KARIAN, Harutun George, 1940-TIGHT-BINDING ENERGY BANDS OF PEROVSKITE TYPE TRANSITION METAL OXIDES.

Iowa State University, Ph.D., 1969
Chemistry, physical

University Microfilms, Inc., Ann Arbor, Michigan

TIGHT-BINDING ENERGY BANDS OF PEROVSKITE TYPE ITRANSITION METAL OXIDES

 byHarutun George Karian

A Dissertation Submitted to the Graduate Faculty $5 n$ Partial Fulfillment of The Requirements for the Degree of DOCTOR OF PHILOSOPHY Major Subject: Physical Chemistry

Approved:

Signature was redacted for privacy.
In Charge of Mayor Work

Signature was redacted for privacy.
Heda of Major Department
Signature was redacted for privacy.
Dearil of Graduáte dollege

Iowa State University Ames, Iowa

PLEASE NOTE:
Not original copy.
Several pages have broken print. Filmed as received.

UNIVERSITY MICROFILMS

TABLE OF CONTENTS

Page
PART I. THEORY 1
INTRODUCTION 2
Objectives of the Thesis Work 3
HARTREE - FOCK AFPROXIMATION 6
TBA METHOD 12
SCF Iterative Process 13
Unitary Transformation of the Fock Operator 19
Approximations Used in the TBA Method 22
Population analysis of crystal orbitals 22
Richardson's approximation 25
Crystal potential 25
Atomic orbital energy 28
Approximations used in evaluating energy matrix elements between atomic orbitals 32
Formulation of the Secular Determinant Between Bloch Sums 37
Overlap and Hamiltonian Matrix Tlements Between Atomic Orbital Functions 38
ATOMIC WAVE FTTNCTIONS 45
OVERLAP EFFECTS, MADELTJNG EFGECTS AND THE OVERLAP CRITERION 54
Use of the Overlap Criterion to Choose a TBA Model 59
SUMMARY 66

TABLE OF CONTENTS (Continued)
Page
PART II. TIGHT-BINDING ENERGY BANDS OF RHENIUM TRIOXIDE 67
INTRODUCTION 68
THE GRYSTAL POTENTIAL 72
ATOMIC ORBTTAL FUNCTIONS AND ENERGJES 88
E(k) VS. k AND DENSITY OF STATES 102
RESULTS OF THE MULLIKEN FOPULATION AMALYSIS 109
$\mathrm{OF} \mathrm{ReO}_{3}$
THE CORRELATION OT THE JOINT DENSITY OF STATES WITH THE IMAGINARY FART OF THE DIELECTRIC CONSTANT 116
FERMI SURFACE 121
SUMMARY 123
PART III. TIGHT-BINDING ENERGY BANDS OF POTASSIUM TANTALATE AND SODIUM TUNGSTEN BRONZE 125
INTRODUCTION 126
ATOMIC ORBITAI EUNCTIONS, ORBITAL ENERGIES AND CRYSTAL POTENTIAL 138
E(k) VS. k, DENSITY OF STATMS, JOINT DENSTTY OF STATES AND RESULTS OF THE MULLIKFIV POPULATION AMATMSIS OF KTaO_{3} 151
E(k) VS. K, DENSITY OF STATES, JOINT DERSITY OF STATES AND MUILIKEN POPULATION ANALYSIS OF $\mathrm{Na}_{x} \mathrm{WO}_{3}(\mathrm{x}=1.0)$ 155
PART IV. DISCUSSION 160

TABLE OF GONTEiTTS (Continusd)

Page
BIBLIOGAAPHY $16{ }^{4}$
ACKNOWLEDCEMENTS 1.69
APPENDICES 170
Appendix A. Solution of the Sacular Datarminant 171
Appondix. R. Flow Chart for Computar Caloulation 177
 Single Sum 100
Appendix D. Overiap and Kelatad Intagrals 183
Appendik E. Potential Integrala 188
Appendyx F. Atomic Orbital. Enorgy Parametera 193
Appendix if. TBA Feaulta of FigO_{3} 195
Appendix H . TGA Fosults of FTaO3 210
Appendir I. TEA Results of $\mathrm{Na}_{x} \mathrm{WO}_{3}$ 229
Appendix J. Tranalatfonal Symmetry 248
Appendjx K , Unftary Tranaformations 253
Appendix L. Matrix Rloments Eetween Atomio Opbitala 257
Appondix M. Parity of Overiap Integiala 262

PART I. THEORY

INTRODUCTION

Transition metal oxides have been receiving increasing attention from experimentalists and theorists alike, as model systems in which to study the solid state. Pungsten bronzes, for example, properly doped, form a basis for the study of a major portion of the field of solid state physics, In that depending upon the temperature ana concentration of alkali metal, they can be insulators, semiconductors, metals, or super-conductors. ReO_{3} has been found to be a "good metal", reduced potassium tantalate KTaO_{2+x} has been found to be a semi metal, and some compounds such as SrPiO_{3} are found to be semiconductors. The cubic tungsten bronzes, (stoichiometry $\mathrm{A}_{\mathrm{x}} \mathrm{WO}_{3}$, where A is an alkali metal), ReO_{3}, KTaO_{3}, and SrTiO_{3} all have a common structural feature; the transition metal is octahedraily comordinated with oxygens, and, except for the case of ReO_{3} (which has the perovskite structure without the central hole filled by a non-transition metal atom) are all perovskite structures.

A major question to be answered for these systems is "how does one think chemically about their stability, and physically about their transport properties?" For the chemist, the easiest approach is the localized molecular orbital picture with each metal ion in a site of O_{h} symmetry. Levels are guessed at, electrons are counted, and depending upon the last levels to be filled, inferences are made
regarding the possibilities for conduction bands, generally labeled according to the transformation properties of the orbitals in question under O_{h} point symmetry. The solid state theorist, on the other hand, is very aware that an exact many body calculation to infer stabilities is not possible. He, therefore, uses an independent particle model with the meaningful results (to him) being energ. as a function of wave vector, and Fermi surface contours. He realizes that point symmetry designations completely break down as soon as translational symmetry is forced upon the wave functions, and has a tendency to listen with a respectful, but somewhat distant ear to point symmetry, bond order, electronegativity etc., type arguments from his chemical cohorts in the solid state chemistry field. For the average chemist, on the other hand, vision, intuition, and comprehension become somewhat blurred as soon as an $E(\underline{k})$ vs. \underline{k} plot is waved enthusiastically before his eyes as his theorist friend explains what the Fermi Surface must look like from the most recent band calculation.

Objectives of the Thesis work

The present work is one attempt to provide the beginnings of a translation between these two groups via tight binding calculations of the band structures of some representative, important and interesting cubic transition metal oxides.

The work is almed at chemists via a delineation of orbitals participating in valence and conduction bands, and a comparison of how the molecular orbital model flows over into the band picture as translational symmetry is added. For the physicists, we do indeed exhibit energy vs. wave vector plots and discuss their validity in terms of transport and optical properties.

Recently, overlap calculations (1) were used to provide a "zeroth order" method of thinking about the possibilities for orbitals forming conduction bands in the cubic tungsten bronzes. We will now outline the theory of the first order method for thinking about transport properties of perovakite type metal oxides; in particular, we use ReO_{3} as a model to discuss the method.

The tight-binding energy bands of a series of perovskite trpe transition metal oxides: $\mathrm{ReO}_{3}, \mathrm{Na}_{\mathrm{x}} \mathrm{NO}_{3}(\mathrm{x}=1.0), \mathrm{KTaO}_{3}$ are calculated and the results are discussed in Parts II and III of the thesis. The crystal orbital properties which will be djscussed in subsequent Parts II and III are:

1) Density of States
2) Joint Density of States
3) Fermi Surface
4) Results of the Mulliken Population Analysis

Before we discuss the tight-binding approximation (TBA) used in obtaining energy bands of crystals, we shall make a brief excursion into the Hartree-Fock (H-F) approximation. The purpose of this preliminary discussion is to show the "rigorous" equations from which we will systematically descend in rigor by a series of hopefully justified approximations.

HARTREE - FOCK APPROXIMATION

Let us assume that the electronic state of a unit cell (molecular unit) in a crystal is characterized by a particular wave vector, k, in reciprocal space. If we further assume that the electronic configuration is a closed-shell, i.e., M_{k} doubly-occupied energy bands, the total wave function (k) is approximated as an antisymmetrized product (ASP) of crystal spin-orbitals $u_{q}\left(\underline{k}, x_{q}\right)$

$$
\Phi(\underline{k})=A\left\{u_{1}\left(\underline{k}, \underline{x}_{1}\right) \ldots u_{2 M_{\underline{k}}}\left\{\underline{\underline{k}}, \underline{x}_{2 M_{\underline{k}}}\right)\right\}
$$

where $A_{1 s}$ the antisymetrizer operator defined by

$$
\begin{equation*}
A=\left(2 M_{\underline{k}}\right)^{-\frac{1}{2}} \sum_{P}(-1)^{P} P_{P} \tag{1}
\end{equation*}
$$

In the above, p is the parity of the p th permutation. In other words, we can express $\Phi(\underline{k})$ as a single-Slater determinant

$$
\Phi(\underline{k})=\left(2 M_{\underline{k}}\right)^{-\frac{1}{2}}\left|\begin{array}{lll}
u_{1}\left(\underline{k}, \underline{x}_{1}\right) & u_{1}\left(\underline{k}, \underline{x}_{2}\right) & \ldots \tag{2}\\
u_{2}\left(\underline{k}, \underline{x}_{2}\right) & u_{2}\left(\underline{k}, \underline{x_{2}}\right) & \ldots \\
\left.\underline{x}_{2 M_{1}}\right) \\
\ldots & u_{2}\left(\underline{k}, \underline{x}_{2 M_{\underline{k}}}\right) \\
u_{2 M_{k}}\left(\underline{k}, \underline{x}_{1}\right) & \ldots & \ldots \\
\ldots
\end{array}\right|
$$

From the properties of a determinant, we satisfy, as usual, the Pauli exclusion principle while allowing for double occupancy of the Mk energy bands. It is important to stress that M_{k} for all possible \underline{k} vectors need not be the same.

The spin-orbital $u_{q}\left(\underline{\underline{k}}, \underline{x}_{q}\right)$ has a space $(\underline{r})-\operatorname{spin}(\xi)$ coordinate $\underline{x}_{q}=\left(\underline{r}_{q}, \xi_{q}\right)$. We shall adapt the usual convention for an odd μ electron where
and

$$
\begin{aligned}
& u_{\mu}\left(\underline{\underline{k}}, \underline{x}_{\mu}\right)=\ddot{\Psi}_{j}(\underline{k}, \underline{r} \mu) \alpha(\mu) \\
& u_{\mu+1}(\underline{k}, \underline{x} \mu+1)=\Psi_{j}(\underline{k}, \underline{\underline{r}} \mu+1) \beta(\mu+1)
\end{aligned}
$$

where the functions α and β are the usual eigenfunction of the single electron spin operators $\hat{\mathrm{S}}^{2}$ and $\hat{\mathrm{S}}_{2}$. The crystal orbital is labeled by j. So that there will be no confusion between the sum indices α and β used further on, the spin functions as the above is the only place we mention the spin functions explicitly.

The crystal Hamiltonian \mathcal{H}, defined for a fixed nuclear framework and k in the Born-nppenheimer approximation, is

$$
\begin{equation*}
H=\sum_{\mu}^{2 M_{k}} h\left(\underline{r}_{\mu}\right)+\sum_{\mu<v}^{2 \underline{\underline{k}}^{\underline{k}}} g\left(\underline{r}_{\mu}, \underline{\underline{r}}_{v}\right) \tag{3}
\end{equation*}
$$

where $h\left(\underline{r}_{\mu}\right)=-\nabla_{\mu}^{2}-2 \sum_{\gamma} z_{\gamma} / r_{\gamma \mu}$ and $g\left(\underline{r}_{\mu}, \underline{r}_{\gamma}\right)=2 / r_{\mu \nu}$.

The one-electron and two-electron operators are expressed in Rydberg energy units (13.6 e.v.). μ and V label interacting electrons. γ labels the atomic site having a bare nuclear charge $Z \gamma$. In the valence shell approximation $Z \gamma$ becomes the effective nuclear charge (bare nuclear charge minus the sum of the non-valence electrons).

The quantum mechanical treatment of $\left\langle\chi_{\langle\underline{k}}\right.$ equal to $\langle A \Phi(\underline{k})| \mathcal{X}|A \Phi(\underline{k})\rangle$ procoeds in threo steps:

1) The expectation value of the operator is expressed in terms of the permutation operators and the identity $A=A^{2}$ yields the form amenable to further expansion (2)

$$
\langle\mathcal{H}\rangle_{\underline{k}}=\sum_{p}(-j) P\langle\Phi(\underline{k})| \mathcal{X}|\mathrm{PE}\rangle
$$

2) Assuming the closed shell electronic configuration, integration of the spin part of the above expression gives the resultine total energy $E(\underline{k})$ in terms of space type integrals

$$
E(\underline{k})=\langle\mathcal{H}\rangle_{\underline{k}}=2 \sum_{\tilde{B}=1}^{M_{k}} h_{g}(\underline{k})+\sum_{g, s}^{M_{k}}\left(2 J_{g s}(\underline{k})-K_{g s}(\underline{k})\right)
$$

3) We now wish to find the best possible orbitals $u \mu$ to form $\ddagger(\underline{k})$ (restricted to a single-determinantal form) by minimizing $E(\underline{k})$ under the constraint

$$
\left\langle\psi_{g}\left(\underline{k}, \underline{r} \underline{\mu}_{\mu}\right) \mid \psi_{s}(\underline{k}, \underline{r} w)\right\rangle-\delta_{g s}=0
$$

To do so, we define the functional $F(\underline{k})$ as follows:

$$
F(\underline{k})=E(\underline{k})-\sum_{g, s}^{M_{\underline{k}}^{\underline{k}}} L_{g s}(\underline{k})\left(\left\langle\Psi_{g}\left(\underline{\underline{k}}, \underline{\underline{r}}_{\mu}\right) \mid \Psi_{s}(\underline{k}, \underline{r} v)\right\rangle-\delta_{g s}\right)
$$

We then use variational techniques to find the conditions by which an arbitrarily small variation in the crystal orbital yields a vanishing of the resulting small variation of the functional $F(\underline{k})$ or $\delta F=0$. We thereby obtain the following set of Hartree-Fock equations which satisfy the above

$$
\begin{align*}
& {\left[h\left(\underline{r}_{\mu}\right)+\sum_{g}\left(2 c_{s}(\underline{k}, \underline{\underline{r}})-\underline{X}_{s}(\underline{k}, \underline{\underline{r}})\right] \Psi_{g}\left(\underline{k}, \underline{\underline{r}}_{\mu}\right)\right.} \\
& =\sum_{s} \Psi_{s}\left(\underline{k}, \underline{\underline{r}_{r}}\right) \cdot L_{g s}(\underline{k}) . \tag{4}
\end{align*}
$$

In the three steps above we use the following notation:

$$
\begin{aligned}
& n_{g}(\underline{k})=\left\langle\Psi_{g}\left(\underline{k}, \underline{\underline{n}}_{\mu}\right)\right\rangle-\nabla_{\mu}^{2}-\sum_{\gamma} 2 Z_{\gamma} / r_{\gamma \mu}\left\langle\Psi_{g}(\underline{k}, \underline{r}, \gamma)\right\rangle \\
& J_{g g}(\underline{k})=\left\langle\Psi_{g}\left(\underline{k}, \underline{x}_{\mu}\right)\right| \quad C_{g}\left(\underline{k}, \underline{r}_{\mu}\right)\left|\Psi_{g}\left(\underline{k}, \underline{r}_{\mu}\right)\right\rangle \\
& K_{g s}(\underline{k})=\left\{\Psi_{g}\left(\underline{k}, \underline{r}_{\mu}\right)\left|X_{s}\left(\underline{k}, \underline{r}_{\mu}\right)\right| \bar{\Psi}_{g}\left(\underline{k}, \underline{r}_{\mu}\right)\right\rangle \\
& \mathcal{I}_{\mathrm{gs}}(\underline{k})=\text { the matrix elements of the lagrangian }
\end{aligned}
$$

$C_{s}\left(\underline{k}, \underline{\underline{r}}_{\mu}\right)$ and $X_{s}\left(\underline{k}, \underline{\underline{r}}_{\mu}\right)$ are Coulombio and exchange operators respectively. $J_{g s}(\underline{k})$ and $K_{g s}(\underline{k})$ are the corresponding Coulomb and exchange integrals. $C_{s}\left(\underline{k}, \underline{E}_{\mu}\right)$ is defined by its operational meaning on $\Psi_{g}\left(\underline{k}, \underline{r}_{\mu}\right)$:

Likewise $\mathcal{X}_{s}\left(\underline{k}, \underline{r_{\mu}}\right)$ is defined by

Summing over s, we obtain the total Coulomb and exchange operators $C(\underline{\underline{k}}, \underline{r} \mu)$ and $\chi(\underline{k}, \underline{r} \mu)$:

$$
\begin{aligned}
& C\left(\underline{k}, \underline{r}_{\mu}\right)=\sum_{s} C_{s}\left(\underline{k}, \underline{r}_{\mu}\right) \text { such that }
\end{aligned}
$$

$$
\begin{aligned}
& T \underline{r}_{\mu}-\underline{r}_{V} \mid \\
& \chi\left(\underline{k}, \underline{r}_{\mu}\right)=\sum_{g} X_{s}\left(\underline{k}, \underline{r}_{\mu}\right) \text { such that }
\end{aligned}
$$

$$
\begin{align*}
& P_{\underline{k}}\left(\left.\underline{r}\right|_{V} \underline{r}_{\mu}\right)=\text { Fook-Dirac density matrix } \tag{5}\\
& =2 \sum_{s=1}^{M_{k}} \Psi_{s}\left(\underline{k}, \underline{r}_{\gamma}\right)^{i r} \Psi_{s}\left(\underline{k}, \underline{r}_{\mu}\right)
\end{align*}
$$

The one-electron operator on μ or the rock operator $\mathcal{F}(\underline{k}, \underline{r} \mu)$ is defined in terms of the above operators as

$$
\begin{equation*}
\mathcal{F}\left(\underline{k}, \underline{r}_{\mu}\right)=h\left(\underline{r}_{\mu}\right)+c\left(\underline{k}, \underline{r}_{\mu}\right)-\frac{1}{2} \chi(\underline{k}, \underline{r} \mu) . \tag{6}
\end{equation*}
$$

We now have the mathematical formalism to approach the TBA method in a manner similar to Roothan's procedure for molecular orbitals in the closed shell electronic config-
uration (3). The latter approach is technically called the ASP-SCF-MO-I,CAO method, but SCF-MO-LCAO is the description most of ten found in literature.

Let us consider the rhenium oxide (cubic) crystal as a model for perovakite transition metal oxides in showing why the Ronthaan approach is inadequate for the whole crystal to obtain energy lavels. ReO_{3} is the molecular unit which is repeated perfodically through the crystal because of translational symmetry. The electronic syatem of ReO_{3} without inclusion of translational symmetry is no different than that of an isolated molecule. In order to make ReO_{3} part of the crystal and hence to consider the entire crystal as an immense molecule, we must investigate the effects of translational symmetry on the molecular orbital functions. From the discussion in Appendix J, we find that the molecular orbitals upon forming a periodic crystal become crystal orbitals which are explicitly functions of the wave vector in reciprocal space. We will show in the next section how the TBA method encompasses both the Roothaan procedure and translational symmetry.

TBA METHOD

The crystal orbital $\mathcal{Y}_{j}(\underline{k}, \underline{\mu})$ is anelytically expressed as a linear combination of Bloch sums, $b_{q \alpha}(\underline{k}, \underline{r})$ giving

$$
\begin{equation*}
\mathcal{\Psi}_{j}\left(\underline{k}, \underline{x}_{\mu}\right)=\sum_{q_{\alpha}} C_{q j}^{\alpha}(\underline{k}) b_{q \alpha}\left(\underline{k}, \underline{r}_{\mu}\right) \tag{7}
\end{equation*}
$$

where the expansion coefficients are $C_{q j}^{\alpha}(\underline{k})$. The double sum over atomic oriftal quantum numbers q and atomic sites α is expressed in conciensed form as $q \alpha$.

The Bloch sums o \mathcal{K} are expressed in terms of an atom orbital $q \propto b y$ the sum over the p lattice translation vectors. We refer to the discussion of translational symmetry aspects of the TRA problem in Appendix J which gives

$$
\begin{equation*}
b_{q \alpha}\left(\underline{k}, \underline{r}_{\mu}\right)=\sum_{p=0}^{G} \exp \left(i \underline{k} \underline{R}_{p}\right) \cdot \varnothing_{q \alpha}\left(\underline{r}_{\mu}-\underline{\rho}_{\alpha}-\underline{R}_{p}\right) \tag{8}
\end{equation*}
$$

G is the number of unit cells in a microcrystal. The corresponding "ground domain (G)" on the lattice transIation vector set is expressed differently (Appendix J) with the choice here being the inequality for f components of \underline{R}_{p}

$$
-\frac{(G-1)}{2} \leq\left(R_{p}\right)_{j} \leq \frac{(G-1)}{2} \quad(j=1,2,3)
$$

We shall define R_{0} as the null vector, i.e.

$$
\left(\underline{R}_{0}\right)_{j}=0 \quad(j=1,2,3) .
$$

which locates the q-atomic orbital at ρ_{α} in the unit cell. Figures 1 and 2 show the vector notation on the μ electron position vectors $r_{4}-\underline{\rho}_{\alpha}$ and $\underline{r}-\underline{\rho}_{\alpha} \quad-\underline{R}_{p}$.

By Equation 7, the crystal orbitals, $\Psi_{j}\left(\underline{k}, r_{\mu}\right)$ are expanded in a linear combination of atomic orbitals (LCAO) to form TBA energy bands (see Table 1 for a comparison of MO and crystal orbitals). The j thenergy band, $E_{f}(\underline{k})$ is obtained from the Schrodinger equation defined by the effective one-electron operator $\mathcal{F}(\underline{k}, \underline{r} \mu)$ (Equation 6) on electron μ in crystal orbital $\Psi_{j}(\underline{k}, \underline{r} \mu)$ (for the canonical case discussed below).

$$
\begin{equation*}
\mathcal{F}\left(\underline{k}, \underline{r}_{\mu}\right) \Psi_{j}(\underline{k}, \underline{r} \mu)=E_{g}(\underline{k}) \quad \Psi_{j}\left(\underline{k}, \underline{x}_{\mu}\right) \tag{9}
\end{equation*}
$$

SCF Iterative Process

We substitute Equation 7 into Equation 4 to obtain a form amenable to a MO-LCAO-SGF type treatment of tightbinding energy bands. We begin with the Hartree-Fock equations:

$$
\mathcal{F}\left(\underline{\underline{k}}, \underline{x}_{\mu}\right) \Psi_{n}\left(\underline{\underline{k}}, \underline{\underline{r}_{\mu}}\right)=\sum_{m} \Psi_{m}\left(\underline{k}, \underline{r_{\mu}}\right) L_{m n}(\underline{\underline{k}})
$$

and finally obtain

$$
\begin{equation*}
\mathcal{F}\left(\underline{k},{\underset{r}{\mu}},\left\{\sum_{s_{\beta}} b_{s \beta}\left(\underline{k}, \underline{r}_{\mu}\right) c_{s n}^{\beta}(\underline{k})\right\}=\sum_{s \beta}\left\{\sum_{m} a_{s m}^{\beta}(\underline{k}) L_{m n}(\underline{k}) b_{s \beta}(\underline{k}, \underline{r} \mu)\right\} .\right. \tag{10}
\end{equation*}
$$

If we multiply Equation $10 \mathrm{by} \mathcal{F}_{\mathrm{p}}\left(\underline{\left.\underline{k}, \underline{r}_{\mu}\right)^{*} \text { and integrate, }, ~}\right.$

Figure 1. Definition of position vector $r-\rho_{B}$ of an electron $\left(0^{-}\right)$with respect, to atomic site β.

Figure 2. Definition of position vector $\underline{-}-\rho_{-}-R_{i}$ after translation \underline{R}_{1}.

Table 1 Comparison of molecular and crystal orbitals

$\underset{i}{\text { Orbital }}$	One-electron wave function	Normallzation condition	The q th basis $39 t^{9}$	Linear combination of basis sot
MOLECULAR	$\Psi_{i}(\underline{r})$	$\left\langle\Psi_{i}\left(\underline{r}_{\mu}\right) \mid Y_{i}\left(\underline{r}_{\mu}\right)\right\rangle=1$	$\begin{gathered} \text { nomic } \\ \text { nobital } \\ \text { function } \\ \emptyset_{q \alpha} \end{gathered}$	$\Psi_{1}\left(\frac{r}{r}\right)=\sum_{\alpha \alpha} c_{i q}^{\alpha}\left(\frac{r}{p}\right) b_{q \alpha}$
CRYSTAL	$\Psi_{1}(\underline{x}, 1:)$	$\left.\left.\left\langle\Psi_{1}\left(\underline{k}, x_{\mu}\right)\right\| \Psi_{1}\left(\underline{k}, x_{j} \cdot\right)_{k}\right)\right\rangle=1$	B] och sum function ${ }^{b} q \propto$	$\begin{aligned} & \Psi_{1}\left(\underline{k}, \frac{r}{k}\right)= \\ & \sum_{q_{\alpha}} c_{i q}^{\alpha}(k) b_{q_{\alpha}}(k, \underline{r}) \end{aligned}$

The basis set functions are nomblazed.
we obtain

$$
\begin{align*}
& \sum_{q_{\alpha}} C_{q p}^{\alpha *}(\underline{k}) \sum_{s \beta m}\left(\sum_{m m} C_{s m}^{\beta}(\underline{k}) L_{m n}(\underline{k})\right)\left\langle b_{q \alpha}\left(\underline{k}, \underline{r}_{\mu}\right) \mid b_{s \beta}\left(\underline{k}, \underline{r}_{\mu}\right)\right\rangle \quad . \tag{11}
\end{align*}
$$

We define the Hamiltonian matrix $H(\underline{k})$ with elements between Bloch sums as
and an overlap matrix $\Delta(\underline{k})$ with elements between Bloch sums that are

$$
\Delta_{q \alpha \beta \beta}(\underline{k})=\left\langle b_{q_{\alpha}}\left(\underline{k}, \underline{r}_{\mu}\right) \mid b_{s_{\beta}}\left(\underline{k}, \underline{r}_{\mu}\right)\right\rangle .
$$

Thus, we have the following matrix form:

$$
\begin{align*}
H(\underline{k}) & ={\underset{\sim}{b}}^{\dagger} \mathcal{F}(\underline{k}) \\
\text { and } \Delta(\underline{k}) & ={\underset{\sim}{b}}^{\dagger} \underset{\sim}{b} \tag{13}
\end{align*}
$$

$w 1$ th $\underset{\sim}{b}=\left(b_{1 \alpha} \ldots b_{A \alpha} b_{I \beta} \ldots b_{B \beta} \ldots b_{I \gamma} \ldots . . b_{C \gamma}\right)$ is the B1och sums matrix (\underline{k} dependence implied) for A, B and C Bloch sums specified for α, β, γ atomic sites.

Furthermore, the coefficient matrix is defined as

$$
\underset{\sim}{C}(\underline{k})=\left({\underset{\sim}{C}}_{1}(\underline{k}){\underset{\sim}{2}}^{C_{2}}(\underline{k}) \ldots{\underset{\sim}{n}}^{C_{n}}(\underline{k}) \ldots C_{M_{k}}\right)
$$

where the submatrix ${\underset{C n}{n}}^{(k)}$ is a column matrix of the expansion coeffients of the nth crystal orbital function into a Bloch sums basis set.

Then, Equation 11 for a particular qa term becomes

$$
H_{q \alpha s \beta}(\underline{k}) C_{s n}^{\beta}(\underline{k})=\sum_{m} I_{m n}(\underline{k}) \sum_{s \beta} \Delta q_{q \alpha \beta \beta}(\underline{k}) C_{s m}^{\beta}(\underline{k})
$$

In matrix notation, we obtain

$$
\underset{\sim}{H}(\underline{k}) C_{n}(\underline{k}) \sum_{m}\left(\Delta_{\sim} C_{m}(\underline{k})\right) I_{m n}(\underline{k}) .
$$

If we diagonalize $\underset{\sim}{L}$ by some unitary matrix, the resulting similarity transformation is

$$
\underset{\sim}{+} \underset{\sim}{L} \underset{\sim}{U}=\underset{\sim}{E}(\underline{k}) \text { where }(\underset{\sim}{E}(\underline{k}))_{m n}=F_{n}(\underline{k}) \delta_{m n}
$$

Thus, we obtain the canonical fonm of the H-F equations which are now written as

$$
\underset{\sim}{H}(\underline{k}){\underset{n}{n}}^{C_{n}}(\underline{k})=E_{n}(\underline{k}){\underset{n}{n}}^{G_{n}}(\underline{k}) \Delta(\underline{k}) .
$$

From matrix algebra, we know that a non-trivial solution of the coefficient matrix, $\underset{\sim}{C}$, exjets if and only if the following determinant vanishes, $1, \theta$. we seek a solution of the secular determinant written as

$$
\begin{equation*}
|\underset{\sim}{H}(\underline{\underline{k}})-E(\underline{k}) \underset{\sim}{\Delta}(\underline{k})|=0 . \tag{14}
\end{equation*}
$$

The Fock-Dirac density matrix defined in Equation 5 can be expanded in terms of Bloch sums using Equation 8 to give

$$
\begin{align*}
\underline{\rho}_{\underline{k}}\left(\underline{r}_{v} \mid \underline{r}_{r}\right) & =2 \sum_{n} \psi_{n}\left(\underline{k}, \underline{r}_{r}\right) * \Psi_{n}\left(\underline{k}, \underline{r}_{\mu}\right) \\
& =\sum_{q \alpha, \beta_{\beta} b_{\alpha \alpha}^{*}\left(\underline{k}, \underline{r}_{v}\right) b_{s_{\beta}}\left(\underline{k}, \underline{r}_{\mu}\right) p_{\underline{k}}(q \alpha, s \beta)} \tag{15}
\end{align*}
$$

The bond order matrix $p_{\underline{E}}(q \alpha, s \beta)$ is defined as

The bond order matrix can be varied in a SCF process to obtain the best crystal orbitals which lead to a minimum in the total electronic energy $E(\underline{k})$ under the constraint of orthonormality on the crystal orbitals.

Using Equations 6, 12, and 16, the Hamiltonian matrix elements $H_{q \alpha \beta \beta}(\underline{k})$ can be expressed as

$$
\begin{aligned}
& H_{q \alpha \beta \beta}=\left\langle b_{G \alpha,}(\underline{x},{\underset{r}{\mu}})\right| h\left(\underline{r}_{\mu}\right)\left|b_{s \beta}\left(\underline{k}, \underline{r}_{\mu}\right)\right\rangle \\
& +\Gamma \\
& \Rightarrow \gamma, v r_{\underline{k}}(t \gamma, \nabla \delta) \cdot \\
& \left\{2\left\langle\left. v_{t, \gamma}\left(\underline{k}, \underline{r}_{\gamma}\right) h_{v S}\left(\underline{k}, \underline{\underline{r}}_{V}\right)\right|_{b_{q \alpha}}\left(\underline{k}, \underline{\underline{r}}_{\mu}\right) b_{s \beta}\left(\underline{k}, \underline{r}_{\mu}\right)\right\rangle\right.
\end{aligned}
$$

The one-electron operator on μ in state $\underset{\sim}{k}$ becomes

$$
\begin{aligned}
& \mathcal{F}\left(\underline{k}, \underline{r}_{\mu}\right)=-\nabla_{\mu}^{2}-\sum_{\tau}^{2} Z_{\tau} / r+\sum_{t \gamma, \nabla \delta} \hat{p}_{\underline{\underline{k}}}(t \gamma, \nabla \delta) . \\
& \left\{2\left(b_{t \gamma}\left(\underline{k}, \underline{\underline{r}}_{V}\right) b_{v}\left(\underline{k}, \underline{r_{V}}\right) \mid-\left\langle b_{t \gamma}\left(\underline{k}, \underline{\underline{r}}_{V}\right)\right| b_{v}(\underline{k}, \underline{\underline{r}})\right\}_{(17)} .\right.
\end{aligned}
$$

The SCF process which is outlined below is for the canonical case and gives us a means of controlling tBA calculations:

1) Guess $p_{\underline{k}}(t \gamma, v \delta)$ for each $t \gamma, \nabla \delta$ pair.
2) Calculate the Hamiltonian and overlap matrix elements (the latter type are omitted if we start with an orthogonal basis set ; if the basis set is non-ortho-
gonal we have the option of varying parameters in the analytical form of the atomic wave functions at this point in the SCF process).
3) Solve the secular determinant in Equation 14 to. Field energiea and cofeficiento for crystal orbitals.
4) Use some type of population analysis to calculate the new bond order matrix and repeat steps 2-4 unill a self-consistency condition is reached.

In the nert section, we shall tnansform the Fock operator defined in Equation 17 for a particular k vector into an average Fock operator over all momentum or weve vector space. The transformation $i s$ called the unitary transformation of the Fock operator ${ }^{\text {¹ }}$.

Unitary Transformation of the Foek Operator

The bond order matrix can only be obtained in step 4 of the $S C F$ iterative process if the Fermi level ($\left.E_{M_{k}}(\underline{k})=E_{r}\right)$ is known. But the Fermi level can only be found
as some average quantity over the entire k space (further discussion of the procedure for finding E_{f} is in Part II). Thus, the present form of the Fock operator 18 useless for our present purposes in the TRA method

However, we can reagonably define an effective Fock operator which 19 applicable to all k states. The average
of the $\mathcal{F}(\underline{k}, \underline{\underline{x}} \mu)$ operators on electron μ over the G unit. cells (or k vectors) in the microcrystal is

$$
\begin{equation*}
\tilde{f}^{A v e}(\underline{r} \mu)=\frac{l}{G} \sum_{\underline{k}} \underset{f}{f}(\underline{k}, \underline{r} \mu) \tag{18}
\end{equation*}
$$

Furthermore, Equation 18 cen be rewritten

$$
\begin{equation*}
\mathcal{F}^{\text {Ave }}\left(\underline{r}_{\mu}\right)=\frac{1}{G} \sum_{\underline{k}} \exp \left(1 \underline{\underline{k}} \cdot \underline{\underline{R}}_{j}\right) \exp \left(-\underline{\underline{k}} \underline{\underline{R}}_{j}\right) \mathcal{F}\left(\underline{\underline{k}}, \underline{\underline{r}}_{\mu}\right) \tag{19}
\end{equation*}
$$

where $\exp \left(-1 \underline{k} \cdot \underline{R}_{j}\right)$ is a phase factor for an arbitrary translation vector \underline{R}_{j}.

By using Equation 19, we are able to show that the average of $\mathcal{F}(\underline{k}, \underline{r}, \mu)$ over $G \underline{\underline{k}}$ wave vectors is nothing more than unitary transformation. piman (4) shows how such an unitary transformation can be used to generate a Cannier function (function of position only in reciprocal space) from the corresponding Bloch sum. Since Bloch sums occur explicitly in the form of $\mathcal{F}(\underline{k}, \underline{r} \boldsymbol{\mu})$ it, therefore, seems reasonable to transform the Bloch sums into localized atomic orbitals if we define Bloch sums by Equation 8.

The unitary transformation of the pock operator $\mathcal{F}\left(\underline{k}, \underline{r_{\mu}}\right)$ is shown in Appendix K. The results are summarized here for the resulting LCAO form of the Pock operator, Using arbitrary labels α, β, and τ for atomic sites, we have:

$$
\begin{align*}
& \left.\mathcal{F} \underline{\underline{r}}_{\mu}^{\text {Ave }}\right)=-\nabla_{\mu}^{2}-\sum_{\tau} 2 Z_{\mu} / r_{\tau_{\mu}}+\sum_{q \alpha, t_{\beta}} \sum^{\prime \text { Ave }}(q \alpha, t \beta) \cdot \\
& \sum_{j=0}^{G}\left\{2\left\langle\emptyset_{q_{\alpha}}\left(\underline{r}_{r}-\rho_{\alpha}-\underline{R}_{j}\right) \emptyset_{t \beta}\left(\underline{r}-\rho_{\beta}\right)\right|\right. \\
& \left.-\left\langle\phi_{q_{\alpha}}\left(\underline{r}-\underline{\rho}_{\alpha}-\underline{R}_{j}\right)\right| \phi_{t \beta}\left(\underline{r}-\underline{\rho}_{\beta}\right)\right\} \tag{20}
\end{align*}
$$

What we now have is a Fock operator which is identical in form to that used in molecular orbital calculations,i.e. the LCAO form. The offect of translational symmetry is now contained only in the bond order matrix $p^{A v e}(q \alpha, t \beta)$ just the expansion coefficients of the crystal orbitals. In summary to this point, we have justifiabiy transformed the $H-F$ equstions for a crystal into the LCAO form in which Roothaan's procedure may be applied to the energy and overlap matrices and the effects of translational symmetry remain only in coefficients which are solutions of the resulting secujar determinant. An important point is that the periodioity of the crystal lattice is still preserved since the electron position vectors used in conjuction with the etomic orbitala explicitly show the dependence on the translation vectors.

We now discuss the approximations which will be used in TBA calculations.

Approximations Used in the TBA Method

Population analysis of crystal orbitals

The sum over this over the entire Bloch sum basis set and therefore contains the term $p \alpha$. Integration of Equation 21 gives

$$
\left\langle\psi_{m}\left(\underline{k}, \underline{r}_{\mu}\right) \mid \gamma_{1}\left(\underline{r}, \underline{r_{\mu}}\right)\right\rangle=\sum_{p_{c} ;} \sum_{t_{\beta}} C_{p m}^{\alpha}(\underline{k}) C_{t_{m}}^{\beta}(\underline{k}) \cdot\left\langle b_{p \alpha}(\underline{k}, \underline{\underline{r}}) \|_{t \beta}(\underline{\underline{k}}, \underline{r})\right\rangle
$$

If the Bloch suits are normalized, 1.e. $\left\langle b_{p \alpha}\left(\underline{k}, r_{p}\right) \mid b_{p_{\alpha}}(\underline{k}, \underline{\underline{r}})\right\rangle$ equals one, the above equation becomes

$$
\begin{align*}
& \left\langle b_{p \alpha}\left(\underline{k}, \underline{r}_{\mu}\right) \mid b_{t_{\beta}}\left(\underline{k}, \underline{r_{\beta}}\right)\right\rangle \\
& =\sum_{p \alpha} n_{p m}^{\alpha}(\underline{\underline{x}}) \tag{22}
\end{align*}
$$

where $n_{p m}$ (k) is the occupation number defined by Flodmark to be expressed as

If the crystal orbital m is normalized to one, the sum over the occupation numbers is also one; therefore this quantity defined by Flodmark(5) is the fraction of double occupancy
which is attributed to Bloch sum $p \propto$.
The analogy wjth Mulifken's population analysis (6)
is implied by Flodmark's definition where Bloch sums are used instead of atomic orbitals. However, justification for using such a quantity for population analysis is lacking since the overlap of Bloch sums $p \mathcal{A}$ and $t \beta$ is not clear from a geometrical point of view. That is, the Mulliken procedure to divide overlap charge between centers \mathcal{K} and β depends on the maximum of the charge distribution being located midway between overlapping centers situated in real space. Since the Bloch sum is \& function in complex space, we have no valid way of showing where $f t$ overlaps with a Bloch sum on another site in real space unless the exponential terms drop out in the overlap expression.

In real space, we also have problems with the Mulliken population analysis. For instance, diffuse atomic orbitals, eg., $4 s$ on K, have a maximum in charge distribution in regions of other atoms such as oxygen in KTaO_{3}. However, workers in molecular orbital calculations of transition metal complexes continue to divide the overlap charge density equally between neighboring atoms. Fenske (7) has enalyzed differences in calculated results and concludes that either dividing charge or placing overlap charge on one center gives essentially the same result. If we proceed in the same spirit to Bloch sum charge distributions, the
24.
only problem is to relate the quantity $n_{\text {qua }}^{x}(\underline{k})$ to atomic orbitals, i.e., somehow we need to get rid of the phase factor $\exp \left(1 \underline{k} \underline{R}_{p}\right)$. We attain this end by defining the population of orbitals $q \alpha, n_{q \alpha}$, as

$$
\begin{equation*}
n_{q_{\alpha}}=\frac{2}{G} \sum_{\underline{k}} \sum_{m}^{N(\underline{k}} n_{q m}^{\alpha}(\underline{k}) . \tag{24}
\end{equation*}
$$

where $n_{q \alpha}$ equals the number of electrons in orbital q_{α} and M_{k}, as defined in Equation 1 is the number of doubly occupied bands. Proneeding in the same manner as we did to perform a unitary transformation of the Fock operator, we identefy Equation 24 with an unitary transformation of the occupation number. The essential steps for this transformation are shown in Appendix K giving

$$
\begin{align*}
n_{q_{\alpha}} & =p^{A v e}(q \alpha, q \alpha)+\sum_{t \beta \neq q \alpha} p^{A v e}\left(q \alpha, t_{\beta}\right) \sum_{p=1}^{G} . \\
& \left\langle\phi_{q_{\alpha}}\left(\underline{r}-\mu \rho_{\alpha}-\underline{R}_{p} \| \phi_{t_{\beta}}\left(\underline{r}-\rho_{\beta}\right)\right\rangle\right. \tag{25}
\end{align*}
$$

In terms of bond order matrices, $\mathrm{p}^{\text {Ave }}(\mathrm{q} \alpha, \mathrm{t} \beta)$.
Because of the LCAO nature of our TBA approach, particularly in $n_{q} \alpha$ and $\frac{A^{*}}{F}\left(\underline{r}_{\mu}\right)$, we shall refer to the population anelysis used as the Mulliken type. Even though the occupation numbers reflect the properties of crystal orbitals in complex space if analyzed individually, we may utilize the the density of states vs. Mulliken population analysis to obtain an average distribution of occupation numbers in a particular energy range. Then, the occupation numbers can in a sense be related to real space since the integration over
the distribution of occupation numbers vs. energy up to the Fermi energy pives the population n_{q} identically as Equation 25.

Richardson's approximation

We will now simplify the TBA Fock operator in a manner identical to that used by Richardson (8) and discussed thoroughly by Fensise (7) and Basch-Gray (9). The essential part of the Richardson approximation is the application of Mulliken's approaimation (10) to Caulomb and exchange parts of the Fock operator (molecular). We shall leave the details of the simplification to these three references ($7,8,9$) and only show the results of Appendix K.

$$
\begin{equation*}
\mathcal{F}^{\text {Ave }} \cdot\left(\underline{r}_{\mu}\right)=-\nabla_{\mu}^{2}+\sum_{\gamma} \sum_{p} V_{\gamma}\left(\underline{r}_{\mu} P_{\gamma}-R_{p}\right) \tag{26}
\end{equation*}
$$

where V_{γ} is the potential for atomic site γ located at $f_{\gamma}+R_{p}$. Explicitly each potential term is expressed in Fenske's Coulomb, exchange, and nuciear attraction operator notation:

$$
\begin{align*}
& \left.-\left\langle\phi_{q_{\gamma}}\left(\underline{\underline{r}} \underline{\rho}_{\gamma}-\underline{R}_{p}\right)\right| \phi_{q \gamma}\left(\underline{\underline{r}}_{-\underline{\rho}}^{\underline{\rho}}-\underline{R}_{p}\right)\right\} \\
& -2\left\langle\gamma_{\gamma} / r_{\gamma \mu}\right| \text {. } \tag{2.7}
\end{align*}
$$

Crystal potential
Since charge distributions described by crystal orbitals can be directiy related to occupation numbers $n_{q m}^{\alpha}(\underline{k})$ (m th crystal orbital for $q \alpha$ th Blooh sum), the undtary trans-
formation of $n_{q m}^{\alpha}(\underline{k})$ and $\mathcal{F}(\underline{k}, \underline{r} \mu)$ to eliminate \underline{k} dependence in $n q \alpha$ and $\mathcal{F}^{\text {Ave }}\left(\underline{n_{\mu}}\right)$ yields the LCAO form. Thus, the resulting linear combination of atomic potentials in Equation 27 can be properiy referred to as the ".crystal potential," J, i.e.,

$$
\begin{equation*}
U(\text { crystal })=\sum_{\gamma} \sum_{p} V_{\gamma}\left(\underline{r}_{\bar{\mu}} \underline{p}_{\gamma}-\underline{R}_{p}\right) \tag{28}
\end{equation*}
$$

Variation of the atomic orbital population or bloch sum occupation number of electrons in energy bands gives the TBA method a handle by which self-consistency of both atomic charge and population can be obtained. The advantage of this potential over a potential in the single-particle model (e.g. a point charge model) is that shielding effects of diffuse charge distributions are included automaticall, The exchange interactions which increase with decrease in bond distance are an important factor in these shielding effects.

The self-consistency of the qath atomic orbital population, say for the second iteration, is obtained by the formula

$$
n_{Q_{\alpha}}^{2}(\text { assumed })=\frac{\lambda \cdot n_{q}^{0}(\text { assumed })+n_{q \alpha}^{1} \text { (calculated) }}{\lambda+1}
$$

n_{q} (calculated) is obtained using the Mulliken population analyais after eigenvectors of $E(\underline{k})$ va. \underline{k} anit the Fermi energy are determined. The superscripts denote the iteration.

The assumed population values are weighted by a damping constant λ (taken to be +8 in our calculations) to prevent the oscillations of the difference between the calculated and assumed values of $n_{q_{0}}$ from diverging in early
stages of iteration. The condition for self-consistency is obtained when the difference between assumed and calculated occupied Bloch sum charge distributions is less than 1%.

The dependence of the populations on the k vector and the location of the Fermi energy poses the ultimate problem In using our method. Since the value of the Fermi energy can only be obtained after a complete $E(\underline{k})$ vs. \underline{k} calculation, we use the same potential for all k vectors to obtain selfconsistency for the first Brillouin zone.

Matthesss (11) has recently calculated the band structure of ReO_{3} at the symmetry points, Γ, X, M end R, using the augmented-plane-wave (APW) method (12) and has invoked the Slater-Koster (13) interpolation scheme to obtain E(k) over the remainder of the zone. Vie find it hard to make an assessment of the relative merits of our method compared to his excellent and experienced approach in which a "muffin tin" potential is adjusted to fit optical spectra (14) and De HaasVan Alphen results (15). We do feel that our approach might give a better description of the lower valence bands, e.g., the bands involving $2 s$ and $2 p$ states, and will be adequate, for our purposes, in describing states in the neighborhood of the Fermi energy. We mention, in particular, three characterIstics of the present approach that we feel are desirable, and are lacking in the APW methoe:

1) Self-consistency of charge distribution can be obtained at all points in the Brillouin zone.
2) The potential in the present method is calculated using no adjustable parameters; Coulomb and exchange effects are included in explicit evaluation of all two-center Coulomb and exchange integrals.
3) The present method explicitly utilizes a population analysis to relate contributions of individual orbitals to energy bands.

Atomic orbital energy

Let us assume the effective atomic Hamiltonian operator, $H_{\text {eff }}^{\beta}$, for atom β located at $\underline{\rho}_{\beta}+\underline{R}_{j}$

$$
\begin{equation*}
H_{\mathrm{eff}}^{B}\left(\underline{r}_{\mu} \underline{P}_{B}-R_{j}\right)=-\nabla_{\mu}^{2}+V_{B}\left(\underline{r}_{\mu} \underline{\rho}_{A}-R_{j}\right) \tag{30}
\end{equation*}
$$

has an eigenfunction $\phi\left(\underline{r}_{\mu} \mathcal{P}_{\beta}-\underline{R}_{j}\right)$ or

$$
{ }_{e f f}^{\beta}\left(\underline{r}_{\mu} \rho_{\beta}-\underline{R}_{j}\right) \phi_{q_{\beta}}\left(\underline{r}_{\mu} \rho_{\beta}-\underline{R}_{j}\right)=\epsilon_{q \beta} \varnothing_{q_{\beta}}\left(\underline{r}_{\mu} \underline{\rho}_{\beta}-R_{j}\right) .
$$

$\epsilon_{q \beta}$, then, is the orbital energy of an electron, located at $r_{\mu}^{-} f_{\beta}^{-R} \underline{Z}_{j}$, which has a set of quantum numbers n_{q}, l_{q} and m_{q} indicated by q. $V_{\beta}\left(r_{-}-\rho_{\beta}-R_{j}\right)$ is expressed explicitly in Equation 27 in terms of Coulomb, exchange and nuclear attraction operators.

The evaluation of $\epsilon_{q \beta}$ can be made by either of the following approaches:

1) Use atomic spectra data to obtain what is commonly called the valence state ionization energy (VSIE).
2) Using an analytical expression for the atomic orbital function $\emptyset_{q} \beta$, one may calculate the orbital energy exactiy.

Let us briefly discuss the first approach to explain why we prefer the second.

