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PART I. THEORY
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INTRODUGTION

Transition metal oxides have been receiving increasing
attention from experimentalists and theorists allke, as
model systems in which to study the solid state. Tungsten
bronzes, for example, properly doped, form a basis for the
stﬁdy of a major portion of the field of solid state physics,
in that depending upen the temperatufe and concentration of
alkali metal, they can be insulators, semiconductors, metals,
or super-conductors. Re0O; has been found to be a "good
metal", reduced potassium tantalate KTa0Op,.; has been found
to be a semi metal, and some compounds such as SrTiO3 are
found to be semiconductors. The cubic tungsten bronzes,
(stoichiometry AXWO3, where A is an alkali metsalj, ReO3,
KTaO3, and SrT103 all have a common structural feature; the
transition metal 1s octahedrally co~ordinated with oxygens,
and, except for the case of Re03 (which has the perovskite
structure without the central hole filled by a non-transition
metal atom) are all perovskite structures.

A major gquestion to be answered {or these systems 1s
"how does one think chemically about their stability, and
physically anut their transport properties?" For the
chemist, the easiest approach is the localized molecular
orbital picture with each metal ion in & site of 0, symmetry.
Levels are guessed at, elsctrons are counted, &nd depending

upon the last levels to be filled, inferences are made



regarding the possibilities for conduction bands, generally
labeled according to the transformation properties of the
orbitals in question under Oy point symmetry. The solid
state theorist, on the other hand, 1s very aware that an
exact many body calculation to infer stabllities is not
possible, He, therefore, uses an independent particle

model with the meaningful results (to him) being energy as

a function of wave vector, and Ferml surface contours, He
realizes that point symmetry designations completely break
down as soon as translationsl symmetry is forced upon the
wave functions, and has a tendency to listen with a respect-
ful, but somewhat distant ear to point symmetry, bond order,
electronegativity etc., type arguments from his chemical
cohorts in the solid state chemistry fleld. For the average
chemist, on the other hand, vision, intuition, and compre-
hension become somewhat blurred as soon as an E(k) vs. k
plot is waved enthusiastically before his eyes as his
theorist friend explains what the Fermi Surface must look

like from the most recent band calculation.
Objectives of the Thesis Work

The present work is one attempt to provide the beginnings
of & translation between these two groups via tight binding

calculations of the band structures of some representative,

important and interesting cubic transition metal oxides.



The work 1s almed at chemists via a delineation of orbitals
participating iIn valence and conduction bands, and a com=~
parison of how the molecular orbital model flows over into
the band picture as translational symmetry is added. For
the physlclsts, we do indeed exhlbit energy vs. wave vector
plots and discuss their validity in terms of transport and
optical properties.

Recently, overlap calculations (1) were used to provide
a "zeroth order" method of thinking about the possibilities
for orbitals forming conduction bands In the cubic tungsten
bronzes. We will now outline the theory of the first
order method for thinking about transport properties of
perovskite type metal oxides; in particular, we use ReO3
as a model to discuss the method.

The tight-binding energy bands of a series of perovskite
type transition metal oxides: ReOj, NaxW03(x=1.0), KTaO3
are celculated and the results are discussed in Parts II
and III of the thesis. The crvstal orbital properties which
will be discussed in subsequent Parts II and IIT are:

1) Density of States

2) Joint Densitv of States

3) Fermi Surface

l4) Results of the Mulllken Population Analysls



Before we discuss the tight-binding approximation (TBA)
used in obtaining energy bands of crystals, we shall make
a brief excursion into the Hartree-Fock (H-F) approximation.
The purpose of this preliminary discussion 1s to show the
"rigorous" equations from which we will systematically

descend in rigor by a serles of hopefully justified approxi-

mations.



HARTREE - FOCK APPROXIMATION

Let us assume that the electronic state of a unit cell

(molecular unit) in a crystal is characterized by a particular

wave vector, k, In reciprocal space. If we further assume

that the electronic configuration is a closed-shell, i.,e.,
My doubly-occupied energy bands, the total wave function
#(k) is approximated as an antisymmetrized product (ASP) of

crystal spin-orbitals uq(g,gq)

§(5)=Jq{ﬁ1<g.zl) e ueﬂkig,gamk>'§
uhered{is the antisymetrizer operator defined by

A =(2Mk)'%§(-1)pr. (1)

In the above,p i1s the parity of the P th permutation. In

other words, we can express 2(k) as a single-Slater deter-

minant

- (k,x. ) u (k,x5)eee u_(k,x,, )
MQ=Q%)% e 2 =" maMy




~

From the properties of a determinant, we satisfy, as
usual, the Paulil exclusion principle while allowing for
double occupancy of the M]_{_ energy bands., It is important
to stress that My for all possible k vectors need not be the
same .

The spin-orbital ug(k,x,) has a space (r) - spin (%)
coordinate _:gq=(_1:q, }'q). We shall adapt the usual convention

for an odd ¢ electron where

-~

u, lex,) = e, ) X(f)

¥ ¢

and ur+1(.¥.s£ p+1) =qj:-;(l‘.’?.p+1)~8( po+1)

where the functions £ andﬁ are the xisual elgenfunctions
of the single electron spin operators s2 and gz‘ The
crystal orbital is labeled by j. So that there will be no
confusion hetween the sum indices X and /2 used further on,
the spin functions as the above is the only place we mention

the spin functions explicitly,
The erystal Hamiltonfan }( , defined for a fixed nuclear

framework and k in the Born-Nppenhelmer approximation, 1s

- EM‘E My
Bt = hlz, )+ E—s(gr,gv) ()
Z o

where h(r r)=- Vi - 2? Za/z%r. and g(_r_'_r_ ST, )=2/rr\,.



The one-electron and two-electron operators are expressed in
Rydberg energy units (13.6 e.v.). M and V label interacting
electrons.'x labels the atomlc slte having a bare nuclear
charge ZB . In the valence shell approximation Z‘g becomes
the effective nuclear charge (bare nucleer charge minus the
sum of the non-valence electrons).

The quantum mechanical treatment of<3¥?k equal to
<;4§(5)\7{\A§(£f> proceeds in threc steps:-

1) The expectation value of the operator is expressed
in terms of the permutation operators and the identity
/k=‘A? yields the form amenable to further expansion (2)

<3 =L HPLEmIn .

2) Assuming the closed shell electronic configuration,
integration of the spin part of the above expression gives
the resulting total energy E(k) in terms of space type
Integrals

M M,
SAD ok k

E()="Ag =255 hy(k) +5%  (27,4(k)Kyg(k))

g=1 g8

3) We now wish to find the best possible orbitals u,
to form #(k) (restricted to a single-determinantal form) by

minimizing E(k) under the constraint

<Wg(_15.£# )lws(.}g,z ’,)> - %gs =0,
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To do so, we define the functional F(k) as follows:

M
Pl = B0 - 5% L) (W r, )| Vi ler - S
g8

We then use variatlonal techniques to find the conditions by
which an arbitrarily small variation in the crystal orbital
yields a vanishing of the resulting smgll varlation of the
functional F(k) or b F=0. We thereby obtain the following

set of Hartree-Fock equations which satisfy the above

[h(zﬂ) + 2320, (k2 ) - L (K, e JY (k)

= § ’qs[(,k_’r_v)'l'ga(l‘_) . (L)

In the three steps above we use the following notation:
h (k)= k 2Z /r k,r
oK) NACE N v Z ’mW (kz )
=<
3gs 0=V lxr )| GS(E,r.r)Wg(Ez >
= |
Ko (k) z}é(_lg.;;t‘) | Ttz | etk >
(k)-— the matrix elements of the lagranglan
multipliers.
Cs(E‘?-f‘) and (_lg,gr) are Coulombic and exchange operators
3 _
respectively. Jgs(}_:_) and Kgs(-i"-‘-) are the corresponding

Coulomb and exchange integrals. Gs(_l_c_,g_r‘) i1s defined by

1ts operational meaning on‘qu(g,g_ )¢

__'ﬂf(kr )=2jar7lf(k r ) " Y (k,r,) V).
[ E. r




iy

Likewise Is(g_,g_r) 1s defined by

I er ) Votier o=z far, Wyter )" e Ytz

N

Summing over s, we obtaln the total Coulomb and exchange

operators C(k,r ‘A) and 7((5’21")
c(g,;;r,) =ECS(}_§_,£ ) such that

- f’
c(k,r )"l}fg(g_,g_r)-a dr’ k (z |z,) yf(k r).

i’"

o -vl
I(E’P'f“) =Eﬂ Ia(g.gr) such that
Ttorp Vywr)=efer e gr ) P tior,)-
JEFEIN

Fk r\ F‘ook-Dirac density matrix (%)

g 7{/'(kr)'l[fs(kr')
-1

The one-electron operator on | or the Fock operator'}(g,g_ﬁ)
is defined in terms of the above operators as
k,r . )=h{r + Clk,r  )-3 Llk,r ). (6
9’(__,_#> a(e,) + Clsr ) | kr ) )
We now have the mathematical formalism to approach the
TBA method in a manner simllar to Roothaan's procedure

for molecular orbitals in the closed shell electronic config=-
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uration ( 3 )., The latter approach is technically called the
ASP-SCF-M0-LCAO method, but SCF-MO-LCA(® is the description
most often found in literature,

Let us consider the rhenium oxide (cubic) crystal as
a model for perovskite trgnsition metal oxides in showing
why the Roothaan approach 1s inadequate for the whole crystal
to obtain energy 2avels, Reo3 is the molecular unit which
‘18 repeated periodically through the erystal because of
translational symmetry. The electronlc system of ReO3
without inclusion of translational symmetry is no different
than that of an isolated moleculs. In order to make Reo3
part of the crystal and hence to consider the entire crystal
as an immense molecule, we must investigate the effects of
translational symmetry on the molecular orbital functions,
From the discussion’'in Appendix J,we find that the molecular
orbitals upon forming a periodic crystal become crystal
orbitals which are explicitly functions of the wave vector
in reciprocal space. We will show in the next section how

the TBA method encompasses both the Roothaan procedure and

translational symmetry.



-
N

TBA METHODR

The crystal orbital TP}(E,E.P) is analytically expressed
as a linear combination of Bloch sums, bqq'(g’ﬁg giving

X
Viter, 1 =2 6gyny, e, (7)

r\

where the expanslon coefficlents are C:;(E). The double sum
over atomic orbital quantum numbers g and atomic sites &
is expressed Jn condensed form gs q« .

The Bloch sums 0 are expressed in terms of an atom
orbital g by the sum over the p lattice translation vectors.
We refer to the d!scussion of translational symmetry aspects

of the TRA problem In Appendlx J which gives

b, (k ) —’Z} exp(ik Rp) - flo . (T -:ﬁi-gp).

g =* P p=0 7% (8)

G is the number of unit cells in a microcrystal. The
corresponding "ground domain (G)" on the lattice trans-
lation vector set is expressed differently (Appendix J) with

the cholce here being the inequality for ] components of Ep

1)/, (G-1)
2 Rp)j 2

(j=192:3)o

We shall define R, as the null vector, 1.e.

(Ro)y = 0 (j=1,2,3).
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which locates the q.atomic orbital at fa in the unit cell.
Figures 1 and 2 show the vector notation on the u electron
position vectors _I_'r-f,x eand r -fu “Rpe

By Equation 7, the crystal orbitals, ?P}(g,gr ) are
expanded in a linear combination of atomic orbitals (LCAO)
to form TBA energy bands (see Table 1 fér a comparison of
MO and crystal orbitals). The j th energy band, Ej(g)
is obtained from the Schrodinger equation defined by the
effective one-electron operator g:(g’zw”) (Equation 6) on
electron p in erystal orbitaltupj(g,gtk) (for the canoniceal

case discussed below),

r o J
¥ (orp ) Lyllm, ) = Ey() qf;(s,gr). (9)

SCI" Tterative Proncess

We substitute Equation 7 into Equation 4 to obtain a
form amenable to a M0-LCAO-SCF type treatment of tight-
binding energy hands. We begin with the Hartree-Fock

equations:

Fle,r )7?(1«: )-?Yf(k Ly (1)
eand finally obtain

g /4
:‘})(k r EZb k,r )csn(g_%:? EE\Csm(g)Lmn(_ly_)bs (k,r f.
M sp (m /2 i

(10)
If we multiply Equation 10 byq§Pp(g,gr)* and integrate,



1k

ORIGIN Y

Figure 1. Definition of position vector r- Pg of an electron
(e”) with respect to atomic siteg.

RY¥» /1 -FPB-Rj
x  £B ::
L
o
ORIGIN Y

Figure 2. Definition of position vector r- fg‘ﬁi after
translation R,.



Table 1 Comparison of molecular and crystal orbitals

Orbital One-electron Normalization The q th Linear combin-
i wave function condition basis ation of bvasis
sat? sot
. - ~
MOLECULAR W ,(r) <Y @Waleh=1  =tomic Vi(e)=2cs,(2)dqx
Iy i aoblital .
function
dQO(
CRYSTAL Wi(‘f’}l) <'qf1(‘:{“,§)\\g(}5‘,§)>=l Bloch sum -‘qfi(_lg,r) =
oo 3 3 function R
‘ b
qol z: X
Cs (k)b (k,r)
iq'l =
Qec A=

- B T T S Y

8Phe basis set functions are nArmaldzed.

St
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we obtain

2 ¢~ (k)f‘&b (k,r )\7(5,gr)| bgnllsr cfn(g)} =

Z ‘ ]
q«qu (k)Z(Ec mlE) L (E))<bq0<(l"’£t‘)'bsp(-l-t-’r-,t» . (11)

We deflne the Hamiltonian matrix H(k) with elements be-
tween Bloch sums as

q,,(sfg(lt:) —<b (k r )l}(k,rr)' (_1_;.,5") > (12)

and an overleap matrixf}(g) with elements between Bloch sums

that are

(k) =<bg, ,gr)|b8/3(§,£r)) .

Q=83 =~

Thus, we have the following matrix form:

Bk =1 X b
amgg)afg (13)

Hith R= (bl“....baﬁblﬁ o,oobea -nobl‘x ooo.bcx) is the Bloch
sums matrix ( k dependence implied) for A,B and C Bloch sums

specified for«,8,Yatomic sites.

Furthermore, the coefficient matrix is defined as

Slk)= (g, (k) G (k) ...C (K) ... ch)
where the submatrix Cp(k) 1s a column matrix of the expansion

coeffients of the nth crystal orbital funection into a Bloch

sums basis set.
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Then, Equationll for a particular 'é« term becomes

s
: SN ¢Y Csn(k) —ZL (k) ZA B Copl) .

In matrix notatiop, we obtain
H(k) Cpll) L (Ac,(k) ) L (k).
n

If we diagonalize I, by some unitary matrix the resulting

similarity transformation 1is

¥
U LU =E(k) where (E(k)) =5 (K)o .
Thus, we obtain the canonical form of the H-F equations

which are now written as

H(E) Cplk) = E_(k) Cplk) (k).
From matrix algebra, we know that a non-trivial solution
of the coefficient matrix , g, exists 1f and only if the
following determinant vanishes,i.e. we seek a solution

of the secular determinant written as
VB0 - 2 )| =0 . (1h)

The Fock-Dirac density matrix defined in Equation 5 can be

expanded in terms of Bloch sums using Equation 8 to give

.‘.F‘]E(I-v\r- )=2 g'?[(kﬂ' )*lg(k,!' )

q;;:m qx(k 2, )by (g,g{,‘) pg(qu.s,e) . (15)

The bond order matrix pk(qA’,SB) is defined as
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Mi
pE(qN,Sﬁ)‘-' 2 g_f:m(ls) Cfm(ls.) . (16)
The bond order matrix can be varied 1n'a SCF process to obtain
the best crystal orbltals which lead to & minimum in the
total electronic energy E(k) under the constraint of orthonorm-
ality on the crystal orbitals. |
Using Equations 6, 12, and 16, the Hamiltonian

matrix elements qusﬁ(k) can be expressed as

Howga=b, (Ko )\h(r'){ HEr ) D

qxsp”

B, ve Pl thavh) e

{2<bw(k._y)hv£g_,£v)\b (k rr)bsp(k,.r_'r)}

The one=-electron operator on,tin state k becomes

,y(k T )' -‘1 TZZT/P + tﬁz‘;ﬂpk( t¥,vh)s

{th‘s(k £ )byfln )| - By lieyz, oy (K, r)}( .
17)
The SCPF process which 1s outlined below is for the

canonical case and gives us a means of controlling TBA
calculations:

1) Guess pk(tl,vﬁ) for each t¥,v§ pair.

2) Calculagé the Hamiltonian and overlap matrix
elements ( the latter type are omitted if we start with

an orthogonal btasis set § if the hasis set is non-ortho-
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gonal we have the option of varying parameters in
the analytical form of the atomic wave functions at this
point in the SCF process).

3) Solve the secular determinant in Equation 1l to.
yield energies and cqefriciénta for cryatal orbitals,

L) Use some type of population analysis to calculate
ﬁhe new bond order matrix and repeat steps 2-L until a
self-consistency condition is preached,

In the next section, we shall transform the Fock
operator defined in Equation 17 for a particular k vector inio
an average Foclk operator over all momentum or weve vector
space. The transformation is called the " unitary trans-

formation of the Fock operator®,

Unitary Transformation of the Fock Operator

-

The hond order matrix can only be obtained in step L4 of
the SCF iterative process 1f the Ferm!i level ( EMk(g) = Egp)
is known, But the Ferm! level can only be found ~
as some average quantitv over the entire k space (further
discussion of the procedure for finding Ep is in Part II).
Thus, the present form of the Fock operator is useless for -

our present purposes in the TRA method

However, we can rsessonably define an effective Fock

operator which is applicable to all k states. The average



F-4¥

of the qy(g,g’k) operators on electron p over the G unit

cells (or k vectors) in the microcrystal 1is

Ave
-1 7z |
f}*(gP) 3 X g(g,gr ) (18)
Furthermore, Equation 18 can be rewritten
Ave
? (_r;r )= %Eexp(ig-ﬁj)exv(-i_!g _R.J)/I"'(_lg,gﬁ) (19)

where exp(-ig'gj) is a phase factor for an arbitrary
translation vector 53.

By using Equation 19, we ere able to show that the
average of Qf(g,gr ) over G k wave vectors is nothing more
than unitary transformetion. Ziman (L) shows how such an
uni tary transformation can be used to generate a Wannier
function (fuhction of position only in reciprocal space)
from the corresponding Ploch sum, Since Bloch sums occur
explicitly in the form of gi(g,gr,) 1t, therefore, seems
reasonable to transform the DBloch sums into localized atomic
orbitals if we define Bloch sums by Tquation 8,

The unitarv transformation of the FocH operator ?Fkg,gr )
1s shown in Appendix K. The results are summarized here
for the resulting LCAO form of the Fock operator. Using

arbitrary 1abelstf,/3, and ¥ for atocmic sites, we have:
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Ave, Ave.
(2) = ~F -Tez,/e+ L Lo (s tR)-
o o M aq« t

G
7‘?:5{ 2K (2;PeRy) Byglr-r, )|

B frep By By oot )}

Ave. _ M &ty o
and p(ge " 32_?;%5 C e Cum(E) (20)

What we now have is a PFock operator which is identical 1n
form to that used in molecular orhital calculations,i.e.
the LCAO form, The effect of translational symmetry is
now contained only in the bond order metrix pﬁve(qq,tﬁ'))
just the expansion coefficlents of the crystal orbitals.

In summary ta this point,vwe have justifiably trans-
formed the H-F equetions for a c¢rystal into the LCAQ form
in which Roothaan's nrocedure may be applied to the
energy and overlep matrices and the effects of translational
symme try remain only in coefficients which are solutions
of the resulting seculer determinant, An important point
1s that the periodiecity of the crystal lattice 1s still
preserved since the slectron position vectors used in
conjuction.with the atomic orbitels explicitly show the
dependence on the tramslation vectors,

We now discuss the approximations which will be used

in TBA calculations.,
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Approximetions Used in the TBA Method

Population analysis of crystal orbitals

The charge density of the m th esrystal orbital is
2 P
Vot Water) =2 Ll e? (x) b M Jby(n)
" POETTT pxtp PO il it o
(21)
The sum over tdis cver the entire Bloch sum basis set and
therefore contains the term p4. Integration of Equation 21

glves
' T (o i} Aw, B
<Wm(}g.g_r)ﬂ{w(;,zﬂ)>—Z%?ﬂ O m(K)Cy, () (bp“(_lg,g)fbtﬁ(g,gp

If the Bloch sum« are normalized, i.e, <bPK(£’£r)leog(£’£ )>

equals one, the atove equatlon becomes

<V r )Wfk, V= ?kpmw)\ (k)ci (k) -

1,“g &

(bp«(k r) b, (}g,g_ﬂ)

=D a (22)

PX pm' &
174

where npm(g) i1s the occupation number defined by Flodmark to
be expressed as

X | ok A

o ey o= (o e 20 oS e < (ke )| o for
Pm - P t#£p PM tm= Px ® I“'
(23)

If the crystal orbital m is normalized to one, the sum over

the occupation numbers is also one; therefore this quantity

defined by Flodmark(5) is the fraction‘of double occupancy
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which 1s attributed to Bloch sum p K.,

The analogy with Mulllken's population analysis (6)
is implied by Flodmark's definition where Bloch sums are used
instead of atomi¢ orbitals. However, justiflcation for
using such a qugntity for population analysis 1s lacking
since the overlap of Bloch sums p4 and t/? 1s not clear from
a geometrical point of view, Thatvis, the Mulliken procedure
to divide overlap charge between centers d(and‘ﬁ depends on
the maximum of thez charge distributlion being located midway
between overlapping centers situated in real space. Since
the Bloch sum is g function In complex space, we have no
valid way of showing where it overlaps with a Bloch sum
on another site in real space unless the exponential terms
drop out in the overlap expression.

In real space, we also have problems with the Mulliken
population analysis, For instance, diffuse atomic orbitals,
eg., 4s on K, have a maximum in charge distribution in
regions of other atoms such as oxygen in KTaO3; However,
workers in molecular orbital calculations of transition
metal complexes continue to divide the overlap charge
density equally between neighboring atoms. Fenske (7) has
analyzed differences in calculated results and concludes
that either dividing charge or placing overlap charge on

one center gives essentially the same result. If we proceed
in the same spirit to Bloch sum charge distributions, the
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X

only problem is to relate the quantity nqm(g) to atomic
orbitals, 1.e., somehow we need to get rid of the phase

factor exp(ig.gp). We attalin this end by defining the
population of orbitals g« , Ngw » 88

%‘ g Ngm(K) - (24)

where By < equals the number of electrons in orbital q,

and My, as defined in Equation 1 is the number of doubly
occup;;d bands. Prereeding in the same manner as we did to
rerform a unitarvy transformation of the Fock operator, we
ident!fy Equation 2l with an unitarv transformation of the
occupation numter. The essential steps f'or this trans-

formation are shown in Appendix K giving

~ LAVe E: Ave
= p" " (e, 9x) + (ax, tg) -
Pk tf #qx 2'2'1

Pyms Lol Byl f)> (25)
in terms of bond order matrices, pAve®(q«,tp).

Racauga of the LCAO nature of our TBA approach, parti-
cularly in ng and %ge(gﬁ), we shall refer to the population
analysis usgd as the Mulliken type. Even though the occupa-
tion numbers reflect the properties of crystal orbitals 1in
complex space if analyzed individually, we may utilize the
the density of states vs. Mulliken populetion analysis to
obtain an average diatribufion of occupation numbers in a

particular energy range, Then, the occupation numbers can in
a sense be related to real space since the integration over
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the distribution of occupation numbers vs. energy up to the

Fermi energy gives the population n, identically ae Equation 25.

Richardson's approximation

We will now simplify the TBA Fock operator in a manner
identical to that used by Richardson ( 8 ) and discussed
thoroughly by Fenske ('7) and Basch-Gray (9 ). The essential
part of the Richardson approximation is the application
of Mulliken's approximation (10) to Cqulomb and exchange
parts of the Fock operator ( molecular ). We shall leave
the details of the simplification to these three references

( 7, 8,9) and only show the results of Appendix k.

Ave , _
¥ (‘I‘"l“) = - [*J:ZV (z'rf‘x—ﬁp) (26)

where V. s the potentiel for atomic site¥ located at £+_B_p .
¥
Explicitly each potential term 18 expressed in Fenske's

Coulomb, exchange, and nuclear attraction operator not-

ation:
Ve L) gy ég;?'v'-fx'ip) oy {2y B
IR A SR FARE b ﬂ(
-Z{l/r%r | . (27)

Crystal potential

Since charge distributions described by crystal orbitals
can be directly related to occupsation numbers n;,(g) (m th
crystal orbital for q« th Bleoh sum), the unlitary trans-
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X
formation of ng,(k) and gﬁ’(g,grt) to eliminate k dependence
in " gx and - Ve(g_r) vyields the LCAO form. Thus, the

resulting linear combination of atomic potentials in

Equation 27 can be properly referred to as the "erystal

potential," U, i.e.,
U (crystal) =§ zp: \{6(2}-‘ _;_P,é-ﬁp) (28)

Variation of the atomie orbital population or Bloch sum
occupation number of electrons in energy bands gives the TBA
method a handle by which self~consistency of both atomic
charge and population can be obtained. The advantage of this

potential over a potential in the single~particle model (e.g.
a point charge model) is that shielding effects of diffuse

charge distributions are included automatically. The exchange
interactions which increase with decrease in bond distance are

an important factor in these shielding effects.
The self-consistency of the gath atomic orbital popula-

tion, say for the second iteration, is obtained by the formula

nqi (assumed) = "ArnyQ (assumed) + nqi( (calculated)

A +12
(29)
an‘(calculgted)is obtained using the Mulliken population

analysis after eigenvectors of E(k) vs. k and the Fermi energy
are determined. The superscripts denote the ilteration.

The assumed population values are weighted by a
damping constant 4 (teken to be +8 in our calculations) to
prevent the oscillations of the difference between the cal-

culated and assumed values of nqc‘from diverging in esarly
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stages of iteration. The condition for self-consistency
is obtained when the difference between assumed and cal-
culated occupled Bloch sum charge distributions is less
than 1%.

The dependence of the populations on the k vector and
the location of the Ferml energy poses the ultimate problem
in using our method. Sincg the value of the Ferml energy can
only be obtained after a complete E(g) vs. k calculation, we
use the same potentiel for all k vectors to obtain self-
conaistency for the first Brillouin zone .

Mattheiss (11) has recently calculated the band structure
of ReO3 at the symmetry points, I‘, X, M and R, using the
augmented-plane-wave (APW) method (12) and has invoked the
Slater-Koster (13) interpolation scheme to obtaln E(k) over
the remainder of the zone. We find it hard to make an assess-
ment of the relative merits of our method compared to his
excellent and experienced approach in which & "muffin tin"
‘potential is adjusted to fit opticel spectra (14)and De Haas-
Van Alphen results (15), We do fesl that our approach might
give a better descriptiaon of the lower valence bands, e.g.,
the bands involving 2s and 2p states, and will be adequate,
for our purposes, in describing states in the nelghborhood of
the Fermi energy. We mention, in particular, three character-

istics of the present apprnach that we feel are desirable, and

are lacking in the APW methnd:
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1) Self-consistency of charge distribution can be
obtained at all points in the Brillouin zone.

2) The potential in the present method 1s calculated
using no adjustable parameters; Coulomb and exchange effects
are included in explicit evaluation of all two-center
Coulomb and exchange integrals.

3) The present method explicitly utilizes a population

analysls tc relate contributions of individual orbitals to

energy bands.

Atomic orbital energy

Let us assume the effective atomic Hamlltonlan operator,
8
Hopp, for atom 8 located at S, +§}'
Hore(r- )= - 2+V(r-F-R.)
eff plovt e T B (30)

has an eigenfunction @(r-~ «R «) or
genfunctl ﬂ-rfﬁ'fs

B
Hope(zz £ - ; Mg (B2 £l )= €qp fog (Bup,Ry )

Gﬂlﬁ , then, 13 the orbital energy of an electron, located at
r- f};&i , which has a set of quantum numbers nq,,? and My
indicated by q. VB (r f -R ) 18 expressed explicitly in
Equation 27 in terms of Coulomb, exchange and nucleer
attraction operators,

The evaluation of €58 can be made by either of the

following approaches:
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1) Use atomiec spectra data to obtain what is
commonly called the valence state ionization energy (VSIE).

2] Using an analytical expression for the atomic
orbital function ¢qﬁ , one may calculate the orbital energy
exactly. ‘

Let us briefly discuss the first approach to explain.
why we prefer the second,

Atomic spectre data provided by Moore (16) has been
the prime source of valence state ionization energiles
(assumed to equal the negative of the orbital energy) which
are used in semi-empirical methods, The difficulties with
the semi-empirical method are twofold:

1) One needs to average the energy of multiplets.
This can be a difficult process when a large number of
states exist for an atom or lon.

2) Atomic gpectra may not be available for a particular
atom of interest. Cotton and Harris (17) found this to be
£ t 4

2 a2
1Ci6n

a problem for rhenium, sven though suf

able for platinum,

Therefore, in the present method, we calculate the
atomic orbital energy in terms of average values of two-
electron interaction integrals g(q,t). Slater (18) uses the
"average energy of configuration" msthod to express g(q,t)
as linear combinations of Slater-Condon parameters

FE(n 2,n' Q') and Gk(n,ﬂ,n'ﬂ') (see Table 2).
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Using an analytical expression for ¢Qﬁ(r'-ﬁ; ),

we compute Gqﬁ by

Cqp=Claglrz -8 )| - -2z /) Fagleg £a-B ) 2>

+ {g}q nts(q.t)] + { ng-1)glq,q) (31)

where ng and ng are the population of atomic orbltals qgand
t.8 respectively. giq,t) is the average electronic inter-
"action of electron e in orbital gqgwith electron ¥ in
orbital t8. Even though the enalytical form of the atomic
orbital will be frozen (orbital function parameters kept
constant) during the SCP iteration process, our choice of
atomic orbital functions will be taken using neutral atoms
for the following reasons. Semi-empirical MO calculations
for transition metal complexes in recent years (19) have
led to neare-neutral etoms in the calculated molecule.
Recent work by Fenske ( 7 ) using & more semi-quantitative
method has 2lso led to thias resnlt. Furtherﬁore, the
philosophy which has prevailed during the history of MO
calculations of transition metal complexes is Pauling's (20)
"electronéutrality principle.® Simpiy, Pauling suggests
that the initial electronic charge distributions on
1solated metal and ligand (eg. oxygen) atoms become evenly
smeared about the molecule when bonding occurs between

metal and ligand orbitals. The result is a neutral atom



31

constitution in molecules, i1f we consider the atoms in
molecule picture or LCAO, In conclusion, we can
effectively use Equetlon 31 to obtain atomic orbital
energies; in other words, we say that the ﬁqB are
eigenfunctions of the above effective Heamiltonian within
the given approximations. ‘

The Slater approach is preferred since this method
effectively takes an average of energies of the various
multiplet states which exist for any atom or ion. This
method 1s presently being utilized by Fenske ( 7).

The Slater-Condon parameters (21, 22), kinetic energy
(22) and nuclear-attraction integrals can be calculated
from the analytical radial functions for atomic orbitals.
Also, Mann (2 3) has tabulated most of the necessary
integrals and parameters which are computed in the SCF
process. However, we will evaluate ﬁll one~center integrals
from atomic functiopns (see Appendix F),

Table 2. Two-electron intersction integrals (18) used for
perovskite oxide calculations

a I gla,t)

nsé ns FO(ns,ns)

ns np FO(ns,np)=Gl(ns,np)/6
np np FPO(np,np)-2F2(np,np) /25

8&n stands for the principal quantum number.
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Table 2{Cont.)

Q : gla,t)

ns nd Fo(ns,pd)-GZ(ns,nd)/io

np nd Fo(np,nd)-Gl(np,nd)/15-363(np,nd)/70
nd nd FO(nd,nd)-2F2(nd,nd)/63-2F4(nd,nd) /63

Approximations used in evaluating energy matrix elements
between atomic orbitals

The following notation will be used in this thesis to
label vectors which bslong to in 2 sets. [Ty
is the vector to the j th neighbor of the tvpe & from the
atom atéﬂg (the vector defined from the origin to the
lattice point £ ).

