3.5 1 . 2  
2 3  - c . c  1. 2 - c .  c  2 . 2  
2 4  3 . 1  - 8 . 1  2 1 2 2 . 4  - 1 4 .5 
2 5  6 9 9 . 9  -C.C  0 . 9  - 0  .  0  



TAI 

EM 
BAI 

1 
2 
3 
4 
5 
6 
7 
a 
9 

IG 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 

MULLIKEN POPULATION ANALYSIS DF CRYSTAL CRBITALS AT 
M SYMMETRY POINT 

% TANTALUM ATOMIC ORBITAL CONTRIBUTION 
50 2 50 50 5D 2 2 50 6S 6P 6P 6P 

Z XZ YZ X -Y XY Z X Y 

o.c O.C C.C 0.0 — C. C O.C 97.0 —O.c —Û .0 
0.6 0.0 0.0 0.0 0.1 3.8 0.0 0.4 1.1 
0.0 -0.0 0.0 O.C c.l 2.6 0.0 0.4 1.5 
— 0* c 0.0 0.2 0.0 0.Û 0.4 -0.0 0.2 11.7 
-0.0 0.1 0.0 0.0 0.0 0.6 -0.0 15.5 0.3 
4.1 O.C 0.0 0.3 0.1 42.1 0. 0 6.5 15.7 

— 0» t! O.C 0.1 11.6 G.O l.C 0.0 44.5 32.3 
0.4 7.e 28.9 C.6 3.2 7.4 O.C 21.3 10.0 
0.0 43.5 45.9 1.1 0.4 1.0 0.0 0.8 1.5 
0.2 44.1 21. 2 1.8 3.5 5.7 0 .0 13.9 5.2 
3.4 0.1 0.1 0.3 78.2 0.3 0.0 1. 1 C.l 

60.5 0.1 C.l 7.9 1.2 0.6 0.9 -c.l C.l 
6.1 0.0 2.2 66.1 0.0 -0.0 0.1 0.4 2.7 
O.C -0.0 -0 .8 0.5 C .0 O.C c « c C.C -C.C 
c. c — C. 8 0. 0 0.1 G.l 0.0 -0 .0 -0.0 0.0 
0.0 0.1 0.1 0.1 1.9 C.C 0.0 C.3 0. I  
0.2 3.8 0.8 -1.2 0 .Ù 0 .Û c .0 -0.2 C. I  

-0.5 0.8 1.2 1.7 0.0 4.6 0.1 -0.0 0.6 
0.0 1.3 0.0 0.4 C.2 1.1 0.0 15.4 -C.C 
2. 2 O.C 0.3 1.6 4.7 1.2 0.7 —C .0 0.2 

28.0 0.0 0.2 1.6 1.5 8. 2 1.1 -C.C 2.9 
-0.3 c.o 0.6 5.7 2.9 11.7 0.1 -0.0 19.8 
-4.8 c.c C.C 0. 0 2.1 8.9 G.û V # V 0.2 
6.2 0.5 0.1 37.0 L.5 30.4 -G.v -53.4 13.6 
-2. 2 -O.C -C.4 -1.2 O.C -1.4 -0.0 0.5 -60.2 



TABLE H4(C0NT.) 

E N E R G Y  %  O X Y G E N  A T O M I C  O R B I T A L  
B A N D  2 S ( 1 )  2 P  ( 1 )  2 P  ( 1 )  

Z  X  

1  0 . 0  C . O  0 . 0  
2  3 . 1  - 0 . 0  0 . 2  
3  - 0 . 0  0 . 0  0 . 0  
4  — o . c  0 . 0  0 . 0  
5  7 . 9  - 0 . 0  - o . c  
6  - 1 . 3  o . c  5 . 9  
7  - 7 . 4  — c .  c  1 0 . 2  
8  1 . 0  - 0 . 1  0 . 3  
9  0 . 2  —  0 . 4  - 0 . 0  

1 0  1 . 6  - 0 . 4  C . 3  
1 1  0 . 5  0 . 0  O . C  
1 2  0 . 7  o . c  0 .  1  
1 3  2 . 2  C . O  - 0 . 5  
1 4  0 . 0  C . 7  0 . 1  
1 5  o . c  9 1 . 9  0 . 4  
1 6  0 . 0  4 . 4  1 . 1  
1 7  0 . 2  3 . 1  2 8 .  1  
1 8  0 . 3  0 . 4  6 . 2  
1 9  7 . 4  0 . 2  4 7 . 6  
2 0  0 . 1  0 .  1  O . i  
2 1  - 0 . 0  0 . 0  0 . 4  
2 2  0 . 2  0 . 0  e . 6  
2 3  — C  .  0  C . O  - 0  .  1  
2 4  2 5 7 3 . 3  0 . 0  2 4 . 1  
2 5  - 2 3 . 7  - c . c  - 0 .  2  

C O N T R I B U T I O N  
2 P  ( 1 )  2 S ( 2 )  

Y  
2 P  ( 2 J  

Z 
2 P  ( 2 )  

X 
2 P  ( 2 )  

Y  

- 0 . 0  0 . 0  0 . 0  - 0  . 0  o . c  
- 0 . 0  2 .  1  — 0 .  0  - 0 . 0  0 . 2  
—0  . 6 - 0 . 8  0 . 0  - 0 . 5  o .c 

0 . 0  - 1 1 . 5  - 0 . 0  - 0  . 0  - 0 . 0  
0 . 0  - 0 . 1  0 . 0  - 0 . 0  0. c  
0 . 1  — 0  «6 0 . 0  1 . 0  8.6 
0 . 9  0 . 3  -û. 0 0.8 5.2 
1 . 7  — 0.6 - 0 . 2  —  0 . 0  C.l 
0.3 0 . 1  -0.3 u . 0  0.3 
1 . 3  C. 1  -C. 2 — 0. G 0.3 

1 5 . 4  - 0 . 0  U.O - 0 . 5  -0.0 
4 . 1  - 0 . 0  -V. 0 0.5 0.9 
0 - 0  1 . 7  0 . 5  C.O 1 .  8  
0.1 0 . 0  9 8 . 1  0.3 0.7 
0 . 5  C.C 0. 6 3.6 0.0 

2 5 . 0  0.0 0.6 64. C 0.2 
C.O C.5 0.5 u .2 12.5 
c.7 0.9 0.5 1.0 51. 9 
1 .0 0 . 0  0.0 0 . 7  -G.O 

25.6 1. 9 —0. 0 17.3 3.6 
4 . 6  1.6 - o . c  4.1 7.C 

14.4 1 1 . 4  0 . 0  4 .7 8.4 
6. ù C. 1 0 .  G 3 » o  - 0 .1 
0.3 66 .6 0  . 0  0.5 0.2 

— J. 0 —766.C —c. 0 - O .U  0.2 



TABLE H4(C0NT»J 

ENeRGY 
BAND 

1 
2 
3 
4 
5 
6 
7 
8 
9 

IC 
il 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21  
22 
23 
24 
25 

% CXYGEN ATOMIC ORBITAL 
2S(3I 2P (3) 2P (31 

Z X 

0.0 3.C C.C 
0.5 0.0 -0.1 
7.C 0.0 0.0 
0.3 0.0 0.1 

-G.l 0.0 3.2 
9.1 0.2 -C.C 
0.5 0.1 2.6 
1. g C.2 5.4 
0.3 0.0 4.6 
1.5 0.2 -G.C 
0.0 0.5 C. 1 

-2.8 23.5 0.8 
-0.2 2.1 0.1 

O.C C.C 0, 1 
O.G û .0 3.7 
0. C C. l  1.2 
—0 . c 0.4 4 2.5 
0.7 2.9 10.8 
C.3 0.6 24. 9 
6.1 23.5 0.1 

-3.8 37.0 0.0 
0.1 1.5 c. 0 

79.3 0 .0 0 .0 
— C. 6 0.0 106.2 
-0 .0 -c.o — 0.2 

CONTRIBUTION 
2P (3) 

Y 

O.C 
0 .0 
Û. 1 
3.2 
u.c 

-c. 1 
4,9 

11.5 
0.5 
O.'j 
Û .  ?  

0.5 
15.1 

0. 2 
O.C 
0.8  
9.0 

i!).5 
O.C 
7.3 
6.1 

22. C" 
L # V 

10.6 
-62.5 



TABLE H4(CCNT.) 