Atomic spectra data provided by Moore (16) has been the prime source of valence state ionization energies (assumed to equal the negative of the orbital energy) which are used in semi-empirical methods. The difficulties with the semi-empirical method are twofold:

1) One needs to average the energy of multiplets. This can be a difficult process when a large number of states exist for an atom or ion.
2) Atomic spectra may not be available for a particular atom of interest. Cotton and Harris (17) found this to be a problem for fhenium, even though aufficiant data is avallable for platinum.

Therefore, in the present method, we calculate the atomic orbital energy in terms of average values of twoelectron interaction integrals $g(q, t)$. Slater (18) uses the "average energy of configuration" method to express $g(q, t)$ as IInear combinations of Slater-Condon parameters $F^{k}\left(n l, n^{\prime} \ell^{\prime}\right)$ and $G^{\text {l }}\left(n \ell, n^{\prime} \ell^{\prime}\right)($ see Table 2).

Using an analytical expression for $\varnothing_{q_{\beta}}\left(\underline{r}-\underline{\rho}_{\beta}-R_{j}\right)$, we compute $\epsilon_{q \beta}$ by

$$
\begin{align*}
\epsilon_{q \beta} & =\left\langle\phi_{q \beta}\left(\underline{r}_{\mu} \rho_{\beta}-R_{j}\right)\right|-\nabla_{\mu}^{2}-2 z_{\beta} / r_{\beta \mu}\left|\phi_{q \beta}\left(\underline{r}_{-}-\rho_{\beta}-R_{j}\right)\right\rangle \\
& +\left[\sum_{t \neq q} n_{t g}(q, t)\right]+\left(n_{q}-1\right) g(q, q) \tag{31}
\end{align*}
$$

where n_{q} and n_{t} are the population of atomic orbitals qpand tis respectively. g(q, t) is the average electronic interaction of electron μ in orbital qiwith electron γ in orbital $t \beta$. Even though the analytical form of the atomic orbital will be frozen (orbital function parameters kept constant) during the SCF iteration process, our choice of atomic orbital functions will be taken using neutral atoms for the following reasons. Semi-empirical MO calculations for transition metal complexes in recent years (19) have led to near-neutral atoms in the calculated molecule. Recent work by Fenske (7) using a more semi-quantitative method has slso led to thie result. Furthermore, the philosophy which has prevalled during the history of MO calculations of transition metai compiexes is Pauling's (20) "electroneutrality principie." Simpiy, Pauiing auggests that the initial electronic charge distributions on isolated metal and ligand (eg. oxygen) atoms become evenly smeared about the molecule when bonding occurs between metal and ligand orbitals. The result is a neutral atom
constitution in molecules, if we consider the atoms in molecule picture or LCAO. In conclusion, we can effectively use Equation 31 to obtain atomic orbital energies; in other words, we say that the $\varnothing_{q,}$ are eigenfunctions of the above effective Hamiltonian within the given approximations.

The Slater approach is preferred since this method effectively takes an average of energies of the various multiplet states which exist for any atom or ion. This method is presently being utilized by Fenske (7).

The Slater-Condon parameters (21, 22), kinetic energy (22) and nuclear-attraction integrals can be calculated from the analytical radial functions for atomic orbitals. Also, Mann (23) has tabulated most of the necessary integrals and parameters which are computed in the SCF process. However, we will evaluate all one-center integrals from atomic functions (see Appendix F).

Table 2. Two-electron interaction integrals (18) used for perovskite oxide calculations

\underline{q}	t	$g(q, t)$
$n s^{a}$	$n s$	$F^{0}(n s, n s)$
ns	$n p$	$F^{0}(n s, n p)-G^{1}(n s, n p) / 6$
$n p$	$n p$	$F^{0}(n p, n p)-2 F^{2}(n p, n p) / 25$

a_{n} stands for the principal quantum number.

Table 2(Cont.)

\underline{q}	\underline{t}	$g(q, t)$
ns	nd	$F^{0}(n s, n d)-G^{2}(n s, n d) / 10$
np	nd	$F^{0}(n p, n d)-G^{1}(n p, n d) / 15-3 G^{3}(n p, n d) / 70$
nd	nd	$F^{0}(n d, n d)-2 F^{2}(n d, n d) / 63-2 F^{4}(n d, n d) / 63$

Approximations used in ovaluating energy matrix elements between atomic orbitals

The following notation will be used in this thesis to Iabei vectors which belong to interaction sets = $P_{j}^{B \alpha}$ is the vector to the $\{$ th neighbor of the type α from the atom at $\underline{\rho}^{\beta}$ (the vector defined from the origin to the lattice point β).

As an illustration of this notation, the vector set. for the $R e-O_{1}$ interactions would be $\rho_{1} \operatorname{Re-} O_{1}$ and $\rho_{2} R e-\rho_{1}$. with coordinates $(a / 2,0,0)$ and $(-a / 2,0,0)$, respectively. An additional example would be the $\mathrm{O}_{1}-\mathrm{O}_{2}$ interaction set with four vectors: $\mathrm{S}_{\mathrm{j}} \mathrm{O}_{1}-\mathrm{O}_{2}$ with $\mathrm{j}=1$ to 4 and with coordinates $(-a / 2, a / 2,0),(a / 2, a / 2,0),(a / 2,-a / 2,0)$ and $(-a / 2,-a / 2,0)$. The choice in labeling the j th vector is purely arbitrary for any interaction set.

The use of frozen anglytical expressions for atomic orbital functions (see section on atomic orbital energy) for neutral atoms is asaumed throughout the following
approximations to Hamiltonian matrix elements which arise between atomic orbitals. The Pauling electroneutrality principle is used again to justify use of the Hamiltonian operator for electron μ on atom γ (locatad at f_{γ}).

$$
\begin{equation*}
H_{e f f}^{\gamma}\left(\underline{r}_{\mu} \rho_{\gamma}\right)=-\nabla_{\mu}^{2}+V_{\gamma}\left(\underline{r}_{\mu} \rho_{\gamma}\right) \tag{32}
\end{equation*}
$$

Therefore, $\mathrm{H}_{\text {eff }}^{\gamma}\left(\underline{r}_{\mu}-\rho_{\gamma}\right) \emptyset_{q}\left(\underline{r}_{\mu}-\rho_{\gamma}\right)=\epsilon_{q \gamma} \varnothing_{q \gamma}\left(\underline{r}_{\mu} \rho_{\gamma}\right)$.
There are two classes of matrix elements for which we desire to approximate by known techniques familiar to molecular orbital calculations of transition metal complexes. Nemely,

$$
\begin{equation*}
\text { 1) }\left\langle\varnothing_{q \alpha}\left(\frac{r-\rho}{\mu}-R_{j}\right)\right|-\nabla_{\mu}^{2}+V_{\beta}\left(\underline{r}_{r}-\rho_{\beta}-R_{p}\right)\left|\varnothing_{s \beta}\left(\underline{r}_{\mu}-\rho_{\beta}-R_{p}\right)\right\rangle \tag{33}
\end{equation*}
$$

and
2) the potential integrals which need to be evaluated can be represented generally by integral I

$$
\begin{equation*}
I=\left\langle\phi_{q \alpha}\left(\underline{r}-\rho_{\alpha}-\underline{R}_{j}\right)\right| V_{\gamma}\left(\underline{r}-\rho_{\gamma}-R_{n}\right)\left|\varnothing_{S \beta}\left(\underline{r}-\rho_{\beta}-R_{p}\right)\right\rangle . \tag{34}
\end{equation*}
$$

The electron position vector notation for the two classes of integrals shall be expressed in terms of the interaction vectors $\underset{f}{\rho}{ }_{f}^{\beta \alpha}$ defined above. Let us first consider class one and make the necessary vector notational
 express Equation 33 as

$$
\begin{align*}
& \left\langle\varnothing_{q \alpha}\left(\underline{r}-\rho_{\alpha}-\underline{R}_{j}\right)\right|-\nabla_{\mu}^{2}+V_{\beta}\left(\underline{r}_{\mu} \rho_{\beta}-\underline{R}_{p}\right)\left|\varnothing_{\beta \beta}\left(\underline{r}-\rho_{\mu}-\underline{R}_{p}\right)\right\rangle= \\
& \left\langle\varnothing_{q \alpha}\left(\underline{r}_{\mu}^{\prime}-\rho_{\alpha}+\rho_{\beta}+R_{p}-R_{j}\right)\right|-\nabla_{\mu}^{2}+V_{\beta}\left(\underline{r}_{\mu}^{\prime}\right)\left|\varnothing_{B \beta}\left(\underline{r}_{\mu}^{\prime}\right)\right\rangle \tag{35}
\end{align*}
$$

We may remove the primes from $\underline{F}^{\prime} \mu$ above since it is a dummy index of integration. Then $\underline{f}_{j}^{\beta \alpha}$ is expressed as

$$
\underline{\rho}_{j}^{\beta \alpha}=\rho_{-\alpha} \rho_{\beta}+R_{p}-R_{j}
$$

so that the integral becomes

$$
\left\langle\phi_{q \alpha}\left(\underline{r}_{\mu}-\underline{\rho}_{j}^{\beta \alpha}\right)\right|-\nabla_{\mu}^{2}+v_{\beta}\left(\underline{r}_{\mu}\right)\left|\phi_{s \beta}\left(\underline{r}_{\mu}\right)\right\rangle .
$$

The Hamiltonian (effective) operates on function $\phi_{s \beta}\left(\underline{r}_{\mu}\right)$ as in Equation 32, the function is an eigenfunction. Therefore, the eigenvalue $\epsilon_{S \beta}$, a constant, comes out of the integral and leaves the overlap integral to give the following approximation for class one integrais

$$
\begin{align*}
& \left\langle\phi_{q \alpha}\left(\underline{r_{\mu}} \underline{p}_{j}^{\beta \alpha}\right)\right|-\nabla_{\mu}^{2}+v_{\beta}(\underline{r})\left|\phi_{s \beta}(\underline{r})\right\rangle \\
& =\epsilon_{s \beta}\left\langle\vec{\phi}_{q \alpha}\left(\underline{r}-\underline{\rho}_{j}^{\beta \alpha}\right) \mid \phi_{s \beta}(\underline{r})\right\rangle . \tag{36}
\end{align*}
$$

Let us now discuss the three types of I integrals
 into Equation 34, proceeding as above,we obtain the following form of I which facilitates discussion of the three possiblities, i.e.

$$
\begin{equation*}
I=\left\langle\phi_{q \alpha}\left(\underline{r}_{-} \underline{\rho}_{j}^{\beta \alpha}\right)\right| v_{\gamma}\left(\underline{r}_{-}^{-} \underline{\rho}_{p}^{\beta \gamma}\right)\left|\phi_{s \beta}\left(\underline{r}_{\mu}\right)\right\rangle . \tag{37}
\end{equation*}
$$

The subscript p in the position vector in the potential term denotes the possibility of different interaction vectors other than the j th type. We may have

1) When ${\underset{-j}{j}}_{\beta \alpha}={\underset{-}{\rho}}_{\rho \gamma}^{\beta \gamma}$, we have the two-center integral

$$
\begin{equation*}
\left.\left.I_{1}=\left\langle\phi_{s}(r)\right| V_{\beta}\left(r_{-} \rho_{j}^{\beta_{\alpha}}\right) \mid \phi_{q\left(\gamma^{-}\right.} \underline{\rho}_{-j}^{\beta \alpha}\right)\right\rangle . \tag{38}
\end{equation*}
$$

Basch and Gray (9) and later Fenske (7) have suggested a convenient way for evaluating this integral:

$$
\begin{align*}
& I_{I}=\left\langle\phi_{s_{B}(r)} \|-\nabla_{\mu}^{2}+V_{\gamma}\left(r_{-} \mathcal{L}_{j}^{B \alpha}\right) \mid \phi_{q_{\alpha}}\left(\underline{r}-\rho_{j}^{\beta \alpha}\right)\right\rangle \\
& -\left\langle\phi_{s}\left(\frac{r}{\beta}\right)\right|-\nabla_{\mu}^{2}\left|\phi_{q}\left(r_{\alpha}-\rho_{j}^{\beta \alpha}\right)\right\rangle . \tag{39}
\end{align*}
$$

Equation 36 is used again to re-express the first term in I_{1} which gives

$$
\begin{align*}
& I_{1}=\epsilon_{q \alpha}\left\langle\phi_{s}(r) \mid \phi_{q}\left(r_{-r}-\rho_{j}^{\beta \alpha}\right)\right\rangle+ \\
& \left.\left.\left.\quad\left\langle\phi_{s}\left(\frac{r}{\beta}\right)\right| \nabla_{\mu}^{2} \right\rvert\, \phi_{q_{j}}^{(r-\mu} \underline{p}_{-j}^{\beta \alpha}\right)\right\rangle . \tag{40}
\end{align*}
$$

The kinetic integral can be expressed in terms of overlap integrals and evaluated using a method described in Appendix D.
2) When $\mathcal{f}_{j}^{\beta \alpha}=0$, one obtains another type of twocenter integral, I_{2}, which involves an analytical expression for the potential $V_{\gamma}\left(\underline{r}_{\mu} \rho_{p}^{\beta \gamma}\right)$ where

$$
\begin{equation*}
I_{2}=\left\langle\phi_{q_{\alpha}}\left(\frac{r}{\mu}\right)\right| V v_{\gamma} \underline{r}-\underline{\rho}_{p}^{\beta \gamma}\left|\phi_{q_{\beta}}(r)\right\rangle . \tag{41}
\end{equation*}
$$

The evaluation of this type of integral is discussed in Appendix E, eg, nuclear attraction, Coulomb (24), etc., troe.
3) Finaliy, when ${\underset{j}{j}}_{\beta \alpha}^{\neq p_{p}^{\beta \gamma}}$ one has to deal with three-center potential integrals, I_{3}, where

$$
\begin{equation*}
I_{3}=\left\langle\phi_{q_{\alpha}}\left(r_{-}-p_{j}^{\beta \alpha}\right) \left\lvert\, V_{\gamma}\left(\left.\frac{r-\mu}{p_{p}^{\beta \gamma}} \right\rvert\, \phi_{s_{\beta}} \frac{r}{\mu}\right)\right.\right\rangle \tag{42}
\end{equation*}
$$

The Mulliken approximation (10) was used to reduce the three-center integrals to linear combinations of two-center integrals of the type I_{2} multiplied by an overlap integral, 1.e.,

$$
\begin{align*}
& I_{3}=\frac{\left.\left\langle\left.\emptyset_{q_{\alpha}}\left(\frac{r-p}{\rho_{j}^{\beta \alpha}}\right) \right\rvert\, \phi_{s_{\beta}(r)}\right\rangle\right\rangle}{2} \\
& \text { - } \left.\left.\int\left\langle\phi_{q_{\alpha}}\left(\frac{r}{\mu}\right)\right| V V_{\gamma-}^{r}-\rho_{-P}^{\beta \gamma}-\rho_{-j}^{\beta \alpha}\right)\right)\left|\emptyset_{q_{\alpha}}(\underline{r})\right\rangle \\
& \left.+\left\langle\phi_{S_{\beta}}(r)\right| V_{\gamma}^{V}\left(r_{-}^{r}-p\right)\left|\phi_{S_{\beta}}\left(\frac{r}{\beta \gamma}\right)\right\rangle\right] . \tag{43}
\end{align*}
$$

Encouragement for using the Mulliken approximation (despite its shortcomings for evaluating three-center nuclear attraction integrals) comes from the fact that Flodmark has utilized the Mulliken approximation in his TBA method which is basically very similar to ours. Furthermore, as will be seen in the following chapter, the atomic potential is taken to be a simplified SCF potential via Mulliken's approximation. Thus, it is consistent to use it here. In any case, some estimate should be made for the I_{3} integrals which are probably important parameters contributing to band energies.

Formulation of the Secular Determinant Between Bloch Sums

Using Equation 7 to express crystal orbitals as a linear combination of Bloch sums, we obtain the following matrix formulation

$$
\begin{align*}
\Psi_{p}\left(\underline{k}, r_{\mu}\right) & =\sum_{q \alpha} b_{q \alpha}\left(\underline{k}, r_{\mu}\right) c_{q p}^{\alpha}(\underline{k}) \tag{44}\\
& =\underset{\sim}{b} G_{p}
\end{align*}
$$

where ${\underset{\sim}{p}}^{C}$ is the submatrix of $\underset{\sim}{C}$ which is represented as a column vector

$$
c_{p}=\left(\begin{array}{c}
c_{1 p}^{\alpha}(\underline{k}) \\
\vdots \\
c_{p p}^{\alpha}(\underline{k})
\end{array}\right) \text { and } \underset{\sim}{b} \text { is defsned in Equation } 13
$$

for the Bloch sums on atomic site ${ }^{\alpha}$. Maing the formulism outlined in the section "SCF iterative process" we obtain the secular determinant shown in Equation 13 formatrix elements between Bloch sums. Yowever, there is one important exception : we now use the TBA Fock operator (Equation 20) to obtain energi matrix elements of $\underset{\sim}{H}(\underline{k})$ Instead of the \underline{k} dependent operator $\mathcal{F}\left(\underline{k}, r_{\mu}\right)$.

The solutions of the secular determinant and the corresponding coefficient matrix is described in Appendix A. The flow chart for the computer calculation is given in Appendix B. Let us now proceed to express the Hamiltonian and overlap matrix elements in terms of matrix elements between atomic orbital functions.

Overlap and Hamiltonian Matrix Elements Between Atomic Orbital Functions

Let $F(\underset{\sim}{\mu})$ be a general operator on electron μ. When $F\left(\underline{r}_{\mu}\right)=1$ or $F\left(\underline{r}_{\mu}\right)={ }^{\text {Ave }} \cdot\left(\underline{r}_{\mu}\right)$ one has an overlap or Hamiltonian matrix element $\left\langle b_{q \alpha}\left(\underline{k}, \underline{r}_{\mu}\right)\right| F\left(\underline{r}_{\mu}\right)\left|b_{s \beta}\left(\underline{k}, \underline{r}_{\mu}\right)\right\rangle$ for Bloch sums $b_{q \alpha}\left(\underline{k}, \underline{r}_{\mu}\right)$ and $b_{s \beta}\left(\underline{k}, \underline{r}_{\mu}\right)$. Expansion of the matrix element into the corresponding atomic orbitals proceeds by the definition of Bloch sums in Equation 8 which gives the following expression

$$
\begin{align*}
& F_{q \times \beta \beta}(\underline{k})=\left\langle b_{q \alpha}\left(\underline{k}, \underline{r}_{\mu}\right)\right| F\left(\underline{r}_{\mu}\right)\left|b_{s \beta}(\underline{k}, \underline{r} \mu)\right\rangle \\
& =\sum_{\mathbb{R}_{t}} \sum_{j} \quad \operatorname{Rep}\left(-1 \underline{k} \cdot\left(\underline{R}_{t}-R_{j}\right) \cdot N_{q}^{-\frac{T}{2}} N_{s}^{-\frac{1}{2}} .\right. \\
& \cdot\left\langle\emptyset_{q \alpha}\left(\underline{r}-\rho_{\alpha}-\underline{R}_{t}\right)\right| F\left(\underline{r}_{\mu}\right)\left|\emptyset_{S \beta}\left(\underline{r}-\underline{\rho}_{\beta}-\underline{R}_{j}\right)\right\rangle \tag{45}
\end{align*}
$$

where the subscripts q and s for the functions \varnothing represent different sets of n, ℓ, and m quantum numbers.

Equation 45 can be reduced to a single sum over \underline{R}_{p} (as shown in Appendix C) giving

$$
\begin{align*}
& F_{q \alpha \beta \beta}(\underline{k})=G N_{q}^{-\frac{1}{2}} N_{s}^{-\frac{1}{2}} \sum_{p} \exp \left(-1 \underline{k} \cdot \underline{R}_{p}\right) \cdot \\
& \cdot\left\langle\left.\varnothing_{q_{\alpha}}\right|_{-\mu}\left(\underline{r}-\rho_{\alpha} \underline{R}_{p}\right)\right| F\left(\underline{r}_{\mu}\right)\left|\varnothing_{s \beta}\left(\underline{r}-\rho_{\beta}\right)\right\rangle \tag{46}
\end{align*}
$$

where \underline{R}_{p} equals $\underline{R}_{t}-\frac{R}{-}$ and G is the number of unit cells taken in a microcrystal.

If we substitute $\underline{r}_{\mu}=\underline{r}_{\mu}^{\prime}+\underline{\rho}_{\beta}$ into Equation $46, \mathrm{~F}_{\mathrm{q}_{\alpha \beta \beta}}(\underline{k})$ becomes

$$
\begin{align*}
& \mathrm{F}_{\mathrm{q} \alpha \beta \beta}(\underline{k})=G N_{\mathrm{q}}{ }^{-\frac{1}{2}} \mathrm{~N}_{\mathrm{s}}^{-\frac{1}{2}} . \\
& { }^{!} \cdot \sum_{p=1}^{G} \exp \left(-1 \underline{k} \cdot R_{p}\right)\left\langle\phi_{q}\left(\underline{r_{\mu}}-\rho_{\alpha}^{-}-R_{p}+\rho_{\beta}\right)\right. \\
& \left.\left|F\left(\underline{r}_{\mu}^{\prime}+\underline{\rho}_{\beta}\right)\right| \phi_{s \beta}\left(\underline{r}_{\mu}\right)\right\rangle . \tag{47}
\end{align*}
$$

Since $F\left(\underline{r}_{\mu}\right)$ is a general operator which possesses the translational symmetry of the crystal, $F\left(\underline{r}_{\mu}\right)$ equals $F\left(\underline{r}^{\prime}+\underline{\rho}_{\beta}\right)$. After dropping the primes (dummy indices of integration) and defining \underline{R}_{p} as

$$
\begin{aligned}
& R_{p}=\rho_{j}^{\beta \alpha}-\rho_{1}^{\beta \alpha}(j=1,2, \ldots, \ldots .)(\text { for } \alpha \neq \beta \text { and } \\
& v \text { vectors in the } j \text { th interaction set })
\end{aligned}
$$

we obtain the form of the matrix element in terms of the j th interaction vector, $\underline{\rho}_{j}^{\beta \alpha}$, and ${\underset{1}{1}}_{\rho_{1}^{\beta \alpha}}^{\text {(the convention of }}$ taking the interaction vector corresponding to $j=1$ and setting it equal to $\underline{\rho}_{\alpha}-\mathcal{P}_{\beta}$; this is for $\alpha \neq \beta$). Thus,

$$
\begin{align*}
F_{q \alpha s_{\beta}}(\underline{k})= & G N_{q}^{-\frac{1}{2}} N_{s}^{-\frac{1}{2}} \sum_{j=1}^{V} \exp \left(-1 \underline{\underline{k}} \cdot\left(\underline{\rho}_{j}^{\beta \alpha}-\underline{\rho}_{1}^{\beta \alpha}\right)\right) \cdot \\
& \cdot\left\langle\emptyset_{q}\left(\underline{r}_{\mu}-\rho_{j}^{\beta \alpha}\right)^{\beta \alpha}\right| F\left(\underline{r}_{\mu}\right)\left|\varnothing_{s \beta}\left(\underline{r}_{\mu}\right)\right\rangle . \tag{48}
\end{align*}
$$

Equation 48 is simplified by the approximations stated in the previous section for the energy matrix elements and the steps are shown in Appendix. L for the cases $q \neq s$, $\alpha \neq \beta$; $q \neq s, \alpha=\beta$; and $q=s, \alpha=\beta$ which occur in the $\underset{\sim}{H}(\underline{k})$. The corresponding overlap matrix elements are discussed first

In Appendix L v to establish various additional conventions necessary to simplify some matrix elements (cases $q \neq s, \alpha=\beta$ and $q=s, \alpha=\beta$) computationally into cosine and sin terms resulting from application of Euler's relation ($\exp (i \theta)=$ $\cos (\theta)+i \sin (\theta)$) to the exponential terms in Equation. In addition, the explicit form of the Bloch sum normalization constant $N_{q}{ }^{\text {is }}$ shown in Appendix L to be derived from a formulation of the diagonal overlap integral $\Delta_{q \propto q \alpha}(\underline{k})$. We, therefore, refer to Appendix L for the essential details and summarize the results here for overlap and Hamiltonian matrix elements between Bloch sums as well as the normalization constant:

1) Matrix elements for $a \neq s$ and $\alpha \neq \beta$

$$
\begin{align*}
& \Delta_{\mathrm{q} \alpha \mathrm{~s} \beta}(\underline{\underline{k}})=G \mathrm{~N}_{\mathrm{q} \alpha}^{-\frac{1}{2} \mathrm{~N}_{s \beta}^{-\frac{1}{2}}} \sum_{j=1}^{\mathrm{V}} \exp \left(-\mathrm{ik} \cdot\left(\underline{\rho}_{j}^{\beta \alpha}-\rho_{1}^{\beta \gamma}\right)\right) . \\
& \left\langle\phi_{q \alpha}\left(r_{\mu}-\underline{\rho}_{j}^{\beta \alpha}\right) \mid \phi_{s \beta}\left(r_{\mu}\right)\right\rangle . \\
& H_{q \alpha s_{\beta}}(\underline{k})=G N_{q \alpha}^{-\frac{1}{2}} N_{\mathrm{s} \beta}^{-\frac{1}{2}} \quad \sum_{j=1}^{V} \quad \exp \left(-\underline{\underline{k}} \cdot\left(\underline{\rho}_{j}^{B \alpha}-\underline{\rho}_{1}^{B \alpha}\right)\right) . \\
& {\left[\left\langle\emptyset_{q \alpha}\left(\underline{r}_{\mu}-\underline{\rho}_{j} \beta^{\beta \alpha}\right) \mid \varnothing_{s \beta}\left(\underline{r}_{\mu}\right)\right\rangle \epsilon_{q \alpha}\right.} \\
& -\left\langle\phi_{q \alpha}\left(\underline{\underline{r}}_{\mu}-\underline{p}_{j}^{\beta \alpha}\right)\right|-\nabla_{k}^{2}\left|\phi_{\mathrm{s} \beta}\left(\underline{\underline{r}}_{\mu}\right)\right\rangle \\
& +\left\langle\emptyset_{\mathrm{q} \alpha}\left(\underline{r}_{\mu}-\underline{\rho}_{j}^{\beta \alpha}\right) \mid \phi_{\mathrm{s} \beta}\left(\underline{r}_{\mu}\right)\right\rangle . \\
& \sum_{\rho}^{\prime} \sum_{\gamma}\left\{\left\langle\phi_{q \alpha}\left(\underline{r}_{\mu}\right)\right| V_{\gamma}\left(\underline{r}_{\mu}^{-}\left(\rho_{p^{\gamma}}^{\beta \gamma}-\rho_{j}^{\beta \alpha}\right)\right)\left|\phi_{q \beta}\left(\underline{r}_{\mu}\right)\right\rangle\right. \\
& \left.\left.+\left\langle\phi_{s \beta}\left(\underline{r}_{\mu}\right)\right| \frac{V}{\gamma}\left(\underline{r}-\rho_{p}^{a}\right)\left|\phi_{s \Omega}\left(\underline{r}_{\mu}\right)\right\rangle\right\}\right] . \tag{49}
\end{align*}
$$

2) Matrix elements for $q \neq s$ and $\alpha=\beta$

$$
\begin{aligned}
& \Delta_{\text {actg }}(\underline{k})=G N_{q \alpha 8 \alpha}^{-\frac{1}{2} N} N^{-\frac{1}{2}} \cdot[\underline{S O O} \\
& +\left\{\sum_{j=1,2}^{V} \exp \left(-\underline{k} \cdot \rho_{j}^{\alpha \alpha}\right)+(-1)^{l_{q}+R_{5}} \exp \left(-\underline{k} \cdot \rho_{j+1}^{\alpha \alpha}\right)\right. \\
& \text { - } \left.\left.s\left(\underline{\rho}_{j}^{\rho+\infty}\right)\right\}\right] \\
& H_{q \alpha s \alpha}(\underline{k})=G N_{\mathrm{N}_{\alpha}}^{-\frac{1}{2}} N^{-\frac{1}{2}}\left\{\left\{\mathrm{SOO} \cdot E_{\mathrm{S} \mathrm{\alpha} \times \mathrm{VOO}}\right\}\right. \\
& +\left\{\sum_{j=1,2}^{V} \exp \left(-\underline{k} \cdot \rho_{j}^{\alpha \alpha}\right)+(-1)^{\ell_{q}+\ell_{5}} \exp \left(-\underline{k} \cdot \rho_{j+1}^{\alpha \alpha}\right)\right\} \text {. } \\
& \text { - } s\left(\underline{\rho}_{j}^{\alpha \alpha}\right)\left\{E_{s_{\alpha}}+\left\langle\phi_{q \alpha}\left(\underline{r}_{\mu}\right)\right| V_{\gamma}\left(\underline{r}_{\mu}-\left(\rho_{\dot{p}}^{\alpha \gamma}-\rho_{j}^{\alpha}\right)\left|\varnothing_{q \alpha}(\underline{r})\right\rangle\right.\right. \\
& \left.\left.+\left\langle\phi_{s \alpha}\left(\underline{r}_{\mu \mu}\right)_{1}^{\prime} V_{\gamma}\left(\underline{r}_{\mu}-\underline{\rho}_{p}^{\alpha \gamma \gamma}\right) \mid \phi_{s \alpha}\left(\underline{r}_{\mu}\right)\right\rangle\right\}\right]
\end{aligned}
$$

where groups of integrals indicated by $S\left(\underline{\rho}_{, 1}^{\alpha \alpha}\right), S 00$ and VOO which are expanded as

$$
\begin{aligned}
& V O O=\sum_{p}^{n} \sum_{\gamma}^{n}\left\langle\phi_{\alpha \alpha}\left\langle\left. r_{\mu}\right|_{\gamma} v_{\gamma}\left(\underline{r}_{\mu}-\underline{\rho}_{n}^{\alpha \alpha}\right\rangle \phi_{s c x}\left(\underline{r}_{\mu}\right)\right\rangle\right. \\
& S 00=\left\langle\phi_{q \alpha}\left(\underline{r}_{\mu}\right) \mid \phi_{s \alpha}\left(\underline{r}_{\mu}\right)\right\rangle \\
& S\left(\underline{\rho}_{j}^{\alpha \alpha}\right)=\left\langle\phi_{q \alpha}\left(\underline{r}_{\mu}-\underline{\rho}_{j}^{\alpha \alpha}\right) \mid \phi_{s \alpha}\left(\underline{r}_{\mu}\right)\right\rangle .
\end{aligned}
$$

The convention taken in the Equations above is the translation vectors are grouped for

$$
\underline{\rho}_{j+1}^{\alpha \alpha}=\cdot \rho_{j}^{\alpha \alpha}
$$

in order to express the exponential terms into cosine and sin terms by

$$
\left[\exp \left(-1 \underline{k^{0}} \rho_{j}^{\alpha \alpha}\right)+(-1)^{\ell_{9}+l_{5}} \theta \operatorname{xp}\left(-\underline{k_{k}} \cdot \rho_{j+1}^{\alpha \alpha}\right)\right]=2 \cos \left(\underline{\underline{x}} \cdot \underline{\rho}_{j}^{\alpha \alpha}\right)
$$

for an even sum $l_{q}+l_{g}$ and is $+i \cdot 2 \cdot \sin \left(\underline{k} \cdot \rho_{j}\right)$ for an odd $\operatorname{sum} \ell_{q}+l_{g}$.
3) Matrix elements for $a=s$ and $\alpha=\beta$

The diagonal elements of Δ and H are conveniently obtained from the form stated for ($\mathrm{q} \neq \mathrm{s}$ and $\alpha=\beta$) ; therefore, the cosine expression of exponential terms results since $l_{q}+l$ would always be even for $q=s$. The requirement that the Bloch sums be normalized to unity yields the expression of the normalization constant which for the q α case would be

$$
\begin{equation*}
N_{q \alpha}=G\left[1+2 \sum_{j=1,2}^{V} \cos \left(\underline{\underline{x}} \cdot \underline{\rho}_{j}^{\alpha \alpha}\right) s\left(\underline{\rho}_{j}^{\alpha \alpha}\right)\right] \tag{51}
\end{equation*}
$$

The evaluation of the above matrix elements is therefore reduced by a series of approzimations usine exact diatomic intograls: ovorlap and related integrals (kinetic energy), Coulomb, exchange and nuclear attraction type. In addition, the exact evaluation of one-center integrals have been discussed in the section "Atomic Orbital Energy" under the approximations of the TBA method. Further discussion of these diatomic integrals are in Appendices D (overiā and related integrals) and E (potential integrals).

The word "exact" deserves some discussion at this point in the thesis. The analytical expression for the atomic wave functions (the subject of the next section) is approximate; but methods are available to solve diatomic
integrals rapidy and efficiently using available numerical techniques programed into Fortran IV language and the IBM 360-65 model computer. Then, we properly refer to the latter as exact within the usual round-off errors encounted in machine computations. In order to minimize such errors, we use double precision numbers in overlap, Coulomb, exchange and nuclear attraction programs to give an accuracy of something like 10^{-6} Hartree energy units (27.弓 e.v.). The choice of atomic orbital functions in the TBA method is the crux of how exactiy our calculated energy bands and crystal orbital properties correspond to reality. In our realm of theoretical investigations, the H-F crystal equations provide the indicator of how well we are approaching exactross. Hopefully, such an indicetor approximates as well the experimental phenomenon. In other words, we must approach the H-F limit in order to make the TBA amenable to the present state of the art of the quantum chemisty of diatomic molecules; thereby the correlation problem of crystals can become tractible. The approximations that we have strived to make in a justifiable manner would be useless if we unwisely used atomic orbital functions.

In the discussion of the atomic orbital energy, we have suggested that the choice of neutral atomic wave functions may be justified using the pauling electro-
noutrality principle. Let us approach the atomic wave function problem from this a priori notion, i.e. neutral atoms in a crystal, and consider how the available tables of the numerical SCF functions for neutral atoms may be used to obtain analytical functions which have the proper radial and nodal behavior .

The atomic wave function, \varnothing_{q}, is taken as a product of the radial function $R_{n \ell}(\underline{r})$ and spherical harmonics function $Y_{\ell m}(\theta, \phi)$ or

$$
\begin{equation*}
\phi_{q}=R_{n \ell}(\underline{r}) Y_{\ell m}(\theta, \phi) . \tag{52}
\end{equation*}
$$

The type of radial function usea in the TBA calculations was of the Slater orbitai type (STO), i.e.,

$$
\begin{equation*}
R_{n \ell}(\underline{r})=N r^{n-1} \exp (-\xi r) \tag{53}
\end{equation*}
$$

where ζ is the orbitai exponent and N is the normalization constant.

The radial function may be of the single orbital exponent type shown above or a linear combination of STO's, i.e.,

$$
\begin{align*}
& R_{n l}(\underline{r})=\sum_{i} c_{1} N_{1} r \frac{n-1}{n-1} \exp \left(-\xi_{1} \cdot r\right) \\
& \text { where } N_{i}=\frac{\left(2 \xi_{1}\right)^{n+\frac{1}{2}}}{\left(2 n_{1}!\right)^{\frac{2}{2}}} \tag{54}
\end{align*}
$$

There are many ways of choosing a basis set. If a single orbital exponent STO is desired, the $\$$ parameter may be adjusted so that the radial function matches the numerical values of SCF functions in the tail-off reaion, ss Gerstein ot al. (i) have done. Brown and Fitzpatrick (25), who have
investigated radial functions of all transition metal series, would call this type of fit to the outer region of the SCF radial function a Burns' type orbital (26). They refer to the Clementi type orbital (27) as one that tetter describes the inner region of SCF radial functions (particularly in the region of the maximum peak). Since both types of orbitais are STO's aiffering only in a choice of $\}$, neither one will show radial nodes. Nevertheless, Brown and Fitzpatrick (25) find that both types of orbitais can be used in overlap integral calculations and give sufficiently accurate values for cases involving first-row transition metals. The Richardson (28) linear combination of STO's fits Watson's SCF functions (29) for the titanium 3a, $4 s$ and $4 p$ orbitals at varying charge better than single exponent STO's. In the case of 4 s and 4 p titanium orbitals, only Richardson orbitals will properly describe the respective Bloch sums, since SCF radial function values remain negative in the region of interest in TBA calculations and no single STO function can describe this behavior.

Brown and Fitzpatrick have further concluded that Basch and Gray 5d, 6s and 6p functions (30) (which are linear combinations of STO's) are necessary for tantalum, tungsten and rhenium cases where overlap integrals using them are calculated. They compared Burn's orbitals with the Basch-Gray functions and found that the use of functions fitted to the outer regions of tungsten 5d orbitals produce overlap
integral values which are too large. The arguments in favor of using 6 s and $6 p$ functions to accurately describe behavior in the overlap region are the same for titanium $4 s$ and $4 p$ orbitals.

Ruedenberg (private communication, Ames, Iowa, 2969) has suggested that higher quantum number radial functions can be fistted with lower n STO's to represent the radial behavior correctly in evaluating two-center Coulomb and exchange integrals for which the available programs go to $n=3$. The extrema of the SCF function to be fitted are produced by the coofficients of the linear combination of STO's (always nodeless functions by themselves). The coefficients and orbital exponents can be found by a least squares fit procedure (31).

The atomjc radial functions which form an orthogonal basis set are generally obtained in the present work by the following recipe:

1) Por s and p orbitals we start with single STO's with the same l quantum numbers and Schmidt orthogonalize to form the valence shell functions which are or thogonalized linear combinations of STO's (as in Equation 54). For 5d orbitals, we use the orthonormal Basch-Gray functions which are Ilnear combinations of $3 \mathrm{~d}, 4 \mathrm{~d}$ and 5 d STO's.
2) If the n quantum number of the valence shell is greater than 3, the least squares fit of $n=3$ STO's is made to the Schmidt orthoronalized radial function.

The main problem in the above procedure is obtaining the single STO's necessary for the s and p functions in the first step. Besides providing numerical values for SCF functions, Mann (23) tabulates the location of the maximum in the radial function, $r_{\text {max }}$. If one differentiates the radial function with respect to r, the radial distance, and equates the expression to zero, the tabulated maximum distance can be related to the orbital exponent of a single STO:

$$
\begin{aligned}
& \left.\left.\left.\frac{\partial P_{n \ell}}{\partial r}\right)_{\xi}=\frac{\partial}{\partial r}\right)_{\xi}\left[R_{n \ell} \cdot r\right]=\frac{\partial}{\partial r}\right)_{\zeta}\left(N \exp (-\zeta \cdot r) r^{n}\right)=0 \\
& =N n \exp (-\zeta r) r_{\max }^{n-1}-N \zeta \exp (-\zeta \cdot r) r_{\max }^{n}=0
\end{aligned}
$$

where $r=r_{\text {max }}$
Thus, $\zeta=\frac{n}{r_{\max }}$.

Therefore, the necessary orbital exponents can be obtained. The $n p$ orbitals for $\mathrm{Na}(\mathrm{n}=3), \mathrm{K}(\mathrm{n}=4)$ and $\mathrm{Sr}(\mathrm{n}=5)$ are not given in the ground state configuration by Mann; thus, one neods to approzimate the $J_{n p}$ for the single STO representation. If. one takes the ratio of $\zeta_{6 p} / \zeta_{6 s}(2.372 / 2.398)$ from Basch-Gray single STO representation for Re (charge $=+1$) and multiplies it by the neutral atom $n s(n=3,4,5,6)$ orbital exponent, one can obtain the single STO representation for neutral atoms.

The Schmidt orthogonalization procedure for the Is, 2s and $3 s$ single $S T O$ basis set provides an example of obtaining a 3 s atomic orbital function, say for Na . Let the nonorthogonal STO's be represented by a row vector $v:$

$$
\underset{\sim}{v}=\left(\begin{array}{lll}
v_{1} & v_{2} & v_{3}
\end{array}\right)=\left(\begin{array}{lll}
1 s & 2 s & 3 s \tag{56}
\end{array}\right)
$$

The v_{1} functions exist in Hilbert space and have a set of inner products $\left\langle v_{i} \mid v_{k}\right\rangle$ which are represented by an overiap matrix $\underset{\sim}{S}$. Therefore, we seek the similarity transformation $\underset{\sim}{T} \underset{\sim}{\underset{\sim}{\sim}} \underset{\sim}{T}=\underset{\sim}{I}$ which maps $\underset{\sim}{v}$ into $\underset{\sim}{u}$ a column vector of orthogonal functions). The transpose of $\underset{\sim}{u}$ is related to $\underset{\sim}{v}$ by the upper triangular $\operatorname{matrix} \underset{\sim}{T}:{\underset{\sim}{u}}_{\underline{u}}^{\sim}=\underset{\sim}{v} \underset{\sim}{T}$ or

$$
\left(\begin{array}{l}
u_{1} \tag{57}\\
u_{2} \\
u_{3}
\end{array}\right)^{\sim}=\left(\begin{array}{c}
1 s^{\prime \prime} \\
2 s^{\prime} \\
3 s
\end{array}\right)^{\sim}=\left(\begin{array}{lll}
1 s & 2 s & 3 s
\end{array}\right)\left(\begin{array}{lll}
T_{11} & T_{12} & T_{13} \\
& T_{22} & T_{23} \\
0 & T_{33}
\end{array}\right)
$$

where the primes denote orthogonal Punctions, $1 . \theta \cdot\left\langle u_{j} \mid u_{k}\right\rangle=\delta_{j k}$ (normalization is generally imposed as well). The matrix T can be separated into a set of three column vectors which are identified with the expansion coefficients of the ∇_{i} bases into orthogonal functions, i. θ.

$$
u_{j}=\sum_{i} T_{i j} v_{1} j=1,2,3 \text { equations are obtained from }
$$

the coefficients

$$
\left\{\begin{array} { r l }
{ T _ { 1 1 } } \\
{ T _ { 1 2 } } \\
{ T _ { 1 2 } } \\
{ T _ { 2 2 } }
\end{array} \left\{\begin{array}{l}
T_{13} \\
T_{23} \\
T_{33}
\end{array}\right.\right. \text { giving }
$$

$$
\begin{align*}
& u_{1} \equiv 1 s^{\prime}=T_{11}(1 s) \\
& u_{2} \equiv 2 s^{\prime}=T_{12}(1 s)+T_{22}(2 s) \\
& u_{3} \equiv 3 s^{\prime}=T_{13}(1 s)+T_{23}(2 s)+T_{33}(3 s) \tag{58}
\end{align*}
$$

As mentioned above, the d STO basis set for 5d functions ($v_{1}=3 \mathrm{~d}, \mathrm{v}_{2}=4 \mathrm{~d}, \mathrm{v}_{3}=5 \mathrm{~d}$) is chosen from Basch-Gray (30). The double zeta representation used by Basch-Gray for $\mathrm{v}_{3}=5 \mathrm{~d}$ is necessary to properly describe the outer 5 d radial behavior. Even though we cannot apply the simple formula in Equation 55 for this case, we could in principie do so and continue through step two above for $u_{1}=3 d$ and $u_{2}=4 d$ using Mann's data for $r_{\text {max }}$. However, the respective $\$ 3$ and $\$ 4 d$ values are close for neutral (Mann) and +1 cases (Basch-Gray) and, therefore, to remain consistent, we use the entire Basch-Gray $\nabla_{1}(1=1,3)$ basis set for thirä-row transition metals.

We justify the use of the Basch-Gray 5d functions for the neutral atom using Gianturco's (32) investigation of the size of the d orbital of vanadium as a function of oxidation state. The primary result of this study was that the 3 d wave function varies slowly with charge in removing $4 s$ electrons from the $3 d 34 s^{2}$ configuration, and finally the removal of delectrons from the $3 d^{3}$ configuration shows a small change, even though it is greater than in the former case. It is reasonable to assume that the behavior of the third-row transition metals is similar to the first-row transition metals; therefore, it
would be useful to show that the Basch-Gray 5 d functions for configuration $5 \mathrm{~d}^{4} 6 \mathrm{~s}^{1} 6 \mathrm{p}^{1}\left(\mathrm{Re}^{+1}\right)$ differ little from the neutral atom ($5 \mathrm{~d}^{5} 6 \mathrm{~s}^{2}$) numerical radial functions provided by Mann.

A plot of Basch-Gray,vs. Mann functions is shown in Figure 3. The Basch-Gray values vary from the Mann values at the extrema, but generally fit the SCF function over a wide range of radial distance: 3.5 to 8.0 a.u.

Once we have a set of u_{j} functions, we may apply any least squares fit program to obtain a now sot of functions F_{j} which have a new basis f_{k}, or

$$
\begin{equation*}
F_{j}=\sum_{k} C_{j k} f_{k}\left(\zeta_{k}\right) \tag{59}
\end{equation*}
$$

F_{j} is related to u_{j} (cuantum numioers $n^{\prime}, \ell^{\prime}, m^{\prime}$) by the minimization of the deviation, $D(31):$

$$
\begin{equation*}
D=\sum_{p}\left(u_{j}\left(r_{p}\right)-p_{j} i p_{p} j\right)^{2} p_{p} \tag{60}
\end{equation*}
$$

over a mesh of radial values r_{p}. The necessary constraints for this minimization are

$$
\begin{equation*}
\frac{\partial D}{\partial C_{j k}}=0 \quad \frac{\partial D}{\partial \zeta_{k}}=0 . \tag{61}
\end{equation*}
$$

Each f_{k} function with orbital exponent $\}_{k}$ has quantum numbers $n=3$, 久 ', m'.

For example, a 6 function, u_{6}, is fitted by a function F_{6} which is a linear combination of six 38 STO's:

Figure 3. $\quad P(5 d)$ vs. R.

$$
\begin{align*}
F_{6} & =c_{61} 3 s\left(\zeta_{1}\right)+c_{62} 3 s\left(\zeta_{2}\right)+c_{63} 3 s\left(\zeta_{3}\right) \\
& +c_{64} 3 s\left(\zeta_{4}\right)+c_{65} 3 s\left(\zeta_{5}\right)+c_{66} 3 s\left(\zeta_{6}\right) \tag{62}
\end{align*}
$$

Thus, as a matter of convenience, each F_{j} is expanded into the same number of bases as the corresponding u_{j} functions, eg. the upper k limits on $F_{j}=50,6 s$ and $6 p$ least squares fit functions is 4,6 , and 5 respectively.

OVERLAP EFFECTS, MADELUNG EFFECTS AND THE OVERLAP CRITERION

In 1952, Wolfsberg and Helmholz (33) suggested a semiempirical method based on two approximations:

1) Diagonal energy matrix elements are approximated as the negative of the valence state ionization energy (VSIE) of a particular orbital q, i.e.

$$
H_{q q}=-V S I E
$$

2) Off-diagonal energy matrix elements are calculated by the expression

$$
\mathrm{H}_{\mathrm{pq}}=\frac{\Delta}{2} \mathrm{pq}\left\{\mathrm{H}_{\mathrm{pp}}+\mathrm{H}_{\mathrm{qq}}\right\} \text {. }
$$

Richardson (8) points out that such approximations, as crude as they are, incorporate many aspects of chemical intuition, eg., overlap of bonding orbitals and electronegativity. Fur thermore, Jprgenson (34) analyzes the semiempirical approach in terms of the physical nature of the chemical bond. He conciudes that diagonal entigy matrin elements are dominated by the Madelung potential, i.e., Madelung effects, and off-diagonal energy matrix elements vary as two-center kinetic energy effects. Ruedenberg (35) relates the lowering of two-center kinetic energy, due to interference effects (changes in atomic orbitals upon bonding), to be the crucial phenomenon which gives stability to molecules after potential energy is cancelled by nuclearnuclear repulsions.

In this theoretical investigation, we are interested in applying chemical concepts to an amalgamation of quantum chemistry and solid state physics, i.e., the TBA. However, we are still unable to determine stabilities of crystals or cohesive energy for many reasons. For example, two reasons which we feel are important are:

1) The magnitude of the correlation energy is unknown.
2) The Madelung potential cannot be evaluated exactly in terms of Coulomb, exchange and nuclear attraction integrals (computationally very laborous, even for a computer).

In other words, the crystal is a giant molecule; even with the inclusion of translational symmetry, the multicenter integral bottleneck exists for a large number of sometimes difficult integrals (eg. three-center Coulomb fntegrals). Eyen though three and even four-center integrals are tractable now on the computer, the task to do a rigorous calculation would be both costly and unreasonable.

We propose a semi-rigorous method which will be based on three objectives:

1) To study a series of related crystals to observe possible trends and, thereby, propose some theoretical model. No computations will be attempted on an absolute energy scale.
2) To apply a SCF-MO-LCAO treatment to crystals in order to use a theoretical handle instead of an empirical one to control calculation of energy bands.
3) To use the LCAO procedure when conditions are satisfied by some well defined and pertinent criterion. We suggest that the "overlap criterion" (1) is a reasonable way for choosing a TBA interaction model.