As an 1llustration of this notation, the vector set
for the Re-0y interactions would be fjRe-0y and PoRe-0

with coordinates {a/2,0,0) and (-a/2,0,0), respectively.

.
-~ -

An additional example would be the 01-0Op interaction set
with four vectors: 4°301-02 with j=1 to L and with coor-
dinates (-a/2,a/2,0), (a/2,a/2,0), (a/2,-a/2,0) and
(-a/2,-a/2,0). The choice 1n labeling the j th vector is
purely arbitrary for any interactlion set.

The use of frozen analytical expressions for atomic
orbital functions (see section on atomic orbital energy)

for neutral atoms is assumed throughout the following
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approximations to Hamiltonlan matrix elements which arise
between atomic orbitals., The Pauling electroneutrality
principle is used agaein to justify use of the Hamiltonian

operator for electron M on atom ¥ (located at_j% ).

]
foee (27 517 < V2 Vy 25 5
¥
Therefors, Heff(E,?j%)ﬁé (g;j%)=65qv¢qx(£;J}) . (32)

There are two classes of matrix elements for which we

desire to approximate by known techniques famillar to

molecular orbital calculations of transition metal complexes.,

Y
< 2R ~F + V(-
). ¢qo<(£ “-J)' Ve e )I¢8.8 =pR foBp) >
and (33)

2) the potential integrals which need to be evaluated
can be represented generally by integral I

I=<F (ro Ry V(25 5B | B o (mg 5B 07 (34)
The electron poaition vector notation for the two
classes of integrals shall be expressed in terms of the
interaction vectors.fgaéefined above, Let us first con-
sider class one and make the necessary vector notational

changes. To doc so we let r equal r'+ S +R . Then we
ne - e —'“42 =P

express Equation 33 as

KB (rzfR)| - o + (r-f;,-R R\ gz £-B 7 =

o friy £t BB | - Sr0e )| Foalz )7 - (35)
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We may remove the primes from gjﬂabove since it i1s a dummy

index of integration. Then j?wis expressed as

Box
.,.__f’j =£‘_£5+§p,§3

so that the integral becomes

oy 2
- - + V. (r T .
< ’”q«‘-» fj’ R ﬁ(_#)[sdsﬂ(_,‘»
The Hamiltonlan (effective ) operates on function
gép(gf) as in Equation 32, the function is an eigenfunction.
Therefore, the eigenvalue GSB’ a constant, comes out of

the integral and leaves the overlap integral to give the

following approximation for class one integrals

px, 2
<8 (228 N -9+ Valm)| A 050>
B«
=& A { Ve o \\nl -\
css\wqo‘(g _{J },Wsﬁ(:)/o {16)

Let us now discuss the three types of I integrals
which exist in class two. The substitution of r=r'+j;+R
‘ —p=p <A =p
into Equation 34, proceeding as above,we obtain the

following form of I which facllitates discussion of the

three possiblities, i.e.

: N o
1=X r-f \V r- r V.
PautZity ) ez V2 e (37)
The subscript p in the position vector in the potential
term denotes the possibllityofdifferent interaction

vectors other than the j th type. We may have



3

-2
1) When.faﬁb(=:f} » We have the two-center integral
1 = Bale) Jufze £ )|¢ (zz & “)s (38)

Basch and Gray (9) and later Fenske _(7} have suggested a

convenlent way for evaluating this integral:

ﬁo(

I, =<¢ (—2' -2 + e £ 1;6 z2 £

Iy |-v2 o 20> (39)

Equation 36 is used again to re-express the first term in

I, which gilves
Bt
Iy =€qd<¢5(r)‘¢q(r_- L7

CRENE e £ (1.0)
SAVE T R

The kinetic integral can be expressed in terms of overlap
integrals and evaluated using & method described in
B
2) When.{% = 0, one obtains another type of two-
center integral, I,, which involves an analvtical expression

for the potential \qu -/_o:X ) where
BY ‘
I, = <¢q£rT)IVé£- £ ‘¢S‘B(g_’)~> . (k1)

The evaluation of this type of integral 1s discussed in

Appendix E, eg, nuclear attraction, Coulomb (Zu),_etc:, tvoe.
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s
3) PFinaliy, when/__oj'e“ #/_oPﬂ one has to deal with

three-center potential integrais, I3, where
_ © g B BY —
O L P E) SRS

The Mulliken approximation {10) was used to reduce the
three-center integrals to linear combinations of two-center

integrals of the type 12 multiplied by an overlap integral,

i.e.,
1y = <fylrs __jﬁ"’ )| 24fz)>
2
algl vty - £57 0t _
+<¢sé£g|Vé£; ,_:Y )|¢3ég'2>]. (L3)

Encouragement for using the Mulliken approximation (despite
i1ts shortcomings for evaluating three-center nuclear
attraction integrals) comes from the fact that Flodmark (5)
has utilized the Mulliken approximation in his TBA method
which is basically very similar to ours. Furthermore, &s
will be seen in the following chapter, the atomic potential
is taken to be a simplified SCF potential via Mulliken's
approximation., Thus, it is consistent to use it here. In
any case, some estimate should befma@e for the 13 integrals

which are probably important parameters contributing to

band energies.
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Formulation of the Secular Determinant Betwsen Bloch Sums

Using Equation 7 to express crystal orbitals as a

linear combination of Bloch sums, we obtain the following

matrix formulation

. ==z: . 1. ¢
Vp(g,%‘) Qo bq“(_lsgf_#) qu,(g_) (L)
= R gp

where Ep 18 the submatrix of C which 1s represented as e

column vector &
c'lp(_l_c_) \

Rp = c;’;(g) ) and b 13 defined in Equation 13
for the Bloch sums on atomic siteX, Taing the formulism
outlined in the section "SCF 1terative process" we obtain
the secular determinant shown in Equation 13 formatrix
elements between Bloch sums. However, there 1s one im-
portant exception : we now use the TBA Fock operator
(Equation 20) to obtain energr matrix elements of H(k)
instead of the k dependent operator'}kg,gr).

The solutions of the secular determinant and the
corresponding coefficlent matrix is described in Appendix A,
The flow chart for the computer calculation is given in
‘Appendix B, Let us now proceed to express the Hamlltonian
and overlap matrix elements in terms of matrix elements

between atomic orbital functions,
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Overlap and Hamiltonian Matrix Elements Between Atomic

Orbital Functions

Let F(gﬂ) be a general operator on electron . When
| Ave.
F(£1)=1 or F(E')= f?? (gr) one has: an overlap or Hamiltonian
matrix element <b (k,r )‘F(r )‘bs (k,r )Y for Bloch sums
g 5 1R el oLy

b (k,r ) and b (k,r.). Expansion of the matrix element

Qe — M sp ==

into the corresponding atomic orbitals proceeds by the
definition of Bloch sums in Equation 8 which gives the

following expression

PoaglE) -—<b Jkr )lF‘(r )‘bsp -"I*) >

=TT oxp(-tke(r -8, N 2y F.
R R = =t =J q s
R E,

"l BRI Fz] B lz-FR D )
where the subscripts q and s for the functions # represent
different sets of n,,Q, and m quantum numbers.

Equation }Scan be reduced to a single sum over Ep
(as shown in Appendix C) giving

|.a

(k) = GN_°N, %%‘ exp(-1k'R;) *

Fausp 'k q
- <g \(r- PR )\F(rv));d (2=fa) > (L6)
where gp equals Qt-gj and G 1s the number of unit cells

taken in a microcrysteal.
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If we substitute £P=£; +f into Equation hb.Fq (k)

«88 =
becomes
-
quss(g) = GNg 'Ng
G < .
. -1k - P-
Z;‘l exp(-1ik Ep) ¢q (y_“ﬁ‘gp +-.f/3)
\Plzie L\8 (200 (47)

Since F(QP) is a general operator which possesses the

translational symmetry of the crystal, F‘(g_r) equals
F‘(_r;'+_f”a). After dropping the primes (dummy indices of
integration) and defining Ij_p as
sx Px

R, = fj - £, (m,2,..0,...0) (ford # Band

V vectors in the j th interaction set)
we obtain the form of the matrix e]ement in terms of the
j th interaction vector-, "J , and )O ( the convention of

taking the interaction vector corresponding to J=1 and

setting 1t equal to ﬁ(-f;; this 3s for&#¥ B8 ). Thus,

v
F (g_)=GN-%N°% Y exp(-1k+(F Jo))'
asp 4 s =1

A (r-f’)|F( )8, e
(L8)
Equation 481s simplified by the approximations stated in

the previous section for the energy matrix elements and
the steps are shown in Appendix. L for the cases g#s,
X£f3 q##s,{=B; and q=s,{=B which occur in the H(k) . The

corresponding overlap matrix elements are discussed first
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in Appendix I: to establish various additional conventions
necessary to simplify some matrix elements ( cases q#s,x=F7
and q=8,%=#) computationally into cosine and sin terms
resulting from application of Euler's relation ( exp(ie)=
cos(8)+1isin(@) ) to the eiponential terms in Equation .
In addition, the explicit form of the Bloch sum normal-
izatlion constant Nq(xis shown.in Appendix L to be derived
from a formulation of the diagonal overlap integral
l¥qdqo}k). We, therefore, refer to Appendix L for the
essential detalls and summarize the results here for
overlap and Hamiltonian matrix elements betwsen Bloch sums
as well as the normalization constant:

1) Matrix elements for q#s and «#8

-3 .2V Bex §
Aﬁhxsﬁ(g)=g quNs 'z; exp(-iE-(f} -.fii)‘

<l -5y ),ﬁsﬁ_F

-% -% \' Bx‘f
= 1k -
Hq“,glf.) GNQ«NSB jz=;1 exp(- (f’

£
[< By B 2,060

SNERT A TR ATIRC )

«"r*':l

g )|¢sﬁ (2,

qe'Zy 2
Ba’
Z 73{< B _H)‘V(r_;(f’f, INg ey
g (x )|V(r -5 jﬁsg(r_‘yﬂ.
(49)
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2) Matrix elements for q#¥s and ¥=FB

(k) = ¢ N’%‘N = <] S00
a«s - g& 8c¢
l‘tf

v
+{‘§=:,‘1’2 cxp(-kf7 )+( 1) exp(-k- j}*-l)

. s(f')}]

(k) =G Nl 2 [{;‘,oo -C s +voo}

q«sa
B +Qs

V p[a(
+{¥1 exp(-kﬁ] )+(-1) exp(=k-J +1)}.

- s(EE, RRCE )|v(r £y f’)|¢ ()5

+ (r v
<¢ W V20 M_‘p}]
o (50)
where groups of integrals indicated by S(ﬁ),_S_QQ and

V00 which are expanded as

n L}

z Z;<;4 REARAE -f’){fds, r,)”

v

o

0

1

s00 (¢q“(£r)[¢ (z) >

A @ (x -f’)g N

w

U

The convention taken in the Equations above is the trans-
lation vectors are grouped for
i T =

in order to express the exponential terms into cosine and

sin terms by
ax

MK !
[-exp(-i‘}gfj ) + (=1)gqex$p(=£3_'€:(;()}=2<‘.08(§'-%)
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for an even s ,V Y o
Sum Aq +43 and is +i.2. sin(Evji) for an odd

+{ .
sum ﬂq f;

3) Matrix elements for a=s andX =f
The diagonal elements ofzsand H are conveniently obtained
from the form statel for ( g#s and A= ) ; therefore, the
cosine expression of exponential terms results since,€+§
would always be even for g=s., The requirement that the
Bloch sums be normalized to unity yvields the expression

of the normalization constant which for the qocase

would be
&

v (0 ﬁc\’l\’
Nqof G (1 + 2 ;2;,2 cOS(E'ZOJ) S(13 )]-

(51)
The evaluation of the above matrix elements 1s there-
fore reduced by a series of approximations uysine @oxact
diatomic integrals: overlap and related integrals (kinetic
energy), Coulomb, exchange and nuclear attraction type. In
addition, the exact evaluation of one-center integrals have
been discussed in the section "Atomic Orbital Energy" under
the approximations of the TBA method. Further discussion
of these diatomic integrals are in Appendices D {(overlap
and related integrals) and E ( potential integrals).
The word "exact'" deserves some discussion at this point
in the thesis. The analytical expression for the atomic

wave functions ( the subject of the next section) 1s

approximate; but methods are available to solve diatomic
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integrals rapidly and efficlently using available numerical
techniques programed into Fortran IV language and the IBM
360-65 model computer. Then', we properly refer to the
latter as exact within the usual round-off errors encounted
in machine computations. In order to minimize such errors,
we use double precision numbers in overlap, Coulomb, exchan-
ge and nuclear attraction programs to give an accuracy of

é Hartree energy units (27.2 e.v. ).

something like 10~

The choice of atomic orbital functions in the TBA
method i1s the crux of how exactly our calculated energy
bands and crystal orbital properties correspond to reality.
In our realm of theoretical investigations, the H-F crystal
equations provide the indicator of how well we are appro-
aching exactness. Hopefully, such an 1ndicetor approximates
as well the experimental phenomenon . In other words, we
must approach the H-F limit in order to make the TBA
amenable to the present state of the art of the quantum
chemisty of diatomic molecules; thereby the correlation
problem of crystals can become tractible. The approximations
that we have strived to make in a justifiasble manner
would be useless if we unwisely used atomic orbital func-
tions.

In the discussion of the atomic orbital energy, we

have suggested that the choice of neutral atomic wave

functions may be justified using the Pauling electro-
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neutrality principle. Let us approach the atomic wave
function problem from this a priori notion, 1.e. neutral
atoms in a crystal, and consider how the available tables
of the numerical SCF functions for neutral atoms may be

used to obtain analytical functions which have the proper

radial and nodal behavior .
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ATOMIC WAVE FUNCTIONS

The atomic wave function, ¢§, i1s taken as a product

of the radial function Hnﬂ(g) and spherical harmonics

function Yyp(e, #) or
¢q = Rpg(r)Y, (6, g). (52)

The type of radial function used in the TBA calculations

was of the Slater orbital type (ST0), i.e.,
Rpylz) = NrP-lexp(-$ r) (53)

where 3 is the orbital exponent and N is the normalization

constant.
The radial function may be of the single orbital exponent

type shown above or a linear combination of STO's; i.e.,

Rpefz) = 5% CiNirn;Iexp(- Si-r)
where N; = (2 gi)ngé

1 (54)
(2n} )=

There are many ways of choosing a basis set. If a single

orbital exponent STO i1s desired, the § parameter may be
adjusted so that the radial function matches the numarical

values of SCF functlions in the tall~-off region, ss Gerstein

et al. (1) have done. Brown and Fitzpatrick (25), who have
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investlgated rﬁdial functions of 8ll transition metal series,
would csall this type of fit to the outer region of the SCF
radial function a Burns' type orbital (26). They refer to the
Clementi type orbital (27) as one that better describes the

" inner region of SCF radial functions (particularly in the
reglon of the maximum peak). Since both types of orbitals

are STO's differing only in a choice of § , nelther one will
show radial nodes. Nevertheless, Brown and Fitzpatrick (2%)
find that both types of orbitels can be used in overlap
Integral calculations and give sufficiently accurate values
for cases involving first-row transition metals. The
Richardson (28) linear combination of STO's fits Watson's

SCF functions (29) for the titanium 34, Ls and L4p orbitals at
varylng charge better than single exponent STO's. In the case
of 4s and 4p titanium orbitals, only Richardson orbitals will
properly describe the respective Bloch sums, since SCF radial
function values remain negative in the region of interest in
TBA calculations and no single STO function can describe this
behavior.

Brown and Fitzpatrick have further concluded that Basch
and Gray 54, 6s and 6p functions (305 (which are linear com-
binations of STO's) are necessary for tantalum, tungsten and
rhenium cases where overlap integrals using them are cal-
culated. They compared Burn's orbitals with the Basch-Gray

functions and found that the use of functions fitted to the

outer regions of‘tungsten 4 orbitals produce overlap
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integral values which are too large., The arguments in favor
of using 6s and 6p functions to accurately describe behavior
in the overlap reglon are the same for titanium L1s and Up
orbitals.

Ruedenberg (private communication, Ames, JTowa, 1969) has
suggested that higher quantum number radial functions can be
fitted with lower n STO's to represent the radiasl behavior
correctly In evaluating two-center Coulomb and exchange
integrals for which the available programs go to n=3. The
extrema of the SCF function to be fitted are produced by the
coefficients of the linear combination of STO's (slways node-
less functions by themselves). The coefficients and orbital
exponents can be found by a least squares fit procedure (31).

The atomic radial functions which form an orthogonal

basis set are generally obtained in the bresent work by the

following recipe:
1) "or s and p orbitals we start with single STO's with

the same _{ quantum numbers and Schmidt orthogonalize to form
the valence shell functions which are orthogonalized linear
combinations of 3T0's (as in Equation S4). For 5d orbitals,
we use the orthonormal Basch-Gray functions which are linear
combinations of 34, Ld and 54 STO's.

2) 1If the n quantum number of the valence shell is
greater than 3, the least squares fit of n=3 STO's is made to

the Schmidt orthopgonalized radial function,
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The malin problem in the above procedure is obtaining the
single STO's necessary for the s and p functions in the first
step. Besides providing numerical values for SCF functions,

Mann (23) tabulates the location of the maximum in the radial

function, Phax® If one differentiates the radial function with

respect to r, the radial distance, and equates the expression

to zero, the tabulated maximum distance can be related to the

orbital exponent of a single STO:

3Png ) =_2 Rog- 2| = © ) (N exp(-$r)rP)=0
_b__‘?__93 . )k[ Q‘r.l o )‘S exp r)r

T

= N n expl(- gr)rgg}[ - Nkexp(-\s-r)r,’;ax =0

where r = Pmax

Thus, = . .
BT - ‘ (55)

Pmax

Therefore, the necessary orbital exponents can be obtained.
The np orbitals for Na(n=3), K(n=lL) and Sr(n=5) are not
given in the ground state configuration by Mann; thus, one
needs to approximate the Snp for the single STO represen-
tation. If one takes the ratio of .kép/'§6s (2.372/2.398)
from Basch-Gray single STO representation for Rg {charge = +1)

and multiplies it by the neutral atom ns(n= 3,4,5,6) orbital

exponent, one can obtain the single STO representation for

neutral atoms.
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The Schmidt orthogonalization procedure for the ls, 2s
. and 38 single STO basis set provides an exampls of obtaining
a 3s atomic orbital function, say for Na ., Let the non-
_orthogonal STO's be represented by a row vector v _

v = (v1 v2 v3) = (1ls 28 3s) | (56)
The vy functions exist in Hilbert space and have a set of inner
products|<v1}v£> which are represented by an overlap matrix’g.
Therefore, we seek the similarity transformation'g §“g =‘£

which maps v into u{ a column vector of orthogonal functions).

is related to y by the upper triangular

The transpose of u
~ ~ ~ o~
t 18 ¥ Ty 7., T
uy 8 11 *12 13
u, =28 =(1ls 2s 3s) T2 To3 (57)
uy/ \3sv 0 33

where the primes denote orthogonal functions, 1.e.<hjluk>=sik
( normalization is generally imposed as well). The matrix I
can be separated into a set of thres column vectors which are
identified with the expansion coefficients of the vy bases
into orthogonal functions, i.e.

u.‘1 =§ ‘1‘1J vy J=1,2,3 equations aré obtained from
the coefficients

Ty le Ti3
T22)T23

T33 giving
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u = 1s' = Tll(ls)
u2 = 28! = T12(18) + T22(28) )
ug = 38! = Tl3(ls) + T23(2s) + T33(3s) (58)

As mentioned above, the d STO basis set for 5d functions
(vy-3d, vp=l4d, v3=5d) 1is chosen from Basch-Gray (36). The
double zeta representation used by Basch-Gray for V3=Sd is
necessary to properly describe the outer 54 radial behavior.
Even though we cannot apply the simple formula in Equation 5%
for this case, we could in principle do so and continue
through step two above for uj;=3d and u2=ud using Mann's data
for rmagx. However, the respective §3d and N jd values are
close for neutral (Mann) and +1 cases (Basch-Gray) and,
therefore, to remain consistent, we use the entire Basch-Gray
vy4(1=1,3) basis set for third-row transition metals.

We justify the use of the Basch-~Gray 54 functions for the
neutral atom using Gianturco's>(32) investigation of the size
of the d orbital of vanadium as a function of oxidation stats.
The primary result of this study was that the 34 wave function
varies slowly with charge in removing lWs electrons from the
3d3h32 configuration, and finally the removal of d electrons
from the 3d3 configuration shows a small change, even though
i1t 1s greater than in the former case. It 1s reasonable to
assume that the behavior of the third-row transition metals 1s

similar to the first-row transition metals; therefore, it
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would be useful to show that the Basch-Gray 5d functions for
configuration Saltéslépl(Re*l) differ 1ittle from the neutral
atom (5d°682) numerical radial functions provided by Mann.

A plot of Basch-Gray,vs. Mann functions is shown in
Figure 3, The Basch-Gray values vary from the Mann values
at the extrema, but generally fit the SCF functiom over a
wide range of radial distance: 3.5 to 8.0 a.u.

Once we have a set of uy functions, we may apply any

least squares fit program to obtain a now set of functions FJ

which have a new basis fy, or
Fy = }_;, Cyeficl § 1) o (59)

F, is related to Uy (cuantum numbers n',JQ', m') by the

b
minimization of the devistion, D (31):

3y (60)

D =B \uj(rp; - Fiilr o

p

over a mesh of radial values rpe. The necessary constraints

9

for this minimization are

2D 2 D

=0 - = 0.
2 U3k %k (61)
Each f) function with orbital exponent 3 j has quantum numbers
n=3, R t, m',

For example, a 68 function, ug, is fitted by a function

F6 which is a linear combination of six 38 STO!'s:
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Fe = Coy 38(31) + Cgo 38(3’2) + 063 38(&3)
+ Cg)y 38(5 ’-l-) + Cgg 38(35) + Cpg 38(36) (62)

Thus, a8 a matter of convenience, each FJ is expanded into the
same number of bases as theAcorrGSponding uy func tions, eg.

the upper k limits on Fj = 54, 63 and 6p least squares fit

functions is 4, 6, and 5 respectively.
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OVERLAP EFFECTS, MADELUNG EFFECTS AND THE OVERLAP CRITERION

In 1952, Wolfsberg and Helmholz (33) suggested a semi-
empirical method based on two approximations:

1) Diagonal energy matrix elements are approximated
as the negative of the valence state ionization energy

(VSIE) of a particular orbital q, i.e.

qu= - VSIE

2) O0ff-diagonal energy matrix elements are calculated

by the expression

H = A
pa” —P4 {pr + Hog

Richardson (8) points out that such approximations, as
crude as they are, incorporate many aspects of chemical
intuition, eg., overlap of bonding orbitals and electro-
negativity. Furthermore, Jprgenson (34) analyzes the semi-
empirical approach in terms of the physical nature of the
chemical bond. He conciudes that diagonal energy matrix
elements are dominated by the Madelung potential, i.e.,
Madelung effects, and off-diagonal energy matrix elements
vary as fwb-center kinetic energy effects. Ruedenberg (35)
relates the lowering of two-center kinetic energy, due to
interference effects (changes in atomic orbitals upon
bonding), to be the crueial phenomenon which gives stability
to molecules after potential energy is cancelled by nuclear-

nuclear repulsions.
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In this theoretical investigation, we are interested
in applying chemical concepts to an amalgamation of
_quantum chemistry and solid state physlies, i.e., the TBA.
However, we are still unable to determine stabilities of
crystals or cohesive energy for many reasons. For example,
two reasons which we feel are important are:

1) The magnitude of the correlation energy is
unknown,

2) The Madelung potential cannot be evaluated exactly
in terms of Coulomb, exchange and nuclear attraction
integrals (computationally very laborous, even for a .
computer).

In other words, the crystal i1s a giant molecule; even
with the inclusion of translational symmetry, the multi-
center integral bottleneck exists for a large number of
sometimes difficult integrals (ep. three-center Coulomb
though three and even four-center integrals
are tractable now on the computer, the task to do a rigorous
calculation would be both costly and unreasonable.

We prbpose a semi-rigorous method which will be based
on three objectives:

1) To study a'series of related crystals to observe
possible trends and, thereby, propose some theoretical

model., No computations will be attempted on an absolute

snergy scale,
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2) To apply a SCF-MO-LCAO treatment to crystals
in order to use a theoretical handle instead of an empiri-
cal one to control calculation of energy bands.

3) To use the LCAO procedure when conditions are
satisfied by some well defined and pertinent criterion.
We suggest that the "overlap criterion" ( 1) is a reason- |
able way for choosing a TBA interaction model.

Begsides chemical intultion, the overlap criterion
is basgsed directly on many Iimportant mathematical relations
which are explicitly expressed in terms of overlap integrals.
Here are three quantities which depend directly on overlap
and occur throughout the TBA formulism:

1) The expression for Hg, sg (k) in Equation 49
is essentially a function of overlap and two-center kinetic
energy integrals (can be expressed as a linear combination
of overlap integrals).

2) The normalization constant for the Bloch sums is
a function of overlap integrals (Equation 51). Evaluation
of this quantity is possible so long as the overlap is
adequately.small. Otherwise, the cosine terms by becoming
negative when (gé_lspf;“é. TC ) causes the value of Ny, to
become negative. Since an imaginary value for Nqércould
result, the TBA 1s limited by overlap.

3) Because of quantity number 2, the TBA Fock

operator is only possible if the identity approximately

exists: Nqof%Nqagé'G=1 (see Appendixx ).
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If the off-diagonal energy matrix elements are related
to bonding of atomlc orbitals, we may suggest that differ-
ences between energy levels for molecular orbitals
(isolated molecule) or crystal orbiﬁals (so0lid state) are
detsrmined to a large extent by overlap effects.

Let us now consider the Madelung potential and its
effect on the TBA. Ros and Schuit (36) and Basch and
Gray ( 9) have placed much importance on shielding effects
on the point charge model for doing molecular orbital
calculations f transition metal complexes.

The lack of explicit evaluation of Coulomb and exchange
integrals, the latter particularly, leads to deficiencies in
the point charge model, eg. suggested by Fenske (7 ). The
ordering of molecular orbitals is critically affected by
the shielding effects. Since exchange integrals converge
exponentially to zero, we sueggest that the similar behavior
of overlap integrals points to the possibility that the
"important" effects of the Madelung potential are only
within bonding distances, i.e., where overlap is maximun.

In principle, we continue to include more neighboring
atoms in the Madelung potential, oscillating as it may
with each additional nelighboring atom, until convergence
occurs. Finally, we obtain an external potential (exciuding

nearest neighbor effects) which acts equally upon the metal
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atom or the ligand (assuming the Pauling electroneutrality

principle is valid). Thus, the whole molecular orbital

correlation diagram 1s shifted on some arbitrary energy

scale. The analogous energy band behavior has the sane

result, if we trust that the TBA model resembles the

molecular orbital situation within the overlap criterion. .
In points 2) and 3) we show additional evidence

that the overlap criterlon has quantitative consequences

in the TBA. Particularly, the third point exemplifies

the connection of the overlap criterion to a choice of

the TBA interaction model. That 1s, the one-electron

operator ,%?e(rr) converges to the molecular case in tho

1imit
...._.G....___.. =]
ng N%%

In the present TBA method we calculate the overlap
integrals for various overlap pairs which are involved
with possible bonding orbitals ., Then the overlap crit-
erion 1s applied to notice from tabulated overlap integrals
if any velues are exceptionally large. If such values
occur, we go to the quantitative aspect of the overlap
criterion and see how the normalization constant of
Bloch sums are affected. At this Junction we decide
whether a TBA type calculation is reasonable and procesd

accordingly to find a series of substances which apply.
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Use of the Overlap Criterion to Choose a TBA Model

In order to make TBA calculations practical, the Bloch
sums must be limited to a small set of interacting neighbors.
The overlap criterion mentioned above Is used to choose a
TBA model which can be applied to transition-metal oxides.

In Table 3, various overlap péirs in the ReO3 structuré are
listed to Indicate that overlap 1s adequately small in the
nearest-neighbor metal-oxygen iInteractions and next-nearest-
neighbor metal-metal interactions to limit the size of the

interaction set to these atoms.

Table 3. Overlap Integrals

a b Spm R(a.u. eg gy

2 .2 Cfm A
5d,, SCZ .0081:60 7.0818 90 0
027602 7.0828 0 0
5d 54 -.01L323 7.0818 90 0
Xz Xz .002067 7.0818 9 90

2 2 2

5d.%_ 5d,2_ .02121:8 7.0818 90 0
X -y x =y 1002067 7.0818 0 0
bs bs .000000 7.0818 90 0
6p, ép, .077021 7.0818 90 0
54,4 2s -.102873 3.5409 90 0
205746  3.8409 0 0
54,2 2p, .143401 3.5409 180 0
54, 2py .096507 3.5409 0 0
0

5d2 g% 23 .178181 3.5409 90
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Table 3(Cont.)

a b SaB R(a.u.) 0 ¢B
dea_yz 2p, 124189  3.5409 90 180
bs 2s .275805 3.51109 90 0
6p5 2s 42788l 3.5409 0 0
6p, 2p, 115660  3.5409 90 0
2s 2s 006916 5.0076 90 L5
2Py 2s .005662 5.0076 90 L5
2p, 2pg .001119 5.0076 90 LS

In Table 1, Spg is the overlap integral between orbitals
a and b, 6pg and g are the polar angles of the location of
center B with respect to center A as the origin. The radial
distances R are obtalned by geometrical considerations using
the lattice constant (37) of 7.0810 a.u.., These integral
values represent the true atomic overlap orbital after proper
rotation of spherical harmonics from the elliptical coordinate
system through the given polar angles. The overlap integral
values listed are part of the TBA output.

The TBA interaction model for rhenium trioxide is shown
in Figure . Re, 07, Op, and O3 are the four atoms which
make up the unit cell and a i1s the lattice constant, The
primed oxygen atoms belong to other unit cells but make up a

part of the nearest-neighbor rhenium-oxygen interaction set.
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62

The next-nearest-nejghbor rhenium atoms are located at
positions (+a,0,0), (0,+a,0) and (0,0,+a).

In general, the crystal lattice of perovskite transi-
tion metal oxides contain the structure ABO3 shown in
Figure 5. A 1s a transition metal and B 1s either vacant
as far as ReO3 or f1lled by a non-transition metal such as
alkall metals Na and K. B 1s commonly referred to as the
perovskite hole in the transition metal oxide crystal lattics.
In the recent paper on the overlap criterion (1), Na-Na
overlap in tungsten bronzes was convenliently shown by
considering sodium as filling the perovskite hole. However,
for our purposes, the octahedral arrangement of oxygen atoms
about a particular transition metal (as it was for R903 in
Figure 3) and the B atom located at the corner of the unit
cell is taken as the model for TBA interactions.

From our discussions of overlap and Madelung. effects, we
can propose a model for the interaction set of pérovskite
oxides in general. Hvan though sodium-sodium interactlons
have been postulated to be important 1n describing the
conduction band picture of sodium tungsten bronzes (38),
overriding evidence exists, both theoretically (39, 40, 41)
‘and experimentally (1lli, 42) that transition-metal and oxygen
valence orbitals are the important contributors to the

lowest conduction band. Since Na-Na 3s and 3p overlap has

been found to be strong (1), one must seek a possible
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explanation other than overlap effects to explain this
dilemma. We propose that Madelung effects push sodium
energy bands out of the conduction picture into high energy
regions. The nearest-neighbor Madelung effects between
sodium atoms are then considered to be unimportant compared
to nearest-neighbor interactions between sodium ard other
types of atoms in the lattice, Thus, the important effect
of orbital overlap and potential interactions between alkali
metals (eg. Na and K) and transition-metal or oxygen atoms
in the same unit cell makes the TBA model complete for
nearest-neighbor interactions,.