ENERGY % POTASSIUM ATOMIC CRBITAL CDNTRieUTIDK 
BAND 4S 4P 4P ^jp 

Z X Y 

1  0 . 0  0 . 0  0 .0 —  ù  .  C  
2  0 .  1  9 1 . 4  - C . 4  — 3  .  U  
3  8 8 . 1  0 . 5  1 . 4  0 .  1  
4  2 0 . 3  0 . 0  7 5 . 1  - 0 . 1  
5  4 .  8  C . C  0 . 1  6 7 . 7  
6  3 . G  6 ,e - 0 . 5  - 1 .  1  
7  ~ 0 «  C  GoG — 1 . 4  —6 .  3 
8 0 . 6  C .O - C . 3  -0 . 9  
9  0 . 1  0 . 0  —G « 3 —û .  C 

IC C .  2  c .  1 - C . 4  - 0 . 9  
1 1  0 . 2  o . c  — C . O  - 0 . 0  
1 2  G . 2  0 . 2  C . o  -0.1 
1 3  G . C  O . C  —  G .  4  -0. 1  
1 4  0  .0 0 .0 -0 . 0  - 0 . 0  
1 5  -0. C 0 .  0  0 . 0  — 0  . 1  
1 6  - 0 .0 C . C  0 . 0  - o . c  
1 7  0 .0 0 . 0  —0 «0 - 0 . 5  
1 8  - 0 . 0  C . C  -C.C -û . l  
1 9  c . o  o . c  -C.O - 1 . 2  
2 0  — 1 . 6  0 . 2  - 0  . 4  —û .  ') 
2 1  C.6 C . l  - l .C 0. C 
2 2  0.9 0 . 3  - 4 . 7  -0. 1  
2 3  4 . 7  C. 1 -G.C -G. 3 
2 4  3 . 4  5 1 . 7  - 1 1 3 . 4  -2657.7 
2 5  - O .G - 1 2 . 7  1 0 0 7 . 1  22.9 



TABLE H5 MULLIKEN POPULATION ANALYSIS OF CRYSTAL 
R SYMMETRY POINT 

ENERGY % TANTALUM ATOMIC ORBITAL CONTRIBUTION 
BAND 50 2 5D 50 5D 2 2 50 

z XZ YZ X -Y XY 

1 O.C -0.0 O.C 0.0 -0.0 
2 0.0 -0.1 -0.1 0.0 -0.2 
3 O.C -0.1 -0.2 0.0 -0.3 
4 0.0 -1.2 -0. 1 0.0 -0.0 
5 0.0 -0.0 -0.0 0.0 -0.0 
6 2.1 0.1 -C.C 6.8 -0.0 
7 7.3 -c .c  c.s 2.5 0.7 
8 0.1 O.C 0.8 0.1 0.9 
9 O.C 63.C 2. I  0.0 4.1 

10 0.5 0.7 22.2 0.6 46.6 
11 0.7 4.2 44.1 2.2 17.6 
12 0.1 0.3 0.4 80.0 0. 9 
13 80.5 0.1 0.4 0.1 G.O 
14 C. 0 O.C C.2 -0.0 0.2 
15 —0.1 0.0 0.5 0.1 0.6 
16 O.C C.l 0.5 0 .0 0.4 
17 -0.6 0.1 0.1 -2.0 U.l 
18 -1.8 c.o 0.0 -0.6 0.1 
19 0.4 c. u U. 0 C « V 0 .0 
20 9.2 0.1 0.1 1. 1 0.2 
21 1.2 0.0 0.1 8.8 0.1 
22 C. 1 0.2 C. 1 C. 1 C.l 
23 0.0 c . 4  14.3 O.C 13.9 
24 0.0 C.C 13.6 0.0 13.9 
25 0.0 32. 1 C.C 0.0 C. 0 

ORBITALS AT 

6S 6P 6P 6P 
z  X Y 

93.7 0.0 0.0 0.0 
O.C 1.2 1.4 2.6 
0.0 1.3 C.4 0.0 
0.0 0.6 1.3 0.4 
0.0 0.2 C-2 C.l 

-0.0 12.7 12.9 66.7 
-0.0 46.9 42.5 0 .  V 
0.2 32.7 39.7 30.6 
0.0 . 0.1 C.O 0.1 

-C.C -0.0 C.O -C.C 
0.0 0.1 0.0 -C . O  
O. o  -0.0 4.0 3.0 

-0.0 6.1 0.4 C.5 
O . C  0.0 O.O 0.0 

-0.0 0.2 0.3 0.0 
0.0 1.0 0.8 l.C 

— 0 .  0 2.7 2.9 9.2 
0.0 9.2 8. 2 -0.0 
6.0 1.0 0.9 0.9 
0. C -7.8 -0.7 -7 .8 
0.0 -1.7 -9.3 -5.4 

-O . C  -7.1 —6 .4 -3.7 
-C. C 0. G  C. C 1. 8 

0.0 0.1 0.2 -0.0 
—0. G 0.4 0.3 0.0 



TABLE H5(C0N1.)  

ENERGY % OXYGEN ATOMIC ORBITAL 
BAND 2S(1) 2P Cl) 2P (1) 

Z X 

1 0. C 0.0 2.1 
2 0.1 -0.1 -C.O 
3 -0.1 -0.2 0 .0 
4 -0.0 — 2. 6 C.O 
5 2.5 0.1 -0.0 
6 -2.2 0.4 2.1 
7 -7.3 0.7 5.4 
8 —6.1 0.7 1.4 
9 -0. 0 14.3 o.c 

10 0.0 0.1 o.c 
11 0.0 1.2 o.c 
12 5.2 0.3 — Co 1 
13 1.4 0.2 0.6 
14 -0. C 34.4 0.3 
15 —0.0 13.1 3.5 
16 -C.O 0.0 0.0 
17 0.4 0. 0 15.4 
18 1.2 1.3 37.1 
19 1.2 0.0 29.4 
20 4.8 -0.0 0.3 
21 59.4 0.2 2.0 
22 39. 6 0.1 0.3 
23 0.0 0.2 C.O 
24 C.O C-0 -0.0 
25 O.G 35.6 C.O 

CONTRIBUTION 
2P ( l i  2S(2) 

Y 
2P (2) 

Z 
2P (2) 

X 
2P (2) 

Y 

-O.G 0.0 0.0 0 .0 2.1 
-1.4 -G. C -1.4 —1 .6 0.0 
-1.4 0.0 -0.5 -0.7 O.C 
-0.1 -0.1 -0.5 -Û.l 0.0 
0. 1 1. 6 -0.1 -0.1 0.0 
0,9 -11.7 0.2 0.1 7.7 
C.3 -C. 0 C-1 O.G 0.0 
1.4 —4.4 0.3 0.3 C.6 
1.2 -0.0 0.0 0.1 0.0 

16. 1 0. c 0.8 1.6 O.C 
7.5 0.2 1.3 0.5 O.C 
0.7 4.9 Ool C.O 0.1 
0.1 1.8 0.0 0.0 0. 9 
4.3 0.0 10.5 11.4 —C. 0 

11.3 c. c 20.4 23.2 o.c 
11.2 -0,0 37.9 34.3 c.l 
-0. Q 1.7 0.0 0 .0 55.4 

G.2 O.C 0.8 0.8 c.c 
0.0 1.2 0.0 0.0 30.3 
0.1 48.2 -0.0 0.4 1.9 
-0.0 33.C 0.3 -C.O 0. 5 

0.2 22.6 0.5 C .4 0.1 
22.7 G. 8 13. 8 13.4 O.C 
22.5 O.C 15.4 15.8 o.c 
0. 1 — L .  (; 0 .  0 0 « 0 • 0.0 



TABLE H5(C0NT.) 

ENERGY 
BAND 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 

% OXYGEN ATOMIC ORBITAL 
2S(3> 2P (3) 2P (3) 

Z X 

c.c 2.  1  C.O 
0.2 -0 .0 -0.1 

-0.1 0.0 0.1 
O.C 0.0 -2.9 
2.7 0 .0  C.l 

-2.  2 2.0 C.4 
—a « 1 6.0 0.5 
-5.1 1 .1 0.8 
-o.c C.O 14.1 

0 .0 0.0 0.2 
-0.0 0 .1 1.2 
0.0 -0.0 0.0 
6.9 -1.0 0.3 
C. G 0.3 34.5 
O.C 3.5 13.2 
C.l 0.1 0 .0 
C.4 14.2 c. c  
1 .5 4Q.D 1.3 

-0.2 23.7 0.0 
49.0 C.7 0.2 
10.5 0.2 —J .0 
44. 3 0. 5 C.2 

C.C C . v- C.2 
c. c ••J . 0  0.0 
c.c 0.0 35.6 

CONTRIBUTION 
2P (3) 

Y 

-0.0 
—  1 * 1  

-1 .0  
— C. B 

0 . 1  
0.8 
0.4 
1.3 
0.6  
8.1 

18.6  
Û. O 
0.7 
3.9 

It .2  
12.5 
0.0 
0 . 1  
Û .0 
o.c 
0 . 1  
C.l 

2 3 . 2  
21.9 
0 . 2  



TABLE H5(C0NT.) 

ENERGY % POTASSIUM ATCMIC ORBITAL CONTRIBUTION 
BAND 4S 4P 4P 4P 

Z X Y 

1 û.O C.C C.G 0.0 
2 6.3 47.9 38.1 8.4 
3 C. 2 52. 1 46.1 4.4 
4 1 «4 1.3 16.5 86.9 
5 81.7 2.6 3.0 5.2 
6 0.0 -O.C -C.C 0. 1 
7 G,G 0.3 0.3 -0.0 
8 2. 1 0-2 0.1 -0.0 
9 O.C — O.G — G « G 0. 1 

IC O.G 0.1 0.0 0.0 
II 0. C 0.1 0.2 0.0 
12 0.0 0.0 -O.C -0.0 
13 c . c  0.0 0.0 -0.0 
14 0.0 -0.0 — C.G 0. 0 
15 0.0 0.0 0.0 -0.0 
16 G. C -0. c  -Co 0 -0.0 
17 O.G - c . c  — C.C — G .  u 
18 0. L 0.0 G .0 -0.0 
19 0 . 0  — 0.0 -C.C — 0« L  
2C 0.0 - 0 .2 —0 .0 -0.1 
2 1  c. 0 0 .0 — 0  -  1  - c . o  
22 8 . 2  -0 .2 - c . 1 -0. 2 
23 0 . 1  - 2 . 4  -2.4 —G .  3 
24 G. 0 -1. e  - 1 . 7  -0.  c  
25 0 .0 0.1 0 . 1  — 4. o 
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Appendix I. TBA Results of Na^WO^(x=l.0) 

Uslpg the same notation as in Appendix G, Table II 

contains the eigenvalues of crystal orbital funetion^^(k,r) 

for the i th energy band and Tables 12 to I5 are the corres­

ponding % atomic orbJtal contributions. 