Besides chemical intuition, the overlap criterion is based directly on many important mathematical relations which are explicitly expressed fin terms of overlap integrals. Here are three quantities which depend directly on overlap and occur throughout the TBA formulism:

1) The expression for $\mathrm{H}_{\mathrm{q} \alpha}{ }^{s} \beta$ (k) in Equation 49 is essentially a function of overlap and two-center kinetic energy integrals (can be expressed as a linear combination of overlap integrals).
2) The normalization constant for the Bloch sums is a function of overlap integrals (Equation 51). Evaluation of this quantity is possible so long as the overlap is adequately small. Otherwise, the cosine terms by becoming negative when ($\frac{\pi}{2} \leqslant \underline{k} \cdot \underline{\rho}_{j}^{\alpha \alpha \alpha} \leqslant \pi$) causes the value of $N_{q \alpha}$ to become negative. Since an imaginary value for $N_{q_{\alpha}^{2}}^{\frac{2}{2}}$ could result, the TBA is limited by overlap.
3) Because of quantity number 2, the TBA Fock operator is only possible if the identity approximately exists: $\mathrm{N}_{\mathrm{q}} \alpha^{-\frac{1}{2}} \mathrm{~N}_{\mathrm{q}} \alpha^{-\frac{1}{2} \cdot \mathrm{G}=1}$ (see Appendix K).

If the off-diagonal energy matrix elements are related to bonding of atomic orbitals, we may suggest that differences between energy levels for molecular orbitals (isolated molecule) or crystal orbitals (solid state) are determined to a large extent by overlap effects.

Let us now consider the Madelung potential and its effect on the TBA. Ros and schuit (36) and Basch and Gray (9) have placed much importance on shielding effects on the point charge model for doing molecular orbital calculations of transition metal complexes.

The lack of explicit evaluation of Coulomb and exchange integrals, the latter particularly, leads to deficiencies in the point charge model, eg. suggested by Fenske (7). The ordering of molecular orbitals is critically affected by the shielding effects. Since exchange integrals converge exponentially to zero, we suggest that the similar behavior of overlap integrals points to the possibility that the "important" effects of the Madelung potential are only within bonding distances, i.e., where overlap is maximum.

In principle, we continue to include more neighboring atoms in the Madelung potential, oscillating as it may with each additional neighboring atom, until convergence occurs. Finally, we obtain an external potential (exciuding nearest neighbor effects) which acts equally upon the metal
atom or the ligand (assuming the Pauling electroneutrality principle is valid). Thus, the whole molecular orbital correlation diagram is shifted on some arbitrary energy scale. The analogous energy band behavior has the same result, if we trust that the TBA model resembles the molecular orbital situation within the overlap criterion.

In points 2) and 3) we show additional evidence that the overlap criterion has quantitative consequences in the TBA. Particularly, the third point exemplifies the connection of the overlap criterion to a choice of the TBA interaction model. That is, the one-electron operator ${\underset{F}{F}}^{\text {Ave }}\left(r_{\mu}\right)$ converges to the molecular case in the IImit

$$
\frac{\mathrm{G}}{\mathrm{~N}_{\mathrm{q}}^{\frac{1}{2}} \mathrm{~N}_{\mathrm{S}_{\beta}^{\frac{3}{2}}}}=1
$$

In the present TBA method we calculate the overlap integrals for various overlap pairs which are involved with possible bonding orbitals . Then the overlap criterion is applied to notice from tabulated overlap integrals if any values are exceptionally large. If such values occur, we go to the quantitative aspect of the overlap criterion and see how the normalization constant of Bloch sums are affected. At this junction we decide whether a TBA type calculation is reasonable and proceed accordingly to find a series of substances which apply.

Use of the Overlap Criterion to Choose a TBA Model

In order to make TBA calculations practical, the Bloch sums must be limited to a small set of interacting neighbors. The overlap criterion mentioned above is used to choose a TBA model which can be applied to transition-metal oxides. In Table 3, various overlap pairs in the ReO_{3} structure are Iisted to indicate that overlap is adequately small in the nearest-neighbor metal-oxygen interactions and next-nearesineighbor metal-metai interactions to limit the size of the interaction set to these atoms.

Table 3. Overlap integrals

a	b	$S_{A B}$	R(a.u.)	θ_{B}	ϕ_{B}
$5 d_{z}{ }^{2}$	$5 \dot{c}_{z}{ }^{2}$	$\begin{aligned} & .008460 \\ & .027642 \end{aligned}$	$\begin{aligned} & 7.0818 \\ & 7.0828 \end{aligned}$	90 0	$\begin{aligned} & 0 \\ & 0 \end{aligned}$
$5 d_{x z}$	$5 \mathrm{~d}_{x z}$	$\begin{array}{r} -.014323 \\ .002067 \end{array}$	$\begin{aligned} & 7.0818 \\ & 7.0818 \end{aligned}$	$\begin{aligned} & 90 \\ & 90 \end{aligned}$	$\begin{array}{r} 0 \\ 90 \end{array}$
$5 d^{2}-\pi^{2}$	$5 d^{2}-y^{2}$	$\begin{array}{r} .021248 \\ .002067 \end{array}$	$\begin{aligned} & 7.0818 \\ & 7.0818 \end{aligned}$	$\begin{array}{r} 90 \\ 0 \end{array}$	$\begin{aligned} & 0 \\ & 0 \end{aligned}$
$6 s$	$6 s$.000000	7.0818	90	0
$6 p_{z}$	$6 p_{z}$. 077021	7.0818	90	0
$5 \mathrm{~d}_{2}{ }^{2}$	2 s	$\begin{array}{r} -.102873 \\ .205746 \end{array}$	$\begin{aligned} & 3.5409 \\ & 3.5409 \end{aligned}$	$\begin{array}{r} 90 \\ 0 \end{array}$	$\begin{aligned} & 0 \\ & 0 \end{aligned}$
$5 \mathrm{~d}_{2}{ }^{2}$	$2 p_{z}$. 143401	3.5409	180	0
$5 \mathrm{~d}_{x 2}$	$2 p^{\prime}$.096507	3.5409	0	0
$5 x^{2}-y^{2}$	2s	.178181	3.5409	90	0

Taile 3(Cont.)

a	b	$S_{A B}$	$R\left(a . u_{0}\right)$	0_{B}	ϕ_{B}
$5 d_{x}^{2}-y^{2}$	$2 p_{x}$.124189	3.5409	90	180
$6 s$	$2 s$.275805	3.5409	90	0
$6 p_{z}$	$2 s$.427884	3.5409	0	0
$6 p_{z}$	$2 p_{z}$.115660	3.5409	90	0
$2 s$	$2 s$.006946	5.0076	90	45
$2 p_{x}$	$2 s$.005662	5.0076	90	45
$2 p_{z}$	$2 p_{z}$.001119	5.0076	90	45

In Table i, $S_{A B}$ is the overlap integral between orbitals a and b. θ_{B} and \emptyset_{B} are the polar angles of the location of center B with respect to center A as the origin. The radial distances R are obtained by geometrical considerations using the lattice constant (37) of 7.0810 a.u.. These integral values represent the true atomic overlap orbital after proper rotation of spherical harmonics from the elliptical coordinate system through the given polar angles. The overlap integral values listed are part of the TBA output.

The TBA interaction model for rhenium trioxide is shown in Figure 4. $\mathrm{Re}, \mathrm{O}_{1}, \mathrm{O}_{2}$, and O_{3} are the four atoms which make up the unit cell and a is the lattice constant. The primed oxygen atoms belong to other unit cells but make up a part of the nearest-neighbor rhenium-oxygen interaction set.

Figure 4. TBA interaction model.

The next-nearest-nejghbor rhenjum atoms are located at positions $(\pm a, 0,0),(0, \pm a, 0)$ and $(0,0, \pm a)$.

In general, the crystal lattice of perovskite transition metal oxides contain the structure ABO_{3} shown in Figure 5. A is a transition metal and B is either vacant as far as ReO_{3} or filled by a non-transition metal such as alkali metals Na and K . B is commonly referred to as the perovskite hole in the transition metal oxide crystal lattice. In the recent paper on the overlap criterion (1), $\mathrm{Na}-\mathrm{Na}$ overlap in tungsten bronzes was conveniently shown by considering sodium as filling the perovskite hole. However, for our purposes, the octahedral arrangement of oxygen atoms about a particular transition metal (as it was for ReO_{3} in Figure 3) and the B atom located at the corner of the unit cell is taken as the model for TBA interactions.

From our discussions of overlap and Madelung effects, we can propose a model for the interaction set of perovisite oxides in general. Firen though sodium-sodium interactions have been postulated to be important in describing the conduction band picture of sodium tungsten bronzes (38), overriding evidence exists, both theoretically (39, 40, 41) and experfmentally (14, 42) that transition-metal and oxygen valence orbitals are the important contributors to the lowest conduction bend. Since $\mathrm{Na}-\mathrm{Na} 3 \mathrm{~s}$ and $3 p$ overlap has been found to be strong (1), one must seek a possible
explanation other than overlap effects to explain this dilemma. We propose that Madelung effects push sodium energy bands out of the conduction picture into high energy regions. The nearest-neighbor Madelung effects between sodium atoms are then considered to be unimportant compared to nearest-neighbor interactions between sodium and other types of atoms in the lattice. Thus, the important effect of orbital overlap and potential interactions between alkali metals (eg. Na and K) and transition-netal or oxygen atoms in the same unit cell makes the TBA model complete for nearest-neighbor interactions.

The inclusion of metal-metal ($A-A$) interactions tests the model (39) which proposes that t^{2} a states mainly make up the lowest conduction band. The model $(39,40)$, which proposes that x bonded oxygen and transition metal d states are more important, is of course tested by the nearestneighbor aspect of the TBA method.

We will now apply the above TBA method to the series of perovskite transition metal oxides: $\mathrm{ReO}_{3}, \mathrm{Na}_{\mathrm{x}} \mathrm{WO}_{3}$ (for our present calculations we will take x to be 1.0) and KTaO_{3}. Rhenium trioxide will be discussed first (Part II) since it is the simplest of the three to treat in the TBA. In order to obtain meaningful results (Part III) for sodium tungsten bronze and potassium tantalate $\left(\mathrm{KTaO}_{3}\right)$, we will scale their crystal potentials and charge distributions to

Figure 5. Perovskite crystal lattice.
the ReO_{3} model. Hopefully, we then can obtain a theoretical model of perovskite transition metal oxides which gives a realistic picture of crystal orbitals in the LCAO limit; thereby we hope to delineate the nature of the admixture of atomic orbitals which form conduction and valence bands as a function of the wave vector.

The LCAO procedure is to be used to obtain the crystal potential and energy bands for transition metal oxides. The option to obtain self-consistency of charge distribution throughout all $E(\underline{k})$ vs. \underline{k} allows one to approach the accurate APW potential proposed by Mattheiss. The use of the Bloch sum basis set allows one to exactly determine the participation of atomic orbitals in various symmetry crystal orbitals or bands. The effects of translational symmetry on the traditional LCAO-MO picture can, therefore, be determined despite knowiedge of the inherent weaknesses which exist for the tipht-oinaing metnod. By using the overlap criterion, one can decide which oxices can be considered to be adequatelv cescribed.

Thus, one iniposes all the rigor which is practically possible for the LCAO-MO procedure in evaluating two-center overlap and potential integrals and approximating other multicenter integral vaiues. Also, one uses good atomic orbital functions (descriptive of both inner and outer properties).

As in the molecular case, we seek interpretation of molecular properties (including translational symmetry) in terms of atomic properties, e.g., potential, orbital energy, and orbital functions.

PART II. TIGET-BINDING ENERGY BANDS
OF RHENIUM TRICXIDE

INTRODUCTION

Recently, L. F. Mattheiss (11) has reported an APW calculation of the energy bands and Fermi surface of ReO_{3}. His is the first effort to theoretically describe quantitatively the electronic structure of ReO_{3} and provide a model for the perovskite transition metal oxides. He parameterizes the crystal potential via the Slater-Koster (13) tightbinding interpolation scherie between symmetry points. This provides a handle for ompirically controiling his calculations. The results of his semi-empirical approach are not in disagreement with present experinental data (14, 15). The tightbinding method proposed in Part I has been anplied to ReO_{3} to obtain an ontirely aiprorent theore $\begin{gathered}\text { acal model of }\end{gathered}$ ReO_{3}, but agreoment uita tize same experimentai data appoars to be comparable for the two approactes.

Rhenium trioxido and the perovsisite crabsition metal oxides provide a group or suostances which form a borderline between a strictiy APW (iree electron) and a strictly tightbinding (localized ejectron) appifcation. From Table 3, we see, using an overlap critericin, that the TBA might provide a reasonable picture of the band structure of $\mathrm{Re} \mathrm{O}_{3}$. As a matter of fact, Mattheiss has had to modify the APW potential or Muffin Tin potential to make the APW method applicable. The question of which method is better cannot really be answered since entirely different crystal potentials are used.

Even though the APW method can accurately be corrected for ReO_{3}, the problem of obtaining self-consistency and quantitative information concerning the distribution of atomic orbital contributions to crystal orbitals which form valence and conduction bands remains. The TBA method described in this thesis solves this problem by utilizing the Mulliken population analysis (6) of the Bloch sums basis set.

Since Bloch sums are directly related to atomic orbitals by Equation 8, we have for the First time obtained a theoretical handle, instead of an ompirical handle, to control band calculations. Even though we require an ompirical quantity, the latice constant, to do calcuiations at present ; a rainimization or energy with respect to bond length is not practical), we are completely independent of empirical parameters in the cryatal potential. Our potential is based upor the Fock operator used in making LCAO-SCF-MO calculations for closed-shell systems. Thus, charge distributions which are assumed before the rirst cycle of the TBA calculation are caiculated at the end of that cycle by the Mulliken population analysis. The calculated charge distribution is essentially put into cycle two (properly weighted by a damping constant) and so forth. Thus, when the oscillations of assumed and calculated charge distributions for each atomic orbital become sufficiently small, we are confident
that the TBA energy bands have converged enough to give us useful quantitative information.

Because of its nature, the TBA method invoked in this thesis may be called a semi-rigorous ${ }^{\text {molecular orbital }}$ calculation which includes the effects of translational symmetry on the electronic structure.

Obviously, we cannot obtain the exact solution of the Schrödinger equation of electrons in a solid, but because of the Born-von Kármán periodic boundary (43 i), the BornOppertaimer approximation (44) and the unique nature of the loosely-packed structure of ReO_{3}, we may use a Bloch sum basis set and solve the eigenvalue problem of tine electronic structure in a solid variationaily using a inear combination of atomic potentiais as the crystal potential. But even at this point, we camnot proceed in an civ initio menner. Instead, we proceed to make systematic approximations as Ruedenberg (35) has stressed we must do, and continue to do so until the calculation is both thooretically founded and practical. The multi-center integral problem has plagued piogress of the TBA approach to.solids previously. Even though we still are unable to evaluate three-center integrals practically, we resort to the Mulliken approximation (IC). The evaluation of all necessary two-center Coulomb, exchange, nuclear attraction,

[^0]overlap and kinetic energy integrala makes our method at least a good first order attempt to describe the electronic structure of a group of substances, namely the perovskite transition metal oxides. It is important to stress that we evaluate off-diagonal elements in the Hamiltonian matrix as explicitly as possible and do not resort to any semiempirical approximations such as the Wolfsberg-Helmholz (33) or extended Hückel approximations (4?). For the above reasons, we use the description semi-rigorous when referring to the present TBA method.

We will now discuss the calculation of TBA energ. bands of ReO_{3} in two steps:

1) The input data which consists of the crystal potential, orbital energies and orbital functions.
2) The output data which consists of $E(\underline{k})$ Vs. k, the density of states, particularly at the Fermi energy, the results of the Mulliken population analysis, the correlation of the joint density of states with the imaginary part of the dielectric constant, and the Fermi surface.

THE CRYSTAL POTENTIAL

We have calculated all Coulomb, C, exchange, X, and nuclear attraction integrals necessary for the crystal potential (see "Atomic Potential", Chapter I) in the TBA interaction model for $\operatorname{Re} O_{3}$, eg., Re-Re, $\operatorname{Re}-\mathrm{O}_{1}, \mathrm{O}_{1}-\mathrm{O}_{2}$, etc., interactions. The "crystal potential", which is a linear combination of atomic potentials, (Equation 28) is thereby calculated by evaluating matrix elements of the classes shown in Equations 33 and 34 . Only the type in Equation 41 needs to be expanded into C, X, and nuclear attraction integrals The charge distributions of crystal orbitals $\left|\Psi_{i}(\underline{k}, \underline{r})\right|^{2}(i=$ occupied orbitais) are divided by the Mulliken population analysis (6) to give Bloch sum (in reciprocal space) or atomic orbital (in real space) populations n_{q} for the q bases. The self-consisiency procedure outifned in Part I is applied to KeO_{3}.

Since we wish to use the ReO_{3} structure to parameterize a series of oxides, the obvious piace to start is the crystal potential.

An additional calculation of C, X, and nuclear attraction integrals to be usea in the crystal potential for NaWO_{3} and KTaO_{3} was performed using the ReO_{3} structure (Re, $\mathrm{O}_{1}, \mathrm{O}_{2}, \mathrm{O}_{3}$ orbitals for the same lattice constant) with $N a$ and K atomic orbitals situated at the (III) corner positions, i.e. in the
perovskite positions of a hypothetical perovskite oxide AReO_{3} ($\mathrm{A}=\mathrm{Na}$ or K). We scale these results for the NaWO_{3} and KTaO_{3} cases using the following procedure:

1) Using a set of C, X, and nuclear attraction integrals, $\left\langle a \operatorname{a} \mid b^{\prime} b^{\prime}\right\rangle,\left\langle a b \mid a b^{\prime}\right\rangle$ and $\left\langle 1 / r_{A} \mid b^{\prime} b^{\prime}\right\rangle$ respectively (defined in Equation 60 with b not necessarily $=$ to $b l$) we calculate a scaling factor, S, as follows:
2) Using the respective lattice constants of KTaO_{3} and $\mathrm{Na}_{\mathrm{x}} \mathrm{WO}_{3}(\mathrm{x}=1.0)$ to obtain the appropriate interatomic distances, we calculate all nuclear attraction integrals

$$
\left\langle I / \mathrm{ra}_{\mathrm{A}}\right| \mathrm{bb} \mathrm{KTaO}_{3} \text { or } \mathrm{NaWO}_{3} .
$$

3) We calculate $\left[\mathrm{C}-\frac{1}{2} \mathrm{X}\right]_{\mathrm{KTaO}_{3}}$ or NaWO_{3} used in the crystal potential (Equation 28) by

$$
\left[\begin{array}{cc}
\left.\mathrm{C}-\frac{1}{2} \mathrm{X}\right]_{\mathrm{KTaO}_{3}}^{\text {or }} \tag{61}\\
\mathrm{NaWO}_{3}
\end{array}=\underset{\substack{\mathrm{ReO}_{3} \\
\text { model }}}{ } \cdot\left\langle I / \mathrm{r}_{\mathrm{A}} \mid \mathrm{b} \quad \mathrm{~b}\right\rangle_{\substack{\mathrm{KTaO}_{3} \\
\text { or } \\
\mathrm{NaWO}_{3}}}\right.
$$

for each a, b and b^{\prime} set.
4) Using $\left[\mathrm{C}-\frac{1}{2} \mathrm{X}\right]_{\mathrm{KTaO}_{3} \text { or } \mathrm{NaWO}_{3} \text { values, we calculate all }}$ matrix elements of the type $\langle b| V_{A}|b\rangle$.

Justification for this scaling procedure stems from Fenske's "point charge approximation" (7.) which for $\langle b| V_{A} \mid b$ ' \rangle
is $\langle\dot{b}| V_{A}\left|b^{\prime}\right\rangle \approx_{a} \sum_{2 n_{B}}\left\langle 1 / r_{A} \mid b^{\prime} b^{\prime}\right\rangle-Z_{A}\left\langle 1 / r_{A} \mid b^{\prime} b^{\prime}\right\rangle$ or in other words $\left\langle I / r_{A} \mid b^{\prime} \quad b^{\prime}\right\rangle \approx c-\frac{1}{2} X$.

The gcaling factor S calculated for set a, b, and b^{\prime} in step 1 above is introduced into Equation 61 by

$$
\begin{equation*}
\langle b| v_{A}\left|b^{\prime}\right\rangle=\left\{\sum_{a} 2 n_{a} \cdot s-z_{A}\right]^{\prime}\left\langle I / r_{A} \mid b \quad b^{\prime}\right\rangle \tag{62}
\end{equation*}
$$

to give a general expression for point charge approximations (Fenske's is for $S=1$).

A $1 / R_{A B}$ behavior is exibibited by Coulomb integrals at sufficiently large interatomic distances $R_{A B}$, e.g. at $R_{A B}$ from center B, the charge distribution $a * a$ on center A appears as a point charge to center B. The exchange integral, however, which behaves like an overlap integral $\langle a \mid b\rangle$, diminishes exponentially with increase in R_{AB}. Hence, the point charge approximation is good for first-row transition metal 3d orbitals, 1.e. $a=3 d$ gives $S=0.99(8$,$) .$

If $a=4 \mathrm{~s}$ or 4 p for first-row transition metals, we would expect that the point charge approximation would not be reasonable. The $4 s$ and $4 p$ orbitals have such a large $\langle r\rangle$ that for usual $R_{A B}$ distances encountered in transition metal oxides ($3-4$ a.u.), the diffuse a*a charge distribution still has a finite value, eg. for $T i(23)$. r 3 d$\rangle=1.487$ a.u. but $\left\langle r{ }_{4 s}\right\rangle=3.766$ a.u. The situation for rhenium is about the same for titanium: $\left\langle r_{5 d}\right\rangle=1.800$ and $\left\langle r \mathrm{ra}_{\mathrm{s}}\right\rangle=3.694$ for $\mathrm{R}_{\mathrm{Re}-0}=3.5$ a.u.

Therefore, we introduce the parameter S into our calculations for two main reasons:

1) We facilitate the evaluation of C- $\frac{1}{2} x$ integral values by the fast and easy calculation of nuclear attraction integrals (Appendix E).
2) We quantitatively measure the shielding effects of diffuse charge distributions in showing why the simple point charge approximation is of no value to TBA calculations of perovskite transition metal oxides.

The result of the above analysis is shown in Table 4 using nuclear attraction integrals listed in Table 5.

We thereby avoid the extensive evaluation of Coulomb and exchange integrals each time, but also construct a crystal potential which is directiv related to the ReO_{3} model. As trends become obvious, we may calculate Coulomb and exchange integrals more accurately if desired as the TBA method is improved (evaluation of three-center integrals explicitiy). Until then, our semi-rigorous method will be kept at the present level of approximation.

Tabie 4. Coulomb-exchange integrals and shielding parameters for perovskite transition metal oxides

Atomic orbitalsi							
520	520	520	520	0.157796	0.000492	0.147225	0.980167
521	521	520	520	0.155405	0.000032	0.145206	0.966725
522	522	520	520	0.151178	0.000002	0.141270	0.940521
600	600	520	520	0.150008	0.001513	0.143033	0.952258
610	610	520	520	0.164212	0.003853	0.156877	1.044430
611	611	520	520	0.140568	0.000074	0.135348	0.904423
200	200	520	520	0.302454	0.030307	0.287300	1.009110
210	210	520	520	0.317908	0.02 .4608	0.305604	2.073400
211	211	520	520	0.295973	0.004515	0.293715	1.031560
300	300	520	520	0.168116	0.003352	0.160795	0.718775
310	310	520	520	0.195724	0.003270	0.185090	0.827377
311	311	520	520	0.154021	0.000207	0.148696	0.664646
400	400	520	520	0.162177	0.002548	0.155445	0.694860
410	410	520	520	0.195055	0.006899	0.185106	0.827448
411	411	520	520	0.144611	0.000190	0.139614	0.624093

${ }^{\text {a The }}$ atomic orbitals i, j, k, and l which have quantum numbers n, l, and m are indicated by the integer $n l m$. The i and j orbitals are located on atom A and the k and 1 orbitals are located on atom B.
$b_{\text {The }}$ value of the Coulomb integral in atomic units of 27.2 e.v. are indicated by C. Electron 1 is in the orbitals i and j and electron 2 is in orbitals k and 1.
${ }^{c}$ The value of the corresponding exchange integral is indicated by X and is in atomic units of 27.2 e.v.
$d_{\text {The }}$ value of the difference is corrected for the renormalization of $5 d$ and $6 s$ orbitals where necessary.
$\theta_{\text {The }}$ shielding parameter is indicated by S. It is evaluated by the following expression:

$$
s=(C-X / 2) /\left\langle\left.\frac{1}{r_{A}} \right\rvert\, k l\right\rangle
$$

Table 4 (Cont.)

Atomic orioitals							
ì.	1	k	1	C	X	$\mathrm{C}-\mathrm{X} / 2$	S
520	520	521	521	0.155405	0.000032	0.145206	0.979560
521	521	521	525	0.153452	0.000077	0.143359	0.967100
522	522	521	521	0.149478	0.000002	0.139681	0.942288
600	600	521	521	0.148305	0.000306	0.141980	0.957797
610	610	521	521	0.161381	0.000779	0.155627	1.049860
611	611	521	521	0.139752	0.000334	0.134934	0.910265
200	200	521	52%	0.283718	0.002058	0.282689	1.083700
210	210	521	52.	0.294120	0.001893	0.293173	2.123880
211	25	521	52.	0.279989	0.0054214	0.277282	1.062970
300	300	521	521	0.1666310	0.001892	0.160314	0.715865
310	310	521	521	0.193123	0.004589	0.184 .69	0.836697
311	311	521	521	0.153733	0.001830	$0.147 \% 24$	0.670032
400	400	521	521	0.161515	0.002380	0.154986	0.702970
410	410	521	521	0.193012	0.006038	0.1041453	0.836978
411	411	521	521	0.145001	0.001953	0.239225	0.631483
520	520	522	522	0.153278	0.000002	0.14 .1270	0.977904
521	521	522	522	0.245178	0.000002	0.139681	0.966905
522	522	522	522	0.146040	0.000001	0.136468	0.944664
600	600	522	522	0.1141715	0.000046	0.138655	0.959503
610	610	522	522	0.256117	0.000123	0.150855	1.044250
611	611	522	522	0.136795	0.000014	0.132230	0.915327
200	200	5:	5pe	0.244397	0.000037	0.244378	1.024930
210	210	522	522	0.253269	0.000029	0.253254	1.062160
211	211	522	52"	0.239959	0.000032	0.239943	1.006330
300	300	522	522	0.162769	0.000795	0.156901	0.729712
310	$3 i 0$	522	522	0.187294	0.002088	0.180044	0.837025
311	311	522	522	0.3 .50326	0.000230	0.145206	0.675063
400	400	522	522	0.159128	0.001415	0.153238	0.712404
410	410	522	522	0.190297	0.003757	0.182140	0.846769
411	411	522	522	0.142617	0.000391	0.137675	0.640051

Table 4(Cont.)

Atomic orbitals							
,	1	$\underline{\square}$	1	c	X	$\mathrm{C}-\mathrm{X} / 2$	S
520	520	520	602	0.005442	0.000083	0.006056	0.810935
521	$52 \overline{1}$	520	600	0.005900	0.000002	0.005581	0.747330
522	522	520	600	0.005174	0.000000	0.004896	0.655604
600	600	520	600	0.005090	-0.001536	0.005685	0.761256
610	610	520	600	0.007292	-0.006265	0.010206	1.366580
611	611	520	600	0.003858	-0.000198	0.003874	0.518752
200	200	520	600	0.028791	-0.002830	0.030206	0.403997
210	210	520	600	0.030923	0.000000	0.030923	0.413587
211	211	520	600	0.028911	0.000000	0.028911	0.386670
300	300	520	600	0.004827	-0.000206	0.004103	0.409289
310	310	520	600	0.006681	-0.000129	0.005614	0.559965
311	311	520	600	0.003807	-0.000008	0.003171	0.316319
400	400	520	600	0.002754	-0.002333	0.003263	0.315859
410	410	520	600	0.003563	-0.003404	0.004382	0.1424194
411	411	520	600	0.002163	-0.000170	0.001872	0.181092
520	520	600	600	0.150008	0.001513	0.11+3033	1.134460
521	521	600	600	0.148305	0.000306	0.141960	1.126110
522	522	600	600	0.144715	0.000046	0.138664	1.099810
600	600	600	600	0.142534	0.010168	0.135089	1.071450
610	610	600	600	0.153122	0.020045	0.141865	i. 125200
611	611	600	600	0.134951	0.000921	0.132438	1.050430
200	200	600	600	0.257590	0.046575	0.234302	0.828300
210	210	600	600	0.260103	0.014386	0.252910	0.894082
211	211	600	600	0.257748	0.009476	0.253010	0.894436
300	300	600	600	0.156238	0.031179	0.139435	0.971801
310	310	600	600	0.173393	0.057084	0.143602	1.000840
311	311	600	600	0.147367	0.003679	0.144272	1.005510
400	400	600	600	0.149951	0.042908	0.127389	0.887846
410	410	600	600	0.169898	0.077311	0.130110	0.906810
411	411	600	600	0.138887	0.004384	0.135516	0.944487

Table 4 (Cont.)

Atomic orbitals							
1	j	k	1	C	X	$C-X / 2$	S
520	520	520	610	0.017103	0.000126	0.015655	3.824680
521	521	520	610	0.016178	0.000003	0.014861	3.630700
522	522	520	610	0.014837	0.000000	0.013632	3.330440
600	600	520	610	0.014625	-0.002370	0.015410	3.764830
610	610	520	610	0.018665	-0.006265	0.021431	5.235750
611	611	520	610	0.012294	-0.000310	0.012240	2.990310
200	200	520	610	0.057395	-0.004946	0.059868	0.786713
210	210	520	610	0.060451	0.000000	0.060451	0.794368
211	211	520	610	0.057836	0.000000	0.057836	0.760011
300	300	520	610	0.015239	-0.000361	0.015162	1.467910
310	310	520	610	0.006681	-0.000129	0.005614	1.829370
311	311	520	610	0.003806	-0.000008	0.003171	1.290160
400	400	520	610	0.011678	-0.003691	0.013298	1.326530
410	410	520	610	0.014045	-0.005606	0.016566	1.652520
411	411	520	610	0.010131	-0.000275	0.010097	1.007220
520	520	600	610	0.041916	0.000345	0.038839	1.703470
521	521	600	610	0.040436	0.000088	0.037582	1.648360
522	522	600	610	0.037771	0.000018	0.035135	1.541010
600	600	600	610	0.037026	-0.005150	0.039089	1.714450
610	610	600	610	0.044702	-0.014077	0.051517	2.259550
611	611	600	610	0.032449	-0.000959	0.032786	1.438000
200	200	600	610	0.110093	-0.006283	0.113235	0.889485
210	210	600	610	0.111291	0.000000	0.111291	0.874214
211	211	600	610	0.111854	0.000000	0.111854	0.878637
300	300	600	610	0.039407	-0.00128?	0.039754	0.689140
310	310	600	610	0.046695	-0.000686	0.046689	0.808355
311	311	600	610	0.035417	-0.000052	0.035181	0.609100
400	400	600	610	0.031926	-0.015806	0.039534	0.6814475
410	410	600	610	0.036706	-0.019612	0.046168	0.799325
411	411	600	610	0.028722	-0.001265	0.029137	0.500447

Table 4(Cont.)

Atomic orbitals							
1	1	k	1	C	X	$\mathrm{C}-\mathrm{X} / 2$	S
520	520	610	610	0.164212	0.003853	0.156877	1.169900
521	521	610	610	0.161381	0.000779	0.155627	1.160580
522	522	610	610	0.156117	0.000123	0.150855	1.124990
600	600	610	610	0.153122	0.020046	0.141865	1.057950
610	610	610	610	0.168031	0.047714	0.144174	1.075170
611	611	610	610	0.129780	0.000014	0.129773	0.967776
200	200	610	610	0.313108	0.120665	0.252775	0.755407
210	210	610	610	0.317081	0.034146	0.300008	0.896561
211	211	610	610	0.315077	0.024790	0.302682	0.904552
300	300	610	610	0.165389	0.037250	0.146764	0.689023
310	310	610	610	0.185154	0.061839	0.154234	0.724093
311	311	610	610	0.155008	0.005051	0.152482	0.715821
400	400	610	610	0.154332	0.038066	0.135299	0.635198
410	410	610	610	0.174658	0.060805	0.144255	0.677244
411	411	610	610	0.142651	0.004550	0.140376	0.659033
520	520	521	611	0.011230	0.000008	0.010310-1	10.731300
521	521	521	611	0.011030	0.000011	0.010128-10	10.541900
522	522	521	611	0.010342	0.000000	0.009502	-9.890200
600	600	521	611	0.010369	-0.000062	0.010138-1	10.551800
610	610	521	611	0.012331	-0.000190	0.012218-1	12.717000
611	611	521	611	0.009475	-0.000239	0.009433	-9.818060
200	200	521	611	0.028137	-0.000015	0.028145	0.761270
210	210	521	611	0.028074	0.000000	0.028074	0.759336
211	211	521	611	0.029312	0.000000	0.029312	0.792835
300	300	521	611	0.011589	-0.000006	0.160144	5.911890
310	310	521	611	0.013859	-0.000004	0.013628	7.069160
311	311	521	611	0.010910	-0.000017	0.010736	5.568750
400	400	521	611	0.161518	0.002380	0.154986	5.125560
410	410	521	611	0.193911	0.006038	0.184531	6.021650
421	411	521	611	0.145001	0.001953	0.139225	4.893640

Table 4 (Cont.)

Atom i		mital ㅌ	1	C	X	$\mathrm{C}-\mathrm{X} / 2$	S
520	520	611	611	0.140568	0.000074	0.131 .321	1.159280
521	521	611	611	0.139752	0.000334	0.134934	1.191180
522	522	611	611	0.136795	0.000014	0.132230	1.167310
600	600	611	611	0.134951	0.000921	0.133330	1.177020
610	610	61.1	612	0.143041	0.002057	0.142012	1.253660
611	611	611	611	0.129780	0.001885	0.128837	1.137350
200	200	611	611	0.227914	0.002059	0.226884	0.993315
210	210	611	611	0.229277	0.000827	0.228863	1.001980
211	211	611	611	0.229285	0.007324	0.225623	0.987794
300	300	611	611	0.148858	0.005383	0.146166	0.806322
310	310	611	611	0.163824	0.010215	0.158716	0.875554
311	311	611	611	0.143316	0.010757	0.137937	0.760926
400	400	611	611	0.144952	0.008990	0.140457	0.774828
410	410	611	611	0.163608	0.016365	0.155425	0.857399
411	411	611	611	0.137363	0.015336	0.129695	0.715460
520	520	200	200	0.302454	0.030307	0.287300	1.009110
521	521	200	200	0.283718	0.002058	0.282689	1.083700
522	522	200	200	0.244397	0.000037	0.244378	0.865343
600	600	200	200	0.257590	0.046575	0.234302	0.829664
610	610	200	200	0.313108	0.120665	0.252776	0.895080
611	611	200	200	0.227914	0.002059	0.226884	0.803397
200	200	200	200	0.199695	0.000028	0.199681	0.999925
210	210	200	200	0.203837	0.000040	0.203817	1.020640
211	211	200	200	0.197625	0.000001	0.197625	0.989629
300	300	200	200	0.190554	0.014012	0.183548	0.919137
310	31.0	200	200	0.228161	0.038600	0.208861	1.045890
311	311	200	200	0.171216	0.000330	0.171051	0.856556
400	400	200	200	0.179941	0.017658	0.171112	0.856862
410	410	200	200	0.221059	0.048655	0.196731	0.985152
411	411	200	200	0.157759	0.000400	0.157559	0.788994

Table 4 (Cont.)

Atomic orbitals							
$\underline{1}$	1	\underline{K}	1	C	X	$\mathrm{C}-\mathrm{X} / 2$	S
520	520	200	210	0.064313	0.005210	0.061708	1.250890
521	521	200	210	0.058865	-0.000423	0.059077	1.197560
522	522	200	210	0.040324	-0.000027	0.040337	0.817679
600	600	200	210	0.027597	-0.025030	0.0401 .11	0.813104
610	610	200	210	0.038969	-0.082532	0.080236	1.626470
611	611	200	210	0.023021	-0.002228	0.024135	0.489245
200	200	200	210	0.024668	0.000000	0.024668	0.999927
210	210	200	210	0.026203	0.000000	0.026203	1.062250
211	211	200	210	0.023902	0.000000	0.023902	0.963877
300	300	200	210	0.018337	-0.000032	0.018353	0.743946
310	310	200	210	0.025005	-0.000033	0.025022	1.014260
311	311	200	210	0.014646	-0.000001	0.014646	0.597735
400	400	200	210	0.013147	-0.002449	0.014371	0.582534
410	410	200	210	0.016586	-0.004435	0.018804	0.762207
411	411	200	210	0.010941	-0.000036	0.010959	0.444207
520	520	210	210	0.317908	0.024608	0.305604	1.073400
521	521	210	210	0.294120	0.001893	0.293173	1.123880
522	522	210	210	0.253269	0.000029	0.253254	0.861054
600	600	210	210	0.260103	0.014386	0.252910	0.859884
610	610	210	210	0.317081	0.034146	0.300008	1.020020
611	611	210	210	0.229277	0.000827	0.228863	0.778125
200	200	210	210	0.203837	0.000040	0.203817	0.999892
210	210	210	210	0.208494	0.000061	0.208463	1.022680
211	211	210	210	0.201510	0.000001	0.201510	0.988574
300	300	210	210	0.192631	0.004927	0.190167	0.932927
310	310	210	210	0.231841	0.013406	0.225138	1.104490
311	311	210	210	0.172437	0.000142	0.172366	0.845599
400	400	210	210	0.180837	0.004503	0.178585	0.876108
410	410	210	210	0.222689	0.012495	0.226433	1.110842
411	411	210	210	0.158189	0.000132	0.158123	0.775725

Table 4 (Cont.)

Atomic orbitals							
i	j	$\underline{ }$	1	C	X	$\mathrm{C-X} / 2$	S
520	52.0	211	211	0.295973	0.004515	0.293715	1.031560
521	521	$21]$	211	0.279989	0.005474	0.277282	1.062970
522	522	211	211	0.239959	0.000032	0.239943	0.867617
600	600	211.	211	0.257748	0.009476	0.253010	0.914867
610	610	211	211	0.315077	0.024790	0.302682	1.094480
611	611	211	211	0.229285	0.007324	0.225623	0.815837
200	200	211	21.1	0.197625	0.000001	0.197625	1.000000
21.0	210	211	211	0.201510	0.000001	0.201510	1.019660
211	211	211	211	0.195747	0.000001	0.195747	0.990497
300	300	211	211	0.189881	0.002572	0.188595	0.954307
310	310	211	211	0.227376	0.007156	0.223798	1.132440
311	311	211	211	0.171234	0.001134	0.170667	0.863590
400	400	211	211	0.179956	0.003455	0.178228	0.901849
470	410	211	211	0.221 .590	0.009642	0.216769	1.096870
411	411	211	213	0.158248	0.001457	0.157519	0.797060
520	520	300	300	0.168116	0.003352	0.160795	1.005350
521	521	300	300	0.166610	0.001891	0.160144	1.001280
522	522	300	300	0.162769	0.000795	0.156961	0.981374
600	600	300	300	0.156238	0.031179	0.139435	0.871796
610	610	300	300	0.165389	0.037250	0.146764	0.917557
611	611	300	300	0.148358	0.005383	0.146166	0.913880
200	200	300	300	0.190554	0.01401 .2	0.183548	0.954245
210	210	300	300	0.192631	0.004927	0.190167	0.988656
211	211	300	300	0.189881	0.002572	0.188595	0.980483
520	520	400	400	0.162177	0.002548	0.155445	0.986195
521	521	400	400	0.161518	0.002380	0.154986	0.983283
522	522	400	400	0.159128	0.001415	0.153238	0.972193
600	600	400	400	0.149951	0.042908	0.127389	0.808198
610	610	400	400	0.154332	0.038066	0.135299	0.858382
611	611	400	400	0.144952	0.008990	0.140457	0.891106

Table 4 (Cont.)

Atomic orbitals							
$\underline{1}$	j	区	1	C	X	$\mathrm{C}-\mathrm{X} / 2$	S
200	200	400	400	0.179941	0.017658	0.171112	0.938618
210	210	400	400	0.180837	0.004503	0.178585	0.979611
211	211	400	400	0.179956	0.003455	0.178228	0.977652
520	520	300	310	0.059897	0.001203	0.057319	0.995078
521	521	300	310	0.058695	0.000736	0.056384	0.978838
522	522	300	310	0.055819	0.000350	0.053790	0.872514
600	600	300	310	0.048263	-0.049829	0.072547	1.259440
610	610	300	310	0.053318	-0.050633	0.078635	1.365130
611	611	300	310	0.044347	-0.011824	0.050259	0.933814
200	200	300	310	0.075673	-0.001605	0.076475	0.971049
210	210	300	310	0.077420	0.000000	0.077420	0.983049
211	211	300	310	0.075419	0.000000	0.075419	0.957641
520	520	400	410	0.065835	0.001214	0.063055	0.946059
521	521	400	410	0.065483	0.001016	0.062811	0.942398
522	522	400	410	0.063893	0.000636	0.061457	0.902923
600	600	400	410	0.074976	-0.074855	0.111434	1.671920
610	610	400	410	0.077166	-0.050681	0.102506	1.537970
611	611	400	410	0.050174	-0.020011	0.060180	0.922083
200	200	400	410	0.078509	-0.002148	0.079584	0.963838
210	210	400	410	0.079038	0.000000	0.079038	0.957225
211	211	400	410	0.079033	0.000000	0.079033	0.957165
520	520	310	310	0.195724	0.008270	0.185090	0.979354
521	521	310	310	0.193123	0.004589	0.184469	1.001280
522	522	310	310	0.187294	0.002088	0.180044	0.981374
600	600	310	310	0.173393	0.057084	0.143602	0.759831
610	610	310	310	0.185154	0.061839	0.154234	0.816087
611	611	310	310	0.163824	0.010215	0.158716	0.913380
200	200	330	310	0.228161	0.038600	0.208861	0.894648
210	210	310	310	0.231841	0.013406	0.225138	0.964370
211	211	310	310	0.227376	0.007156	0.223798	0.958630

Table 4 (Cont.)

Ator \pm	$\begin{gathered} \text { ic } 0 \\ \hline \end{gathered}$	bita k	1	C	X	$\mathrm{C}-\mathrm{X} / 2$	S
520	520	410	410	0.195055	0.006899	0.185106	0.959451
521	521	410	410	0.193911	0.006038	0.184531	0.956471
522	522	410	410	0.190297	0.003757	0.182140	0.944078
600	600	410	410	0.169898	0.077311	0.130110	0.674393
610	610	410	410	0.174658	0.060805	0.144255	0.747710
611	611	410	410	0.163608	0.016365	0.155425	0.805607
200	200	410	410	0.221059	0.048655	0.196731	0.938618
210	210	410	410	0.222689	0.012495	0.226433	0.979611
211	211	410	410	0.221590	0.009642	0.216769	0.977652
520	520	311	311	0.154021	0.000207	0.148696	1.010140
521	521	311	311	0.153731	0.001830	0.147724	1.003530
522	522	311	311	0.150326	0.000230	0.145200	0.936427
600	600	311	311	0.147367	0.003679	0.144272	0.980032
610	610	311	311	0.155088	0.005051	0.152482	1.035860
611	611	311	311	0.143316	0.010757	0.137937	0.937047
200	200	311	311	0.171216	0.000330	0.171051	0.889274
210	210	311	311	0.172437	0.000142	0.172366	0.738323
211	211	311	311	0.171234	0.001134	0.170667	0.996427
520	520	411	411	0.144611	0.000190	0.139614	1.004190
521	521	411	411	0.145001	0.001953	0.139225	0.882075
522	522	411	411	0.142617	0.000391	0.137675	0.990247
600	600	411	411	0.138887	0.004384	0.135516	0.974718
610	610	411	411	0.142651	0.004550	0.140376	1.009670
611	611	411	411	0.137363	0.015336	0.129695	0.932850
200	200	411	411	0.157759	0.000400	0.157559	0.998323
210	210	411	411	0.158189	0.000132	0.158123	1.001810
211	211	411	411	0.158248	0.001457	0.157519	0.997979

Table 5. Nuclear attraction integrals a calculated for perovskite transition metal oxides in the rhenium trioxide model

${ }^{\text {a }}$ The integral values are in atomic units of $27.2 \mathrm{e} . \mathrm{v}$.
bThe quantum numbers n, ℓ, and m are expressed as an integer $n \ell \mathrm{~m}$. The indicated orbitals are on center B.
 djcated orbitals on center B is expressed in Bohr units.
$d_{A M}$ is anv element which fills the perovakite hole.

Table 5(Cont.)

Potential center A	Quantum numbers of orbitals i i		Distance	
Re	200	200	3.54091	0.282406
0	200	200	5.00760	0.199696
AM	200	200	5.00760	0.199696
Re	200	210	3.54091	0.049331
0	200	210	5.00760	0.024670
AM	200	210	5.00760	0.024670
Re	210	210	3.54091	0.294121
0	210	210	5.00760	0.203839
AM	210	210	5.00760	0.203839
Re	211	211	3.54091	0.276554
0	211	211	5.00760	0.197625
AM	211	211	5.00760	0.197625
Re	300	300	6.133014	0.159940
0	300	300	5.00760	0.192349
AM	300	300	5.00760	0.192340
Re	300	310	6.13304	0.057602
0	300	310	5.00760	0.078755
AM	300	310	5.00760	0.078755
- Re	310	310	6.13304	0.188992
0	310	310	5.00760	0.233456
AM	310	310	5.00760	0.2331456
Re	311	311	6.13304	0.147204
0	311	311	5.00760	0.171279
AM	311	311	5.00760	0.171279
Re	400	400	6.13304	0.157621
0	400	400	5.00760	0.182302
AM	400	400	5.00760	0.182302
Re	400	410	6.13304	0.066650
0	400	470	5.00760	0.082570
AM	400	410	5.00760	0.082570
Re	430	410	6.13304	0.102929
0	410	410	5.00760	0.228046
AM	410	410	5.00760	0.228046
Re	411	411	6.13304	0.239031
0	411	413	5.00760	0.157838
AM	411	411	5.00760	0.157838

ATOMIC ORBITAL FUNCTIONS AND ENERGIES

Using the values of $r_{\text {max }}$ from Mann's ciata (29), we used Equation 55 to obtalm the orbital erponents of the rhenium 6 s and to and other ns and $\mathrm{np}(\mathrm{n}=2,3,4)$ STO expansions resulting from Zquation 54, The expansion coefficients were then found by the Schmidt orthogonalization procedure and listed in Tabie 6.

Using a least-squares-program proposed by Raffenetti (48), we heve been able to express all principai quantum number STO's in terms of $3 \mathrm{~d}, 3 \mathrm{e}$ and 3 p STO's for the Basch-Gray 5d, $6 s$ and $6 p$ functions. The Besch-Gray functions are listed in Table 7. The Raffenetti least squares fits are shown below Table ?. The resulting functions are compared both graphically (Figures 6 to 8) and in Table 8. A comparison of radial expectation values for $\left\langle r^{q}\right\rangle$ in a.u. $(q=2,-1,0,1,2)$ is given in Table 8. Outer region radial properties depend on relfable $\langle r\rangle$ and $\left\langle r^{2}\right\rangle$ values while inner properties depend on $\left\langle r^{-1}\right\rangle$ and $\left\langle r^{-2}\right\rangle$ values. It can be seen that except for $\langle r-2\rangle$ values, we obtained a least-squares fit function which appears to be adequate for making two-center integral calculations. The original SCF type functions will be used to evaluate all one-center integrals. Thus, the deficiencies in the nodal behavior at the nucleus, as exhibited by $\left\langle r^{-2}\right\rangle$, of the fitted functions need not be of concern in the TBA calculations. Cusachs (ita) has made a careful study of radial properties vs. inner and outer behavior.

Figure 6. $P(5 d)$ vs. R.

Figure 7. $P(6 s)$ vs. R.

Figure 8. $P(6 p)$ vs. R.

Table 6. Coefficient matrix elements for schmidt or thogonalized atomic orbital radial function used in tight-binding calculations of rhenium triopride onorgy bands

${ }^{\text {a These are elements of matrix } T \text { which is upper trio- }}$ angular, ie.

The Schmidt orthogonalized functiotis, u_{f}, with $n!l!m$ are taken as a linear combination of v_{i} where

$$
u_{j}=v_{1} T_{1 j}+v_{2} T_{2 j}+\ldots+v_{j} T_{j j} \text { with } i=1, \ldots, n^{\prime}-l^{\prime} \text { or } j \text {. }
$$

Thus, the STO basis set v is mapped by T into a set of fundtions u_{j} which are orthogonal or $\int u_{j}^{*} \cdot u_{k} \widetilde{d} v=\delta_{j k}$.
$b_{T h e}$ principal quantum number n_{i} for $S T O v_{i}$.
${ }^{c_{T h e}}$ orbital exponent ξ_{1} for STO ∇_{1}.
$d_{\text {The rhenium }} 5 d \nabla_{i}$ is a double-zeta STO .