The inclusion of metal-metal (A-A) interactions tests
the model (39) which proposes that tag d states mainly make
up the lowest conduction band. The model (39, L4O), which
proposes that Y bonded oxygen and transition metal 4 states
are more important, is of course tested by the nearest-
neighbor aspect of the TBA method.

We will now apply the above TBA method to the series
of perovsklte transition metal oxides: ReO3, Na W03 (for our
present calcﬁlations we will take X to be 1.0) and KTa0l3.
Rhenium trioxide will be discussed first (Part II) since it
is the simplest of the three to treat in the TBA. 1In
order to obtain meaningful results (Part IITI) for sodium

tungsten bronze and potassium tantalate (KTaO3), we will

scale their crystal potentials and charge distributions to
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Figure 5. Perovskite crystal lattice,
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the ReO3 model. Hopefully, we then can obtain a theoretical

model of perovskite transition metal oxides which gives a
realistic picture of crystal orbitals in the LCAO limit;
thereby we hope to delineate the nature of the admlxture of

atomic orbitals which form conduction and valence bands as

a function of the wave vector.
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SUMMARY

The LCAQ procedure is to be used to obtain the crystal
potential and energy bands for transition metal oxides. The
option to obtain self-consistency of charge distribution
throughout all E(k) vs. k allows one to approach the accurate
APW potential proposed by Mattheiss. The use of the Bloch
sum basis set allows one to exactly determine the partici-
pation of atomic orbitals in various symmeiry crystal
orbitals or bands. The effects of translational symmetry .
on the traditional LCAO-MO picture can, therefore, be
determined despite knowledge of the inherent weaknesses
which exist for the tight-oinding method. By using the over-
lap criterion, ore can decide which oxides can be consldered

to be adequately described.

Thus, one imposes all the rigor which is practically
possible }or the LCAO-MO procedure in evaluating two-center
overlap and potential integrals and approximating other multi-
center integral values. Also, one uses good atomic orbital
functions (descriptive of both inner and outer properties),

As in fhe molecular case, we seek interpretation of
molecular properties (including translational symmetry) in

terms of atomic properties, e.g., potential, orbital energy,

and orbital functions.
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PART II. TIGHT-BINDING ENERGY BANDS

OF RHENIUM TRICXIDE
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INTRODUCTION

T .
Recently, L. F. Mattheiss (11) has reported an APW

calculation of the energy bands and Fermi surface of'Reo3.

His is the first effort to theoretically deascribe quanti-
tatively the electronic structure of Re0O3 and provide a model
for the perovskite transition metal oxides. He parameterizes
the crystal potential via the Slater-Koster (13) tight-
binding interpolation scheme between symmetry points. This
provides a handle for empirically controiling his calculations.
The results of his semi-empirical approach are not in dis-
agreement with present experimental data (1ll, 15). The tight-
binding method proposed in Part T has beeh anplied to

Reo3 to obtain an entirely éilforent theoretlcal model of
Re03, but agreement uwlta the sare experimenical data appears to
be comparable for the twos approacios.

Rhenium trioxide &and the perovskite transitlon metal
oxides provide a group of sudstunces which form & borderline
between a strictly APW (free electron) and a strictly tight-
binding (localized electron) appiication. From Table 3, we
see, using an overlap criterion, that the TBA might provide a
reasonable picture of the band structure of ReOB. As a matter
of fact, Mattheiss has had to modify the APW potentlal or
Muffin Tin potential to make the APW method applicable. The
question of which method 1s better cannot really be answered

since sntirely different crystal potentials are used.
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Even though the APW method can accurately be corrected
for Reo3, the problem of obtaining self-consistency and
quantitative information concerning the distribution of
atomic orbital contributioné to crystal orbitals which form
valence and conduction bands remains. The TBA method
described in this thesis solves this problem by utilizing
the Mulliken population analysis ( &) of the Bloch sums

basis set.
Since Bloch sums are directly related to atomic orbitals

by Equation 8, we have for the first time obtained a
théoretical handle, instead of an empiricel handle, to
control band calculations, Even though we resquirs an em-
pirical quantity, the lattice constant, to do calculations

at pregent { a ninimization of energy with respect to bond
length is not practical), we are completely independent of
empirical parameters in the crystal potential. Our potential
is based upor: the Fock operator used in making LCAO-SCF-MO
calculations for closed-shell systems. Thus, charge dis-
tributions which are essumed before the first cyecle of the
TBA calculation are caliculated at the end of that cycle by
the Mulliken population analysias. The calculated charge dis-
tribution is essentially put into cycle two (properly weighted
by a damping constant) and so forth. Thus, when the oscilla-
tions of assumed and calculated charge distributions for each

atomic orbital become sufficiently small, we are confident
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that the TBA energy bands have converged enough to give us
useful quantitative information. |

Because of its nature, the TBA method invoked in this
thesis may be called a semi-rigorous® molecular orbital
calculation which includes the effects of translational
synmetry on the electronic structure.

Obviously, we cannot obtain the exact splution of the
Schrodinger equation of electrons in a solid, but because of
the Born-von Karman periodic boundary (43), the Born-
Oppenheimer approximation (4ly) and the unigue nature of the
loosely-packed structure of ReO3, we may use a Bloch sum basis
set and solve the eigenvalue problem of tne electronic
structure in a solid variationally using a linear combination
of atomic potentials as the crystal potential. But even at
this point, we cannot proceed in an &b initio manner. Instead,
we proceed to make systematic approximations as Ruedenberg (35)
has stressed we must do, and continue to do so until the
calculation is both theoretically founded and practical. The
multi-center integral problem has plagued p:rogress of the TBA
approach to.solids previously. Even though we still are
unable to evaluate three-center integrals practically, we
resort to the Mulliken approximation (1C). The evaluation of

all necessary two-center Coulomb, exchange, nuclear attraction,

87 work suggested by Kaufmann (i15) and considered by the
author elsewhere (L46).
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overlap and kinetic energy integrals makes our method at

least a good first order attempt to describe the electronic
structure of a group of substances, namely the perovskite
transition metal_oxides. It is important to stress that we
evaluate off-diagonal elements in the Hamiltonlan matrix as
explicitly as possible and do not resort to any semi-
empirical approximations such as the Wolfsberg-Helmholz (33)

or extended Hﬁcke} approximations (47). For the above reasons,
we use the description semi-rigorous when referring to the

'prosent TBA msthed.
We will now discuss the calculation of TBA energy

bands of Re0O3 in two steps:

1) The input data which consists of the c¢rystal
potential, orbital energies and orbital functlons.

2) The output data which consiasts of E(k) vs. k, the
density of states, particularly at the Fermi energy, the
results of the Mulliken population analysis, the correlation
of the joint density of states with the imaginary part of

the dielectric constant, and the Fermi surface.



72

THE CRYSTAL POTENTIAL

We have calculated all Coulomb, C, exchange, X, and
nuclear attraction integrals necessary for the crystal poten-
tial (see "Atomic Potential", Chapter I) in the TBA inter-
action model for Reo3, eg., Re-Re, Re-0y, 07-0,, etc., inter-
actions. The "crystal potential”, which is a linear combina-
tion of atomic potentials, (Equation 28) is thereby calculated
by evaluating matrix elements of the classes shown in Equations
33 and 3}, Only the type 1n‘Equation hl}needs to be expanded
into C, X, and nuclear attraction integrals
The charge distributions of crystal orbitals‘TYi(g,g)la (1 =
occupied orbitals) are divided by the Mulliken population
analysis (6 ) to give Bloch sum ( in reciprocal space) or

atomic orbital (in real space) populations n, for the q bases.

The self-consiétenéy procedure outlined in Part I 1is

applied to HeOB.

Since we wish to use the ReOB structure to parameterize

a series of oxides, the obvious piace to start is the crystal

potential.

An additional calculation of C, X, and nuclear attraction
integrals to be used in the crystal potential for Naw03 and

KTaO3 was performed using the ReO3 structure (Re, 01, 02, O3

orbitals for the same lattice constant) with Na and K atomic

orbitals situated at the (111) corner positions, i.e. in the
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perovskite positions of a hypothetical perovskite oxide

AReO3 (A=Na or K). We scale these results for the NaWO3 and

KTaO3 cases using the followling procedure:

1) Using a set of C, X, and nuclear attraction integrals,
<a alb b'> , <a bla b'? and {1/rs\b b'> respectively (defined
in Equation 60 with b not necessarily = to b'!) we calculate

a scaling factor, S, as follows:

SReO3 = {(a alb b7 -3 <a bla b'>_} /<1/r,\b bt> .

modél ARe 04 ARe 04 AReO3 (6Q)

2) Using the respective lattice constants of KTa03 and
NayW03(x=1.0) to obtain the appropriate interatomic distances,
we calculate all nuclear attraction integrals

<1/r,}b b*>
KTaO3 or Nawo3

3) We calculate[C-%X]KTao3 or NaW0j used in the crystal

potential (Equation 28) by

- = .< !
[c 2X)KT803 SReO3 1/eplb 017 KTa0,

or model or ‘
Naw03 Naw03. (61)

for each a, b and b' set.

l4) Using (C-%X}KTBOB or NaWoj values, we calculate sall
matrix elements of the type (b\VA\b'>.

Justification for this scaling procedure stems from

Fenske's "point charge approximation" (7.) which for (b\vA\b'>
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1s <bsz1bt)g?2na<1/rAtb b7 -Z,<1/r,lb b'> or in other
a

words <1/r A\ b b'yxC-3X.

The scaling factor S calculated for set a, b, and b!

in step 1 above is introduced into Equation 61 by
<bwA\b'>=(§,:ena- ANV AR (62)

to give a general expression for point charge approximations
(Fenske's 1s for S = 1).

A 1/R,p behavior is exnibited by Coulomb integrals at
sufficiegtly 1érge interatomic distances RAB’ e.g. at RAB from
center B, the charge distribution asa on center A appears as
a point charge to center B. The exchange integral, howé&er,
which behaves like an overlap integral €alb” , diminishes
exponentially with increase in Rpp. Hence, the point charge
approximation is good for first-row transition metal 3d
orbitals, l.e. a=3d gives S=0.99 (8 ).

If a=ls or Lp for first-row transition metals, we would
expect that the point charge approximation would not be
reasonable. The lLs and Lp orbitals have such a large <r?
that for usual Ryp distances encountered in transitlion metal
oxides (3-4 a.u.), the diffuse a%a charge distribution still
has a finite value, eg. for Ti (23) <r 3g”= 1.487 a.u. but
{r |g7»= 3.766 a.u. The situation for rhenium is about the

same for titanium: <'r 5d>= 1.800 and r gg>= 3.694 for

RRe-0 = 3.5 a.u.
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Therefore, we introduce the parameter S into our cal-
culations for two maein reasons:

1) We facilitate the evaluation of C-3X integral values
by the fast and easy caliculation of nuclear attraction
integrals (Appendix E). .

2) We quantitatively measure the shielding effects of
diffuse charge distributions in showing why the simple point
charge approximation 1s of no value to TBA calculations of
perovskite transition metal oxides.

The result of the above analysis is shown in Table L
using nuclear attraction integrals 1isted in Table 5. |

We thereby avold the extensive evaluation of Coulpﬁb
and exchange integrals each time, but g&lso construct a
cryvstal potentlal which is directly related to the ReO3 model.
As trends become obvious, we may calculate Coulomb and
exchange Integrals more accurately if desired as the TBA
method is improved (evaluation of three-center integrals ex-

plicitly). TUntil then, our seml-rigorous method will be kept

at the present level of approximation.
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Table U. Coulomb-exchange integrals and shielding paran-
eters for perovskite transition metal oxides

Atomic orbitals® 5 .
i i k1 cP x© C-X/2 s

17225 0.980167
45206 0.966725

7796 0.000492 0.1
.1
141270 0.940521
.1
.1
1

5

1551105  $.000032
51178 ©.0000C2
50008 0.001513
61,212 0,003853
14,0568 (©.00007k

520 520 520 520
521 521 520 520
522 522 520 520

0.

0.

0]
600 600 520 520 O 43033 0,952258

0

0

56877 1.04Lk30

610 610 520 520
.135848 0.904423

611 611 520 520

200 200 520 520 0.302454 0.030307
210 210 520 520 0.317908 0.024608

0
0
0
0
0
0.287300 1.009110
0
211 211 520 520 0.295973 0.004515 O
0
0
0
)
o)
0

230560l 1.073100
293715 1.031560

.160795 0.718775
.185090 0.827377
.11:8696 0.6646L6

.155L45  0.694860
.185106 0.827448
.13961L 0.624093

300 300 520 520 0.168116 0.003352
310 310 520 520 0.195724 0.003270
311 311 520 520 0.154021 0.000207

400 400 520 520 0.162177 0.002548
410 410 520 520 0.195055 0.006899
411 411 520 520 0.144611 0.000190

8The atomic orbitals i, j, k, and 1 which have quantum
numbers n, £, and m are indicated by the integer n{ m. The
i and J orbitals are located on atom A and the k and 1 orbi-
tals are located on atom B.

bThe value of the Coulomb integral in atomic units of
27.2 e.v. are indicated by C. Electron 1 is in the orbitals

1 and j and electron 2 is in orbitals k and 1.

CPhe value cf the corresponding exchange integral 1is
indicated by X and i1s in atomic units of 27.2 e.v.

dThe value of the difference is corrected for the re-
normalization of 54 and 6s orbitals where necessary.

©The shielding parameter is Indicated by S. It is
evaluated by the following expression:

s=(c-x/2)A<§%Z‘ k1:>
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Ai_:omic orbvltals

X 4 k i C X C-Xx/2 S
520 520 521 ©21 0.155405 0,000032 0,145206 0.979560
521 521 521 52i 0,153452 0.000077 0.143359 0.967100
522 622.521 52i 0,ih9478 0.000002 0.139681 0,.942288
600 600 521 621 0,148305 0.000305 0.141980 0.957797
610 610 521 521 0,161381 0.000779 0.155627 1.049860
611 611 521 6521 0.139752 0.000334 0.134934 0.910265
200 200 521 52 0.283718 0.002058 0.282689 1.083700
210 2i6 521 §2% 0.294120 0.0018G63 0.293173 1.123880
211 211 8§21 521 0,279989 0.005h1k o.;77282 1.062970
300 300 521 521 0.,1666i0 0.001891 0.i60xld; 0.715865
310 310 521 §&21 0.193123 0.004589 0,18u169 0.836697
311 311 521 521 0.153731 0.001830 0.ih7724L 0.670032
400 400 521 521 0,161515 0,00238¢ ©,155986 0.702970
10 L10 521 521 0,19391% 0.,006028 G.18i531 0,836978
L11 411 521 521 0.145001 0.001952 O,139225 0.631483
520 520 522 6§22 0,151178 0.CCC002 0.1i11270 0.977504
521 521 5§22 622 0,1L9475 0.000002 0.139681 0.966905
522 522 522 522 0,14560.0 ©.000001 0,136468 0.9uh66L
600 600 522 622 0.141:715 0.00004é6 0.138655 0.959503
610 610 522 522 0.156117 0.000123 0.150656 1.04L250
611 611 522 S22 0.136795 0.,000014 0.132230 0.915327
200 200 %o 522 0.,244397 0.,000037 0.244378 1.024930
210 210 52 &22 0,253269 0,000029 0.25325hL 1,062160
211 211i. 522 522 0.239959 0.000032 0.2399432 1.006330
300 300 522 G622 0,162769 0.,000795 0.156861 0.729712
310 310 522 822 0.18729% 0.002088 0.18004 0.837025
311 311 522 522 ©,150326 0.000230 0.145206 0,675063
4OO 400 822 527 $.159128 0.001415 0.153238 ° 0.712404
410 L4l10 522 522 0.190297 0.003757 0.182140 0.846769
411 411 522 522 0.142617 0.000391 0.137675 0.6L0051
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Atomic orbitals

1

-—

A

k

—

1

X

c-X/2

S

520
521
522
600
610
611

200
210
211

300
310
311

L,00
441G
L1l

520
521
522
600

610

611

200
210
211

300
310
311

1,00
L4106
L1l

520
525
522
600
610
611

200
210
211

300
310
311

1,00
L10
411

520
521
522
600
610
611

200
210
211

300
310
311

Loo
L10
411

52¢
520
520
520
520
520

520
520
520

520
520
520

520
520
520

600
600
600
600
600
600

600
600
600

600
600
600

600
600
600

/f-'\

(VIR

600

600

600
600
600

600
600
600

600
600
600

0.007292
0.003858

0.028791
0.030923
0.028911

0.004827
0.006681
0.003807

0.00275L:
0.003563
0.002163

0.150008

0.000083
0.000002
0.000060
-0.001536
-0.006265

-0.000198

0.000000
0,000000

-0,000206
-0.000129
-0.000008

-0.002333

-0.003L0l
-0.000170

0.001513
0.000306
0.000046
0.010168
0.0200L.56
0.000921

0.0L6575
0.014386
0.0094.76

0.031179
0.057084
0.003679

0.042908
0.077311
0.00438L

0.006056
0.005581
0.00.896
0.005685
0.010206
0.00387L

0.030206
0.030923
0.028911

0.004103
0.00561l
0.003171

0.003263
0.00382
0.001872

0.143033

0.141980
0. 13866L
0.135089
0.141865
0.132438

0.234302

- 0.252910

0.253010

0.139435
0.143602
0.145;272

0.127389
0.130110
0.135516

0.518752

0.403997
0.413587
0.386670

0.09289
0.559965

0.315859
0.h2419,
0.151092

1.13L460
1.126110
1.09981¢C
1.071450
1.125200
1.0504.30

0.828300
0.894082
0.89ll36

0.971801
1.000840
1.005510

0.8878146
0.906810
0.944487
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Atomic orbitals

3

A

k

1

X

C-X/2

520
521
522
600
610
611

200
210
211

300
310
311

LOO
410
411

520
521
522
600
610
611

200
210
211
300
310
311
400

411

520
521
522
600
610
611

200
210
211

300
310
311

400
Lo
411

520
521
522
600
610
611

200
210
211
300
310
311
100

411

520
520
520
520
520
520

520
520
520

520
520
520

520
520
520

600
600
600
600
600
600

600
600
600

600
600
600

600
600
600

610
610
610
610
610
610

610
610
610

610
610
610

610
610
610

610
610
610
610
610
610

610
610
610

610
610
610

610
610
610

0.017103
0.016178
0.014837
0.014625
0.018665
0.012294

0.057395
0.060451
0.057836

0.015239
0.006681
0.003806

0.011678
0.014045
0.010131

0.041916
0.040L36
0.037771
0.037026
0.04L702
0.032449

0.110093
0.111291
0.11185)

0.039407
0.0L6695
0.035417

0.031926
0.036706
0.028722

0.000126
0.000003
0.000000
-0.002370
-0.006265
-0.000310

-0.004946
0.000000
0.000000

-0.000129
-0.000008

-0.003691
-0.005606
-0.000275

0.000345
0.000068
0.C00018
-0,005150
-0,014077
-0.000959

-0.006283
0.000000
0.000000

-0.001287
-0.000686
~0.000052

~-0,015806
-0.019612
-0.001265

0.015655
0.014861
0.013632
0.015410
0.021431
0.012240

0.059868
0.060451
0.057836

0.015162
0.005614
0.,003171

0.013298
0.016566
0.010097

0.038839
0.037582
0.035135
0.039089
0.051517
0.032786

0.113235
0.111291
0.11185)

0.039754
0.0L6689
0.035181

0.03953
0.0L616
0.029137

.824680
.630700
.33044L0
235750
990310

0.786713
0.794368
0.760011

i:%67910

3
3
3
3
5
2

29370

1.290160

1.326530
1.652520
1.007220

1.7034L70

1.64:8360
1.541010
1.714450
2.259550
1.438000

0.889485
0.87y21l
0.878637

0.689140
0.808355
0.609100

0.681L75
0.799325
0.500447
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Atomic orbitals

i

4

k

1

S

520
521
522
600
610
611

200
210
211

300
310
311

400
410
411

520
521
522
600
610
611

200
210
211

300
310
311

400
410
411

520
521
522
600
610
611

200
210
211

300
310
311

1,00
410
411

520
521
522
600
610
611

200
210
211

300
310
311

100

410
L11

610
610
610
610
610
610

610
610
610

610
610
610

610
610
610

521
521
521
521
521
521

521
521
521
521
521
521
521
521

61C
610
610
610
610
610

610
610
610

610
610
610

610
610
610

611
611
611
611
611
611

611
611
611

611
611
611

611
611
611

0.164212
0.161381
0.156117
0.153122
0.,168031
0.129780

0.313108
0.317081
0.315077

0.165389
0.18515
0.15500

0.154332
0.174658
0.142651

0.011230
0.011030
0.010342
0.010369
0.012331
0.0094.75

0.028137
0.02807)
0.029312

0.011589
0.013859
0,010910

0.161518
0.193911
0.145001

0.003853
0.000779
0.000123
0.0200L6
0.04.7714
0.00001Y

0.120665
0.034146
0.024790

0.037250
0.061839
0.005051

0.038066
0.060805
0.004550

0.000008
0.000011
0.000000
-0.000062
-0.000190
~0.000239

-0.000015
0.000000
0.000000

-0.000006
-0.00000}
-0.000017

0.002380
0.006038
0.001953

.252775%
.300008
.302682

0.135299
0.144255
0.140376

1.169900

1.160580
1.124990
1.057950
1.075170
0.967776

0.755407
0.896561
0.904552

0.689023
0.724093
0.715821

0.635198
0.67724L
0.659033

0.010310-10.731300
0.010128-10.541900
0.009502 -9.890200
0.010138-10.551800
0,012218-12. 717000
0.009433 -9.818060

0.028145
0.02807l
0.029312

0.1601
0.01362
0.010736

0.154986
0.184531
0.139225

0.761270
0.759336
0.792835

5.911890
7.069160
5.568750
5.125560

6.021650
L. 893640
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"Atomic orbitals

i

——

Al

k

1

X

c-x/2

520
521
522
600
610
611

206
210
211

300
310
311

400
410
411

520
521
522
600
610
611

200
210
211

300
310
311

1400
410
411

520
521
522
600
610
611

200
210
211

300
310
311

400
410
11

520
521
522
600
610
611

200
210
211

300
310
311
L4Loo

410
411

611
611
611
611
611

611

611
611
611

611
611
611

611
611
611
200
200
200
200

200
200

200
200
200

200
200
200

200
200
200

611
611
611
611
611
611

611
611
611

611
611
611

611
611
611

200
200
200
200
200
200

200
200
200

200
200
200

200
200
20

0.140568
0.139752
0.136795
0.134951
0.143041
0.129780

0.227914
0.229277
0.229285

0.148858
0.163824
0.143316

0.144952
0.163608

0.137363

0.302L54
0.283718
0.244397
0.257590
0.313108
0.227914

0.199695
0.203837
0.197625

0.19055)
0.228161
0.171216

0.179941
0.221059
0.157759

OO0 000 ocooo

0.000074
0.00033l
.00001l
.000921
. 002057
.001885

. 002059
.000827

.007324L

.005383
.010215

0.010757

0.008990
0.016365
0.015336

0.030307
0.002058
0.000037
0.046575
0.120665
0.002059

0.000028
0.000040
0.000001

0.014012
0.038600
0.000330

0.017658
0.048655
0.000400

0.131321
0.13493k
0.132230
0.133330
0.142012
0.128837

0.22688l
0.228863
0.225623

0,.1116166
0.158716
0.137937

0.140457
0.155425
0.129695

0.287300
0.282689
0.244378
0.234302
0.252776
0.22688.

0.199681
0.203817
0.197625

0.183548
0.208861

0.171051

0,171112
0.196731
0.157559

1.159280
1.191180
1.167310
1.177020
1.253660
1.137350

0.993315
1.001980
0.98779L

0.806322

0.87558,
0.760926

0.774828
0.857399%
0.715460

1.009110
1.083700
0.865343
0.82966l
0.895080
0.803397

0.999925
1.020640
0.989629

0.919137
1.045890
0.856556

0.856862
0.985152
0.788994
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Atomic orbitals

i

4

k

1

X

c-X/2

520

c21
522
600
610
611

200
210
211

300
310
311

4,00

410
411

520
521
522
600
610
611

200
210
211

300
310
311

400
410
411

520
521
522
600
610
611

200
210
211

300
310
311

00
1o
411

520
521
522
600
610
611

200
210
211

300
310
311

Loo
L10
411

200
200
200
200
200
200

200
260
200

200
200
200

200
200
200

210
210
210
210
210
210
2106

210
210

210

210

210

210
10
210

210
210
210
21

210
210

210
210
210

210
210
210

210
210
210

210
210
210
210
210
210

210
210
210

210
210
210

210
210
210

0.06[1313
0.058865
0.0L032}
0.027597
0.038969
0.023021

0.0211668
0.026203
0.023902

0.018337
0.025005
0.0146L6

0.0131L7
0.016586
0.010941

0.317908
0.294120
0.253269
0.260103
0.317081
0.229277

0.2084h9)
0.201510

0.192631
0.231841
0.172437

0.180837
0.222689
0.158189

0.005210
-0.000027
~0.025030
-0.082532
-0.002228

C.000000
0.000000
0.000000

-0.000032
~-0.000033
-0.000001

-0.0024449
-0.004L 35
-0.000036

0.02,608
0.001893
0.000029
0.014386
0.034146
0.000827

0.000040
0.000061
0.000001

0.004.927
0.0131.06
0.000142

0.004503
0.012495
0.000132

0.061708
0.059077
0.040337
0.040111
0.080236
0.024135

0.021668
0.026203
0.023902

0.018353
0.025022
0.0146L6

0.014371
0.01680l
0.010959

0.30560l
0.293173
0.253254
0.252910
0.300008
0.228363

0.203817
0.208463
0.201510

0.190167
0.225138
0.172366

0.178585
0.2264433
0.158123

1.250890
1.197560
0.817679
0.81310l
1.626L.70
0.489245

0.999927
1.062250

0.743946
1.014260
0.597735

0.58253l
0.762207

0.4ih2o7

1.073400
1.123880
0.861054
0.85988)
1.020020
0.778125

0.999892
1.022680

0.988574

0.932927
1.104490
0.845599

0.876108
1.110842
0.775725
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Atomic orbitals

i

d

k

1

X

c-X/2

520
521
522
600
610
611

200
210
211

300
310
311

Lco
430
411

520
521
522
600
610
611

200
210
211

520
521
5R2
6C0
610
611

520
521
522
600
610
611

200
210
211

300
310
311

4,00
Lhio
L11

520
521
522
600
610
611

200
210
211

520
521
522
600
610
611

211
211
211
211
211
211

211
211
211

211
211
211

211
211
211

300
300
300
300
300
300

300
300
300

400
L,OO
1,00
100
400
400

211
211
211
211
211
211

211
211
211

211
211
211

211
211
211

300
300
300
300
300
300

300
300
300

400
0o
400
1400
1400
400

0.295973
0.279989
0.239959
0.257748
0.315077
0.229285

0.197625
0.201510
0.195747

0.189881
0.227376
0.17123L

0.179956
0.221590
0.158248

0.168116
0.166610
0.162769
0.156238
0.165389
0.148858

0.19055)4
0.192631
0.189881

0.162177
0.159128
0.149951
0.154332
0.144952

0.004515
0.005411
0.000032
0.0094.76
0.0211.790
0.007324

C.GC0001
0.C00001
0.000001

0.002572
0.007156
0.00113L

0.003455
0.0096l2
0.001457

0.003352
0.001891
0.000795
0.031179.
0.037250
0.005383

0.014012
0.004927
0.002572

0.0025%8
0.002380
0.001415
0.042908
0.038066
0.008990

0.293715
0.277282
0.239943
0.253010
0.302682
0.225623

0.197625
0.201510
0.195747

0.188595
0.223798
0.170667

0.178228
0.216769
0.157519

0.160795
0.16014l
0.156961
0.139435
0.146764L
0.146166

0.1833548
0.190167
0.188595

0.155445
0.151586
0.153238
0.127389
0.135299
0.140457

1.031560
1.062970
0.867617
0.914867
1.094480
0.815837

1.600000
1.019660
0.990497

0.95L.307
1.132440
0.863590

0.901849
1.096870
0.797060

1.005350
1.001280
0.981374L
0.871796
0.917557
0.913880

0.9542L5
0.988656
0.980483

0.986195
0.983283
0.972193
0.808198
0.858382
0.891106
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Atomic orbitals

i

d

k

L

X

c-X/2

200
210
211

520
521
522
600
610
611

2G0
210
211

520
521
522
600
510
611

200
210
211

520
521
522
600
610
611

200
21
211

200
210
211

£20
521
522
600
610
611

200
210
211

520
521
522
600
610
611

200
210
211

520
521
522
600
610
611

200
210
211

sCO
1,00
1400

300
300
300
300
300
300

300
300
300

1,00
1,00
1,00
1,00
1,00
400

400
400
100

310
310
310
310
310
310

310
310
310

L,Oo
LOO
1,00

310
310
310
310
310
310

310
310
310

L10
10
410
110
410
410

1410
410
410

310
310
310
310
310
310

310
310
310

0.179941
0.180837
0.179956

0.059897
0.058695
0.055819
0.048263
0.053318
0.0LL 347

0.075673
0.077L.20
0.075419

0.065835
0.0651183
0.063893
0.074976
0.077166
0.050174

0.078509
0.079038
0.079033

0.19572L
0.193123
0.187294
0.173393
0.18515)
0.163824

0.228161
0.231841
0.227376

0.017658
0.004503
0.003455

0.001203
C.000736
0.000350
-0.049829
-0.01182l4

-0.001605
0.000000
0.000000

0.00121l
0.001016
0.000636
-0.074855
-0.050681
-0.020011

-0.002148
0.000000
0.000000

0.008270
0.004589
0.002088
0.05708L
0.061839
0.010215

0.038600
0.013406
0.007156

0.171112
0.178585
0.178228

0.057319
0.05638L
0.053790
0.07251,.7
0.078635
0.050259

0.076475
0.077420
0.075419

0.063055
0.062811
0.061457
0.11143h
0.102506
0.060180

0.07958
0.07903
0.079033

0.185090
0.18LU69
0.18004L
0.1113602
0.15423L
0.158716

'0.208861

0.225138
0.223798

0.938618
0.979611
0.977652

0.995078
0.978838
0.87251l
1.259440
1.365130
0.933814

0.971049
0.983049
0.957641

0.946059
0.942398
0.902923
1.671920
1.537970
0.922083

0.963838
0.957225
0.957165

0.979354
1.001280
0.981374
0.759831
0.816087
0.913380

0.894648
0.964L370
0.958630
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Atomic orbitals

i1 k1 C X c-Xx/2 S
520 520 410 410 0.195055 0.006899 0,185106 0.959451
521 521 410 L10 0.193911 0.006038 0.184531 0.956471
522 522 410 410 0,190297 0.003757 0.182140 0.944078
600 600 L1C 410 0.169898 0.077311 0.130110 0.674393
610 610 410 410 0.174658 0.060805 0.144255 0.74.7710
611 611 L10 410 0,163608 0.016365 0.155425 0.805607
200 2060 U410 410 0.221059 0.048655 0.196731 0.938618
210 21¢ L10 U410 0.222689 0.012495 0.226433 0.979611
211 211 U41CG 410 0.221590 0.0096L12 0.216769 0.977652
520 520 311 311 0.154021 0.000207 0.148696 1.0101L40
521 521 311 311 0.153731 0.001830 0.147724 1.00353C
522 G522 311 311 0,150326 0.000230 0.145206 0.986427
600 600 311 311 0.147367 0.003679 0.144272 0.980082
610 610 311 311 0.155088 0.005051 0,152482 1.035860
611 611 311 311 0.143316 0.010757 0.137937 0.937047
200 200 311 311 0,171216 0.000330 0.171051 0.88927,
210 210 311 311 0.1724337 0.0001L42 0.172366 0.738323
211 211 311 311 0.171234 0.001134 0.170667 0.996427
520 520 411 L11 O.1h4h611 0.000190 0.139614 1.004190
521 521 411 411 0.145001 0.001953 0.139225 0.882075
§22 522 411 L1l 0,142617 0.000391 0.137675 0.990247
600 600 U411 HJ11 0.138887 0.004384 0.135516 0,974,718
610 610 411 LJ11 0.142651 0.004550 0.140376 1.009670
611 611 411 411 0,137363 0.015336 0.129695 0.932850
200 200 411 411 0.157759 0.0004,00 0.157559 0.998323
210 210 411 4J11 0.158189 0.000132 0.158123 1.001810
211 211 411 K11 0.158248 0.001457 0.157519 0.997979
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Table 5. Nuclear attraction integralsa calculated for
. perovskite transition metal oxides in the
rhenium trioxide model
Potential Quantum numbers® Distance® <:;.‘1j:>
center A of orbitals r
3 . A
= i

Re 520 520 7.08182 0.150204
0 520 520 3.5,4091 0.28,4707
and 520 520 6.1330L  0.223707
Re 521 521 7.08182 0.148236
0 521 521 3.514091 0.260856
AM 521 521 6.1330L 0.220473
Re 522 522 7.08182 O.lu%uéz
0 522 522 3.54091  0.238434
AM 522 522 6.,13304 0.215100
Re 520 600 7.08182 0.007468
0 520 600 3.54.091 0.074768
AM 520 600 6.13304 0.010329
Re 600 600 7.08182 0.126080

-0 600 600 3.54091 0.282871
AM 600 600 6.13304 0.143481
Re 520 610 7.08182 0.004093
0 520 610 3.54091 0.076099
AM 520 610 6.13304 0.010025
Re 600 610 7.08182 0.022800
0 600 . 610 3.54091 0.127304
AM 600 610 6.13304 0.057758
Re 610 610 7.08182 0.134094
0 61C 610 3.54091  0.334621
AM 610 610 6.13304 0,213003
Re 521 611 7.08182 . -0.000961
0 521 611 3.54091 0.036971
AM 521 611 6.13304, 0.001928
Re . 611 611 7.08182 0.113278
0] 611 611 3.54091 0.228411
AM 611 611 6.13304 0.18127%

8The integral values are in atomic units of 27.2 e,v.

brhe guantum numbers n,‘x, and m are expressed as an
integer nim. The indicated orbitals are on center B.