The Fermi energy ia -3.22^2 Rydbergs. 



E l k )  V S .  k ELECTRON STATES/RYOHMIT CELH»lo') 
NOXWO3 (X'1.0) 0.00 2.00 4.00 6.00 8.00 10.00 12.00 

-0.5 

-1.5 

-2.5 

FERMI ENERGY 

a Tzst 
t -3.5 '25 

-4.5 

5.5 

6(E) 

Figure II. NaWO^ energy banda, 



TABLÉ I I E(K) VS. K: ENERGY BANDS AT THE 
ZCNE OF SODIUM TUNGSTEN BRONZE 

ENERGY SYMMETRY POINT 
BAND GAMMA X 

1 0.178494E Cl G.49772lE 
2 -C.738371E CO C.473387E 
3 -Û.925617E 00 0.39CieiE 
4 -0.954683E 00 0.688576E 
5 -0.25534ÙE Cl -C.144737E 
6 -0.255974E 01 -Q.255927E 
7 -0.258314E Cl -0.262527E 
8 -0.271399E Cl -0.2654142 
9 -0.271547E 01 -0.269922E 

10 -C.295949E 11 -0.271037E 
11 -0.308620E Cl -0.3C8638E 
12 -0.31574CE 01 -0.319573E 
13 -0.3221C6E Cl -0.326368E 
14 -0.322787E 01 -0.328G5oE 
15 -0.332111E Cl -C.329274E 
16 —û #332646E 01 -0.334659E 
17 -0.386235E 01 -0.336993E 
18 -0»396189£ Cl -C.3Ô75C1É 
19 -0 .396253E Cl -0.371564E 
20 -0.5C3756E Cl -0.383132E 
21 -0.505017E 01 -0.40C2S3G 
22 -0.551776E 01 -0.418687E 
23 -C.661C39E 01 -C.587987E 
24 -0.719572Ë 01 -0.77C267E 
25 -0.72082ÛE Cl -C.e0C292E 

0 1  
01 
Cl 
00 
01 
Cl 
01 
Cl 
01 
Cl 
Cl 
01 
01 
01 
Cl 
Cl 
01 
Cl 
01 
01 
Cl 
01 
01 
01 
01 

SYMMETRY POINTS OF THE BRILLGL'IN 

M R 

0 .574126E 03 C, l i6693E C4 
0 .585841E 01 -0. 200650E 00 
0 .35617CE Cl —c. 942852E 00 

-0 .316201E 00 -0. 131859E Cl 
— C -136859E 01 -0. 2412C1E 01 
-0 .18915CE Cl -0. 278757e Ci 
-0 •266169E Cl -0. 279475E Cl 
-C .  269529E Cl —G. 282527E 01 
-0 .271761E 01 — c .  3C1882E 01 
-0 .285791E Cl -û « 307885E 01 
-0. .3C55430 Cl —c .  3C9464E 01 
-0 •309954E 01 -0 « 316893E 01 
-0 .322471E Cl -0. 318935E 01 
-u .323012È 01 — c. 323857E 01 
-0 •326263fc 01 -0. 326376E 01 
-G.32653CË 01 -0. 328558E Cl 
-0 .330138E Cl -G. 360483E Cl 
-0 .341663E 01 —0. 360733E 01 
-0 .352958E 01 —c. 4C6588E Cl 
-0 •356781E 01 -0. 553099E 01 
-C .4C469CE Cl -c .  555377E 01 
-0 .448079t 01 -û. 733287É 01 
-G.546617E 01 —u .  141740 E 02 
-0 .625044E Cl -0. 165358E \:2 
-C .8S3844E Cl -  c .  582785E 02 



T A B L E  1 2  M U L L I K E N  P O P U L A T I O N  A N A L Y S I S  C F  C R Y S T A L  
G A M M A  S Y M M E T R Y  P O I N T  

E N E R G Y  Z  T U N G S T E N  A T O M I C  O R B I T A L  C O N T R I B U T I O N  
B A N D  5 0  2  .  5 0  5 D  5 0  2  2  5 0  

Z  X Z  Y Z  X  - Y  X Y  

1  - 0 . 0  - O . C  —  0 .  0  - 0 . 0  - C . O  
2  1 . 0  0 . 0  0 . 0  3 . 4  0 . 0  
3  3 . 6  O . C  0 . 0  1 . 0  0 . 0  
4  0 . 0  0 . 1  0 . 2  0 . 3  c . 2  
5  2 . 2  0 . 0  3 8  . 7  0 . 6  4 3 . 9  
6  0 . 3  1 3 . 6  3 7 . 8  1 . 0  3 2 . 2  
7  0 . 0  7 3 . 0  6 . 3  0 . 0  6 . 6  
8  2 . 2  0 . 1  2 . 7  4 3 . 1  0 . 1  
9  4 3 . 2  0 . 1  0 . 2  2 . 1  3 . 0  

1 0  c . o  0 . 0  0 . 5  0 . 1  0 . 5  
1 1  0 . 4  1 . 0  C .  1  1 . 3  0 . 1  
1 2  0 . 5  0 . 0  0 . 0  0 . 2  0 . 0  
1 3  0 . 1  1 0 . 7  0 . 5  0 . 3  0 . 5  
1 4  0 . 0  0 . 0  0 . 0  0 . 0  C .  C  
1 5  0 . 0  0 . 0  6 . 9  0 . 0  5 . 7  
1 6  0 . 0  0 . 8  5 . 7  0 . 0  6,8 
1 7  0  . 0  0 . 1  O . C  c.c C .C 
1 8  2 4 .  7  C . O  0 .0 2 6 . 6  0 .0 
1 9  2 6 . 7  O . C  0 . 0  2 4 . 8  C . O  
2 0  - 5 . 7  O . C  0 . 0  - 1 . 0  O.C 
2 1  — 1 . 0  0 . 0  0 . 0  - 5 . 7  C .O 
2 2  0 . 0  0 . 0  0 . 0  U.O c . c  
2 3  0 . 4  0.3 0 . 1  1  . 3  c  . 1  
2 4  1 . 3  c .  c  c . 2  0 . 4  c . 2  
2 5  0 . 0  0 . 2  0 .0 0 . 2  O.C 

C R B I T A L S  A T  

6S ÔP 6P 6P 
Z  X Y  

7.5 -0.2 -0.2 -0.2 
0.0 24.3 26. 3 33.4 
0.0 42.1 47.1 0.3 
1.6 22.2 14.8 54.2 
0.0 0.0 C.C 0. C 
0.5 0.3 0.3 O . C  
C.3 C.6 0. 6  0.1 
0.0 0.1 4.7 3.1 
O.C 4.5 0.2 2.7 

45.9 0,9 0.9 2.5 
1.1 1.3 1.3 1.1 
0.0 0.1 0. 1 C.O 

-0.0 0.1 0.1 -0.0 
0. G 0.8 C.B -O.C 

-0.0 0.2 C.2 C.O 
ù.l 0.2 0.3 0.7 

69.C -0.4 -C, 5 — G, 3 
-0.0 -0.3 -0.7 — 0.1 
0,0 -0.5 -0.1 -C.8 
C.O 3.0 2.2 0. 1 
0.0 0.5 1.3 3.4 

-13.6 1.9 1.9 1. j 
—V • 3 -0.3 -0,?. 

0.0 -0.9 -1.2 -0.0 
3.2 -0.5 -C.3 -1.  ̂  



TABLE I2(C0NT.» 

ENERGY % OXYGEN ATOMIC ORBITAL 
BAND 2S(1Î 2P (1) 2P ( iï 

Z X 

1 4.7 Û.O 0.0 
2 1-7 1.3 0.1 
3 3.1 0.9 0.1 
4 1.0 0.1 -0.1 
5 -0.1 0.0 1.2 
6 0.0 0.6 0.1 
7 G.C 5.3 0.0 
8 -2.0 C.5 27.8 
9 -0.2 0.3 2.7 

10 -1.9 — 0. 0 16.3 
11 0.0 4.7 1.4 
12 —0. 0 3.9 0.4 
13 c.c 32.1 1.6 
14 û.O 46.3 0.0 
15 -O.C 0.0 O.C 
16 —0 .0 2.8 0.0 
17 -1.6 0.3 16.0 
18 -0.5 C.C 30.4 
19 -O.C O.C 2.0 
20 40.2 -0.0 C.8 
21 24.1 0.1 0.5 
22 41.2 -0.0 l.û 
23 0.2 -c. 5 — C. 6 
24 1.0 -0 .6 -0.6 
25 —C. 1 1.5 -0.4 

CONTRIBUTION 
2P (I l 2St2) 

Y 
2P (2) 

Z 
2P (2) 

X 
2P (2) 

Y 

0.0 4.7 -0.0 -0.0 O.C 
1.4 2.2 1.2 1.3 0.4 
0.1 0.0 0.3 0.4 —0. 0 
0.8 3.6 0.6 0.5 -0.2 
2.0 C. 0 3. 5 4.0 0.0 
1.3 -0. 1 4.6 4.0 1.0 
0.4 c.o 0.5 0 .5 —0 .  0 
0.1 -1.1 O.C -0.0 16.9 
1.5 -1.0 -OoO U.O 14.1 
1.1 —1.6 2.2 1.9 14.3 