Table 6(Cont.)

atom	u_{j}	1	1	$T_{i j}$	n_{1}	$\xi 1$
RHENIUM	18	1	2	1.000000	1	74.604500
	2 s	1	2	-0.343106	1	74.604500
		2	2	1.057223	2	27.425000
	38	1	3	0.182846	1	74.604500
		2	3	-0.671419	2	27.425000
		3	3	1.185138	3	15.012400
	48	2	4	-0.500416	1	74.604500
		2	4	0.386493	2	27.425000
		3	4	-0.886654	3	15.012400
		4	4	1.253684	4	8.907850
	$5 s$	1	5	0.043263	1	74.604500
		2	5	-0.168471	2	27.425000
		3	5	0.409205	3	15.012400
		4	5	-0.723755	4	8.907850
		5	5	1.157926	5	4.841620
	6 s	1	6	-0.008305	1	74.604500
		2	6	0.032385	2	27.425000
		3	6	-0.079181	3	15.0121400
		4	6	0.143504	4	8.907850
		5	6	-0.256261	5	4.841620
		6	6	1.024283	6	1.985020
RHENIUM	$2 p$$3 p$	1	1	1.000000	2	35.291400
		1	2	-0.417916	2	35.291400
		2	2	1.083814	3	15.914366
	4p	1	3	0.212250	2	35.291400
		2	3	-0.670.135	3	15.914806
	$5 p$		3	1.176621	4	
		1	4	-0.079740	2	35.291400
		2	4	0.261209	3	15.914866
		3	4	-0.553094	4	8.885510
		4	4	1.106088	5	4.511780
	6p	1		0.017990	2	35.291400
		2	5	-0.059165	3	15.914866
		3	5	0.127640	4	8.885510
		4	5	-0.28i4 291	5	4.511780
		5	5	1.032576	6	1.963498

Table 7. Basch-Gray rhenium functions

Orbital	n^{8}	Expansion coefficient	Orbital exponent
$5 d^{\text {b }}$			
	3	0.1230	20.255
	4	-0.3342	10.409
	5	0.6062	5.343
	5	0.5910	2.277
$6 s^{c}$			
	1	-0.0140	74.535
	3	-0.1232	15.279
	4	0.2424	8.657
	5	-0.4845	4.682
	6	1.0860	2.398
$6 p^{a}$			
	3	-0.0751	28.084
	4	0.1546	10.047
	5 6	-0.3338 1.0439	5.191 2.372
	6	1.0439	2.372

[^1]Table 8. Analysis of least-squares-fit functions for rhenium atomic orbitals a

[^2]-Atomic units.

Table 8 (Cont.)

SCF type	Weighted	Weighted	Weighted	Radial expectation values		
function	self-overlap of SCF	self-overlap of LSF type	mean-square deviation	q	$\left\langle r^{q}{ }_{S C F}\right\rangle$	$\left\langle r_{\text {LSF }}{ }^{\text {d }}\right\rangle$
Besch-Gray 6p	0.040575	0.038971	0.001604	-2	0.381871	0.184165
				-1	0.405748	0.389708
				0	0.999970	0.996415
				1	2.798682	2.795655
				2	8.436718	8.421913
				3	27.098299	27.076257

Tabie 9. Comparison of Scimidt ortiogonaiized function radial expectation values with Mannis SCr results for noutra? rbenium (a.u.)

Function	Radiai expectation value		
	$\underline{1}$	$\left\langle\mathrm{r}^{\text {a }}\right.$ SOF $\left.{ }^{\text {a }}\right\rangle$	$\left\langle r q_{\text {MANN }}\right\rangle$
Basch-Gray 5d	-2	1.160198	1.160285
	-1	0.789875	0.722333
	1	1.653259	1.799927
	2	3.349344	3.845362
SCF ${ }^{3} 68$	-2	0.769747	0.881567
	-1	0.338750	0.337196
	1	3.320042	3.694182
	2	i1.857742	15.666920
LSF ${ }^{\text {c }} 6 \mathrm{~s}$	-2	0.182571	0.881567
	-1	0.335347	0.337196
	1	3.330900	3.694182
	2	12.048085	15:666920

The subscript Sof means Schmidt orthogonslized function.
bThe single zeta slater type orbital basis set based upon Mann's SCF $r_{\text {max }}$ values are Schmidt orthogonalized to give analytical functions which are labeled SCF.

CThe weighted mean square deviation of the least-squares-ift (LSF) fiunction, D, is 0.003403 .

The 5d.and 6 s radial functions for neutral rhenium in Table 6 were fitted by $n=3$ STO's and the calculated $\langle r q\rangle$, radial expectation values, of our basis set for rhenium are compared with Mann's values in Table 9. The 68 and $6 p$ least squares functions for the neutral rhenium atom are shown in Table 10.

Table 10. Least squares functions for $6 s$ and $6 p$ orbitals

Orbital	Least squares function ${ }^{\text {a }}$
6 s	$1.46078(1.29317)-0.93009(2.42117)$
	$0.16555(4.53311)+0.12909(8.48725)$
	$-0.13028(15.8905)+0.04871(29.7515)$
$6 p$	1.58713(1.30492)-1.03977(2.25186)
	$0.02002(3.88597)+0.24836(6.70589)$
	-0.10577(11.5721)

aThe number in the parenthesis is the orbital exponent and the number preceding the parenthesis is the corresponding expansion coefficient.

Using programs based upon Appendix F, we have calculated the atomic orbital energy parameters (see Table 11) which will be put into the TBA calculation. The formulation for calculating Slater-Condon parameters is obtained from Ros and Schuit (36).

Table 1l. ReO3 orbital energy parameters ${ }^{a}$

Orbital	Two-electron interaction energy			One center kinetic energy	Core energyb	Orbital energyc
	1	1	$g(1, j)$			
OXYGEN 2s	1 s	2 s	2.206543	6.24103	-14.0796	-2.072135
	2p	2 s	1.494784			
	2 s	2 s	1.615272			
OXYGEN 2p	1 s	2p		5.76677	-13.44.45	-0.721791
	2 s	2 p	1.494784			
	2p	2p	1.677232			
RHENIUM 5d	1 s	5d	1.579712	12.17131	-106.3099	-0.671732
	2 s	5d	1.567410			
	2p	5a	1.572472			
	3 s	50	1.532340			
	3p	5d	1.536908			
	3d	5d	1.549390			

${ }^{\text {a Orbital energy parameters are in Rydberg units. }}$
$b_{\text {The core energy of the }} f$ th orbital is expressed as the value of the integral $\left\langle\phi_{j}\right|-\nabla^{2}-\frac{2 Z_{j}}{r}\left|\emptyset_{j}\right\rangle$ where Z_{j} is the bare nuclear charge.
${ }^{\text {c }}$ This is the orbital energy for the neutral atom.

Table il(Cont.)

Orbstal	Two-electron interaction energy		One center kinetic energy	Core energ.	Orbital energy
	11	$\mathrm{g}^{(1, j)}$			
RHENIOM 5d	4 s 5d	1.468756			
	4 p 5 d	1.470050			
	4 d 5 d	1.418938			
	$4 \mathrm{f}^{\text {d }} 5 \mathrm{~d}$	1.462356			
	5 s 5 d	3. 211320			
	5 p 5 d	1.170556			
	5d 5d	1.076252			
	6 s 5d	0.626782			
	6 p 5 d	0.619212			
RHENIUM 6s	1s 6s	0.674316	1.67557	-49.1369	-0.330855
	2 s 6 s	0.670548			
	2 p 6s	0.671698			
	3 s 6 s	0.666742			
	3 p 6s	0.667558			
	3 d 6 s	0.668898			
	4 s 6 s	0.661294			
	4 p 6s	0.662210			
	4 d 6s	0.663802			
	4f 6s	0.662356			

$d_{\text {Basch-Gray }} 4 f$ functions have been used to evaluate $g(4 f, j)$ terms.

Table 11(Cont.)

Orbital	Two-electron interaction energy			One center kinetic energy	Core energy	Orbital energy
	$\underline{1}$	1	$g(1, j)$			
RHENIUM 6s	$\begin{aligned} & 5 s \\ & 5 p \\ & 5 \mathrm{~d} \\ & 6 s \end{aligned}$	$\begin{aligned} & 6 s \\ & 6 s \\ & 6 s \\ & 6 s \end{aligned}$	$\begin{aligned} & 0.639848 \\ & 0.648272 \\ & 0.626782 \\ & 0.54 .7078 \end{aligned}$			
RHENIUM 6p	$1 s$ $2 s$ $2 p$ $3 s$ 30 $3 d$ 4.9 40 40 40 $5 s$ 50 50	$\begin{aligned} & 6 p \\ & 6 p \end{aligned}$	0.667286 0.664774 0.665388 0.661504 0.661774 0.663040 0.65624 .8 0.656188 0.657398 0.656386 0.641836 0.640108 0.619212 0.47421 .4 0.512740	1.679749	-48.39085	-0.134514

$$
\mathrm{E}(\underline{k}) \mathrm{T} \text {. } \underline{\underline{k}} \text { AND DENSITY OF STATES }
$$

The elgenvalues of crystal orbitals $\Psi_{i}(\underline{k}, \underline{x})$ are $E_{i}(\underline{k})$ for the 1 thenergy band. Since the energy is a periodic function of k, the k vectors which are to be chosen for band calculations can be restricted to lie within a unit cell of wave vector or momentum space which is called the primitive Brillouin zone.

Rhenium trioxide and the perovskite transition motal oxides belong to the cubic space gioup O_{h}^{l}. In reciprocal or wave vector space, the first Brillouin zone is a cube with side $2 \pi /$ a where a is the lattice constant. For ReO_{3}, a is 3.7477 A (37) All of the symmetry points and lines round in the simple cubic Brillouin zone can be placed on the surface of a polyhedron which is only $1 / 48$ of the Brillouin zone volume (Figure 9). Thus, the choice of k vectors can be restricted further to lie within the $1 / 48$ volume. Slater (50) lists the degeneracies of the k vectors which correspond to symmetry points and innes on the surface of the $1 / 48$ Brillouin zone. A non-symmetry point within this suriace represenis a total of 48 points in the entire Brillouin zone because of the space group symmetry.

A convenient choice of 56 points shown in Table 12 was used to obtain the energy bands of $\mathrm{ReO}_{3}, \mathrm{KTaO}_{3}$ and NaWO_{3}. These points are evenly spaced in the $1 / 48$ Brillouin zone with a cubic mesh of side $0.2 \pi /$. This choice represents 1000 noints in the entire Briliouin zone.

Figure 9. 1/48 Brillouin zone for 0_{h}^{7} structure.

Teble 12. K vector basis used in energy band calculation of perovskite transition metal oxides in the 1/48 Brillouin zone

Number	$k_{x}{ }^{\text {a }}$	k_{y}	k_{z}	g^{b}	Number	k_{x}	k_{Y}	k_{z}	g
1	0	0	0	1	29	2	2	0	24
2	1	0	0	6	30	3	1	0	24
3	2	0	a	6	31	4	1	0	24
4	3	0	0	6	32	3	2	0	24
5	4	0	0	6	33	4	2	0	24
ó	5	0	0	3	34	4	3	0	24
7	5	1	0	12	35	2	1	1	24
8	5	2	0	12	36	3	2	1	24
9	5	3	0	12	37	4	1	1	24
10	5	4	0	12	38	2	2	1	24
11	5	5	0	3	39	3	2	1	48
12	5	5	1	6	40	4	2	1	48
13	5	5	2	6	41	5	2	1	24
14	5	5	3	6	42	3	3	1	24
15	5	5	4	6	43	4	3	1	48
16	5	5	5	1	44	5	3	1	24
17	4	4	4	8	45	4	4	1	24
18.	3	3	3	8	46	5	4	1	24
19	2	2	2	8	47	3	2	2	24
20	1	1	1	8	48	4	2	2	24
21	1	1	0	12	49	3	3	2	24
22	2	2	0	12	50	4	3	2	48
23	3	3	0	12	51	5	3	2	24
24	4	4	0	12	52	4	4	2	24
25	5	1	1	12	53	5	4	2	24
26	5	2	2	12	54	4	3	3	24
27	5	3	3	12	55	4	4	3	24
28	5	4	4	12	56	5	4	3	24

$a_{\text {The }} k_{x}, k_{y}$ and k_{z} components of k are in unfts of $0.2 \pi /$ a where a^{y} is the iattice constant.
bThe number of points in the entire Brillouin zone are indicated.

In Figure Gl (Appendix G), we see the $E(\underline{k})$ vs. \underline{k} curve and the density of states histogram. The $E(\underline{k})$ vs. \underline{k} values for Γ, X, M, and R symmetry points are insted in Table GI (Appendix G). Note that the $E(\underline{k})$ vs. \underline{k} curve is limited to the region 1.0 to -4.0 Rydberg units. This range was taken because we wish to show the important details of the energy bands in the region of the Fermi energy which has been found to be -1.4828 Rydbergs. Only the top and lowest bands which are excluded from Figure Gl, are represented by the four examples in Tables G2 to $G 5$ to roughly show their relative variation in k space.

The histogram for the density of states is determined as follows. We choose an increment of energy E and count the number of energy levels ($E(\underline{k}$) calculated at 1000 k vectors) $N(E)$ within a particular energy interval E to $E+A E$. Thus the density of states $G(E)$ at an energy E in each unit cell volume is

$$
\begin{equation*}
G(E)=\frac{N(E)}{\Delta E} \cdot 2 \cdot p^{-1} \tag{63}
\end{equation*}
$$

where the factor of 2 is included to account for the spin degeneracy. p is the sum of \underline{k} vectors taken, 1.e. 1000 resulting from the present mesh taken for the $1 / 48$ zone (Table 12). The energy axis is divided into increments $E+$ $n A E$ ($n=0,1,2 \ldots$) and the partitioned columns formed from $G(E)$ produce the histogram.

There are 25 valence electrons considered in the ReO_{3} calculation, seven from rhenium and six each from the three oxygen atoms. The computed energy bands must accommodate
these 25 electrons via the Pauli exclusion principle by filling the energy bands beiow the Fermi level with two electrons each.

In order to simplify the calculation of the Fermi energy, we guess at which bands are definitely filled and consider only those bands which are within the region of where we expect the Fermi level to be. For ReO_{3}, we are left with nine electrons which are to fill levels to the Fermi energy.

The determination of the Fermi energy is simple arithmetic. The number of times an energy corresponding to a given \underline{k} is counted (on the basis of \underline{k} vector degeneracies listed in Table l2). Then, we number the lowest energy level one and proceed numbering energies to the next lowest level and so forth, until the list of energies is exheusted. For example, if there are nine electrons or 4.5 eiectron pairs and 1000 k vectors in the Brillouin zone, 4500 energy states will be occupied, and all higher energies will be unoccupied. Thus, the approximate Fermi energy lies somewhere detween energy number 4500 and 4501. Generally, both energies have the same value.

The density of states at the Fermi energy, $G\left(E_{f}\right)$, in the independent particle model, is related to the electronic specific ne日t, C_{e}, by $C_{e}=\gamma_{T}$.

$$
\begin{equation*}
G\left(E_{f}\right)=3 \gamma / \pi^{2} 3_{k} 3^{2} N o . \tag{64}
\end{equation*}
$$

旦 is the lattice constant, k is Boltamann's constant, and No is Avagadro's number. If $G\left(E_{f}\right)$ is expressed as states
-e.v. ${ }^{-1}-\mathrm{cm}^{-3}, \gamma$ is given by joules-mole-1-deg-2, and a is expressed in angstroms, evaiuation of the physical constants gives (5 ? 1):

$$
\begin{equation*}
G\left(E_{f}\right)=4.242 \times 10^{26} \gamma / \underline{\underline{a}}^{3} . \tag{65}
\end{equation*}
$$

Taking the value of $\dot{G}\left(E_{\mathrm{f}}\right)$ at $\Delta E=.05$ Rydberg units, 21.1 electron states/Ryd.-unit cell or 2.94×10^{22} states $-\theta . \nabla .^{-1}$ $-\mathrm{cm}^{-3}$, one obtains γ from Equation 65 and finds it to be 3.66×10^{-3} joules-mole ${ }^{-1} \mathrm{deg}^{-2}$.

Thus, by a measurement of the specific heat of ReO_{3} at Low temperatures such as Sandin and Keeson (52) have done for reduced TiO , the constant 8 can be found and compared with our value. At this time, we know at least that our $\overline{\mathrm{N}}(\mathrm{E})$ vs. E at E_{f} correlates with the fact that ReO_{3} is a conductor as it has been found experimentally (53).

The Fermi level actually lies close to a peak in the density of states which amounts to 64 electron states/Ryd.unit cell. The value of 21.1 states/Rya. was obtained by counting the number of states jusi above this peak. Since the gap between the Fermi level and the next higher peak is filled by a constant number of states (20-21) and the results (51) for sodium tungsten bronzes are of this magnitude, we feel that the value of 21.1 states/Ryd. is not unreasonable. If rhenium trioxide is silghtly reduced, eg. $\mathrm{ReO}_{2} .99$, the specific neat at low temperatures should have an out-
standing increase above that of the pure substance to the extent that E_{f} lies above the $2 p_{\text {fi }}$ peak. Certainly, such measurements would help to test our density of states picture.

RESULTS OF THE MULLIKEN POPULATION ANALYSIS OF ReO

In Tables G2 to 65 (Appendix G), we show the results of the Mulliken population analyses. We use Equation 23 to obtain the $\%$ orbitai contribution of atomic orbitals to crystal orbital 1 with eigenfunction $\mathbb{F}_{i}(\underline{k}, \underline{r}$) (nomalized to one) and eigenvalue $E_{i}(\underline{k})$ at the symmetry points Γ (gamma), X, M and R.

The main coatribution to the crystal states immediately below tho Fomi iovel comes from oxygen $2 p_{\pi}$ orbitals. These orbitals iorm najors bands which are rather insensitive to change in translational symme'ry, as evidenced by the very flat group of bands at the Fermi level in Figure Gl. The electrons in these bands are iocalized on the oxygens by the overlap criterion. The Re-0 e_{g} type bands cross tine Fermi ievel (see Figure 10 winich is a magnification of the region about the Fermi levei) and, thererore, contribute to the conduction band, but the direction of the " E_{g} " band-Fermi energy inteipsoction contributes litile to the 21.1 electron states/Ryd. discussed in the previous section. This is so because the derivative, $N(E) / \Delta E$, is small.

An interesting tiang happens at the R symetry point where stabilization oi ${ }_{2 g}$ type bands (R_{251}) brings $d_{\pi}-2 p_{\pi}$ states very close to the Fermi level. A $d_{x y}$ type band (M_{3}) also comes close to the Fermi level at the M symmetry point.

Figure 10. ReO_{3} energy bands near fermi enorgy (numbers label i thenergy band).

The small curvature of the conduction bands at R_{25}, ance M_{3} contribute mainly to the 21.1 electron states at the Fermi level. Then $d_{\pi}-2 p_{\pi}$ bands give rise to a iarge number of states from the Fermi level to -1.0 Ryaibergs. Therefore, within the Iimits of our TBA, the Sienko-Goodenough $\dot{\alpha}_{\pi}-P_{\pi}$ model $(39,40)$ applies to $\mathrm{R} \mathrm{OO}_{3}$.

The locailzed O_{n} molecuiar orbital picture of $R e O_{3}$ qualitatively agroes with our bands at the and R symmetry
 (5do-2ps), and $a_{I_{g}} *(6 p)-a_{1_{g}}(2 s)$ orbitais are the main contributors to bands at Γ anci \hat{n} and are identiried as such in Tables G2 to G5.

The self-consistent crystal potential (obtained by calculating 56 kectors at .7 minutes/k vector) involved a lengthy and expensive computation without some prior educated guess about approximate charge distribution. We,therefore, sought a method to obtain the approximate charge distribution for a given k vector, in order to guess occupation numbers before executing an entire $E(\underline{k})$ vs. \underline{k} calcuiation.

Three values of damping constant, $\boldsymbol{\lambda}$, were tried. These values were 2, 4, and 8. The \underline{k} vector was chosen to be (0.0,0.0,0.0) in an $E(k)$ calculation over 3 cycles. The Mulliken population analysis was accomplished by assuming that $E_{12}(\underline{k}, \underline{r})=E_{f}$. In Figure 11 we see that $\lambda=8$ gives the best control over charge distribution oscillations (indicated by

Figure 11. Variation of rhenium energy bands during three cycles $\left(\ldots \lambda=2, \cdots \lambda=4, \ldots \cdots \lambda^{=8}\right)$.
variation of metal band energies) which occur in the selfconsistency cycling procedure. Furthermore, $\lambda=8$ gave good convergence for the metal orbitel charge distributions after 5 cycles at $\underline{k}=\{0.0,0.0,0.0\}$, (Figure 12).

Comparison of assumed-calculated cherge distributions using $\lambda=8$ for all k vectors with proper weighting of k vector degeneracies in the entire Brillouin zone can be made from Table 13.

The óp type ievels at f symmetry are spread widely apart, but converge to a narrow band near R symmetry. This phenomenon is an indication of the incomplete self-consistency of $6 p$ charge distributions which have not yet converged to the same value for the $6 p_{z}, 6 p_{x}$ and $6 p_{y}$ Blocin sums.

Because of the convergence of other charge distributions (5d, 6s, 2s, 2p), we find that only 1 to 2 cycles using all $56 \underline{\underline{k}}$ vectors are necessary to approximate self-consistent tight-binding energy bands. The fact that the $6 p$ states do not converge to $S C F$ states is not a serious problem because of the small mixing of $6 p$ states with otior rhenium and oxygen states.

Figure 12. Variation of rhenium atomic orbital occupation numbers at $\lambda=8$ (---- assumed and \qquad calculated).

Table 13. ReO_{3} charge distributions

Orbital	Initial charge distributiona	Cycle one for 56 kectors assumed calc.		Cycle two 56 k vec assumed	wo for ctors calc.
$5 \mathrm{~d}_{2}{ }^{2}$	0.570000	0.562463	0.508856	0.556507	0.594902
$5 \mathrm{C}^{2}$	0.520000	0.419174	0.262088	0.401720	0.440543
5 yyz	0.520000	0.419321	0.255052	0.401069	0.412365
$5 a^{2}-y^{2}$	0.570000	0.562664	0.440582	0.549099	0.601975
$5 \mathrm{~d}_{x y}$	0.520000	0.419408	0.254042	0.401103	0.491285
$6 s^{x y}$	0.400000	0.466548	0.576255	0.478738	0.598266
$6 p_{7}$	0.133333	0.121009	0.156211	0.121920	0.155003
$6 p_{x}^{2}$	0.133333	0.122265	0.266513	0.138292	0.304171
$6 p^{2}$	0.133333	0.121786	0.284238	0.139825	0.297851
2s(1)	1.000000	C.939621	0.820419	$0.92637 \pm$	0.825832
$2 p_{z}(1)$	0.666667	0.750217	0.885612	0.765261	0.758865
$2 p_{x}(1)$	0.666667	0.571473	0.755541	0.591925	0.745573
$2 p_{y}(1)$	0.666667	0.750037	0.862680	0.762553	0.729168
2s(2)	1.000000	0.938646	0.883222	0.932488	0.890104
$2 p_{2}(2)$	0.666667	0.750191	0.843977	0.760612	0.742527
$2 p_{x}(2)$	0.666667	0.750509	0.788706	0.7547530	0.594019
$2 p_{y}^{x}(2)$	0.666667	0.567457	0.677464	0.579680	0.646704
2 s (3)	1.000000	0.938929	0.906650	0.9353430	0.906099
$2 p_{z}(3)$	0.666667	0.573808	0.556071	0.5718370	0.502240
$2 p_{x}(3)$	0.666667	0.750621	0.740925	0.7495440	0.593041
$2 p_{y}(3)$	0.666667	0.750488	0.773804	0.7530790	0.669813

${ }^{a}$ Values prior to iteration at $\underset{\sim}{2}=(0,0,0.0,0.0)$.

THE CORRELATION OF THE JOINT DENSITY OF STATES WITH
THE IMAGINARY PART OF THE DIELECTRIC CONSTANT

In the reflectance method (54), one determines the reflectivity R which is given by

$$
\begin{equation*}
R=\left((n-1)^{2}+k^{2}\right) /\left((n+1)^{2}+k^{2}\right) \tag{66}
\end{equation*}
$$

where n is the real and k is the imaginary part of the refractive index. The complex dielectric constant, E, is related to n and k by

$$
\begin{equation*}
E=\epsilon_{i-i} \epsilon_{2}=(n-i k)^{2} \tag{67}
\end{equation*}
$$

where the reai part, ϵ_{1}, is $x^{2}-k^{2}$ and the imaginary part, ϵ_{2}, is 2rk. E E_{2} is a function on a photon irequency, ω, (54) L.e.

$$
\begin{align*}
\epsilon_{2}(\omega)= & \frac{4 \pi^{2}{ }^{2} n}{2 m^{2} \omega^{2}} \sum_{0, u} \sum_{\bar{B} \cdot 2}(2 /(2 \pi) 3) \cdot \\
& \cdot \delta\left(\omega_{0, L}(\underline{k})-\omega\right) \cdot\left\{M_{0, u}(\underline{k})\right\}^{2} d^{3} \underline{k} \tag{68}
\end{align*}
$$

where e, $\frac{h}{}$ and m are the oloctric charge, Plancic's constant divided by 2π and the electron mass. The subscripts 0 and u refer to occupied and unoccupiea bands, respectively. w, 0 (k) corresponds to the electronic transition energy at a particular wave vector \underline{k} or $\omega_{0, u}(\underline{k})=\left(E_{u}(\underline{k})-E_{0}(\underline{k})\right) / \hbar$. The momentum matrix element, $M_{0, u}(\underline{k})$, is expressed as $\left\langle\Psi_{0}(\underline{k}, \underline{r})\right|$ $1 \nabla\left|\Psi_{u}(\underline{k}, \underline{r})\right\rangle$ between crystal orbitals 0 and u (Equation 7). $M_{0, u}(\underline{k}) H_{0, u}(\underline{k})$ or $\left|M_{0, u}\right|^{2}$ is related to the transition probability of an electron in state o being promoted by some electromagnetic interaction, eg. Iight waves, into state u.

The delta function is defined by

$$
\begin{align*}
\delta\left(\omega_{o, u}(\underline{k})-\omega\right) & =1 \text { if }\left|\omega_{0, u}-\omega\right| \leq(\Delta \omega / 2) \tag{69}\\
& =0 \text { otherwise }
\end{align*}
$$

The momentum matrix element can be considered to be constant throughout the Brillouin zone (B.Z.) and the factor $4 \pi^{2} 2 h / 3 m^{2} \omega^{2}$ may be taken as a constant as well. Thus, the behavior of ϵ_{2} is determined essentially by the quantity

$$
\begin{equation*}
J_{0, u}(\omega)=\frac{1}{\Delta \omega} \int_{B, Z} \frac{2}{(2 \pi)^{3}} \delta\left(\omega_{0, u}(\underline{k})-\omega\right) d^{3} k \tag{70}
\end{equation*}
$$

which is the joint density or states for the two bands indexed by o and u. Feinleib (14) points out that this quantity could be an important parameter in energy band calculations. Accordingly, $J_{0, u}(\omega) \cdot \Delta \omega$ is the number of pairs of states in bands 0 and u with

$$
\begin{equation*}
\hbar(\omega-\Delta \omega / 2) \leq\left(E_{u}(\underline{k})-E_{0}(\underline{k})\right) \leq \hat{\hbar}(\omega+\Delta \omega / 2) \tag{71}
\end{equation*}
$$

Brust (55) suggests a sampling, procedure which replaces the integral in Equation 70 by a finite sum. We have

$$
\begin{equation*}
J_{0, \mu}\left(\omega=\omega_{i}\right)=\frac{\Delta^{3} k 2}{\Delta \omega(2 \pi)^{3}} \sum_{\underline{k}} \delta\left(\omega_{0, n}(\underline{k})-\omega_{i}\right) \tag{72}
\end{equation*}
$$

where k is a set of uniformly spaced sampling points lying Within the first B.Z. The sum is defined for a set of values ω_{i} such that $\omega_{i+1}=\omega_{i}+\Delta \omega$. Δ 3k is the volume surrounding the sampling points. In our TBA calculations, we take a
cubic mesh of $\Delta^{3} z=\left[0 \frac{\pi}{E}\right]^{3}$ where a is the lattice constant. We chose a vaiue of 。04 Ryd. for ΔE to give the joint density of gitates $\nabla \mathrm{g}$. energy histogram. The degeneracy of $\underline{\underline{x}}$ vectors is includod in the sum which gives a total of 1000 sampling points in tro Brillouin zone. The calculated joint density of states may be compared with ϵ_{2} found by Feinleib (14). He determined optical properties of ReO_{3} by the reflectance rethoc: over the photon energy range 0.1 to 22 e.v. In Table 14 wa aticia a comparison of our peaks (Figure 13) in the joint conisty of states and the raxima in the E_{2} values found by Foinioib.

Table 14. Joint censity of states peaks of ReC_{3}

Rydiberg units	Electron-volts	Feinleib results
0.06	0.816	
0.16	2.28	2.30
0.26	3.54	4.20
0.46	6.26	7.0
0.54	7.35	8.5
0.60	10.16	9.3
0.74	12.03	14.0

We wish to obtaizi experimental verification from the $\in 2$
 Feinleib peaks are placed along side the closest joint density

Figure 13. Joint density of states: ReO3.
of states peak. The low energy maximum begins $3.5 \mathrm{e} . \mathrm{v}$. and extends to 4.2 e.v. where the latter is observed experimentaliy. Other peaks which are not observed can partially be explained since the probability of intraband transition has been neglected in obtaining the joint density of states. Thus, forbidden transitions indicated by a zero momentum integral are included.

Since a low energy maximum has been detected in our analysis, we conciude that our caiculated results have correlated with the observed optical properties of ReO_{3}.

FERMI SURFACE

Marcus (15) has made a number of de Haas-van Alphen measurements of ReO3. Matheiss was the first to give a theoretical description of the Fermi surface. He finds that:

1) The α sheet is centered close to the Γ point. The constancy of the related areas in 100, 110, 111, etc., directions for the measure frequencies, implies that the sheet of the Fermi surisce is essentialy sparical in shape. The orbit is thereiore closed.
2) The β sheet is Iarger than the α sheet but is also shaped around the \lceil point. However, it has a more cubic shape with rounded corners. This orítt is aiso closed.
3) Finelly, the $\hat{\gamma}$ sheet consists of tuoes which extend out from the $]$ point aloing ali x, y, z airections. Besiajes having an open orbit at the 100, 001, OIO races, another open orbit moves along the curvature of the tubular structure.

In Figure 14, we give the intersection of the Fermi surface with symmetry points and lines along the 100 and il0 directions for the Mattineiss results and ours. The overall agreement with three sheet-Fermi surface theory is better than expected but two otier sheets are found, open as the γ sheet. The spherical sheet about R can be explained by the stabilization noted in onergy bands at R symmetry. Again, no adjustments have been made in our calculations to obtain these results.
(a) Mattheiss: ReO_{3}

Figure 14. Intersection of Fermi suriace with planes defined by symmetry points and ines.

We now give a quantitative, within our TBA limitations, answer to the question "why is rhenium trioxide a conductor?" The $2 p \pi$ energies are relatively unchanged from tiat of the neutral oxygen 2p orbitals because of Madelung effects. But $5 \alpha_{\pi}$ orbitais are stabilized by the Madelung offect of the crysital potential at R and N symetry to become suitable for bonding with $2 p_{\pi}$ orbitals since $5 \alpha_{\pi}-2 p_{\pi}$ overlap is significant (Table 3). It appears that enargs bands which should be considered to have some contribution to the conduction are 6 type bands which are immediately above tile x band. The metal $\sigma \%$ or ${ }^{6} g *$ orbitals combine with the oxyeen $2 p_{\sigma}$ orbitals to form these σ type bands. Thus, even though $2 p-2 p$ overlap is small and incapable of promoting conduction of electrons, mixture with $5 d_{R}\left(t_{2 g}\right)$ states at M and R symmetry where the minimum occurs in the conduction band allows tne non-bonding $2 p \pi$ bands to be the prime cause of conduction in ReO_{3}.

The small and negative Knight shift of 187Re NMK resonance in ReO_{3} measured by Narath and Barham (56) correlates with our calculated absence of tunpsten 6 s states near the Fermi level.

It is interesting to observe that Mattheiss also has a bonding model of the ReO_{3} Fermi surface but with the $5 \mathrm{~d}_{\mathrm{w}}$ contribution being the prime source of conduction with small contribution of $2 p_{\pi}$ orbitals. Also, he has an e_{g} type band
just above this $t_{2 g}$ manifold which no attributes to crystal effects of the octahedral electrostatic potential field. The similarity of his model with ours in the existence of an $e_{g}-t_{2 g}$ arrangement suggests that perhaps our TBA method is describing physically the same picture as the APW method. This may explain how our resuits correlate well with experiment as Mattheiss' results.

We have an $e_{g} \%$ or $\sigma \%$ band where Mattheiss does, but a good portion of the $5 \mathrm{~d}_{2}{ }^{2}-5 \mathrm{~d}_{x^{2}}-\mathrm{y}^{2}$ contribution is within the $2 s$ bands which are also \mathcal{E} like. The ability of the TBA method to quantitatively anslyze atomic orbitel contributions allows us to gain a clearer picture of chemical binding in solids. This is possible because we introduce chomical concepts directly into the TBA model. For instance, we include overlap and electronic interaction terms explicitiy instead of using ompirical parameters. Then, application of the Mulliken population analysis follows to give a complete picture of chemical binding. We, therefore, not only know what the atomic orbital charge distributions are in the crystal orbitals $\Psi_{1}(\underline{k}, \underline{r})$ for the 1 th energy band, but have a good idea as to how they got there, e.g. by overlap and Madelung effects.

PART III. TIGHT-BINDING ENERGY BANDS OF POTASSIUM TANTALATE AND SODIUM VUNCSTEN BRONZE

INTRODUCTION

Cubic strontium titanate, SrTiO_{3}, potassium tantalate, KTaO_{3}, and sodium tungsten bronze, $\mathrm{Na}_{\mathrm{x}} \mathrm{WO}_{3}(0.4 \leq x<1.0)$ have been the subject of a wide variety of experimental work as is shown in Table 16.

Many workers in the field of perovskite transition metal orides have attempted to expiain tine conauction of electrons in the tungsten bronzes, (Table 15).

Table 15. Theoretical modeis based on various experimental evidence

Name
Atomic orbital constituifing lowest conduction band

Sieniko (39)
Keller (57)
Mackintosh (58)
Fuchs (38)
Goodenough (40)
$W 5 d_{\pi}\left(t_{2 g}\right)$ states
W 6s states
Na 3 p 8 tates
Na states
π bonded 0 and $W 5 \mathrm{~d}\left(t_{2 g}\right)$ states

Ours is the first attempt to obtain the tight-binding energy bands of $\mathrm{Na}_{x} \mathrm{HO}_{3}(x=1.0)$. Even though the complete filling of perovakite holes by sodium, $x=1.0$, has not been accomplished at present, this hypothetical substance allows us to study the trend $-\mathrm{ReO}_{3}-\mathrm{NaWO}_{3}-\mathrm{KTaO}_{3}$ where a metal non metal transition exists.

Table 16. Sumary of experimental data pertinent to energy band structures of transition metal oxides

Experimentalist and method
Observations and conclusions
SiTlO_{3}
Gundy(59): absorption measurements

Cohen and Blunt(60): reflectivity and eiectrorefiectance in the nelghborhood of the fundamentai absorption edge

Frederikse et al.(61): magnetoresistance and Shub-nikov-de Haas eîect

Tufte and Steizer(62): piezo-resistance

Noland(63): optical transition measurements

DiDomenico and Wemple(64): optical measurements

Feldman and Fiorowitz(65): rotary transmission measurements of stress-induced dichroism

Cardona(66): refiectivity measurements

Maiftson(67): high precision measurements of the refractive index

Baer(68): intraband Faraday rotation

Energy gap is at 3.15 e.v.

Band gap is observed at 3.4 e.v.

Minima lie along the 100 direction.

Minima ile at the center of the ENilouin zone.

Absouption edge is at 3.22 e.v.

Band gap is at 3.4 e.v.

A direct transition at zone edge (X) is improbable.

Absorption peaks observed at: $3.2,4.0,4.86,5.5,6.52,7.4$ 9.2.9.9.12.5 and 15.3 e.v.

The data can be fitted to a Sellmeir relation with the major oscillator at 4.4 e.v.

The rotation is negative, monetonically increasing in magnitude as band gap is approached. This implies a p-d fundamental absorption with band gap at 3.4 e.v.

Table 16 (Cont.)

Experimentalist and method
Observations and conclusions
$\mathrm{SrT10}_{3}$
Schooley et al.(69): uniaxial stress on the super. conducting critical temperature

The presence of superconducifvity indicates that the conduction band minima is locsted of $k=0$ and the eifect of the stress indicates that the minima is in the 200 sirection.
KTaO_{3}
Frova and Boddy(70): electroreflectance

Wemple(71): photoconductivity and refilectance measurements

Baer(68): Faraday rotation

DiDomenico and Wemple(64): absorption measurements
$\mathrm{Na}_{3} \mathrm{WO}_{3}$
Brown and Banks (72):absorption spectra measurements with varying x values

Singularities observed in the 100 direction were: $3.57,3.80,4.40,4.88$ and 5.5 $\theta . \mathrm{V}$.

The photoconductivity peak wes ooserved to be 3.58 o.v. and the absorption banc gap to be at 3.50 e.v.

The rotation was nogative For the same rassons as for SrTHO_{3} The band gap was estimated to be about 3.80 e.v.

Band gap is 3.9 o.v.

A $4100 \dot{A}$ absorption peak is obtained for a value of x $=1.0$ by extrapolation of the observed data.

Table 16(Cont.)

Experimentalist and method
Observations and conclusions
$\mathrm{Na}_{3} \mathrm{HO}_{3}$
Fromhold and Narath(73): nuclear magnetic resonance measurements

Narath and Wallace(74): ibia

Jones et al.(75):1b1d
Greiner et al.(76):magnetic susceptibility measurements
Sienko and Gulick(77): 19F NMR studies of potassium tungsten fluoroxide bronzes

Dickens et ai. (78): measured reflectance spectra of the $\mathrm{Na}_{\mathrm{x}} \mathrm{WO}_{3}, \mathrm{WO}_{2.92}, \mathrm{WO}_{2.72}, \mathrm{WO}_{3}$

Vest et al.(51): low temperature specific heat measurements

Gardner and Danielson(79): measurement of electrical conductivity

Studies reveal a very small or zero Knight shifts for both the Na and Wuclei. Thus s orbitals of alkali atoms cannot participate to the lowest conduction band but $5 d$ and $6 p$ (but not $6 s$) orbitals of $\begin{aligned} & \text { may do so. }\end{aligned}$

Weak temperature independent paramagnetism is found.

Oxygen was partially substituted by 9F. The Knight shift is less than 0.001%.

Low energy peak present in the bronzes but not WO_{2+x} (1.39 e.v.). 3.30 e.v. band gap extrapolated from data for $x=1.0$.

Obtained electronic specific heat coef. Sor $x=.56$ to .86 . The extrapolated density of states at $x=1$ is 2.2×10^{22} olectron states/e.v.-cc.

The bronzes are conductors from .45 to 1.0 x values. A maximum in conductivity is observed at. 75 .

Although SrPiO_{3} tight-binding energy bands have been obtained by Kahn-Leyendecker (4 li), the related compound KTaO_{3} has not been studied theoretically. Our theoretical investigation of KTaO_{3}, therefore, provides the first attempt to use TBA energy bands to interpret the optical and insulator properties of KTaO_{3}.

In Table 17 we have KTaO_{3} and $\mathrm{Na}_{\mathrm{x}} \mathrm{WO}_{3}(\mathrm{x}=1.0)$ overlap integral values which may be compared with the ReO_{3} values in Table 3. Thus, the overlap criterion can be applied to establish a TBA interaction model as was cone for ReO3. For example, if we consider KTaO_{3}, a reasonable TBA interaction vector set is listed in Table 28. OP course, the potassium atom is replaced by sodium if we consider $\mathrm{Na}_{\mathrm{x}} \mathrm{WO}_{3}(x=1.0)$.

Attempts to calculate TBA energy bands for SrTiO_{3} witi inclusion of the $T 14 s$ and 4 p orbitals in the Bloch sum basis have failed for the nearest-neighior model because of the large 48-4s overlap, about 0.4. The problem exists in the evaluation of the $4 s$ Bloch sum normalization constant in Equation 14. The exponential exp (ike \underline{R}_{i}) gives rise to $2 c o s($ $\left.\underline{\underline{k}} \cdot \underline{R}_{f}\right)$ since interactions are in \pm directions. The values of $K-R_{1}$ are close tor for SrTiO_{3}, therefore, the cosine is negative. The large value of the $4 s-4 s$ overlap integral causes the normalization constant squared to be negative or the impossible situation of an imaginary normalization constant. The failure of the nearest-nelghbor model has also been noted by André (80).

Table 17. Overlap integrals in KTaO_{3} and $\mathrm{Na}_{\mathrm{x}} \mathrm{WO}_{3}(\mathrm{x}=1.0)$

a	b	θ_{B}	\emptyset_{B}	KTaO_{3}		$\mathrm{Na}_{\mathrm{x}} \mathrm{WO}_{3}(\mathrm{x}=1.0)$	
				R(a.u.)	$S_{\text {AB }}$	R(a.u.)	$\mathrm{s}_{\text {AB }}$
$5 \mathrm{~d}_{\mathrm{z}}{ }^{2}$	$5 \mathrm{a}_{\mathrm{z}}{ }^{2}$	$\begin{array}{r} 90 \\ 0 \end{array}$	$\begin{aligned} & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & 7.537793 \\ & 7.537793 \end{aligned}$	$\begin{aligned} & 0.012787 \\ & 0.038959 \end{aligned}$	$\begin{aligned} & 7.306311 \\ & 7.306311 \end{aligned}$	$\begin{aligned} & 0.010404 \\ & 0.032668 \end{aligned}$
$5^{51}{ }_{x z}$	${ }^{5 d}{ }_{x z}$	$\begin{aligned} & 90 \\ & 90 \end{aligned}$	0 90	$\begin{aligned} & 7.537793 \\ & 7.537793 \end{aligned}$	$\begin{array}{r} -0.024221 \\ 0.004063 \end{array}$	$\begin{aligned} & 7.306311 \\ & 7.306311 \end{aligned}$	$\begin{array}{r} -0.018871 \\ 0.002983 \end{array}$
$5 \mathrm{~d}^{2}-\mathrm{v}^{2}$	$5 d^{2}-y^{2}$	$\begin{array}{r} 90 \\ 0 \end{array}$	$\begin{aligned} & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & 7.537793 \\ & 7.537793 \end{aligned}$	$\begin{aligned} & 0.030235 \\ & 0.004063 \end{aligned}$	$\begin{aligned} & 7.306311 \\ & 7.306311 \end{aligned}$	$\begin{aligned} & 0.025247 \\ & 0.002983 \end{aligned}$
6 s	6 s	90	0	7.537793	0.149123	7.306311	0.346516
$6 \mathrm{p}_{2}$	$6 p_{z}$	90	0	7.537793	0.073803	7.306311	0.077109
$5 \mathrm{~d}^{2}$	2 s	$\begin{array}{r} 90 \\ 0 \end{array}$	$\begin{aligned} & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & 3.768896 \\ & 3.768896 \end{aligned}$	$\begin{array}{r} -0.109242 \\ 0.218485 \end{array}$	$\begin{aligned} & 3.653156 \\ & 3.653 .56 \end{aligned}$	$\begin{array}{r} -0.10 ; 011 \\ 0.210022 \end{array}$
$5 \mathrm{~d}_{2}{ }^{2}$	$2 p_{z}$	180	0	3.768895	0.130349	3.653156	0.134755
${ }^{5} \mathrm{~d}_{\mathrm{xz}}$	$2 p_{x}$	0	0	3.768995	0.095468	3.653156	0.09501 .9
$5 \mathrm{~d}^{2}-\nabla^{2}$	2 s	90	0	3.768396	0.15921 .3	3.653156	0.181884
$5 \mathrm{~d}_{\mathrm{x}}{ }^{2}-\mathrm{F}^{2}$	$2 p_{x}$	90	180	3.768896	0.112836	3.653156	0.116701

Table 17(Cont.)

a	b	θ_{B}	\emptyset_{B}	KTaO_{3}		$\mathrm{Na}_{\mathrm{X}} \mathrm{NO}_{3}(\mathrm{x}=1.0)$	
				R(a.u.)	$S_{A B}$	$R(a . u$.	$S_{A B}$
6 s	2s	90	0	3.768896	0.260562	3.653156	0.269152
$6 p_{z}$	2s	0	0	3.768896	0.405824	3.653156	0.416765
$6 p_{2}$	$2 p_{z}$	90	0	3.768896	0.102230	3.653156	0.108742
2s	2s	90	45	5.330024	0.004139	5.166342	0.005391
$2 p_{\text {x }}$	2s	90	45	5.330024	0.003356	5.166342	0.004384
$2 p_{2}$	$2 p_{2}$	90	45	5.330024	0.000605	5.166342	0.000828
$5 \mathrm{a}_{2}{ }^{2}$	$n s^{\text {a }}$	54.7	45	6.527920	0.000000	6.327451	0.000000
$5 \mathrm{~d}_{\mathrm{xz}}$	ns	54.7	45	6.527920	0.025464	6.327451	0.036625
$5 d x^{2}-v^{2}$	ns	54.7	45	6.527920	0.000000	6.327451	0.000000
6 s	ns	54.7	45	6.527920	0.355602	6.327451	0.315373
$6 \mathrm{p}_{2}$	ns	54.7	45	6.527920	0.170806	$6.3274+51$	0.186985
2 s	ns	45	90	5.330024	0.163196	5.166342	0.1 .49607

[^3]Table 17(Cont.)

a	b	θ_{B}	ϕ_{B}	KTaO_{3}		$\mathrm{Na}_{\mathrm{x}} \mathrm{WO}_{3}(\mathrm{x}=1.0)$	
				K(a.u.)	$S_{\text {AB }}$	R(a.u.)	$S_{A B}$
$2 p_{x}$	ns	45	90	5.330024	0.000000	5.166342	0.000000
$2 p_{z}$	ns	45	90	5.330024	0.032728	5.166342	0.041873
$5 \mathrm{a}_{z}{ }^{2}$	np_{z}	54.7	45	6.527920	0.059551	6.327451	0.051505
${ }^{51} \mathrm{~d}_{\mathrm{xz}}$	$n p_{z}$	54.7	45	6.527920	-0.002021	6.327451	-0.013406
$54 x^{2}-0^{2}$	np_{z}	54.7	45	6.527920	0.000000	6.327451	0.000000
68	$n p_{z}$	54.7	45	6.527920	-0.279541	6.327451	-0.243009
$6 p_{z}$	$n p_{z}$	54.7	45	6.527920	0.043065	6.327451	0.051631
2 s	np_{z}	45	90	5.330024	-0.191010	5.166342	-0.174044
$2 p_{x}$	np_{z}	45	90	5.330024	0.000000	5.166342	0.000000
$2 p_{z}$	$n p_{z}$	45	90	5.330024	-0.013421	5.166342	-0.025070
$5 \mathrm{~d}_{\mathrm{z}}{ }^{2}$	${ }^{n p_{x}}$	54.7	45	6.527920	-0.029775	6.327451	-0.025752
${ }^{51} \mathrm{~d}_{\mathrm{x}}$	$n p_{x}$	54.7	45	6.527920	-0.002021	6.327451	-0.013406

Table 17(Cont.)

a	b	θ_{B}	$\varnothing_{\text {B }}$	KTaO_{3}		$\mathrm{Na}_{\mathrm{x}} \mathrm{WO}_{3}(\mathrm{x}=1.0)$	
				R(a.u.)	$S_{A B}$	R(a.u.)	$\mathrm{s}_{\text {AB }}$
$5 d^{2} x^{2}-v^{2}$	$n p_{x}$	54.7	45	6.527920	0.051572	6.327451	0.044604
63	np_{x}	54.7	45	6.527920	-0.279541	6.327451	-0.243009
$6 p_{2}$	np_{x}	54.7	45	6.527920	-0.192713	6.327451	-0.192178
2s	np_{x}	45	90	$5.33002{ }^{4}$	0.000000	5.166342	0.000000
$2 p_{x}$	$n^{n} p_{x}$	45	90	5.330024	0.046236	$5.16631+2$	0.043181
$2 p_{z}$	$n p_{x}$	45	90	5.330024	0.000000	5.166342	0.000000

Table 18. TBA interaction vector set for KTaO3

Interaction	Vectors in terms of unft cell translation vectors ${ }^{\text {a }}$		
	T1	T2	T3
Ta-Ta	1.0	0.0	0.0
	-1.0	0.0	0.0
	0.0	1.0	0.0
	0.0	-1.0	0.0
	0.0	0.0	1.0
	0.0	0.0	-1.0
$\mathrm{Ta}^{-\mathrm{O}_{1}}$	0.5	0.0	0.0
	-0.5	0.0	0.0
$\mathrm{Ta}-\mathrm{O}_{2}$	0.0	0.5	0.0
	0.0	-0.5	0.0
$\mathrm{O}_{1}-\mathrm{O}_{2}$	-0.5	0.5	0.0
	-0.5	-0.5	0.0
	0.5	0.5	0.0
	0.5	-0.5	0.0
$\mathrm{Ta}-\mathrm{O}_{3}$	0.0	0.0	0.5
	0.0	0.0	-0.5
$\mathrm{O}_{2}-\mathrm{O}_{3}$	-0.5	0.0	0.5
	-0.5	0.0	-0.5
	0.5	0.0	0.5
	0.5	0.0	-0.5
$\mathrm{O}_{2}-\mathrm{O}_{3}$	0.0	-0.5	0.5
	0.0	-0.5	-0.5
	0.0	0.5	0.5
	0.0	0.5	-0.5

a In terms of components (X, Y, Z), the unit cell translation vectors in Angstrom units are:

$$
\begin{aligned}
& T 1=(3.980,0.0,0.0) \\
& T 2=(0.0,3.980,0.0) \\
& T 3=(0.0,0.0,3.980) .
\end{aligned}
$$

Table 18(Cont.)