®The distance between potential center A and the in-
dicated orbitals on center B is expressed in Bohr units.

dam 1s any slement which f1lls the perovskite hole,
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Potential Quantum numbers Distance 73 Bij>
center A of orbitals NTy
4
Re 200 200 3.54091 0.282,06
0 200 200 5.00760 0.199696
AVM 206 200 5.00760 0.199696
Re 200 210 3.54091 0.049331
0 200 210 5.00760 0.0211670
AM 200 210 5.00760 0.02LL670
Re 210 210 3.51091 0.294121
0 210 210 5.00760 0.203839
AM 210 210 5.00760 0.203839
Re 211 211 3.54091 C.27655\
0 211 211 5.00760 0.197625
AM 211 211 5,00760 0.197625
Re 300 300 6.1330l 0.1599440
0 300 300 5,00760 0.192349
AM 300 300 5.00760 0.192349
Re 300 310 6.1330L 0.057602
0 300 310 5,00760 0.078755
AM 300 310 5.00760 0.078755
. Re 310 310 6.13304 0.188992
) 310 310 5.00760 0.233456
AM 310 310 5.,00760 0.233156
Re 311 311 6.1330L 0.14.7204
0 311 311 5.00760 0.171279
AM 311 311 5.00760 0.171279
Re 1100 100 6.13304L 0.157621
0 Loo  Loo 5.00760 0.182302
AM 400  L0O 5.00760 °  0.182302
Re 4LOo0 410 6.13300 0.066650
0 100 L10 5,00760 0.082570
AM . 400  LlO 5.,00760 ©.082570
Re k10 L10 6.1330L 0.192929
0 h1c  Ll1o 5.00760 0.228046
AM k1o Lio 5.00760 0.228046
Re b1l 411 6.1330l 0.139031
0 L1l 411 5.00760 0.157838
AM b11  L11 5.00760 0.157833
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ATOMIC ORBITAL FUNCTIONS AND ENERGIES

Using the values of Pmax [rom Mann's data (29), we used
Equation 55. to obtaln ths orbilftal exponents of the rhenium
68 and 6p and other ns ané np {n = 2,3,4) STO expansions
resulting from Zquation 5ly. The expansion coefficients were
then found by the Schmidt orthogonalizstion procedure and
listed in Table 6.

Using s least-squares-program proposed by Raffenetti f48),
we have been able to express all orincipel quantum number
STO's in terms of 3d, 3e and 3p STO's {or the Basch-Gray 5d,
6s and 6p functions. The Basch-Gray functions are listed in
Table 7. The Raffenettl least squares fits are shown below
Table 7. The resulting functions are compared both graphi-
cally (Figures 6 to 8) and in Table 8, A comparison of
radial expectation values for<r9) in a.u. (q#Z,-l,O,l,Z) is
given in Table 8. Outer region radial properties depend on
reliable < r> and<r2> values while inner properties depend
on <r-1> and <r-2> values. It can be seen that except
for {r-2) values, we obtained a least-squares fit function
which appearé to be adequate for making two-center integral
calculations. The original SCF type functions will be used to
evaluate all one-center integrals. Thus, the defilciencies in
the nodal behavior at the nucleus, as exhibited by<r=2, , of
the fitted functions need not be of concern in the TBA cal-

culations. Cusachs (it2) has made a careful studyv of radial

properties vs. inner and outer behavior.
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Table 6, Coefficient matrix elements for Schmidt ortho-
gonalized atomic orbital radial function used
~ in tight-binding calculations of rhenium tri-
oxide enorgy bands
a b e
aton Uy i 3 Tij ny 31
OXYGEN 1s 1 1 1.000000 1l 7.723800
28 1 2 «0.24,0748 1 7.723800
2 2 1.028571 2 2.285810
OXYGEN 2p 1 1 1.000000 2 2.401410
RHENIUM 3d l 1 1.000000 3 20.255000
hd l 2 -0,481633 3 20.255000
2 2 1.,109941 It 10.409000
5d 1 3 0.123000 3 20.255000
2 3 -0.334200 , I 10.409000
3 3 0.666200 5 5.3143000
0.591000 5 2.277000

%Mhese are elements of matrix T which 1s upper tri-

angular, {.e.

T

T=
o~

The Schmidt orthogonelized funct
nj;ljm' are taken as a linear combinatio

vi where

Tll T12 T13 seoce
Tze T23 ceooe
33 XXX

T
ié s Uy , With

uJ=v1T15¢v2T23+ cee * v&TJJ with i=1, ... , n'=Q' or j.

Thus, the STO basis set v
tions uJ which are orthog&

b

®The orbital exponont&i for STO v

dTha rhenium 54 vy 4s a double-zeta STO.

The principal quantum number ngy for STO v

is mapped by T into a set of funce
nal orfug"-uk dv= Gy

1.
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"~ “atom uj - | Ty 3 ny &i

RHENIUM ls 1 1 © 1.000000 1 7h4..604500
28 1 2 -0.343106 1 7L, 604,500
2 2 1.057223 2 27.1.25000

3s 1 3 0.,1828116 1 7l . 604500
2 3 -0.671419 2 27.425000

3 3 1.185138 3 15.012400

L8 T L -0.100416 1 7. 604500
2 i 0.386493 2 27.L25000

3 L -0.886650: 3 15.0121.00

LU 1.25368L i 8.907850

5s 1 5 0.0.%263 1 7L . 601500
2 5 -0.168471 2 27.425000

3 5 0.4.0920% 3 15.012400

L 5 -0.723755 I 8.907850

5 § 1.157926 5 4.841620

és l 6 -0.008305 1 7l 6011500
2 6 0.032385 2 27,425000

3 6 -0.079161 3 15.012%00

b 6 0.14.336L L 8.907850

5 6 «0.256261 5 L;.S%lézo

6 6 1.02L283 6 1.985020

RHENIUM 2p 11 1.000000 2 35,291,400
2 2 1.08381L 3 15.911:866

Lp 1 3 0.212250 2 35.291400
3 03 1.176621 Iy 8.885510

Sp 1 i -0.079740 2 35.291L00
2 L 0.261209 3 15.914866

3 4 -0.55309% 1 8.885510

TR 1.10608 5 L4.511780

6p 1 5 0.017990 2 35.2911;00
2 5. -0.059165 3 15.914866

3 5 0.127640 i 8.885510

L 5 -0.281.291 5 4.511780

5 5 1.032576 6 1.963498
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Table 7. Basch-Gray rhenium functions

Orbital n? Expansion Orbital
coefficlient exponent
b
5d 3 0.1230 20,255
ly -0.3342 - 10.409
5 0.6662 5.343
5 0.5910 2.277
6s 1 -0.0140 7L..535
2 0.0505 28.821
3 -0.1232 15.279
L O.i%2% E.ggg
"Oc ie
2 1.08%0 2.398
d
ép 2 . 0.0269 35.294
3 -0,0751 ' 18.084
L 0.1546 10.041
5 "0-3338 50191
6 1.0439 2.372

8The principal quantum number of the Slater type
orbital basis.

bThe least squares function.is
5d=0.56350(1.5L4671)+0,668L50(3.5541L)

v -0.505987(8.16695)+0,18,065(18.76656) where
the number in parenthesis is the orbital exponent and the
number preceding the parenthesis is the corresponding coef-
ficient, '

cThe least squares function is
68=-0.179520(0,99199)+2,034532(1,55188)
-1,246671(2,45917)-0,5117268(3,87195)
+0.869837(6,09637) -0.307880(9.59870) .

drhe least squares function is
6p==0.159412(0.998,.7) +1,256337(1 .32 )
+0,789819(2.06021) -1,977675(2.95936)
+0,785272(L4+,25094 ).



Table 8.

Anslysis of least-squares-fit functions for rhenium atomic orbitals ® ,

SCF type Welighted Welghted Weighted Radial expectation values®
function? self-overlap self-overlep mean-square ‘< ‘
of SCF® of LSF type deviation® g Kplgp? rl )
Basch-Cray 54 0.078989 0.078859 0.000128 -2 1.160198 1.171559
-1 0.789875 0.78859)
0 0.999995 0.995184
1 1.653259  1.631237
2 3.34934Y 3.277541
3 8.071030 7.942476
Basch-Gray 6s 0.042237 . 0.040340 0.001897 -2 1.997412 0.233403
' -1 -0.422368  0.403403
0 1.000026 0.998402
1 2.803940 2.804037
2 8.492696 8.512128
3 27.353992 27.543308
8least-squares-fit functions are referred to as LSF type. See Table k.

bThe
(sCF)., -

CThe
the value

-dThe

function which i1s fitted 1s based upon self-consistent radial functﬁons

weighted self-overlap, S, is defined as S= 2{:1‘(1*

of the function at the radial distance rp"UL3' 3Q) .

weighted mean-square deviation, D, i1s defined as: (}38)

_ 2
D-Zé [SCF(rp) ~LCF (rp) ] r

®Atomic units.

2 _
p)] S where f(rp) is

26
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SCF type Welghted Veighted Weighted Radial expectation values
function self-overlap self-overlap mean-square < a _ < q

of SCF of LSF type deviation g r o 2 v op )
Basch-Gray 6p 0.040575 0.038971 0.001604 <2 0.381871 0.184165

-1 0.4,05748 0.389708
0 0.999970 0.996415
1 2.798682 2.795655
2 8.436718 8.421913
3  27.098299 27.076257

96
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Table 9. Comparison of Schmidt crthogonalized function
radial expectation values with Mamnn®s SCF
results for neutral rhenium (a.u.)
Function Radial expectation value
q (rigop®> {rhpnn?
Basch=Gray 5d -2 1.160198 1.160285
. -1 0.78987% 0.722333
1 1.653259 1.799927
2 3.349344 3.845362
SCP° b6s -2 0.7697L7 0.881567
-1 0.338750 0.337196
1 3.32004.2 3.69l182
2 il1.857742 15.666920
LSF® 6s -2 0.182571 0.881567
1 3.330900 3.694182
2 12.048085 154666920

8The subscript SOF means Schmidt orthogonalized
function.

‘bTbe single zeta Slater type orbital basis set based
upon Mann's SCF r,.x values are Schmidt orthogonalized to
give analytical functions which are labeled SCF.

CThe weighted mean square deviation of the least-
squares-£it (LSF) function, D, is 0.003403.

The 5d4.and 6s radial functions for neutral rhenium in
Table 6 were fitted by n=3 STO's and the calculated < rl3,
radial expectation values, of our baals set for rhenium are
compared with Mann's values in Table 9. The 68 and 6p least

aquares functions for the neutral rhenium atom are shown in

Table 10.
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Table 10, Least squares functions for 6s and 6p orbitals

Orbital Least squares function?®
6s : 1.46078(1.29317) - 0.93009(2.42117)
0.16555(l4.53311) + 0.12909(8.48725)
-0.13028(15.8505) + 0.04871(29.7515).
6p 1.58713(1.30492) - 1.03977(2.25186)
. 0.02002(3.88597) + 0.2;836(6.70589)
-0,10577(11.5721)

8The number in the parenthesis is the orbital exponent
and the number preceding the parenthesis 1s the corresponding
expansion coefficlent.

Using programs based upon Appendix F, we have calculated

the atomic orbital energy parameters (see Table 11) which
will be put into the TBA calculation. The formulation for

calculating Slater-Condon parameters 1is obtained from

Ros and Schuit (33).



Table 11l. ReO3 orbital energy parame ters®

Orbl tal Two-electron inter- One center Core Orbital
action energy kinetic energy energyb energy®
i1 gL,

OXYGEN 2s 1s 28 2.206543 6.21103 -1),.0796 -2,072135
2p 2s 1.Lh9L784
2s 28 1.615272

OXY3EN 2p 1s 2p 2.350730 5.76677 -13.44h5  -0.721791
2s 2p 1.Lh9478L4
2p 2p 1.677232

RHENIUM 5d ls 54 1.579712 12.17131 -106.3099 -0.671732
2s 54 1.567410
2p 54 1.572472
38 53 1.532340
3p 54 1.536908
3@ 54 1.549390

80rbital energy parameters are in Rydberg units.

PThe core eneggy of the J th orbital is exprecssed as the value of the
integral (ﬁj‘ - ° - 221 |¢£> where Zj 1s the bare nuclear charge.
r

CThis 1s the orbital energyv for the nsutral atom.

66
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Orbital

Two-electron inter-

action energy

i

!

g(1,3)

One center
kinetic energy

Core
energy

Orbital
energy

RHENIUM 5d

RHENIUM 6s

1.470050
1.418938
1.462356
1.211320
1.170556
1.076252
0.619212

0.674316
0.670548
0.671698
0.6667,42
0.667558
0.668398

0.661294

0.662210
0.663802
0.662356

1.67557

-0.330855

dBasch-Gray LUf functions have been used to evaluate g(Lf,j) terms.

001
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Orbital Two-electron inter- . One center Core Orbital
action energy kinetic energy energy energy

_i_ ,1 g(ig.‘!)

RHENIUM 6s s 6s 0.6398,8

RHENIUM 6p 1s 6p O. 667286 1.6797149 -4,8.39085 -0.13451}4

hs 6p 0.6562,8
hp 6p 0.656188
hd 6p 0.657898
LE 6p 0.656386
5s 6p 0.641836
S5p 6p 0.640108
54 6p 0.619212
6s 6p 0.474214
6p 6p 0.512740

0T
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E{k) V5. k AND DENSITY OF STATES

The eigenvalues of crystal orbitals'qri(g,g) are Eq(k)
for the 1 th ehergy band. Since the energy is a periodic
function of k, the k vectors which are to be chosen for band
calculations can be restricted to lie within a unit cell of
wave vector or mcmentum space which is called the primitive
Brillouin zons.

Rhenium trioxide and the perovskite transition metal
. oxldes belong to the cubic space group Og. In reciprocal
or wave vector space, the first Brillouln zone is a cube with
side 27 /a where a 1s the lattice constant. For ReO3, 8 1s
3.7477 A (37) All of the symmetry points and lines found in
the simple cubic Brillouin zone can be placed on the surface
of & polyhedron which is only 1/48 of the Brillouin zone
volume (Figure 9). Thus, ths choice of k vectors can be
restricted further to lie within the 1/48 volume. Siater (50)
lists the degemeracies of the k vectors which correspond tb
symmetry points and lines on the surface of the 1/48 Brillouin
zone. A non-symmetry point within this surface represents a
total of LB points in the entire Brillouin zons because of the
space group symmetry.

A convenient choice of 56 points shown in Table 12 was
used to obtain the energy bands of ReOB, KTa03 and NaWOj.
These points are evenly Spaced in the 1/48 Brillouin zone with
a cubic mesh of aide 0.21‘/5. This cholce represents 1000

noints in the entire Brillouin zone.
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Table 12. X vector basis used in energy band calculation
of perovskite transition metal oxides in the
1/48 Brillouin zone

a h
Number  k, ky k, g Number k. ky k, g
1 ) 0 0 1 29 2 1 0 2l
2 1 0 0 6 30 3 1 0 2L
2 2 0 Q 6 31 I 1 o 24
L 3 0 0 6 32 3 2 0 2l
5 L 0 0 6 33 ly 2 0 2l
b 5 0 0 3 34 4 3 0 2k
7 5 1 0 i2 35 2 1 1 2L
8 g 2 0 12 36 3 1 1 2l
9 5 3 0 12 37 L 1 1 2l
10 g Iy 0 12 38 2 2 1 2%
11 5 5 0 3 39 3 2 1 L
12 5 5 1 6 o) N 2 1 L8
13 5 S 2 6 L1 5 2 1 2l
1L 5 S 3 6 L2 3 3 1 2
15 5 5 I 6 43 l 2 1 h
16 g 5 5 1 Ly 5 3 1 2L
17 b b L 8 45 i b 1 2L
18 3 3 3 8 L6 5 L 1 2l
19 2 2 2 8 L7 3 2 2 2l
20 1 1 1 8 48 L 2 2 ol
21 1 1 ) 12 L9 3 3 2 2
22 2 2 o} 12 50 N 3 2 4
23 3 3 ) 12 51 5 3 2 2k
2l L b o0 12 52 L 4 2 a2
25 5 1 1 12 53 5 i 2 2L
26 5 2 2 12 Sh n 3 3 24
27 5 3 3 12 55 L L 3 2k
25 5 L L 22 56 5 L 3 24

: 8The k4, k, and kg components of k are in units of
0.2 /a where a”is the lattice constant.

PThe number of points in the entire Brillouin zone
are indicated.
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In Figure Gl (Appendix G), we see the E(k) vé. k curve
and the density of states histogram. The E(g) vs. k values
for f1, X, M, and R symmetry points are listed 1n Table Gl
(Appendix G). Note that the E(k) vs. k curve is limited to
the region 1.0 to -4.0 Rydberg units. This range was taken
because we wish to show the important details of the energy
bands in the region of the Ferml energy which has been found
to be =-1.4828 Rydbergs. Only the top and lowest bands which

are excluded from Figure Gl, are represented by the four

examples in Tables G2 to G5 to roughly show their relative

variation in k space.
The histogram for the density of states is determined

as follows, We choose an increment of energy E and count
the number of energy levels (E(k) calculated at 1000 k

vectors) N(E) within a particular energy interval E to
E+AE. Thus the density of states G(E) at an energy E in

each unit cell volume is

= N(E) -
6E) = Foc2eet (63)

where the factor of 2 is included to account for the spin
degeneracy. p 18 the sum of k vectors taken, 1.e. 1000
resulting from the present mesh taken for the 1/48 zone

(Table 12). The energy axis 1s divided into increments E +
n AE (n=0,1,2...) and the partitioned columns formed from

G(E) produce the histogram.

There are 25 valence electrons considered in the ReO3
calculation, seven from rhenium and six each from the three

oxygen atoms. The computed energy bands must accommodate



106

these 25 electrons via the Paulil ekclusiqn principle by
filling the energy bands below the Fermi level with two
electrons each. , |

In order to simplify the calculation of the Fermi energy,
we guess at which bands are definitely filled and consider
only those bands which are within the region‘of where we
expect the Fermi level to be. For Re0Oj, we are left with nine
electrons which are to £1ll levels to the Fermil energy.

The determination of fﬁs Fermi energy 1s simple
arithmetic. Tﬁe number of times an energy corresponding to
a given k 18 counted (on the basis of k vector degeneracies
listed in Table 12). Then, we number the lowest energy lgvel
one and proceed numbering energies to the next lowest level
and so forth, until the list of energies 1s exhausted. For
" example, 1f there are nine electrons or 4.5 electron pairs and
1000 k vectors in the Brillouln zone, 4500 energy states will
be occupied, and all higher energies will be unoccupied.

Thus, the approximate Fermi energy lies somewhere between
energy number L4500 and }50l. Generally, both energies have
the same value,

The density of states at the Fermi energy, G(Es), 1in the
independent particle model, 1s related to the electronic
specific neat, Ce, by Cy =1‘T.

G(Ep) = 3% / n2a3k2No. (6Y)

a 1s the lattice constant, k is Boltzmann's constant, and No

1s Avagadro's number. If G(Ep) 1s expressed as states
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-e.v.‘l-cm'3,~‘ is given by joules-mole‘l-deg'z, and a is

expressed in angstroms, evaluation of the physical constants

gives (51):
G(Ep) = 4.242 x 1026 ¥ /a3, - (65)

Taking the value of G(Ep) at & E=,05 Rydberg units, 21.1
electron statea/Ryd.-unit cell or 2.94 x 1022 states -e.v."1
-cm'3, one obtains ¥ from Equation 65 and finds it to be
3.66 x 1073 joules-mole'ldeg'z.

Thus, byia measuremént of the specific heat of Reo3 at
low temperatures such as Sandin and Keeson (52) have done for
reduced TiOp, the constant 3 can be found and compared with
our value. At this time, we know at least that our N(E) vs. E
at Ep correlates with the fact that Re0Oj is a conductor as it
has been found experimentally (53).

The Fermi level actually lles close to a peak in the
density of states which amounts to 6l electron states/Ryd.-
unit cell. The value of 21.1 states/Ryd. was obtained by
counting the number of states Just above this peak. Since the
gap between the Ferml level and the next higher peak 1s filled
by a constant number of states (20-21) and the results (Si)
for sodium tungsten bronzes are of this magnitude, we feel
that the value of 21.1 states/Ryd. is not unreasonable.

If rhenium trioxide is slightly reduced, eg. ReOp g9,

the specific heat at low temperatures should have an out-
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standing increase above that of ths pure substance to the

extent that Ep lies above the 2pg peak. Certainly, such

measurements would help to test our density of states

picture.
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RESULTS OF THE MULLIKEN POPULATION ANALYSIS OF R003

In Tables G2 to G5 {Appendix G), we show the results of
the Mulliken populaticn analyses. We use Equation 23 to
obtain the % orbital contribution of atomic orbitals to
crystal crbital i with eigenfunction inig,g) (normalized to
one) and eigenvalue E4 (k) at the symmetry polnts Jq(gamma),
X, M and R.

The main coatribution to the crystal states immediately
below the Formi level comos {rom oxygen Zpﬂ orbitals. These
orbitals form narrow bands which are rather insensitive to
change in translatlional symmetiry, as evidenced by the very
flat grouﬁ of bands st the Fermi level in Figure Gl. The
electrons in these bands are lccallzed onn the oxygens by
the overlap criterion. The Re-0 eg type bpands cross the Fermi
level (see Figure 10 waich is a magnification of the region
about the Fermi level) and, therefore, contribute to the
conduction band, but the direction of the “Eg“ band-Fermi
energy iaterscction contributes little to the 21.1 elsctron
states/Ryd. discussed in the previous section. This is so
because the derivative, N(E)/A E, is small.

An interesting tning happens at the R symmetry point
where stabilization oi &y, type bands (RZS') brings dyx -2p,
states very close to the Fermi level., A dxy type band (MB)
also comes close to the Fermi level at the M symmetry point.
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The small curvature of the conductioxn bands at RZS‘ and M3
contribute mainly to the 21.1 electron states at the Fermi
level. Then d,‘-Zpﬂ bands give rise to a large number of
states from ths Fermi level to ~1.0 Rydbergs. Therefcre,
within the limits of our TBA, the Sienko-Goodenough d.. ~ pgy
model (39, 40O) applies to.Re03.

The localized Op molecular orbltal picture of ReO,
quailtatively agrees with our vands ab the 4 and R symme try
points, e.g. thec ©vy,(ép and 2p), tgg*‘tZg(Sdﬂ"sz }s eg¥-eg
(5d¢ -2pg ), and alg%(ép)-alg(Es) orbitals are the main
contributors to bands at f° and R and are identified as such
in Tables G2 to G5.

The self-consistent crystal potential {obtained by
calculating 56 k vectors at .7 rninutes/k vector) involved
a lengthy and expensive computation without some prior edu-
cated guess about approximate charge distribution. We,there-~
fore, sought a method to obtain the approximate charge dls-
tribution for a given k vector, in order to guess occupation
numbers before executing an entire E(k) vs. k calculation.

Three values of damping constant,]k , were tried. These
values were 2, 4, and 8. The k vector was chczen to be
(0.0,0.0,0.0) 1in an E(k) calculation over 3 cycles. The
Mulliken population analysis was accomplished by assuming that
Eyo(k,r)=Ef. In Figure 1l we see that | =8 gives the best
control over charge distribution oscillations (indicated by
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Figure 11. Variation of rhenium energy bands during three
cycles ( A=2, e A, )
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variation of metal band energies} which occur in the self-
consistency cyeling srocedure. Furthermore, 3—=B gave éood
convergence for the metal orbital charge distributions after
S cycles at k = {0.0,0.G,0.0}, (Figure 12).

Comparison of assumed-calculated cherge d;stributions
using‘} =8 for all k vectors with proper weighting oflg
vector degeneracies in the entire Brillouin zone can be
made from Table 13,

The 6p type levsels at f‘symmatry are spread widely sapart,
but converge to a narrow band near R symmetry. This phenom-
enon is an indication of the incomplete self-consistency of
6p charge distributions which have not yet converged to the
same value for the 6p,, 5p, and 6p& Bloch sums.

Because of the convergence of other charge distiributions
(sd, 68, 28, 2p), we find that only 1 to 2 cycles using all
56 k vectors are necessary to approximate self-consistent
tight-binding energy bands. The fact that the 6p states do
not converge to SCF states 1s not a serious problem because of

the small mixing of 6p states with other rhenium and oxygen

states.
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Tables 13. 3903 charge distributions
Orbitel Initial chargs Cycle one for Cycle two for
distribution, 56 k vectors 56 k vectors
assumed calc. assumed calc,

54,2 0.570000 0.56263  0.5G8856 0.556507 0.594902
- 0.520000 0.119174 0.262088 0.401720 0.440543
Sdyy 0.520000 0419321  0.255052 0.401069 0.412365
S5dx2.y2  0.570000 0.56266, 0.4i,0582 0.549099 0.601975
5d 0.520000 0.41940 0.2546k2 0.401101 0.u91285
6%y 0.,00000 0.466548 ©.576255 0.478738 0.598266
bp 0.133333 0.121009 0,156211 0,124920 0.155003
6p% 0.133333 0.122265 0,266513 0.138292 0.304171
6py 0.133333 0.121786 0,28i:138 0.139825 0.297851
2s(1) 1.000000 C.939621 0.820419 0.926371 0.825832
2py(1)  0.666667 0.750217 ©0.685612 0.765261 0,758865
2p,(1) 0.666667 0.571473 0.75554%i 0.591925 0,.7L5573
2py(1) 0.666667 0.750037 0.862680 0.762553 0.729168
2s(2) 1.000000 0.928646 0.883222 0,932,188 0.89010L
2pz(2) 0.666667 0.750191  0.843977 0.760612 0,742527
2p,(2) 0.666667 0.750509 0,788706 0.754753 0.594019
Zpy(a) 0.666667 0.56757 0.67746k4 0.579680 0.6L6704L
2s(3) 1.000000 0.938926  9,906650 0.935343 0.506099
2p,(3) 0.666667 0.573808 0.556071 0.571837 0.502240
2p,(3) 0.666667 0.750623  0.740925 0.7L95Liy 0.593041
2p?(3) 0.666667 0.750488 0,773804 0.753079 0.669813

8Values prior to iteration at k=(0.,0,0.0,0.0}.
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THE CORRELATION OF THE JOINT DENSITY OF STATES WITH
THE IMAGINARY PART OF THE DIELECTRIC CONSTANT

In the reflectance method (5l;), one determines the reflec-

tivity R which is given by

R = ((n-1)2 + ¥2)/((n+1)2 + ¥°) (66)
where n is the regl amnd k is the imaginary part of the refrac-
tive index. The complex dielectric constant,€ , is related
to n and kK by

€=€ .1%€, =(n-1k)? (67)
where the real part, €y, is n2-k? and the imaginary part, € 5,

13 2nk. €, is a function of a photon freguency,w, (54) tl.e.
2

€ (w) = beh T o (2/2x)d).

2m2w2 O,u B-Zo

"o (W, yll) =)+ M, (x)] 2 a3k (68)
where e, 4 and m are the electric charge, Planck's constant
divided by Zﬁ and the elect{ron mass. The subscripts o and u
refer to occupied and unoccupied bands, respectively. o’u(g)
corresponds to the electronic transition energy at a partil-
cular wave vector k or wo,u(E)"(Eu(l‘.)‘Eo(E))/ﬁ' The mo-
mentum matrix element, M, ,(k), is expreased as (‘I/o(&:_.y_)l -
iVPYu(_}g,g)) between crystal orbitals o and u (Equation 7),
Mo, ulk)seMg (k) or 'Mo,u\a 1s related to the transition
probability of an electron in state o being promoted by some

slectromagnetic interaction, eg. light waves, into state u.
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The delta function is defined by

fl

1f | Wo,u -] € ( AW2)

O otherwise

Soug 0 -w) .
(69)

The momentum matrix element can be considered to be
constant throughout the Brillouin zone (B.Z.) and the factor
quzeaﬁ/Bmzauz may be taken as a constant as well, Thus,

the behavior of € 2 1is determined essentially by the quantity

Jd o,y (w) = Ab)_( 2 S (wo)u(E)'(d)dBk

.< 2% )3 (70)

which is the joint density of states for the two bands
indexed bf o and w . PFeinleib (14) points out that this
quantity could be an important parameter in energy band cal-
culations. Accordingly, Jﬁu (w )*6w 1is the number of pairs

of states in bands ¢ and w with
hlw-ow/2) £(B, (K)-E (k) £ Alw+ 292) (71)

Brust (55) suggests a sampling procedure which replaces the

integral in Equation 70 by a finlte sum., We have

3
Nw=wy) = &K 2 z S(w Woyir (k)= Wy)
Ao (2%)3 L (72)

where k 1s a set of uniformly spaced sampling points lying
within the first B,Z. The sum is defined for a set of values

wi such that wi+l= wi+ Aw., A3k 1s the volume surrounding

the sampling points. In our TBA calculations, we take a
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cublc mesh of A3Zz= [.2:‘;:‘»—‘3 where a is the lattice con-
stant. VUe chose & value of .0l Ryd. for & E to give the
joint density of states vs. ensergy histogram. The degeneracy
of k vectors is ilmcludod in the sum which gives a total of
1000 sampling points in the Brillouin zone. The calculated
joint density of states may be compared with.e:2 found by
Peinleib (1), He detsrmined optical properties of Re0; by the
reflectance moflicd over ths photon energy range 0.1 to 22 e.v.
In Table 1lh wo &how a comparison of our peaks (Figure 13) in
the joint dunuicy of states and ¢he maxima in the e,a values

found by Feinleib.