21.8 -0. 1 16.7 17. 1 4. S 
29.3 0.0 14.3 14.2 0.0 
0. 0 -G. C 7. 6 7.7 0.1 
1.9 —C.C 1.4 1.6 O.C 

13.0 V * V 31.0 26.9 0.0 
24.5 O.C 15.3 19.2 c. c 
0.3 -1.3 0.6 0.6 16.ù 
0. 0 -0. 1 0.0 O.C 2.8 
0.0 -C.5 -u. C 0.0 29.6 
0.0 1.0 —0 .  u -0 .0 -0.0 
0.0 63. 1 0. 0 0.0 l. i> 
0.0 40.3 —«J .  1 -0.0 0.7 

-0.6 1.3 -0.5 -0.5 O.C 
C.4 O.C 1. 2 1.0 -0. c 
C.5 0.2 -0.4 -0.2 -1.4 



TABLE I2(CCNT,) 

fcNbRGY i  OXYGEN ATOMIC ORBITAL CONTfl. 
BAND 2S(3J 2P (3) 2P (3) 2P 13 

Z X Y 

1 4.7 0.0 -c.c -0.0 
2 1.6 0.1 1.4 1.5 
3 2.7 0.2 0.9 -0.0 
4 1.5 — 0.2 C.l 0.9 
5 —0.1 1.3 C.C 1.8 
6 o.c 0.1 0-6 1.5 
7 0.0 C.O 5.3 C.4 
8 -0.1 1.4 0.4 1.5 
9 -2. c 29.3 C.4 0.1 

10 -1.8 16.C — C.O 1.4 
11 O.C 1.5 4.7 20.9 
12 -O.C 0.5 3.9 29.8 
13 0.0 1.5 34.3 O.C 
14 O.C 0.1 44.5 1.9 
15 O.C — 0.0 C. 1 16.3 
16 0.0 0.0 2.7 21.1 
17 -1. 3 14.4 C.3 0,3 
18 —0 .  5 16.1 C.O 0. 1 
19 -C.5 17.7 0.1 —0 .0 
20 55.6 1.4 c. G O.C 
21 9.7 0.3 0.1 c . l 
22 40.7 0.6 -0.0 0.0 
23 0.2 — 0.6 -C.5 -0. 6 
24 0.8 -0.3 -0.4 0.8 
25 -0.1 — 0.6 1.3 C. 1 



TABLE I2(CGNT.J 

ENERGY % SCCIUM ATOMIC ORBITAL 
BAND 3S 3P 3P 

Z X 

1 79.0 -V. 0 -C.O 
2 0.0 — 0.6 -C.9 
3 0.0 -1.3 -1.5 
4 C. 3 — 0.6 -0.4 
5 -0.0 0.4 0.4 
6 -0. 0 0.1 0.2 
7 — û e c — 0.0 -0.0 
8 -0.0 -0 .0 -0.8 
9 -C.G -c. 8 -0.0 
10 -3.1 1.5 1.6 
11 -0.1 -0.5 -0.5 
12 -C.O 1.5 1.5 
13 -0.0 0.1 0.1 
14 —c. 0 0.0 L.C 
15 -o.c -0,2 -0.2 
16 -c.c -0.1 -0.1 
17 -10.3 -0.4 -0.5 
18 0.0 0.5 1.0 
19 -0.0 0.5 0 .0 
20 0. c 1.4 1.0 
21 -0.0 0.2 0.5 
22 -16.7 -0.1 -0.1 
23 -0.1 33.8 34.0 
24 -Û .0 42.3 53.6 
25 -0. 3 22,6 1Î.2 

CONTRIBUTION 
3P 

Y 

-0.0 
- 1 . 1  
-0.0 
- 1 .  5  
c.o 
0 . 1  

-G. c 
-0.6 
-0.5 

0 .8  
-0 .2  
Oo C 
2.7 
0.0 
" c a c 
-0.0 
-Q.b 
G. 1 
0 .9 
C. G 
1.4 

—G .0 
32. y 
C.7 

65.4 



TABLE 13 MULLIKEN POPULATION ANALYSIS OF CRYSTAL 
X SYMMETRY POINT 

ENERGY 2 TUNGSTEN ATCKIC ORBITAL CONTRIBUTION 
BAND 50 2 50 50 50 2 2 50 

Z XZ YZ X -Y XY 

1 0 .0  0 .0  o .c  0 .6  O . C  
2  0.4 —0.  0  0 .0  0 .1  0 .0  
3  -0 .1  -o . c  -0 .0  -0 .1  — 0 .  c  
4 -0 .3  -0 .1  -0 .2  —0.6  -0 .1  
5  0 .0  0 .1  Ca 0  1 .2  0 .1  
6 1.5 0 . 6  64.2 3.4 0 . 1  
7 22.5 1.3 20 .  C 1. 2  c . l  
8  20.7 2.5 5. 1 24.4 C. 6  
9 0 .2  22.4 0.1 0.1 67.1 
10 Oa 1 64.1 O . C  1 .6  22 .8  
11 5.2 -0.1 0.0 13.8 -C.3 
12  0.5 -0.5 0.1 -0. 0  -0.3 
13 3.0 4.2 0.2 6.8 C.2 
14 0.1 0.2 0.1 1.5 3.6 
15 0.3 1.9 0 . 0  1 . 6  4.8 
16 .2-0 3.2 2.C 6. 1 1 .0  
17 0 .8  0.4 3.7 2 .G C.3 
18 6.7 0.1 C.O 15.S 0.0 
19 0 .2  -0.1 0.1 4.5 c . l  
20  4.8 -0.0 C.C 3.8 c.o 
21 30.0 0. c o.c 6 .1  C. C  
22 0.0 -0 .0  0  -0 .1  -0 .0  
23 2.5 0. c  C . C  7. 3  — 0  «  0  
24 -0.8 —o.c 0 .0  —  0 . 6  -0 .0  
25 —C.4 - 0.0 0 .0  -0 .1 -0. 0  

DRBITALS AT 

6S 6P 
Z 

-0.0 24.3 
0.0 72.2 
-1.1 -6.5 
-0.5 -O.C 
1.4 0 .0 
5.4 0.0 

12.1 3.5 
3.8 0.2 
0.2 0. 0 
0.5 0.0 
-0.9 -0.1 
0.0 -0.1 
6.1 -0.0 
0.4 1.1 
1.5 0 .6 
4. 1 0. 8 
2.1 1.5 
0.0 —0 .6 

-3.1 — 0. 7 
6 .6 -0.0 
2. 1 0.3 
53.2 — V. u 

7.6 -0 .0 
-0. 1 0.1 
-2.2 1.0 

6P 6P 
X Y 

C.C 88.2 
-0.0 20.3 
-0.0 -18.2 
12.5 — G.4 
105.3 0.0 
-0.0 -o.c 
0.3 C. 6 
C.5 3.7 
0. G 0.0 
C.l 0.1 
0.0 -0.0 
0.1 c.o 
0.1 C.2 

— Co 5 1.C 
-C.C 0.3 
-C.8 O.C 
-C.2 1.6 
3.6 0.1 
8.C C.3 
0 . 1  -l.i 
C-3 1.0 
1.6 C.9 
—7 a ti —0.J 
0.4 0.0 

-C.O 0.0 



TABLÉ I3(C0NT.) 

ENERGY % OXYGEN ATOMIC ORBITAL 
BAND 2S(1) 2P {1> 2P {1) 

Z X 

1 C.O 0.1 0.0 
2 -O.C C.l -0.0 
3 —0 .0 0.0 —0 . 2 
4 28. 0 -0.0 —0.1 
5 — 7. 6 0.0 6. 1 
6 —0 .1 1.1 0.2 
7 —0. C 2.9 . 0.3 
8 -o.c 0.2 0.0 
9 —0*0 -0.2 0.0 
IC -C.O — 0.6 0. 0 
11 1.8 21.6 2.5 
12 -O.C 53.2 0.1 
13 1.8 0.8 25.3 
14 C.6 C.2 0.1 
15 C.7 1.0 2.7 
16 0.8 11.2 5.3 
17 C.2 0.4 5. 9 
18 6.2 1.8 22.9 
19 4.2 5.3 25.6 
20 C.7 -C. 1 1.1 
21 -0.0 J.6 0.1 
22 3. 5 0.2 1.3 
23 123.6 -0.0 1.4 
24 0.2 0.3 0.0 
25 C.3 — 0. 0 0. C 

C CM RI BUT ION 
2P (1) 2S(2) 

Y 
2P (2» 
Z 

2P (2) 
X 

2P 12) 
Y 

0.0 6.1 1.0 -C.C c.9 
o.c C.4 3.1 -0 .0 0.2 
-0. 1 2.9 -0.3 -o.c -0. 5 
-0.0 C.l —0 .4 1.5 O.C 
-0.0 -C.l 0.1 -0,6 0.0 
1.2 l.C 4. 6 C.C 2.7 
3.0 C.7 0.0 O.C 0.3 
2.2 C. 2 C.9 0.1 26.2 

-0.5 O.G C.C 7.5 0.1 
0.5 C.C 0.0 2.3 1.5 
38.0 2.2 C.C 1. 1 6.2 
30.7 0.9 0.6 2.6 1.1 
7.5 -C.2 2.1 1.0 1.5 
0.1 j.7 25.0 29.3 C.c 
3.9 —C.C 11.9 39.8 0.1 
O.C 0. C 22.0 13.0 0.8 

-0.0 c.l 28.1 3.7 2.2 
-c. c 0. 6 U.7 0.1 7.7 
1 .0 0.2 0.1 0.4 1.2 
10. 1 19.4 0.1 -0.0 39.4 
1.1 15.0 G. G 0. c 4. S 
1.1 21.5 0.0 0.0 2.8 
C.C C. l 0. c 0.7 -O.C 
C.6 24.8 -C.O 0 .0 C. 1 
-0.4 11.2 -C.C -0 .c 0.1 



TABLE I3CC0NT.) 