Interaction	Vectors in terms of unit cell translation vectors		
	TI	T2	T3
$\mathrm{Ta}-\mathrm{K}$	0.5	0.5	0.5
	0.5	-0.5	0.5
	-0.5	-0.5	0.5
	-0.5	0.5	0.5
	0.5	0.5	-0.5
	0.5	-0.5	-0.5
	-0.5	-0.5	-0.5
$\mathrm{O}_{1}-\mathrm{K}$	0.0	0.5	0.5
	0.0	0.5	-0.5
	0.0	-0.5	-0.5
	0.0	-0.5	0.5
	0.0	0.5	0.5
	0.0	0.5	-0.5
	0.0	-0.5	-0.5
	0.0	-0.5	0.5
$\mathrm{O}_{2}-\mathrm{K}$	0.5	0.0	
	-0.5	0.0	0.5
	-0.5	0.0	-0.5
	0.5	0.0	-0.5
	0.5	0.0	0.5
	-0.5	0.0	0.5
	-0.5	0.0	-0.5
	0.5	0.0	-0.5
$\mathrm{O}_{3}-\mathrm{K}$			
	0.5	-0.5	0.0
	-0.5	-0.5	0.0
	-0.5	0.5	0.0
	0.5	0.5	0.0
	0.5	-0.5	0.0
	-0.5	-0.5	0.0
	-0.5	0.5	0.0

We suggest that the essence of the overlap criterion can best be shown by this evaluation or the Bloch sum normalization constant. If the vaiue of this constant is real, we may conclude that the TBA model is possible. Even though $6 \mathrm{~s}-6 \mathrm{~s}$ overlap in KTaO_{3} and $\mathrm{Na}_{\mathrm{x}} \mathrm{WO}_{3}(\mathrm{x}=1.0)$ is larger than the case of ReO_{3} (zero value), the values are smail enough to allow the TBA method to be appiicabio.

The obvious remedy to the $\mathrm{Sr}_{\mathrm{TH}} \mathrm{O}_{3}$ situation is to go further out to nezt-nearest-ineighbors, etc., until the normalization constant converges to a real number.

Since the series $\mathrm{ReO}_{3}-\mathrm{Na}_{\mathrm{x}} \mathrm{WO}_{3}(\mathrm{x}=1.0)-\mathrm{KTaO}_{3}$ is complete in itself in describing metai-non metai transitions in perovskite transition metal oxides, wo reserve the SrfiO_{3} calculation to future work. KTaO_{3} represents a good model of insulators like SrTiO_{3}.

We will now discuss the input and output aspects of the tight-binding calculations of KTaO_{3} and $\mathrm{Na}_{x} \mathrm{WO}_{3}(x=1.0)$.

ATOMIC ORBITAL FUNCTIONS, ORBITAL ENERGIES, AND CRYSTAL POTENTIAL

The radial functions of $\mathrm{K}, \mathrm{Ta}, \mathrm{Na}$ and W atoms are Schmidt orthogonalized Iinear combinations of STO's (Table 19) obtained using the same method as for ReO3. Tho least-squares functions used in the evaluation of overiap and nuclear attraction integrais aro insted in Tablo 20.

The shielding constants listed in Table 4 are used to obtain the Coulomb-exchange integrals needed to calculate the crystal potentiai (Equation 28) * Tho charge distributions for KTaO_{3} and $\mathrm{Na}_{\mathrm{X}} \mathrm{WO}_{3}(x=1.0)$ are ILsted $\operatorname{sin~Tables~} 21$ and 22 respectively. The oscillations winich exist in the preliminary self-consistency cycles at $k=(0.0,0.0,0.0)$ can be seen in Figure 15. While the KTaO_{3} energy bands are converging, the sodium tungsten bronze statos are deinitely diverging. The letter phenomenon occurred because the $3 p$ states are occupied at the gamma point. As will be seen in the discussion on the Mulliken popuiation analysis of crystal orbitals, the 3p states depopuiate as we move from the center of the Brillouin zone. Therefore, the average occupation numbers for $3 s$ and 3p Bloch sums should be close to zero.

Because of the above behavior, the $\mathrm{Na}_{\mathrm{x}} \mathrm{WO}_{3}(x=1.0)$ crystal potential cannot reliably be iterated at one point in k space. In order to utilize the preliminary iteration as efficiently as

Figure 15. Variation por cycie for energy banas (Rydberg units) corresponding to atomic orbitals in KTaO_{3} and $\mathrm{Na}_{\mathrm{N}} \mathrm{NO}_{3}(\mathrm{i}=\mathrm{F} .0)\left(\ldots-\mathrm{KPaO}_{3}\right.$ and NaWO_{3}). s and p denote perovskite hole atomic orbitais (Is and 3 p on Na , 4 s and $4 p$ on K).

Table 29. Coefficient matrix elements for Schmidt orthogonalized atomic orbital radial function used in tight-binding calculations of sodium tungsten bronze and potassium tantalate energy bands

Atomic orbital		$\underline{1}$		$T_{i j}$	n	ζ
$\cdot \mathrm{Na}$	3s	1	1	1.000000	1	10.705400
		1	2	-0.256412	1	10.705400
		2	2	1.032350	2	3.290039
		1	3	0.035387	1	10.705400
		2	3	-0.151461	2	3.290039
		3	3	1.010707	3	0.884802
Na	$3 p$	1	1	1.000000	2	3.641939
		1	2	-0.10,832	2	3.641939
		2	2	1.006013	3	0.875209
K	$4 s$	1	1	1.000000	1	18.670288
		1	2	-0.296811	1	18.670288
		2	2	1.043118	2	6.271990
		1	3	0.110129	1	18.670288
		2	3	-0.1435717	2	6.271990
		3	3	1.083821	3	2.772440
		1	4	-0.018244	1	18.670288
		2	4	0.072960	2	6.271990
		3	4	-0.199036	3	2.772440
		4	4	1.016745	4	0.920539
K	40	1	1	1.000000	2	7.580839
		1	2	-0.238385	2	7.580839
		2	2	1.028021	3	2.580910
		1	3	0.045855	2	7.580839
		2	3	-0.211194	3	2.580910
		3	3	1.020888	4	0.910559
Ta	5 d	1	1	1.000000	3	19.604000
		1	2	-0.473525	3	19.604000
		2	2	1.106447	4	9.997000
		1	3	0.105200	3	19.604000
		2	3	-0.284400	4	9.997000
		3	3	0.681500	5	4.762000
		3	3	0.577400	5	1.938000
T8	$6 s$		1	1.000000	1	72.584686
		1	2	-0.342833	1	72.584686
		2	2	1.057135	2	26.669189

Table 19(Cont.)

Atomic orbital		$\underline{\text { i }}$	j	$\mathrm{T}_{i j}$	n	ξ
Ta	65	1	3	0.182006	1	72.584686
		2	3	-0.668358	2	26.669189
		3	3	1.183608	3	14.564799
		1	4	-0.099316	1	72.584686
		2	4	0.382054	2	26.669189
		3	4	-0.877559	3	14.564799
		4	4	1.249496	4	8.609929
		1	5	0.041293	1	72.584686
		2	5	-0.160633	2	26.669189
		3	5	0.389805	3	14.564799
		4	5	-0.689384	4	8.609929
		5	5	1.144889	5	4.597790
		1	6	-0.007583	1	72.584686
		2	6	0.029534	2	26.669139
		3	6	-0.072095	3	14.564799
		4	6	0.130257	4	5.609929
		5	6	-0.240275	5	4.597790
		6	6	1.021850	6	1.857920
Ta	60			1.000000	2	
			2	-0.415865	2	34.298294
		2	2	1.083025	3	15.427500
		1	3	0.209432	2	34.298294
		2	3	-0.662656	3	15.427500
		3	. 3	1.173199	4	8.574400
		1	4	-0.074746	2	34.298294
		2	4	0.244908	3	15.427500
			4	-0.518795	4	8.574400
		4	4	2.094313	5	4.251989
		1	5	0.016522	2	34.298294
		2	5	-0.054325	3	15.427500
		3	5	0.117028	4	8.574400
			5	-0.27333?	5	4.251989
		5	5	1.030778	6	1.837780
W	5 d	1	1	1.000000	3	19.929000
		1	2	-0.477561	3	19.929000
		2	2	1.108180	4	10.202000
		1	3	0.113900	3	19.929000
		2	3	-0.307700	4	10.202000
		3	3	0.694000	5	4.982000

Table 19(Cont.)

Table 20. Least squares functions for $T a, W$ and K orbitals

Orbital	Least squares function
Ta 5d	$\begin{array}{r} 0.561897(1.31205)+0.684028(3.16414) \\ -0.438158(7.63065)+0.150918(18.4021) \end{array}$
Ta 6s	
Ta 6 p	$\begin{array}{r} 1.560500(1.21565)-1.006810(2.12183)-1.218623(6.46413) \\ 0.034422(3.70348)+0.2186(1.2838) \\ -0.093881(11.2826) \end{array}$
w 5d	$\begin{aligned} 0.549610(1.40651) & +0.703046(3.32302) \\ -0.475221(7.85101) & +0.166889(18.5489) \end{aligned}$
W 6s	$\begin{array}{r} 2.967210(1.47395)-3.764970(2.07141) \\ +2.701230(2.91104)=2.228700(4.09102) \\ +1.480270(5.74929)-0.433006(3.07974) \end{array}$
W 6p	$\begin{aligned} & 1.576230(1.26262)-1.027670(2.18974) \\ & 0.028008(3.79763)+0.234639(6.58617) \\ & -0.100397(11.4223) \end{aligned}$
K 4 s	$\begin{array}{r} 1.140140(0.77057)-0.274258(1.65456) \\ -0.120426(3.55265)+0.082456(7.62824) \end{array}$
K 49	$\begin{aligned} & 1.098740(0.75447)+0.039917(1.19488) \\ & -0.366921(1.89239) \end{aligned}$

possible, we used the weighted assumed charge distributions after two cycles at $\mathrm{k}=(0.0,0.0,0.0)$ to obtain input for the final TBA calculation for the $56 \underline{k}$ vectors. These vectors are determined by the lattice constants of KTaO_{3} and $\mathrm{Na}_{\mathrm{x}} \mathrm{WO}_{3}$ ($x=1.0$ d which are 3.989 A (71) and $3.8665 \mathrm{~A}_{\mathrm{A}}$ (81) respectively, and Table 18.

Table 21. KTaO_{3} charge distributions

Orbital	Initial charge distrabation	Cycla one for 56 k vectors
		assumed calculated
5a 2	0.500000	0.4121240 .404526
5 dz	0.300000	0.2051420 .073766
${ }_{5} \mathrm{~d}_{\mathrm{yz}} \mathrm{z}$	0.300000	0.2069180 .076799
$5{ }^{5} x^{2}-y^{2}$	0.500000	0.3948300 .308389
$5 \mathrm{~d}_{x y}^{x-y^{2}}$	0.300000	0.2065670 .072350
$6 \mathrm{~s} \times$	0.500000	0.6769540 .547901
${ }^{6} p_{z}$	0.033333	0.0355170 .098634
$6 p^{2}$	0.033333	0.0386360 .178331
$6 p^{\pi}$	0.033333	0.0401420 .385103
$28(1)$	1.000000	i. 0748870.830380
$2 p_{z}(1)$	0.666667	0.7237300 .848941
$2 p_{x}(1)$	0.666667	0.7601110 .808833
$2 p_{y}(1)$	0.666667	0.7397240 .790418
$2 s(2)$	1.000000	1.0919370 .732372
$2 p_{2}$ (2)	0.666667	0.7639290 .692407
$2 p_{x}(2)$	0.666667	0.7719290 .803928
$2 p_{y}(2)$	0.666667	0.7506740 .751220
2s(3)	1.000000	1. 0672120.759119
$2 p_{2}$ (3)	0.666667	0.7530500 .622150
$2 p_{x}^{2}(3)$	0.666667	0.7270400 .846893
$2 p_{y}(3)$	0.666667	0.7310640 .794906
48	$0.000000^{\text {E }}$	-0.488564 0.262203
$4 \mathrm{P}_{2}$	0.000000	0.0215570 .226848
$4 p^{2}$	0.000000	0.0221530 .117426
$4 \mathrm{P}^{7}$	0.000000	0.026123-0.042396

[^4]Table 22. $\mathrm{Na}_{\mathrm{x}} \mathrm{WO}_{3}$ charge distributions for $\mathrm{x}=1.0$

Orbital	Initial charge distribution	Cycie one for 56 k vectors assumed calculated
$5 \mathrm{~d}_{2} 2$	0.600000	0.5405090 .388784
$5 \mathrm{a}^{2}$	0.400000	0.3563200 .082889
$5 \mathrm{~d}_{\mathrm{Vz}}^{\text {2 }}$	0.400000	0.3574550 .094965
$5 d x^{2}-y^{2}$	0.600000	0.5403940 .306277
$5 \mathrm{~d}_{x y}$	0.400000	0.3574540 .073552
$68^{x y}$	0.500000	0.45828440 .439432
${ }_{6} p_{z}$	0.033333	0.0259450 .158390
$6 \mathrm{p}^{2}$	0.033333	0.0258770 .142986
${ }^{6} \mathrm{p}_{\mathrm{y}}$	0.033333	0.0255300 .325123
2s(1)	1.000000	1.0253430 .832141
$2 p_{2}$ (1)	0.666667	0.6582600 .834392
$2 p_{x}(1)$	0.666667	0.6926750 .809648
$2 p_{y}(1)$	0.66666 ?	0.654 .0450 .551243
2s(2)	2.000000	5.0259240 .759421
$2 p_{z}(2)$	0.666667	0.6599420 .884756
$2 p^{2}(2)$	0.666667	0.6600650 .832776
$2 \mathrm{p}_{\bar{y}}(2)$	0.666667	0.6928340 .768167
$28(3)$	1.000000	1.0247860 .818941
$2 p_{z}$ (3)	0.666667	0.6922920 .612055
$2 p_{x}(3)$	0.666667	0.6584460 .831038
$2 \mathrm{p}_{\mathrm{y}}(3)$	0.666667	0.6541570 .866219
3 s	0.000000	-0.080707 0.373114
$3 \mathrm{p}_{2}$	0.000000	$0.0969890 .554747$
$3 p_{x}$	0.000000	0.0980910 .052772
$3 p_{y}$	0.000000	0.0991000 .117558

Table 23. KTaO_{3} and $\mathrm{Na}_{\mathrm{KNO}_{3}}(x=1.0)$ energy parameters ${ }^{\text {a }}$

Orbital		Two-electron interaction energy			One center kinetic energy	Core energy
		$\underline{1}$	1	$g(i, j)$		
Ta	$5 d$	Is	5d	1.413834	9.283373	-93.930159
		2 s	5d	1.405152		
		2p	5 C	1.408750		
		3 s	5 ¢	1.379804		
		3 p	5d	1.383094		
		3d	5 d	1.392094		
		4 s	5 c	1.332458		
		4 p	5 d	1.333250		
		4 d	5 d	1.3474 .52		
		45	5 d	1.320788		
		5 s	5 d	1.112624		
		5 p	5 d	1.073412		
		5 a	5 d	0.960438		
		6 s	5 d	0.581030		
		$6 p$	5d	0.573640		
Ta	$6 s$	1 s	$6 s$	0.629908	1.370633	-44.801565
		2 s	$6 s$	0.626846		
		2p	$6 s$	0.627788		
		3 s	6 s	0.623608		
		3 p	$6 s$	0.624420		
		3d	$6 s$	0.625494		
		4 s	$6 s$	0.619166		
		4 p	$6 s$	0.619966		
		4 d	$6 s$	0.621244		
		$4{ }^{\circ}$	$6 s$	0.619850		
		5	$6 s$	0.606948		
		5 p	6 6s	0.607446		
		5 d	6 s	0.581030		
		6 p	6 s	0.444326		
Te	$6 p$	1 s	60	0.623696	1.412651	-44.134531
		2s	$6 p$	0.621416		
		2p	$6 p$	0.622094		
		3 s	$6 p$	0.618870		
		3 p	6 p	0.619114		
		3a	6 p	0.620188		
		43	$6 p$	0.614456		
		4 p	$6 p$	0.614394		
		4 d	6 p	0.615824		

[^5]148

Table 23(Cont.)

Table 23(Cont.)

Orbital		Two-electron interaction energy			One center kinetic energy	Core energy
		1	j	$\underline{E}(1, j)$		
W	$6 p$	is	$6 p$	0.645508	1.552321	-46.311767
		2 s	60.	0.644210		
		2p	$6 p$	0.644802		
		3 s		0.641214		
		3 p	$6 p$	0.647474		
		3d		0.642618		
		4 s	6 p	0.636332		
		4 p	$6 p$	0.630278		
		4d		0.697850		
		4 f	$6 p$	0.636292		
		5 s	6	0.522528		
		5 p	0	0.643842		
		5 C	op	0.597400		
		6 s		0.459920		
		6 p	óp	0.497060		
Na	3 s	1 s	3 s	0.599058	0.485361	-6.210933
		2 s	3 s	0.579812		
		2p	3 s	0.585014		
		3 s	3 s	0.452126		
		3 p	3 s	0.375500		
Na	$3 p$	Is	3 p	0.589784	0.524253	-5.975097
		2 s	3p	0.578078		
		2 p	3p	0.579366		
		3 s	3 p	0.375500		
		3p	3 p	0.429974		
K	$4 s$				0.457099	-8.549737
		2 s	4 s	0.463486		
		2 p	43	0.465290		
		3 s	4 s	0.450782		
		3p	4 s	0.452184		
		4 s	4 s	0.365094		
		4 P	4 s	0.318634		
	4 p	1 s	4 p	0.464678	0.491857	-8.347437
		2 s	4 P	0.460638		
		2 p	4 p	0.461494		

Table 23(Cont.)

Orbital	Two-electron inter- action energy	one center kinetic energy	Core energy	
	1	\mathcal{L}	$\mathrm{E}(1, j)$	

Atomic orbital paracoters isod in ojtaining tightbinding energy bamas are ifsted in Tabie 23.

E(́ㅡ) VS. \underline{k}, DENSITY OF STATES, JOINT DENSITY OF STATES AND RESULTS OF THE MULLIKEN POPULATION ANALYSIS OF KTaO3

The $E(\underline{k})$ versus k and density of states curves for potassium tantalate are shown in Figure Hl (Appendix H). The energy band values at symmetry points are listed in Table Hi. The corresponding results of the Muliken population analysis are Iisted in Tables H2-H5 (Appendix H). The Fermi energy is found to be -3.8905 Fyciberg units.

The minimum in KTaO_{3}, ifke ReO_{3}, conduction band is located at the R symmetry point. This property is evidenced by the rapid drop in valence bands at n accompanied by a minimum in the R_{25}, bands.

The gap between the $2 p$ ground state and the $亡_{2 g}$ type conduction band is 0.3 Rya. (4.0 e.v.) which is comparable with the observed value of 3.8 e.v. (68). The joint density of states curve shown in Figure 16 with peaks listed in Table 24 gives a peak at 0.3 Ryd. which we identify with this conduction band minimum. Furthermore, most of the peaks compare qualitatively with experimental results (70) as well as resemble the SrTiO_{3} results (66). The latter agreement suggests a fustification for supposing the KTaO_{3} is a good model for perovskite transition metal oxides which behave as insulators.

The difference between the intermediate og states at R_{12} and the top of the valence band is not experimentally available since $\mathrm{R}_{15}{ }^{\prime} \rightarrow \mathrm{R}_{12}$ transitions are symmetry forbidden as

Figure 16. Joint density of states: KTaO_{3}.

Table 24. Joint änsfty of states peaks of KTaO_{3}

Rydberg units	Electron-volts	$\begin{aligned} & \text { Frova-Boddy } \\ & \text { resultsa } \end{aligned}$	Cardona results for $\mathrm{SrCiO}_{3}{ }^{\text {a }}$
0.06	0.816		
0.19	2.58	3.57	3.20
0.28	3.81	3.80	4.00
0.34	4.63	4.40	4.86
0.39	5.31	4.88	5.5
0.46	6.25	5.5	6.52
0.54	7.35		7.40
0.62	8.43		
0.66	8.97		9.20
0.74	10.03		9.9
0.82	11.15		
0.85 1.06	21.58		12.5
1.14	15.50		15.3

${ }^{\text {a Results }}$ are in electron-volts.
determined by Casella's rules (82). Thus, the 2.58 e.v. peak in the joint density of states (attributed to such a transition) is not obtainable by refiectance spectroscopy.

We now discuss the unusual behavior of 49 and $4 p$ occupation numbers at the symmetry points listed in Tables H2 to $H 5$. The crystal orbitals $\Psi_{i}(\underline{k}, \underline{r})$ are normalized to 1 or $\left\langle\Psi_{i} \mid \Psi_{i}\right\rangle=$ 1, but large positive and negative $n_{i 4 s}$ and $n_{14 p}$ values occur. One may argue that the Muiliken population analysis has failed, if we compare the TBA calculation with the usual molecular orbital calculation where negative occupation numbers are forbidden. However, we have a different situation when one appiles such a procedure to a crystal. The dependency of
occupation numbers on \underline{k} vectors relaxes the strict requirement on positive sccupation numbers. However, the average occupation number over the entire Brillouin zone should be non-negative since we would then be back to the molecular situation. The average occupation number may be calculated to be negative at some stage of iteration of the crystal potential, but the final number should be positive. For the most part, our final iteration gives such a result. The probjen of normaiazation of Bloch sum noted in the introduction of this part arises in the KTaO_{3} calculation in a rather unique way. Because the nomalization constant or 6 and 6 p Bloch sums at M and R summerry points is small (about. 1), the TBA method is on the verge of breaking down for upper states as expected from overiap integrals of 6p-óp and 6s-6s pairs (Table 27).

The number of electron states/Ryã.-unit cell for KTaO_{3} is much smaller than the winue of 21.1 for ReO_{3}, in that the density of states drops abruptly to zero in the band gap region. Therefore, no estimate of the actuai density of states can practicaiiy De made. Within the approximations used in the TBA method, it is reasonable to assign KTaO_{3} to be an insulator as it is thought to be. For the same reason, no Fermi surface is considered.

E(k) VS. \underline{k}, DENSITY OF STATES, JOINT DENSITY OF STATES AND MULLIKEN POPULATION ANALYSIS OF $\mathrm{Na}_{\mathrm{X}} \mathrm{WO}_{3}(x=1.0)$

The $\mathrm{E}(\underline{k})$ ve. \underline{k} and density of states curves for $\mathrm{Na}_{\mathrm{x}} \mathrm{WO}_{3}$ ($x=1.0$) are shown in figure is (Appendix I). The energy band values at symmetry points are lisied in Tabie il. The corresponding results of Kujiiken population analysis are listed in Tables I2 to I5 (Appendix I). The Fermi energy is located at -3.2252 Ryd.

The number of states/Ayi.-unit coli for $\mathrm{Na}_{\mathrm{x}} \mathrm{WO}_{3}$ is found to be 20.5 or 2.60×10^{22} eiectron states/e.v. $-\mathrm{cm}^{3}$ which corresponds to a vaiue of γ oqual to $3.55 \mathrm{miliijoules-moze}{ }^{-1}$ deg ${ }^{-2}$. The value of 3.0 milisjoules-mole e^{-1} deg ${ }^{-2}$ from the extrapoiation of experimental $(51,76)$ vaiues to $x=1.0$ gives encouraging agreement with our resuits. Furthermore, it is interesting that the value of 21.1 for ReO_{3} is almost identical to the 20.5 value for $\mathrm{Na}_{\mathrm{X}} \mathrm{WO}_{3}(\mathrm{x}=\mathrm{i}, 0)$.

Let us expana the picture of bands in the Fermi level region to produce Figure 17 and then use the Mulliken population analysis results in Tables i2 to I5 (Appondix I) to quantitativeiy dotermine why $\mathrm{Nax}_{3} \mathrm{WO}_{3}$ shouid be a conductor at $x=1.0$.

We no longer have the simple picture postulated for HeO_{3} and KTaO_{3} since most low lying conduction bands cross the Fermi levei nesmiy perpenaiculariy. Even the $6 s$ type band crosses the Fermi level at X symmetry. However, the low lying

Figure 17. Energy bands of $N a$ wo $3(x=1.0)$ in the region of the Fermi energy
(numbers denote 1 thenergy band).
eg type conduction bend crosses in many places. We may conclude that conduction is associatod primarily with $5 \mathrm{~d}_{\theta g}$ orbitals.

Projections of the Fermi surface in the $1 / 48$ th reduced zone are shown in Figure 18. We precict three Fermi surface sheets which may eventugily be correlated with de Hass van Alphen measurements.

The foint density of states is shown in Figure 19 and the corresponding peaks are tabulated (Tabie 25). Comparison of the low energy peaks with experiment can only be by extrapolation, but agreement with Dicken's results (78) is reasonably close.

Table 25. Joint density of states peaks for $\mathrm{Na}_{\mathrm{x}} \mathrm{WO}_{3}$ ($\mathrm{x}=1.0$)

Ryaberg units
Electron-volts

0.08	1.09
0.18	2.44
0.30	4.08
0.42	7.72
0.54	8.03
0.59	11.58
0.85	13.31
0.98	

Figure 18. TBA method: NaWO_{3}.

Figure 19. Joint density of states: NaWO_{3}.

We have utilized the overlap criterion to set up the TBA interaction model for nearest-nelghbor atoms. Then we have proceeded in a "semi-rigorous" manner to make theoretically justifiablo approximations to make $E(\underline{k})$ va. k calculations practical. The proper choice of good atomic orbital functions and the explicit evaluation of all two-center integrals (overlap, nuclear attraction, Coulomb, and exchange) enables us to quantitatively investigate chemical offects in crystals,eg. Madelung and overiap arfocts.

The approximation of tio crystal potential as a linear combination of atomic potontials is an important part of the LCAO procedure. By using the Mulliken popuiation anaiysis over all k space, we are able to treat this crystal potential In a SCF-MO manner. Thereby, we obtain an internal handie for controlling TBA results instead of the usual a priori semiempirical procedures. Only bond distances are inftialiy needod.

The role of empirical control on TBA energy bands is purely ad hoc in nature. Instead of parametrizing the crystal potential to make various calculated electronic properties agree with oxperimsnt, we proceed to improve the method. For instance, we could seek better convergence in the SCF treatment of charge distrioutions which occur in the crystal potential. In other words, if we trust the overlap criterion to show when the TBA method is applicable, defic-
iencies in our theoretical results as comparea with experiment are thought to refloct the need to increasethe rigor of our method. The crux of such a philosophy is some observable trend in proliminary results which reflect qualitative agreement with experimental results.

The series $\mathrm{ReO} 3, \mathrm{NaWO}_{3}, \mathrm{KTaO}_{3}$ has provided a good model for making further theoretical investigations of porovskite transition metal oxides using the TBA method. The density of states diagrams for these throe substances show quantitatively the metal-non metal transition which until present has only been qualitatively understood. In addstion, the calculation of the electronic specific heat coorificiont and the joint density of states representation of optical spectra provide other avenues botwen thoory and exporiment. The resuits described in this thesis can be said to be botter tinan just qualitatively descriptive of the electronic structure of crystals; perhaps, the LCAO description of crystals gives us a semi-quantitative handle for locking beyona prosent observable phenomenon to produce some surprising predictions. The consistent agroement of our results with empirical information, thererore, shows that the molecular picture of crystals can be accurate if we include the effects of translational symmetry.

The SCF procedure will be the subject of further work in this area. More efficient procedures will be sought to obtain convorgence of charge distributions. Also the TBA interaction model will be expanded to include more noighboring atoms
in order to handie peravskite oxides which represent borderine cases for appifcation of the TBA method, Og. SrTio 3 . With these and othor improvements we can uitimately investigate a series of substances which are ifttie understood or may not yet have been synthesized.

BIBLIOGRAPHY

1. Gerstein, B. C., L. D. Thomas and D. H. Silver, J. Chem. Phys. 46, 4288 (2967).
2. Pilar, F. L., "Elementary Quantum Chemistry," McGrawHill, Inc., New York (1968).
3. Roothaan, C. C. J., Rev. Mod. Fhys. 23, 69 (1951).
4. Ziman, Z. M., "Principles of the Theory of Solids," Cambridge University Press, London (1964).
5. Flodmark, S. F., Internat. Quantum Chem. 1, 147 (1967)。
6. Mulliken, R. S., J. Chem. Phys. 23, 1833 (1965).
7. Fenshe, R. F. and D. D. Radtke, Inorg. Chem. I, 479 (1968); , K. G. Caulton, D. D. Radtike and C. C. Sweeney, ibid. 5,960 (1966); and K. G. Caulton, 1bid. I, 1273 (I968).
8. Richardson, J. W. and R. E. Rundie, "A Theoretical Study of the Electronic Structure of Transition-Metal Complezes," Inc-830, Ames Ins (1956).
9. Basch, H. and H. B. Gray, Inorg. Chem. 6, 639 (1967).
10. Mulliken, R. S., J. Chem. Phys. 46, 497,675 (1949).
11. Mattheiss, L. F., Phys. Rev. 181, 967 (1969).
12. Loukes, T. L., "Augmented Plane Wave Ke thod," W.A. Benjamin, Inc., New York (1967).
13. Slater, J. C. and G. F. Koster, Phys. Rev. 94, 1498 (1954).
14. Feinleib, J., W. J. Scouler and A. Feretti, Phys Rev. 165, 765 (1068).
15. Marcus, S. M., Phys. Latters 27A, 584 (1968).
16. Moore, C. E., "Atomic Energy Levels," U.S. National Bureau of Standerds Circular L.67, J.S. Government Printing office, washington, D. C. , (1049 and 1952).
17. Cotton, F. A. and C. B. Harris, Inorg. Chem. 6, 369,376 (1967).
18. Slater, J. C., "Quantum Theory of Atomic Structure," Vol. I, he-Graw Hill, Inc., New Vorts (1960).
19. Gotton, A., Fev. Pure and Applied Chem. 16, 175 (1966).
20. Pauling, L., J. Chom. Soc. 1948, 1461 (1948).
21. Condon, E. U. and G. H. Shortioy, "The Theory of Atomic Spectra," Cambridge University Press, New York (1964).
22. Eyring, H, J. Valter and G.E. Kimball, "Quantum Chemistry," John Wiley and Sons, Inc., liew York (1944).
23. Mann, J. B., "Atomic Structure Calculations I. and II. I. Hartree-Fock Enerey Results and II. Hartree-Fock Wave Functions amd Radia? Erpectation Values; Hydrogen to Lamrencium," La-3690 and LA-369I, Los Alamos Lab (1967 anc 1968)。
24. Silver, D. M. and K. Ruedenberg, J. Chem. Phys. 49, 4306(1968).
25. Brown, D. A. and N. J. Fitzpatrick, Proc. Cambridpe Phil. Soc. 53, 206 (1967); J. Chem. Soc. 19,97, 316 (1967).
26. Burns, G, J. Chem. Phys. 39, 1521 (1964).
27. Clementi, E., D. I. Raimondi anc W. P. Reinhardt, J. Chem. Fhys. 47, 1300 (1967).
28. Rjchardson, J. W., R. R. Powell and W. C. Nieuport, J. Chem. Phys. 38, 796 (1963).
29. Watson, F. T., Snlid State and Molecular Theory Group Technical Report No. 12, MTT (l959).
30. Basch, H. and H. B. Cray, Theor. Chim. Acta (Eerl.) 4, 367 (1966).
31. Shavitt, I., "Methods in Computational Physics," Vol. 2, Academic Press, Inc., Now work (1963).
32. Gianturco, F. A., J. Chem. Soc. (A) 1969, 23 (1969).
33. Wolfsberg, M. and L. Fieimhoiz, j. Chem. Fhys. 20, 837 (1952).
34. Jørgenson, C. K., Cbem. Phys. Letters 1, 11 (1967).
35. Ruedenberg, K., Rev. Mod. Phys. 34, 326 (1962).
36. Tos, P. and f. C. A. Schult, Thenr. Chim. Anta 4, 1 (1966).
37. Sleight, A. W. and J. L. Gillson, Solid State Comm. 4, 1991 (1963).
38. Fuchs, R., J. Chem. Phys. 42, 3781 (1965).
39. Sienko, M. J., Adv. Chem. Ser. No. 39, Am. Chem. Soc., Washington, D. C. (1962).
40. Goodenougn, J. B., Dull. Noc. Chim. France 1965, 1200 (2965); \qquad , J. ^ppi. Revr. Suppl. 37, 1415 (1966).
41. Kahn, A. H. and A. J. Levenjecker, Phys. Rev. 335A, 1321 (1964).
42. Cardona, M., Phys. Rev. $2100 \mathrm{~A}, 65 \mathrm{l}$ (1065)
43. Born, M. and T. von Karman, resilt T. 12, 297 (1912).
44. Born, M. and J. F. Oppenheimer, Ann. fhysit 84, 457 (1927).
45. Kaufman, J. J., J. Gbom, Phys. 43, sl52 (1965).
46. Karian, H. G., "Semi-Rigorous Moleaular Orbital Calculation of Transition Metal Complexes," Unpublished M.S. thesis, Chicago, Illinois, De Paul University (1967).
47. Hsia, Y., Can. J. Chem. L46, 2667 (1968).
48. Raffenetti, T_{0}, "Even Tempered Orbital Functions," To be published.
49. Cusachs, L. C. and J. H. Corrington, "Atomic Orbitals for Semi-Empirical Molecular Orbital Cajculations," To be published.
50. Slater, J. C., "Quantum Theory of Molecules and Solf.ds," Vol. II, McGraw-ifll, Inc., New York (1965).
51. Vest, R. W., M. Griffel and J. F. Smith, J. Chem. Phys. 28, 293 (1958).
52. Sandin, T. R. and P. H. Keeson, Phys. Rev. 177, 1370 (1969).
53. Ferretti, A., D. B. Rogers and J. B. Goodenough, J. Phys. Chem. Solids, 26, 2007 (1965).
54. Cohen, M. H., Phis. Mag. 3, 762 (1958).
55. Brust, Do, Phys. Rev. 134 , A1337 (1964).
56. Narath, A. and D. C. Barham, Phys. Rev. 276, 479 (1968).
57. Keller, J. M., J. Chem. Phys. 33, 232 (1960).
58. Mackintosh, A. R., J. Chem. Phys. 38, 1991 (i963):
59. Guncy, if. w., Pavs. Rev. 113, 795 (1959).
60. Cohen, M. I. and R. F. Blunt, Phys. Rev. 169, 929 (1968; .
61. Prederfkse, H. P.R., W. T. Hosler and W. R. Thurber, Phys. Rev. 113, 648 (1966); \quad w. R. Hosier, W. R. Thurber, J. Bubiskin and F. Siebermann, Phys. Rev. I5 775° (1967).
62. Tuite, O. N. and E. I. Steizer, Thys. Rev. 14l, 675
63. Noland, J. A., Phys. Rev. Gity 724 (1954).
64. DiDomenico, M., Jr. and S. H. Wempie, Pays. Rev. I66, 565 (1968).
65. Felaman, A. and D. Horowitz, Rotarv Transmission Measurements, To be published.
66. Cardona, M., Phys. Rev. 140, 651 (1967).
67. Malitson, I., private communication to M. I. Cohen and R. F. Blunt, Phys. Rev. 168, 929 (1968).
68. Baer, W. S., J. Phys. Chem. Solids, 28, 677 (1967).
69. Schooley, J., W. Hosier, M. H. Cohen and C. Koonce, Phys. Rev. 140, 651 (1965).
70. Prova, A. ana B. J. Boday, Phys. Rev. 153, 606 (1967).
71. Wemple, S. H., Phys. Rev. 137, Al575 (1965).
72. Brown, B. W. and E. Banks, J. Amer. Chem. Soc. 76, 963
(1954).
73. Fromhold, A. T. and A. Narath, Phys. Rev. 352,585 (1966).
74. Narath, A. and D. C. Wallace, Phys. Hev. 127, 72h (1962).
75. Jones, W. H., E.A. Garbaty and R. G. Barnes, J. Chem. Phys. 36, 494 (1962).
76. Greiner, J. D., H. R. Shanks and D. C. Wallace, J. Chem. Phys. 36, 772 (1962).
77. Sienko, M. J. and J. C. Gulick, Abstracts ACS, IN12 (1969).
78. Dickens, P. G., R. M. P. Quilliam and M. S. Whittingham, Mat. Res. Bull. 3, 941 (1968).
79. Gardner, w. and G. C. Danielson, Phys. Rev. 93, 46 (1954).
80. André, J. M., J. Chem. Phys. 50, 1536 (1969).
81. Wechter, M. A., H. R. Shanks and A. F. Voigt, Inorg. Chem. I, 845 (1968).
82. Casella, R. C., Phys. Rev. 154, 7l+3 (1967).
83. Silver, D. M. and K. Ruedenberg, J. Chem. Phys. 49, 4301 (1968).
84. Edmonds, A. R., "Angular Momentum in Quantum Mechanics," Princton Unjversity Press, New Jersey (1957).
85. Mehler, E. L. and K. Ruedenberg, J. Chem. Phys. 50, 2575 (1969).
86. Lowdin, P., J. Appl. Phys. 33, S251 (1962).
87. Bloch, F., Z. Physik, 52, 555 (1928).
88. Callaway, J., "Energy Band Theory," Academic Press, Inc., New York (1964).

AGIROWLEDGEMENTS

The author wishes to thank his advisor, Dr. Bernard C. Gerstein, for recognizing the feasibility of the problem and for giving him the opportunity to make the thochetical investigation a reality. Gratitude is expressed to Lowell Thomas for his preliminary work in programing many of the subroutines used in the TBA calculation.

The overlap anfi nuclear attraction subroutines used are contributed by Dr. David M. Siiver. Dr. Silver has written the Coulomb packaze used in auxilisary programs. The author fs very grateful to Dave for taking time nut of his busy schedule to aid him in cebugging tho ribA computer program in early stages of development.

Dr. Klaus kuecienverg and otcer people in his group: Dr. Mark Cordon, Dr. Otto Steinborr, Dr. Ernest Mehler and Richard Raffenetti have been very helpful in formulating many aspects of the TESA calculation. The author is appreciative of many useful suggestions made by people in the theoretical physics group: Dr. R. Gupta, Dr. Kenneth Klfewer, Dr. í. Hodges and Dr. Samuel. Liu. of course, the execution of the TBA program would have been impossible without the patience and conperation of many in the compiter services division.

Pinally, the author has a special thank you to his wife, Joan, for her patience and encouragement, ber typing and keypunching, which has enabled him to complete his thesis.

APPENDIGES

Appendix A. Solution of the Secular Determinant

The problem is

$$
\begin{equation*}
|\underset{\sim}{H}-E \underset{\sim}{S}|=0 \tag{AI}
\end{equation*}
$$

where the Hamiltonian matrix, $\underset{\sim}{a}=\underset{\sim}{\dagger} \mathcal{\sim}$ and overlap matrix $\underset{\sim}{S}=\underset{\sim}{b}{ }_{\sim}^{\dagger} \underset{\sim}{b}$ result from the Bloch sum basis set $\underset{\sim}{b}=\left(b_{1}, b_{2}, \ldots\right.$ b_{m}) where m indicates number of atomic orbitais considered, and the Hamiltonian operator shown in Equaifon 3. The solution of the secular aeterminant is carried out in two steps:

1) Orthogonalize the Bloch sums by the Schmidt method to transform $\underset{\sim}{S}$ into an identity matrix.
2) Diagonalize the transformed Hamiltonian matrix to give the eigenvaiues and eigenvectors.

The description of the two steps can be lengthy, but a general idea of the procedure is summarized in the following equations:

The transformation is made by an upper triangular matrix $\underset{\sim}{\alpha}, 1 . e .$,

$$
\begin{align*}
& {\underset{\sim}{\alpha}}^{\dagger}|\underset{\sim}{H}-E S| \underset{\sim}{\alpha}=0 \\
= & \left|\alpha^{\dagger} \underset{\sim}{\underset{\sim}{\alpha}} \underset{\sim}{\alpha} \underset{\sim}{S} \underset{\sim}{\alpha}\right| \\
= & \left|\alpha^{\dagger} \underset{\sim}{\underset{\sim}{\alpha}}-E \underset{\sim}{I}\right|=0 \tag{A2}
\end{align*}
$$

where I is the identity matrix, i.e., $\left(I_{\sim}\right)_{i j}=\delta_{1 j}$. The overlap matrix is rewritten as $\underset{\sim}{S}=\underset{\sim}{T}+\underset{\sim}{T}$ where $\underset{\sim}{T}={\underset{\sim}{X}}_{-1}^{T}{\underset{\sim}{N}}^{T}$
chosen to be upper triangular, $1 . \theta, T_{1 j}=0,1>j$. The elements of this triangular matrix are generally complex functions, thus, $T_{i j}=a_{i j}+i b_{i j}$. It can be shown that

$$
T_{i 1}=\left[s_{11}-\sum_{k=1}^{i-i} a_{k i}^{2}+s_{k i}^{2}\right]^{\frac{2}{2}}
$$

and

$$
\begin{equation*}
T_{i j}=\frac{S_{1 j}-\sum_{k=1}^{1-1} T_{k i}^{F i} T_{k j}}{T_{11}} \tag{AB}
\end{equation*}
$$

Which gives the original matrix elements of $\underset{\sim}{\alpha}$ as:

$$
\begin{align*}
& \alpha_{i 1}=1 / T_{i 1} \\
& \alpha_{i j}=-\sum_{k=1}^{j-1} \frac{\alpha_{i k} T_{k j}}{T_{j j}} \tag{4}
\end{align*}
$$

Therefore, the $\alpha_{1 j}$ can be calculated in the following order

$$
\alpha_{11}, \alpha_{22}, \alpha_{12}, \ldots, \alpha_{\text {in }}, \alpha_{33}, \alpha_{23}, \ldots \alpha_{2 n}, \ldots
$$

When the eigenvalues and eigenvectors of $\mathrm{H}_{\sim}^{\prime} \underset{\sim}{\dagger} \mathrm{H} \underset{\sim}{\alpha}$ are found, we then have

$$
{\underset{\sim}{V}}^{-1}{\underset{\sim}{H}}^{\prime} \underset{\sim}{V}=\underset{\sim}{E} \text { where }(\underset{\sim}{E})_{1 j}=E_{1} \delta_{1 j} \text { and }
$$

$\underset{\sim}{V}$ is the eigenvector matrix
or

$$
\begin{align*}
& {\underset{\sim}{V}}^{+}{\underset{\sim}{\alpha}}^{+} \underset{\sim}{H} \underset{\sim}{\underset{\sim}{V}}=\underset{\sim}{E} \\
& ={\underset{\sim}{V}}^{\dagger}{\underset{\sim}{\alpha}}^{\dagger}{\underset{\sim}{b}}^{+} \pi \underset{\sim}{b} \underset{\sim}{\alpha} \underset{\sim}{V}=\underset{\sim}{E} \\
& =(\underset{\sim}{b} \underset{\sim}{c}) \dagger(\underset{\sim}{b} \underset{\sim}{c}) \text { where } \underset{\sim}{c}=\underset{\sim}{\alpha} \underset{\sim}{v} \text {, or } \\
& \left\langle b_{i} "\right| X\left|b_{j} "\right\rangle=E_{j} \delta_{i j} \tag{A5}
\end{align*}
$$

where $b_{j} \prime=\sum_{i} b_{i} c_{i j}$.

Hence, we see that the columns of $\underset{\sim}{\mathcal{\sim}}$ define ifinear combinations of the Bloch sums which form the function \mathcal{F}_{i} (Equation 1). The diagonalization procedure foilows from the transformation ${\underset{\sim}{U}}^{-1} \underset{\sim}{F} \underset{\sim}{U}=\underset{\sim}{D}$ where $\underset{\sim}{D}$ is diagonal $D_{12}=D_{21} *=0$ for which u is defined as

Thus, U is a unit matrix except for the elements $U_{i j}, U_{j j}$, and $U_{j 1}$. The diagonalization is accomplished by an iteration process which ultimately makes D approximately diagonal. The following sequences are repeated until the values of all of the offediagonal elements are on the order of 10^{-10} Rydberg
units:

1) Find the largest off-diagonal element of $\mathrm{H}, \mathrm{H}_{i j}$
2) Calculate u
3) Make the transformation $U^{-1} H=H \quad$

The choice of U is basically the same as Jacobi's method for real symmetric matrices, but modifications must be made to account for the complex form of $H_{i j}$, i.e., $H_{i j}=$ $a+i b$.

If

$$
\underset{\sim}{H}=\left(\begin{array}{cc}
a & b-i c \\
b+i c & d
\end{array}\right)
$$

and

$$
\underset{\sim}{U}=\left(\begin{array}{ll}
\cos \phi & -\sin \phi \exp (-1 \theta) \\
\sin \phi \exp (1 \theta) & \cos \phi
\end{array}\right)
$$

then the elements of

$$
\underset{\sim}{D}={\underset{\sim}{U}}^{-1} \underset{\sim}{H} \underset{\sim}{U}
$$

are

$$
\begin{align*}
& D_{11}=a \cos ^{2} \phi+\alpha \sin ^{2} \phi+\{(b-1 c) \exp (i \theta)+(b+i c) \exp (-i \theta)\} . \\
& \sin \phi \cos \varnothing \\
& D_{22}=a \sin ^{2} \phi+\alpha \cos ^{2} \phi-\{(b-i c) \exp (i \theta)+(b+i c) \exp (-i \theta)\} \text {. } \\
& \sin \varnothing \cos \varnothing \\
& D_{12}=D_{21}^{*}=(d-a) \sin \emptyset \cos \varnothing \exp (-1 \theta)+(b-i c) \cos ^{2} \phi \\
& -(b+i c) \sin ^{2} \varnothing \exp (-2 i \theta) \tag{AT}
\end{align*}
$$

By setting $D_{12}=0=D_{21}^{\prime}$ and solving for θ and ϕ, we find that D will be diagonal if

$$
\begin{align*}
& \tan \theta=\frac{c}{b}=\frac{\sin \theta}{\cos \theta} \\
& \tan 2 \not \emptyset=\frac{\left(b^{2}+c^{2}\right)^{\frac{1}{2}}}{\frac{2}{2}(a-d)} \tag{AB}
\end{align*}
$$

Using $\sin ^{2} \theta+\cos ^{2} \theta=1$, we obtain

$$
\begin{align*}
& \sin \theta=\frac{c}{\left(b^{2}+c^{2}\right)^{\frac{1}{2}}} \\
& \cos \theta=\frac{b}{\left(b^{2}+c^{2}\right)^{\frac{1}{2}}} \tag{AC}
\end{align*}
$$

By Euler's relation $\exp (i \theta)=\cos \theta+1 \sin \theta$, we have

$$
\begin{equation*}
\exp (\pm 1 \theta)=\frac{b \pm i c}{\left(b^{2}+c^{2}\right)^{\frac{1}{2}}} \tag{A10}
\end{equation*}
$$

Thus, $\exp (-1 \theta)$ is simply

$$
\frac{b-1 c}{(b+1 c)(b-i c)]^{\frac{1}{2}}}
$$

or $\mathrm{H}_{12} / \mathrm{H}_{12}$.
If we let

$$
\begin{aligned}
\lambda & =\left(b^{2}+c^{2}\right)^{\frac{1}{2}} \\
\mu & =\frac{1}{2}(a-d) \\
\omega & =\operatorname{sign}(\mu) \cdot \frac{\lambda}{\left(\mu^{2}+\lambda^{2}\right)^{\frac{1}{2}}}
\end{aligned}
$$

$$
\begin{aligned}
& \sin \phi=\frac{\omega}{\left[2\left(1+\sqrt{1-\omega^{2}}\right]^{\frac{1}{2}}\right.} \\
& \cos \phi=\left(1-\sin ^{2} \phi\right)^{\frac{1}{2}}
\end{aligned}
$$

then,

$$
\underset{\sim}{U}=\left(\begin{array}{ll}
\cos \phi & -\sin \phi \frac{\mathrm{H}_{12}}{\left|\mathrm{H}_{12}\right|} \tag{AlI}
\end{array}\right)
$$

and

$$
D_{11}=a \cos ^{2} \phi+d \sin ^{2} \phi+2\left\{H_{1} \phi \sin \varnothing \cos \varnothing\right.
$$

$D_{22}=a \sin ^{2} \phi+d \cos ^{2} \phi-2 H_{12} \| \sin \phi \cos \phi$

$$
\begin{aligned}
D_{12}=D_{21}^{*} & =\left\{(d-a) \sin \varnothing \cos \varnothing+\left|H_{12}\right|\left(\cos ^{2} \varnothing-\sin ^{2} \varnothing\right)\right\} \frac{\mathrm{H}_{12}}{\frac{\mathrm{H}_{12}}{}} \\
& =0
\end{aligned}
$$

Appendix B. Flow Chart for Computer Calculation

The flow chart of our program is outlined below. The matrix elements could have initially been set up in algebraic form. Substitution of overlap and two-center potential integrais (evaluated in elliptical coordinates) and k vectors would give the Hamiltonian and overlap matrix elements. The Schmidt orthogonalization of the overlap matrix and diagonalization of the transformed Hamiltonian matrix would then be an easy chore in terms of shorter computer time. However, when we go from cubic to say, hexagonal symmetry, the length of the tables necessary would increase. It is always desirable to make these calculations as automatic as possible via the computer. Our program, therefore, eliminates the need for matrix element tables as well as overlap integral tables, from which are sometimes difficult to interpolate accurate values. In a sense, the TBA program generates all necessary tables within the computer. When the \underline{k} vector is read in, it rapidly makes algebraic substitutions and in about 60 seconds a 25×25 matrix problem is solved.