Table 1lli. Joint density of states peaks of Rec3

Rydberg units Electron-volts Feinleib results

0.06 0.816

0.16 2.18 2.30
0.26 . 3.5 .20
0.Lh6 6.26

0.54 7.35 7.0
0.560 B.16 8.5
0.74 10.03 9.3
0.90 12.22

1.14 15.52 1.0

We wish to obtaia experimental verification from the € ,
maxima Feinlelb celeulates from roflectivity data. The

Feinleib peaks are placed along side the closest joint density
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of states peak. The low energy maximum begins 3.5 e.v. and
extends to .2 e.v. where the latter is observed experi-
mentally. Other peaks which are not obaserved can partially
be explalned since the probability of Iintraband transitlon
has been neglected in obtaining the joint density of states.
Thus, forbidden transitions indicated by & zero momentum
integral are included.

Since a low energy maximum has been detected in our
analysis, we conciude that our caliculated results have

correlated with the observed optical properties of Re03.
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FERMI SURFACE

Marcus (15) has made a number of de Haas-van Alphen
measurements of Re0j3. Mattheiss was the first to give a
theoretical description of the Fermi surface. He finds that:

1) The ¢&X sheet 1is centered close to the;r’ point.

The constancy of the related sreas in 100, 110, 1lll, etc.,
directions for the measure frequencies, implies that tha.
shest of the Fermi surface is essentially spherical in shaps.
The orbit is thsrefore closed.

2) The A shest is larger than the ¢X sheet but is
also shaped around the J° point. Howsver, it has a more
cubic shape with rounded corners. This orbit is aiso closed.

3) PFinally, the %' sheet consiszts of tubss which extend
out from the I‘ point along ali x, y, 2 directions., DBssides
having an open orbit at the 100, 001, 0i0 faces, another
open orbit moves along the curvature of the tubular structure.

In Figure 14, we give the intersection of the Ferml
gurface with symmetry points and lines along the 100 and 110
directions for the Mattheiss results and ours. The overall
agreement with three sheet-Fermi surface theory is better than
expected but two other sheets are found, open as the § sheet.
The spherical sheeﬁ about R can be explained by the stabiliz-
ation noted in energy bands at R symmetry. Again, no adjust-

ments have been made in our calculations to obtain these

results.
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Figure 1lli. Intersection of Ferml surface with planes defined
by symmetry points and lines.
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SUMMARY

We now givo a quantitative, within our TBA limitations,
answer to the guestion "why is rhenium trioxide a conductor?”
The 2pX energles are relatively unchanged from that of the
neutral oxygen 2p orbitals because of Madelung effects. But
54, orbitals are stabilized by the Madelung effect of the
cryvstal potential at R and M symmetry to become suitable for
bonding with 2p, orbitals since 5d, -2p, overlap is signif-
icant (Table 3). It appears that energy bands which should

be conslidered to have some contribution to the conduction are
6 type bands which are immediately above the x band. The

metal g % or 6% orbitals combine with the oxygen 2p, orbitals
to form these S'type bands., Thus, even though Zp-ép overlap
is small and incapable of promoting conduction of electrons,
mixture with Sd*(tzg) states at M and R symmetry where the
minimum occurs in the conduction band allows tne non-bonding
2p o bands to be the prime cause of conduction in Re0j.

The small and negative Knight shift of 187Re NMK reson=-
ance in Re03 measursd by Narath and Barham (56) correlates
with our calgulated absence of tunzsten 6s states near the

Fermi level.

It 1s interesting to observe that Mattheiss also has a
bonding model of the Re0; Fermi surface but with the 5d,
contribution being the prime source of conduction with small

contribution of 2p orbitals., Also, he has an ey type band
Y g typ
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just above tﬁia tZg manifold which he attributes to crystal
effects of the octahedral electrostatic potential fleld. The
similarity of his model with ours in the existence of an
eg‘tZg arrangement suggests that perhaps our TBA method is
describing physically the same picture as the APW method.
This may expiain how our results correlate well with experi-
ment as Mattheiss' results,

We have an egi or ¢ % band where Mattheiss does, but a
good portion of the 5d22-5dx2_y2 contribution is within the
2s bands which are also & like. The ability of the TBA
method to quantitatively analyze atomic orbitel contributions
allows us to gain a clearer plicture of chemical binding in
solids. This 1s possible because we introduce chemical
concepts directly into the TBA model. For 1nstance, we
'include overlap and electronic interaction terms explicitly
instead of using empirical parameters, Then, application
of the Mulliken population analysis follows to give a complete
pilcture of chemical binding. We, therefore, not only know
what the atomic orbital charge distributions are in the
crystal orb;talsj@fi(g,g) for the 1 th energy band, but have
a good i1dea as to how they got there, e.g. by overlap and

Madelung effects.
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. PART TIII. IGHT-BINDING ENERGY BANDS OF
POTASSIUM TANTALATE AND SODIUM TUNGESTEN BRONZE



126

INTRODUCTION

Cubic strontium titanate, SrTiOB, potassium tantalate,
KTaO3, and sodium tungsten bronze, NayW0s (O£ x£1.0) have
been the subject of a wide variety of experimental work as

{s shown in Table 16.
Many workers in the field of perovskite transition metal

oxides have attempted to expiain the conduction of electrons

in the tungsten bronzes, {Table 15).

Table 15. Theoretical models based on verious experimental

evidence
Name ‘ Atomic orbital constituting
lowesat conduction band
Sienko (39) W 54 (tpy) states
Keller (57) W 6s states
Mackintosh (58) Na 3p states
Fuchs (38) Na states
Goodenough (40) 7t bonded O and W 54 (tzg) states

Ours 1s the first attempt to obtain ths tight-binding
energy bands of Naxw03(x=1.0). Even though the complete
£illing of perovskite holes by sodium, x=1.0, has not been
accomplished at present, this hypothetical substance allows
us to study the trend - Reo3 - Naw03 - KTaOB where a metsl -

non metal transition exiasts.
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Table 16,

~ Summary of experimental data pertinent to energy

band structures of transition metal oxides

Experimentalist and method

Observations and conclusions

SrTiOB

Gundy(59): absorption meas-
urements

Cohen and Blunt{(60): reflec-
tivity and electroreficc-
tance in the nselghborhood

of the fundamental absorp-
tion edge

Frederikse et al.(61):
magnetoresistance and Shub-

Py

nikov~de Haas effsct

Tuf'te and Stelzer{62):
piezo~-resistance

Noland(63): optical trans-
ition measurements

DiDomenico and Wemple (6l ¢
optical measurements

Feldman and Horowitz(65):
rotary {transmission measure-
ments of stresg-induced
dichrolism

Cardona(66): refisctivity
measurements

Malitson(67): high
precision measurements of
the refractive index

Baer(68): intraband Faraday
rotation

"Energy gap is at 3.15 e.v.

Band gap 1s observed at
3.4 eV,

Minims lie salong the 100
direcition .

Minima 1le at the center of
the ©r»illouin zone.

Absorption edge is at 3.22
8.V,

Band gap is at 3.4 e.v.

A direct transition at zone
edge (X) is improbable .

Absorption peaks observed at:
3.2,4.0,4.86,5.5;6.52,7.4
9.2,9.9,12.5 and 15.3 e.v,

The data can be fitted to a
Sellmeir relation with the
major oscillator at L.l e.v.

The rotation is negative,
monatonically increasing in
magnitude as band gap is
approached. This implies a
p-d fundamental absorption
with band gap at 3.4 e.v.
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Table 16(Cont.)

. Experimentalist and method

Observations and conclusions

SrTi10
3

Schooley et al.(69): uni-
axial stress on the super-
conducting critical temp-
erature

KTa0

3

Frova and Boddy(70j): electro-
reflectance

Wemple(71): photoconductivity
and reflectance measuremenits

Baer(68): Faraday rotation

DiDomenicc and Wemple({6l):
absorption measursments

NaxWOB

Brown and Banks( 72):absorp-
tion spectra measurements
with varying x values

The presence of supercond-
uctivity indicates that the
conduction band minima is
located off k=0 and the
effect of the stress indice

. ates that the minima 1s in

the 100 direcition,

Singularities observed in
the 100 direction were:
3.57,3.80,4.40,4.88 and 5.5

&,V

The photoconductivity peak
was observed to be 3.58 eo.v.
and the absorption band gap
to be at 3.50 e.v,

The rotation was negative
for the same rsssons as for
Sr7i The band gap was
estimased to be about 3.80
8.V

Band gap is 3.9 e.v.

A 100 A sbsorption peak is
obtained for a value of x
=},0 by extrapolation of the
observed data.
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Table 16(Cont.)

Experimentalist and method

Observations and conclusions

NaxWO3

Fromhold and Narath(73):
nuclear magnetic reson-
ance measureapents

Narath and Wellace(7L):
ibid

Jones et al.{75):1bid

Greiner et al.(76):magnetic
susceptibility measursments

.
Sienko and Gulick(77): 1%
NMR studies of potassium

tungsten fluoroxide bronzes

Dickens et ai.(78): measured
reflectance spectra of the

Vest et al.(51): low temp-
erature specific heat measurs-

ments

Gardner and Danlelson(79 ):
measurement of electrical
conductivity

Studies reveal a very small

“or zero Knight shifts for

both the Na and W nuclei.
Thus s orbiltals of alkall
atoms cannot particlpate to

. the lowest conduction band

but 54 and 6p (but not és)
orbitals of W may do so.

Weak temperature independ-
ent paramagnetism is found.

Oxygen waslpartially subste
jtuted by "SF. THe Knight
shift is less than 0.001%.

Low energy peak present in
the bronzes but not w02+x
(1.39 e.ve). 3.30 6.V,
band gap extrapolated from
data for x=1.0 .

Obtained electronic specific
heat coef. for x=.56 to .86,
The extrapolated densitg of
stetes at x=1 is 2.2X1022
electron states/e.v.-cc.

The bronzes are conductors
from 45 to 1.0 x values. A

maxinmum in conductivity is

observed at .75.
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Although Szf'l‘io3 tight-binding energy bands have been
obtained by Kehn-Leyendecker (41), the related compound KTaOy
| has not been studied theoretically. Our theoretical investi-
gation of KTaO3; therefore, provides the first attempt to
| use TBA energy bands to interpret the optical and insulator
properties of KTaOj. |

In Table 17 we have KTaO3 and Na,W03(x=1,0) overlap
integral values which may be compared with the R303 values in
Table 3. Thus, the overlap criterion can be applied to
establish a TBA interaction model as was done for Re03. For
example, if we consider KTa03, a reasonable TBA interaction
vector set is listed in Table 18, Of course, the potassium
atom is replaced by sodium if we consider Naxw03(1=1.0).

Attempts to calculate TBA energy bands for SrT103 with |
inclusion of the Ti lLs and 4p orbitals in the Bloch sum basis
have failed for the nearest-neighvor model because of the
large Ls-4s overlap, about 0.4. The problem exists in the
evaluation of the 4s Bloch sum normalization constant ih
Equation 14. The exponential exp(ik+Rj) glves rise to 2cos(
k*R,) since interactions are in + directions. The values of
 keRy are close torr for SrT103, therefore, the cosine is
negative. The large value of the 4s-i4s overlap integral
causes the normalization constant squared to be negative or
the imposslble situation of an imaginary normalization con-
stant. The failure of the nearest-neighbor model has also

besn noted by Andre (80),



Tsble 17. Overlap integrals in KTaO; and Na ,W03(x=1.0)

a b O3 ?y KTa04 NaxW05(x=1.0)
R(a.u.) Syn R{a.u.) 'SAB

54,2 54,2 90 0  7.537793 0.012787 7.306311 0.01040
0 0 7.537793 0.038959 7.306311 0.03266

5d,,, 5d_, 90 0  7.537793 -0.02221 7.306311 ~0.018871
90 90 7.537793 0.004063 7.306311 0.002983
54,2 2 54,22 90 0 7.537793 0.030235 7.306311 0.025247
0 0 7.537793 0.004063 7.306311 0.002983

63 6s 90 0 7.537793 0.149123 7.306311 0.1,6516
ép, 6p,, 90 0 7.537793 0.073803 7.306311 0.077109
5d,° 2s 90 0  3.768896  -0.109242  3.653156  -0.105011
0 0 3.768%96 0.218485 3.653156 0.210022
54,2 2p, 180 0  3.76889% 0.130349 3.653156 0.134755
5d ., 2p 0 0 3.768396 0.095468 3.653156 0.095019
5d.°_y2  2s 90 0 3.768396 0.189213 3.653156 0.18188L
5422 2py 90 180  3.768396 0.112836 3.653156 0.116701

16T
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e b (83 s KTa04 NayW03(x=1.0)
R({a.u.) SaB R(a.u.) S)p
bs 2s 90 0 3.768895% €.260562 3.653156 0.269152
ép,, 2s 0 0 3.768896 0.,,0582, 3.653156 0.416765
6p, 2p, 90 0 3.768896 0.102230 3.653156 0.108742
2s 2s 90 LS 5.330024 0.004139 5.166342 0.005391
2p 2s 90 U5 5.330024 0.003356 5.166342 0.00438Y
2p, 2p, 90 U5 5.33002l 0.000605 5.166342 0.000828
54,2 ns? 54.7 LS 6.527920 0.000000 6.327,451 0.000000
5d,, ns 5h.7 LS 6.527920 0.025 6l 6.327,51 0.036625
5d,2_,° ns SL.7 LS 6.527920 0.000000 6.327451 0.000000
bs ns Sh.7 LS 6.527920 0.355602 6.327451 0.315373
6p, ns 54.7 4S5  6.527920 0.170806 6.3271:51 0.186985
25 ns L5 90  5.330024  0.163196  5.166342 - 0.149607

8n equals I for KTaO3 and 3 for NaXWOB(x=1.O).

2eT
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8 b O, 4 KTa04 Na, W03(x=1.0)
R(a.u.) SaB R(a.u.) Spg
2p, ns us 90 5.33002k 0.000000 5.166342 0.000000
2p, ns LS 90 5.33002L 0.032728 5.166312 0.041873
54,2 np,, Sh.7 45 6.527920 0.059551 6.327U51 0.051505
5d 5 np, Sh.7 LS 6.527920 -0.002021 6.327451 -0.013406
54 2 _ np, 5h.7 LS 6.527920 0.000000 6.327451 0.000000
6s | np, Sh.7 LS 6.52%920 -0.279541 6.327451 -0.2;3009
6p, np, sh.7 L5 6.527920 0.043065 6.327451 0.051631
2s np, L5 90 5.330024 -0.191010 5.166342 -0.1740kk
2p, np, LS 90 5.33002) 0.000000 5.166342 0.000000
- 2p, np, L5 90 5.33002Y -0.013421 5.1663)2 -0.025070
54,2 np . 5.7 L5  6.527920  -0.029775 6.327451 -0.025752
54, np . 54.7 LS 6.527920 -0.002021 6.327451  -0.013406

€fT
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a b B ¢é KTaO4 Na,WO03(x=1.0)
R(a.u.) SuR R(a.u.) SpB
54,22  np, 5L.7 LS 6.527920 0.051572 6.327451 0.0LL 604
6s np . sh.7 45 6.527920 -0.279541 6.327451 -0.243009
6p, npy 54.7 L5  6.527920  -0.192713 6.327451 -0.192178
2s np_ L5 90 5.33002Y 0.000000 5.166342 0.000000
2px np, us 90 5.330024 0.046236 5.1663)2 0.043181
2p, np, L5 90 5.33002l 0.000000 5.166342  0.000000

“HeT
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Table 18. TBA interaction vector set for KTa03

Interaction Vectors in terms of unit cell
translation vectors?

T1 T2 T3

Ta-Ta 1.0 0.0 0.0
-1.0 0.0 0.0

0.0 1.0 0.0

C.0 -1,0 0.0

0.0 0.0 1.0

0.0 0.0 -1.0

Ta-Ol 0.5 0.0 0.0
-0.5 0.0 0.0

Ta-0o 0.0 0.5 0.0
0.0 ‘-005 0.0

0, =0 -0.,5 0.5 0.0
12 -0.5 -0.5 0.0
0.5 0.5 .0

OCE -O-S an

Ta"OB 0.0 0.0 005
0.0 O:O -005

01-03 -0.5 0.0 0.5
-0.5 0.0 -0.5

0.5 0.0 0.5

O.S O-O -005

02-03 0.0 -O.S O.S
0.0 -0.5 -0.5

OQO OQS O.S

0.0 O-S '005

8In terms of components (X, Y, Z), the unit cell trans-
lation vectors in Angstrom units are:

Tl = (3.980, 0.0, 0.0)
™ = (0.0, 3.980, 0.0)
T3 = (0.0, 0.0, 3.980).
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Table 18(Cont.)

Vectors in terms of unit cell

translation vectors

T1

Interaction
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We suggest that the essence of the overlap criterion
can best be shown by this evaluation of the Bloch sum normal-
ization constant. If the value of this constant 1s real, we
may conclude that the TBA model is possible. Even though
bs-b68 overlap in KTa03 and NaIWQB(x=1.O) is larger than the
case of Reo3 (zero value), the values are small enough to
allow the TBA method to be applicable,

The obvious remsdy to the SrTiO3 situation is to go
further out to next-nearest-uneighbors, etc., until the normal-
ization constant converges to & real number,

Since the serles Re03- NaXWOB(x=1.O)-KTa03 is complets
in itself in describing metal-non metal transitions in peéerov-
skite transition metal oxides, we reserve the SrT103 calc-
ulation to future work. KT&O3 represents a good model of
insulators like SrTiO3.

We will now discuss the input and output aspects of the

tight-binding calculations of KTaO3 and NaKWOB(x=1.O) .
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ATOMIC ORBITAL FUNCTIONS, ORBITAL ENERGIES, AND
CRYSTAL POTENTIAL

The radial functions of K,Ta,Na and W atoms are
Schmidt orthogonelized linsar combinations of STO's (Table 19)
obtalned using the same method as for RaOB. The least-aquares
functlons used in the evaluation of overlap and nuclear
attraction integrals are listed in Table 20.

The shielding constants listed in Table L are used to
obtain the Coulomb-exchange integrals needed to calculate the
crystal potential (Equation 28). The charge distributions
for KTaO3 and NayW03(x=1.0) are listed in Tables 21 and 22
respectively. The oscillations which exist in the preliminary
self-consistency cycles at k=(0.0,0.0,0.0) can be seen in
Figure 15. While the KTa03 energy bands are converging, the
sodium tungsten bronzé states are definitely diverging. The
latter phenomenon occurred because the 3p states are occupied
at the gamma point., As will be seen in the dlscusslon on
the Mulliken population analysis of crystal orbltals, the 3p
states depopulate as we move from the center of the Brillouin
zone. Therefore, the average occupation numbers for 3s and
3p Bloch sums should be close to zero.

Because of the above behavlor, the NayW03(x=1.0) crystal
potential cannot reliably be iterated at one polnt in k space.

In order to utilize the preliminary iteration as efficiently as



Figure 15.

Variation per cycle for energy bands (Rydberg
units) correspondingg to stomic orbitals in
KTa03 and NagW03(x=1.0) (---- KTaOj and
NaW02). s and p denote perovskite hole
atomic orbitals (3s and 3p on Na, Iis and
ip on K).
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Table 19. Coefficlent matrix elements for Schmidt ortho-
gonalized atomic orbital radial function used
in tight-binding calculations of sodium tungsten ‘
bronze and potassium tantalate energy bands

Atomlic orbital 13 Ty n [y

‘Na 3s 1 1 1.000000 1 10.705400

1 2 . -0.256l112 1 '10. 705400
2 2 1.032350 2 3.290039
1 3 0.035387 1 10.705L00
2 3 -0.151461 2 3.290039
3 3 1.010707 3 0.884802
Na 3p 1 1 1.000000 2 3.641939
1 2 -0.,109832 2 3.641939
2 2 1.006013 3 0.875209
K s 1 1 1.0C0000 1 18.670288
1 2 -0.296611 1 18.670238
2 2 1.043118 2 6.271990
1 3 0.110129 1 18.670288
2 3 -0.1:35717 2 6.271990
3 3 1.083821 3 2.7724L40
1L ~0.01821) 1 18.670288
2 L 0.072960 2 6.271990
3 4 -0.199036 3 2.772uL40
b L 1.0167LS L 0.920539
K Lp 1 1 1.000000 2 7.580839
1 2 -0.238385 2 7.580839
2 2 1.028021 3 2.58091¢0
1 3 0.045855 2 7.580839
2 3 -0.21119 3 2.580910
3 3 1.02088 L 0.910559
Ta 54 1 1 1.000000 3 19,604.000
1 2 -0,473525 3 19.60L000
2 2 1.1064L7 L 9.997000
1 3 0.105200 3 19,604,000
3 3 0.681500 5 4. 762000
3 3 0.5774.00 5 1.938000
Ta 6bs 1 1 1.000000 1 72.581.686
1 2 «0.342833 1 72.5811686
2 2 1.057135 2 26,669189
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L2

Atomic orbital i J J.ij n §

Ta b8 103 ©.182006 1 72.581.686
2 3 -0.668358 2 26.669189
3 3 1.183608 3 1l.561.799
1 L -0.099316 1 72.581.686
2 I 0.382051 2 26.669189
3L -0.877559 3 1L.56L799
L oL 1.2L9L96 n 8.609929
1 5 0.041293 1 72.58L686
2 5 -0.160633 2 26.669189
3 5 C.389805 3 11.561.799
L 5 -0.689381 L .609929
5 g 1.144L889 S 14.597790
1 6 -0.007583 1 72.58.686
2 6 0.029531c 2 26.669139
3 6 ~-0.072095 3 1l . 561799
L 6 0.130257 Ly 3.609929
5 6 -0.2L0275 5 4L.597790
6 6 1.021850 6 1.857920

Ta 6bp 11 1.000000 2 3l.29829
1 2 -0.415865 2 3L.29829L
2 2 1.083025 3 15.,1427500
1 3 0.209};32 2 34h.29829
2 3 -0.662656 3 15.127500
3 3 1.173199 Iy 8.574400
1 L -0.07L746 2 3l.29829L
2 L 0.244908 3 15.427500
3 U -0.518795 b 8.5741,00
Loi 1.094313 5 4.251989
1 5 0.016522 2 3L..29829.
2 5 -0.051L.325 3 15.427500
3 5 0.117028 I 8.574100
4 5 -0.273337 5 11.251989
5 5 1.030778 6 1.837780

W 5d 1 1 1.000000 3 16.929000
1.2 -0.1L77561 3 19.929000
2 2 1.108180 I 10.202000
1 3 0.113900 3 19.929000
2 3 -0.307700 Iy 10.202000
3 3 0.694000 5 14.982000
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Atomic orbital i 3 Tij n §

W 5d 3 3 0.563100 5 2.068000

W 6s 1 01 1.000000 1 73.583898
1 2 -0.342941 1 73.588898
2 2 . 1.057170 2 27.0,.3L.88
1 3 0.182421 1 73.5838898
2 3 -0.569920 2 27.0L.3,88
3 3 1.184391 3 1l.786900
1 L -0.099891 1 73.5838898
2 i 0.3841100 2 27.043,88
3 4 -0.8821.36 3 1%.7 6900
L 4 1.251763 L . 759060
1 5§ 0.0l42293 1 73.588898
2 5 -0.164625 2 27.04.3488
3 5 0.399708 3 1l..786900
L &© -0.706786 I 8.759060
5 5 1.151411 5 I . 719649
1 6 -0.007981 1 73.588398
2 6 0.031108 2 27.043,88
3 6 -0.076006 3 1L.786900
L 6 0.137449 L 8.759060
5 6 -0.249515 5 . 719649
6 6 1.023288 6 1.9214379

W 6p 1 1 1.000000 2 3l . 797699
1 2 -0.416931 2 3L..797699
2 2 1.083435 3 15.672999
1 03 0.210792 2 3L.797699
2 3 -0.66615l 3 15.672999
3 3 1.174785 Ly 8.729130
1 4 -0.077279 2 34..797699
2 L 0.253140 3 15.672999
3 4 -0.536281 I 8.729130
L L 1.100271 5 L. 382429
1 5 0.017330 2 311.797699
2 5 -0.056981 3 15.672999
3 5 0.122881 I 8.729130
L 5 -0.280071 5 L.3821.29
5 5 1,03195. 6 1.903520
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Table Z20. Least squares functions for Ta, W and K orbitals

Orbital Least squares function

Ta 54 0.561897(1.31205) + 0.684028(3.1641l)
-O.u38158(7.63065) 0.150918(18.4021)

Ta 6s 2.8565% L11125) 3.5131150(1.99978)
+2 11304y 0(2.82772) 1.997370(3.99845)
+1.335460(5.65387) - 0.3927L0(7.99.68)

Ta bp 1.560500(1.21565) - 1.006810(2.12183)
0.034422(3.70348) + 0.218623(6.46413)
-0.093881(11.2826)

W 6d 0.549610(1.40651) + 0,703046(3.32302)
-0.476221(7.85101) + 0.166889(18.5,489)

W  bs 2.967210(1.47395) - 3.76L970(2.07141)
+2,701230(2.91104) - 2.228700(11.09102)
+1.480270(5.74929) - 0.433006(8.0797L)

W  6p 1.576230(1.26262) - 1.027670(2.18974)
0.028008(3.79763) 0.234639(6.58617)
-0.100397(11.4223)

K Ls 1.140140(0.77057) -~ 0.274258(1.65456)
-0.120426(3.55265) 0.082456(7.6282L)

K lLp 1.098740(0.754147) + 0.039917(1.19488)
~0.366921(1.89239)

possible, we used the weighted assumed charge distributions
after two cycles at k=(0.0,0.0,0,0) to obtain input for

the final TBA calculation for the 56 k vectors. These vectors
are determined by the lattice constants of KTaO3 and Na wo3

(x=1.0) ,which are 3.989 A (71) and 3.8665 A (81) respectively,
and Table 18.
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Table 21. KTa03 charge distributions

Cycle one for 56

Orbital Initial charge
distribution k vectors
assumed calculated

54 2 0.500000 0.41212L 0.40L526
sdz, 0.300000 0.205i42 0.073766
Sdvs 0.300000 0.206918 0.076799
fd 2_o2 0.500000 0.394830 0.308389
Sdyy © 0.300000 0.206567 0.072350
6s™ 0.500000 0.67695L 0.547901
6p, 0.033333 0.035517 0.,09863)
6p, 0.033333 0.038636 0.178331
6pv 0.033333 0.040142 0.385103
2s8(1) 1.000000 1.071887 0.830380
2py(1) 0.666667 10.723710 0.848543
2px(1) 0.666667 0.760111 0.8C8833
2p (1) 0.666667 0.739724 0.790418
2s(2) 1.000000 1.091937 0.732372
2pz(2) 0.666667 0.763929 0.692407
2px(2) 0666667 0.771929 0.803928
2pv(2) 0.668667 0.750674 0.751210
2s(3) 1.060000 1.067212 0.759119
2p,(3) 0.666667 0.753050 0.622150
2px(3) 0.666667 0.727040 0.846893
2py(3) 0.666667 0.73106l 0.794.906
Us 0.000000% -0.48856L 0.262203
Lp, 0.000000 0.021557 0,226848
Loy 0.000000 0.022153 0.,117416
hpy 0.000000 0.026123-0.042366

%n order to reprosent as close as possibie to the Rel
model we chose zero values for potassium orbitals. Even 3
though this choice temporarily violates the charge neutral-
ity of the unit cell, the final iteration over the 56 k vec-
tor set corrects for this difference.
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Table 22. Na WO, charge distributions for x=1.0

Orbital Initial cherge Cycie one for 56
distribution k vectors
assumed calculated
5d,2 0.600000 0.540509 0.38878L
Sd_, 0.400000 0.356320 0.082889
Sdy 0.400000 0.357455 0.09:965
Sd 2 o2 0.600000 0.54039L 0.306277
54 " 0.400000 0.357454 0.073552
6™ 0.505000 0..5828l 0.439432
6D, 0.033333 0.025945 0.158390
bpx 0.033333 0.025877 0.142986
6pg 0.033333 0.025530 0,325123
2s(1) 1.0600000 1.025313 0.832141
2p, (1) 0.666667 0,.658260 0.8311392
2pg(1) 0.666667 0.592675 6.809648
2py(1) 0.666667 0.85Lk0%5 0.552243
2s(2) 1.000000 1025014 0.759421
2p5(2) 0.5666667 G.655942 0.884756
2p_(2) 0.666667 0.660065 0.832776
ap§(2) 0.666657 0.69283L 0.768167
28(3) 1.000000 1.02i;786 0.818941
2p,(3) 0.666667 0.692292 0,612055
2px(3) 0.666667 0.6584i16 0.831038
2py(3) 0.666667 0.654157 0.866219
3s 0.000000 -0.C80707 0.37311L
3p, 0.000000 0.096989 0,551L747
3Py 0.000000 0.098091 0.052772
3p 0.000000 0.099100 0.117558
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Table 23. KTaO3 &and Naxwo3(x=l.0) energy parameters®
Orbital Two-electron inter- One center Core
action energy kinetic energy energy

i 3 g(i,3)

Ta 54

Ta 6s

Ta ép

is 5d 1.413834 9.263373 -93.930159
2s 54 1.L405152
2p 53 1.408750
3s 5a& 1.379804
3p 54 1.3830%4
1.39209

Sp 54 1.073L12
5d 54 0,960,438
6s 5d 0.581030
ép 5d 0.5736L0

1s 6s 0.629908 1.370633 =4l . 801565
2s bs 0.626816
2p bs 0,6277 8
3s bs 0.623608
3p 6s 0.6211120
3d 6s 0.6254L9L
s 6s 0.619166
Lp 6s 0.619966
hd 6s 0.62124LL
Lt 6s 0,619850
5s b6s 0.606948
Sp bs 0.6074L6
5d 6s 0.581030
bp 6s 0.4LL326

1s 6p 0.623696 - 1.412651 ~lly . 134531
2s 6p 0.621416

2p 6p 0.62209

38 6p 0.618870

3p 6p 0.61911

3d 6p 0.62018

Ls 6p 0.614456

4p 6p 0.614394

Ld 6p 0.615824

8Rydberg units.
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Orbitel

Two=-electron

actlion energy

.
i)
5

E‘(ivj)

inter-~

One center
kinetic energy

Core
energy

Ta

54

bs

0.614L70
0.6011.76
0.599788
0.5736L0C
0.4441326
0.46L592

1.505390
1.495006
1.499326
1.465050
1.46897
1.4796l2
1.409790
1.410822
1.42754L8
1.,00672
1.168008
1.126452
1.027510
0.6052,8
0.597614

0.653252
0.6L9720
0.6507968
0.6116228
0.6L6316
0.6l.8222
0.641210
0.6l.207L
0.643516
0.61205,
0.628020
0.631162
0.605248
0.5306L2
0.459920

10.739013

1.529606

-100.662215

-147.010426
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Orbital Two-electron inter- One center Core
action energy kinetic energy energy
3 elid
W 6p 1s 6p 0.6L5500 1.552321 -46.311767
2s &p 0.6LL210
2p 6p 0.64L802
3s 6p 0.64121i
3p 6p 0.6U41L74
3d 6p 0.6[.2618
Ls 6p 0.626332
Lp 6p 0.636278
Ld 6p 0.5627850
Lf 6p 0.636292
5s 6p 0.522528
5p &5 0.6L36L2
58 4p 0.597460
6s 6p  0.159920
6p op 0.497060
Na 3s ls 3s 0.599058 0.4.85361 -6.210933
; 2s 3s 0.5798i2
2p 3s 0.58501lL
38 33 0.i452126
3p 3s 0.375500
Na 3p 1s 3p 0.58978L 0.521,253 -5.975097
2s 3p 0.578078
2p 3p 0.579366
3s 3p 0.375500
3p 3p 0.i4029974
K Us 1s Ls 0.46973L 0.457099 -8.549737
2s Us 0.L631486
2p Ls 0.465290
3s Ls 0.450782
3p Ls 0.L5218Y4
ks Ls 0.365094
bp Ls 0.31863L
K Lp 1s Lp 0.L64678 0491857 ~8.347L37
2s Lp 0.4,60638
2p Up 0.46149L
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Orbital Two-slectron inter- One center Core
action energy kinetic ensrgy snergy
1»_ _i S( i, j )

K kp 3s L4p 0.4i;8358
3p Lp 0.447218
bs Lp 0.31863L
bp bLp 0.343922

Atomic orbital psrameters used in obtaining tight-

binding energy bande are listed im Tabie 23,
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E(k) VS. k, DENSITY OF STATES, JOINT DENSITY OF STATES AND
RESULTS OF THE MULLIKEN POPULATION ANALYSIS O KTaO3

The E(k) versus k and density of states curves for po-
tassium tantalate are shown in Figure H1l (Appendlix H). The
energy band values at symmetry points are listed 1n Table Hi.
The corresponding results of the Mulllken population analysis
are listed in Tables H2-H5 (Appendix H). The Fermi energy
is found to be =3.8905 Ryéberg units.