ENERGY % OXYGEN ATOMIC ORBITAL CONTRIBUTION 
BAND 2SC3) 2P (3) 2P (3) 2P (3) 

Z X Y 

1 2.5 Û.2 -0.0 3.6 
2 1.5 0.8 -0.0 0. 9 
3 1.5 —0.3 0.0 -0.9 
4 — C# 0 —G. C 1.6 -0.2 
S 0.6 0.0 — 0.6 C.C 
6 1.3 3.3 0.1 7.2 
7 3.3 21.6 C.l 0. 3 
8 -0.2 5.3 0.3 C.3 
9 -G. C 0.3 2.6 0.0 
10 0.1 0.0 6.9 0. 2 
11 1.3 5.6 C.3 0.1 
12 1.0 1.0 4.7 0.0 
13 0.9 0.0 37.6 0.0 
14 -C.C 0.0 2.0 32.5 
15 -C.l 0.4 13.6 14.8 
16 0 .6 0.1 28.2 l.C 
17 -C.C 0.9 4.5 37.0 
18 6.1 25.9 C.2 0. 1 
19 24.9 17.6 C.l 0.8 
20 C.2 0.6 C.l 1.9 
21 16.9 13.5 C.O O.C 
22 5.2 3.4 û .0 -0.0 
23 -G.I C.O C.7 c. 1 
24 7.4 0.1 o.c -C.O 
25 29.9 0.2 0.0 0.0 



TABLE I3(CCNT.) 

ENERGY X SODIUK ATOMIC CBBIT^ 
BAND 3S 3P 3P 

Z X 

1 -0.0 1.4 -29.3 
2 -C. 1 0.3 -C.l 
3 0.0 —0.6 125.5 
4 59.4 -0.0 -0 .0 
5 -7.6 0.3 -C.G 
6 —0.1 1.1 -0.1 
7 -G. 3 0.3 -0.2 
a —0 .1 3.1 -C. 1 
9 —0.0 0.1 -0.0 
10 -0.7 0.5 -c.c 
11 —0 .0 1.3 c.3 
12 -0.3 2.0 0 .0 
13 — 0. 1 -0.0 0-2 
14 0.6 0.4 0.0 
15 — 0. û 0.0 U.l 
16 -1.6 0.1 C.l 
17 -û .4 0.0 0.2 
18 -2. 5 0.1 C.l 
19 -5.0 0.3 1.2 
20 -C.7 12.8 0.2 
21 -C. C 3.9 -Cm 0 
22 -3.2 4.6 2.4 
23 -36.6 0.7 —0 .4 
24 0.0 49.7 — 0.3 
25 -0.0 17.2 -i>.o 

CONTRIBUTION 
3P 

Y 

C.3 
0.1 

- 1 . 1  
- 0 .1  

1 . 2  
1.3 
5=7 
C. 2 
0 . 1  

-C.l 
0.2 
2.7 
0.7 
0. 1 

-o.c 
c. 1 
c.l 
4 . 1  
12.4 
-C.l 
3.8 
1 . 1  
0.2 

16. C 
48.3 



TABLE 14 MULL IKEN POPULATION ANALYSIS OF CRYSTAL 
M SYMMETRY POINT 

ENERGY % TUNGSTEN ATOMIC ORBITAL CCKTRIBUTICN 
BAND 50 2 . 5D 50 50 2 2 50 

z  XZ YZ X -Y XY 

1 0.0 O.G 0.0 0.0 - 0 . 0  
2 — 0. 4 - o . c  —0. 0 —0.6 0.0 
3 -0.0 - 0 . 0  -0.2 -0.1 - c . o  
4 0.3 0.0 —0 .0 0.8 -0 .2 
5 3.4 0.0 0.0 1.1 — 0.6 
6 0.7 0.1 0.0 2.3 0.1 
7 6. G 32. C 0.6 0.1 2 3 . 3  
8 1. 2  27.5 52.9 0.0 4.7 
9 0.9 31.0 37.7 0.2 15.0 
10 37.4 C.6 0. 4 0 . 2  35.9 
11 9.2 -0.1 -0.1 0.9 11.6 
12 0.4 0.0 0.1 82.2 0.1 
13 0.0 C.l -0.1 0.0 — c .  c  
14 û.O 0.2 -0.3 -0. 0  0 . 0  
15 0.1 -0. c  -O.C 0.0 c.6 
16 0.1 2.7 5.8 0.0 .... C.4 
17 0.0 5.8 2.6 —0.1 0.1 
18 0.1 O.C O.C -0.1 3.8 
19 -0.3 0.6 0.3 -0.0 2.0 
20 —0. 1 O.C 0.3 0.4 0 . 3  
21 45.2 0 . 0  0.0 0.0 0.4 
22 -2.1 0 . 0  - 0 . 0  0.1 0.3 
23 —0. C I* « L 0. G 12.3 C.L 
24 -2.1 — 0  . 0  0.0 0 . 0  1.8 
25 0.2 O.C O.C 0.0 0.2 

ORBITAL5 AT 

es 6P 6P 6P 
Z X Y 

c.c 97.4 -0. c -C.C 
-4.4 -0 .0 -43.1 0.0 
-0.3 —0. 0 -0.7 -7.5 
38.7 0.1 0.5 16.1 
3.9 0.1 1.1 57.0 
0.0 O.C 68. C 9.7 
2.8 0.0 7.3 7.5 
0.5 0.0 0.8 1.0 
1.4 -O.C 1.8 1.7 

-0.0 0.5 1.9 1.9 
3.6 0.4 1. 0 c.6 
-0.0 0.0 0.5 0.6 
-0.0 -0.0 0.0 0.0 
C.O 0.0 C.l -C.l 
0.2 0.0 0.1 0.0 
0.1 -0.0 —C. 1 0.2 

-0.1 0.0 -c.l -0.1 
-2.2 0.5 -0 .4 -0.4 
0.5 0.0 8.7 2.9 
0.0 0.0 2.6 9.5 
-1.1 0.9 —0.6 —0 .6 
59.6 0.1 -1.7 -1.8 
-0.0 -0.0 -8.7 -7.6 
-6. 1 -c.o C. 1 C.3 
0.2 -0.0 -5.1 -1.9 



TABLE I4(CCNT.I 

ENERGY % OXYGEN ATOMIC ORBITAL 
BAND 2S(i) 2P (iï 2P (1) 

Z X 

1 O.C C.O 0.0 
2 11.3 0.0 -1.4 
3 C.4 -0 .0 -0.0 
4 C.6 0.1 0. 6 
5 -0.0 0.3 0.0 
6 —4. 6 C.l 6.0 
7 3.0 -c.l 0.5 
8 0.3 0.1 -0 .0 
9 C.6 0.5 -0.1 
10 2.6 0.2 0.3 
11 0.2 9.6 0.1 
12 4.5 0.0 3.C 
13 —0.0 61.0 0.2 
14 -û. C 0.8 0.0 
15 -O.C 5.8 2.3 
16 c.o 1.0 2.2 
17 O.C 12.2 4. 5 
18 2.7 5.6 8.1 
19 3.7 2.1 48.5 
20 0.4 0.2 21.1 
21 4-C 0.1 1.7 
22 9. 8 C.3 -0.7 
23 51.2 0.0 1.5 
24 0.1 0.3 0.0 
25 30.7 C.O 0.2 

CONTRIBUTION 
2P <11 2S(2) 

Y 
2P (2) 

Z 
2P (2) 

X 
2P ( 2) 

Y 

-0.0 0.0 O.C -0.0 C.C 
— G. c -c. 9 -0.0 -0.1 -0.0 
-0.0 -3.7 0.0 C.O -Co2 
—0. 5 5.8 0.1 —0 .2 4.2 
-O.C -7.8 0.3 -0.7 1.8 
0.1 -1.8 0.0 0.5 Co8 
c.3 1.3 G. 5 -0.5 C.3 
0.0 0.4 C.l — c. C -O.C 
Ù.l -C.4 -0.3 -0.1 0.1 
1.7 1.3 C. c 0.8 0.2 

25.2 0.7 9.2 0.8 0.2 
0.1 3.2 0.1 0.1 3.5 
4.1 0.0 10.4 7.5 C.C 
10.5 —Ci .0 59.7 13.6 1.4 
18.7 -û. c 2.1 68.8 C.7 
9.3 O.C 5.7 1.9 1.6 
c.e c.l 3.7 0 .8 1.0 
12.8 1.7 5.4 3.9 26.7 
8.6 1.0 1.8 0.1 7.6 
3.4 4.2 0.4 1.0 47.8 
0.1 3.9 G. 1 C. 1 1.6 
2.5 7.9 0.4 0 .6 -0.4 
0. 0 53. 2 C. 0 O.C 1.2 
2.9 O.C c.3 1.3 C.L 
0.1 23.C c.c —0 .0 L . 1 