Appendix C. Reduction of Double Sum to Single Sum

Since the sums over \underline{R}_{i} and R_{j} are over the same vectors, we can write the double sum as N times the single sum, 1.e.,

$$
\begin{equation*}
\sum_{\underline{R}_{i}} \sum_{R_{j}} F\left(\underline{R}_{1}, \underline{R}_{j}\right)=N \sum_{\underline{R}_{j}} F\left(\underline{R}_{i}, \underline{R}_{j}\right) \tag{CI}
\end{equation*}
$$

where N is the number of unit cells in the crystal. The proof is as follows:

Because of the periodic boundary conditions

$$
\begin{equation*}
F\left(\underline{R}_{1}+N_{1} \underline{t}_{1}+N_{2} \underline{t}_{2}+N_{3} \underline{t}_{3}\right)=F\left(\underline{R}_{1}\right) \tag{c2}
\end{equation*}
$$

where $N_{1} N_{2} N_{3}=N$ and $\underline{t}_{1}, \underline{t}_{2}$ and \underline{t}_{3} are the primitive cell translations.

We can also write

$$
\begin{array}{ll}
\underline{R}_{1}=i_{1} \underline{t}_{1}+i_{2} \underline{t}_{2}+i_{3} \underline{t}_{3} & i_{1}, i_{2}, i_{3}=\text { integers } \\
\underline{R}_{j}=j_{1} \underline{t}_{1}+j_{2} \underline{t}_{2}+j_{3} \underline{t}_{3} & j_{1}, j_{2}, j_{3}=\text { integers } \tag{03}
\end{array}
$$

Hence

$$
\begin{align*}
& \sum_{\underline{R}_{1}} \sum_{R_{j}} F\left(\underline{R}_{j}-\underline{R}_{1}\right)=\sum_{i_{1}=0}^{N_{1}-1} \sum_{i_{2}=0}^{N_{2}-1} \sum_{i_{3}=0}^{N_{3}-1} \sum_{j_{1}=0}^{N_{1}-1} \sum_{j_{2}=0}^{N_{2}-1} \sum_{j_{3}=0}^{N_{3}-1} \\
& F\left(\left(j_{1}-i_{1}\right) \underline{t}_{1}+\left(j_{2}-i_{2}\right) \underline{t}_{2}+\left(j_{3}-1_{3}\right) t_{3}\right) \tag{4}
\end{align*}
$$

Let us consider the double sum for integral components along 氓:

$$
\left\{\sum_{1_{1}} \sum_{j_{1}}\left(j_{1}-i_{1}\right)\right\}
$$

where $\left(j_{1}-i_{1}\right)=F\left(\left(j_{1}-i_{1}\right) t_{1}\right)$.
If we expand the sum in the brackets above.
we obtain

$$
\begin{align*}
\sum_{i_{1}} \sum_{j_{1}}\left(j_{1}-i_{1}\right)= & \sum_{i_{1}}\left(0-i_{1}\right)+\left(i-i_{1}\right)+\left(2-i_{1}\right)+\ldots \\
& +\left(N_{1}-1-i_{1}\right) \\
= & (0-0)+(1-0)+(2-0)+\ldots \ldots+\left(N_{1}-1-0\right) \\
& +(0-1)+(1-1)+(2-1)+\ldots+\left(N_{1}-1-1\right) \\
& +\quad \\
& \vdots \tag{CF}\\
& +\left(0-N_{1}+1\right)+\left(1-N_{1}+1\right)+\ldots+\left(N_{1}-1-N_{1}+1\right)
\end{align*}
$$

Now if we look at the first two rows above, we see that the terms in each row are identical except for the terms ($N_{1}-1$) and (-1). However, from the periodic boundary conditions, we know that $F\left(N_{1} t_{1}\right)=F(\underline{0})$. Therefore, the two terms $\left(N_{1}-1\right)$ and (-1) are really identical.

Similar arguments hold for any pair of rows and, hence, all N_{1} rows are identical, so we can write

$$
\sum_{i_{1}=0}^{N_{1}-1} \sum_{j_{1}=0}^{N_{1}-1}\left(j_{1}-1_{1}\right)=N_{1} \sum_{j_{1}}\left(j_{1}-i_{1}\right)
$$

Similarly,

$$
\sum_{i_{2}=0}^{N_{1}-1} \sum_{j_{2}=0}^{N_{1}-1}\left(j_{2}-i_{2}\right)=N_{2} \sum_{j_{2}}\left(j_{2}-i_{2}\right)
$$

and

$$
\begin{equation*}
\sum_{i_{3}=0}^{N_{1}-1} \sum_{j_{3}=0}^{N_{1}-1}\left(j_{3}-i_{3}\right)=N_{3} \sum_{j_{3}}\left(j_{3}-i_{3}\right) \tag{Cb}
\end{equation*}
$$

Therefore, we can write Equation C.

$$
\begin{align*}
& \sum_{\underline{R}_{i}} \sum_{\underline{R}_{j}} F\left(\underline{R}_{j}, \underline{R}_{1}\right)=N_{1} N_{2} N_{3} \sum_{j_{1}} \sum_{j 2} \sum_{j_{3}} \\
& F\left(\left(j_{1}-i_{1}\right) \underline{t}_{1}+\left(j_{2}-i_{2}\right) \dot{E}_{2}+\left(j_{j}-i_{3}\right) \dot{i}_{3}\right) \\
& =N \sum_{R_{j}} F\left(\underline{R}_{j}-\underline{R}_{1}\right) . \tag{CF}
\end{align*}
$$

Since $\underline{R}_{j}-R_{i}$ is also a crystal translation, we can make the substitution

$$
\underline{R}_{l}=\underline{R}_{1}-R_{j}
$$

and then by summing over \underline{R}_{ℓ} instead of R_{j}, we merely interchange the order of summation to obtain Equation 4%.

Appendix D. Overlap and Relates Tntegrals

The two-center kinetic energy and overlap integrals. are evaluated using a metinod proposed by Silver and Ruedenberg (83).

This method requires that the coordinate system of the two centers be parailel with their z-axes pointing towards one another. In our calcuiations, however, the coordinate systems at the two centers are botin parallel to that of the crystal as a whole. The problem remains, then, to transform the atomic orbitals at the two centers into cocrdinate systems of the type necessary for evaluation.

At the center, A, this will de a rotation and at the center B, it will be an inversion of the z^{\prime}-axes followed by the same rotation as at A. Since the radial part of the atomic orbitals is invariant under such transformations, we need only examine their effect on the spherical harmonics.

The inversion is given simpiy by

$$
\begin{align*}
Y_{\ell m}(\theta, \phi) & =Y_{\ell_{\mathrm{m}}}\left(\pi-\theta^{\prime}, \phi^{\prime}\right) \\
& =(-2)^{\ell+\mathrm{m}_{Y^{\prime}}}{ }_{\ell\left(\theta^{\prime}, \phi()\right.} \tag{DI}
\end{align*}
$$

With the primes indicating the inverted system.
Since the spherical harmonics forms the bases for the irreducible representations of the three-dimensional rotation group, we can utilize the matrix elements of these representations to accomplish the transformation.

For a complex spherical harmonis on center A
$Y_{g m}\left(\theta_{A}, \eta_{A}\right)=\sum_{k=-l}^{\ell} D_{k m}^{l}(\alpha,-\theta,-\not \subset) Y_{k}\left(\theta_{\dot{A}}^{\prime}, \phi_{A}^{\prime}\right)$
where $\left(\theta_{A}, \phi_{A}\right)$ and $\left(\theta_{\dot{A}}, \phi_{\dot{A}}\right)$ are the polar coordinates of the unprimed and primed coordinate systems, respectively, of Figure El .
$\alpha,-\theta$ and $-\varnothing$ are the Euler angles necessary to rotate the ($x^{\prime} y^{\prime} z^{\prime}$) systers into coincidence with the (xyz) system. G and g' are reesured from tine x and x axes, respectiveiy, to the $z-z^{\prime}$ plana. θ is measured from the z-axis to the z'-Exis.

The coefficients are given by

$$
D_{\mathrm{km}}^{l}(\alpha, \beta, \gamma)=\exp (-i k \alpha) \exp (-\operatorname{in} \beta) \mathrm{a}_{\mathrm{km}}^{\ell}(\beta)
$$

where

$$
\begin{gather*}
d_{k m}^{l}(\beta)=\sum_{t}(-1)^{t} \frac{[(l+m)!(l-m)!(l+k)!(l-k)!]^{\frac{1}{2}}}{(\ell+k-t)!(\ell-m-t)!(t+m-k)!t!} \\
 \tag{13}\\
(\cos \hat{\beta} / 2)^{2 l+k-m-2 t\left(s^{\prime} n \beta / 2\right)^{2 t+m-k}}
\end{gather*}
$$

the index, t, running from max $(0, k-m)$ to $m i n(l-m, l+k)$. If one defines the real spherical harmonics, Yem, as

$$
\begin{equation*}
Y_{\ell m}=N(m)\left\{Y_{\ell-|m|}+I_{(m)} Y_{l|m|}\right\} \tag{D4}
\end{equation*}
$$

Figure Dl. Coordinate spstems.
where

$$
N_{(m)}=\begin{aligned}
\sqrt{\frac{3}{2}} & m>0 \\
\frac{1}{2} & m=0 \\
\sqrt{-\frac{1}{2}} & m<0
\end{aligned}
$$

and

$$
I_{(m)}= \begin{cases}(-1)^{m} & m \geq 0 \tag{DE}\\ (-1)^{m+1} & m<0\end{cases}
$$

then utilizing Equations DI and D2 for the necessary transformations, we get as a final expression for the twocentered integrals

$$
\begin{aligned}
& \left\langleR _ { n \ell } (r _ { A } , \xi _ { A }) \mathcal { Y } _ { \ell m } \left(\theta_{A} \emptyset_{A}\left|F_{\mid R_{n} \ell}\left(r_{B}, \xi_{B}\right) \mathcal{Y}_{2^{\prime} m^{\prime}}\left(\theta_{B}, \phi_{B}\right)\right\rangle\right.\right. \\
& =N_{(m)}^{*} N_{\left(m^{\prime}\right)}(-1)^{\ell!}\left[C(0) \leqslant R_{n \ell} Y_{\ell}\left(\theta_{A}^{\prime}, \phi_{A}\right)|F| R_{n^{\prime} \ell^{\prime}} Y_{\ell^{\prime}}\left(\theta_{B}, \phi_{B}\right)\right\rangle \\
& +\sum^{\min \left(\ell, \ell^{\prime}\right)}\left[c(k)+(-1)^{\delta} m|m|+\delta m^{\prime}\left|m^{\prime}\right| \quad C *(k)\right]<R_{n \ell} Y_{\ell k}\left(\theta_{A}^{\prime} \phi_{A}^{\prime}\right) \\
& k=1
\end{aligned}
$$

$$
\left.\left.|F| R_{n^{\prime}} Q^{\prime} Y_{Q^{\prime} k}\left(\theta_{B}^{\prime}, \phi_{B}^{\prime}\right)\right\rangle\right\}
$$

with

$$
\begin{align*}
& C(k)=(-1)^{k}\left\{\exp (1|m| \phi) d_{k-|m|}^{\ell}(-\theta)+I(m) \exp \left(-1|m| \not \phi^{\prime}\right) d_{k|m|}^{\ell}(-\theta)\right\} \\
& \cdot\left\{\exp \left(-1\left|m^{\prime}\right| \phi\right) d_{k-\left|m^{\prime}\right|}^{\ell^{\prime}}(-\theta)+I_{\left(m^{\prime}\right)^{\prime}} \exp \left(1\left|m^{\prime}\right| \phi\right) d_{k\left|m^{\prime}\right|}^{\prime \prime}(-\theta)\right\} \tag{DG}
\end{align*}
$$

The dependence on the Euler angle α has dropped out corresponding to the one degree of freedom we have in
choosing the primed coordinate system.
Equation $D 5$ is the overlap integral if $\mathrm{F}=1$ and the potential integral if

$$
F=V\left(\underline{r}-\underline{p}_{j}^{\beta \alpha}\right)
$$

If F includes coulomb and exchange operators, it must be transformed in a similar manner.

Appendix E. Potential Integrals

The atomic potential used in the TSA method consists of three operators. These are Coulomb and exchange operators, giving rise to Coulomb and exchange integrals, and a third operator $-2.2_{3} / \mathrm{ZB}$ for an electron attracted to center $\overline{\mathrm{B}}$ that fives rise to auciean attraction integrals. The Coulomb and exchange integrals are evaluated by methods programed for the IBM 360-65 computer (zit, 85). The nuclear attraction integrals are of the type

$$
\left\langle A_{n \ell m}\left(\xi, \underline{r}_{A}\right\rangle\right| \frac{1}{\underline{r}_{B}}\left|A_{n}: \ell{ }^{\prime} m ;\left(\dot{S}, \underline{I}_{A}\right)\right\rangle
$$

where the single-zeta, normalized STO's are

$$
\begin{equation*}
A_{n \ell m}\left(\xi, \underline{r}_{A}\right)=\frac{(2 \xi)^{n+\frac{1}{2}}}{[(2 n)!]^{\frac{1}{2}}} \underline{r}_{A}^{n-1} \exp \left(-\zeta, r_{A}\right) Y_{Q m}(\theta, \varnothing) \tag{El}
\end{equation*}
$$

for a function located on atomic center A. The nuclear attraction integrals are evaluated by the use of the expression

$$
\begin{aligned}
& \left.\left\langle A_{n l m}(\}, \underline{r}_{A}\right)\left|\frac{1}{\underline{r}_{B}}\right| A_{n} l^{\prime} \prime^{\prime}\left(\xi^{\prime}, \underline{r}_{A}\right)\right\rangle= \\
& \delta_{m m} \cdot(-1)^{m}(2 \xi)^{n+\frac{1}{2}}\left(2 \mathcal{S}^{\prime}\right)^{n+\frac{1}{2}}[(2 \ell+1)(2 \ell(+1) / \\
& \left.(2 n)!\cdot\left(2 n^{\prime}\right)!\right]^{\frac{1}{2}} \\
& \text { - }(R)^{n+n^{\prime}} \sum_{L=18-l^{\prime} l_{2}}^{l},\left(\begin{array}{lll}
l & l^{\prime} & L \\
0 & 0 & 0
\end{array}\right)\left(\begin{array}{lll}
l & l^{\prime} & L \\
m-m & 0
\end{array}\right)
\end{aligned}
$$

- $\left[E_{n+n}+L(p)+A_{n+n^{\prime}-L-L}(p)\right]$.

The summation index L is limited by the constraint that $l+l^{\prime}+L=$ even, $\left(\begin{array}{ccc}1 & l^{\prime} & l \\ m_{1} m_{2} m_{3}\end{array}\right)$ is the wigner $3 J$ symbol (84.$)$, $R=$ interatomic distance between centers A and $B, \rho=$ $R\left(\xi+\zeta^{\prime}\right)$ and the functions $E_{K}(P)$ and $A_{i K}(P)$ are given by (24)

$$
\begin{align*}
& E_{k}(x)=\int_{0}^{1} d t t^{k} \exp (-x t) \\
& A_{k}(x)=\int_{1}^{\infty} \text { dt } t^{k} \exp (-x t) \tag{E3}
\end{align*}
$$

These functions are obtained using the recursion relations

$$
\begin{align*}
& E_{k}(x)=\left[k E_{k-1}(x)-\exp (-x)\right] / x \\
& A_{k}(x)=\left[k A_{k-1}(x)+\exp (-x)\right] / x \tag{E4}
\end{align*}
$$

from the starting functions

$$
\begin{align*}
& E_{0}(x)=[1-\exp (-x)] / x \\
& A_{0}(x)=\exp (-x) / x \tag{E5}
\end{align*}
$$

In order to maintain uniform accuracy, an infinite series is used for computing $E_{k}(x)$ if the relation,

$$
\begin{equation*}
x<\left(0.072+0.012 k_{\max }\right) k_{\max } \tag{E6}
\end{equation*}
$$

is satisfied:

$$
\begin{equation*}
E_{k}(x)=k!\exp (-x) \sum_{i=0}^{\sum^{m}} x^{ \pm} /(k+i+i)! \tag{E7}
\end{equation*}
$$

The expression given for Equation E2 can be derived by
 between electron i and nucioús B :

$$
\begin{equation*}
r_{B i}^{-1}=\sum_{i=0}^{\infty}(4 \pi / 2 \Sigma+1)^{\frac{3}{2}} \frac{r^{2}<}{r_{i}^{L}+i} y_{L 0}\left(\theta_{A i}, \phi_{A i}\right) \tag{E8}
\end{equation*}
$$

where $r_{\langle }\left(r_{\rangle}\right)$is the iessor (breater) of $r_{A i}$ and $R_{A B}$ and the Y_{j} IM are reai normailzed spherical harmonics. One can then integrate the resultsing expression directly and, by interchenging summations, arrive at Equation EZ.

The Coulomo and exchange intograis necessary to obtain
 single Siater type oroitals (STO's) which are subsequently inearly combined by an auxiliary program. The ilnear combination is necessary since the atomic crbital functions used in the TBA calculation are mulei-STO types (Equation Sit).

The STO's used in the computer programs developed by Silver ($2 \dot{1}$) and Mehler (5) for Coulomb and exchange integrals are real spherical harmonics. Since the rotation of spherical harmonics descriced in Appendix D uses the imeginary spherical barmonics as a basis (only this type is an eigenfunction of the 3-dimensional rotation group), we must be careful in using the integrals. Fortunately, we obtain a
convenient identity which may be demonstrated for the real P_{x} and P_{y} functions. By Equation $D 4$, we dave after dropping the radial part of P_{X} and P_{V}

$$
P_{x}=\frac{Y_{1}^{-1}-Y_{1}^{1}}{\sqrt{2}}=Y_{11}
$$

and

$$
P_{y}=\frac{1\left(Y_{1}^{-1}+Y_{1}^{1}\right)}{\sqrt{2}}=y_{1 i}
$$

The real normalized spherical harmonics may be in early combined to give the imaginary normalized spherical harmonics:

$$
Y_{I}^{-I}=\frac{P_{x}-1 P_{y}}{\sqrt{2}}
$$

and

$$
Y_{1}^{I}=\frac{-\left(P_{X}+1 P_{\nabla}\right)}{\sqrt{2}}
$$

If we consider the charge distributions Y_{1}^{+1}, Y_{1}^{-1} and Y_{I}^{*}. Il for electron one, the corresponding Coulomb integrals of the electrostatic interaction between these distributions and an arbitrary charge distribution $\rho(2)$ for electron two are:

$$
\begin{aligned}
& \left\langle y_{1}^{-1} \cdot y_{1}^{-1} \mid \rho(2)\right\rangle=\left\{\left\langle P_{x} P_{x} \mid \rho(2)\right\rangle+\left\langle P_{y} P_{y} \mid \rho(2)\right\rangle\right\} / 2 \\
& \left\langle y_{1}^{1} \cdot y_{1}^{1} \mid \rho(2)\right\rangle=\left\{\left\langle P_{x} P_{x} \mid \rho(2)\right\rangle+\left\langle P_{y} P_{y} \mid \rho(2)\right\rangle\right\} / 2
\end{aligned}
$$

Therefore, $\left\langle Y_{1}^{-1} \quad Y_{1}^{1} \mid \rho(2)\right\rangle=\left\langle\dot{Y}_{1}^{l} Y_{I}^{1} \mid \rho(2)\right\rangle$. Since $\left\langle P_{x} P_{x} \mid \rho(2)\right\rangle=\left\langle P_{y} P_{y} \mid \rho(2)\right\rangle$, there exists a one to one correspondence between the imaginary and real spherical harmonics, e.g. $\left\langle Y_{11} Y_{11} \mid P(2)\right\rangle=\left\langle Y_{1}^{1} Y_{1}^{1} \mid f(2)\right\rangle$. The identity allows one to use the numerical values of Coulomb and exchange integrals obtained from real functions to represent the imaginary case.

Some difficulty arose in the evaluation or Coulomb and exchange integrals when $R_{A B}\left(\xi_{A}+\xi_{B}\right)=360$ where $R_{A B}$ is the internuclear distance expressed in Bohr units and ζ_{A} and ζ_{B} are the orbital exponents of STOIs located on centers A and B respectively. In auxiliary functions used in the evaluation, $\exp \left(\pm \mathrm{K}_{A B}\left(\zeta_{A}+\zeta_{B}\right)\right)$ occurs and the computer limit of an exponential is ± 174. Apparently, the present programs are not written to handle this situation. Therefore, we had to apply a reasonable approximation to integrals where this problem arose. The rhenium 50 and $6 p$ functions have large orbital exponents in inner radial region (as have been seen in the discussion on orbftal functions) which are neglected in integral evaluations. Therefore, renormalization of these orbitals is necessary since a small part has been cut out. The normalization constant of the 5 d is 1.01709 and $6 s$ is 1.004342.

Appendix F. Atomic Orbital Energy Parameters

The one-eiectron terms which are generally referred to as the core energy, I, is the sum of the kinetic energy and potential energy from the field of the bare nucleus.

The core energy is evaluated from the following
integral

$$
I=\int_{0}^{\infty} P_{f}\left\{-\frac{a^{2}}{2 r^{2}}-\frac{22}{r}+\frac{\ell(\ell+I)}{r^{2}}\right\} P_{4} d v
$$

where

$$
\left.P_{j}(r)=\sum_{j} c_{j} R n_{j} \eta_{j}(r) n=\sum_{j} C_{j} N_{j} \exp (-\}_{j} r\right) r^{n j} .
$$

Integration gives upon expansion of \bar{F}_{i}

$$
I=\sum_{i} \sum_{j} c_{i} c_{j} N_{i} N_{j}\left\{-\frac{\}_{i} 2^{2}\left(n_{i}+n_{j}\right)!}{\left(\xi_{i}+\xi_{j}\right) n_{i}+n_{j}+1}\right.
$$

$$
+\frac{\left(2.0 n_{i}\right\} 1^{-2 Z)}\left(n_{1}+n_{j}-1\right)!}{\left.(\}_{1}+\zeta_{j}\right)^{n_{1}+n_{j}}}
$$

$$
\left.-\frac{\left(n_{i}+\lambda\right)\left(n_{i}-\lambda-i\right)\left(n_{i}+n_{j}-2\right)!}{\left(\xi_{i}+j_{j}\right)_{i}+n_{j}-2}\right\}
$$

The Slater-Condon parameters, F^{k} and G^{k}, are calculated via the following integrals:

$$
F^{k}\left(n_{i} \ell_{i}, n_{j} l_{j}\right)=\int_{0}^{\infty} \frac{2}{r} P_{i}^{2} Y_{k}\left(n_{j} \ell_{j}, n_{j} \ell_{j}\right) d r
$$

$$
G^{k}\left(n_{i} l_{i}, n_{j} l_{j}\right)=\int_{0}^{\infty} \frac{2}{r} p_{i} P_{j} Y_{k}\left(n_{i} \AA_{i}, n_{j} l_{j}\right) d r
$$

where the potential function $Y_{k}(i, j)$ is

$$
Y_{k}(1, j)=r^{-k} \int_{0}^{r} r^{k} P_{i} P_{j} d r+r^{k+1} \int_{r}^{\infty} P_{f} P_{f} r^{-(k+1)} d r .
$$

Brown-Fitzpatrick (25) and Ros-Schuit (36) express the Slater-Condon parameters in terms of S]ater type orbitals. The latter formulation has been programed to obtain parameters for the $g(i, j)$ terms in Equation 31.

The derivation oi the F^{k} ana G^{k} expressions are lengthy but straight forward if one utijizes the standard integrai

$$
\int_{a}^{b} x^{n} \exp (-\mu x) d x=\sum_{i=0}^{n} \frac{n!}{\mu^{n+1} 1}\left(-b^{1} \exp \left(-\mu^{b} b\right)+a^{1} \exp \left(-\mu_{a}\right)\right)
$$

Appendix G. TBA Results of ReO_{3}
The 1 th energy band corresponding to the crystal orbital with function $\Psi_{1}(\underline{\underline{x}}, \underline{\underline{r}})$ is numbered along the left column. The eigenvalues of $\Psi_{1}(\underline{k}, \underline{\underline{I}})$ are listed in Table $G 1$. The \% rhenium, $\mathrm{O}_{1}, \mathrm{O}_{2}$ and O_{3} atomic orioital contributions to $\Psi_{i}(\underline{k}, \underline{x})$ are listed in Tables $G 2, G 3, G 4$ and $G 5$ for $\underline{\underline{k}}=$ $(0.0,0.0,0.0),\left(\frac{\pi}{a}, 0.0,0.0\right),\left(\frac{\pi}{a}, \frac{\pi}{a}, 0.0\right)$ and $\left(\frac{\pi}{a}, \frac{\pi}{a}, \frac{\pi}{a}\right)$ respectively. Thus, we have the symmetry points gama (Γ), X, M and R represented. The subscripts labeling the oxygen atoms $\mathrm{O}_{1}, \mathrm{O}_{2}$ and O_{3} are indicated in parenthesis.

The eigenvalues in Table Gi are ilsted in Portran notation where E OX denotes X 10 ${ }^{\mathrm{x}}$. The energies are in Rydberg units.

The Fermi energy is -1.4828 Rydbergs.

Figure GI. ReO_{3} energy bands.

TABLE GI E（K）VS．K：ENERGY bands at the symuetry points lf the brillcuin ZCAE GF RHENIUM TRIDXIDE

ENERGY BANE	SYMMETEY POINT GAAIMA	X	M	R
1	0.368914 ECl	0.441146 ECl	C． 231585 C C3	C．18C48CE CC
2	0.631159 CO	C．3960C6E 01	－－．197960E U0	0.175785 E OC
3	0.628287 ECC	－0．394152E CC	－0．25640ct Uú	C．12388UE 0i
4 5	－ $0.863311 E 00$	－0．107109E 01	－0．118808E Cl	－C．144122E O1
5	－ $0.107604 E$ C1	－0．111623E 41	－V．12453E U	－0．144454E01
6	－C．108265E 01	－0．120646E C1	－نo $12455 C E$ C1	－0．146216E U1
7	－0．112029E O1	－0．124299E Cl	－－144344E Cl	－0．140216E 01 -148081601
8 9	－0．11513．3E 01	－0．125083E cl	－5．147999E C1	－－150742E U1
9 10	－0．115938E 01	－0．148676E C1	－i．14935 CF Cl	－L．151233E く1
11	－0．148647E OL	－0．15C888E C1	－U．149545E U1	C．155368t 01
12	－0．148－92E U1	－3．16216jE U1	－0．165783E 61	－0．150430E El
13	－0．174371E C1	－0．171831E ن1	－0．171873E O1	－C． 166219 E i 1
14	－0．174951E 01	－0．1729C3E Cl	－6．172339E 01	－0．1c6592E C1
15	－0．175334E Cl	－0．17313ن～ 1	－®．134292EC1	－-262745 EI
16	－0．274463E C1	－0．2c98s4E C1	－$-214 \mathrm{CB4E}$ U1	－ 0.219596501
17	－0．275342E 01	－0．272285F 01	－C．216296E－1	－U．22C243E E1
18	－C．328409E CI	－0．305085c CI	－ت． 252919 ECl	－S．240139E 01
19	－0．355427E O1	－0．353253E ن1	－C．328207E こ1	－－． 402056 Cl
20	－0．358245E Cl	－0．358277E CI	－i．3ce440 C1	－C．403012E 61
21	－0．360345E Cl	－C．422571E	－．43337－6 い1	－0．4408612

TABLE G2 MULLIKEN PUPULATION ANALYSIS CF CFYSTAL CREITALS AT gamma symmetry puint

ENERGY BANO	\% RHENIUM ATCMIC greital contrigutiun									
	50 \%	xZ	50	5022	5 C	65	6 P	$\epsilon^{(P}$	$6 P$	
	2		YZ	$x-y$	XY	z		X	Y	
1	0.0	C.C	0.0	0.0	C. 0	25.3	11.8	12.1	11.8	
2	2.8	0.1	0.0	0.3	0.1	-0.0	52.2	2.4	32.2	
3	0.3	0.0	0.1	2.9	0.0	-0.0	5.8	55.0	25.5	
4	0.0	3.4	3.3	O.C	3.5	17.7	16.9	11.2	25.5	
5	1.0	15.6	2.5	0.1	40.6	0.0	0.1	H.1	C. 2	-
ϵ	0.0	23.3	33.C	1. ${ }^{0}$	2.5	C. $0^{\text {a }}$	0.0	0.3	0.0	-
7	0.2	17.1	19.2	0.4	13.0	2.2	3.9	4.9	3.7	
8	c.0	c. 2	1.5	32.6	0.2	0.1	0.1	1.6	3.6	
9	32.8	C.t	0.6	0.0	C. 5	0.0	3.5	0.6	4.6	
10	0.0	0.0	0.0	0.00	c. 0	0.0	0.0	0.3	$\stackrel{0}{6}$	
11	0.0	0.0	0.0	-0.0	0.0	0.0	0.2	0.7	C. 1	
12	0.0	0.6	c. 0	-0.0	C. 0	0.4		0.0	0.5	
13	-c.0	0.1	0.0	0.0	39.5	-C.e	C. ${ }^{0}$	-0.0	-C. 1	
14	0.0	39.4	C. 1	0.6	0.1	-0.0	-0.1	-0.0	-0.0	
15	0.0	C. 1	39.6	C.c	c.	-C.	-0.0	- C .0	-C. 0	
16	C. 1	c.ic	0.6	64.4	$0 \cdot 0$	-0.0	-0.0	-C. 4	- 0.0 .4	
17	64.4	C.C	0.0	0.1	C. 0	-6. 0	-0.6	-0.1	-0.1	
18	0.0	0.0	0.0	-0.0	C. 0	99.0	0.1	0.1	c. 0	
15	-1.8	0.0	C. C	-0.0	C. ${ }^{\text {c }}$	-18.0	11.3	4.5	0.4	
20	0.1	0.0	0.0	-1.7	c.e	-2.2	0.0	1.2	7.2	
21	0.1	c.c	0.0	-0.1	0.0	-24.1	0.2	9.8	3.5	

TABLE G2(CCAT.)

TABLE GZ(CLNT.)

ENERGY BAND	$\begin{gathered} \text { givgen } \\ 2 S(3) \end{gathered}$	$\underset{z}{\operatorname{ATGMIC}} \underset{z}{ }$	$\begin{aligned} & \text { CFSITAL } \\ & 2 P(3) \\ & x \end{aligned}$	cchteibution $2 r_{Y}(3)$
1	10.6	2.3	0.1	0.1
2	5.5	-0.3	0.0	6.4
3	0.6	-0.0	C. 7	0.4
4	-2.4	11.1	1.6	1.6
5	-0.i	1.2	5.1	8.9
6	-0.0	4. 1	7.0	10.4
7	-C. 2	1.1	4.6	5.5
ε	-0.5	c. 1	-6.C	6.2
9	-1.6	43.2	3.4	C. 5
10	0.6	-0.0	2.6	1.2
11	0.0	0.0	42.1	3.3
12	0.0	0.1	3.5	44.3
13	C. C	0.0	C. 1	0.0
14	0.0	-0.0	31.7	C. 1
15	C.L	-0.0	$0 \cdot 1$	31.2
16	c.0	0.0	-0.0	-0.0
17	2.8	21.9	0.0	0.0
18	-6.4	6.3	-3.0	-0.0
19	94.3	12.4	C. C	0.0
20	-0.3	0.1	6.0	-0.0
21	-2.4	0.5	c.0	-0.0

table g 3 MUlliken fCpulaticn analysis cf chystal creitals at

x symmetry pgint

ENERGY EAND	\% rheniun atcmic creital contribution								
	502	50	50	5022	5 C	55	6 P	6 P	$6 P$
	\%	$x \geq$	YZ	$x-y$	$x y$		2	x	
1	0.1	-0.c	0.1	6.1	-C.C	2.2	47.3	O.C	
2	0.9	-0.0	0.0	0.3	-0.0	0.3	42.0	C.C	58.5
3	1.4	c. 1	0.1	4.5	c. 1	4.8	0.0	73.7	50.5
4	-c.0	0.0	54.9	1.5	C. 0	1.8	0.5	73.7 0.0	-0.5
5	23.7	-0.0	1.6	12.6)	-j. 0	C. 3	0.3	cos	-2.0
6	6.9	0.0	5.7	5.5	0.0	11.3	3.9	0.3	2.6
7	-0.0	0.0	0.0	0.0	52.1	0.0	0.0	C. 0	C.O
8	C. 0	52.6	C.C	0.0	\%oi	c.os	0.0	C. ${ }_{0}$	c.0
9	0.5	0.0	0.0	1.1	6.2	C. 4	0.2	0.1	
10	-0.6	0.0	0.0	0.3	-0	C. 1	-0.2	$0 \cdot 1$	- 0.0
11	-0.c	c. 1	c. 0	0.0	c. 1	-C. 0	-0.2	0.0	- -1.0
12	9.9	0.0	0.6	3 C .5	c.0	-6. 11.8	$1 \cdot 3$	$0 \cdot 0$	1.6
13	C. 1	7.1	0.0	0.3	39.5	-0.0	-0.0	4	. 4
14	C. 0	39.5	C. 5	0.1	7.4	-C.C	0.0	$0 \cdot 1$	$0 \cdot 0$
15	0.1	C. 1	37.0	C. 2	C.C	0.5	0.0	0.1	0.0
16	0.8	0.5	c. 0	2.5	6.5	-1.5	0.5	-0.0	5
17	46.2	0.0	0.0	17.2	C. 0	0.2	$0 \cdot 1$	32.4	. 1
18	9.1	-C.0	0.0	18.1	-3.0	53.2	-0.3.	-6.	-6.7
19	0.7	0.0	0.0	1.9	-c. 0	-16.5	-4.0	-1.4	-4.5
20	-1.5	0.0	0.0	-1.0	c.0	-16.5	2.4	- $\mathrm{U} \cdot 2$	1.9
21	1.2	0.0	0.0	3.0	0.6	31.7	1.6	-0.0	2.1

table czicont. 1

ENERGY	* ExYGe	ATOMIC	ORBITAL	contrie	TİA			
BANC	2S(1)	$2 \mathrm{~F}_{2} \text { (i) }$	$2 \mathrm{P}_{\mathrm{x}}(1)$	$\mathrm{ZP}_{\mathrm{Y}}(1)$	$25(2)$	$2 P_{Z}(2)$	$\operatorname{cp}_{x}(z)$	$2 P_{Y}(2)$
1	0.1	0.2	$0.1)$	0.2	4.5	1.3	c.0	-C. 2
2	0.0	0.2	C.C	0.2	2.5	1.2	0.0	-0.9
3	-2.0	0.0	16.2	0.0	C. 2	6.1	-C. 5	C. 2
4	-0.1	0.0	0.1	6.0	0.0	17.3	-6.0	5.4
5	-c.c	C. 0	6.0	- 0	-1.E	1.1	-0.0	$39 . i$
6	-0.1	0.4	-0.0	H. 4	-0.5	0.4	C. 0	19.7
7	-C.C	c. 0	0.1	1.1	-i. 0	0.0	46.6	10.0
8	-¢.0	1.2	0.1	-0.C	-0.0	-C.0	0.0	0.6
9	0.4	16.3	1.7	68.2	0.3	2.4	5.9	0.2
10	0.1	59.7	0.2	7.9	0.0	13.1	6.7	0.0
11	$0 \cdot \mathrm{C}$	12.5	0.0	14.2	0.1	33.9	1.5	C. 1
12	12.0	2.4	26.6	2.1	0.7	-	0.2	$\bigcirc .3$
13	0.4	0.8	1.4	5.5	Q. 1	0.0	36.8	0.1
14	0.1	5.9	0.2	1.3	-0.0	C.C	7.1	-6. 0
15	0.1	0.0	0.2	E.0	0.0	29.4	C. 0	C. 1
16	1 C .4	C. 1	49.5	C. 1	6.4	0.0	1.4	0.0
17	0.1	0.0	-0.C	0.0	2.7	-0.0	6.0	17.8
18	10.9	c. 0	0.9	2.1	-5.5	-0.0	6.6	9.2
19	1.7	0.1	0.2	C. 1	44.3	-0.1	c.0	4.2
20	c. 6	c. 1	-0.c	C. 1	51.8	-0.1	0.6	3.5
21	65.9	0.0	2.3	$0 . i$	-6. 5	-6. 0	C. 1	1.5

TABLE GZ(CCAT.)

ENERGY EAND	$\begin{gathered} \text { \& cxygen } \\ 2 S(3) \end{gathered}$		$\begin{gathered} \text { CRRITAL } \\ 2 P(3) \\ x \end{gathered}$	ccatrigution ${ }^{2 P_{\gamma}}(3)$	
1	5.2	-0.5	0.0	1.1	
2	2.0	-C. 8	c. 0	1.4	
3	0.2	0.2	-0.4	0.1	
4	0.3	1.2	-0.0	16.3	
5	-С. 7	21.5	-6.0	4.0	
6	-1.1	43.0	-6.0	1.1	O
7	-0. C	0.0	0.0	0.0	
8	-0.5	0.0	45.9	0.6	
9	0.2	0.3	1.4	2.2	
16	c. 1	C. 0	5.3	12.8	
11	0.2	0.2	1.3	32.7	
12	6.7	0.2	6.2	C. 3	
13	c. 1	0.0	6.6	0.1	
14	0.1	0.0	38.1	0.0	
15	C.	0.1	0.1	31.8	
10	c. 4	6.1	1.4	-	
17	2.7	14.2	0.6	-0.0	
18	-4.3	10.0	C.c	-0.0	
19	55.1	4.5	Cob	-6. 1	
20	35.6	3.5	C. 0	-0.1	
21	-0.6	1.4	0.1	-0.6	

TABLE G4 MULLIKEN PCPULATION ANALYSIS OF CRYSTAL OROITALS AT M SYMMETRY PGINT

TABLE G4(CONT.)

enerey BAND	\% CXYGEA ATOMIC EREITAL CCNTRIEUTIGN							
	2S11)	2 p (1)	$2 ?$ (11	2 P (1.1	2S(2)	2P(i)	(2)	2 P (2)
		2	x	Y		2	χ	Y
1	0.0	0.0	C.C	0.0	$0 \cdot 0$	$\therefore 0$	C.E	C.C
2	-2.4	-C.C	7.0	1.5	-3.2	-3.0	ソ. 3	9.7
3	-4.2	-0.0	8.8	1.2	-2.E	-i. 6	1.3	5.9
4	0.1	6.2	0.5	3.1	0.1	C. 2	5.1	0.4
5	-0.i	1.3	C. C	0.0	0.6	C.	(0)	3.0
6	$0 \cdot 0$	0.0	0.0	0.0	-C.O	1.1	U. ${ }^{1}$	C. C
7	0.0	0.1	C. 8	33.2	-v.i	cot	31.7	1.4
8	$0 \cdot 0$	59.3	C.C	1.1	6.0	E1.C	C. 5	0.6
9	0.1	32.2	0.1	1.0	-4.0	5u.	206	U.i
10	0.6	C.C	1.6	44.1	-C. 1	4.7	46.7	1.9
11	4.7	0.2	13.6	6.2	4.10	0.2	6.1	13.7
12	$-\mathrm{Cb}$	C. 0	2. 3	15.1	C. 0	0.6	14.0	1.7
13	-0.0	5.4	2.1	0.0	$\bigcirc 1$	1.4	- 0	1.5
14	0.1	1.2	-0.0	0.0	0. 1	4.9	0.0	C. 6
15	4.9	C. 1	19.2	1.1	5.4	C. 1	0.8	17.6
16	9.1	COCO	14.5	0.7	9.6	$C \cdot C$	C. 1	17.
17	5.7	O.C	25.8	C. 5	4.2	$0 \cdot 0$	0.7	24.1
18	4.9	3.0	0.4	$0 \cdot 0$	4.7	C.O	C. 6	- 5
19	0.4	U. 0	-6.3	0.0	-. 4	U.0	5.6	-8.C
20	42.1	C. 6	2. 2	0.1	45.3	$0 \cdot 0$	0.0	2.1
21	34.4	0.6	1.2	0.1 .	31.4	C. i	C.C	1.2

TABLE C4iCONT.)
$\begin{array}{lcccc}\text { ENERGY } & \text { EXYGEN ATCMIG OREITAL CCNTRIGUTION } \\ \text { BANE } & 25(3) \quad 2 P(3) & 2 P(3) \quad 2 P(3)\end{array}$

1	0.1	-1.5	0.0	0.0
2	0.4	0.1	-0.2	-0.2
3	0.0	0.0	-0.3	-0.2
4	-1.2	62.8	0.0	0.0
5	-0.0	0.0	44.1	0.0
6	-0.0	0.0	6.0	44.9
7	0.0	0.0	0.0	0.6
8	0.0	0.0	5.1	2.5
9	0.1	0.1	2.9	4.5
10	0.0	0.0	0.0	6.3
11	0.0	0.0	0.0	6.0
12	0.0	0.0	0.0	0.0
13	0.0	0.1	35.7	0.0
14	0.0	0.0	9.9	36.5
15	2.7	7.6	1.5	1.3
16	2.3	1.3	6.4	0.5
17	0.0	0.0	$C .5$	0.5
18	-8.6	25.6	6.0	0.0
19	106.2	3.5	0.0	0.0
20	-0.0	0.0	0.1	0.1
21	-2.0	0.3	0.1	0.1

TABLE G \quad MULLIKEN POPLLATIUN ANALYSIS OF CRYSTAL CRBITALS AT R SYMMETRY POINT

ENERGY	7 RHENILM ATOMIC		CRBITAL CCNTEIBUTICN				65	${ }^{6 P}$	$6^{6 P}$	$6 \mathrm{CP}^{8}$
BAND	5D 2	50	50		22	50				
	2	$\times 2$	Y 2		$x-\gamma$	$X Y$				
1	9.0	-0.0	-0.0		0.4	-0.0	0.0	55.6	4.6	22.9
2	0.4	-0.0	-C.C		9.0	-6. 0	C.0	3.1	47.5	33.5
3	0.0	-0.0	-0.0		0.0	-0.6	4.1	25.4	33.7	28.2
4	0.0	2.4	1.3		0.0	29.4	-0.0	0.0	6.0	0.1
5	0.0	19.4	10.6		0.1	C. 3	-0.0	0.6	S.0	-0.0
6	0.0	12.1	20.9		0.0	4.8	-0. 1	0.3	C. 1	C-1
7	0.0	0.2	0.0		0.0	0.0	0.6	C.0)	0.0	$0 \cdot 0$
8	0.1	1.4	2.1		1.2	C.C.	0.6	C. $\mathrm{L}^{\text {d }}$	0.2	ن. 2
9	0.1	0.4	0.0		0.0	1.4	0.0	C. 6	0.0	C. 2
10	1.0	C. C	c. ${ }^{\text {c }}$		61.4	C. 2	0.0	0.0	0.2	C. 1
11	62.0	0.2	0.2		1.C	C. 1	0.0	0.2	-0.0	C. 0
12	0.4	0.4	C. 6		0.1	62.4	-0.1	-0.0	0.\%	C. 0
13	0.1	57.0	$7 \cdot 3$		0.2	C. 8	-C.0	0.0	-6.0	-0.0
14	0.3	6.2	56.6		0.0	C. 1	-0.1	C. 0	-C.C	O.C
15	0.1	0.3	0.3		0.0	C. 3	7.5	5.1	7.C	5.7
16	C. 1	C. 6	C. C		4.3	C.C	-0.0	0.8	io. 1	14.3
17	4.1	0.0	0.0		0.1	C. 0	C.C	23.0	2.6	8.5
18	C. 0	0.0	0.0		0.0	U.0	42.4	2.3	2.t	2.i
19	19.6	C. C	0.0		2.6	C. 0	-13. C	$-1 \mathrm{C} \cdot 7$	-0.4	-7.3
20	2.6	0.0	0.0		19.4	0.0	C.C	-1.5	-11.7	-5.2
21	C. 0	C .0	0.0		$0 \cdot 0$	$0 \cdot 0$	45.8	-4.1	-4.4	-4.0

table go (ccat.)

ENERGY BAND	\% OXYGEN ATOMIC ORBITAL CONTKIBLTICA							
	2S(1)		$2 P(1)$	$2 P(1)$	2S(も)	$2 a(2)$	$2 p(z)$	$\approx P(2)$
		2	x	Y		2	\times	\mathbf{Y}
1	-C. 6	1.5	0.7	0.6	-2.8	1.5	0.1	3.7
2	-6. 6	0.1	7.6	0.9	-4.i	6.1	1.0	5.2
3	-4.6	0.7	5.9	0.8	-3. ${ }^{\text {c }}$	6.7	0.7	5.2
4	0.0	1.2	0.2	28.6	-E.C	0.1	20.5	0.5
5	0.0	31.3	0.1	2.1	C.	ir.e	0.1	-0.C
6	0.0	7.7	0.3	1.9	-6.6	17.0	4.2	1.1
7	-0.0)	1C. 8	0.6	21.5	C.	11.7	24.1	8.2
8	0.2	11.3	2.2	21.9	0.6	1.6	24.0	1.5
5	C. 0	16.3	0.4	2.0	0.0	29.2	0.3	1.0
10	5.4	0.0	15.6	0. 1	3.5	0.0	0.0	11.7
11	1.1	0.2	3.1	C.l	2.5	0.2	6.1	6.7
12	C. C	c. 6	2.1	16.5	i. ${ }^{\text {c }}$	0.3	15.6	e. 1.1
13	0.0	14.2	1.1	0.5	$\bigcirc \cdot 1$	1.1	C.1	coic
14	c. 0	2.2	6.7	0.1	c.	14.4	0.0	2.2
15	-1.4	1.3	$24 . \mathrm{e}$	1. 3	-1.2	1.3	1.3	22.6
16	5.4	0.0	26.5	4.6	4.4	1.3	1.3	21.1
17	c. 9	C. 5	3.7	0.4	2.6	0.9	c. 1	12.1
18	17.6	$0 \cdot 0$	-6. 1	6.0	16.2	0.6	$0 \cdot 1$	1<.1
15	1.9	c. 2	0.1	0.1	35.6	6. 2	0.0	-6.3
20	57.7	c.0	3.6	L. 1	25.6	C. 0	Col	2.3
21	22.5	C. 1	0.8	$\bigcirc .1$	<i.	C. 1	col	1.4

TABLE G5(CUNT.)

ENERGY baivo	$\begin{gathered} \% \text { CXYGE } \\ 2 S(3) \end{gathered}$	$\begin{gathered} A T C H I C \\ 2 P(3) \end{gathered}$	$\begin{aligned} & \text { CREITAL } \\ & 2 P_{x}(3) \end{aligned}$	ELATRIELTIGK $2 P_{Y}(3)$
1	-6.5	8.7	0.1	2. 5
2	-0.4	0.5	1.0	0.7
3	-3.3	4.5	$i .7$	0.6
4	-C.C	0.0	4.5	4.8
5	-c. C	0.1	5.0	6.4
6	-0.1	2.2	9.5	17.2
7	c. C	0.0	i7.0	13.8
8	0.0	0.1	23.1	8.1
9	-0.1	3.7	14.5	29.4
10	C. 1	0.3	C.	U.C
11	6.0	16.3	6.2	0.1
12	C. 1	0.2	0.2	$0 \cdot 6$
13	0.0	0.5	14.7	2.3
14	0.9	2.4	1.2	13.6
15	-1.0	22.2	1.4	1.2
16	0.2	1.1	C. 9	C. 8
17	6.0	32.9	8.1	0.4
18	17.5	-0. 3	C.C	0.0
19	52.5	3.0	Coid	0.1
20	7.4	C. 4	C. 1	U.C
21	20.5	U. 9	Cos	$0 . C$

Appendix H. TBA Results of KTaO_{3}
Using the same notation as in Appendix G, Table Hl
contafns the eigenvalues of crystal orbital function $\mathbb{F}_{j}(\underline{k}, \underline{r})$ for the 1 thenergy band and Tables H2 to $H 5$ are the corresponding of atomic orbital contributions.