Tne minimum in KTaO3, 1ike ReO3, conductlon band is
located at the R symmetry point. This property is evidenced
by the rapid drop in valence bands at R accompanied by a
minimum in the Rpgs bands.

The gap between the 2p, ground state and the tag type
conduction band is 0.3 Ryd. (4.0 e.v.) which is comparable with
the observed value of 3.8 e.v. (68). The joint density of
states curve shown in Figure 16 with peaks listed in Table 24
gives a peak at 0.3 Ryd. which we identify with this conduction
band minimum. Furthermore, most of the peaks compare quali-
tatively with experimental results (70) as well as resemble
the SrTi0j3 £esu1ts (66). The latter agreement suggests é
justification for supposing the KTaO3 1s a good model for per-
ovskite transition metal oxides which behave as insulators.

The difference between the intermediate eg states at Ryp
and the top of the valence band 1s not experimentally available

since R151_;R12 transitions are symmetry forbidden as
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Table 2. Joint density of states peaks of KTaOq

Rydberg Electron-volts Frovae-Boddy Cardona resultis
units resulis® for SI‘TiO3a
0.06 C.816
0.19 2.58 3.57 3.20
0.28 3.81 3.80 1L.00
0.3k .63 Iy 10 .86
0.39 5.31 IL.68 5.5
0.46 6.25 5.5 6.52
0.5l 7.35 7.40
0.62 8.3
0.66 8.97 9.20
0.74 16.03 9.9
0.82 11.15
0.85 11.58 12.5
1.06 lh.41
1.114- 15050 15‘3

8Results are in electron-volts.

determined by Casella's rules (82). Thus, the 2.58 e.v. peak
in the joint density of states (attridbuted to such a transition)
lis not obtainable by reflectance spectroscopy.

We now discuss the unusual behavior of s and lLp occupa-
tion numbers at the symmetry points listed in Tables H2 to HS,
The crystal orbitals '\Ifi(g_,;;) are normalized to 1 or(\Yi“{fj} =
1, but large bositive and negative njjs and Bilp values occur,
One may argue that the Mulllken population analysis has failled,
if we compare the TBA calculation with the usual molecular
orbital calculation where negative occupation numbers are
forbidden. However, we have a different situation when one

applies such a procedure to & crystal. The dependency of
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occupation numbers on k vectors relaxes the strict require-
ment on positive occupatioﬁ numbers. However, the average
occupation number over the entire Brillouin zone should be
non-negative since we would then be back to the molecular
situation. The average occupation number mayv be calculated
to be negative at some stage of iteration of the crystal
potential, but the final number should be pnositive. For the
most part, our final iteration gives such a result.

The problem of normal.zation of Bloch sum noted in the
introduction of this part arises in the KTal; calculation in
a rather unique way. Because the normalization constant of
6s and 6p Blocn sums at M end R symmevrv points is small
' {about .1), the TBA method is on the verge of breaking down
for vpper states as expected from overlap integrals of 6p-Op
and 6s-6s pairs (Table 17).

The number of electron states/Ryd.-unit cell for KTaO,
is much smaller than the vsiue of 21.1 for Re03, in that the
density of states drops abruptly to zero in the band gap
region. Therelfore, no estimate'of the actual density of
states can practicalliy be made., Within the approximations
used in the TBA method, It is reasonable to assign KTaO3 to
be an insulator as 1t is thought to be. TFor the same reason,

no Ferml surface is considered.
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E{k) VS. k, DEWNSITY OF STATES, JOINT DENSITY OF STATES AND

MULLIKEN POPULATION ANALYSIS OF NaxWO3(x=1.O)

The B(k) ve. k and density of states curves for NaxWOy
{x=1.0) are showa in Figure Il (Appeundix I). The energy band
values at symmeiry points sre listed in Table Ii. The corres-
ponding results of Mulliiken population analysis are listed in
Tables I2 to I5 (Appendix 1. The Fermi energy is located at
-3.2252 Ryd.

The number of states/Zwd.-unit celi for NayW03 is found
to be 20.5 or 2.60 x 1022 eisctron states/e.v.-cm3 which

-
corresponds to a vaiue of 5 cgual to 3.55 millijoules-mole'l

deg'g. The value of 3.0 millijoules-mole'ldeg'z from the
extrapolation of experimental (51, 76) values to x=1.0 gives
encouragling sgreement with our results. Furtharmore; it is
interesting that the value of 21.1 for ReOB is almost identical
to the 20.5 value for Na,W03(x=1.0).

Let us expand the picture of bands in the Fermi level
region to produce Figurs 17 andé theh use the ¥Mulliken popula=-
tion analysis results in Tablies I2 to IS5 (Appendix I) to
quantitativély dotermine why Na,WO03 should be & conductor at
x=1.0.

We no longer have the simple plcture postulated for ReO3
and KTaOB since most low lying conduction bands cross the
Fermi level nearliy perpendicularly. Even the 6s type band

crosses the Ferml level at X symmetry., However, the low lying
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Figure 17. Energy bands of Na

xW03(x=1.0) in ths region of ths Fermi ensrgy
(numbers denote 1 th energy band).
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eg type conduction bend crosses in many places.. We may
conclude that conduction is associated primarily with Sdeg
orbitals.

Projectiona of the Fermi surface in the 1/48th reduced
zone are snown in Figure 18. We predict three Fermi surface
sheets which may eventuszily be correlated with de Haas van
Alphen measurements.,

The Joint density of states is shown in Figure 19 and
the corresponding peaks are tabulated (Teble 25), Comparison
of the low ensrgy peals with experiment can only be by

extrapolation, but agreement with Dicken's results (78)

is reasonably closs.

Table 25. Joint density of states pesaks for Naxw03
(x=1.0)
Rydberg units Electron-volts

o.og 1.09
0.1 2.

0.30 h.gg
0.42 5.72
0.54L 7.35
0.59 8.03
0.85 11.58
0.98 13.31
1.1k 15.51




Figure 18.
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PART V. DISCUSSION
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We have utilized the overlap criterion to set up the
TBA 1n£oraction model for nearest-ﬁeighbor atoms. Then we have
proceeded in a "semi-rigorous" manner to make theoretically
justifiable approximations to make E(k) vs. k calculations
practical. The proper choice of good atomic orbital functions
and the explicit evaluastion of all two-center integrals (over-
lap, nuclear attraction, Coulomb, and exchange) enables us to
quantitatively investigate chemical effects in crystals,eg.
Madelung and overlap siffects.

The approximation of the crystal potentlal as a linear
combination of atcmic potentials is an important part of the
LCAO procedure. By using the Mulliken population analysis
over all k space, we ars able to itreat this crystal potential
in a SCF-MO manner., Thereby, we obtain an internal handle for
controlling TBA results instead of the usual & priori semi-
empirical procedures. Only bond distances are initialiy need~
ed.,

The role of empirical control on TBA energy bands
is purely ad hoc in nature., Instead of parametrizing the
crystal potential to make various calculated electronic prop-
ertlies agree with experimsnt, we proceed to improve the
method. For instance, we could seek better convergence in
the SCF treatment of charge distriobutions which occur in the
crystal potential. In other words, I1f we trust the overlap

eriterion to show when the TBA method is applicable, defic-
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iencies in our theoretical results as compared with experiment
are‘thought to reflect the need to increasethe rigor of our
me thod. The crux of such a philosophy is some observable trend

in preliminary results which reflect qualitative agreement with

experimental resultis.

3

for making further thecretical investigations of perovskite

The series ReOB, NaWOB, KTa0_ nas provided a good model

transition metal oxides using the TBA method. The density of
states diagrams for these three substances show gquantitatively
the metal-non metal transition which until present has only
been qualitatively understood. In addition, the calculation of
the electronic specific heat cosfficient and the joint density
of states representation of optical spectra provide other
avenues betwean theory and experiment. The resuits described
in this thesis can be said to be better than just qualitatively
descriptive of the electronic structure of crystals; perhaps,
the LCAO description of crystals gives us a semi-guantitative
handle for locking beyond present observable phenomenon to
produce some surprising predictions. The consistent agreement
of our results with empirical information ,therefore, shows
that the molecular picture of crystals can be accurate if we
include the effects of translational symmetry.

The SCF procedure will be the subject of further work in
this area. More efflcient procedures will be sought to obtaln
convergencs of charge distributions. Also the TBA interaction

model will be expanded to include more neighboring atoms
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in order to handle perovskite oxides which represent borderline
cases for application of the TBA method , eg. SrTiOB. With
these and othar improvements we can ultimately investigate &

s which are 1ittle understood or may not ves

series of substances

have been synthesized.
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Appendix A. Solution of the Secular Determinant

The problem is
(E-ESi=0 | (1)

where the Hamiltonian matrizx, gzgffH_B and overlep matrix
§;‘E*B result from the Bloch 3um basis set b = (Dg,05, «o
bm) where m indicates number of atomic orbitals considered,
and the Hamlltonian operator shnown in Equation 3. Tae
solution of the secular determinant 1s carried out in two
steps:

1) Orthogonalize the Bloch sums by the Schmidt method

to transform § into an identity matrix.

2) Diagonalize the transformed Hamiltonian matrix to

give the eigenvalues and eigenvectors,

The description of the two steps can be lengthy, but
a general idea of ths procedure is summarized 1ln the

following equations:

The transformation is made by an upper triangular

matrix £, i.e.,

«T|E-83]g =0
= ot Et - Bot Sl
= ktiEx-E1l=0 (42)

where Etis the identity matrix, i.e., (I)ij = Sij' The

where T = o1 T 1s
~> o~ ~

H 2

overlap matrix is rewritten as 8§ =1 +
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chosen to be upper triangular, l.e., Tij =0, I>J. The
. elements of this triangular matrix are generally complex

functions, thus, Tij = aij *ibij’ It can be shown that

1—1 - M -
Ty, = (S -5 WE e
i1 11 —=- 81 J
and 1.1
- < ¥ oo
Ty = 513 - 521 Tz Tis |
(43)
Tes
which gives the original matrix elements of ¢ as:
Xyg = 1/Tyy
J-1
K o o
13 =72 % Ty (aly)
B F |

Therefore, the c(ij can be calculated in the following order
oy1s Hops Kypy weps Kyps X3zs Xpzsees lppsees

' /
When the eigenvalues and eigenvectors °f,EF QJch are found,

o e P

we then have

-1 ..’ _ . - '
\' E L = E where (‘fE\‘-)iJ = Ei Slj and

~

V 1s the eigenvector matrix

or
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= (’13' 2)1' H(b ¢) where ¢ = ffw, or
<oys"|Xlp,"y = EJSiJ
where bs" =3 byCyy . (45)

Hence, we see that the columns of define iinear comblinations

c
~
of the Bloch sums which form the function '\ifi (Zquation 1).
The diagonalization procedure foilows from the trans-
formation }],’1 H U =D where D is diagonal D5 = D,y% = 0 for

which U 1s defined as

1 1 0
'Uii o e e Uij
U= . '11 .
' Ujj ¢ a e Ujj.

0 R 11/ . (26)

Thus, U 13 & unit matrix except for the elements U”, Ujj"
and Uji' The diagonalization is accomplished by an iteration
process which ultimately makes D approximately diagonal. The
following sequences are repeated until the values of all of

the off-diagonal elements are on the order of 10710 Rydberg
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units:

1) PFind the largest off-diagonal element of H, Hij

2) Calculate U

3) Make the transformation U~lH U = H!

The choice of U is baéically the same as Jacobi's
method for real symmetric matrices, but modifications must

be made to account for the complex form of Hij! l.e., Hij =

a + ib,
It
a b-ic
H =
~ b+ic d
and
/cos g -sin @ exp(-if )
U =
~ \ sin ¢ exp(16) cos #

?

then the elements of
D=Uu"lHU
o~ -~ o~
are
D.. = 2 gvq sin? g+ § (b (18 )+(b+ic)exp(-16) | *
11= & cos d sin 4 -ic)exp c)exp )
sin @ cos @

Dyo= & sin? g+d cos® ¢-{(b-1c)exp(ie )+(b+ic)exp(-i € )} .
sin 4 cos &

D12=D§1 = (d-a) sin @ cos & exp(-1 6)+(b-ic) cos? ¢
- (b+ic) sin® g exp(-216 ) (A7)



175

By setting Dy, = 0 = D§; and solving for ® and @, we find

that D will be diagonal 1if

_ ¢ _ s5in®
tan O = § = 556
2, 2\1
tan 2¢ = (b7+ c7)=
£(a-d) (48)
Using sin®@ + cos®@® = 1, we obtain
sin @ = ———2-—?-—0 —
(b%+c2)%
cos B = 2
(b2+c2)% (49)

By Euler's relation exp(i©) = cos® + 1 sin® , we have

ii e = b + 3c .
exp{ ) (b2+c2)2 (410)

Thus, exp(~-1 G) is simply

b=-1c
{(b+1c)(b-ic)} z

or Hy,/{H1o} .

If we let
A= (p2+c2)E
B = $(a-a)
W = gign (), A

(F2 +*}2)%
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w

(2a+ V@2 )} 3

slin ﬁ =

=

cos § = (l-sin® ¢)

then,
cos # -sin g 12
1= Hp 121
sin ¢ ﬁ—l cos ¢ (A11)
|H21}
and

o eee? 2
D;,= & cos g+d sin ¢+2iH12g sin g cos &

Dyo= & sin? g+d cos? ¢-21H12{ sin @ cos &

Dy 5=D31 = {(d-a)sin # cos ¢ +YH, ) (c0s? § - stn® m}sgig
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Appendix B. Flow Chart for Computer Calculation

The flow chart of our program 1s outlined below, The
matrix elements could have initially been set up in alge-
vbraic form, Substitution of overlap and two-center poten-
tial integrals (evaluated in elliptical coordinateé) and k
vectors would give the Hamiltonlan and overlap matrix
elements, The Schmidt orthogonalization of the overlap
matrix and diagonalization of the transformed Hamiltonian
matrix would then be an easy chore in terms of shorter
computer timé. However, when we go from cubic to say, hex-
agonel symmetry, the length of the tables necessary would
increase, It is always desirable to make these calculations
as automatic as possible via the computer., Our program,
therefore; eliminates the need for matrix element tables as
well as overlap integral tables, from which are sometimes
difficult to interpolate accurate values. In a sense, the
TBA program generates ali necessary tables within the
computer. When the k vector is read in, it rapidly makes

algebraic substitutions and in about 60 seconds & 25 x 25

matrix problem is solved.
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INPUT DATA

1.Unit cell translation vectors
2.Translation vectors in TBA

| interaction set

3.0verlap,Coulomb-exchange,nuclear
attraction integrals calculated
. by a previous program and stored
on tape

i . ITndexing parameters

S5.Charge distributions

6.0rbital energy parameters

T
CRYSTAL POTENTIAL

l1.Calculate potentisl matrix ele-
ments, | Vplda'>

2.Rotate spherical harmonics and
take a proper linear combination
of Integrals over lattice sites

1
OVERLAP AND L&, [V_{¥
INTEGRALS 2175

Rotate spherical harmonics and
take a proper linear combination
of Integrals after orbital energies

are calculated

.
READ k VECTORS

|
CALCULATE MATRIX
ELEMENTS BETWEEN BLOCH
SUMS

{

( SCHMIDT ORTHOGON-

ALIZE BLOCH SUM OVERLAP
MATRIX

|
TRANSFORM HAMILTONIAN
MATRIX

DITAGONALIZE H MATRIX
TO OBTAIN EIGENVALUES
|

CALCULATE EIGENVECTORS |
i
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| DETERMINE THE FERMI ENERGYW

MULLIKEN POPULATION ANALYSIS —}
|

i.Calculate the occupation numbers of
the Bloch sum basis set for eacn k
vector

2.By proper welgniing ol the k vector
degeneracies in the entire Brillouin

zone, obtain the average charge dls-
tributions

3.Withy =8 and using Equation 29 calc-
ulate the assumed charge distribution
for the next iteration

1
GO TO STEP 5 JN INPUT UNTIL i
SELF CONSISTENCY IS ,
ESTABLISIHED j
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Appendix C. Reduction of Double Sum to Single Sum

Since the sums over Ri and 53 are over the same vectors,
we can write the double sum as N times.the single sum, 1.e.,

Z ¥ F(Ry, R,) =N & F(R., R,) (c1)
ACERACE

where N 1s the number of unit cells iIn the crystal. The

proof 1s as follows:

Beceuse of the periodic boundary conditions

F(By + Nyt + Npbp + Natg)= F(Ry) (c2)

where NiNpN3 = N and ty, £, and tj are the primitive cell
translations.

We can also write

integers

By = 31k + ok + U35, jl’j2’j3 = integers

(C3)
Hence
Nl-l N2—1 N3-1 Nl-l N2—1 N3-1

TR VD YD DD VD DD N

J _ - - -
1,50 1,%0 1350 §;=0 Jp=0 §3=0

R, R

1

F((Jy=17)8; + (Jo=12)tp + (J3'13)E3) (cl)
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Let us consider the double sum for integral components

along t7:

.
{Z Z (§;-1p) J’

H ok

where (j1-11) = F((J1-11)%;).
If we expand the sum in tne brackets above,

we obtain

2: P (j1-11)==2: (0= + {(1-17) + (2~14) + «uus
T, ] 1y

(C-0) + (1-0) + (2-0) + .... + (Nl-I-O)

+ (0-1) + (1-1) + (2-1) + .... + (Ny-1-1)
+ .
+ (0-Ny+1) + (1-N3+1) + ..o (Nl-i-N1+l)

Now if we look at the first two rows above, we see that the
terms in each row are identical except for the terms (N;-1)
and (-1)., However, from the periodic boundary conditlons,
we know that F(Nyty)=F(Q). Therefore, fhe two terms (Nj-l)
and (-1) are really identical.

Similar arguments hold for any pair of rows and, hence,

all Nl rows are identical, so we can wrlte

(c5)
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Nl"l Nl'l
11=0  j;=0 °1
Similerly,
M-l Nyl -
P > (a-ip) =0, & (jz-1p)
150 j,=0 J2
and
Np-1  Ny-l
E_ :ZI_ (33-13) = N3 T (43-13) (cé)
13=0  j5=0 33

Therefore, we can write Eguation Ci

% Z FR T 2 Z
Ry By 4

1 1 d2 i3

3
B ( Ji-11 )-:El+( j2—12?32+( 53-13)'33)

-
R.
-J

Since gj-gi is also a crystal translation, we can make the

substitution

and then by summing over B—X instead of B_j, we merely inter-

change the order of summation to obtain Equation 43.
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Appendix D. Overlap and Relatei Integrals

The two-center kinetic energy and overlap integrals.

are evaluated using a method proposed by Silver and

Ruedenberg (63).
This method requires that the coordinate system of the

two centers be parailel with their z-axes polnting towards
one another. In our calculations, however, the coordinate
systems at the two centers are botn parallel to that of the
crystal as a whole. The problem remains, then, to transform
the atomic orbitals at the two centers into coordinate
systems of the type necessary for evaluation.

At the center, A, this will be a rotation and at the
center B, it will be an inversion of the z'-axes followed
by the ssme rotation as at 4. Since the radisl part of the
atomic orbitals is invariant under such transformations,

we need only examine their effect on the spherical harmonics,

The inversion is given simply by
YRm(G, ¢) = Y)r\»m(ﬂ"‘ 9" ﬁ')
.-:(-1)/? +mY9m( 6" ¢t) (D1)
with the primes indicating the inverted system.
Since the spherical harmonics forms the bases for the
irreducible representations of the three-~dimensional rotation

group, we can utilize the matrix elements of these represen-

tations to accomplish the transformation.
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For a complex spherical harmonic on center A

L
Yyl 8,,8,) = %,_,jkm‘“’ -6 1) P (6] B (p2)
where (S, #,) and (& A’ ﬁé) are the polar coordinates of
the unprimed and primed coordinate systems, respectively,
of Figure Dl.

i, - 6 and -@ are the Euler angles necessary to
rotate the (x'y'z') syster: into coincidence with the (xyz)
system, 6 and ¥ are meesured from the x' and x axes,
respectiveiy, to the z-2! plane. & 3is measured from the
z-axis to the z'-axis.

The coefficients are given by
s . :
Dyl &, B »3) = exp(~ik )exp(-im;‘i)dkm(ﬁ )

where |
{(£+m)§ (f-m)t (f+k)i u-k)!] 3

Genl 81 =7 17 el (Reme )l (tme)] 61

(coa :6/2 )'2j+k-m-2t( s¢nf /2)2t+m-k
(D3)

the index, %, running from max {O,k-m) to min (,? -m, f+k) .

If one defines the real spher.{cal harmonics, }ﬁm, as

39“1: N(m) {YR -lmi ¥ I(m)Yﬂlm!} (DL)



185

Coordinate systems.

Figure Dl.



where 'Y% m>»O0
N(m) = 5 m=0
V-3 m< O
d
s ) (-1)" om0
S T ™ nco (D5)

then utilizing Equations D1 and D2 for the necessary trans-
formations, we get as a final expression for the two-

centered integrals

<R ) Gpl 04800 FlRmeg 175 85 Yo (8 )Y

- N’ii'm)N(ms)(-l)‘?’{z;(o) CRag Vpol 64083 1 FIRuig ¥ gl 6508500
min(g,ﬂ')

+ 5 [ole(-b Bl mEedntint o] R v, () #))
k=1

!F‘ Rn'g'yﬂ 'k( 6é’¢é) >}
with

(k) =(-1* foxp(1 Inl el 1y (= 0143y expl-tim B0 (-1

.{exp(-ilm'lﬁ)dgl‘m.‘(-e ) + I(m.)exp(ilmﬂ ¢)dﬁimyl(-6 )}
(D6)

The dependence on the Euler angle o(has dropped out

corresponding to the one degree of freedom we have in
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choosing the primed coordinate system.

Equation D5 is the overlap integral if P=1 and the

potential integral if
Ve
F =V(£'{oj o‘)

If P includes coulomb and exchange operators, it must be

transformed In a similar manner.
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Appendix E. Potential Integrals

The atomic potential used in the TBA method consists of
three operators. These are Coulomo and exchange Operators;
giving rise to Coulomb and exchange integrals, and & third
operator '2'ZB/EB for an elieciron attracted to center B
that gives rise to auclear attraction Integrals. The
Coulomb and excaange integrals are evaluated by metnods
orogrammed for the IBM 360-65 computer (24, 85), The

nuclear attraction integrals are of the Type

P <
<An£m(‘S ’E-AH E-BE Apt g 1t S ’EA)>
where the single-zeta, normalized STO's are

_ 2%)mE
Adm§ +2y) = IENE

for a function located on atomic center A. The nuclesar

n-1l exp(-3§ ,r,)¥g.(6,8)  (E1)

attraction integrals are evaluated by the use of the

expression

<An52m(~s ’EA)R%BX Apt ‘Q lml(g’)?_A)> =
$m.(-1)m(2 § )78 (2 S')n'*’% [(2 Q+1)(28'+1)/
(2n)g-(2n')\_} 3

/

w5 (2 30 Ehe

L=18-2,2. \5 o0 o A mm o©
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o™

. [En+n1+L(P) + An+n1_L_l(P)} o (52)

The summation index L is limited by the constraint

that J+ f'+L = even, A g J?B) is the Wigner 3J svmbol (8l),
R = interatomic distance between centers A and B, P =

?
R(E +¢ ) and the functions Ek(/’) and 4,.(F ) are glven

by (24)

1
- _ [ .. .k N
nk(x) = J% dt t* exp(-xt)
Ap(x) = ~f» it ¥ exp(-xt). (E3)
1

These functions are obtained using the recursion relations

B(x) = [k B y(x) - exp(-x)) /x
A(x) = [k‘Ak_l(x) + exp(-x)] /x (BY)

from the starting functions

[1 - exp(-x)] /x

Eo(x)

exp(=-x)/x. (E5)

Ao(x)

In order to maintain uniform accuracy, an infinite series is

used for computing E (x) if the relationm,

x £(0.072% 0.012ky,,) Kpax (E6)

is satisfled:



190

A

' 2 Ty

Ep(x) = k! exp(-x) < X*/Qkfi+l); (E7)
1=0

The expression given for Equation E2 can be derived by

using the LaPlace expansion for rBi“i, the Inverse distance

between eliectron 1 and nuclsus B:

W}

- -1 _ Cf: { T,% Loy 3
egyTt = & (hw /20T re Y (6,08,)

33
s AL

(E8)

i
b
-

4

where r<<(r 7) ie the jesscy {grester) of r,. 8N RAB and
the'g v @re resli normalized spherical harmonics. One can
then integrate the resultiag expression cdirectly and, by
interchanging summations, arrive at ZEquation ZZ2.

The Coulomb and exchange integrals necessary to obtain
the crystal potential in Equation - ure evaluated for
single Slater type orbitals (STO's) which zre subsequently
linearly combined by an auxiliary program. The linsar
combination is necessary since the atomic crbital functions
used in the TBA calculation are multi-STO types (Equsation 5it).

The STO's used in the computer programs developed by
Silver {(Z2i)and Mehler (:Z) for Coulomb and exchange inte-
grals are real spherical hermonics, Since the reotation of
spherical harmonics described in Appendix D uses the ima-
ginary spherical harmonics as a basis (only this type is an
eigenfunction of the 3-dimensional rotation group), we must

be careful in using the integrals. Fortunately, we obtain a



191

convenient identity whnich may be demonstrated for the real

Py and Pv functions. By Equatioh Dlf, we nave after dropping

the radial part of P, and P,

x 1
V2

Pp= Yt o-vd v
i S J 11

and
(v-1 1
Py = l(Yl * Yl) = Hli
V2

The real normalized spherical harmonics may be linearly
combined to give the imaginary normalized spherical harmonics:
-1 P
Yl = PX ~iP

X 3
V2

and

Y= (P, + 1P.)

1 x v
Y2

If we consider the charge distributions Yf'l. Yil and
Yflo Y% for electron one, the corresponding Coulomb integrals
of the electrostatic interaction between these distributions
and an arbitrary charge distribution }’(2) for electron

two are:
<t | Pe@) ={< PP\ P21 +<Pyry J’(z)}} /2
G- | Py = f<rrd Pl Syl Py} /e
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-

Therefore, <:Yil ler/9(2i7 = <:?% Y%‘,/%Z):>. Since
<PxPx\_jo(2)> =<PyPy lf(c?)) , there exists a one to one

correspondence between the imaginary &nd real spherical
harmonics, e.z. (711 yllljp(2)> =< Y% YHf(Z)> . The iden-
tity éllows one to use the numerical values of Coulomb and
exchange integrals obtained from real functions to represent

the imaginary case.

Some difficulty arose in the evaluation of Coulomb and

exchange integrals when RAB(SA +-EB) = 360 where Rpp is the
internuclear distance expressed in Bohr units and SA and S B
are the orbital exponents of STO's located on centers A and

B respectively. In suxiliary functions used in the eval-
uation, exp(zR,g( %A +\SB)) occurs and the computer limit of
an exponential is +174. Appsrently, the present programs

are not written to handle this situation., Therefore, we had
to apply a reasonable approximation to integrals where this
problem arcose. The rhenium 5d and 6p functions have large
orbital exponents in inner radial region (as have been seen
in the discussion on orbital functions) which are neglected in
integral evaluations. 'Therefore, renormalization of these
orbitals 1s necessary since a small part has been cut out.

The normalization constant of the 54 1s 1.01709 and 6s is

1.004342.
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Appendix F. Atomic Orbital Energ};; Parame ters

The one-electron terms which are generally referred to
as the core energy, I, is the sum of the kinetic energy and

potential energy from the fisld of the bare nucleus.

The core energy is evaluated from the Tollowing

integral w o

2 :

- _ o 27 Q(Q-g-') ]

1—5?5-—— - ==+ L P,dv
Pl r? .E:"*‘

o

< ni
Z CiRn. g oxp (- :Sjr)r J,

where P,(r) -
1 ] Z

(rje = ZC.N
;o

€.t

Integration zlves upon expansion of Pi

=23 coc_ Y.
1 'E%CichiI“j i- 232 (g n !
(34 §mams™

, (2.0ng3% 4-22) (ny+n,-1)
(5 1§57

- (ny+ Q) (ng- 113 (ni+nj-2)1 \K

(§ g+ gpmam™i™

The Slater-Condon parameters, FK and Gk, are calculated

via the following integrals:
oo

[
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Gk(ni /Qj_:nj ’Qj) = jf

]

P, P.Y,

Helny Ags my K ylar

5o 8

where the potential function Y, (1,J) is

P+l

-

[< ]
- T
Xk(i,j)= r k g rk Pindr + j; Pin r‘(k+1)dr.

Brown-fitzpatrick (25 and Ros-Schult (35) express the
Slater-Condon parameters in terms of Slater type orbltals.
The latter formulation has been programed to obtain param-
eters for the g(i,j) terms in Equation 31,

The derivatlion of the FX and GK expresslions are

lengthy but straight forward if one utiiices the standard
Integral

b n
j, x® exp( -~ jpxldx =

\
= Z n .
a

R (bt - i -
2 €*n+1-i (-b* exp( fﬁb)+a exp( ra))'
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Appendix G. TBA Results of ReO, .

The {1 th energy band corresponding to the crystal
orbital with function'qri(g,g) 18 numbered along the left
column. The eigenvalues of'@fi(g,g) are listed in Table Gl.
The % rhenium, 0y, Op and O3 atomic orbital contributions to
Vi(k,r) are listed in Tables G2, G3, Gi and G5 for k =
(0.0,0.0,¢.0),(¥,0.0,0.0),(%,%,0.0) and ("g,g.g) respectively.
Thus, we have the symmetry points gemma (1), X, M and R
represented. The subscripts labeling the oxygen atoms 0y, O,
and 0, are indicated in parenthesis.

The eigenvalues in Table Gl are iisted in Fortran
notation where E Ox denotes X 10‘. The energles are in

Rydberg units.
The Fermi energy 1s -1.4,828 Rydbergs.
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TABLE G1

ENERGY
B8AND

Vo4O undswnNn -

SYMMETRY POINT

GAMMA

0«368914E

0. 631159E

Ce0628287E
~L.863311E
~0e1C7604E
-Le108265E
=-0e112C29E
-Ce115133E
~0«115938E
-0« 148002E
~0148647E
~-0.148582¢
~0e.174371E
~0.174951F
=0.175334¢
~U«2744¢3E
~0e275342E
~C.3284C9E
-0e355427E
—-0e358245E
~Ue360345E

¢l
co
cC
00
¢l
01
ol
¢l
01
o1
01
ol
c1
€1
Cl
¢l
Gl
C1
01
G1
¢l

Ce441146E

Ce39600C6E
~0.394162E
-0 «107109E
—LelllbciE
~0#12006468
—Jel24299E
—Cel25483E
—0 «148BETHE
~0e148984E
~0.15C888E
~Je1l62160E
-0.171821:
~0#1729C3E

- =0e1751830L

=0.209854¢

=0 e2T72285E

-0.305085¢
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01
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el
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~Ue 214(84E
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V] 043357.: £
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00
os
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i
C1
¢l
c1
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Ul
o1
61
ci
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¢l
1
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o1
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vl
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Csl23880¢€
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~{elbb368E
~Je1586450uck
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TABLE 62

ENERCY
BAND

VoOo~NOUMD LN

MULLIKEN PUPULATION ANALYSIS CF CPYSTAL CRBITALS AT
GAMMA SYMMETRY PUINT

4 RHENIUM ATCMIC GREITAL CONTR IBUTIUN

50 ¢ 50
z X2
Oe0 C.C
ZeB Cel
0.3 U.C
V.0 3.4
1.0 1546
0.C 2343
0.2 17.1
C.0 Ce2
32.8 Ceb
0.0 C.U
© Ce0 Ce0
Ve O CeC
= o0 001
Qe € 3944
0.0 c.1
C.1 Cel
64.4 C.C
0.¢C 00
=-l.8 C'.O
O.1 0.0
Jel CeC

50
Yz

G.0

0.0
0.1
3.3
2e3
33.C
19.2

- 15
. Ceb

U0
0«0
Ca O
0.0
C.l
39.6
0.C
0.C
Vo0
C.C
Cel
Cel

50 2 2

X =Y

5C
XYy

Ce5
COC
G el
Ce

3945 .