TABLE I4{C0NT.} 

ENERGY % CXYGEK ATCKIC ORBITAL CONTRIBUTION 
BAND 2S(3) 2P i3) 2P ( 3 ) 2P (3) 

2 X Y 

1 0.0 2.6 C .0 0.0 
2 -0. 3 —0. C C.3 -0.1 
3 0.0 -0.0 C.l -1.7 
4 15.5 0.7 0.0 -0.1 
5 12.3 0.5 -0.0 —0.4 
6 0.5 0.0 0.0 0.1 
7 0.4 0.2 2.8 0.6 
8 0.0 0.1 3.4 6. C 
9 -0.0 0.0 3.1 2 . 1  
10 -C.9 14.0 c. e  - 0. 1  
1 1  -0.1 17.0 c . o  -0.0 
1 2  0 . 0  0.5 0 .0 0.1 
1 3  0 . 0  0 . 1  1 4 . 6  2.0 
1 4  0.0 0.0 2.2 1 1.3 
15 0.2 0.0 0 . 0  0 . 5  
1 6  0 . 3  0.1 22.6 4 6 . 6  
1 7  0.0 0.2 4 4 . 8  2 3 . 7  
1 8  6 . 3  22.8 C . 7  -0.0 
1 9  4 . 2  0 . 9  4 . 4  1 . 9  
2 0  1.2 0.8 1 . 3  3 . 9  
2 1  0 . 8  3 7 . 6  0.0 0.0 
2 2  U .6 1 . 8  0 . 1  0. 1  
23 C.2 G. (!• 0.2 0.1 
24 60.5 C.2 0.0 0.0 
25 0 . 1  0 . 1  c.l o . c  



TABLE IA(C0NT,) 

ENERGY S SODIUM ATCKIC ORBITAL CONTRIBUTION 
BAND 3S 3P 3P 3P 

Z X Y 

1 0.0 0.0 0.0 -0.0 
2 -O.C —6 .3 2 .6 143.4 
3 -0.0 -0.8 113.1 1.6 
4 10.9 6.7 0.1 — 0.6 
5 23.3 2.1 2.0 0.3 
6 2.7 0.4 0.8 13.5 
7 6.8 2.3 1-4 0.1 
8 1.0 0.1 -C.O O. C  
9 2.8 0.4 1.4 0.0 
IC —0.6 0.6 0.9 - 0.0 
11 9.8 0.4 0.1 -0.0 
12 0*0 0.0 0.8 0.2 
13 -C.O 0.0 0.1 - 0.0 
14 0.3 0.0 C.2 -0.0 
15 -0.1 0.0 -0.0 -0.0 
16 -0.7 0.0 0.1 0.0 
17 C.O 0.0 C-4 0.1 
18 -1.5 3.1 0.4 0.2 
19 0.1 0.8 0.3 -0.1 
20 -0.4 C.3 1.3 -0.0 
21 0.3 4.7 0.4 0.1 
22 7.1 14.6 1.3 -0.5 
23 0.1 O.C -0.7 -3. 1 
24 39.8 0.6 -0.1 C.O 
25 0.4 61.7 -2.9 -7. 1 



TABLE 15 KULLIKEK POPULATION ANALYSIS OF CRYSTAL 
R SYMMETRY POINT 

ENERGY % TUNGSTEN ATOMIC ORBITAL CCNTRIBUTIGN 
BAND 5D 2 . 5D 50 50 2 2 50 

z XZ YZ X -Y XY 

2 G.G 0.0 0.0 0.0 C/.O 
2 0.0 -0.2 -0.0 C.G -C.G 
3 1.2 1.2 0.3 3.3 C.3 
4 4.5 0.0 O.I 1.7 0.1 
5 0.0 5.6 3.6 0.0 3. Ô 
6 0.1 45.9 28.6 0.4 28.4 
7 O.C 0.0 50.7 0.0 51.4 
8 -0.0 54.6 17.5 0.0 16.9 
9 4.2 -l.C 1.0 24.8 1.1 
10 67.6 -C.G -O.C 13.5 -C.G 
11 9.7 -0.0 0 .2 43.5 C.2 
12 0. 3 -0.0 —C. 2 0.5 -C.2 
13 0.1 —0 .7 0.6 0.1 C.6 
14 -G.l O.C. 0.1 -0 .0 0 .0 
15 -O.C — C. c C. 5 -0.0 C.5 
16 Ù.0 0.6 0.5 0.0 C.6 
17 -C. 1 -O.C — O.C 0.0 - v. 0 
18 -O.C -O.C -O.C — 0.1 C. c 
19 0.2 -C.G -0.0 0 .C —w .0 
20 3.1 -O.C -0.0 9. 1 —c. c 
21 9.2 -0.0 —O.C 3.1 -  c.  c 
22 0.0 -0.1 -0.1 0.0 -0.1 
23 O.C -C.3 -1.8 c.t  -1. 8 
24 -O.C -0.0 -1.5 -0 .0 — 1.6 
25 G.Û 5.6 C. 0 0.0 C.G 

ORBITALS AT 

6S 6P 
z 

93.4 0.0 
C.2 16.0 

-O.C 15.5 
-O.C 46.3 
u. 1 17.5 
0.0 0.0 

-0.0 0.0 
C.L 0.8 

—0 .0 0.7 
-G.C 1.1 
-C.o 1.2 
O.C 0.2 
0.0 0.2 

—C .0 0.1 
0.0 0.2 
G.C 0.9 
0 .0 7.4 
0. 0 5.6 
6.3 1.1 
0.0 -3 .2 
0.0 -9.8 

-U .0 —4 .6 
— G. U 0.0 
— 0.0 0.3 
U . V -0,3 

6P 6P 
X Y 

0.0 O.C 
17.2 12.e 
12.9 63.9 
50.9 O.C 
17.9 19.0 
O.C 0.8 
0.0 0 .0 
C. 8 1.3 
C.2 - c. c 
0.7 -O.C 
1.3 3.2 
0.2 -0.0 
0.2 0.1 
C.l C.G 
0.1 O.u 
C. 8 1.2 
C.6 11.0 

11.7 1.4 
1.6 1.6 

-3.1 -13.2 
-9.9 — C. w 
—4 . 6 -4.4 
—C . C 2 .1 
0.3 — C.L 

-0i3 -O.C 



TABLE I5CCGKT.» 

ENERGY : i  OXYGEN ATOMIC ORBITAL CONTRIBUTION 
BAND 2SIL)  2P  (1 )  2P  (1 )  2P  (1 )  25(2)  2P  (2 )  2P  (2 )  2P  12)  

Z X Y Z  X Y 

1 
2 
3 
4 
5 
6 
7 
8  0  •  & 0  m 9  0^1 M.il 1^1- A  1 " ï  T D  p— 
9  

10 
11 
12 
13  
14  
15  
16 
17  
18 
19  
20 
21 
22 
23  
24  
25  

0.0 0.0 2.2 —0 .0 0.0 0.0 0.0 2.2 
3.4 0.8 0.1 0.2 3. 5 -0.0 -0.0 0.0 

-2.2 3.9 1.3 4.2 -9.9 2.0 1.9 5.3 
— 8.5 0.6 4.9 0.2 -c.c -0.0 —0 .0 0.0 
3.3 1.2 1.2 0.4 2.8 C.l 0.0 1.1 
0.1 -0.7 0.0 -0.5 -U.l 2.7 2.3 0.2 

-O.C 0.0 -0.0 — C® 6 C.C 1.2 1.2 —C.O 
O.B 0.9 0.1 Û.Û 0.6 1.7 1.8 C. 2 
0.3 11.1 -0.2 13.2 1.8 13.9 14.3 —0.6 
3.5 0.9 4.4 G. 6 C. c O.C C.O C.l 
1.3 2.3 2.1 4.6 3.4 7.0 7.0 9.7 
0.0 8.5 0.0 32.0 0.0 12.8 14.3 0.0 
—0.0 26.0 C.3 3.0 O.C 26.1 .24.6 C. 2 
—C. 0 37.8 1.3 10.8 o.c 0.1 ^ 0.1 C.C 
-0.0 1.6 1.8 10.2 c. C 36. 1 35.0 O.C 
0.1 14.7 0.0 29.2 O.C 2.5 3.1 1.1 
0.1 C.5 2.5 0.7 2. 7 C.4 -C.U 42.0 
2.8 0.5 45.5 G.l C.3 C.7 1.2 5.6 
C.4 -C.O 29.7 -0. C C.4 — G .L' -0 .0 30.3 
16.5 -0.1 0.6 O.C 69.C 0.0 -O.G 2. 5 
52. 1 0.1 2.1 -0.0 C.O 0.2 C.l C.C 
25.9 -c.l 0.0 -c.l 24.7 -0. 0 —L.O C.O 
0.0 -1.5 0.1 -4.9 C.5 -5.9 -5.9 -c.  C 
0. G 0.1 0# 1/ -3.6 0.0 -1.5 -1.5 G.O 

-C.O 9.3 —o.c -C.3 C. C 0.0 C.O -C.O 

vn 



TABLE ISfCONT.) 