The Ferms energy is -3.8905 Rydbergs.

Figure $\mathrm{Hl} . \mathrm{KTaO}_{3}$ energy bands.

TABLE HI E(K) VS. K: ENERGY BANDS AT THE SYMMETRY PCINTS OF TME BRILLOUIN zCNE OF POTASSIUM TANTALATE

ENERGY BAND	SYMMETRY PGINT GAMMA	X	M	R
1	C.legcsue 01	C.701754E Cl	0.125720E 04	v.282755E 04
2	$0.1635 C 3 E 01$	C.680399E Ul	C.237674E 01	0.176671 ± 01
3	C.1563C9E O1	O. 179607t Cl	0.739557E 00	0.160138 E 01
4	$0.867332 \mathrm{E}-01$	0.162379 Cl	C. 36.2845 SE GC	0.159046 E Oi
5	-0.218392E O1	C.171296E CO	G.766816E-01	0.938545 E UG
6	-0.223361E 01	C.159333E CO	-0.216799E 01	-0.246137E 01
7	-0.243624E CI	-0.279047E GI	-0.293716e il	- $0.250047 E 01$
8	-0.369717E C1	-0.306559E ${ }^{\text {Ol }}$	-0.322630101	-C.284733E U1
9	-0.310371E 01	-0.323047E Cl	-0.328495E 01	-0.354217E Cl
10	-0.312C58E 01	-0.332234E 01	-0.332456 ©	-0.355523E Cl
11	-C.36C746E Cl	-6.348923E C1	- - . $351424 \mathrm{E}^{\text {c }}$ G1	-6.356930E Ol
12	-0.362491E O1	-0.365690E Cl	-0.368660 U1	-0.363931E C1
13	-C.388166E Cl	-0.389533E 01	-0.372091E 01	-0.356422E Ol
14	-0.3514S9E C1	-C.392919E CI	-0.387495E 01	-U.389963E Ol
15	-0.394107E 01	-0.395278E Cl	- 0.389224 ECl	-C.3915l6E Ó
16	-C.395550E Cl	-C.395887E C1	-C.391349E 01	-6.392837E 01
17	-0.397562E Cl	-C.398559E CI	-0.355299E U1	-0.417548E di
18	-0.399961E C1	-0.4027C5E 01	-0.403129E01	-0.420914E CI
19	-0.455147E C1	-0.412729t C1	-0.424267t 01	-0.516682E Cl
20	-0.527699E Ul	-0.450757E 01	-0.447299E O1	-0.641118E Ol
21	-C.529992E 01	- C.459063r 01	-0.483281t 01	-0.641911E G1
22	-0.685393E 01	-0.5528412 01	-C. 515645 E E OL	- $0.658282 t 01$
23	-0.76G151E Ú	-0.533213E J1	-3.586593E U1	-0.117929E 02
24	-0.781378E Cl	-C.116373t 02	-0.113667E 02	-6.122i24E 02
25	-0.991951E 01	-0.140545E 02	-0.129463E 02	-C.244844E 02

table hi mulliken population analysis of crystal crbitals at gamma symmetry point

ENERGY BAND	\% tantalum atcmic orbital contribut ion										
	502	50	50	50	22	50	65	$6 P$	6 P	6 P	
	Z	$x z$	YZ	$X-Y$		XY		Z	X	Y	
1	0.1	0.1	C.C		0.1	0.1	0.4	-4.4	-2.2	-0.4	
2	0.2	0.0	0.2		0.2	0.1	0.0	-2.0	-4.1	-0.4	
3	0.1	0.2	0.0		0.1	0.0	0.5	0.1	0.0	-5.4	
4	0.0	-0.0	-0.0		0.0	-0.0	165.1	-6.3	-6.1	-4.8	
5	0.9	c. 1	0.1		3.0	0.2	0.1	24.7	25.6	48.4	
6	3.0	C. C	0.2		1.0	0.3	0.0	51.0	47.2	0.0	
7	0.0	0.8	0.8		0.1	0.7	2.0	22.9	25.1	45.4	
8	0.0	C. 3	8.3		0.0	75.7	0.1	0.8	0.4	0.3	$\stackrel{\text { H }}{\omega}$
9	0.0	0.1	79.8		0.0	8.6	0.0	-0.0	0.4	0.1	
10	0.0	88.2	C. 2		0.1	C. 2	0.0	0.1	0.1	0.2	
11	21.7	0.0	0.6		45.2	0.2	0.0	-0.1	-0.1	- 0.1	
12	44.1	0.3	$0 . \mathrm{C}$		25.6	0.4	0.0	-0.2		-0.1	
13	0.1	0.0	0.0		0.1	0.0	0.0	-0.0	-0.0 0.0	-0.3	
14	1.6	0.0	1.1		5.2	1.3	0.2	-0.2	-0.1	-C. 4	
15	0.3	3.6	1.5		2.1	1.8	6.6	0.0	0.1	-c. 1	
16	1.9	0.0	3.9		0.7	3.7	0.0	-c.0	-0.0	0.10	
17	0.1	5.8	2.c		1.0	1.2	0.0	-0.0	-0.0	-0.0	
18	13.8	C. C	0.8		2.6	1.1	0.0	-0.9	-0.0	-1.2	
19	-0.C	0.3	0.2		0.2	0.2	85.3	-0.2	-0.3	-0.4	
20	1.2	0.0	0.0		5.2	0.0	0.3	-0.2	-0.4	-1.5	
21	4.2	0.0	0.0		0.8	0.0	0.6	-1.1	-0.7	0.0	
22	0.1	0.2	0.2		0.2	0.2	9.6	1.4	1.6	-0.3	
23	1.8	c. 1	C.C		4.8	0.0	0.3	1.6	1.4	9.5	
24	4.7	0.0	0.0		1.7	0.1	0.0	5.9	5.7	0.0	
25	0.1	0.0	0.0		C. 0	0.0	27.3	5.2	6.3	0.9	

table hz(CONT.)

ENERCY BAND	$\begin{gathered} 2 \text { UXYEE } \\ 2 S(1) \end{gathered}$	$\begin{gathered} \text { ATUMIC } \\ 2 \mathrm{P} \text { (II } \\ 2 \end{gathered}$	$\begin{aligned} & \text { ORBITAL } \\ & 2 \mathrm{P}(1) \\ & x \end{aligned}$	$\begin{aligned} & \text { CONTRIB } \\ & 2 P_{\gamma}(1) \end{aligned}$	$\begin{aligned} & \text { UTION } \\ & 2 S(2) \end{aligned}$	$2 P_{Z}(2)$	$2 P_{x}(2)$	$2 P_{\gamma}(2)$
1	-0.0	-0. 5	-1.3	0.0	0.1	-0.5	-0.2	-0.3
2	0.1	-0.2	-2.6	0.0	C. C	-0.1	-0.4	-0.0
3	C. 0	0.1	-0.0	-0.5	0.0	-0.0	-0.0	-3.4
4	17.1	c. 2	0.7	0.2	22.0	0.1	0.1	-3.4
5	1.9	-0.3	-0.7	-0.9	5.1	-0.4	-0.4	-1.5
6	4.4	-1.1	-1.1	0.1	-0.0	-1.3	-1.2	-0.0
7	0.3	-0.6	1.0	-1.2	1.4	-C. 4	-0.4	-0.0 1.7
8	0.0	0.0	-0.0	4.3	-0.0	-6.4	-0.4 4.2	1.7
9	0.6	C. C	0.8	0.7	-0.0	3.9	0.3	0.1 0.0
10	-0.0	5.0	0.1	-0.0	0.0	0.0	0.0	0.4
11	-2. 6	1.8	18.4	2.1	-0.5	0.7	2.6	0.4 3.3
12	-0.6	0.3	0.1	0.7	-2.5	2.9	0.2	3.3 16.5
13	-0.0	25.9	-0.0	9.5	C.C	14.9	12.7	16.5 0.0
14	-C.C	0.1	0.2	6.0	-6.3	35.1	44.8	0.1
15	-0.0	14.2	5.5	22.2	0.1	1.7	4.8 1.3	5.1
16	-0.1	4.7	0.0	34.4	0.0	3.1	3.0	5.1 0.0
17	-0.0	24.7	0.0	13.4	-0.0	3.1 4.8	3.0 1.4	0.0 -0.0
18	-0.4	17.4	0.2	0.6	-0.0	28.3	25.8	-0.0
19	3.2	2.7	0.9	2.6	0.4	1.0	2.9	-0.1
20	15.9	-0.c	5.1	0.6	5 C .8	0.1	0.1	13.7
21	33.9	0.5	7.7	0.0	0.7	0.7	0.4	13.7 0.1
22	0.5	3.6	35.6	2.5	3.7	1.8	2.0	17.5
23	4.9	-0.0	4.8	3.0	12.1	0.3	0.3	46.6
24	9.0	2.2	28.0	0.1	0.0	2.8	2.8	0.1
25	122.2	C. 7	5. 5	0.9	122.6	0.3	0.5	6.4

TABIE H2(CONT.)

ENERGY BAND	$\begin{gathered} \text { OXVCEN } \\ 25(3) \end{gathered}$	$\begin{gathered} \text { VATOMIC } \\ 2 P_{2}(3) \\ 2 \end{gathered}$	$\begin{aligned} & \text { QRUI TAL } \\ & 2 P(3) \\ & x \end{aligned}$	Contribution $2 P_{Y}(3)$
1	0.0	-2.7	-i. 2	-0.0
2	0.0	-1.3	-0.4	0.1
3	0.0	0.0	0.2	-0.5
4	16.0	0.7	0.2	0.2
5	1.8	-0.7	-c. 3	-0.8
6	4.5	-1.3	-1.0	0.1
7	0.2	1.1	-0.6	-1.2
8	0.0	0.5	-0.0	0.3
9	-C.c	0.3	0.6	4.7
10	-c.c	0.1	5.0	-0.0
11	-0.9	7.3	1.2	0.2
12	-1.8	11.4	C. 7	2.5
13	-0.0	-0.0	25.7	11.0
14	-0.0	0.1	0.2	5.4
15	0.2	5.6	11.4	17.0
16	-0.1	-0. 5	8.1	36.5
17	$-\mathrm{C} . \mathrm{C}$	0.0	29.0	16.4
18	-C. 5	0.1	12.1	0.1
19	3.3	1.0	2.6	2.4
20	6.8	2.5	C. 0	0.4
21	42.5	10.2	C. 3	0.1
22	0.5	33.5	3.9	2.6
23	4.5	6.1	-0.1	3.1
24	9.9	29.1	2.1	C. C
25	119.2	3.6	1.0	1.1

TABLE H2(CENT.)

ENERGY BAND	* PUTASSIUM		AtGMic erbital centribution		
	$4 \mathrm{~S}$	$4 P$	4 P	4 P	
		z	x		Y
1	-0.1	72.5	34.9	4.2	
2	-C.C	37.0	72.6	0.7	
3	-0.2	1.0	2.9	104.8	
4	-164.9	-6.1	-C. 1	-0.9	
5	-0.0	-1.5	-1.5	-3.0	
6	-C. 0	-2.6	-2.4	-0.0	
7	- 0.7	-0.5	-c. 6	-1.2	
8	0.0	0.1	0.0	C.O	
9	-0.0	0.1	0.2	0.0	
10	0.0	0.0	c.u	4. 1	
11	-0.0	-0.2	-0.5	-0.1	
12	-0.0	-0.3	C. C	-0.5	
13	-0.0	0.0	0.0	0.0	
14	-C.C	-0.1	-i. 1	-0.1	
15	-C. 7	-0.0	-0.0	0.0	
16	-0.c	0.1	0.1	-2.0	
17	-C.C	-0.0	-c.e	-0.2	
18	-0.0	-0. 2	-i. 1	-0.0	
19	-8. 9	0.3	0.8	0.9	
20	-c. 0	-0.1	-c. 2	-C. 3	
21	-0. 0	-0.2	-0.1	-0.0	
22	-13.c	-3.2	-3.4	-1.4	
23	-0.6	-8.6	-6.5	-3.9	
24	-4.0.	-2.2	-2.1	-c.e	
25	-328.5	-0.4	-6. 5	-0.4	

TABLE H3 MULLIKEN PCPULATICN ANALYSIS OF CRYSTAL ORBITALS AT X SYMIAE TRY POINT

$\begin{aligned} & \text { ENERGY } \\ & \text { BAND } \end{aligned}$	2 TANTALUM Atomic orbital contrigutien								
	502	5D	5 D	5022	50	ts	6P	6P	$6 P$
	2	$x z$	YZ	$X-Y$	XY		Z	x	\% Y
1	0.1	-0.0	0.1	0.0	0.0	0.1	92.9	0.0	0.0
2	0.0	0. C	0.0	0.1	-0.0	0.1	02.9	0.0	90.5
3	0.3	-0.0	0.0	-0.0	0.0	0.5	0.0	$0 \cdot 0$	90.5
4	-0.0	0.0	0.0	0.1	0.0	0.3	0.0	C. 5	C.
5	0.0	0.1	0.1	0.0	c. 1	1.1	0.0	-2.1	2.9
6	3.0	0.0	0.0	9.9	-0.0	-11.1	0.0	-2.1	c.0
7	1.3	C. 4	c. 3	3.2	2.4	1.1	0.0	84.9	-0.0
8	0.0	0.0	91.1	C. 1	0.0	0.0	0.2	6.1	$0 \cdot 2$
9	0.0	5.2	0.0	0.1	87.1	$0 \cdot 0$	0.0	\bigcirc	c.
10	0.1	87.3	C.0	0.3	5.4	0.0	6.0	U. 2	-0.0
11	30.9	0.0	0.0	20.5	0.0	0.0	0.7	U.1	-0.5
12	16.0	0.3	0.4	26.8	0.3	2.1	1.1	0.9	1.3
13	0.4	0.2	0.0	0.2	1.4	c. 2	0.0	-C. 0	C. C
14	0.4	1.0	6.1	0.0	0.5	0.0	1.8	0.0	1.6
15	-0.0	0.1	U.	C. 1	3.5	0.2	0.0	-6.0	0.2
16	0.1	2.9	0.0	0.5	-0.2	0.8	C. 4	O.C	0.2
17	0.4	C. 9	4.6	1.9	C. 3	0.7	0.1	0.1	0.3
18	$-\mathrm{C} .0$	1.0	3.3	0.9	0.6	0.1	1.3	0.6	1.7
19	2.6	0.8	C. 1	9.2	C. 7	1.1	6.4	2.3	1.7
20	-0.1	0.0	0.0	39.4	0.0	-C. 2	0.0	8.5	
21	53.4	-C.0	0.0	-0.2	0.0	0.1	-0.4	2.6	-2. 4
22	0.4	0.0	0.0	0.2	-c.C	77.7	-. 2	2.4	-f.e
23	-5.7	-c.0	0.0	-1.7	-6.0	0.0	U. 0	2. 2	-0.4
24	10.1	-0.0	-0.c	26.7	0.0	-389.3	-3.6	-6.2	-2.j
25	-1.0	-0.0	-0.6	-2.8	$-\mathrm{C} .0$	-1.1	0.6	-5.3	0.6

tABLE H3(CONT.)

TABLE H3 (CUNT.)

ENERGY BAND	* cxygen atcmic crbital contrieutien			
	2S(3)	2P (3)	$2 P$ (3)	2 P (3)
		Z	X	Y
1	1.0	1.8	-6.0	0.0
2	0.0	0.0	-0.0	2.9
3	4.4	0.1	0.0	0.0
4	-C. 1	0.0	-0.0	0.2
5	-0.1	0.0	C. 5	0.0
6	-5.3	0.1	0.0	0.1
7	0.1	0.1	-0.2	-0.0
8	0.0	0.1	0.0	3.9
9	0.0	0.0	-. 8	0.0
10	C. C	6.0	6.6	0.0
11	-1.5	18.5	0.0	0.7
12	-0.8	28.0	0.5	0.1
13	0.2	0.0	7.0	2.9
14	0.2	0.3	11.0	31.1
15	0.3	0.6	1.06	0.8
16	0.5	1.2	36.3	2.6
17	0.0	2.5	8.5	31.0
18	0.1	3.3	11.2	23.2
19	0.4	9.4	14.1	0.7
20	0.4	0.0	0.1	0.0
21	-2.7	32.2	C. ${ }^{\circ}$	0.0
22	8.6	2.1	C. 1	0.6
23	43.6	0.5	-0.0	-i.9
24	-835.C	0.2	-C. 1	0.0
25	-0.1	-0.0	-13.6	-c.0

TABLE HS (CONT.)

TABLE H4 MULLIKEN POPULATICN ANALYSIS OF CRYSTAL CRBITALS AT M SYMMETRY POINT

energy BAND	\% tantalum atcmic erbital contribution								
	5 D 2	50	50	5D 22	50	65	$6 P$	6P	6 P
	2	XZ	YZ	$X-Y$	XY		2	x	Y
1	0.0	0.0	C. C	0.0	-C.Ci	0.0	97.0	-0.c	-0.0
2	0.6	0.0	0.0	0.0	0.1	3.8	0.0	0.4	1.1
3	0.0	-0.0	0.0	0.0	C. 1	2.6	0.0	0.4	1.5
4	-0.0	0.0	0.2	0.0	0.0	0.4	-3.0	0.2	11.7
5	-0.0	0.1	0.0	0.0	0.0	0.6	-0.0	15.5	11.7
6	4.1	0.0	0.0	0.3	0.1	42.1	0.0	6.5	15.3
7	-6.0	0.0	0.1	11.6	0.0	1.0	0.0		
8	0.4	7.8	28.9	0.6	3.2	1.0	0.0	44.5	32.2
9	0.0	43.5	45.9	1.1	0.4	1.0	0.0	0.8	10.6
10	0.2	44.1	21.2	1.8	3.5	5.7	0.0	13.9	5.2
11	3.4	0.1	0.1	0.3	78.2	0.3	0.0	1.1	5.2
12	60.5	0.1	C. 1	7.9	1.2	0.8	0.9	-C.1	C. 1
13	6.1	0.0	2.2	66.1	0.0	-0.0	0.1	0.4	2.7
14	0.0	-0.0	-0.8	0.5	0.0	0.0	C. 0	C. C	-0.0
15	0.0	-C. 8	0.0	0.1	0.1	0.0	-0.0	-0.0	0.0
16	0.0	0.1	0.1	0.1	1.5	0.0	0.0	C. 3	0.1
17	0.2	3.8	0.8	-1.2	$0 \cdot 0$	0.0	0.0	-0.2	c. 1
18	-0.5	0. 8	1.2	1.7	0.0	4.6	0.1	-0.0	${ }_{6} \cdot 6$
19	0.0	1.3	0.0	0.4	C. 2	1.1	0.0	15.4	-0.6
20	2.2	0.C	0.3	1.6	4.7	1.2	0.7	- -6.0	-0.e
21	28.0	0.0	0.2	1.6	1.5	8.2	1.1	-C.0	2.9
22	-0.3	0.0	0.6	5.7	2.9	11.7	0.1	-0.0	15.8
23	-4.8	C.C	C. 0	0.0	2.1	8.5	0.0	0.0	
24	6.2	4.5	0.1	37.0	6.5	30.4	-0.0	-53.4	13.2
25	-2. 2	-6.0	-0.4	-1.2	$0 \cdot 0$	-1.4	-0.0	- 0.5	-60.2

TABLE H4(CONT.)

ENERGY BAND	$\begin{aligned} & \text { 2 OXYGEA } \\ & 2 S(1) \end{aligned}$	$\begin{gathered} N_{2} \operatorname{ATOMIC} \\ 2 P_{2}(1) \end{gathered}$	$\begin{aligned} & \text { URBITAL } \\ & 2 P_{x}^{(1)} \end{aligned}$	$\begin{aligned} & \text { CONTRIS } \\ & 2 P_{Y}(1) \end{aligned}$	$\begin{aligned} & \text { BUTION } \\ & 2 S(2) \end{aligned}$	$2 P_{2}(2)$	$2 P_{x}(2)$	${ }^{2 P_{Y}}(2)$
1	0.0	0.0	0.0	-0.0	0.0	0.0	-0.0	0.0
2	3.1	-0.0	0.2	-0.0	2.1	-0.0	-ن.0	0.2
3	-0.0	0.0	0.0	-0.6	-C. 8	0.0	-0.5	c. 0
4	-6.0	0.0	0.0	0.0	-11.5	-0.0	-0.0	-0.0
5	7.9	-0.0	-0.0	0.0	-C. 1	0.0	-0.0	0.0
6	-1.3	0. C	5.9	0.1	-6.9	0.0	1.0	8.6
7	-7.4	-C. 0	10.2	0.9	c. 3	-0.0	0.8	5.2
8	1.0	-0.1	0.3	1.7	-0.6	-0.2	-0.0	C. 1
5	0.2	-0.4	-0.0	0.3	0.1	-0.3	U.0	0.3
10	1.5	-0.4	0.3	1.3	C. 1	-6. 2	-0.0	0.3
11	0.5	0.0	0.0	15.4	-6.0	U.0	-0.5	- H .0
12	0.7	0. 6	C. 1	4.1	-0.0	-i. 0	0.5	G.9
13	2.2	C. 0	-0.5	0.0	1.7	0.5	0.0	1.8
14	0.0	c. 7	0.1	0.1	0.0	98.1	0.3	0.7
15	C.C	91.9	0.4	L. 5	c. 0	l.t	3.6	C. 0
16	0.0	4.4	1.1	25.0	c. 0	0.6	64.0	0.2
17	0.2	3.1	28.1	C. 0	0.5	0.5	0.2	12.5
18	0.3	0.4	6.2	6.7	$0 \cdot 9$	0.5	1.0	51.9
19	7.4	0.2	47.6	1.0	0.0	0.0	0.7	-C.C
20	0.1	C. 1	0.1	25.6	1.9	-0.0	17.3	- 3.6
21	-0.0	0.0	0.4	4.6	1.6	-i. C	4.1	7.0
22	C. 2	C. 0	C. 6	14.4	11.4	0.0	4.7	8.4
23	-6.0	0.0	-0.1	c.	c. 1	0.0	3.0	-0.1
24	2573.3	0.0	24.1	0.3	66.6	0.0	0.5	$\bigcirc .1 .2$
25	-23.7	-C.C	-4.2	- 0.0	-706.i	-0.0	-0.	$0 \cdot 2$

TABLE H4(CONT.)

TABLE H 4 (CONT.)

TABLE H5 mulliken population analysis ef crystal orbitals at R SYMMETRY POINT

ENERGY BAND	\% TANTALUM ATOMIC DRBITAL CONTRIBUTIUN								
	502	50	50	50 22	50	6 S	SP	6P	$6 P$
	z	$x z$	YZ	$x-y$	XY		z	X	Y
1	0.0	-0.0	0.1	0.0	-C.0	93.7	0.0	0.0	0.3
2	0.0	-0.1	-0.1	0.0	-0.2	U. 0	1.2	1.4	2.6
3	0.0	-0.1	-0.2	0.0	-0.3	0.0	1.3	C. 4	0.0
4	0.0	-1.2	-0.1	0.0	-0.0	0.0	0.6	1.3	0.4
5	0.0	-0.0	-0.0	C. 0	-0.0	0.0	0.2	c. 2	0.4
6	2.1	0.1	-0.0	6.8	-0.0	-0.0	12.7	12.9	66.7
7	7.3	$-\mathrm{C} . \mathrm{C}$	c. 8	2.5	6.7	-0.0	45.9	42.5	66.7
8	0.1	0.0	0.8	0.1	0.9	0.2	32.7	39.7	3 C .6
9	c. ${ }^{\text {c }}$	63. C	2.1	0.0	4.1	0.0	0.1	$0 \cdot 0$	0.1
10	0.5	C. 7	22.2	C.06	46.6	-0.0	-0.0	0.0	-C. ${ }^{\text {c }}$
11	0.7	4.2	44.1	2.2	17.6	0.0	0.1	0.0	-0.0
12	0.1	0.3	0.4	80.0	0.9	O. 0	-0.0	4.0	3.5
13	80.5	0.1	0.4	0.1	0.0	-0.0	6.1	C. 4	c. 5
14	C. 0	0.1	C. 2	-0.0	0.0	0.0	6.1 0.0	0.4 0.0	0.5
15	-0.1	0.0	0.5	0.1	\bigcirc	-0.0	6.2	0.3	0.0
16	0.0	C. 1	0.5	0.5	0.4	0.0	1.0	0.9	1.0
17	-6.6	0.1	0.1	-2.0	U. 1	-0.0	2.7	2.9	9.2
18	-1.8	0.0	0.0	-0.0	0.1	0.0	9.2	8.2	-6. 0
19	0.4	C.0	U.0	cou	$\cup .0$	6.0	1.0	0.9	0.9
20	9.2	0.1	0.1	1.1	C. 2	0.0	-7.8	-0.7	-7.8
21	1.2	0.0	0.1	8.8	0.1	0.0	-1.7	-9.3	-5.4
22 23	0.1	0.2	C. 1	6.1	0.1	-0.0	-7.1	-6.4	-3.7
24	0.0	C. 4 0.0	14.3 13.6	C.C	13.9	-i.l	0.0	C. 6	1.8
25	0.0	32.1	C.0	$0 \cdot 0$	13.9	-0.0	0.1 0.4	0.2	-0.0 0.0

TABLE H5(CONT.)

ENERGY BANO	$\begin{gathered} \text { \& OXYGEt } \\ 2 S(1) \end{gathered}$	$\begin{gathered} \text { N ATOMIC } \\ 2 \mathrm{~F}_{2} \\ \hline 11 \end{gathered}$	$\begin{aligned} & \text { URE ITAL } \\ & 2 P_{x}(1) \end{aligned}$	$\begin{aligned} & \text { CONTRIE } \\ & 2 P_{Y}(1) \end{aligned}$	$\begin{aligned} & \text { UTION } \\ & 2 S(2) \end{aligned}$	$2 P_{Z}(2)$	$2 P_{x}(2)$	$2 P_{Y}(2)$
1	0.0	0.0	2.1	-0.0	0.0	0.0	0.0	2.1
2	0.1	-0.1	-0.0	-1.4	-C. C	-1.4	-1.6	0.0
3	-0.1	-0.2	0.0	-1.4	0.0	-C. 5	-6.7	0.0
4	-0.0	-2.6	0.0	-6. 1	-0.1	-0.5	-0.1	0.0
5	2.5	0.1	-0.0	0.1	1. ${ }^{\circ}$	-0.1	-0.1	0.0
6	-2.2	0.4	2.1	0.9	-11.7	0.2	0.1	7.7
7	-7.3	C. 7	5.4	C. 3	-0.c	C. 1	0.0	0.0
8	-6.1	0.7	1.4	1.4	-4.4	0.3	0.3	c. 0
9	-0.0	14.3	0.0	1.2	-0.0	0.0	0.1	0.0
10	0.0	0.1	0.0	18.1	c. C	C. 8	1.6	0.0
11	0.0	1.2	0.0	7.5	0.2	1.3	0.5	$0 . \mathrm{C}$
12	5.2	0.3	-0. 1	0.7	4.9	0.1	C .0	0.1
13	1.4	0.2	0.6	0.1	1.8	0.0	C. 0	0.15
14	-0.0	34.4	C. 3	4.3	0.0	10.5	11.4	-i.0icie
15	-6.0	13.1	3.5	11.3	c. 0	20.4	23.2	C. 0
16	-C.C	0.0	0.0	11.2	-0.0	37.9	34.3	C. 1
17	C. 4	0.0	15.4	-0.0	1.7	0.0	0.0	55.4
18	1.2	1.3	37.1	3.2	$0 . \mathrm{C}$	0.8	0.8	5.4
15	1.2	0.6	29.4	0.0	1.2	0.0	0.0	30.3
20	4.8	-0.0	0.3	0.1	48.2	-0.0	0.4	1.9
21	59.4	0.2	2.0	-0.0	33.0	0.3	-C.0	0.5
22	39.6	C. 1	0.3	0.2	22.6	0.5	C. 4	0.1
23	0.3	0.2	C. 0	22.7	0.8	13.8	13.4	0.1
24	c. 0	6.0	-0.0	22.5	0.6	15.4	15.8	0.0
25	0.0	35.6	C.0	C. 1	-6.0	0.0	©00	0.6

TABLE HS(CONT.)

ENERGY BAND	$\begin{aligned} & \text { \% OXYGEN } \\ & 2 S(3) \end{aligned}$	$\begin{gathered} N \text { ATGMIC } \\ 2 P(3) \\ z \end{gathered}$	$\begin{aligned} & \text { ORBITAL } \\ & 2 P(3) \\ & x \end{aligned}$	contrigution $2 P_{Y}(3)$ Y
1	C. 0	2.1	C. 6	-0.0
2	c. 2	-0.0	-0.1	-1.1
3	-0.1	0.0	0.1	-1.0
4	0.0	0.0	-2.5	-C. 8
5	2.7	0.0	0.1	0.1
6	-2.2	2.0	C. 4	0.8
7	-8.1	c.ó	6.5	6.4
8	-5.1	1.1	0.8	1.3
9	-0.c	0.0	14.1	0.6
10	0.0	0.0	0.2	8.1
11	-0.0	0.1	1.2	18.6
12	0.0	-0.0	0.0	0.0
13	6.9	-1.0	0.3	0.7
14	0.0	0.3	34.5	3.9
15	0.6	3.5	13.2	10.2
16	0.1	0.1	0.0	12.5
17	0.4	14.2	C. 0	0.0
18	1.5	40.0	1.3	0.1
19	-0.2	23.7	0.0	0.0
20	49.0	C. 7	0.2	$0 . C$
21	10.5	0.2	-3.0	0.1
22	44.3	0.5	C. 2	0.1
23	0.0	C.O	0.2	23.2
24	C.	$\because .0$	0.5	21.9
25	c.i	u.u	35.6	0.2

TABLE HSICONT.I

energy BAND	± 4	$\begin{aligned} & \text { PCTASSIUM } \\ & 4 \mathrm{~S} \\ & 4 \mathrm{P} \end{aligned}$	atcmic crbital centribution		
			4 P	4 P	
		z	x		γ
1	0.0	c.c	C. 0	0.0	
2	6.3	47.9	38.1	8.4	
3	c. 2	52.1	$4 \in .1$	4.4	
4	1.4	1.3	16.5	86.9	
5	81.7	2.6	3.0	5.2	
6	0.0	-0.c	-C.0	0.1	
7	0.0	0.3	0.3	-0.l	
8	2.1	0.2	C. 1	-0.0	
9	0.0	-i.c	- 0.0	0.1	
1 C	0.0	0.1	0.0	0.0	
11	0.0	0.1	0.2	0.0	
12	0.0	0.0	-0.0	-0.0	
13	C. C	0.0	0.0	-0.0	
14	0.0	-0.0	-6.0	0.0	
15	0.0	0.0	0.0	-0.0	
16	C. 0	-C.C	-C.0	-0.0	
17	0.0	-C.0	-c.r	-6.0	
18	0.6	0.0	C. 0	-0.9	
19	0.0	-0.0	-c.e	-G.i	
20	0.0	-0.2	-6.0	-0.1	
21	C.e	0.0	-0.1	-0.0	
22	8.2	-0.2	-C. 1	-0.2	
23	0.1	-2.4	-2.4	-v. 3	
24	0.3	-1.8	-1.7	-0.0	
25	0.0	0.1	0.1	-4.0	

Appendix I. TBA Results of $\mathrm{Na}_{\mathrm{x}} \mathrm{WO}_{3}(\mathrm{x}=1.0)$

Using the same notation as in Appendix G, Table Il contains the eigenvalues of crystal orbital function $\Psi_{i}(\underline{k}, \underline{r})$ for the 1 thenergy band and Tables I2 to $I 5$ are the corresponding \% atomic orbital contributions.

The Fermi energy is -3.2252 Rydibergs.

Figure Il. NaWO_{3} energy bands.

TABLE II
E(K) VS. K: ENERGY bands at the symmetry points of the brillcuin ZENE OF SCDIUM TUNGSTEN BRONZE

ENERGY BAND	SYMMETRY PCINT GAMMA	X		M		R	
1	$0.178494 E 01$	0.497721E	01	C.574128E	C3	C. 116693 E	c4
2	-C.738371E CO	C. 473387 E	01	0.585841 E	01	-0.200650E	00
3	-0.925617E 00	$0.390161 E$	01	0.35617 CE	01	-C.942852E	00
4	-0.954583E CO	$0.688576 E$	co	-0.316201E	00	-0.131859E	01
5	-0.25534UE C1	-C.144737E	01	-0.136859E	01	-0.241201E	01
6	-0.255974E 01	-0.255927E	01	-0.189150E	(1)	-0.278757E	Cl
7	- 0.258314 ECL	-0.262527E	01	-0.266169E	O1	-0.279475E	C1
8	-0.271399E C1	-0.265414E	C1	-C.269529E	C1	-C. 282527 E	01
9	-0.271547E 01	-0.269922E	01	-0.271761E	01	-0.301882E	01
10	-C.295949E C1	-0.271637E	Cl	-0.285791E	Cl	-0.307885E	
11	-0.308620E 01	-0.3C8838E	01	-6.305543E	c1	-i. 309464 E	
12	-0.31574CE O1	-0.319573E	01	-0.309954E	01	-0.316893E	01
13	-0.3221C6E Cl	-0.3263t8E	01	-C.322471E	C1	-0.318935E	01
14	-0.322787E U1	-0.328050E	01	-C.323012E	01	-C. 323857 E	01
15	-0.332111E C1	-C.329274E	01	-6.326263t	01	-0.326376E	01
16	-0.3326465 01	-0.334659E	C1	-6.32853CE	61	-0.328558E	Cl
17	-0.386235E 01	-0.336993E	01	-0.330138E	01	-G.360483E	
18	-0.35618SE Cl	-C.367501E	C1	- 0.341663 E	01	- 0.360733 E	
19	-0.396253E Cl	-0.371564E	01	-0.352958E		-C.406588E	
20	-0.503756E C1	- $0.383132 E$	01	-0.356781E		-0.553099E	
21	-0.505017E 01	-0.40:253E	01	-6.4C4690E		-C.555377E	01
22	-0.551776E G1	-Ú418687E	01	-0.448079E		-0.733287E	il
23	-0.661c39E Ol	-C.587987E		-0.546617E		-0.141740 E	- 2
24	-0.719572E 01	-0.77C267E	01	-0.625044E	cl	-0.16535EE	-2
25	-0.720820E C1	-C.806252E	01	-C.853844E	81	-C.582785E	02

TABLE 12 MULLIKEN POPULATION ANALYSIS CF CRYSTAL GRBITALS AT GAMMA SYMMETRY POINT

ENEREY BAND	\% TUNGSTEN ATCMIC ORBITAL CONTR IBLTIUN									
	$5 \mathrm{D} \mathrm{z}^{2}$	50	50	5022	50	6S	SP	6P	$6 P$	
	7	$x z$	YZ	$X-Y$	XY		z	. X	γ	
1	-0.0	-0.0	-0.0	-0.0	$-\mathrm{Cou}$	7.5	-0.2	-i. 2		
2	1.0	0.0	0.0	3.4	0.0	0.0	24.3	26.3	-3.24	
3	3.6	0.0	0.0	1.0	0.0	0.0	42.1	47.1	33.4 3.3	
4	0.0	0.1	0.2	0.3	C. 2	1.6	22.2	14.8	54.2	
5	2.2	0.0	38.7	0.6	43.9	0.0	0.0	0	G.	
6	0.3	13.6	37.8	1.0	32.2	0.5	0.3	0.3	0.6	
7	0.0	73.0	6.3	0.0	E.6	0.3	0.6	0.6	0.1	
8	2.2	0.1	2.7	43.1	0.1	0.0	0.1	4.7	3.1	
9	43.2	0.1	0.2	2.1	3.0	0.0	4.5	0.2	2.7	$\underset{\sim}{\sim}$
10	C. 0	0.0	0.5	0.1	0.5.	45.9	0.9	0.9	2.5	
11	0.4	1.0	0.1	1.3	0.1	1.1	1.3	1.3	1.1	
12	0.5	0.0	0.0	0.2	0.0	0.0	0.1	0.1	0.0	
13	0.1	10.7	0.5	0.3	0.5	-0.0	0.1	0.1	-0.0	
14	0.0	C.0	0.0	0.0	C. 0	0.0	0.8	C. 8	-0.0	
15	0.0	0.0	6.9	c. 0	5.7	-0.0	0.2	c. 2	0.0	
16	0.0	0.8	5.7	0.0	6.8	0.1	0.2	0.3	0.7	
17	0.0	0.1	0.0	0.0	C. 0	69.0	-0.2 4	-C.3	-0.7	
18	24.7	c. 0	0.0	26.6	0.0	-0.0	-0.3	-0.5	-0.9	
19	26.7	0.0	0.0	24.8	C. 0	0.0	-0.5	-0.1	-C. 0.8	
20	-5.7	0.6	0.0	-1.0	0.0	0.0	3.0	2.2	U.1	
21	-1.0	0.0	0.0	-5.7	0.0	0.0	0.5	1.3	3.4	
22	0.0	0.0	0.1	0.0	U.C	-13.6	1.9	1.9	1.5	
23	0.4	0.3	0.1	1.3	0.1	\%00	-0.3	-4.3	-0.2	
24	1.3	c. C	0.2	0.4	C. 2	0.0	-0.9	-1.2	-0.0	
25	0.0	0.2	0.0	0.2	0.6	3.2	-0.5	-0.3	-1.5	

TABLE I2(CONT.)

ENERGY BÂND	* OXYGEN ATOMIC CRBITAL CONTRIBUTICN							
	2S11)	2P (1)	2P (1)	2 P (1)	2S(2)	2 P (2)	2P (2)	2p (2)
		2	X	Y		2	\times	\boldsymbol{Y}
1	4.7	0.0	0.0	0.0	4.7	-0.0	-0.0	0.0
2	1.7	1.3	0.1	1.4	2.2	1.2	1.3	0.4
3	3.1	0.9	0.1	C. 1	C.0	C. 3	0.4	-0.0
4	1.0	0.1	-0.1	0.8	3.6	0.6	0.5	-0.2
5	-0.1	C. 0	1.2	2.0	C. 0	3.5	4.0	-0.2
6	0.0	0.6	0.1	1.3	-0.1	4.6	4.0	1.0
7	C. 0	5.3	0.6	0.4	c. 6		4.0	1.0
8	-2.0	0.5	27.8	0.1	-1.1	0.0	-0.5	-0.0
9	-0.2	0.3	2.7	1.5	-1.0	-0.0	-0.0	16.9
10	-1.9	-0.0	16. 3	1.1	-1.6	-0.2	1.0	14.1
11	0.0	4.7	1.4	21.8	-0.1	16.7	17.1	14.3
12	-0.0	3.9	0.4	29.3	0.0	14.3	14.2	4.5
13	C.C	32.1	1.6	0.0	-0.0	7.6	7.7	0.1
14	0.0	46.8	0.0	1.9	-c.e C	1.4	1.6	0.6
15	-0.0	0.0	$0 . \mathrm{C}$	13.0	C. ${ }^{\text {c }}$	31.0	26.9	0.0
16	-0.0	2.8	0.0	24.5	c. C	15.3	15.2	c. 0
17	-1.6	C. 3	16.0	0.3	-1.3	15.0	15.2 0.6	16.0
18	-0. 5	c. 6	3 C .4	C. 6	-0.1	0.0	0.6	2.8
19	-0.c	0.6	2.0	0.0	-0.5	- $0 \cdot 0$	c. ${ }^{\text {c }}$	29.5
20	40.2	-0.0	C. 8	0.0	1.0	-0.0	-0.0	-0.0
21	24.1	0.1	C. 5	0.0	63.1	U.G	0.0	1.5
22	41.2	-0.0	1.0	0.0	40.3	-¢. 1	-0.0	C .7
23	0.2	-0. 5	-c.t	-0.6	1.3	-6. 5	-0.5	C.0
24	1.0	-0.5	-0.6	C. 4	0.0	1.2	1.0	-0.0
25	-C. 1	1.5	-0.4	C. 5	0.2	-6.4	- -1.2	-1.4

TABLE 12(CONT.)

ENERGY BAND	$\begin{aligned} & \text { E OXYGEA } \\ & 2 S(3) \end{aligned}$	$\begin{gathered} \text { ATOMIC } \\ 2 P_{2}(3) \end{gathered}$	$\begin{aligned} & \text { OREI TAL } \\ & 2 P_{x}(3) \end{aligned}$	contributiun $2 P_{Y}(3)$
1	4.7	0.0	-c. 0	-0.0
2	1.6	0.1	1.4	1.5
3	2.7	0.2	0.9	-0.0
4	1.5	-0.2	C. 1	0.9
5	-0.1	1.3	0.0	1.8
6	0.c	0.1	0.6	1.5
7	0.0	0.0	5.3	C. 4
8	-0.1	1.4	0.4	1.5
9	-2.c	29.3	C. 4	0.1
10	-1.8	16.0	-c.0	1.4
11	0.0	1.5	4.7	20.9
12	-0.0	0.5	3.9	29.8
13	0.0	1.5	34.3	0.0
14	0.0	0.1	44.5	1.9
15	0.0	-0.0	C. 1	16.3
16	0.0	0.0	2.7	21.1
17	-1.3	14.4	C. 3	0.3
18	-0.5	16.1	C. 0	0.1
19	-0.5	17.7	0.1	-9. 0
20	55.6	1.4	c.e	0.6
21	9.7	0.3	c. 1	0.1
22	40.7	0.6	-0.0	0.0
23	0.2	-0.6	-C. 5	-0.0
24	0.8	-0.3	-0.4	0.8
25	-c. 1	-0.6	1.3	0.1

TABLE I2(CONT.)

ENERGY BAND	$\begin{aligned} & \% \text { secium } \\ & 3 \mathrm{~S} \end{aligned}$	ATOMIC $3 P$	$\begin{aligned} & \text { ORBITAL } \\ & 3 P \end{aligned}$	CONTRIBUTION	
		2	- x	${ }^{3 P}$	
1	79.0	-i. 0	-C.0	-0.0	
2	0.0	-0.8	-c. 9	-1.1	
3	c. 0	-1.3	-1.5	-0.0	
4	c. 3	-0.6	-0.4	-1.5	
5	-0.0)	0.4	0.4	0.0	
6	-0.0	0.1	0.2	0.1	
7	-0.0	-0.6	-0.0	-6.0	
8	-0.0	-0.0	-C. 8	-0.6	
9	-C. 0	-0. 8	-5.0	-0.5	$\stackrel{\sim}{\sim}$
10	-3.1	1.5	1.6	0.8	
11	-0.1	-0.5	-0.5	-0.2	
12	-C.0	1.5	1.5	0.0	
13	-0.0	0.1	0.1	2.7	
14	-C.0	0.0	C. 6	0.0	
15	-0.i	-0.2	-C. 2	-6.0	
16	-C.C	-0.1	-C. 1	-0.0	
17	-10.3	-6.4	-i. 5	-6.80	
18	0.0	0.5	1.0	0.1	
19	-0.0	0.5	0.0	0.9	
20	0.0	1.4	1.0	c. 6	
21	-0.0	0.2	0.5	1.4	
22	-16.7	-5.1	-0.1	-0.0	
23	-0.1	33.8	34. ${ }^{\text {c }}$	32.5	
24	-0.0	42.3	53.6	C. 7	
25	-0.3	22.6	11.2	65.4	

TABLE 13 MULLIKEN POPULATIUN ANALY'SIS OF CRYSTAL GRBITALS AT X SyMMETRY POINT

ENERGY	\% TUNG	N AT	ORBI	AL CCNT	BUT IGN				
BANO	50_{z}^{2}	5^{50}	${ }^{50} \mathrm{YZ}^{2}$	$50 X^{2}-Y^{2}$	${ }^{50}$	65	$6^{6 P}$	$6^{6 P}$	6 P
1	0.0	0.0	0.0	0.6	0.0	-0.0	24.3	C. 0	88.7
2	0.4	-0.0	0.0	0.1	0.0	0.0	72.2	-0.0	20.3
3	-0.1	-0.0	-0.0	-0.1	-0.0	-1.1	-6.5	-0.0	-18.2
4	-0.3	-0.1	-0.2	-0.6	-0.1	-0.5	-0.0	12.5	-0.4
5	0.0	0.1	c. 0	1.2	0.1	1.4	0.0	105.3	-0.4
6	1.5	0.6	64.2	3.4	0.1	5.4	0.0	-0.0	-0.0
7	22.5	1.3	20.0	1.2	0.1	12.1	3.5	-0.3	-0.t
8	20.7	2.5	5.1	24.6	c. 6	3.8	C. 2	0.5	3.7
9	0.2	22.4	0.1	0.1	67.1	0.2	0.0	0.5	3.7
10	0.1	64.1	C. C	1.0	22.8	0.5	0.0	$\bigcirc \cdot 1$	0.1
11	5.2	-0.1	0.0	13.8	-0.3	-0.9	-0.1	0.0	-6.0
12	0.5	-0.5	0.1	-0.0	-0.3	0.0	-0.1	0.1	-0.0
13	3.0	4.2	0.2	6.8	C. 2	6.1	-0.0	0.1	0.2
14	0.1	0.2	0.1	1.5	3.6	C. 4	i. 1	-C. 5	0.2
15	0.3	1.9	$0 . \mathrm{C}$	1.6	4.8	1.5	0.6	-C.0	1.0
16	2.0	3.2	2.c	6.1	1.0	4.1	0.8	-C. 8	0.0
17	0.8	0.4	8.7	2.6	0.3	2.1	1.5	-.- .2	1.8
18	6.7	0.1	C. 0	15.5	c. 0	0.0	-6.6	3.6	0.1
19	0.2	-0.1	0.1	4.5	c. 1	-3.1	-0.7	8.	C. 3
20	4.8	-0.0	C. 6	3.8	0.0	-3.1	-0.0	8.6 0.1	C.3
21	30.0	0.0	C.C	6.1	c. 0	2.1	0.3	c. 3	1.0
22	0.0	-0.0	0.6	-0.1	-0.0	53.2	-0.0	c. 1.6	6.9
23	2.5	U. C	C. 0	7.3	-6.0	7.5	-0.0	-7.8	-0.9
24	-0.8	-i.c	0.0	-C.	-0.0	-0.1	$\mathrm{C}_{6} .1$	0.4	-0.0
25	-C. 4	-0.0	0.0	-3.1	-6.0	-2.2	1.0	-C.0	0.0

TABLE $13(C O N T$.

TABLE 13(CONT.)

ENERGY	* OXYGEN ATOMIC	orbital contribution
BAND	2S(3) 2P (3)	2P (3) 2P (3)
	2	$X \quad Y$

1	2.5	0.2	-0.0	3.6
2	1.5	0.8	-0.0	C. 9
3	1.5	-0.3	0.0	-0.9
4	-0.0	-0.0	1.6	-0.2
5	0.6	0.0	-0.6	c. 0
6	1.3	3.3	0.1	7.2
7	3.3	21.6	6.1	0.3
8	-0.2	5.3	0.3	0.3
9	-0.0	0.3	2.6	0.0
10	0.1	0.0	6.5	0.2
11	1.3	5.6	0.3	0.1
12	1.0	1.0	4.7	0.0
13	0.9	0.0	37.6	0.0
14	-C.C	0.0	2.0	32.5
15	-C.1	0.4	13.6	14.8
16	0.6	0.1	28.2	1.6
17	-6. C	0.9	4.5	37.0
18	6.1	25.5	C. 2	0.1
19	24.5	17.8	0.1	0.8
20	c. 2	0.6	0.1	1.9
21	16.9	13.5	0.0	0.0
22	5.2	3.4	0.0	-0.0
23	-0.1	C.O	C. 7	0.1
24	7.4	0.1	0.0	-6.0
25	29.9	0.2	0.0	0.0

TABLE I3(CONT.)