Cel
C L 2%
Col
€.
Cel
Cov
Ca.C
J o0

2543
-UeC
~Ual}
17.7
Cel
Co‘.'é
Ze?
Lol
0.0
Ce C
UG
Ueu
~Ceu
=00
"C.C‘
‘000
el PRV
99.C
—18.(:’
"2.2
"24-1

’ _Oo\)

il.8
522

1Ge 9

" 0 o o ® o o

COUOWo W aOo
a o
C s

|
o
[

-
~Ue b
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113
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e
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TABLE G2{CCNT.)

ENERGY
BAND

VoD WN

2 GXYGEN ATGMIC ORBITAL CONTRIBUTICN

25(1)

1G. 1
0.2
5.5
—Zef
G0
Ce U
—Cob
-009
-Ce3
C.0
Ce 0
Q.G
{:'.0
Le U
Cel
39
l.6
"6.8
~Ue9
18.¢C
1248

2F (1)
Z

-

4]
0
Y]
2
5
B
5
J
G
2
43
A
O
8

1
6
o
1
l
c
¢
2
G
1
5
2
G
28.6
1

C
—0e0
~0s0
—G.C
=01
-0l

2P (1)
X

28
—OCC
=04
13.5
Uel
Co7
€.C
275
9.2
0«0
Cel
~Ca(C
O .'0
C.C
O.C
1563
3.3
1.8
Ce5
12.9

P {1)
Y

Uel
Ce &
Qe2
2e G
13.3
Ue9
367
~Ca(
Gel
46.1
3.3
Ge 3
29 8
Jel
0.C
~Ce C
0.C
"O.C
~Uebls

-C.C

25(¢)

2P (2)
z

566

2P {2)
X

2P (2)
Y

661



TABLE G2(CUNT.)

ENERGY % COXYGEN ATCMIC CKBITAL CONTRIBUTIUN
BAND 25(3) 2P (3) 2P (3) 21 (2)
Z X Y
1 10.6 2e3 Jel Cel
2l 5.C _003 ‘ 13 ey Got
3 0.6 "uoc 607 Ua‘l
4 ~2eh llol 116 lo(.‘
5 -Co\r l.% 56l ‘.:vo':)
6 -G Y \Jol 70*;- 1%e4
7 ~C.2 1.} ) 5.5
g ~CeC Cel ~Cel - Ge 2
9 "1.6 42,2 ef C.S
10 Ge C =09 206 1.2
11 0.0 0.0 4Zal 33
12 Cel O.1 2.9 44,3
14 0.C =00 31.7 Cel
15 Cel -0 .0 u’ol 31.2
16 Cel CeC -0aC ~0.0
17 248 21.9 060 CoC
18 -6.4 663 = =0 U
19 94,2 12.4 C.C G.C
24 -003 001 000 —GaC
21 ~-2449 Ge 5 Cel ~0.0

00c



TABLE G3 MULLIKEN FCPULATICN ANALYSIS CF CKYSTAL CREITALS AT
X SYMMETRY PGINT

EKNERGY ¥ RHENIUM ATCMIC CREITAL CONVRIBUTIOMN
SAND 50 2 50 5D 5D 2 2 5C 55 6P 6P 6P
z XZ Yz X -Y XY Z X Y
) 1 091 -C.C 001 (101 -C'C 2.2 47.3 Coc 3805
2 0.9 ~0 0 Vel Ue3 =l e o7 420\' Ccl\: 5\)05
3 1.4 Cel O.1 4e5 Cel 4.8 Ueb 13.7 Ge5
4 -G oU GG 54.9 1.6 Ce &G 1.8 Cel Ced Vel
S 237 ~Ceil 1.6 1246 -5 el Ce3 Ue2 Cel 2e 1
6 Se9 GeC . 5.7 5.5 UeC 11.2 39 Ced 26
7 ~LeD Cel O.C 00 571 Cel Ce U Ce ¢ Ce
8 Ge C 5266 GeC 0es Ueu Ceu Qe Gel Vel
9 2e5 GeC 0.0 1.1 Le?2 Ce4 Ce2 Uel “Dev
10 “OOC 000 000 03 OQU Cel "C‘Z el -CCC
11 ~CeC C.l CeC OC. O Cel —Cal: 1.5 a0 l.6
12 9.9 0.0 Veb 3Ce5 Lol ll.8 el Ge G Cot
13 Cel 7.1 0.‘3 Je3 39 5 -0 et} -G o Ce7 - Cel
llf Co() 3905 Co': 001 704 —C.C 0.0 001 J.U
15 Col Col 37.':' 502 LaC el 05 =C el Ceb
16 0.8 C.5 C.l 266G Leb -1.5% Vel 32 4 Cel
17 46.27 G0 0.0 17.2 Cel 0.2 "'"O-I:) -DOC ) -Co.l
18 9.1 ~Ce0 . Ce G 18.1 =G« 53.2 =Ueb ~1 o4t ~Ue5
19 07 00 GG 1.9 =CeC ~1lé6e5 2e4 ~le2 . l.9
20 -l.5 G. € CeC -~1l.0 CeU Jeb 1.6 =UeC " lael

21 102 Cel 000 3et Vefy 31.7 Qoll’ "708 004

10¢



TABLE C3(CONT.)

ENERGY 3 OXYGEN ATOMIC CORBITAL COCNTRIBLTICN
BANC 25(1) 2P (1) 2P (1) zP (1) 2502) 2P {2) zP (o) 2P (2)
z X Y _ z X Y
1 Gel U2 Cev) Uel2 4,5 1.3 Ge0 ~Le2
2 C.G Ce 2 C.C ’02 2e% 1.2 G el ~( oY
3 -200 0.0 16.2 O.C ‘:.Z Lol "605 C.Z
4 "Co 1 CeU Gol GQG Go';) 17 «3 —(o' o U Solf
5 ~Lel GCal ol Ce ""1.6 lol "Uo!:’ 39.k
& Rl 0 | 0.4 =00 Jelt -Ge5 Ceb CoC 19,7
1 -CeC - Ce 0 Cel lel ~Ue U Vel 4006 oic
8 ~Ca0 1.2 Cel -0eC ~Ge U ~CeC Cal Qe
9 Ce4 163 i1e7 6647 el 2e% 5.9 Ce?2
10 Gel 59.7 e 2 1.9 Ue O 13.1 Ge7 Uels
11 Q.C 12.5 CaC 14.2 Cel . 339 1.5 Cel
12 126G 2e4 2606 Z2el el CGeC Cae2 Ce3
13 Ce4 Ce8 le4 5.6 Ve l Ue C 368 Cel
14 C.l 59 Ge2 1.3 ~Lal Cel 7.1 -Lel
15 Coi O.L‘ 0.2 Cel J el 294 Cal Cel
16 1Ce. 4 Ge 1l 49. S Cel Le4 UeC 1.4 Uall
17 001 Ce0 -Oo\: Cal 2el ~0a«C Cel 17.8
18 1(:1.9 C.C‘ 009 0.1 -5.5 ~Uel ‘:Jo‘.: 9'2
19 1.7 Cel 0.2 Cel 4403 ~(el Coo “Ge2
20 CeC Col “Do(i Cel S5l.t -Uel U.(J 3.5
21 65.9 0.0 2e3 Uel ~Ce5 =lel Cel 1.2

c0e



TABLE G3(CCANT.)

ENERGY 2 CXYGEN ATCMIC CRPITAL CCNTRISUTION
65AND 25(3) 2P (3) 2P (3) 2P (3)
z X Y
1 5.2 ~0e5 o U 1.1
2 2.C ~Ce 8 C. 0 1.4
3 0.2 001 =Ce Gol
‘0 ch 102 -O.C' 15.3
5 -Cel 21.5 ~Llel Ue T
6 -1.1 43.0 -G.o0 1.1
7 -G.C 000 J.O GaU
8 -Oc‘:' 000 45.9 Dn{;
9 Ue2 Ge3 1.4 242
1 Cel C. 0 53 12.8
11 CG.2 Q.2 1.3 22.7
12 ) Ca7 02 Ceal Ce3
i3 Cel Ced 6e0 C.1
14 Cel 00 38,1 Cel
15 (O Uel Co.l 31.8
16 Cob Gel le4 -Ge b
17 2e7 14.2 Col =QeC
1g —4' 2 10.0 Cel _000
19 55-1 4.5 - Cols ~Gel
20 36. € 3.5 C.C 0.1

21 "Goé lo[f Cnl "Oo‘:a

toc
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TABLE G4(CONT.)

ENERGY € CXYGEN ATOMIC CREITAL CCNTRIBUTIGN

© BAND 28(1) 2P (1) 22 (11v 2¢ (1) 2802y 2P (z) z2¢¥ (2) zp (2)
‘ z X Y z X Y

1 Cal 00 CeG Ol GeC CeCl Cal Ce C
2 ~2e 4 ~-CeC T.C 15 ~3e2 . -Jet iJeB Se?
3 —4e2 ~0.C 8.8 le 2 —~2e & ~Ce ( 1.3 5e%
4 0.1 Ue2 0.5 Jdel Oa1 Le2 Lel Ued
5 ‘—O.C 1.3 C.c C‘.G i;olu C.C L O{J J.i)
6 G.L a0 O.C‘ Ve —~Cel l.1 -UQG LeC
7 GQG Col CoB 33.2 "UOCJ ':'9(_ 3107 104
8 CeJ 59.3 Cel lel Lol 3leC Ce S Ge &
S Ce O 32.2 Cel 1.0 =l el S5ve’ Zol Vel
10 CeC CeC l.¢ l"i.l ~-Le 1l - L | 4607 109
11 4.7 Ge2 13.6 U2 4e¢ Ge2 Cel 1371
iz =GeC Ca 2e 3 15.1 (SPRE Gel 14 .0 1.7
13 -00 5.4 el Oe G Lel le4 ve U le5
14 0.1 1.2 ~0eC G0 Cal 469 Uel Ce
15 4e G Cel 19.2 l.1 Se vel Led 17.06
16 Se.l Vel 14 .5 Uo7 Se5 Cef Le 17.2
17 5.7 C.C 258 CeS G462 Vel (S 2441
18 409 G0 Ge4 CeC- 4e 1 Cel e C e 5
19 004 UOC' o VY] Uo‘:/ Ce4 \3-(? OeC """C'OC
ZC 4201 Ce 2e 2 Ual 4543 Cew el 2e1

S0¢



TABLE C4(CCNT.)

ENCRGY % CXYGEN ATCMIC CREITAL CCATRIBUTION

BAND 25(2) 2P (3) 2P (3) 2P (3)
yA X Y
1 0.1 "".1.5 O.C 6.0
2 004 0.1 ~Ca2 '502
3 Ce 0 OaC =-Le3 =02
4 ~1leZ 62.8 0eC CeC
5 —Ce 0.0 44,1 Uet
6 —OQC G.O Lo 444 G
T Oel Ot Gel Vel
8 CeG 0.C 5.1 2e5
9 Cal Gel Z2e9 4.5
i¢c . 0.0 Ce Cel U3
11 Cel UeD Cel LeG
13 Ce L 0.1 35.7 3.0
14 0.¢C GG 9.9 3.5
15 27 1.6 1.5 1.3
16 2e3 1.3 Lat C.5
17 U0 0.6 Ceb G5
18 -8.6 25:6 (.C Cel
19 166.2 3.5 Call 0eC
20 ~GeC 0«0 Cel el
21 _200 0.3 Col C.l

90¢



TABLE G35 MULLIKEN PUPULATION ANALYSIS OF CRYSTAL CRBITALS AT
R SYMMETRY POINT

ENERGY Z RHENILM ATOMIC CRBITAL CCATRIBUTICN
BAND 5D 2 5D 50 SO 2 2 £0 &5 6P &P P
z X2 YZ X =Y XY z X Y
l 9.0 =L a0 -0 .0 D4 =0t Gl 55. 6 4e& 22e G
2 Cett =0 G =CaC 9.0 -Cet CGo0 3.1 475 3345
3 0.0 -DeC -OQG GeO -COC 4e 254 337 2842
4 Ge U 2e4t 1.3 Oeid 29 o4 —C el 0.0 Lel Cel
5 OeC 1G5.4 1C. 6 Cel Le3 - —=Ue Vel Jal =0 o
6 0.0 12.1 ZO.Q 0.0 4.3 —-Uel Ue3 Col Cel
7 Ce U Ga2 C.C De& Vel Jal Cev el (ied
8 001 loli 2.1 102 C.C ” 0.‘; C-b Q‘Z V \Joa
9 O.1 04 D0 00 le4 $e0 Ceb DG Ce2
ic 1.0 C.C C.C 6l.4 C.2 DaC 0.0 Oe2 Lol
11 62.0 Oe2 Ce2 1.C Cel e 0 el =Ge G Ce G
12 004 C!.‘f C.() 0.1 62.4 "'0.1 -OO'J OOC CQU
13 001 57.0 703 0.2 C.8 —G.C OOU "'\:ou “OQG
14 003 6.2 56.() 000 Col "0.1 Cald ‘_COC G.C
15 Uel G.3 C.3 0. Ce3 7.5 5.1 T.C 5.7
1¢ Cel Cetl C.C 4.3 Ce ~0eG G5 idel 14.3
17 4.1 0.0 0.0 Gel ‘e C Cel 23.0C 2eb 8.5
18 CeC ¢.C 0.C G0 U el 424 2e3 26 ¢ 2el
19 19.¢€ Co G OeC 2. 6 Ce( ~Ue ¢ -1Ge7 -0 ol -7 3
20 246 0.0 0.0 19.4 Ce0 Cel -1.5 -11.7 ~5.¢
21 C.0 Ge O G Do Cel 45.8

—4 01 -404 —4 40

Lo
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TASLE GS5(COMTe)

ENERGY 2 OXYGEN ATUPIC CREITAL CUATRIBUTICN
BAND 25(3) 2P (3) 2P (3) 2P (3)
YA X Y

1 -6e5 Be7 Oei Ceb
2z "'Oo‘l Co 5 1ob Calf
3 ~3e3 45 Lel Ueb
4 -CO{J G.O 4 a5 4.8
5 -C.C Ool gob 6«4
6 -041 ol Seb 1702
[ Col C.0 iTe0 12.8
8 O.0 Cel 3.1 - 8e1
9 "O.l 37 14.5 29.‘*
1C Cel Ce3 Ce( Vel
11 6eC 16,3 Ce2 Cel
12 Cel Ge2 vl Jol
13 Je G Ge5 l4e7 23
14 Ceh 24 l.¢ 13.06
15 t TRY 222 le4t 1.2
16 Oe2 1.1 Ce S Ce &
17 6o 32.9 Cel Cet
19 5245 30 Lol Je l
23 Te 4 et Cel Vel

21 2V S GeS Cell Jel

602



210

Appendix H, TBA Results of KTaO3

Using the same notation as in Appendix G, Table Hl
contains the eigenvalues of crystal orbital functionTYi(g,g)
for.the i th energy band and Tables H2 to HS are the corres-
ponding % atomic orbital contributions.

The Ferm! energy is -3.8905 Rydbergs.
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TABLE Hl. E(K) VSe. K2 ENERGY BARNDS AT THE SYMMETRY PUINTS OF THE BRILLOUIN
ZONE GF PUTASSIUM TANTALATE

ENERGY SYMMETRY PCINT
BAND - GAMMA X M R
1 C.1€9CSGCE C1 C.7C17%4E (1 Ce12872C0E G4 ve 282755E C4
2 0163503E 01 C.680399E U1 0«237674E C1 CelT6CTLIE 1
3 Ge1563(6E C1 Ge 179607k Q1 C. 138557k 00 0.160138E 01
4 0.867332E-01 0162378 C1 Ce36284GE G G« 158046E Gl
5 ~-0.2183%2E (1 Cel171236E CO Ge766816E-01 0938545E (G
6 =-0.2233¢1E 01 Ce159333E CU —=Je2106799E 01 -0.246137E Gl
7 ~0e243824E (01 —0e279047C U1 =0.2937168 C1 -(e250C47E 01
8 =~0e3C9T1I7E C1 ~0e306559L U1l =Ue322630L UGl —=(.Z284783EFE U1
9 =0310371E O1 -0329047c C1 —0e328495L €1 =Ce354217E C1
16 =0e312058E Q1 ~C0e232234L U1 ~Ce332456L U1 -0e355523E C1
11 —Ce36CT46E Gl -—Ge348923E (1 =-Ue351424L Gl —=(.35693CE ¢l
12 =06362491E Ol —Ge3656G0E C1 ~Ue3¢€8606CE Ul -0e6363931E (1
13 ~Ce388166E C1 —~Ce389533L U1 =0372091LF 01 -0.356422t (1
14 =0e3G14359E (1 —~Ce392919E (1 —Ce387490c Ol —Ue389%963E 01
15 =—0e394107TE Ol =04395278E €1 ~—0(e389224E (1 -(391516t 01
16 =0.395550t C1 -—C.395887E (€1 =Ce3G1349E 01 -0.392837E 01
17 03975628 C1 ~=0e39855%t C1 -—C0e325%299L U1 -—U.417548c C1
18 =0e399961E Gl =~0e4027(5FE U1 =0e4D3129E 01 -0.420914E C1
19 =0e455147E C1 -0e4127:9 Cl =-00424267E 01 -0Ue516682E (1
20 ~0e527699EF Ul =D445CT57E Ol —0e447299E 01 =—Ce641118E 01
21 ~Ge529992E 01 =~-Ge459068c Ol -U.483281k U1 -0.641911E (1
22 ~0.685393E 01 -0.552841: 01 -0G.5156451 01 -(.0668282t 01
23 =06 760151E G1 =0e533213t Ul -0.586593E U1 —=0.117929t g2
24 —0.781278E (1 =Cell6373t (G2 —0e113667TE 02 —Ge122124E Q2
25 =0eG91951E 01 —0414C545E C2 —0.12G463E 02 -—(«244844E (2

cle
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TABLE H2(CONT.)

ENERGY 2 OXYGEN ATOMIC ORBITAL CONTRIBUTION
BAND 2S(1) 2P (1) 2P (1) 2P (1) 2502) 2P (2) 2P (2) 2P (2)
' Z X Y Z X Y
1 -G C -GCo 9 =143 De 0 Cel -0e5b ~0e2 =0 e3
2 O.l -0e2 ~2e6 0.0 Ce C -Gl -0 . =0e U
3 CeC O.l =00 -Ue5 GeO0 -0e0 -0 a0 =34
4 17.1 Ce2 0.7 Co 2 22eC 0.1 Cel Oe7
5 ) 109 =03 ~0e7 "009 Se1 -Cet ~0.4 -l.5
6 4.4 ~1le1 -l.1 Cel -0 0 ~1.3 =-1.2 0.0
1 Ce3 ~Ceb 1.0 -1.2 le4 | -Ge 4 ~De4 Y
8 0.0 Ce0 -G <0 443 -0 Ceb 4.2 Cel
9 C.C C.C 008 007 -OOG 3-9 003 O‘G
10 =00 5.0 Cel ~0.C 0«C 0.C C.0 Ce 4
11 ~2e85 le 8 184 2l .~ e5 Oa7 2e6 363
12 0] 0.3 Oel De7 -2+5 2.9 0a2 16.5
13 =00 25.9 =0 o0 9.5 Gel 14.9 12.7 0.C
14 ~Ce C Cel Ue2 6.0 ~Ge3 35.1 4448 Cel
15 -000 1402 505 2202 0.1 107 1.3 5.7
16 ~{el 44,7 G el 3G .4 U0 Jel 3.0 U0
17 -Ce0 24.1 GG 13.4 -0eC 4.8 l.4 -0.0
18 -Oe4 17.4 G2 Ceb -0.0 2803 25.8 ~Ce O
19 3.2 27 0.9 26 0e4 1.0 0.9 Geo1
20 15.9 =0.¢C 5.1 Ce & 5Ca 8 Cel 0.1 13.7
21 33.9 0.5 Te7 Ge0 Oe7 Ce7 Oe4 Ce
22 G5 3.6 35.6 25 367 1.8 2.0 17.5
23 4.9 -0.0 Gel8 30C 12.1 0.3 003 4606
24 9 2.2 2840 Uel C.0 2.8 248 Gel
25 122.2 Ce7 566 Ue9 122.6 Ue3 Ce5 64 -

f1e



TABLE H2(CGNT.)

ENERGY € UXYGEN ATOMIC OROUITAL CONTRIBUTION
BAND 25(3) 2P (3) 2P (3) 2P (3)
o ' Z X Y
1 CeC =247 -Uel - 0
2 Ve O -1le3 -~Ce4 Oe 1l
3 00 040 Ce2 el
4 16.C P § 0.2 Oe2
5 1.8 -007 —C.3 -0.8
6 445 -1.3 -100 O.1
1 0.2 1.1 -Leb -1.2
8 000 ’ 005 -GQU 0.3
9 -'C.C Ue3 0el Gal
1¢ -CeC Cel 5.0 « —G.0
11 =0 «9 T.3 1.2 Ue?2
12 -108 1l.4 Ca? 2e5
14 ‘ro Gol O'Z 5.4
15 Co 2 5.6 li.4 17,0
16 -0l -0.5 8.1 365
17 -LaC Gl 290 16.4
18 -Gob- O.l 12.1 Oll
19 3.3 1.G 2.0 24
20 6.8 205 C.O ()04
21 42.5 13.2 Ga3 Oel
22 0.5 33.5 3.9 2.6
23 45 el ~Tel 3.1
24 9.9 29.1 2.1 CeC
25 119.2 3.6 lei 1.1

qtle



TABLE H2(CCNT.)

ENERGY
BAND

Vo IR, AU TV X

% PUTASSIUM ATOMIC UGRBITAL CCATRIBUTICN
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MULLIKEN PCPULATICN ANALYSIS OF CRYSTAL ORBITALS AT

X SYMMETRY PUINT

2 TANTALUM ATOMIC ORBITAL CONTRIBUTICN

50 2
Z

1Ge 1
~l.0

5D
' Xz

5D
YZ

8 0 o o

TR WOMOOT®

9

or~c>C)0¢a<=c>9

o\
0.0
Ge 4
Vel
0.1
Vel
0.0
4.6
33
Cel
0.0
OeG
G.U
0.l
-0
-Oo(l

50 2 2
X -y

C.C
Uel
-0 <0
Os1
0.0
9.9
3.2
Cel
Uel

N

co
o o
Ui

2608

f W
[ N J
SNNNDBMNOCOU - O

CQOQUVUVOrRTOCO

v
N O
o & o e
o~

50
XY

C.0
-G 0
GeC
0.0
Cal
"‘g .O
Cett

0eG
87.1

Se4y.

00

Ge3

le4
Je5
3eb
-:102
Ce3
Ueb
Ce7
CeC
0.0
=Ce(
Ce0

€S

¢« 8 o b 0

cCorrcoCcoOaoNGOD
[ ]
0N

6p

| o |
CrmOeEC P ONCTODS
e 06 0 o ¢ o o ¢ 3 o 0 o
COOOMRNODOIRIONE BT VEO

|
[»]
.

6P

» A
Ce

93 5
CeC
249
Cel
1.0

-C .3
Ce2
Cel

=0 oty

1e5
Ue7
lez
Ge2
Cel
0.3
1.7
Je5

"\:oli

Cel
-3 ol
Lot
“2 ..;:'

Geu

Lie



TABLE H3(CCNT.)

ENERGY
BAND

TN ONOD WA

¥ OXYGEN ATOMIC ORBITAL CUNTRIBUTION
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TABLE H3{COUNT.)

ENERGY ¥ CXYGEN ATCMIC CRBITAL CCNTRIBUTICN
BAND 2S¢3) 2P (3) 2P (3) 2P (3)
Z X Y
1 100 : loa —C.G C.C
2 0.0 O.C -G.O 2-9
3 4.4 Ua1 N 0.0
4 ~Cel CoC =00 Q62
5 -0l 0aC Ceb5 (VPR
6 “5.3 001 0‘0 001
7 0-1 0ol —Ue2 =L ed
8 0.C Ual Y 3.9
9 0.0 0.0 UeB Ce0
1¢ C.C GCo G 6ebd - 0.0
11 "'105 18.5 C'QC 0-7
12 -G8 28 .0 0.5 001
13 0.2 G.0 7.0 29
14 , 0.2 0.3 11.G 3l.1
15 0.3 0.6 l.0 Oe8
16 0.5 1.2 3643 2e¢ 6
17 Oel) 245 8.5 31.0
18 Cel 33 11.2 232
19 0.4 9.4 ldal (VI
20 004’ 0.0 ‘J 01. ¥ 0‘3
21 "2.7 32.2 C.C O.{’
22 8.6 261l GCel Oeli
23 43.6 Ueb ~CeG -Gl
24 "835.() 0.2 —C.l O.C
25 -0el -0 el =-13.6 —Cel

61¢
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TABLE H4 MULLIKEN POPULATICN ANALYSIS OF CRYSTAL CRBITALS AT
M SYMMETRY POINT

ENERGY Z TANTALUM ATCMIC GRBITAL CONTRIBUTION
BAND 50 2 50 50 50 2 2 5D 6S 6P 6P
ya R ¥ 4 YZ X =Y XY z X
1 O.C CeC C.C 000 C.G Ue G 97.0 -\}.C
2 G.6 0eG 0.0 0.0 D.l 3.8 Ue § Cet
3 0.0 -0 .0 0.0 O.C Cel 2e6 0«0 Cet
4 ~0eC Ue 0 Q62 0.0 Vel Oe4 ~Jel Ue2
5 -0.0 Oe1 0.C G0 Ce0 0.6 ~0 0 15.5
] 4e1 0.C 0.0 0.3 Gel 42.1 Ce 0 €e 5
7 -G.U O.C O.l 11 6 Goi)‘ loG 0.0 4445
8 O.4 7.8 28.9 C.6 3e2 Te4 O.C 213
S 0.0 43 .5 45 .9 l.1 Cea 1.6 0.0 Ue 8
1C Qa2 44.1 21. 2 1.8 3eb 5.7 0eC 13.9
11 34 Ge.l . O.1 0e3 8.2 Je3 Ua U le1
12 60.5 C,1 Cel 7.9 1.2 Ue8 Ue9 ~Cel
13 6.1 Cel 2.2 6601 o0 ~0. G Usl Lo
14 000 ~D 0 . "0.8 0.5 Cel CeC C‘.G C.C
15 C.C ~Ce 8 000 001 Vel 0.0 -0.0 —U.U
16 00 Oel Ool O.1 l.s CeC Ge0 Ce3
17 0.2 3.8 008 -1-2 'J-'./ O-U C.U "'\;’02
18 ~0.5 C.8 1.2 107 C.‘J 4.6 el -l et) .
16 C.0 1.3 0.0 Oe4 Ce2 1.1 Je 15. 4
ZG 2.2 Coc 005 leb 4-7 102 007 "CCO
21 2800 . 0-0 002 106 1.5 8.& 101 —C.C
22 ~0e3 0.0 0.6 5.7 2eG 11.7 Del -Le0
23 ~448 C.C L‘C Ca U 2el 80(.7 Coel e
24 6.2 Le5 0.1 37.0 LCeb 3l 4 “Cet -53.4
25 ~2e 2 —~GeC ~Ce4 ~le2 HN =le4 et \';.5

lee
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TABLE H4(CONT L}

ENERGY Z CXYGEN ATCMIC CGREITAL CONTRIBUTIGN
BAND 25(3) 2¢ (3) 2p (3) 22 {3}
Z X Y
1 C.0 3.C Coi J.C
2 Ce5 Celi ~Uel Uell
3 1.C Ge Ve O el
4 Ue3 U0 Cel 3.2
5 -Gl 0.0 32 Uel
6 901 002 "C.C "C.l
7 G5 Uel Lels %4 o9
8 1.2 Ce 2 5.4 li.5
9 Ue3 CeU 4.8 Ue 5
1¢ le5 Uel =5 el Uaeb
11 C.s Ueb Cel Ue 2
12 _2.8 23.5 008 O.S
13 -8e2 2el (Jol 15.1
14 Qel Cel Jel Ge 2
15 Deli Jel2 3.7 ol
1l¢ C.C Cal le2 Qef
17 =G0 C.4 42.5 Set
18 Ge7 209 168 15.5
19 Ca3 C.b 24+ 9 Lel
20 6.1 235 Uel Te32
21 -3.8 Ble Vel Dol
22 Del led Cels 22e L
23 79 03 0 o";i \:'0\; i‘,',".(_,'
25 =G0 ~Uel =(el -02e¢5

tee



TABLE H4(CCNT )

ENERGY £ POTASSIUM ATGMIC CRBITAL CUNTRIBUTICN
BAND. 4S 4P 4p 4p
-z h¢ Y
1 G0 0.0 Vel ~Uetl
2 0.1 91.4 ~Ce4 '3.0
3 88.1 0e5 1.4 Oe1
4 20.3 OoC 7541 ~Jel
5 %e 8 C.C - 0.1 67.7
6 3-{: 608 "‘005 —l-]
7 “G-C Go 0 ~le4t —bel
8 006 C.() -C.B ’099
9 Uel Vet (el —Ue(
1C 0.3 C.l '604 ."009
11 De2 GeC =Cel =QJe(
'12 Ce2 Vel Cal -Jel
13 G.C 0.0 -004 '0.1
14 JeG Getd =00 —0aC
15 ~0e T Ceo U O -0.1
16 *G.O GCeC G.O —D.C
17 0.0 0.0 =0 v ‘005
18 -0.0 CeC ~-Ue L =0l
19 G.G ‘G.G =L el ~le?2
20 ~ls6 0.2 -0 4 =07
21 Ce.t el -1.C ol
22 1J G Je3 4ol ~Jel
23 Ge 1 Cel -C.C ~Cad
24 3e4 5leT =113e4 ~26577

25 ~0eli ~12.7 1C0701 2269

tee



TABLE H5 MULLIKEN POPULATICN ANALYSIS OF CRYSTAL ORBITALS AT
' R SYMMETRY POINT

ENERGY Z TANTALUM ATOMIC ORBITAL CONTRIBUTIUN
BAND 50 2 5D 5D 5D 2 2 5C 65 &p 6P
z Xz YZ X -y XY z X
1 Je C -0a 0 Qe L 0.0 ~Ce0 937 Do Ueh)
2 Gel 0.1 ~0e1 0.0 ~0e2 Ue C le2 le4
3 O.G -001 ~De2 Oe0 ~Ue3 UC 1.3 Cet
4 0.0 ) “1.2 ”001 GOO -0.C O.C Deb 103
S 0.0 -000 ‘000 G.G -0 .G O« 0e2 602
6 2.1 Gol “So 6:8 -0.0 -000 1207 1209
7 1.3 -CeC Ce8 Z2e5 Ce T ~Le C 4549 H42e5
8 Q.1 C.G 0.8 0.l 0S8 UeZ2 327 3S.7
S UeC 63.C 2.1 C.0 4.1 U.0 Uel Cel
10 0«5 a7 2242 Ced 466 - -C.C ~Le U OOG
11 Ge7 Ge2 4441 22 17.6 0.0 0.1 Oev
12 0.1 0.3 004 8000 009' 0.0 °000 400
13 80.5 0.1 004 Dol OOO —0.0 601 004
14 Ce G 0.C< Coz ~0eC el Go& OOG 0.0
15 ~0el 0.0 0«5 Ool Ce 6 -Qe U 002 003
1€ UeC Ca.1 De5 G el Ce4 O.0 1.0 Uo8
17 “0.6 Q.l 001 ‘2.0 Vel —O.D 2.7 2.9
18 —1l.8 O.o OeC ~Qeb Oe1 el 9.2 Be 2
19 Qe 4 Ca C Ce U Cev U eC 60 lel Ce9
20 9.2 O-l c.l 101 002 DOC "708 "'C’o?
21 le2 0.0 Ool 8.8 Col et —107 *9.3
22 Cel 002 Cel Cel Cel -Ua ~T.1 ~$ a4
23 C o0 Cel 14.3 Cel 13.5 —Cel Cel Ce U
24 000 C.C 13.6 0.0 1309 . UoC 001 0.2
25 000 32.1 C.G GCO CQQ ~Ue vy Ocq 0.3

see



TABLE HS5(CONT.)