ENERGY % OXYGEN ATCKIC ORBITAL CONTRIBUTION 
BAND 2S(3) 2P 13) 2P C3) 2P (3) 

Z X Y 

1 0.0 2.2 C.O — O.C 
2 3.5 0.1 0.7 0.1 
3 -2.6 1.5 3.6 3.8 
4 —7 *8 4.7 0.7 0.2 
5 3.2 1.1 1.3 0.5 
6 0.0 0.0 -0.7 -0. 5 
7 -0.0 -0.0 C.O -C .6 
8 C.7 0.1 1.0 0.1 
9 -0.1 0.1 13.1 16.7 
10 . 4.7 2.9 0.1 0.1 
11 0.9 1.6 1.5 2.9 
12 0 .0 0.0 9.4 32.0 
13 C.O 0.4 25.7 2.2 
14 — 0 .c 1.3 37.3 11.2 
15 -0.0 1.8 1.2 10.8 
16 c. 2 C.O 14.5 27.8 
17 1.8 29.8 O.C C. e 
18 1.3 22.2 1.0 0.1 
19 — û . l 27.9 -G.C -O.C 
20 16.9 0.5 -0.1 -O.C 
21 51.2 1.5 0.1 -G.C 
22 26.3 0.1 -C.l -0*1 
23 0.0 0.1 —1 .6 -5.1 
24 C.O G.C C.l -3.6 
25 -0.0 — C.O 9.3 -C.3 

l\> 



TABLE I5IC0NT.) 

ENERGY « SODIUM ATOMIC ORBITAL CCMRIBUTION 
BAND 33 3P 3P 3P 

Z X Y 

1  Û . O  O . û  0 . 0  - O . C  
2  4 0 . 5  0 . 1  C . 2  - 1 . 0  
3 0 . 2  - 2 . 4  - 2 . 3  —  6  .  9  
4  O . C  0 . 4  0 . 4  O . C  
5  2 1 . 3  —  0 . 6  - 0 . 8  - 3 . 1  
6  0 . 1  - 2 . 3  - 2 . 3  - 3 . 1  
7  c . c  - 1 . 7  - 1 . 8  -O. C  
8  1 . 9  - 0 . 8  -G. 7  - 0 . 4  
9  C . l  — 4 .  3  - 4 . 9  — 5  . 6  

1 0  O . û  - 0 . 1  - 0 .  0  - ù . O  
1 1  0 . 0  - 1  . 7  - 1 . 3  - 0 . 7  
1 2  o .û  - 5 . 0  - 4 . 8  - O o O  
1 3  0 . 0  - 0 . 3  -0.4 - 9 . ,  1  
1 4  c . c  - 0 . 1  -C. l  -0,.0 
1 5  c . o  0 . 1  u. 0 — 0 , .  c  
1 6  0 . 1  0 . 7  0 . 7  0 . 6  
1 7  0 . 0  - 0 . 1  - C . l  -C.i 
1 8  0 .  0  0.0 C . C  -O.C 
1 9  0 . 2  c.l c .2 e . 3  
2 0  c . c  0 . 5  G.5 0 . 5  
2 1  0 . 0  O . C  - 0 . 0  c .o  
2 2  3 5 . 8  0 . 7  0 .5  C . 3  
23 C . l  6 1.1 6 2 . 0  2.8 
24 0.0 56.6 56.C 0.0 
25 - 0 . 0  - 0 . 4  -ù .4 7 7 . 9  
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Appendix J. Tranalational Symmetry 

The TBA approximation depends on a succesisful amalgam­

ation of a LCAO (linear combination of atomic orbltals) 

with the translatlonal symmetry possessed by a crystal. Let 

us discuss the translatlonal symmetry aspect of the problem 

and show how the LCAO approach enters into the TBA method. 

Vectors R =p t.+p^t +p_toconnect equivalent points 
~"p l"~x C.'—'d. J—^ 

In ordinary space. The unit cell is defined by the basis 

vector set For an infinite crystal, the components 

(PljPgjP^) can assume any integral value. Such vectors 

are defined as translation vectors. 

Let T^fTg T^ be translation operators connected 

with the primitive translations ^3 respectively. 

Generally T^(v=l,2 or 3) operates on some function f(r) 

to give 

Tyf(r)=f(r+t^). 

In terms of a translation vector R^, a translation operator 

T(p) is defined as 

. _P1 «P2 mP3 

. ^ ^ where T^^ f (r)=f (r+p^t^). 

However, if we take a mlcroerys tal,eg. p^slOOOspgSp^, in 

a bulk solid, we still have the translatlonal symmetry of 

the particular crystal. That is, the microcrystal is re­

peated throughout the crystal in a periodic fashion. In 

general we shall define the microcrystal as containing 

G unit cells. 
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By restricting the size of the ralcrocrystal to some 

finite size, namely G unit cells, we obtain the Born-

von-Karman (I4.3) cyclic boundary condition,I.e. 

f(r+GJ^) « f(r). 

In other words, we never pass through the surface of f-" 

ralcrocrystal, but Instead circle beck to the origin. 

3 
each microcrystal contains G lattice points defined by 

the inequality 0 ̂ p^4 G-1 (v=l,2,3). Lowdin(86) calls this 

inequality the "ground domain (G) Other equally good 

ground domains are 

1 4 p 4 G and 

-(G-l)/2^p 6 (G-l)/2. 
V 

The implications of the above boundary conditions are two­

fold 

1) T®=1. 

2) The three translations will now be cyclic operators 

of order G having eigenvalues exp(2fl k^/G) where k^ equals 

an integer. 

The second Implication deserves some discussion. The 

translation operator on a function f{r) gives us the usual 

eigenvalue problem where 

T(p) ?pf(21+Rp). 

% is the eigenvalue of translation R . Since ̂ f(r)|f(r)^ 
^ p -p — 
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and^T(p) f(r)^T(p) f(rj^have the same value because of 

translatlonal ayrametry (that Is, f(r)=f(r+R ), ̂  is a com» 
P p 

plejc number of modulus unity of 7^ =exp(i0 ), © is related 
P P P 

to the translation vectôr R by the expression 
•9«p 

0 =k «R-
p — —P 

which is the inner product of R and the wave vector k in 
-p -

reciprocal space. This identification is made via the 

definition of a wave vector k 

k-=2)r(Kjb^ + Kgbg + Kjtj) or 

where the basis set b Is Inversely related to _t a As In 

recent literature on energy band theory^k components are 

expressed by (kj^,ky,k^) which are not integers while 

(v=l,2,3) are. 

The function f(r^y is characterized by a particular 

vector k which appears in the eigenvalue of each transla­

tion operator. Thus, f(r), if a periodic function, gives 

f (r+R )=exp(ik'R^^)f (r). 
— p —j; — 

This relation is referred to as Bloch's theorem (87)• 

If a localized function f(r) is not a function of k, 

but is still periodic, we can use Bloch's suggestion (87) 

to obtain f(k,r) by multiplying f(r) by a phase factor 

exp(ik*R«) for each translation R . This can be shown for 
— —P —n 
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the q th atomic orbital function 0 for an electron located 

at r- PAaee Figure 1) or 0 {r-P), For instance, a - -y8 ° ''q̂  /3 

translation -R^ corresponds to the eigenvalue equation 

The position vector r-^-R^) is shown in Figure 2. Then 

f (k,r)=^Q(r-f J =oxp(lk'R^)0^(r-f -R ). In general, we 

define the sum of f(k,r) for all possible translations 

as the Bloch sum b (k,r) which corresponds to the q th 

atomic orbital located on atomic s 1 te/6 . That la, 

b (k,r)= Z)exp(lk.R )0 (r- f-R ). 
qp- - q/3 p - -P '^q^ - -p 

The normalization constant M of Bloch sum b is obtained 
q/3 q/3 

by the evaluation of the self-overlap of un-normalized 

Bloch sums. 

We are now equipt to expand the crystal orbitale 

'$^j^(k,r) into a linear combination of Bloch sums which 

for the m th crystal orbital function becomes 

Tm(k,r)=2 b {k,r)C^ (k). 
q/3 qp '1'" 

/3 
C (k) is the corresponding expansion coefficient. 
qm ~ 

With a knowledge of the linear combination of Bloch 

fi 
sums after one evaluates the coeffiients Gq^(k) for the 

wave vector coordinates,i.e. (k^jk^jk^), one can classify 

the energy band symmetry to the proper irreducible repres, 

entationa of subgroups of the space group to which the 
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crystal belongs. Available group theoretical character 

tables for all of the subgroups of the 0 space group (88) 
h 

facilitates this classification for perovskite transition 

metal oxides which are simple cubic or 0^. 
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Appendix K. Unitary Transformations 

Zlman(k) shows how Wannier functions are obtained from 

Bloch sums using a unitary transformation. In the tight-

binding limit, atomic orbital functions are obtained In the 

same manner: 

a. r ̂  

<1<K 

The crux of this unitary transformation is the Identity (1;) 

2? 9xp(lk-{R -R .)) = oS 
k - '-P Rp R  ̂ (K2) 

> 

where G equals the number of unit cells i n  the mlcrocrystal, 

We will use the unitary transformation to obtain 

^®{r) and n (note that the position vector r is label-

ed to facilitate easier notation), 

The Pock operator on electron.in state k IsTfkfr^ 

defined In Equation 17. 9-(k,r averaged over k space 

yields 



è  ̂  ezp(lk'R^)exp(-lk'R^)^(k,r^) 

+ l2? Zj Ptlq^iV) oitpdt'Rj) exp(-lk*R )• 
G k q̂ af̂  t̂  — •* 

• Y,% exp(-ik«R Jexpdk'R ) • 
R R .  -  - S  

•f r 

' (k3) 

Bringing the phase factors exp(^ik'R^) into the double 

sum over the translation vectors in Equation K3 and using 

Equation K2 we obtain the transformed expression 

*|°(£f.>= -V,-r2ZjA,̂  

+ i ̂  ^ ^ ^ JCoulomb 0 
G qi<ti5 R t, R &/ RvR . R R . / &exchange( . 