ENERGY BAND	$\% \text { SODIUM }$	ATCMIC 3P	CRBITAL $3 P$	${\underset{3 p}{ } \text { CONTRIBUTION }}^{2}$
		z	x	Y
1	-0.0	1.4	-29.3	0.3
2	-C. 1	0.3	-0.1	0.1
3	0.0	-0.6	125.5	-1.1
4	59.4	-0.0	-0. 0	-0.1
5	-7.6	0.3	-ci.c	1.2
6	-0.1	1.1	-0.1	1.3
7	-0. 3	C. 3	-C. 2	5.7
8	-0.1	3.1	-6.1	C. 2
9	-0.0	0.1	-6.0	0.1
10	-0.7	0.5	-6. C	-0.1
11	-0.0	1.3	C. 3	0.2
12	-0.3	2.5	0.6	2.7
13	-0. 1	-0.0	0.2	0.7
14	0.6	0.4	0.0	0.1
15	-i. 0	0.0	0.1	-0.c
16	-1.8	0.1	0.1	0.1
17	-0.4	0.0	$0 \cdot 2$	0.1
18	-2.5	0.1	C. 1	4.1
19	-5.0	0.3	1.2	12.4
20	-0.7	12.8	0.2	-0.1
21	-0.0	3.9	-6.0	3.8
22	-3.2	4.8	2.4	1.1
23	-36.6	0.7	-0.4	0.2
24	0.0	45.7	-c. 3	18.0
25	-0.0	17.2	-5.0	48.3

TABLE 14 MULLIKEN POPULATION ANALYSIS OF CRYSTAL ORBITALS AT M SYMMETRY PCINT

ENERGY BAND	\% TUNGSTEN ATOMIC CREITAL CCNTRIBUTICN								
	502	5D	5D	5022	50	ϵS	6 P	6 P	$6 P$
	Z	$x z$	Y Z	$x-\gamma$	XY		2	X	6 P
1	0.0	0.0	0.0	0.0	-0.0	C. 0	97.4	-0.c	
2	-0.4	-0.c	-0.0	-0.6	0.0	-4.4	-0.0	-43.1	-1.0 0.0
3	-0.0	-0.0	-0.2	-0.1	-0.0	-0. 3	-0.0	-0.7	-7.5
4	0.3	0.0	-0.0	0.8	-0.2	38.7	0.1	0.5	16.1
5	3.4	0.0	0.0	1.1	-0.6	3.9	0.1	1.1	57.0
6	0.7	0.1	0.0	2.3	0.1	0.0	0.0	68.0	9.7
7	6.0	32.0	c.ó	0.1	23.8	2.8	0.0	7.3	7.5
8	1.2	27.5	52.9	0.0	4.7	6.5	0.0	0.8	1.0
9	0.9	31.6	37.7	0.2	15.0	1.4	-0.0	1.8	1.7
10	37.4	C. 6	0.4	0.2	35.9..	-0.0	0.5	1.9	1.9
11	9.2	-0. 1	-0.1	0.9	11.6	3.6	0.4	1.9	1.9
12	0.4	0.0	0.1	82.2	0.1	-0.0	0.0	0.5	0.6
13	0.0	C. 1	-0.1	0.0	-c.c	-0.0	-0.0	0.0	0.0
14	0.0	0.2	-0.3	-0.0	0.0	0.0	0.0	0.1	-0.1
15	0.1	-0.c	-c.0	0.0	0.6	0.2	0.0	0.1	-0.0
16	0.1	2.7	5.8	0.0	C. 4	0.1	-0.0	-C. 1	0.0
17	0.0	5.8	2.6	-0.1	0.1	-0.1	0.0	-C.1	-0.1
18	0.1	G.C	C. 0	-0.1	3.8	-2.2	0.5	-0.4	-0.4
19	-0. 3	0.6	0.3	-0.0	2.0	0.5	0.0	8.7	2.9
20	-0.1	0.0	0.3	0.4	0.3	0.0	0.0	2.6	5.5
21	45.2	0.6	0.0	0.0	C. 4	-1.1	0.9	-0.6	-C.Ós
22	-2.1	0.0	-3.0	0.1	0.3	59.8	0.1	-1.7	-1.8
23	-0.0	C.c	0.0	12.3	C.C	-0.0	-0.0	-8.7	-7.6
24	-2.1	-Cic	0.0	0.0	1.8	-6.1	-c.0	0.1	c. 3
25	0.2	0.0	$0 . C$	0.0	0.2	0.2	-0.0	-5.1	-1.5

TABLE I4(CCNT.)

TABLE 14 (CONT.)

ENERGY BAND	$\begin{aligned} & \text { Y CXYGEI } \\ & 2 S(3) \end{aligned}$	$\begin{gathered} A \operatorname{ATCMIC} \\ 2 \mathrm{P}(3) \\ Z \end{gathered}$	$\begin{aligned} & \text { GREITAL } \\ & 2 P(3) \\ & x \end{aligned}$	centribution ${ }^{2 P^{\prime}}$ (3).	,
1	0.0	2.6	C.c	0.0	
2	-0. 3	-0.0	C. 3	-0.1	
3	0.0	-0.0	c. 1	-1.7	
4	15.5	0.7	0.0	-0.1	
5	12.3	C. 5	-C.0	-0.4	
6	0.5	0.0	0.0	0.1	
7	0.4	0.2	2.8	0.6	
8	0.0	0.1	3.4	6.6	$\stackrel{N}{\hbar}$
9	-0.0	0.0	3.1	2.1	
10	-0.9	14.0	C. 0	0.1	
11	-0.1	17.0	C. 0	-0.0	
12	c. 0	0.5	C. 0	0.1	
13	C. 0	0.1	14.6.	2.0	
14	0.0	0.0	2.2	11.3	
15	0.2	0.0	0.0	0.5	
16	0.3	0.1	22.6	46.6	
17	0.0	0.2	44.8	23.7	
18	6.3	22.8	C. 7	-0.0	
19	4.2	0.9	4.4	1.9	
20	1.2	0.8	1.3	3.9	
21	C. 6	37.6	0.0	0.0	
22	0.6	1.8	0.1	¢. 1	
23	5.2	0.0	0.2	0.1	
24	60.5	0.2	c. 0	0.0	
25	0.1	0.1	0.1	0.0	

TABLE I4(CONT.)

1	0.0	0.0	0.0	-0.0
2	-0.0	-6.3	2.6	143.4
3	-0.0	-0.8	113.1	1.6
4	10.9	6.7	0.1	-0.6
5	23.3	2.1	2.0	0.3
6	2.7	0.4	0.8	13.5
7	6.3	2.3	1.4	0.1
8	1.0	0.1	$-C .0$	0.0
9	2.8	0.4	1.4	0.0
16	-0.6	0.6	3.9	0.0
11	9.8	0.4	0.1	-0.0
12	0.0	0.0	0.8	0.2
13	-0.0	0.0	0.1	0.0
14	0.3	0.0	0.2	-0.0
15	-0.1	0.0	-0.0	-0.0
16	-0.7	0.0	0.1	0.0
17	$C .0$	0.0	$C .4$	0.1
18	-1.5	3.1	0.4	0.2
19	0.1	0.8	0.3	-0.1
20	-0.4	0.3	1.3	-0.0
21	0.3	4.7	0.4	0.1
22	7.1	14.6	1.3	-0.5
23	0.1	0.0	-0.7	-3.1
24	39.8	0.6	-0.1	0.0
25	0.4	61.7	-2.9	-7.1

table is mulliken pepulation analysis of crystal orbitals at R SYMMETRY POINT

ENERGY BAND	\# tufgesten atomic orbital centributicn									
	5D 2	50	5D	50 22	50	$6 S$	6P	6P	$6 P$	
	Z	XZ	Yz	$x-Y$	$x y$		z	X	γ	
?	0.0	0.0	0.0	0.0	0.0	93.4	0.0	0.0	U. 0	
2	0.0	-0.2	-0.0	0.0	-C.C	0.2	18.0	17.2	12.8	
3	1.2	1.2	0.3	3.3	c. 3	-0.0	15.5	12.9	63.9	
4	4.5	0.0	0.1	1.7	0.1	-0.0	46.3	50.9	C.C	
5	0.0	5.6	3.6	0.0	3.6́	U. 1	17.5	17.9	19.0	
6	0.1	45.9	28.6	0.4	28.4	0.0	0.0	0.0	0.8	
7	0.0	C. 0	50.7	0.0	51.4	-0.0	$0 \cdot 0$	0.0	0.6	
8	-0.0	54.6	17.5	0.0	16.9	C. ${ }^{\text {c }}$	0.8	0.8	1.3	$\xrightarrow{\sim}$
9	4.2	-1. C	1.0	24.8	1.1	-0.0	0.7	C. 2	-0.0	
10	67.6	$-\mathrm{C} .0$	-0.6	13.5	-c.0	-0.0	1.1	0.7	-i. ${ }^{\text {c }}$	
11	9.7	-0.0	0.2	43.5	0.2	-0.0	1.2	1.3	-3.2	
12	0.3	-0.0	-0.2	0.5	-c. 2	6.0	0.2	0.2	-0.0	
13	0.1	-0.7	0.6	0.1	C. 6	0.0	0.2	0.2	0.1	
14	-0.1	0.0	0.1	-0.0	$0 \cdot 0$	-C.0	0.1	C. 1	C.0	
15	-0.0	-c. 0	C. 5	-0.0	0.5	0.0	0.2	0.1	O.	
16	$0 \cdot \mathrm{C}$	$0 . t$	0.5	0.0	0.6	0.0	0.9	C. 8	1.2	
17	-C. 1	-0.0	-0.c	0.0	-..0	0.0	7.4	C. 6	11.0	
18	-0.0	-C.C	-0.0	-0.1	C. C	0.6	5.6	11.7	1.4	
19	0.2	-0.0	-0.0	0.6	-i. 0	$t .3$	1.1	1.6	1.6	
20	3.1	-0.0	-0.0	9.1	-i.c	0.0	-3.2	-3.1	-13.2	
21	9.2	-0.0	-0.c	3.1	-C.C	0.0	-9.8	-9.9	-6.	
22	0.0	-0.1	-0.1	0.0	-6.1	-0.0	$-.4 .6$	-4.6	-4.4	
23	0.1	-0.3	-1.8	C. $\mathrm{C}^{\text {c }}$	-1.8	-6.	0.0	-i.0	2.1	
24	-c.c	-c.e	-1.5	-0.0	-1.6	-0.0	0.3	3.3	-i.	
25	C.O	5.6	c. 0	0.0	C. ${ }^{\circ}$	U.	-0.3	-6.3	-0.0	

table isiccat.)

ENERGY BAND	f OXYGEN ATUMIC ORBITAL CCNTRIBLTION							
	2S(1)	2P (1)	2P (1)	2P (1)	2S(2)			2P. (2)
		Z	x	\boldsymbol{Y}		Z	$\mathrm{X}^{(2)}$	Y^{2}
1	0.0	0.0	2.2	-0.0	0.0	0.0	0.0	2.2
2	3.4	C. 8	C. 1	c. 2	3.5	-6.0	-0.0	0.0
3	-2.2	3.9	1.3	4.2	-9.5	2.0	1.9	5.3
4	-8.5	0.6	4.9	0.2	-ci.c	-0.0	-0.0	0.0
5	3.3	1.2	1.2	6.4	2.8	C. 1	0.0	1.1
6	0.1	-0.7	0.0	-0.5	-0. 1	2.7	2.8	0.2
7	-6.0	0.0	-0.0	-0.6	0.0	1.2	1.2	-6.0
8	0.8	0.9	0.1	0.0	0.6	1.7	1.8	-. 2
5	0.3	11.1	-0.2	13.2	1.8	13.9	14.3	-0.6
10	3.5	0.9	4.4	0.6	C. C	0.0	C.0	0.1
11	1.3	2.3	2.1	4.6	3.4	7.0	7.0	9.7
12	0.0	8.5	0.0	32.0	0.0	12.8	14.3	0.0
13	-0.0	26.0	C. 3	3.0	0.0	26.1	24.6	c. 2
14	$-\mathrm{C} .0$	37.8	1.3	10.8	0.0	0.1	¢ i .1	0.2
15	-0.0	1.6	1.8	10.2	0.0	36.1	35.0	0.0
16	0.1	14.7	0.0	27.2	0.6	2.5	3.1	1.1
17	0.1	c. 5	2.5	0.7	2.7	C. 4	-0.0	42.1
18	2.8	C. 5	45.5	0.1	0.3	0.7	-0.2	42.0
19	c. 4	-C.0	29.7	-0.6	6.4	-0.0	-0.0	36.3
20	16.5	-0.1	0.6	C. 0	69.6	0.0	-0.0	2.5
21	52.1	0.1	2.1	-0.0	0.6	0.2	0.1	C. 0
22	25.9	-C. 1	0.0	-C. 1	24.7	-6.0	-6.0	6.0
23	0.0	-1.5	0.1	-4.9	C. 5	-5.9	-5. 5	-C.C
24	0.0	0.1	0.0	-3.6	6.0	-1.5	-1.5	0.0
25	-0.0	9.3	-0.0	-6.3	c. C	0.0	c. 0	-6.0

TAELE I5(CONT.)

ENERGY BAND	$\begin{aligned} & \text { \& EXYGEN } \\ & 2 S(3) \end{aligned}$	$\begin{aligned} & \text { VATCMIC } \\ & 2 P(3) \\ & Z \end{aligned}$	$\begin{aligned} & \text { LREITAL } \\ & 2 P(3) \\ & x^{2}(3) \end{aligned}$	CONTR IBUTION 2P (3) Y	-
1	0.0	2.2	C.C	-0.0	
2	3.5	0.1	0.7	0.1	
3	-2.6	1.5	3.6	3.8	
4	-7.8	4.7	0.7	0.2	
5	3.2	1.1	1.3	0.5	
6	0.0	0.0	-0.7	-0. 5	
7	-0.0	-0.0	C. 0	-C.ó	N
8	0.7	0.1	1.0	0.1	$\stackrel{N}{5}$
9	-0.1	0.1	13.1	16.7	
10	4.7	2.9	0.1	0.1	
11	0.9	1.6	1.5	2.5	
12	0.0	0.0	9.4	32.0	
13	C. 0	0.4	25.7	2.2	
14	-0.0	1.3	37.3	11.2	
15	-0.0	1.8	1.2	10.8	
16	c. 2	0.0	14.5	27.8	
17	1.8	29.8	0.0	C. 8	
18	1.3	22.2	1.0	0.1	
19	-0.1	27.5	-i.c	-0.0	
20	16.9	0.5	-0.1	-0.C	
21	51.2	1.5	0.1	-6. 0	
22	26.3	0.1	-i.l	-C. 1	
23	0.0	0.1	-1.6	-5.1	
24	C. 0	G. 0	C. 1	-3.6	
25	-0.0	-C.0	9.3	-0.3	

TABLE I5(CGNT.)

\begin{tabular}{|c|c|c|c|c|}
\hline \multirow[t]{3}{*}{ENERGY BAND} \& \multirow[t]{3}{*}{\% SODIUM

3 S} \& \multirow[t]{3}{*}{$$
\begin{aligned}
& \text { ATOMIC } \\
& \text { 3P } \\
& Z
\end{aligned}
$$} \& \multirow[t]{3}{*}{\[

$$
\begin{gathered}
\text { ORBITAL } \\
\mathbf{3 P} \\
x
\end{gathered}
$$
\]} \& \multirow[t]{2}{*}{centribution 3P}

\hline \& \& \& \&

\hline \& \& \& \& \boldsymbol{Y}

\hline 1 \& 0.0 \& 0.0 \& 0.0 \& -0.0

\hline 2 \& 40.5 \& 0.1 \& C. 2 \& -1.0

\hline 3 \& 0.2 \& -2.4 \& -2.3 \& -6.9

\hline 4 \& 0. C \& C. 4 \& c. 4 \& 0.0

\hline 5 \& 21.3 \& -0.6 \& -C.8 \& -3.1

\hline 6 \& 0.1 \& -2.3 \& -2.3 \& -3.1

\hline 7 \& C.c \& -1.7 \& -1.8 \& -0. 0

\hline 8 \& 1.9 \& -0.8 \& -6.7 \& -0.4

\hline 9 \& 0.1 \& -4.3 \& -4.9 \& -5.6

\hline 10 \& 0.0 \& -0.1 \& -0.6 \& -i.0

\hline 11 \& 0.0 \& -1.7 \& -1.3 \& -0.7

\hline 12 \& 0.0 \& -5.0 \& -4.8 \& -0.0

\hline 13 \& 0.0 \& -0.3 \& -0.4 \& -9.1

\hline 14 \& 0.6 \& -0.1 \& -0.1 \& -0.0

\hline 15 \& c. 0 \& 0.1 \& 0.0 \& -0.0.

\hline 16 \& 0.1 \& 0.7 \& 0.7 \& 0.6

\hline 17 \& 0.0 \& -0.1 \& -0.1 \& -S.i

\hline 18 \& 0.0 \& 0.0 \& 0.0 \& -2. 6

\hline 18 \& 0.2 \& 0.2 \& C. 2 \& C. 3

\hline 20 \& G. $\mathrm{C}^{\text {c }}$ \& 0.5 \& 0.5 \& 0.5

\hline 21 \& c. 0 \& 0.0 \& -C.0 \& c. 0

\hline 22 \& 35.8 \& 0.7 \& 0.5 \& C. 3

\hline 23 \& c.l \& 61.1 \& 62.0 \& 2.8

\hline 24 \& $0 \cdot 0$ \& 56.6 \& 56.6 \& 0.0

\hline 25 \& -0.0 \& -0.4 \& -0.4 \& 77.9

\hline
\end{tabular}

Appendix J. Pranslational Symmetry

The TBA approximation depends on a successful amalgamation of a LCAO (linear combination of atomic orbitals) with the translational symmetry possessed by a crystal. Let us discuss the translational symmetry aspect of the problem and show how the LCAO approach enters into the TBA method.

Vectors $\underline{R}_{p}=p_{1} \underline{t}_{1}+p_{2} \underline{t}_{2}+p_{3} \underline{t}_{3}$ connect equivalent points in ordinary space. The unit cell is defined by the basis vector set t. For an infinite crystal, the components (p_{1}, p_{2}, p_{3}) can assume any interral value. Such vectors R_{p} are defined as translation vectors.

Let T_{1}, T_{2} and T_{3} be translation operators connected with the primitive transjations $\underline{t}_{1}, \underline{t}_{2}$ and \underline{t}_{3} respectively. Generally $T_{V}(v=1,2$ or 3) operates on some function $f(\underline{I})$ to give

$$
T_{v} f(\underline{r})=f\left(\underline{r}+\underline{t}_{v}\right) .
$$

In terms of a translation vector \underline{R}_{p}, a translation operator $T(p)$ is defined as

$$
T(p)=T_{1}^{p_{1}} T_{2}^{p_{2}} T_{3}^{p_{3}} \text { where } T_{1}^{p_{1}} \mathrm{f}(\underline{r})=\mathrm{f}\left(\underline{r}+p_{1} \underline{t}_{1}\right)
$$

However, if we take a microcrystal, eg. $p_{1}=1000=p_{2}=p_{3}$, in a bulk solid, we still have the translational symmetry of the particular crystal. That is, the microcrystal is repeated throughout the crystal in a periodic fashion. In general we shall define the microcrystal as containing G unit cells.

By restricting the size of the microcrystal to some finite size, namely G unit cells, we obtain the Born-von-Kármán (43) cyclic boundary condition,i.e.

$$
f(\underline{r}+G \underline{t})=f(\underline{r})
$$

In other words, we never pass through the surface of th microcrystal. but instead circle bach to the origin. each microcrystal contains G^{3} lattice points defined by the inequality $0 \leq p_{v} \leq G-1 \quad(v=1,2,3)$. Lowing(86) calls this inequality the "ground domain (G) ". Other equally good ground domains are

$$
\begin{aligned}
& 1 \leqslant p_{v} \leqslant G \text { and } \\
& -(G-1) / 2 \leqslant p_{v} \leqslant(G-1) / 2
\end{aligned}
$$

The implications of the above boundary conditions are twofold

1) $T_{v}^{G}=1$.
2) The three translations will now be cyclic operators of order G having eigenvalues $\exp \left(2 \pi^{j} \underline{k}_{v} / G\right)$ where k_{v} equals an integer.

The second implication deserves some discussion. The translation operator on a function $f(\underline{r})$ gives us the usual eigenvalue problem where

$$
T(p) f(\underline{r})=\lambda_{p} f\left(\underline{r}+\underline{R}_{p}\right)
$$

λ_{p} is the eigenvalue of translation \underline{R}_{p}. Since $\langle f(\underline{r}) \mid f(\underline{r})\rangle$
and $\langle T(p) f(r) \mid T(p) f(r)\rangle$ have the same value because of translational aymetry (that is, $f(r)=f\left(r_{p}+R_{p}\right), \lambda_{p}$ is a complex number of modulus unity of $\lambda_{p}=\exp \left(i \theta_{p}\right) \cdot \theta_{p}$ is related to the translation vector R_{p} by the expression

$$
\theta_{p}=\underline{k} \cdot \underline{R}_{p}
$$

which is the inner product of \underline{R}_{p} and the wave vector $\underline{\underline{k}}$ in reciprocal space. This identification is made via the definition of a wave vector \underline{k}

$$
\begin{aligned}
& \underline{k}=2 \pi\left(K_{1} \underline{b}_{1}+k_{2} \underline{b}_{2}+k_{3} \underline{b}_{3}\right) \text { or } \\
& \underline{k}=k \underline{x}_{1}+\underline{k}_{v} \underline{b}_{2}+\underline{k}_{2} \underline{b}_{3}
\end{aligned}
$$

where the basis set \underline{b} is inversely related to \underline{t}. As in recent literature on energy band theory, \underline{k} components are expressed by (k_{x}, k_{y}, k_{z}) which are not integers while K_{V} $(v=1,2,3)$ are.

The function $\mathrm{f}(\underline{x})$ is characterized by a particular vector \underline{k} which appears in the eigenvalue of each translation operator. Thus, $f(\underline{r})$, if a periodic function, gives

$$
f\left(\underline{r}+\underline{R}_{p}\right)=\theta \operatorname{xp}\left(1 \underline{\underline{k}} \cdot \underline{R}_{p}\right) f(\underline{r}) .
$$

This rezation is referred to as Bloch's theorem (8?). If a localized function $f(\underline{r})$ is not a function of \underline{k}, but is still periodic, we can use Bloch's suggestion.(87) to obtain $f(\underline{k}, \underline{r})$ by multiplying $f(\underline{r})$ by a phase factor $\exp \left(1 \underline{k} \cdot \underline{R}_{p}\right.$) for each translation \underline{R}_{p}. This can be shown for
the q th atomic orbital function $\varnothing_{q_{\beta}}$ for an electron located at $\underline{r}-{\underset{\beta}{\beta}}^{(\text {see Figure 1) or }} \emptyset_{q_{\beta}}\left(\underline{r}-\underline{\rho}_{\beta}\right)$. For instance, a translation $-\mathrm{F}_{\mathrm{p}}$ corresponds to the eigenvalue equation

$$
T(-p) \emptyset_{q_{\beta}}\left(\underline{r}-\rho_{\beta}^{\rho}\right)=\varnothing_{q_{\beta}}\left(\underline{r}-\rho_{\beta}-\underline{R}_{p}\right)=\exp \left(-i \underline{k}_{\Delta} \underline{R}_{p}\right) \phi_{q_{\beta}}\left(\underline{r}-\underline{\rho}_{\beta}\right) .
$$

The position vector $\underline{r}_{-} \underline{\rho}_{\beta}-\underline{R}_{p}$) is shown in Figure 2. Then
 define the sum of $f(\underline{k}, \underline{\underline{r}})$ for all possible translations as the Bloch sum $\mathrm{b}_{\mathrm{q} B}(\mathrm{k}, \underline{\underline{r}})$ which corresponds to the q th atomic orbital located on atomic site β. That is,

$$
\mathrm{b}_{\mathrm{q}_{\beta}}(\underline{\underline{k}}, \underline{\underline{r}})=\mathrm{N}_{\mathrm{q} \beta}^{-\frac{1}{2}} \sum_{\mathrm{p}} \exp \left(1 \underline{k} \cdot \underline{R}_{p}\right) \varnothing_{\mathrm{q} \beta}\left(\underline{r}-\underline{\rho}_{\beta}-\underline{R}_{\mathrm{p}}\right) .
$$

The normalization constant $N_{q_{\beta}}$ of Bloch sum $b_{q / \beta}$ is obtained by the evaluation of the self-overlap of un-normalized Bloch sums.

We are now equipt to expand the crystal orbitals $\Psi_{m}(\underline{k}, \underline{r})$ into a linear combination of Bloch sums which for the m th crystal orbital function becomes

$$
\Psi_{m}(\underline{k}, \underline{r})=\sum_{q_{\beta}} \mathrm{b}\left(\underline{q_{\beta}}, \underline{\underline{k}}\right) C_{\mathrm{qm}}^{\beta}(\underline{k}) .
$$

$\mathrm{c}_{\mathrm{qm}}^{\mathrm{\beta}}(\underline{\mathrm{x}})$ is the corresponding expansion coefficient.
With a knowledge of the linear combination of Bloch sums after one evaluates the coeffifents $C_{q m}^{\beta}(\underline{k})$ for the wave vector coordinates,i.e. (k_{x}, k_{y}, k_{z}), one can classify the energy band symmetry to the proper irreducible repres. entations of subgroups of the space group to which the
crystal belongs. Available group theoretical character tables for all of the subgroups of the θ_{h} space group (88) facilitates this classification for perovskite transition metal oxides which are simple cubic or 0_{h}^{l}.

Appendix K. Unitary Transformations

Z1man(4) shows how Wannier functions are obtained reom Bloch sums using a unitary transformation. In the tightbinding limit, atomic orbital functions are obtained in the same manner:

$$
\begin{aligned}
& \sum_{\underline{k}} \exp \left(-1 \underline{k} \cdot \underline{R}_{\ell}\right) b_{q \alpha}(\underline{k}, \underline{r})=
\end{aligned}
$$

$$
\begin{align*}
& \left.=\frac{G}{N^{\frac{1}{2}}} \sum_{q_{\alpha}} \sum_{p} \delta_{R_{p}, R_{\ell}} \phi_{q_{\alpha}(\underline{r}-\rho}-\frac{R_{\alpha}}{}\right) \\
& =\frac{G}{\mathbb{N}_{\mathrm{q} \alpha}^{2}} \varnothing_{\mathrm{q} \alpha}\left(\underline{\underline{r}}-\underline{\rho}_{\alpha}-\mathrm{R}_{\mathrm{p}}\right) . \tag{KI}
\end{align*}
$$

The crux of this unitary trensformation is the identity (4)

$$
\begin{equation*}
\sum_{\underline{k}} \exp \left(1 \underline{\underline{k}} \cdot\left(\underline{R}_{p}-\underline{R}_{l}\right)\right)=G \sum_{\underline{R}, \underline{R} \ell} \tag{K2}
\end{equation*}
$$

where G equals the number of unft cells in the microcrystal.
We will use the unitary transformation to obtain ${ }_{\mathcal{F}} \operatorname{Ave}^{(\underline{r})}$ and $\mathrm{n}_{\mathrm{q} \alpha}$ (note that the position vector \underline{r} is label-. ed to facilitate easier notation).

The Fock operator on electron μ in state \underline{k} is $\mathcal{F}(\underline{k}, \underline{r})$ defined in Equation 17. $\mathcal{F}(\underline{k}, \underline{\mu})$ averaged over \underline{k} space yields

$$
\begin{aligned}
& =-\nabla_{\mu}^{2}-\sum_{\partial} 2 z_{\gamma} / r_{\gamma \mu} \\
& +\frac{1}{G} \sum_{\underline{\underline{k}}} \sum_{q \alpha, t_{\beta}} p_{\underline{\underline{k}}}\left(q \alpha, t_{\beta}\right) \exp \left(1 \underline{\underline{k}} \cdot \underline{R}_{l}\right) \exp \left(-1 \underline{\left.\underline{\underline{k}} \cdot \underline{R}_{l}\right)}\right. \text {. }
\end{aligned}
$$

Bringing the phase factors exp (take \underline{R}_{l}) into the double sum over the translation vectors in Equation $K 3$ and using Equation $K 2$ we obtain the transformed expression

$$
\begin{aligned}
& { }^{\text {AVe }}\left(\underline{w}_{\gamma} \gamma\right)=-\nabla_{\mu}^{2}-\sum_{\gamma} 2 Z_{\gamma} / r_{\gamma \mu}
\end{aligned}
$$

$$
\begin{aligned}
& \text { - } \sum_{\underline{k}} p_{\underline{k}}\left(q \alpha, t_{\xi}\right)
\end{aligned}
$$

and rearrangement after summing over ${\underset{R}{f}}^{n}$ and $\underline{R}_{v}^{\text {yields }}$
$\cdot \frac{1}{G} \sum_{\underline{\underline{k}}} \underline{p} \underline{\underline{k}}(q \alpha, t \beta)$.
 we obtain using $\mathbb{R}_{\mathrm{p}}=\mathrm{R}_{\xi}-\underline{R}_{v}$ (also dropping the prime over the dumm index)

$$
\begin{aligned}
& \stackrel{\text { Ave }}{\mathcal{F}}\left(\underline{r}_{\mu}\right)=-\nabla_{\mu}^{2}-\sum_{\gamma} 2 Z_{\gamma} / r_{\gamma \mu}+\sum_{q \alpha, t_{\beta}} p^{A v o}\left(q \alpha, t_{\beta}\right) \cdot
\end{aligned}
$$

where $p^{\text {Avo }}(q \alpha, t \beta)$ is the average bond order matrix over k space.

In Appendix C, we find basis for making a further simplification of Equation $K 5$ whereby the product of G and the Coulomb and exchange operators for a particular translation ${\underset{p}{p}}^{f}$ is essentially a sum over all possible translation vectors where p ranges from 1 to G. Then Equation $K 5$ becomes

$$
\begin{align*}
\mathcal{F}^{\text {Ave }}(\underline{p})= & -\nabla_{\mu}^{2}-\sum_{\gamma}^{2 z_{\gamma} / r_{\gamma \mu}+\sum_{q \alpha, t_{\beta}} p^{\text {Ave }}(q \alpha, t \beta) \frac{G}{N_{q}^{\frac{1}{2}} N_{t}^{\frac{1}{2}}}} . \\
& \cdot \sum_{p=0}^{G}\left\{\begin{array}{l}
\text { Coulomb and } \\
\text { exhange op- } \\
\text { erators }
\end{array}\right\} \tag{K6}
\end{align*}
$$

We include $p=0$ to the sum in Equation $K 6$ in order to establish the convention $q=t$ and $\underline{R}_{0}=0$.

Let us now proceed to make a similar transformation of the Flodmark population analysis. From Equation 24 we
have an expression for $n_{q_{\alpha}}$ amenable to the unitary transformation. The resulting set of equations for the unitary transformation is

$$
\begin{aligned}
& n_{q_{\alpha}}=\frac{2}{G} \sum_{\underline{k}} \sum_{m}^{M}{ }_{n}^{\underline{k}}{ }_{q m}^{\alpha}(\underline{k}) \exp \left(i \underline{k} \cdot \underline{R}_{j}\right) \exp \left(-1 \underline{k} \cdot \underline{R}_{j}\right)
\end{aligned}
$$

$$
\begin{aligned}
& =\frac{2}{G} \sum \sum^{M_{k}} \sum C_{q m}^{\alpha \%}(\underline{k}) C_{t m}^{\beta}(\underline{k}) . \\
& \text { k m tB } \\
& \text { - } \exp \left(1 \underline{k}\left(-R_{\xi}+R_{j}\right)\right) \exp \left(i \underline{k} \cdot\left(\underline{R}-R_{j}\right)\right) N_{q_{\alpha}}^{-\frac{1}{2}} N_{t_{\beta}}^{-\frac{1}{2}} . \\
& \cdot\left\langle\emptyset _ { q _ { \alpha } } ({ \underset { \mu } { \mu } } ^ { - \rho _ { \alpha } } R _ { \xi }) \left\langle\phi_{t g}\left(\frac{\left.r-\rho_{\beta}-R_{v}\right)}{}\right\rangle\right.\right.
\end{aligned}
$$

In a manner no different than the unitary transformation of the Fock operator we obtain

All conventions used previously are utilized for the unitary transformation of the Flodmark population analysis. Thus the quantity $n_{q \alpha}$ can be interpretted in terms of the atomic orbital qa whereby the number of electrons in that orbital on any $\underset{\text { aite }}{ }$ is the average value obtained from the occupation numbers over all k space.

Appendix L. Matrix Elements Between Atomic Orbitals If $F\left(\underline{r}_{\mu}\right)=1$, we obtain expressions for the overlap matrix elements $\Delta_{q \alpha \beta}(\underline{k})$. Using Equation 46 wo directiy obtain Equation 49 for case $\alpha \neq \beta$ and $q \neq s$. Other cases, i.e. $\alpha=\beta, q \neq s ; \alpha=\beta, q=s$, need to be specially considered in order to insure that all interactions are included in the sum over interaction vectors. Thus, the convention used to define $\underline{R}_{p}={\underset{J}{j}}_{\alpha \alpha}^{-\rho_{-}} \underline{-}^{\alpha \alpha}$ for $\alpha=\beta$ no longer applies; since one interaction vector, $f=1$, is usually taken as zero. Obviously, $\rho_{j}^{\alpha \alpha} f 0(j=1, \ldots, V)$ for general cases. Therefore, we shall use a definition of R_{p} which applies to the special case $\alpha=\beta$;

$$
\begin{aligned}
& \underline{R}_{p}=\rho_{-j}^{\alpha \alpha}(j=0,1,2, \ldots \forall) \text { where } \\
& \underline{\rho}_{-0}^{\alpha \alpha}=0 \text { for the origin of a tom type } \\
& \text { located at } \underline{\rho}_{\alpha} \text { in the unit cell. }
\end{aligned}
$$

The latter choice satisfies the "ground domain(G)" discussed in Appendix J.

$$
\begin{align*}
& A_{q \alpha s \beta}(\underline{k})=G N_{q \alpha}^{-\frac{t_{N}}{2}-\frac{T}{2}} \sum_{s \beta} \sum_{j=0}^{V} \exp \left(-\underline{i k} \cdot \underline{\rho}_{j}^{\alpha \alpha}\right) . \\
& \left\langle\phi_{q \alpha}\left(\underline{r}_{\mu}-\underline{\rho}_{j}^{\alpha \alpha}\right) \mid \phi_{s \beta}\left(\underline{r}_{\mu}\right)\right\rangle . \tag{L}
\end{align*}
$$

Equation Ll can be expressed in a form compatible with economic use of the computer; namely, we shall use Euler's relation to convert the exponential terms in Equation Ll into cosine and sin terms which are more practical to evaluate. Using a parity term derived in Appendix M, wo are able to write Equations in the text which apply to the case $\alpha=\beta$ and $q \neq s$.

In the case $\alpha=\beta$ and $q=s$, we obtain the diagonal elements which are obtained from Equation Ll via the Euler relation and are written in terms of cosines

$$
\begin{align*}
& \Delta_{\mathrm{q} \alpha}(\underline{k})=\mathrm{GN}_{\mathrm{q} \alpha}^{-1}\left\langle\phi_{\mathrm{q} \alpha}(\underline{r}) \mid \phi_{\mathrm{q} \alpha}(\underline{r})\right\rangle \\
& +2 \sum_{j=1,2}^{V} \cos \left(\underline{\underline{k}} \cdot \underline{\rho}_{j}^{\alpha \alpha \alpha}\left\langle\phi_{q \alpha}\left(\underline{\underline{r}}_{\mu}^{-\rho_{j}^{\alpha \alpha}}\right) \mid \phi_{q \alpha}\left(\underline{r}_{-}\right)\right\rangle .\right. \tag{LT}
\end{align*}
$$

If the atomic orbital functions are normalized, the overlap term corresponding to the null vector is equal to one.

If the Bloch sums are normalized to unity, f, $\theta_{q_{\alpha}(\underline{K})}$ equals one, we need only rearrange Equation L2 to obtain an expression for the normalization constant $N_{q \alpha}$ which is

$$
\mathrm{N}_{\mathrm{q} \alpha} \ddagger G\left[1+2 \sum_{j=1,2}^{\mathrm{V}} \cos \left(\underline{k} \cdot \underline{\rho}_{j}^{\alpha \alpha}\right)\left\langle\phi_{\mathrm{q} \alpha}\left(\underline{\underline{r}}-\rho_{\mu}\right) \mid \phi_{\mathrm{q} \alpha}^{\alpha \alpha}\left(\underline{r}_{\mu}\right)\right\rangle .\right.
$$

Before we move on to a discussion of the Hamiltonian matrix elements, we should comment on the orthogonality of atomic orbital functions.

The diatomic overlap integral $\left\langle\phi_{q \alpha}\left(\underline{r}_{\mu}\right) \mid \phi_{S \alpha}\left(\underline{r}_{\mu}\right)\right\rangle_{\text {which }}$ results for the null vector $\rho_{-0}^{\alpha \alpha}$ occurs for $\alpha=\rho_{\text {and }} q \neq s$.

It is important to stress that this integral is generally non-zero. For instance, if non-orthogonal analytical atomic orbital functions are used, the overlap integral is non-zero when the following conditions on the quantum numbers for orbitals q and s are met:

$$
n_{q} \neq n_{s} ; \ell_{q}=\ell_{s} ; m_{q}=m_{s} .
$$

However, if the Schmidt process is applied to the nonorthogonal basis set, the resulting orthogonal functions will automatically give a zero value for the integral for any quantum number set. In any case, the TBA computer program is written to handle either orthogonal or non-orthogonal atomic orbital functions on a given atomic site.

If $F\left(\underline{r}_{\mu}\right)$ equals the TBA Fock operator defined in Equation, off-diagonal ($q \neq s, \alpha \neq \beta$) matrix elements of $H(\underline{k})$ can be written using Equation 46

$$
\begin{aligned}
& j=1 \\
& \left\langle\phi_{q \alpha}\left(\underline{r} \mu_{\mu}-\underline{\rho}_{j}\right)^{\rho \alpha}\right| \mathcal{F}^{A v e}\left(\underline{\underline{s}}_{\mu}\right) \mid \phi_{s_{\beta}}(\underline{r} \mu\rangle .
\end{aligned}
$$

If we substitute $\underline{r}=\underline{r}+\mathscr{\rho}_{-\beta}$ into Equation, wo obtain the following expression :

$$
{\underset{F}{\mathcal{F}}}^{\text {Ave }}\left(\underline{\underline{r}}_{p}\right)=-\stackrel{2}{\nabla}+\sum_{p} \sum_{\gamma} V_{\gamma}\left(\underline{r}_{r^{-}}-{\underset{-p}{\rho}}_{\beta \gamma}^{\beta \gamma}\right.
$$

in terms of interaction voctors ${\underset{p}{\rho}}_{\rho \beta \gamma}^{\beta \gamma}$ (dropping the prime due
to the dummy index of integration). Furthermore, the above expression can be rewritten in more useful form

$$
\mathcal{F}\left(\underline{r}_{\mu}\right)=-\nabla_{\mu}^{2}+V_{\alpha}\left(\underline{r}_{\mu}-\underline{\rho}_{j}^{\beta \alpha}\right)+\sum_{p \gamma}^{\prime} \sum_{\gamma}^{\prime} V_{\gamma}\left(\underline{r}_{\mu}-\frac{\rho}{p}_{\beta \gamma}^{\beta}\right)
$$

" The primes over the summation signs indicate that the interaction vector defined by $p=j$ and $\gamma=\alpha$ is removed from the potential summation. Therefore, Equation L2 becomes

Equation L3 will now be expressed in terms of groups of integrals so that the approximations discussed in context to the TBA method can be applied. That is,

$$
\begin{aligned}
H_{q \alpha s \beta}(\underline{k})= & G N_{q_{\alpha}}^{-\frac{1}{2}} N_{s \beta}^{-\frac{1}{2}} \sum_{j=1}^{V} \exp \left(-i \underline{k} \cdot\left(\underline{\rho}_{j}-\rho_{-1}^{\beta \alpha}\right)\right) \cdot \\
& {\left[I_{0}(j)+\sum_{p} \sum_{\gamma} I_{I}(j, p, \gamma)\right) }
\end{aligned}
$$

where
and

$$
I_{0}(j)=\left\langle\varnothing_{q \alpha}\left(\underline{r}_{\mu}-\underline{\rho}_{j}^{B \alpha}\right) \mid v_{\alpha}\left(\underline{r}_{\mu} \rho_{j}^{\beta \alpha}\right) \varnothing_{\beta \beta}\left(\underline{r}_{\mu}\right)\right\rangle
$$

$$
I_{1}(j, p,)=\left\langle\emptyset_{q \alpha}\left(\underline{r}_{\mu}-\underline{\rho}_{j}^{B \alpha}\right)\right| v_{\gamma}\left(\underline{r}_{\mu}{\underset{p}{p}}_{B \gamma}^{\beta}\right)\left|\emptyset_{s_{\beta}}(r)\right\rangle
$$

We then use Equation 40 to approximate I_{0} as

$$
I_{\theta}(j)=\left\langle\varnothing_{q \alpha}\left(r_{\mu}^{-\rho j}\right)\right| \varnothing_{s_{\beta}}\left(r_{\mu}\right) \epsilon_{q_{\alpha}}\left\langle\phi_{q_{\alpha}}\left(r_{\mu}^{-\rho_{j}}\right)^{\beta \alpha}\right|-\psi_{\mu}^{2} \phi_{\beta_{\beta}}\left(\underline{r}_{\mu}\right\rangle .
$$

$$
\begin{align*}
& H_{q \alpha s \beta}(\underline{k})=G N_{q \alpha}^{-\frac{1}{2}} N_{s \beta}^{-\frac{1}{2}} \sum_{j=1}^{V} \exp \left(-1 \underline{k} \cdot\left({\underset{j}{j}}_{-1}^{\beta \alpha} \rho_{-1}^{\beta \alpha}\right)\right) . \\
& \left\langle\phi_{q \alpha}\left(\underline{r}_{\mu} \rho_{j}^{\beta \alpha}\right)\right| V_{\alpha}\left(\underline{r}_{\mu}-\underline{\rho}_{j}^{\beta \phi}\right)\left|\varnothing_{s \beta}\left(\underline{r}_{\mu}\right)\right\rangle \\
& +\sum_{\Gamma} \sum_{\gamma}^{\langle }\left\langle\alpha_{q \times}^{\prime}\left(\underline{r}-\rho_{i}^{\beta-1}\right)\right| v_{\gamma}\left(\underline{r}_{-}-\underline{\rho}_{p}^{\beta}\right)\left|\varnothing_{3 \beta}^{\gamma}(\underline{r})\right\rangle \text {. } \tag{LB}
\end{align*}
$$

In the above, we have operated to the function to the left of the $\left.\operatorname{eff}_{\alpha}^{\operatorname{tf}(\underline{r}} \underline{\rho}_{f}^{\beta \alpha}\right)$ instead of the right. Thus, besides discussions connected with Equation $40, j$ the quantum mechanical implication is that eff is further assumed to be hermitian.

The three-center integrals $I_{1}(j, p, \gamma)$ are simplified by the Mulliken approximationsused in Equation 32, Finally, we can express $H_{q \alpha s \beta}(\underline{k})$ in the form used for computer calculations and show in Equation 49.

In the case of $\mathrm{q}=\mathrm{s}$ (or $\mathrm{q} \neq \mathrm{s}$) and $\alpha=\beta$, we define $H_{q \alpha s \alpha}(\underline{k})$ using the corresponding conventions for overlap matrix elements and using essentially the same approximations as above we are able to write the expression in Equation 49. The only difference with the above is how we express the TBA Fock operator:

$$
{\underset{\mathcal{F}}{ }}_{\text {Ave }}\left(\underline{r}_{\mu}\right)=-\nabla_{\mu}^{2}+V_{\alpha}\left(\underline{r}_{\mu}-\underline{\rho}_{0}^{\alpha}\right)+\sum_{p}^{\prime \prime} \sum_{\gamma}^{\prime \prime} V_{\gamma}^{\prime}\left(\underline{r}_{a}-{\underset{p}{p}}_{\alpha \gamma}^{\alpha}\right.
$$

where the double primes denote that the null vector is removed from the double sum.

Appendix M. Parity of Overlap Integrals

We want to examine the value of an overlap integral on a translation of coordinate system B (Figure MI) by 2R along the z_{2} axis (Figure M2).
I.et us investigate the angular part of an overlap type integral between two orbitals having quantum numbers n, ℓ, m
 That is, we shall use Equation D6 to define

$$
\left\langle\mathcal{Y}_{\ell m}\left(\theta_{A}, \varnothing_{A}\right)\right| I\left|Y_{l},\left(\theta_{B}, \&_{B}\right)\right\rangle=\Delta(\underline{R})_{A B}
$$

Then,

$$
\begin{align*}
& \Delta(\underline{\underline{K}})_{A B}=N^{*}(m) N\left(m^{v}\right)(-1)^{\ell^{\prime}} \sum_{k}(-1)^{k} . \\
& \cdot\left[\exp \left(-1 \gamma(m) d_{k}^{l}(\beta)+I(m) \exp (1(m) X) \underset{k|m|}{d}(\beta)\right]\right. \\
& \text { - } \left.\left[\exp (1)\left(\left.m\right|^{\prime}\right) d_{k-\left(m^{\prime}\right.}^{l}(\beta)+I\left(m^{\prime}\right) \exp \left(-1 \gamma \mid m^{\prime}\right)\right) d_{k\left(m_{l}^{\prime}\right.}^{l}(\beta)\right] \\
& \text { - }\left\langle Y_{l}^{k} \mid Y_{l^{\prime}}^{k}\right\rangle \tag{MI}
\end{align*}
$$

where $\gamma=\varnothing$ and $\beta=-\theta$.
Now if we examine $\Delta(-\underline{R})_{A B}$ we have that

$$
-R=(R, \pi-\theta, \pi+\phi) .
$$

Then $\beta^{\prime}=-(\pi-\theta)=\theta-\pi=-(\beta+\pi)$ and $\gamma^{\prime}=-(\phi+\pi)=-\phi-\pi=\gamma-\pi$ for Euler angles in the displaced system. (Figure M2). Since $\exp (1 m(\gamma-\kappa))=\exp (1 m \gamma) \exp (-1 m \pi)=(-1)^{m} \exp (1 m \gamma)$ and

$$
\underset{k m}{d_{k}^{l}(-\beta-\pi)}=\underset{k m}{d^{\ell}(\beta+r)}=(-1)^{\ell+m} \underset{-k m}{\ell}(\beta)
$$

Figure Ml. The usual overlap coordinate sweter.

Figure int. B is translated $2 R$ along the Z_{2} axis.
via the symmetry properties of $\frac{d^{l}}{k \mathrm{~m}}$ as defined by Edmond (64), wo have for the expression in the first bracket in Equation MI

The freastormayion of the quantity in the second brackets in Equation Ml leads to a similiar form with the parity factors appearing out in front (because of orthogonality of f dependent functions $m=m$ ' so wo are left with a parity factor in and only.

Since $\left\langle Y_{l}^{k} \mid Y_{l^{\prime}}^{k}\right\rangle=\left\langle Y_{l}^{-k} \mid Y_{l}^{-k}\right\rangle(84)$, substitution of the
above form into Equation Ml merely changes the order of summation and we have that

$$
\Delta\left(\underline{R}_{A B}=(-1)^{l+l^{\prime}} \Delta\left(-\underline{R}_{A B} .\right.\right.
$$

If $F\left(\underline{r}_{\mu}\right)=V\left(\underline{r}-\underline{p}_{j}^{\rho \alpha}\right)$, we still would have $(-1)^{\ell+l^{\prime}}$ in front of the negative - - integral. Therefore, Equation M2 is a general result to be used in both overlap and Hamiltonian matrix elements.

[^0]: a_{A} work suggested by Kaufmann (45) and considered by the author elsewhere (46).

[^1]: aThe principal quantum number of the Slater type orbital basis.
 ${ }^{\mathrm{b}}$ The least squares function is
 $5 \mathrm{~d}=0.583504(1.54671)+0.668450(3.55414)$
 $-0.505987(8.16695)+0.184065(18.76656)$ where the number in parenthesis is the orbital exponent and the number preceding the perenthesis is the corresponding coefficient.

 $$
 \begin{aligned}
 & \mathrm{c}_{\text {The }} \text { least squares function is } \\
 & 6 s=-0.179520(0.99199)+2.034532(1.56188) \\
 & -1.246671(2.45917)-0.547268(3.87195) \\
 & \quad+0.869837(6.09637)-0.307880(9.59870) . \\
 & \begin{aligned}
 & \mathrm{d}_{\text {The }} \text { least squares function is } \\
 & 6 p=-0.159442(0.99847)+1.256337(1.43424) \\
 &+0.789819(2.06021)-1.977675(2.95936) \\
 &+0.785272(4.25094) .
 \end{aligned}
 \end{aligned}
 $$

[^2]: ${ }^{\text {a }}$ Least-squares-fit functions are referred to as LSF type. See Table 4.
 $b_{\text {The }}$ function which is fitted is based upon self-consistent radial functions (SCF).
 the value of the function at the radial distance $r_{p}=(48,30)$.
 $d_{\text {The weighted mean-square deviation, } D, ~ i s ~ d e f i n e d ~ a s: ~(48) ~}^{\text {(4 }}$

 $$
 D=\sum_{p}\left[S C F\left(r_{p}\right)-L C F\left(r_{p}\right)\right]^{2} r_{p}
 $$

[^3]: a_{n} equals 4 for KTaO_{3} and 3 for $\mathrm{Na}_{x} \mathrm{WO}_{3}(x=1.0)$.

[^4]: $a_{\text {In order to represent as close as possibie to the } \mathrm{ReO}_{3}}$ model we chose zero vaiues ior potassium orbitals. Even though this choice temporarily violates the charge neutrality of the unit cell, the final iteration over the 56 k vector set corrects for this aifference.

[^5]: arydberg units.