ENERGY % OXYGEN ATUMIC URBITAL CONTRIBUTIOCN
BAND 25(1) 2P (1) 2P (1) 2P (1) 25(2) 2P t2) 2P (2) 2P (2)
Z X Y Z X - Y
1 Oe © 0.0 2el =0 el Vel el G0 2el
2 Oel -Gel ~CeC =-le4 —GCe C ~le4 ~le6: Cel
3 -Cel ~0.2 0.0 -1.4 O.0C ~0e5 ~Gel CeC
4 -Cel ~2e06 Ce 0 -lel -0.1 ~0e5 ~{ el Oeli
5 25 0.1 "GOO 001 1.6 “’001 ~Cel O.G
6 "‘202 Oo‘f 2‘1 Q0.9 “1107 002 0.1 7.7
7 —~7e3 Ce7 5¢4 Ce 3 =Je G Cel GeU UeU
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13 l.4 0.2 Ceb Uel 1.8 . Oel Ue G Ce &
14 -OOC 34.4 Ce.3 403 0.0 1'\).5 11.4 -COL
15 =0eG 13.1 38 11.3 C.C 20e 4 2362 CeC
16 ~0e0 0.0 0.0 11.2 ~0eC 279 243 Cel
17 Ce 4 g.C 15.4 -0.0 la7 0.0 0 .G 55.4
18 1.2 1.3 37.1 Ge 2 0.C Ue 8 (o8 Ce C
is 1.2 GG 294 Vel 1.2 0.0 0.0 3063
20 4.8 -Ce 0 Co Ue 1 4842 —0e U et 1 ovg
21 5904 002 200 -Uo\j 3300 Ge3 _C.O 305
l2 3%. & Cel Ge3 Oe2 2246 Ved C o4 GCel
23 060 Dol Cell 22.1 Ce 8 13.8 134 Ce L
24 Ce0l Ge0 =) el 2265 Jet 15.4 15.8 Gel
25 Del 35.6 Ce U Ue L ~Le( Del: Gel) Uil

922
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Appendix I. TBA Results of Naxwos(x=1.0)

Using the same notation as in Appendix G, Table Il
contains the eigenvaiues of crystal orbital functionlyl(g,z)
for the i th energy band and Tables I2 to IS5 are the corres-
‘ponding % atomic orbltal contributions.

The Fermi energy is -3.2252 Rydbergs.
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TABLE I1 E{K) VS. K: ENERGY BANDS AT THE SYMMETRY POINTS OF THE BRILLCUIN

LENE OF SCDIUNM TUNGSTEN BRONZE

ENERGY SYMMETRY PCINT
8AND - GAMMA X M R
1 G.178494E C1 C.497721E 01 C.574128E C3 Ca116693E €4
2 -(.738371E GO Ce4T3387E C1 0585841E 01 <-0420C6506E OC
3 -0.925617E 0C 0.329C1€¢1E Ci 0e35617CE C1 -Co542852E 0C
4 ~0954683E GO 0e6BB5T6E GO —04316201E 00 ~0.131859E C1
5 —0.255340E C1 -0.144737E 01 ~C.136859F C1 =—U.2412C1E 01
6 —0+255974E 01 =-0e255527E 01l =-0.189150FE C1 =—G.278757T¢ C1l
1 —le258314E C1 =-0.2625275 01l ~C<266169E C1 =0.279475E 1
8 —0e271399E €1 ~0.265414c Cl1 ~C.269529F (1 =G.282527F Cl
9 —Ce27154TE 01 04269922 01 =04271761t Gl -C0.301882E 01
10 —Ce295949E (1 -0.271037€ €1 =~-0.2857S1E C1 ~G.3C7T885E {1
11 —C<308620E C1 =-0.3C8638E Tl =~Ge3C5543C Cl =-0Ce3(94&4E U1
12 .=0631574CE 01 ~-0.319573E& 01 =-04309954E 01 -C.316893F Q1
13 —043221C6E €1 -0e3263€8E 01 -Ca322471FE C1 -0.318935EF (1
is —0e32278TE C1 -0.328050E 01 =0.3230128 01 =-C.223857E ©1
15 —0e332111E Ol ~0e329274E C1 -04326263F 01 —-0.326376E 01
16 ~0e332646E5 01 -0.334659E C1 -0.32853CE & -U0.328558E C1
17 -0e386235E 01l -04336993E 01 =-0.330138F 1 =Ce360483F (1
18 —0-35618SE Cl1 ~Ce3675CLE (1 =~0.341663F 01 =-0e360733E ¢l
19 —0e396253E Cl -0.37T1564L U1 <-0.352953E Gl -C.406588E Cl
20 —0e503756E C1 =0o383132E 01 —-U.356781E 01 -—0.553099EF 01
21 —0.505017E 01 —-0.400253E Cl -0C.4(469CE (1 —-C.555377E Cl
22 —0e551776E Ol —0.418687TE 0l -0.448079k 01 =-0.733287¢ Ul
23 —Ce661C39E 01 -CeS5BT98TE Gl —CWo54E61TE Ol =U.14174UE U2
24 —0e719572E €1 ~—Ue77C267E 01 —0.625044E GC1 —Ce165358F 2
25 —0e720820E C1 —Co80L262E 01 -0.8$3844E ¢1 G2

- (e 582785L

1€e



TABLE 12 MULLIKEN POPULATION ANALYSIS CF CRYSTAL CRBITALS AT
CAMMA SYMMETRY PUOINT

ENERCY 2 TUNGSTEN ATCMIC ORBITAL CONTRIBUTIUN
BAND 50 2 . 5D 5D 5D 2 2 5D 6S 5P
Y4 XZ Yz X ~-Y Xy z
1 ~04G =0eC ~0.0C ~{. 0 ~Ca0 7e5 =02
2 1.0 0.C Q.0 3.4 C.0 0.0 2463
3 3.6 CeC 0.0 1.0 0.C D0 4201
4 0.0 Cel 0.2 0.3 L2 1.6 2262
5 2.2 0.0 38.7 Ge6 43.9 G0 Ga0
6 Ge3 13.€ 37.8 1.0 32.2 Ge5 0.3
[ 00 13.0 6.3 Get £e6 a3 Ce 6
8 2.2 C.1l 2.7 43.1 Oel 0.0 Gal
9 43.2 0.1 0.2 2«1 3.0C G (G 4.5
10 Coo 000 0.5 0-1 0.5 - lfbog 009
11 Oc4 1.C Cel 1.3 Cel 1.1 1.3
12 0«5 0.0 0.0 0.2 Ue0 0.0 Gel
13 001 10.7 0.5 C.3 Q.5 =00 Oel
14 C.0 000 Je0 Ge0 Ce & Je C Ce
15 0.0 G.O 6.9 C.O 5.7 —00‘3 002
16 0.0 . 0.8 5.7 0.0 6.8 Ual 0.2
17 G.G 001 OOO C.C C.C 690(.1 ~Co 4
18 24. 7 Coc C.C 26 <6 OO’J ~Ue0 ~0a.3
19 2607 OOL 000 24.8 Ce U Oo(l "005
20 5.7 0.6 0.0 -1.0 Gel CeO 3.0
21 —~1le0 Oe G 0.0 =51 Cel UsU Je5
22 0.0 GeU 0.0 UeU Uel "1306 1.9
23 Ua4 Ge3 Gel 1.3 Cel Vel ~Ve3
24 1.3 C.C C.2 Ce 4 Cal Qe ~0e9
25 C.0 02 00 Oe2 GoC 3.2 ~-Ue5

(6] [
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TABLE I2(CONT.}

ENERGY € OXYGEN ATOMIC CRBITAL CONTRIBUTICN
BAND 25(1) 2P (1) 2P (1) 2P (1) 28(2) 2P (2) 2P (2) 2P (2)
' z X Y z X Y
' 1 407 0.0 0.0 000 407 "000 "0.0 ro
2 1.7 1.3 Ce.1 l.4 262 1e2 1.3 Ueb
3 3.1 De9 001 Col CeC Go3 Ce 4 -0e U
4 1.0 Uel -0l 0.8 3.6 a6 Ceb ~0ed
5 ~0.1 Ce G 1.2 244G Ce U 3e5 460 De0
6 Oel 06 Cel 1.2 ~Jel 4e 8 440 l.C
7 0.(.» 5.3 O.C 0.4 Co(l 005 Ueb —O.C
8 “200 Ceb 27.8 Gel -le1 OOC "'\}oc 16.9
9 ~0e2 Oe3 207 1.5 ~1le¥ -0eC ) oG 1‘(0 1
10 ~leG —Ce G 1643 1.1 -leb 2e2 1.9 1443
11 G0 47 1.4 2l.8 -0l 16.7 i7.1 4e S
12 -0e 0 3.9 Ce4 293 CeU 14.3 14 o2 e
13 CoC 32.1 le6 Ce G ~{e C Te & Te1 Ce
14 OOCJ 46.8 J 0 1.9 -C.C lo4 1.6 Oe s
15 —~0.C Ce OeC 13,0 Lol 3lel 206 9 Vel
16 =0 2.8 CeC 2405 CeC 153 1‘;.2 Ca
17 -1.6 Ce3 1().’:] 003 "1.3 UOD U.(«‘ lboL’
18 ~Ce5 Cel 3G e4 Ce G -Ge 1l O G Cel 2e8
19 ~0.¢C 0.C 2.0 Cel ~Ce5 —Je G Cel 2545
20 40.2 -0« 0C C.8 Ja 1.0 ~lel -0 0 ’OQO
21 2401 Oel Ced 0. C 6361 Ue G UeC 1.5
22 4102 "GOO 1.0 Qel ‘1'003 ~Jel ~0e0 007
23 Ue 2 —Ce 5 ~Ce & ~-Ue 6 le3 -Ue5 ~CeH Cet .
24 1.0 =00 =0.6 Ce4 OeC 1.2 1.0 ~Ue G
25 ~Ce 1 1.5 ~0e4 Ceb De2 ~Le4 —Ue2 = =le4&

gee



TABLE J2{CONT.)

ENERGY 2 UXYGEN ATOMIC ORBITAL CONTAIBUTIUN

BAND 25(3) 2P (3) 2P (3) 2° (3)
' 'z X Y
1 4.7 0.0 ~-Ce -Vl
2 l.6 C.l l.4 1.5
3 2.7 0.2 009 "000
4 le5 ~0e2 Cel Qa9
5 -0.1 103 GeC l.8
6 0c.C 0.1 0.6 1.5
7 0.0 Ce0 53 C. 4
8 ~Del le4 Ce4 15
S -Z-C 29.3 Co‘f el
10 -l.8 16.C ~{e le4
11 GeC 1.5 47 2C .9
12 -0.0 0.5 3e9 298
13 0.0 1.5 3443 Cel
14 G.C el 44.5 1.5
15 ' O.C ~0e0 Gel 163
16 G0 O 2e71 2l.1
17 -1.3 l4.4 Ce3 03
18 -0e5 1601 C.O Ool
19 =G5 17.7 Cel "000'
20 55.6 1.4 C‘oG U.C
21 9.7 Ue3d Cel Cel
22 4Q0e7 Ueb ~J eV Ted
23 0.2 "0.6 o P P )
24 . 08 ~0e3 ~Ue%h Ce8
25 -Co.l "006 1.3 Ccl

tee



TABLE T12(CCNT,)

Z SCLIUM ATOMIC ORBITAL CONTREIBUTION

ENERGY
BAND

3P

3S

235

OSSN Om 00N TNWDSODDOOMHD INT D DN ¢
o & 0 5 o ® g B 5 O & o 0 9 0 O 0 8 " ¢ 0 & 5 O o
O~ OoO™~NO OO OQOOINODOT O™ N0
[T R [ | | [ I ™ 0
DPINETTNDDCTONNOoNANODAND0N
o 5 0 ¢ & 9 ¢ 0 ¢ 0 & o & ¢ O O @ g ¢ o O ¢ o 0
D e OO DDI A O WA tI I e IO e
I Y | [ ] [ | | O -
DWW WT DO A DN e UV SN 0N O
e ® ¢ 8 0 g 8 © 3 P 06 0 5 5 b O ¢ 0 O 4 o O 5 0
DO VOOV RDO™MODODIVDIQEOONNN
[ I I I [ I it N

DOOMMDC -0 e ODD DL " -

e ® a4 o & 5 0 9 g 06 8 0 0 5 0 9 9 O 9 ¢ b o 0 0
POV UQOUNHDOWUMOUWAOQUALQLQLWOODODDIVODD
N~ [ T T T T A T A B S | ﬂ | ] ﬂ P

NI ONOOD
L]



TABLE 13

" ENERGY
BAND

VONCUMDWN M

MULLIKEN POPULATION ANAL%SIS OF CRYSTAL OGRBITALS
X SYMMETRY POINT

% TUNGSTEN ATUMIC CRBITAL CCNYRIBUTIGN
5D

50 2

Xz

0.0
—O.U
-C.C
~Uel

Oe1

5D
Yz

0.0
JeC
-0.0
-0 o2
Ce O
64.2

2CeC

[« R ~RU|
¢« o ©
[

COOMTOCORAONOOWNEOO M

e 06 0 @ O ¢ o & o o

CcoccomnOoONnNDOODOC

50 2 2
X =Y

Ceb
0ol
~0e1
~0 6
le2
3e4
1.2
2444
O.1
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Appendix J. ‘' Translational Symmetry

The TBA approximation depends on a successful amalgam-
ation of a LCAO (linear combination of atomic orbitals)
Qith the translational symme try possessed by a.-crystal, Let
us discuss the translational symmetryvaspect of the problem
and show how the LCAO approach enters into the TBA method.

Vectors gp=p131+p2£2+p333 connsect equivelent points
in ordinary space, The unit cell 1s defined by the basis
vector set t. For an infinite crystal, the components
(pl’pZ’pB) can assume any 1nt§gra1 value. Such vectors Ep
are defined as translation vectors.

Let '1‘1,'1'2 and T3 be translation operators connected
with the primitive translations 31, 22 and 23 respectively.
Generally T,(v=1,2 or 3) operates on some function £{r)
to give

va(£)=f(£f£”).
In terms of a translation vector Ep’ a translation operator

T(p) is defined as

Pl P2 P3

o Tp T

?(P)g 1 "2 "3  uhere Til f(r)=f(r+pyt,).

However, if we take a microcrystal,eg. p1=1000=p2=p3, in

a bulk solid, we still have the translational symmetry of
the particular crystal. That 1s, the microcrystal is re-
peated throughout the crystal in a periodic fashion. In-~

general we shall define the microcrystal as contalning

G unit cells.
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By restricting the slze of the microcrystal to some
finite size, namely G unit cells, we obtain the Borne

von-Kérmén (h3) cyclic boundary condition,i.e.

f(£+G£v) = f(r).
In other words, we never pass through the surface of #*
microcerystal, but instead cirels back te the crigin.
each microerystal contains G3 lattice points defined by
the inequality 0< p, 4G-1 (v=1,2,3). Lowdin(86) calls this
inequality the "ground domain (G) ". Other equally good

ground domains are
l4 pvé-. G and
-(G-1)/2% pvé (6-1)/2.

The implications of the above boundary conditions are two-
fold
1y 1% =,
v
2) The three translations will now be cyclic operators
of order G having eigenvalues exp(2yi EV/G) where kv equals

an Integer.

The second 1mplication'deserves some discussion. The
translation operator on a function f(g) gives us the ususl

eigenvalue problem where-

T(p) f(r)= ﬁpf(yﬂp) .
}& is the elgbnvalue of translation R, . Since <f(_x_")|f(£)>
p
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and <T(p) f(r)\T(p) f(r))have the same value because of
translational aymmetry (that is, f(r)-f(r+R Ys ) is a com-
plex number of modulus unity of 7\ -'exp(:lep). ep is related

to the translation vec tdr B-p by the expression

Opz.l_g_ 'Ep

which is the inner product of B‘p end the wave vector k in
reciprocal space. This identification is made via the

definition of a wave vector k

EaZx'(Klb

by + sz_z + K31_a_3) or

kxb1+k b2+k b3
where the basis set b is Inversely related to t . As in
recent literature on energy band theory}_l_{_ components are
expressed by (kx’ky’kz) which are not integers whilekK,
(v=1,2,3) are.
The function f(r} 1s characterized by a particular
vector k which appears in the eigenvalue of each transla-

tion operator. Thus, f(r), if a periodic function, gives

f(z+R )=exp(ik°R,)f(x).
This reation is ref’grred to as Bloch's theorem {87).
If a localized function f(r) 1is not a function of k,
but is still periodic, we can use Bloch's suggestion (87)
to obtain f(k,r) by multiplying £(r) by a phase factor
exp(il{_°§p) for each translation B-p' This can be shown f9r
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the q th atomic orbital function ¢q5for an electron located
at r- fp(see Figure 1) or § (r-f). For instance, a
as s

translation -gp corresponds to the eigenvalue equation
. ™ - r-f )=g (r-#-R )=exp(-1ik,R r=§).
(-p)F, (£=0)F (£ F R )=oxp(-1k,Rp)F(z-£)

The position vector r-f-R ) is shown in Figure 2, Then
f(5’£)=¢§é£ﬁ£¥)=exP(iE'Ep)ﬁqufgﬂpr)' In general, we
define the sum of f(k,r) for all possible translations
as the Bloch sum bqf}g,g) which corresponds to the g th
atomic orbital located on atomic site B, That is,
..% 2
b (k,r)=N exp(ik+.R.)F (r=F-R ).
e~ 9 p =" e =25

The normalization constant Nq of Bloch sum bqﬂis obtained
A3

by the evaluation of the self-overlap of un-normalized

Bloch sums,
We are now equipt to expand the crystal orbitals

?PQ(EmE) into a linear combination of Bloch sums which
for the m th crystal orbital function becomes

Y ate,m=2 b (k,2)Ch (K).
. aF Qe d

C/m(g) i1s the corresponding expansion coefficlent.

With a knowledge of the linear combination of Bloch
sums after one evaluates the coeffiients Cé;(g) for the
Qave vector coordinates,l.e. (kx,ky,kz), one can classify
the energy band symmetry to the proper irreducible represwe
entations of subgroups of the space group to which the
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erystal belongs., Available group theoretical character
tables for all of the subgroups of the eh space group (88)
facilitates this classification for perovskite transition

metal oxides which are simple cubic or Oi.
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Appendix K, Unitary Transformations

Ziman(li) shows how Wannier functions are obtained I'rom
Bloch sums using a unitary transformation. In the tight-

binding 1limit, atomic orbital functions are obtained in the

sameé manner:

z : )=
. oxp(-1k-R )b, (k,r)=

%Z\z_, exp(ik-(R -R‘)) ﬂqo(.(r-f-g_ )

G
) -ﬁ%? R R £ (r=-f=-R )
qa =P =P,—=4 "9 A=D
G |
= N% qd(r_"_ -B_p) . (Kl)
a«

The crux of this unitary trensformation is the identity (L)

2 exp(i.g-(gp-_ﬁ_j)) G%

k Bp B ¢ (k2)

where G eciuals the number of unit cells in the microcrystal.
We will use the unitary transformation to obtain

éil.’e(r) and n (note that the position vector r is label-
= P, L

ed to facilitate easier notation).

The Fock operator on electron f_ in state k is T(E,gr)
defined in Equation 17. Qf(g,;_r) averaged over k space

yields
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A = ik -1k |
froc )= 3 ‘zi‘_ exp (2 pJoxp(-1kc'B ) ¥ (Geor )

=2 Yoz
Vr‘§ K/I;r

2 P (as, tp) exp(ik R ) exp(-ik<R )
ax tp k A £

J

+ L
G

el
N I LN

exp(-1k R }.)exp(i_lg‘_f?_v) .

v

)
10

§
. ﬁ'c'l%ﬁt ‘

N ;a(sd (£)rfim B) 4, (2 P;_\,H
'(ﬁqx(?- L ng 13(3',;( R (K3)
Bringzing the phase factors exp(gi_lgﬁ/q) into the double

sum over the translation vectors in Bquation K3 and using

Equation K2 we obtaln the transformed expression

Ave . 2
¥ (2pr= -y, -r 2z /r,,

+ 1 21 22 g___ g % Z-Coulomb

G ax tp RyR, i RR R R_/&exchange{.
) =3 é% ﬁ)l. v~=£ Loperators

and rearrangement after summing over Iisand _I_i_vyields

Ave
Y (1"2-"‘7 Taz,s/r E T@ §2<¢ (r- f’-R)p)' (r—f-R)‘

r' qo( ‘b/.»
¥ "'<¢ (I‘-_ﬁ-R)‘ﬁt(I’ P"R)}
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c::u-a

If we lst £§g'+gv and meke substisution into Bquation K,
we obtain using Ep=§§- Ry (also{dropping the prime over

the dumm§y index)

Ave Ti}. Ave,
= a 27 A0 I
¥ (zg= V Z /5 t e (9%, tF)
N t §(2 ﬂqo((r- ) ¢t‘@(r-y ‘
q -4g_ (z-fR )|¢m(r-fﬁ)} (K5)

where pAvo(qd,qB) is the average bond order matrix over
"k space,

In Appendix C, we find basis for making a further
simplification of Equation K5 whereby the product of G and
the Coulomb and exchange operators for a particular trans-
lation R 1s essentially a sum over all poassible translation

vectors where p ranges from 1 to G. Then Equation KS beconmes

Ave
¥ (z) ==F 222 [r_ + 2. pAv(a, te) G
FoY 3 qu,tp %N%
N
G Coulomb and Qt :
*2 exhange op- . (K6)
p=0 erators

We include p=0 to the sum in Equation K6 in order to est-
ablish the conventlion q = t and R =0.
Let us now proceed to make a similar transformation

of the Flodmark population analysis., From Equation 2l we
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have an expression for nqp‘amenable to the unitary trans-
formation. The resulting set of equations for the unitary

transformation is

M, X
n =‘§ Lk nm'E) exp(1k°Ry)exp(-1k-R,)

QD( ' k m
- 2 Z‘Mkchm(k) of ()b lk,r, Jomp(-1k R )|
k mtﬁ t’g(g,g )exp(-is_c_-gj»

i}
Q2 I

ZY 7, < (mctmm :

k m t8

* exp(ik(-R#R ))exp(igg(ﬁcﬁj)) N;%ﬁ;% .

=1
<, (exfe RIB, fr2 82,0

In a manner no different than the unitary transformation

of the Fock operator we obtain

G
nq;Z\pAve(%,tﬁ) 1 1 ?(ﬂ (P-P-Rz,\ﬂft(
i Yt r-£)) .
ol

All conventions used previously are utilized for the
unitary transformation of the Flodmark population analysls,
Thus the gquantity n acan be interpretted in terms of the
atomic orbital q« whereby the number of electrons in that

orbital on any « site 1s the average value obtained from

the occupation numbers over all k space.
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Appendix L. Matrix Elements Between Atomic Orbitals

J=1, we obtain expressions for the overlap

/l

matrlix elsments Aqv(sﬁ(g) . Using Equation 4bwe directly

obtain Equationl9 for case X#Pand q#s. Other cases,

ir F‘(_p_

i.e, ”(=ﬁ,q7fs;ﬂ<=.ﬁ ,d=8 , nead to be specially considered
in order to insure thet all interactions are Included in
the sum over interaction vectoras. Thus, the conwention
Xl oK
used to define Ep:'_i ,..f;. for &=/ no longer applies;
since one interaction vector, j=1, 18 usually taken as
zero. Obviously, f;“,-éo (j=1,...,V) for general cases,
Therefore, we shall use a definltion oi‘ gp which applies
- to the special case X =P ; |

KK
R =f (3=0,1,2,...V¥) wuhere
R

G
f =0 for the origin of atom type

locatad at fx in the unit cell,

The lattsr choice satisfies the "ground domain(G)"

discussed in Appendix J.

Using the above convention, we write 4 (K gg
QxS

(k) = onEyE v xsx
aX 8@ = W 8 g Eexp(-ig-_ﬁ ) o
3=0
KX
B2 L\ B2, ) (£1)
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Equation L1 can be expressed in a form compatible with
economic use of the computer; namely, we shall use Euler's
relation to convert the exponential terms in Equation Ll
into cosine and sin terms which are more practical to
evaluate, Using a parity term derived in Appendix M, we
are able to write Equations in the text which apply to
the case X=P and qg#s.

In the case =8 and q=s, we obtaln the diagonal elements
which are obtained from Eguation L1 via the Euler relation

and are written in terms of cosines

- -1
Aqxqo(é‘-) = Gl (ﬁq«(ﬁ )‘ﬁq“(£)>

e XX
+2 j%) cos(£°fjd)< gQK(zl“-fj )(ﬁqo((grbo

(L2)
If the atomic orbital functions are normalized, the overlap

term corresponding to the null vector is equal to one,
If the Bloch sums are normalized to unﬂ.ty,ise.Aq«qil_:_)
equals one, we need only rearrange Equation L2 to obtain

an expression for the normalization constant Nq which is
: x

v (K o

Before we move on to a discussion of the HamiltoOnian matrix

elements, we should comment on the orthogonality of atomlc

orbital functions,

The diatomic overlap 1nte%<x;fl <?<Sla’<(£t‘)\ ¢SA(;_r) >which

results for the null vector -J_% occurs for X=fand q#s.
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It 1s Important to stress that this integral 1s generally
non-zero. For lnstance, if non-orthogonal analytical
atomic orbital fumeétions are used , the overlap integral
is non-zero when the following conditions on the quantum
numbers for orbitals q and s are met:

;£q=fs s omo=my .

q

However, if the Schmidt process is applied to the non-
or thogonal basis set, the resulting orthogonal functions
will automatically give a zero value for the integral for
any quantum number set., In any case, the TBA computer program
is written to handle either orthogonal or non-orthogonal
~atomic orbital functlons on a given atomic site.

If F(zf‘) equals the TBA Fock operator defined in
Equation , off-diagonal (g#s,X#/) matrix elements of

H(k) can be written using Equation L6

~‘aksp  ax 8

_3 v BX HBx
H(k) =GN~ 2N zﬁ Eexp(-ig'(_j_oj- _-/i )) e
J=1 | '
Ave
e -931 (2,) {55z P
I;'. we substitute r=pr'+ f/e into Equation ,we obtain

the following expression »

A%/‘“’(r == +ZZV (r -Jp
Bb’

in terms of interaction vectors _f; (dropping the prime due
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to the dummy index of integration). Furthgrmorb, the above

expression can be rewritten im more useful form

Px ! /36
AYS(p )= o f + V (r -F)+ v (r - f’ .
AT A R lp%x 2o &)

The primes over the summation signs indicate that the
interaction vector defined by p=] and ¥ =% 15 removed from

the potentisl summation. Therefore, E@uation 1.2 becomes

‘ 1V Bx ,pX
= 2 == ’ - . - f .
an(sﬁ(k) GN_KN o g:_‘__l exp( -1k (fj PR
<¢qo<(r' o, f )\¢sﬁ(£r)>
* 2&5 “E:f !" (53 -Pr) !%g(%» ’

(L3)
Equation L3 will now be expressed in terms of groups of

integrals so that the approximations discussed in context

to the TBA method can be Bpplied. That is,

px AX

_ ik Y '
Hyusp(K)= GNqN ?exp( 1k(f JD))

(1,00 +§2;11(J,p,‘6)]

where Bx B«
<
To(0) =0 feply Wiy £)0, (2 >
B« . 86
and I,(3,p, ) jqx(gﬂ _52\ ‘_’x‘?-rfp ’[“’sg"">-

We then use Equation LOto abproximate I, a

TR RO ‘;l—\ﬁﬂgﬁ(gv)?.

I (j) <¢ (r
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In the above, we have operated to the function to t he left
BX
of the )i?f(r- f}) instead of the right. Thus, besides

na connected with Fquation1¥ the aquantum mech-

2
iscussi

[«

anical implication 13 thet )ﬂxf is further assumed to be
hermitian, |

The three-center integrals Il(j,p,X) are simplified
by the Mulliken epproximationsused in Equation 32, Finally,
Wwe can express qusﬁ(g) in the Borm used for computer
calculations and shown in Equation L9.

In the case of gq=s( or q#s) and X= /2, we define
quaék) using the corresponding conventions for overlap
matrix elements and using essentielly the same approx-
imations as above we are ~ble to write the expression in

Equation 49, The onlv differenmce with the above is how

we express the TBA Fock operator:

a4

;3:"’ “"V +V(r-f)+zzv(r-f)

where the double primes denote that the nul] vector is

removed from the double sum,



Appendix M., Parity of Overlap Integrals

~ We want to examine the value of an overlap integral oﬁ
a translation of coordinate system B (Figure M1l) by 2R along
the z, axis (Figure M2). |
Iet us investigate the engular part of an overlap typé
integral between two orbitals having quantum numbers n,f,m
and n',Q',m' and being separated by the vector H={K,5,%).

That is, we shall use Equation Dé to define

<yfm(9A’¢A)‘1"Zm'(gB"¢B)> = AlR) g

Then, )
" 4 K
A(R), _=N"(m)N(m*) (~1) 2 (-1) -
AB k
£ £
+ ((oxp(-thalla (8 ) + T(m) exp(1(m¥) a (8))
X - |mi X |ml

. {exp(i)'lm\')d’e(s ) + I(m')exp(=-10[nt) d‘o(.e)]
k =(m k (m

- <y (Y5

where &= # and F=-9.

(M1)

Now if we examine A(-E)AB we have that

-R=(R,%-6,7 +{) .
Then f'= =(r-6)= @~% = -(F+7) and ¥' = -(F+n)==F-r=¥=n
for EBuler angles in the displaced system (Figure M2). Since
exp{im(Y-x) )=exp(1m?f)exp(-1mn)=(-1)mexp(im’6) and
Kim g )

[ R
d (-8-%) = 3 (841 ) = (-1) d(8)
km km -kmnm
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Flgure Ml1. The usual overlap coordinate gvsiem,

2:52 y'\*

Flgure ¥2. B %s translated 5R along the Z2 axis,
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via the symmsiry properties of d'ﬂ gs deflined by Edmonds
km
we nave Tor the expression in the first bracket in

,.;.

LY
iy

Equation Ml

. £
ge::p -1 {ml ($-n) d ( ﬁ’-n) + I(m) exp(1 (m(¥- :r))d(-f-rr)=
- -\m\ k (m\
_ +m £ |
= ()P (1) (exp(-1imHa(8) +I(mlexp(1(ma‘(8) .
-k -{mi X (ml
The fransicrmatisn of the quantity in the second brackets
in Equation M1 leads to a similiiar form with the parity
factors appearing cut in front (because of orthogonality

£ ¢ depsndent functions m=m' so we are left with a
i

parity factor in and only.

~k{ -k
ce <"k g>=<Y2 !Ykh>(8h), substitution of the
above form inte Eguation M1l merely changes the order of

summatlion and we have that

.9+ﬂ,
AR) = (-1) A(-R)
AB : AB. (M2)
Px P
If F(gf)=V(£;‘f; ), we still would have (-1) in

front of the negative -R integral. Therefore, Equation

M2 i1s a general result to be used in both overlap and

Hamiltontidn matrix elements.