;  ̂ -S- ^  NqN| -^ 7 ^  (-op e r a t o r s )  

. ̂PT.(qa(,t_g) 
• k -

and rearrangement after summing over R^and R^ielda 

T(£^)=- < ifiî 



• i ̂ p. (q̂ ,t/5) . (Kl].) 
G k 

If we let r=rand make substitution Into Equation Kl^., 

we obtain using R^=R^- Ry (also dropping the prime over 

the duram^r index) 

Ave p ^ Ave 
Of (r J= -V. -I^Zv/r + ^ p {q^,tp)' 

r r Y 0 ïr qôc.tyff 

Ave 
[r^)= -cC " 

•q "t 

where p^^®(q^^^tj^) la the average bond order matrix over 

k space• 

In Appendix C, we find basis for making a further 

simplification of Equation KS whereby the product of G and 

the Coulomb and exchange operators for a particular trans­

lation R is essentially a sum over all possible translation 
p 

vectors where p ranges from 1 to G. Then Equation becomes 

t^(r ) -j2zl/r + % p^^®(q^,t/9)_g_ 

_ Kh 
Coulomb and ' 
exhange op- / (K6) 
erators 

We include p=0 to the sum in Equation K6 In order to est­

ablish the convention q = t and R =0. 
^ —o 

Let us now proceed to make a similar transformation 

of the Plodmark population analysis. From Equation 2l|. we 
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have an expression for amenable to the unitary trans­

formation. The resulting set of equations for the unitary 

transformation is 

^  ̂e x p ( l k - H j ) e x p ( - l k - R j )  

° f TglO-' 
k ra ty0 )@xp( -ik#R j)> 

=  ;  Y r  L  •  
km t 

• eip(lk(-R|R^))exp(lk.(R-Rj)) . 

In a manner no different than the unitary transformation 

of the Pock operator we obtain 

All < 
q^ H . 

All conventions used previously are utilized for the 

unitary transformation of the Plodmark population analysis. 

Thus the quantity n^^an be interpretted in terms of the 

atomic orbital q^X whereby the number of electrons in that 

orbital on any site is the average value obtained from 

the occupation numbers over all k space. 
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Appendix L. Matrix Elements Between Atomic Orbitale 

If P(r )=1, we obtain expressions for the overlap 
~"r 

matrix elements A (k). Using Equation L^we directly 
q/<3 -

obtain Equation L9 for case^^/^and q^s. Other cases, 

i.e. ; X = ̂  *q=3 , need to be specially considered 

in order to insure that all interactions are included in 

the sum over interaction vectors. Thus, the convention 

/ ,a 
used to define R = - f for no longer applies; 

—1 

since one interaction vector, j=l, is usually taken as 

zero. Obviously, £j rO (j=l,...,V) for general cases. 

Therefore, we shall use a definition of which applies 

to the special case X = P ; 

R =-K (j=0,l,2,...V) where 
-p -j 

p^<<< 
=0 for the origin of atom type 

located at /* In the unit cell. 

The latter choice satisfies the "ground domain(G)" 

discussed in Appendix J. 

Using the above convention, we write ̂  ̂ ^^as 
® q«so( 

A (k) = GN"%'® ^ 
qo( a ff 2?" exp( -Ik * ) • 

3=0 -
aiiK 
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Equation LI can bo expressed in a form compatible with, 

economic use of the computer; namely, we shall use Euler'a 

relation to convert the exponential terms in Equation LI 

into cosine and sin terms which are more practical to 

evaluate. Using a parity term derived in Appendix M, we 

are able to write Equations in the text which apply to 

the case and q^a. 

In the case and q=s, we obtain the diagonal elements 

which are obtained from Equation LI via the Euler relation 

and are written in terms of cosines 

)1 VE)> 

(L2) 
If the atomic orbital functions are normalized, the overlap 

term corresponding to the null vector is equal to one. 

If the Bloc h sums are normalized to uni ty, i ̂ e , A, ) 

equals one, we need only rearrange Equation L2 to obtain 

an expression for the normalization constant N which is 
q.cK 

Before we move on to a discussion of the Hamlltbnian matrix 

elements, we should comment on the orthogonal!ty of atomic 

orbital functions. 

The diatomic overlap integral (r^H # (r„)Xhich 

results for the null vector ̂  occurs for<=|and q^a. 
—v 
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It la Important to stress that this integral la generally 

non-zero. For Instance, if non-orthogonal analytical 

atomic orbital functions are used , the overlap Integral 

Is non-zero when the following conditions on the quantum 

numbers for orbitals q and s are met: 

However, if the Schmidt process is applied to the non-

orthogonal basis set, the resulting orthogonal functions 

will automatically give a zero value for the Integral for 

any quantum number set. In any case, the TBA computer program 

Is written to handle either orthogonal or non-orthogonal 

atomic orbital functions on a given atomic site. 

If P(r^) equals the TBA Pock operator defined In 

Equation , off-diagonal (q^s, ) matrix elements of 

H(k) can be written using Equation h6 

i -i V 
H(k) =:(jN~% ® exp(-lk*{/^- ))• 

•" q-<sy0 L>- - -J -J-

If we substitute r=r'+jP„into Equation ,we obtain 

the following expression o 

f (ï.|^= -V 4' 

£} 
in terms of interaction vectors 7 (dropping the prime due 

"P 



260 

to the dummy Index of integration). Furthermore, the above 

expression can be rewritten Im more useful form 

The primes over the summation signs indicate that the 

Interaction vector defined by p=j and ̂ is removed from 

the potential summation. Therefore, Equation L2 becomes 

i 1 V P'< n̂ '< 

f = i  " ' X ' 4 - ^  

à̂< 3i 

P y, 

(L3) 

Equation L3 will now be expressed in terms of groups of 

Integrals so that the approximations discussed In context 

to the TBA method can be fepplled. That if?. 

1 1 V P 
Vŝ (i'= -1 

[IQ(J) +r|ij(j,p,"15)] 
P 9 

where , \ 

We then use Equation l+Oto approximate Iq as 
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In the above, we have operated to the function to the left 

of the instead of the right. Thus, besides 

discussions conncoted with Equation the quantum mech-

eff 
anîcal implication is that is further assumed to be 

hermitIan, 

The three-center integrals I^(j,p,%) are simplified 

by the Mulliken approximationjused in Equation 32, Finally, 

we can express H (k) in the fiorm used for computer 
q4ŝ  -

calculations and shown in Equation 4-9. 

In the case of q=s( or q/s) and we define 

Hq^g^(k) using the corresponding conventions for overlap 

matrix elements and using essentially the same approx­

imations as above we are able to write the expression in 

Equation 49. The only difference with the above is how 

we express the TBA Pock operator: 

where the double primes denote that the null vector is 

removed from the double sum. 
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Appendix M. Parity of Overlap Integrals 

We want to examine the value of an overlap Integral on 

a translation of coordinate system B (Figure Ml) by 2R along 

the Zg axis (Figure M2). 

Let us Investigate the angular part of an overlap type 

integral between two orbltals having quantum numbers n,J?,m 

and and being separated by the vector R={Hs9,,»}. 

That Is, we shall use Equation D6 to define 

Then, ^ 
J?, k 

A(R) =N"(m)N(mi') (-1) 27 (-1) ' 
- AB k 

-A A '\ 
• [ exp(-iKiiri|)d (-^ ) + I(m) exp(ifM%) d (#)j 

k - (ml k |ml 

. rexp( lYlmj')d^( ̂  ) + Km')exp(-i3^(n#l) d'^(.^) j 
 ̂ k - (m\' k |m,' 

^ I». 
where 0*^0 and jp=-8 . 

Now if we examine/\(-H) we have that 
— AB 

-R=( R , î r - 9 , T f ,  

Then P'= -(Tr-©)= 0-3r= -(#+%) and = -( J^+7r)=-^-R=^^-tr 

for Euler angles in the displaced system.(Figure M2). Since 

exp( im(Y-}f)  )  =exp(imX)exp(- i inn)«(  - l )%xp(imlf) and 

Ç Q -X+m J? 
d (-#-%) « d (6+Tf ) = (-1) d (J2 ) 
km km -  k m 



Figure Ml. The usual overlap coordinate 

A 
/ 

?. s. 7 B 

R 

% 

4î i 
B  

/ 
/ 
/ 

/ 

I 
Figure M2. B is translated ËR along the Z 

2 axis. 
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jg 
via the syrrirastry properties of d as defined by Edmonds 

k ra 
|8q.), w6 have for the expression In the first bracket in 

Equation Ml 

0 
iesp(-i (nil (^-n) d (-#-%) + I(m) exp(l )d(-rr) = 
^ ^ k -imi k Un» 

= C-1)"' (-1) rexp(-llra|]f)d{^) +I(m)exp( 1 |rnl^)d. 
-k -Iml -klml 

The transformation of the quantity in the second brackets 

in Equation Ml leads to a simiiiar form with the parity 

factors appearing out in front (because of orthogonality 

of 0 dependent functions ra=m' so we are left with a 

parity factor in and only. 

Since ( 81}.), substitution of the 

above form into Equation Ml merely changes the order of 

summation and we have that 

4(R) = (-1) A(-R) 

If F(r ,)=V(r- f ), we still would have (-1) in 
- M - j 

front of the negative -R integral. Therefore, Equation 

M2 is a general result to be used in both overlap and 

Hamiltonlân matrix elements. 


